-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcolsvm.m
64 lines (50 loc) · 1.65 KB
/
colsvm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
function [classes,classCV,score,scoreCV,CVSVMModel,outlierRate,aa,t_aa,u_aa,aa1,t_aa1,u_aa1,beta,bias,sv_indices,n,sensitivity,specificity,sensitivity1,specificity1,svmStruct] = colsvm(training,Prediction,group,pr_group)
%% model training
% svmStruct = svmtrain(training,group);%redifine if need be
svmStruct = fitcsvm(training,group,'ClassNames',[0 1],'Standardize',true,...
'KernelFunction','rbf','BoxConstraint',Inf);
ScoreSVMModel = fitSVMPosterior(svmStruct);
%model crossvalidation k-fold 10
CVSVMModel = crossval(svmStruct);
[classCV,scoreCV]=kfoldPredict(CVSVMModel);
outlierRate = mean(scoreCV<0);
%model prediction
[classes score]=predict(svmStruct,Prediction);
% classes=svmclassify(svmStruct,Prediction);%redefine if need be
%%
%cp is class performance
cp = classperf(classes, pr_group);
%overall % correct rate
aa=cp.CorrectRate;
% treated % group aa
t_aa=cp.NegativePredictiveValue;
% untreated % group aa
u_aa=cp.PositivePredictiveValue;
%sensitivity
sensitivity=cp.Sensitivity;
% specificity
specificity=cp.Specificity;
%%
%cp is class performance for cross validation
cpv = classperf(classCV, group);
%overall % correct rate
aa1=cpv.CorrectRate;
% treated % group aa
t_aa1=cpv.NegativePredictiveValue;
% untreated % group aa
u_aa1=cpv.PositivePredictiveValue;
%sensitivity
sensitivity1=cpv.Sensitivity;
% specificity
specificity1=cpv.Specificity;
%%
% alpha
beta = svmStruct.Beta;
% Bias
bias = svmStruct.Bias;
% support vector indices
sv_indices = svmStruct.SupportVectorLabels;
% number of support vectors n
S_v = svmStruct.SupportVectors;
sz=size(S_v);
n=sz(1);