forked from PaddlePaddle/PaddleHelix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
182 lines (153 loc) · 6.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import sys
import os
import math
import argparse
import traceback
import re
import io
import json
import yaml
import time
import logging
from tqdm import tqdm
import numpy as np
from collections import namedtuple
from ogb.graphproppred import GraphPropPredDataset
import paddle.fluid as F
import paddle.fluid.layers as L
import pgl
from pgl.utils import paddle_helper
from pgl.utils.data.dataloader import Dataloader
from propeller import log
log.setLevel(logging.DEBUG)
import propeller.paddle as propeller
from propeller.paddle.data import Dataset as PDataset
from utils.config import prepare_config, make_dir
from utils.logger import prepare_logger, log_to_file
from utils.util import int82strarr
from dataset import MolDataset, MgfCollateFn
from model import MgfModel
import dataset as DS
import model as M
def multi_epoch_dataloader(loader, epochs):
def _worker():
for i in range(epochs):
log.info("BEGIN: epoch %s ..." % i)
for batch in loader():
yield batch
log.info("END: epoch %s ..." % i)
return _worker
def train(args, pretrained_model_config=None):
log.info("loading data")
raw_dataset = GraphPropPredDataset(name=args.dataset_name)
args.num_class = raw_dataset.num_tasks
args.eval_metric = raw_dataset.eval_metric
args.task_type = raw_dataset.task_type
train_ds = MolDataset(args, raw_dataset)
args.eval_steps = math.ceil(len(train_ds) / args.batch_size)
log.info("Total %s steps (eval_steps) every epoch." % (args.eval_steps))
fn = MgfCollateFn(args)
train_loader = Dataloader(train_ds,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=args.shuffle,
stream_shuffle_size=args.shuffle_size,
collate_fn=fn)
# for evaluating
eval_train_loader = train_loader
eval_train_loader = PDataset.from_generator_func(eval_train_loader)
train_loader = multi_epoch_dataloader(train_loader, args.epochs)
train_loader = PDataset.from_generator_func(train_loader)
if args.warm_start_from is not None:
# warm start setting
def _fn(v):
if not isinstance(v, F.framework.Parameter):
return False
if os.path.exists(os.path.join(args.warm_start_from, v.name)):
return True
else:
return False
ws = propeller.WarmStartSetting(
predicate_fn=_fn,
from_dir=args.warm_start_from)
else:
ws = None
def cmp_fn(old, new):
if old['eval'][args.metrics] - new['eval'][args.metrics] > 0:
log.info("best %s eval result: %s" % (args.metrics, new['eval']))
return True
else:
return False
if args.log_id is not None:
save_best_model = int(args.log_id) == 5
else:
save_best_model = True
best_exporter = propeller.exporter.BestResultExporter(
args.output_dir, (cmp_fn, save_best_model))
eval_datasets = {"eval": eval_train_loader}
propeller.train.train_and_eval(
model_class_or_model_fn=MgfModel,
params=pretrained_model_config,
run_config=args,
train_dataset=train_loader,
eval_dataset=eval_datasets,
warm_start_setting=ws,
exporters=[best_exporter],
)
def infer(args):
log.info("loading data")
raw_dataset = GraphPropPredDataset(name=args.dataset_name)
args.num_class = raw_dataset.num_tasks
args.eval_metric = raw_dataset.eval_metric
args.task_type = raw_dataset.task_type
test_ds = MolDataset(args, raw_dataset, mode="test")
fn = MgfCollateFn(args, mode="test")
test_loader = Dataloader(test_ds,
batch_size=args.batch_size,
num_workers=1,
collate_fn=fn)
test_loader = PDataset.from_generator_func(test_loader)
est = propeller.Learner(MgfModel, args, args.model_config)
mgf_list = []
for soft_mgf in est.predict(test_loader,
ckpt_path=args.model_path_for_infer, split_batch=True):
mgf_list.append(soft_mgf)
mgf = np.concatenate(mgf_list)
log.info("saving features")
np.save("dataset/%s/soft_mgf_feat.npy" % (args.dataset_name.replace("-", "_")), mgf)
if __name__=="__main__":
parser = argparse.ArgumentParser(description='gnn')
parser.add_argument("--config", type=str, default="./config.yaml")
parser.add_argument("--task_name", type=str, default="task_name")
parser.add_argument("--infer_model", type=str, default=None)
parser.add_argument("--log_id", type=str, default=None)
args = parser.parse_args()
if args.infer_model is not None:
config = prepare_config(args.config, isCreate=False, isSave=False)
config.model_path_for_infer = args.infer_model
infer(config)
else:
config = prepare_config(args.config, isCreate=True, isSave=True)
log_to_file(log, config.log_dir, config.log_filename)
if config.warm_start_from is not None:
log.info("loading model config from %s" % config.pretrained_config_file)
pretrained_config = prepare_config(config.pretrained_config_file)
pretrained_model_config = pretrained_config.pretrained_model_config
else:
pretrained_model_config = config.model_config
config.log_id = args.log_id
train(config, pretrained_model_config)