-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcat_advgen.py
637 lines (563 loc) · 32.7 KB
/
cat_advgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import argparse
import numpy as np
from tqdm import trange
import time
import pygame
import os
import hashlib
import glob
import tempfile
import torch
import ffmpeg
from copy import deepcopy
from metadrive.envs.real_data_envs.waymo_env import WaymoEnv
from metadrive.policy.replay_policy import ReplayEgoCarPolicy, ReplayTrafficParticipantPolicy
from metadrive.policy.idm_policy import WaymoIDMPolicy, TrajectoryIDMPOlicy
from metadrive.utils import clip
# Can swap in adv_generator_rule to use rule-based AdvGenerator too, for eval setting B in CAT paper
from advgen.adv_generator import AdvGenerator
from advgen.adv_generator_rule import AdvGenerator as AdvGeneratorRule
from advgen.adv_generator_hybrid import AdvGenerator as AdvGeneratorHybrid
from advgen.adv_generator_goose import AdvGenerator as AdvGeneratorGoose
from metadrive.component.vehicle.base_vehicle import BaseVehicle
from saferl_algo import TD3, TD3_GRU, skill_model, reskill_model, utils
from saferl_plotter.logger import SafeLogger
import goose_train
def write_frame(env, dir_path, ep_timestep, debug=False):
if debug:
return
if not os.path.exists(dir_path):
os.makedirs(dir_path, exist_ok=True)
pygame.image.save(env.engine._top_down_renderer.canvas, f'{dir_path}/frame_{str(ep_timestep).zfill(3)}.png')
def write_video(dir_path_in, output, debug=False):
if debug:
return
img_pattern = f'{dir_path_in}/*.png'
ffmpeg.input(img_pattern, pattern_type='glob', framerate=10)\
.output(output, loglevel='quiet')\
.run(overwrite_output=True)
for img_frame in glob.glob(img_pattern):
os.remove(img_frame)
# TODO: save out_of_road status, for filtering bad trajectories!
def get_tracks(env, save_model_name):
ret = {}
names = env.engine.get_objects().keys()
extra_ego_info = {}
extra_other_info = {}
for name in names:
obj = env.engine.get_object(name).get(name)
# chassis = obj.chassis.node()
length, width = obj.LENGTH, obj.WIDTH
if name == 'default_agent':
params = obj.get_dynamics_parameters()
max_engine_force = params['max_engine_force']
max_brake_force = params['max_brake_force']
wheel_friction = params['wheel_friction']
max_steering = params['max_steering']
mass = params['mass']
dynamics = np.array([max_engine_force, max_brake_force, wheel_friction, max_steering, mass], dtype=np.float32)
extra_ego_info['dynamics'] = dynamics
# These don't depend on seed, always the same sequence...
extra_ego_info['navi_info'] = obj.navigation.get_navi_info().astype(np.float32)
extra_ego_info['policy'] = str(env.engine.get_policy(name))
crash = env.vehicle.crash_vehicle if save_model_name != 'ego_replay' else env.vehicle.ego_crash_flag
out_of_road = env._is_out_of_road(obj)
extra_ego_info['out_of_road'] = out_of_road
extra_ego_info['crash'] = crash
else:
crash = hasattr(obj, 'crash_vehicle') and obj.crash_vehicle
if name != 'default_agent' and isinstance(obj, BaseVehicle):
params = obj.get_dynamics_parameters()
max_engine_force = params['max_engine_force']
max_brake_force = params['max_brake_force']
wheel_friction = params['wheel_friction']
max_steering = params['max_steering']
mass = params['mass']
dynamics = np.array([max_engine_force, max_brake_force, wheel_friction, max_steering, mass], dtype=np.float32)
out_of_road = env._is_out_of_road(obj)
# These don't depend on seed, always the same sequence...
navi_info = obj.navigation.get_navi_info().astype(np.float32)
policy_name = str(env.engine.get_policy(name))
extra_other_info[name] = {'dynamics': dynamics, 'navi_info': navi_info, 'policy': policy_name,
'out_of_road': out_of_road, 'crash': crash}
# As in, should we actually just save the actions taken by IDM? let's try IK first tho...
# Saving from IDM makes a lot of sense actually...or we can try to learn a policy? Still,
# let's see if we can "back out" action <-> traj follow
info = np.concatenate([obj.position, obj.velocity, [obj.heading_theta, length, width, crash]]).astype(np.float32)
ret[name] = info
return ret, extra_ego_info, extra_other_info
def observe_other(env, other_id):
if other_id not in env.engine.get_objects():
return [-1] * 101
obj_other = env.engine.get_object(other_id).get(other_id)
scenario_obs = env.observations['default_agent']
if observe_other.lateral_dist_idx == -1:
observe_other.lateral_dist_idx = len(scenario_obs.state_observe(obj_other)) - 1
other_obs = scenario_obs.observe(obj_other)
lateral_dist = env.engine.map_manager.other_routes[other_id].local_coordinates(obj_other.position)[-1]
lateral_obs = lateral_dist / scenario_obs.MAX_LATERAL_DIST
lateral_obs = clip((lateral_obs + 1) / 2, 0.0, 1.0)
other_obs[observe_other.lateral_dist_idx] = lateral_obs
return other_obs
observe_other.lateral_dist_idx = -1
def observe_others(env):
other_obs = {}
names = env.engine.get_objects().keys()
for name in names:
if name == 'default_agent':
continue
if not isinstance(env.engine.get_object(name).get(name), BaseVehicle):
continue
other_obs[name] = observe_other(env, name)
return other_obs
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--OV_traj_num', type=int,default=32)
parser.add_argument('--AV_traj_num', type=int,default=1)
parser.add_argument('--open_loop', action='store_true', help='Change adversarial generation to open loop (i.e., condition on ego replay)')
parser.add_argument('--no_adv', action='store_true', help='Just do replay scenes, no adv generate, for consistency.')
parser.add_argument('--use_hard', action='store_true', help='Use hard scenes instead of base 500')
parser.add_argument('--hard_path', default='raw_scenes_hard', choices=['raw_scenes_hard', 'raw_scenes_hard_dist', 'raw_scenes_hard_rand'], help='Which hard set to use')
parser.add_argument('--rule_based', action='store_true', help='Change adversarial generation to rule-based instead of learned')
parser.add_argument('--goose_adv', action='store_true', help='Use GOOSE-adv')
parser.add_argument('--goose_adv_path', default='goose_small_act0', help='GOOSE-adv frozen model path')
parser.add_argument('--skill_based_adv_path', default='cat_reskill_initial0', help='Path for skill-based adversarial model')
parser.add_argument('--model_adv_path', default='cat_initial0', help='Path for other model to use for adversary')
parser.add_argument('--collision_offset', default='10', type=str, help='Amount behind calculated trajectory to takeover. -1 = inf, var = random, 10 = 10 steps, etc.')
parser.add_argument('--skill_based_adv', action='store_true', help='Change adversarial generation to skill-based instead of prior-only')
parser.add_argument('--model_adv', action='store_true', help='Change adversarial generation to another model instead of prior-only')
parser.add_argument('--idm_adv', action='store_true', help='Change adversarial generation to IDM instead of prior-only')
parser.add_argument('--current_model_adv', action='store_true', help='Actually use the current model being trained too')
parser.add_argument('--current_model_prior', choices=['normal', 'adv'], default='normal', help='For current model skill, which prior to set')
parser.add_argument('--learned_objective', default='', type=str, help='Use decision32 learned model instead of objective.')
parser.add_argument('--learned_objective_mode', default='both', choices=['sc', 'diff', 'both'], type=str, help='Which learned_objective to use')
parser.add_argument('--split', default='eval', choices=['eval', 'train'], help='Split between eval or train')
parser.add_argument('--reactive', action='store_true', help='Background agents reactivity')
parser.add_argument('--obs_all', action='store_true', help='Observe all agents if possible')
parser.add_argument('--save_scenario', action='store_true', help='Visualize scenario BEV output')
parser.add_argument('--scenario_id', default=-1, type=int, help='Specify a scenario to visualize')
parser.add_argument('--repeat', action='store_true', help='Infinitely repeat the scenario')
parser.add_argument('--ego_idm', action='store_true', help='Whether or not to use IDM for Ego')
parser.add_argument('--save32', action='store_true', help='Whether or not to save all 32 possibile adv paths')
parser.add_argument('--load_model', type=str, default='', help='Path to load model from for Ego')
parser.add_argument('--no_prior', action='store_true', help='Skip skill prior, use random sampling from skill space')
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument("--tau", default=0.005, type=float) # Target network update rate
parser.add_argument("--policy_noise", default=0.2) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
tmp_args = parser.parse_known_args()
if tmp_args[0].goose_adv:
assert tmp_args[0].AV_traj_num == 5, 'AV_traj_num must be 5 for GOOSE (# of GOOSE policy steps)'
adv_generator = AdvGeneratorGoose(parser)
elif tmp_args[0].skill_based_adv or tmp_args[0].idm_adv or tmp_args[0].model_adv or tmp_args[0].current_model_adv:
assert np.sum([tmp_args[0].skill_based_adv, tmp_args[0].idm_adv, tmp_args[0].model_adv, tmp_args[0].current_model_adv]) == 1, 'Conflicting adv generation policy'
adv_generator = AdvGeneratorHybrid(parser)
elif tmp_args[0].rule_based:
adv_generator = AdvGeneratorRule(parser)
elif tmp_args[0].no_adv:
adv_generator = AdvGeneratorRule(parser)
else:
adv_generator = AdvGenerator(parser)
args = parser.parse_args()
if args.save32:
assert args.ego_idm and isinstance(adv_generator, AdvGenerator) and args.AV_traj_num == 1, \
'Save32 requires ego idm and regular CAT advgen, with adv n1'
# TODO: check that sum of these is 1, rather than different branches
assert not (args.ego_idm and args.load_model != ''), 'Conflicting model'
# TODO: allow for both rule_based and skill_based_adv together
assert not (args.open_loop and (args.rule_based or args.skill_based_adv or args.no_adv)), 'Conflicting adv generation policy'
assert not (args.no_adv and (args.rule_based or args.skill_based_adv or args.open_loop)), 'Conflicting adv generation policy'
assert args.AV_traj_num >= 1, 'AV traj num must be at least 1'
# Had to modify top_down_renderer for this...
extra_args = dict(mode="top_down", film_size=(2200, 2200), flip=True)
reactive = args.reactive
repeat = args.repeat
assert not repeat, 'Repeat not supported'
save_scenario = args.save_scenario
use_hard = args.use_hard
hard_path = args.hard_path
skill_based = 'saved_skill_models' in args.load_model or 'reskill' in args.load_model
reskill = 'reskill' in args.load_model and 'saved_skill_models' not in args.load_model
if reskill or not skill_based:
save_model_name = f'model_{args.load_model}' if args.load_model != '' \
else 'ego_idm' if args.ego_idm \
else 'ego_replay'
else:
expected_prefix = 'reskill/reskill/results/saved_skill_models/'
well_formatted = args.load_model.startswith(expected_prefix)
well_formatted = well_formatted and ('/' not in args.load_model.split(expected_prefix)[-1])
assert well_formatted, 'Unexpected skill_based model path'
# TODO: get a better name from this?
#sus_hash = hashlib.shake_256(args.load_model.encode()).hexdigest(5)
sus_hash = args.load_model.split(expected_prefix)[-1]
prior_name = '_no_prior' if args.no_prior else ''
save_model_name = f'model_skill{prior_name}_{sus_hash}'
open_loop_name = '_open_loop' if args.open_loop else ''
rule_based_name = '_rule_based' if args.rule_based else ''
goose_name = '_goose' if args.goose_adv else ''
reactive_name = '_reactive' if args.reactive else ''
obs_all_name = '_obs_all' if args.obs_all else ''
no_adv_name = '_normal' if args.no_adv else '_adv'
if not use_hard:
hard_name = ''
else:
hard_name = '_hard' if hard_path == 'raw_scenes_hard' else '_hard_dist' if 'dist' in hard_path else '_hard_rand'
hybrid_name = adv_generator.hybrid_name if isinstance(adv_generator, AdvGeneratorHybrid) else ''
av_traj_num = f'_n{args.AV_traj_num}'
save_all_name = '_save32' if args.save32 else ''
if not len(args.learned_objective):
learned_name = ''
elif args.learned_objective_mode == 'both':
learned_name = '_learned_obj'
else:
learned_name = f'_learned_obj_{args.learned_objective_mode}'
exp_name = f'{save_model_name}{open_loop_name}{reactive_name}{obs_all_name}{no_adv_name}{av_traj_num}{hard_name}{rule_based_name}{goose_name}{hybrid_name}{save_all_name}{learned_name}'
env_name = args.split
logger = SafeLogger(log_dir='./output', exp_name=exp_name, env_name=env_name, seed=args.seed,
fieldnames=['crash_rate', 'out_of_road_rate', 'arrive_rate', 'route_completion'],
allow_overwrite=True, debug=args.debug)
base_save_dir = logger.log_dir if not args.debug else ''
# TODO: save info on rolled out trajectories for all in sim, termination reason, etc.
if not args.debug:
os.makedirs(base_save_dir + '/videos', exist_ok=True)
os.makedirs(base_save_dir + '/obs', exist_ok=True)
config = {
"use_render": False,
"data_directory": './raw_scenes_500' if not use_hard else f'./{hard_path}',
"force_reuse_object_name" :True,
"sequential_seed": True,
"vehicle_config": dict(show_navi_mark=False,
show_dest_mark=False,
lidar = dict(num_lasers=30,distance=50, num_others=3),
side_detector = dict(num_lasers=30),
lane_line_detector = dict(num_lasers=12)),
"no_light": True,
"no_static_vehicles": True,
"sequential_seed": True,
"num_scenarios": 100 if env_name == 'eval' else 400,
"crash_vehicle_done": True,
"start_scenario_index": 400 if (env_name == 'eval' and not use_hard) else 0
}
# Config to control background traffic behavior
config["reactive_traffic"] = reactive
config["spawn_once"] = True
config["ignore_idm_region"] = True
config["remove_after_destination"] = False
config["traffic_need_navigation"] = True
if args.load_model == '':
config["agent_policy"] = WaymoIDMPolicy if args.ego_idm \
else ReplayEgoCarPolicy
env = WaymoEnv(config)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if skill_based and not reskill:
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
prior_path = f'{args.load_model}/skill_prior_best.pth' if not args.no_prior else None
vae_path = f'{args.load_model}/skill_vae_best.pth'
# By default, always use benign prior; force use of shared library
adv_prior_path = None
# adv_prior_path = f'{args.load_model}/adv_skill_prior_best.pth' if 'adv_prior' in args.load_model else None
device = torch.device('cpu')
policy = skill_model.SkillModel(vae_path=vae_path, prior_path=prior_path, adv_prior_path=adv_prior_path, device=device)
elif args.load_model != '':
# Assume to load a saved TD3 model for now
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
"max_action": max_action,
"discount": args.discount,
"tau": args.tau,
}
kwargs["policy_noise"] = args.policy_noise * max_action
kwargs["noise_clip"] = args.noise_clip * max_action
kwargs["policy_freq"] = args.policy_freq
if reskill:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
kwargs["device"] = device
meta_info = np.load(f'./models/{args.load_model}_meta.npy', allow_pickle=True).item()
kwargs.update(meta_info)
policy = reskill_model.ReSkillModel(**kwargs)
else:
policy = TD3.TD3(**kwargs)
policy_file = args.load_model
policy.load(f"./models/{policy_file}")
else:
policy = None
if args.skill_based_adv:
adv_generator.load_skill_model(env, args)
elif args.model_adv:
adv_generator.load_other_model(env, args)
elif args.current_model_adv:
adv_generator.load_current_model(env, args, policy)
elif args.goose_adv:
kwargs = {
"state_dim": goose_train.state_dim,
"action_dim": goose_train.action_dim,
"goal_dim": goose_train.goal_dim,
"max_action": goose_train.max_action,
"discount": args.discount,
"tau": args.tau
}
goose_policy = TD3_GRU.TD3GRU(**kwargs)
goose_policy.load(f"./goose_models/{args.goose_adv_path}")
goose_policy.shared_gru.eval()
goose_policy.actor.eval()
goose_policy.critic.eval()
attack_cnt = 0
route_completion = 0
out_of_road_cnt = 0
arrive_dest_cnt = 0
time_cost = 0.
tot_eps = 0
if args.scenario_id == -1:
pbar = trange(400, 500) if (env_name == 'eval' and not use_hard) else trange(0, 100) if use_hard else trange(0, 400)
else:
pbar = trange(args.scenario_id, args.scenario_id + 1)
# TODO: limit FPS to make it slower and easier to visualize?
for i in pbar:
tot_eps += 1
######################## First Round : log the normal scenario ########################
state = env.reset(force_seed=i)
if skill_based:
policy.reset_current_skill()
done = False
ep_timestep = 0
adv_generator.before_episode(env) # initialization before each episode
if args.goose_adv:
adv_generator.generate()
adv_generator.frozen_new_episode(env)
adv_generator.frozen_set_info(env)
if args.obs_all:
other_states = observe_others(env)
env.render(**extra_args)
env.engine._top_down_renderer.set_adv(adv_generator.adv_agent)
env.vehicle.ego_crash_flag = False
# TODO: consider using noisy action selection, add variance, for advgen stuff; 4 noisy + 1 concrete in normal
#action = (
#policy.select_action(np.array(state))
#+ np.random.normal(0, max_action * args.expl_noise, size=action_dim)
#).clip(-max_action, max_action)
with tempfile.TemporaryDirectory() as tmpdirname:
# Want to save the ego data even in this phase.
if args.save32:
normal_save_info = {'normal_tracks': []}
if args.goose_adv:
adv_generator.frozen_before_episode()
while True:
# Skip this phase if no_adv specified
if args.goose_adv:
adv_generator.frozen_episode_step(env)
if args.no_adv:
break
adv_generator.log_AV_history() # log the ego car's states at every step
if policy is None: # i.e., is this replay only?
action = np.array([1.0, 0.0])
if args.save32:
track_info, _, _ = get_tracks(env, save_model_name)
state, r, done, info = env.step(action)
else:
action = policy.select_action(np.array(state))
if args.save32:
track_info, _, _ = get_tracks(env, save_model_name)
state, r, done, info = env.step(action)
if args.save32:
normal_save_info['normal_tracks'].append(track_info)
if args.obs_all:
other_states = observe_others(env)
ep_timestep += 1
if done:
adv_generator.after_episode(update_AV_traj=(not args.open_loop), mode='train')
break
if args.goose_adv:
ego_crash = env.vehicle.crash_vehicle if save_model_name != 'ego_replay' else env.vehicle.ego_crash_flag
adv_generator.frozen_after_episode(goose_policy, env, ego_crash, null_action_if_crash=True)
################ Second Round : create the adversarial counterpart #####################
# Want to also log the observation (i.e. state) for replay/iterative skill embedding!
save_info = {'tracks': [], 'extra_ego_info': [], 'extra_other_info': [], 'obs': [], 'actions': [],
'done': None, 'route_completion': 0, 'gen_time': 0}
if args.obs_all:
save_info['other_obs'] = []
save_info['other_actions'] = []
save_info['adv_agent'] = adv_generator.adv_agent
save_info['ego_agent'] = 'default_agent'
# Want to save the original track too
if args.save32:
save_info.update(normal_save_info)
old_save_info = deepcopy(save_info)
# Build a history of (normal, adv1, adv2, ..., adv n-1) to generate final nth adv, to match training well
# If n = 1, history is (normal); if n = 5, history is (normal, adv1, adv2, adv3, adv4)
# TODO: if save32, iterate 32 times and save each one with a different key...
n_iter = args.AV_traj_num if not args.save32 else 32
if args.save32:
initial_all_traj = None
initial_all_traj_prob = None
initial_all_col_prob = None
initial_all_last_state = None
initial_adv_traj_id = None
for n_adv in range(n_iter):
final_gen = (n_adv == args.AV_traj_num - 1) or args.save32
# Reset save_info after each iteration
if args.save32:
save_info = deepcopy(old_save_info)
state = env.reset(force_seed=i)
if args.goose_adv:
adv_generator.before_episode(env)
adv_generator.generate()
# No need to frozen_new_episode()
adv_generator.frozen_set_info(env)
if skill_based:
policy.reset_current_skill()
env.vehicle.ego_crash_flag = False
done = False
ep_timestep = 0
t0 = time.time()
if not args.goose_adv:
adv_generator.before_episode(env) # initialization before each episode
if not args.no_adv and not args.goose_adv: # only adv generate if told to
if not args.save32:
adv_generator.generate(mode='train') # Adversarial scenario generation with the logged history corresponding to the current env
elif args.save32 and n_adv == 0:
adv_generator.generate(mode='train') # Adversarial scenario generation with the logged history corresponding to the current env
initial_all_traj = deepcopy(adv_generator.all_traj)
initial_all_traj_prob = deepcopy(adv_generator.all_traj_prob)
initial_all_col_prob = deepcopy(adv_generator.all_col_prob)
initial_all_last_state = deepcopy(adv_generator.all_last_state)
initial_adv_traj_id = adv_generator.adv_traj_id
elif args.save32:
adv_generator.all_traj = deepcopy(initial_all_traj)
adv_generator.all_traj_prob = deepcopy(initial_all_traj_prob)
adv_generator.all_col_prob = deepcopy(initial_all_col_prob)
adv_generator.all_last_state = deepcopy(initial_all_last_state)
adv_generator.adv_traj_id = initial_adv_traj_id
cur_adv_traj = adv_generator.adv_traj if not args.save32 else adv_generator.all_traj[n_adv]
if args.save32:
save_info['decoder_last_state'] = adv_generator.all_last_state[n_adv]
save_info['adv_traj_id'] = adv_generator.adv_traj_id
adv_generator.adv_traj = cur_adv_traj
env.engine.traffic_manager.set_adv_info(adv_generator.adv_agent,cur_adv_traj) # set the adversarial traffic
# Observe after, to update navi info
if args.obs_all:
other_states = observe_others(env)
t1 = time.time()
time_cost += t1 - t0
if args.goose_adv:
adv_generator.frozen_before_episode()
with tempfile.TemporaryDirectory() as tmpdirname:
while True:
if args.goose_adv:
adv_generator.frozen_episode_step(env)
adv_generator.log_AV_history() # log the ego car's states at every step
if policy is None:
action = np.array([1.0, 0.0])
else:
action = policy.select_action(np.array(state))
if final_gen:
# action t should correspond to the action to be taken given state t
save_info['obs'].append(state)
if args.obs_all:
save_info['other_obs'].append(other_states)
track_info, extra_ego_info, extra_other_info = get_tracks(env, save_model_name)
save_info['tracks'].append(track_info)
save_info['extra_ego_info'].append(extra_ego_info)
save_info['extra_other_info'].append(extra_other_info)
if hasattr(adv_generator, 'before_step') and not args.goose_adv:
adv_generator.before_step(env, ep_timestep)
state, r, done, info = env.step(action)
if final_gen:
agent_policy = env.engine.get_policy('default_agent')
saved_action = action if not args.ego_idm else agent_policy.get_action_info()['action']
save_info['actions'].append(saved_action)
if args.obs_all:
other_names = [x for x in env.engine.get_objects().keys() if x != 'default_agent' and \
isinstance(env.engine.get_object(x).get(x), BaseVehicle) and \
x in other_states.keys()]
other_actions = {}
for name in other_names:
other_action = np.array([1.0, 0.0])
if isinstance(env.engine.get_policy(name), TrajectoryIDMPOlicy):
other_action = env.engine.get_policy(name).get_action_info()['action']
other_actions[name] = other_action
save_info['other_actions'].append(other_actions)
if args.obs_all:
other_states = observe_others(env)
if final_gen:
env.render(**extra_args,text={'Generate': 'Safety-Critical Scenario'})
dir_path = f'{base_save_dir}/videos'
if save_scenario:
write_frame(env, tmpdirname, ep_timestep, debug=args.debug)
ep_timestep += 1
crash = env.vehicle.crash_vehicle if save_model_name != 'ego_replay' else env.vehicle.ego_crash_flag
if done or crash:
# post-processing after each episode
adv_generator.after_episode(update_AV_traj=(not args.open_loop), mode='train')
if args.goose_adv:
adv_generator.frozen_after_episode(goose_policy, env, crash, null_action_if_crash=True)
if not final_gen:
break
# Now in final_gen guaranteed, write last state info
save_info['obs'].append(state)
if args.obs_all:
save_info['other_obs'].append(other_states)
if policy is None:
action = np.array([1.0, 0.0])
else:
action = policy.select_action(np.array(state))
if args.ego_idm:
agent_policy = env.engine.get_policy('default_agent')
do_speed_control = 'default_agent'
saved_action = agent_policy.act(do_speed_control=do_speed_control)
else:
saved_action = action
save_info['actions'].append(saved_action)
if args.obs_all:
other_names = [x for x in env.engine.get_objects().keys() if x != 'default_agent' and \
isinstance(env.engine.get_object(x).get(x), BaseVehicle) and \
x in other_states.keys()]
other_actions = {}
for name in other_names:
other_action = np.array([1.0, 0.0])
if isinstance(env.engine.get_policy(name), TrajectoryIDMPOlicy):
do_speed_control = name
other_action = env.engine.get_policy(name).act(do_speed_control=do_speed_control)
other_actions[name] = other_action
save_info['other_actions'].append(other_actions)
track_info, extra_ego_info, extra_other_info = get_tracks(env, save_model_name)
save_info['tracks'].append(track_info)
save_info['extra_ego_info'].append(extra_ego_info)
save_info['extra_other_info'].append(extra_other_info)
save32_path = f'_traj{n_adv}' if args.save32 else ''
if save_scenario:
write_video(tmpdirname, f'{dir_path}/adv_{i}{save32_path}.mp4', debug=args.debug)
out_of_road = env._is_out_of_road(env.vehicle) or ('out_of_road' in info and info['out_of_road'])
arrive_destination = env._is_arrive_destination(env.vehicle) or ('arrive_dest' in info and info['arrive_dest'])
if crash:
attack_cnt += 1
save_info['done'] = 'crash'
elif out_of_road:
out_of_road_cnt += 1
save_info['done'] = 'out_of_road'
elif arrive_destination:
arrive_dest_cnt += 1
save_info['done'] = 'arrive'
else:
pass
route_completion += info['route_completion']
save_info['route_completion'] = info['route_completion']
save_info['gen_time'] = time_cost
if not args.debug:
np.save(f'{base_save_dir}/obs/adv_{i}{save32_path}.npy', save_info, allow_pickle=True)
if args.save32 and n_adv != n_iter - 1:
break
keys = ['crash', 'out_of_road', 'arrive', 'avg_route', 'avg_gen_time']
vals = [attack_cnt, out_of_road_cnt, arrive_dest_cnt, route_completion, time_cost]
benchmark_display = {k: v/tot_eps for k, v in zip(keys, vals)}
logger.update([v/tot_eps for v in vals[:4]], total_steps=i)
pbar.set_postfix(benchmark_display) # benchmarking the attack success rate and computational time
break
env.close()