-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain.py
286 lines (244 loc) · 13.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""
SOM-DST
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
from model import SomDST
from pytorch_transformers import BertTokenizer, AdamW, WarmupLinearSchedule, BertConfig
from utils.data_utils import prepare_dataset, MultiWozDataset
from utils.data_utils import make_slot_meta, domain2id, OP_SET, make_turn_label, postprocessing
from utils.eval_utils import compute_prf, compute_acc, per_domain_join_accuracy
from utils.ckpt_utils import download_ckpt, convert_ckpt_compatible
from evaluation import model_evaluation
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
import numpy as np
import argparse
import random
import os
import json
import time
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def masked_cross_entropy_for_value(logits, target, pad_idx=0):
mask = target.ne(pad_idx)
logits_flat = logits.view(-1, logits.size(-1))
log_probs_flat = torch.log(logits_flat)
target_flat = target.view(-1, 1)
losses_flat = -torch.gather(log_probs_flat, dim=1, index=target_flat)
losses = losses_flat.view(*target.size())
losses = losses * mask.float()
loss = losses.sum() / (mask.sum().float())
return loss
def main(args):
def worker_init_fn(worker_id):
np.random.seed(args.random_seed + worker_id)
n_gpu = 0
if torch.cuda.is_available():
n_gpu = torch.cuda.device_count()
np.random.seed(args.random_seed)
random.seed(args.random_seed)
rng = random.Random(args.random_seed)
torch.manual_seed(args.random_seed)
if n_gpu > 0:
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
ontology = json.load(open(args.ontology_data))
slot_meta, ontology = make_slot_meta(ontology)
op2id = OP_SET[args.op_code]
print(op2id)
tokenizer = BertTokenizer(args.vocab_path, do_lower_case=True)
train_data_raw = prepare_dataset(data_path=args.train_data_path,
tokenizer=tokenizer,
slot_meta=slot_meta,
n_history=args.n_history,
max_seq_length=args.max_seq_length,
op_code=args.op_code)
train_data = MultiWozDataset(train_data_raw,
tokenizer,
slot_meta,
args.max_seq_length,
rng,
ontology,
args.word_dropout,
args.shuffle_state,
args.shuffle_p)
print("# train examples %d" % len(train_data_raw))
dev_data_raw = prepare_dataset(data_path=args.dev_data_path,
tokenizer=tokenizer,
slot_meta=slot_meta,
n_history=args.n_history,
max_seq_length=args.max_seq_length,
op_code=args.op_code)
print("# dev examples %d" % len(dev_data_raw))
test_data_raw = prepare_dataset(data_path=args.test_data_path,
tokenizer=tokenizer,
slot_meta=slot_meta,
n_history=args.n_history,
max_seq_length=args.max_seq_length,
op_code=args.op_code)
print("# test examples %d" % len(test_data_raw))
model_config = BertConfig.from_json_file(args.bert_config_path)
model_config.dropout = args.dropout
model_config.attention_probs_dropout_prob = args.attention_probs_dropout_prob
model_config.hidden_dropout_prob = args.hidden_dropout_prob
model = SomDST(model_config, len(op2id), len(domain2id), op2id['update'], args.exclude_domain)
if not os.path.exists(args.bert_ckpt_path):
args.bert_ckpt_path = download_ckpt(args.bert_ckpt_path, args.bert_config_path, 'assets')
ckpt = torch.load(args.bert_ckpt_path, map_location='cpu')
model.encoder.bert.load_state_dict(ckpt)
# re-initialize added special tokens ([SLOT], [NULL], [EOS])
model.encoder.bert.embeddings.word_embeddings.weight.data[1].normal_(mean=0.0, std=0.02)
model.encoder.bert.embeddings.word_embeddings.weight.data[2].normal_(mean=0.0, std=0.02)
model.encoder.bert.embeddings.word_embeddings.weight.data[3].normal_(mean=0.0, std=0.02)
model.to(device)
num_train_steps = int(len(train_data_raw) / args.batch_size * args.n_epochs)
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
enc_param_optimizer = list(model.encoder.named_parameters())
enc_optimizer_grouped_parameters = [
{'params': [p for n, p in enc_param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in enc_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
enc_optimizer = AdamW(enc_optimizer_grouped_parameters, lr=args.enc_lr)
enc_scheduler = WarmupLinearSchedule(enc_optimizer, int(num_train_steps * args.enc_warmup),
t_total=num_train_steps)
dec_param_optimizer = list(model.decoder.parameters())
dec_optimizer = AdamW(dec_param_optimizer, lr=args.dec_lr)
dec_scheduler = WarmupLinearSchedule(dec_optimizer, int(num_train_steps * args.dec_warmup),
t_total=num_train_steps)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data,
sampler=train_sampler,
batch_size=args.batch_size,
collate_fn=train_data.collate_fn,
num_workers=args.num_workers,
worker_init_fn=worker_init_fn)
loss_fnc = nn.CrossEntropyLoss()
best_score = {'epoch': 0, 'joint_acc': 0, 'op_acc': 0, 'final_slot_f1': 0}
for epoch in range(args.n_epochs):
batch_loss = []
model.train()
for step, batch in enumerate(train_dataloader):
batch = [b.to(device) if not isinstance(b, int) else b for b in batch]
input_ids, input_mask, segment_ids, state_position_ids, op_ids,\
domain_ids, gen_ids, max_value, max_update = batch
if rng.random() < args.decoder_teacher_forcing: # teacher forcing
teacher = gen_ids
else:
teacher = None
domain_scores, state_scores, gen_scores = model(input_ids=input_ids,
token_type_ids=segment_ids,
state_positions=state_position_ids,
attention_mask=input_mask,
max_value=max_value,
op_ids=op_ids,
max_update=max_update,
teacher=teacher)
loss_s = loss_fnc(state_scores.view(-1, len(op2id)), op_ids.view(-1))
loss_g = masked_cross_entropy_for_value(gen_scores.contiguous(),
gen_ids.contiguous(),
tokenizer.vocab['[PAD]'])
loss = loss_s + loss_g
if args.exclude_domain is not True:
loss_d = loss_fnc(domain_scores.view(-1, len(domain2id)), domain_ids.view(-1))
loss = loss + loss_d
batch_loss.append(loss.item())
loss.backward()
enc_optimizer.step()
enc_scheduler.step()
dec_optimizer.step()
dec_scheduler.step()
model.zero_grad()
if step % 100 == 0:
if args.exclude_domain is not True:
print("[%d/%d] [%d/%d] mean_loss : %.3f, state_loss : %.3f, gen_loss : %.3f, dom_loss : %.3f" \
% (epoch+1, args.n_epochs, step,
len(train_dataloader), np.mean(batch_loss),
loss_s.item(), loss_g.item(), loss_d.item()))
else:
print("[%d/%d] [%d/%d] mean_loss : %.3f, state_loss : %.3f, gen_loss : %.3f" \
% (epoch+1, args.n_epochs, step,
len(train_dataloader), np.mean(batch_loss),
loss_s.item(), loss_g.item()))
batch_loss = []
if (epoch+1) % args.eval_epoch == 0:
eval_res = model_evaluation(model, dev_data_raw, tokenizer, slot_meta, epoch+1, args.op_code)
if eval_res['joint_acc'] > best_score['joint_acc']:
best_score = eval_res
model_to_save = model.module if hasattr(model, 'module') else model
save_path = os.path.join(args.save_dir, 'model_best.bin')
torch.save(model_to_save.state_dict(), save_path)
print("Best Score : ", best_score)
print("\n")
print("Test using best model...")
best_epoch = best_score['epoch']
ckpt_path = os.path.join(args.save_dir, 'model_best.bin')
model = SomDST(model_config, len(op2id), len(domain2id), op2id['update'], args.exclude_domain)
ckpt = torch.load(ckpt_path, map_location='cpu')
model.load_state_dict(ckpt)
model.to(device)
model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
is_gt_op=False, is_gt_p_state=False, is_gt_gen=False)
model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
is_gt_op=False, is_gt_p_state=False, is_gt_gen=True)
model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
is_gt_op=False, is_gt_p_state=True, is_gt_gen=False)
model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
is_gt_op=False, is_gt_p_state=True, is_gt_gen=True)
model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
is_gt_op=True, is_gt_p_state=False, is_gt_gen=False)
model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
is_gt_op=True, is_gt_p_state=True, is_gt_gen=False)
model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
is_gt_op=True, is_gt_p_state=False, is_gt_gen=True)
model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
is_gt_op=True, is_gt_p_state=True, is_gt_gen=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--data_root", default='data/mwz2.1', type=str)
parser.add_argument("--train_data", default='train_dials.json', type=str)
parser.add_argument("--dev_data", default='dev_dials.json', type=str)
parser.add_argument("--test_data", default='test_dials.json', type=str)
parser.add_argument("--ontology_data", default='ontology.json', type=str)
parser.add_argument("--vocab_path", default='assets/vocab.txt', type=str)
parser.add_argument("--bert_config_path", default='assets/bert_config_base_uncased.json', type=str)
parser.add_argument("--bert_ckpt_path", default='assets/bert-base-uncased-pytorch_model.bin', type=str)
parser.add_argument("--save_dir", default='outputs', type=str)
parser.add_argument("--random_seed", default=42, type=int)
parser.add_argument("--num_workers", default=4, type=int)
parser.add_argument("--batch_size", default=32, type=int)
parser.add_argument("--enc_warmup", default=0.1, type=float)
parser.add_argument("--dec_warmup", default=0.1, type=float)
parser.add_argument("--enc_lr", default=4e-5, type=float)
parser.add_argument("--dec_lr", default=1e-4, type=float)
parser.add_argument("--n_epochs", default=30, type=int)
parser.add_argument("--eval_epoch", default=1, type=int)
parser.add_argument("--op_code", default="4", type=str)
parser.add_argument("--slot_token", default="[SLOT]", type=str)
parser.add_argument("--dropout", default=0.1, type=float)
parser.add_argument("--hidden_dropout_prob", default=0.1, type=float)
parser.add_argument("--attention_probs_dropout_prob", default=0.1, type=float)
parser.add_argument("--decoder_teacher_forcing", default=0.5, type=float)
parser.add_argument("--word_dropout", default=0.1, type=float)
parser.add_argument("--not_shuffle_state", default=False, action='store_true')
parser.add_argument("--shuffle_p", default=0.5, type=float)
parser.add_argument("--n_history", default=1, type=int)
parser.add_argument("--max_seq_length", default=256, type=int)
parser.add_argument("--msg", default=None, type=str)
parser.add_argument("--exclude_domain", default=False, action='store_true')
args = parser.parse_args()
args.train_data_path = os.path.join(args.data_root, args.train_data)
args.dev_data_path = os.path.join(args.data_root, args.dev_data)
args.test_data_path = os.path.join(args.data_root, args.test_data)
args.ontology_data = os.path.join(args.data_root, args.ontology_data)
args.shuffle_state = False if args.not_shuffle_state else True
print('pytorch version: ', torch.__version__)
print(args)
main(args)