-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmodel.py
142 lines (121 loc) · 6.36 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
SOM-DST
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
import torch
import torch.nn as nn
from pytorch_transformers.modeling_bert import BertPreTrainedModel, BertModel
class SomDST(BertPreTrainedModel):
def __init__(self, config, n_op, n_domain, update_id, exclude_domain=False):
super(SomDST, self).__init__(config)
self.hidden_size = config.hidden_size
self.encoder = Encoder(config, n_op, n_domain, update_id, exclude_domain)
self.decoder = Decoder(config, self.encoder.bert.embeddings.word_embeddings.weight)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids,
state_positions, attention_mask,
max_value, op_ids=None, max_update=None, teacher=None):
enc_outputs = self.encoder(input_ids=input_ids,
token_type_ids=token_type_ids,
state_positions=state_positions,
attention_mask=attention_mask,
op_ids=op_ids,
max_update=max_update)
domain_scores, state_scores, decoder_inputs, sequence_output, pooled_output = enc_outputs
gen_scores = self.decoder(input_ids, decoder_inputs, sequence_output,
pooled_output, max_value, teacher)
return domain_scores, state_scores, gen_scores
class Encoder(nn.Module):
def __init__(self, config, n_op, n_domain, update_id, exclude_domain=False):
super(Encoder, self).__init__()
self.hidden_size = config.hidden_size
self.exclude_domain = exclude_domain
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.dropout)
self.action_cls = nn.Linear(config.hidden_size, n_op)
if self.exclude_domain is not True:
self.domain_cls = nn.Linear(config.hidden_size, n_domain)
self.n_op = n_op
self.n_domain = n_domain
self.update_id = update_id
def forward(self, input_ids, token_type_ids,
state_positions, attention_mask,
op_ids=None, max_update=None):
bert_outputs = self.bert(input_ids, token_type_ids, attention_mask)
sequence_output, pooled_output = bert_outputs[:2]
state_pos = state_positions[:, :, None].expand(-1, -1, sequence_output.size(-1))
state_output = torch.gather(sequence_output, 1, state_pos)
state_scores = self.action_cls(self.dropout(state_output)) # B,J,4
if self.exclude_domain:
domain_scores = torch.zeros(1, device=input_ids.device) # dummy
else:
domain_scores = self.domain_cls(self.dropout(pooled_output))
batch_size = state_scores.size(0)
if op_ids is None:
op_ids = state_scores.view(-1, self.n_op).max(-1)[-1].view(batch_size, -1)
if max_update is None:
max_update = op_ids.eq(self.update_id).sum(-1).max().item()
gathered = []
for b, a in zip(state_output, op_ids.eq(self.update_id)): # update
if a.sum().item() != 0:
v = b.masked_select(a.unsqueeze(-1)).view(1, -1, self.hidden_size)
n = v.size(1)
gap = max_update - n
if gap > 0:
zeros = torch.zeros(1, 1*gap, self.hidden_size, device=input_ids.device)
v = torch.cat([v, zeros], 1)
else:
v = torch.zeros(1, max_update, self.hidden_size, device=input_ids.device)
gathered.append(v)
decoder_inputs = torch.cat(gathered)
return domain_scores, state_scores, decoder_inputs, sequence_output, pooled_output.unsqueeze(0)
class Decoder(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(Decoder, self).__init__()
self.pad_idx = 0
self.hidden_size = config.hidden_size
self.vocab_size = config.vocab_size
self.embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.pad_idx)
self.embed.weight = bert_model_embedding_weights
self.gru = nn.GRU(config.hidden_size, config.hidden_size, 1, batch_first=True)
self.w_gen = nn.Linear(config.hidden_size*3, 1)
self.sigmoid = nn.Sigmoid()
self.dropout = nn.Dropout(config.dropout)
for n, p in self.gru.named_parameters():
if 'weight' in n:
p.data.normal_(mean=0.0, std=config.initializer_range)
def forward(self, x, decoder_input, encoder_output, hidden, max_len, teacher=None):
mask = x.eq(self.pad_idx)
batch_size, n_update, _ = decoder_input.size() # B,J',5 # long
state_in = decoder_input
all_point_outputs = torch.zeros(n_update, batch_size, max_len, self.vocab_size).to(x.device)
result_dict = {}
for j in range(n_update):
w = state_in[:, j].unsqueeze(1) # B,1,D
slot_value = []
for k in range(max_len):
w = self.dropout(w)
_, hidden = self.gru(w, hidden) # 1,B,D
# B,T,D * B,D,1 => B,T
attn_e = torch.bmm(encoder_output, hidden.permute(1, 2, 0)) # B,T,1
attn_e = attn_e.squeeze(-1).masked_fill(mask, -1e9)
attn_history = nn.functional.softmax(attn_e, -1) # B,T
# B,D * D,V => B,V
attn_v = torch.matmul(hidden.squeeze(0), self.embed.weight.transpose(0, 1)) # B,V
attn_vocab = nn.functional.softmax(attn_v, -1)
# B,1,T * B,T,D => B,1,D
context = torch.bmm(attn_history.unsqueeze(1), encoder_output) # B,1,D
p_gen = self.sigmoid(self.w_gen(torch.cat([w, hidden.transpose(0, 1), context], -1))) # B,1
p_gen = p_gen.squeeze(-1)
p_context_ptr = torch.zeros_like(attn_vocab).to(x.device)
p_context_ptr.scatter_add_(1, x, attn_history) # copy B,V
p_final = p_gen * attn_vocab + (1 - p_gen) * p_context_ptr # B,V
_, w_idx = p_final.max(-1)
slot_value.append([ww.tolist() for ww in w_idx])
if teacher is not None:
w = self.embed(teacher[:, j, k]).unsqueeze(1)
else:
w = self.embed(w_idx).unsqueeze(1) # B,1,D
all_point_outputs[j, :, k, :] = p_final
return all_point_outputs.transpose(0, 1)