From d21db57200253c3086f18d984f54b7075a045ca4 Mon Sep 17 00:00:00 2001 From: elisno Date: Mon, 10 Jun 2024 22:18:50 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26580 -> 26580 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 248466 -> 248466 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75599 -> 75599 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120431 -> 120431 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16249355 -> 16250149 bytes master/.doctrees/index.doctree | Bin 42320 -> 42320 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1830 ++++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1322 +++--- .../tutorials/datalab/data_monitor.ipynb | 1434 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 326 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 4116 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 570 +-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 416 +- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 996 ++-- .../tutorials/token_classification.ipynb | 148 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 232721 -> 232719 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 336275 -> 336271 bytes .../tutorials/datalab/data_monitor.doctree | Bin 286623 -> 286623 bytes .../datalab/datalab_advanced.doctree | Bin 199378 -> 199380 bytes .../datalab/datalab_quickstart.doctree | Bin 149271 -> 149271 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 520158 -> 520158 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3292 -> 3292 bytes .../tutorials/datalab/tabular.doctree | Bin 122069 -> 122069 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 154225 -> 154225 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 210677 -> 210677 bytes .../tutorials/indepth_overview.doctree | Bin 222071 -> 222071 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104195 -> 104189 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176655 -> 176721 bytes .../token_classification/summary.html | 20 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/data_monitor.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- .../token_classification/summary.html | 14 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1830 ++++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1322 +++--- master/tutorials/datalab/data_monitor.html | 16 +- master/tutorials/datalab/data_monitor.ipynb | 1434 +++--- .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 326 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 70 +- master/tutorials/datalab/image.ipynb | 4116 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 570 +-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 416 +- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 996 ++-- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 148 +- versioning.js | 2 +- 180 files changed, 12768 insertions(+), 12688 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index ab8faff43..966ce8a6d 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 56537c868c8e0cddbc9f49af78629c68 +config: 7df0be768acb6b752391c8bfe22e1188 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index a7497c1743de1669a283c235995bdfb7a8591d0a..e81f79265d26ae33185725190547bdca6f4eb952 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO@nmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu VYHVz1X}-CGF@Tc{ZJgZ8837|-A`<`r delta 117 zcmdlWxj}M6IHRF?d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Yin+0IqG_tx<_^XHPBOG{axZ5D06CK)%K!iX diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index a3dd73505c85d64591f1ef8d35184f326c6a51a9..8d093ed96daba94287ddcbf9062c11b043ebb6ed 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<_V0fWN4f0Xdbs&h1rjVbQ?ihr|a4<@=q4vC?rdJ`({hdzieb_?cV%J zz>$eet?z|dS;^Acvw5Rr2YI&kZ2l%w&q1cGMrxhpMNrS?3hfeRGHqR{&ql6abBvad z;o!}V=GWQDa%{=wz4i+^$<)g1^-zi|t?`rB>v3(aOU)xMUcuTY*QE+fx> MAGaM?08U{900hjsWdHyG delta 1464 zcmX^3o8{ndmJRWYhUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-reFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O*P@N9XxXBmoCd*CC>#m~ByrKXDb;q~S>DC_KHq!pcfNDZOf+*Q znmOCToc&$pSAzqtOU32E(#{H}zpTVx+S%y}y8I;-?d@)-`B7fxatGZV0hh~J={CmL z2SBFp{&ZAKHmRCksckb>l?iX+=zku}*AL0-jJPkRU{XEq%hIQoEyiGrk^)&YzUYWL zAf?X;47Opb-e&l2FIp0(ig}yr)Q3hxhB{mgp#SQ1ZBzsC#?WZ*xx}@yPv#O=32zu}R7~4t+**3bQSJ0{A<&m*&0R*|n+N84RwJpT}>VPqqiTFO({eY9w*PGJ_9{5h5RVR9s$-G#{;HueZ67iX}KFgd(~O~K@7Hmick zFLPK3Ad_s8CoojcXJG*PXL``PUF-`?_UvIjFuA#q9fQf0d)YKh9z4KW!7 zE;i>IX#OM{t^&kcr*SuB++!C;00Y@zXX$4;Z!N~e^?GkCmEIrbUf}X$cG{-Fvl{+t zJ6?fZ%rw4!U`Te@_E5(9(6@w-Xb4#cU4OME45Mri}-j zvXZjtiSaZ#{g{s*$874wkcDMZXocTEJ7Uw}T8xjRqctq7bGx|ni$_2Mk_K&7K)kgf zb4AplWYJqy8CR2a5z@s$8&>7AEeR`<1sy>qFOHo}>1~7+4l1p$9NKZ1r^Q3|c8C;`+ ZeD%B?tKCU5{i#EVi_J$m$%p>9<2O6-=_j%tl9nYDL z=ghP)hx z+2`39iy{ZX)Ka0s?xRIhbsDq4@G~+u(C%mxh$J~gvrqzY!W8N^H>#3 zewoiA0GZ^FJb|Hl5sL!QKih-e?P6bGvUd;bhRMw(>^MyJ>}69hdEfwR1=m0WH6LbQ z3$Q)kKy#e4(J4ZjWcxxFZuGf1L>Gb{x_W_R|bJ8{qp4ISI z+wlr)Vy1~(XwAz@!E4$q!$#8OB=RaTbI{Ez{CftNffldwzMYuZCuZ`wCc2h+9&J3} zl$(-GcYzeC70f+%9xs}i;ymM+Q?KcTT`$iSbVpu-Y9Y)1N++yx9CnC;6j4X8#S&ZUGVi diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 6fb7713009d02ad5533584b8f11158dc088c190b..8c29e3a865d97015f38070af2deb2cd627e36123 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_h9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<|@XWWN4dy(2&J;^Frp;!lYXX);oEZcnRrRCo{SRZQdxckBcm=;hVoJ zPb9;$KwHB%3#fH4k!h=fCN~S2S~u$klWS|AK`6OevyJP?)mmhBjoc8vU=c#Dt!u1T zkQ>5x9KJA<9yyyCUB8g)*jkU>@BH$o1>4>{sMPj{RnlLM>j>(=RYd*l%7}H!p}Rt@@Mw)Fr3K zMlp(RzIE|7C;4V<*1Kb6PrCN$fsYw2rW;5xvTwg3&3KCp2OycCq{eu}m~=M)Lr{P6 zhF22XH4<=!;zVvbbX-EbKZX96Jw<= zd73RIuXECv&Kbijy8XEV(`h~mOxf;iz~m@Ox&fg0o4$aNMPmCOSEgta(hZotu%9Vz zI`>N^f$iU_n5slbH(@)_gdb!yWk5DZZdabobU>1HOHuqik!kyz?M!_Jq#FayK$Aa& zC~s$b$@E%`0t2?zGRFy$t{?7?>A?8YpU&yWB0k-^k~w+%A0g&^ZVJo;r3YZRlqfO_ zS&?oGC~hpbe~4zTC8JCLYn~3&EVun@4s!=3zCeV^c3`ON)Fi_v;6gTTC$sSOg2l|O zWMnaL8rcpsL6?Vg>v6{KnqyRnUzMxOJIE-#V9t`-9>&ZvhmCxHNo~*JVo^~i-GJ@D Iu2+i^0Nidcg#Z8m delta 3571 zcmX@QLh$Gc!3~~_hUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-t274c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL126h#35 diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index eb40a5be85e37d7630fa07c0ad06820e84cb9ca8..ad7ad42cbc95e5d2ec9d09688dcaed1fc04c528e 100644 GIT binary patch delta 477 zcmca|p7F|g#tqSoh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;mXVi(?gi@T4REZrfS b-|{Du5xScj1R=Jsb-UV7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aMXUZ> diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 972504320288e77867f17f8cd8226f1ddf483221..79953802602497ef57f896d4270a9c854df2a007 100644 GIT binary patch delta 4228 zcmbuC-%C?r7{__vHFI0q$$pp@ku~Vojn3h=BBV(nwGFj4GDzmxkCRO{M$Tj<{XmkC z4Dm1y1jA*R#4KVj@djZxMKv;Wc_rCZH+m!87twq2FWA@1bMbjT&-1*``{QU!W^Kv* z(noBmm?N$X*nLbckh@E@Yl`^nP!YLP>|%oxX>t^>MrpwN55os5N%Y zhg#1Kcv0)o!9l>vO6k9-F*M``jH*5kj@$PPz&MaXgmnxrBPSCnTxIV@eOE?mpGGcaRUZj9^A@#Q z@?TLj_2M$H=@=;tp~l)*0TiuxeFjKYbhndzdDDrFLnq749kf8_l83bvgP7H$wiK(_ zq0jTk;@gG=;37c4 z3bOSjauMvfCRh{y^Nke1)z$+THR-!3|HLv0Y$6RK7g6SFz#g1kCl^3D-}{RccVJ#^ z|6yw43Z;|CBUbE|jR2!t>D@X!gFQTZfL4Gj$VCaCcHwfPR_~^jJb98fY@!E7E~51B zgwpVGDL{+Z$?nwzyN~yG(Hd;)dMBRM^13L^V8#E(TVr(HRDS7PPSJ7T@u>;U&#&L4 gd8vG<=AIDn(+4yL%o`W*05WSEKl0nTYla5tKRad#_W%F@ delta 4228 zcmbuC-%FEG7{@thZMiM&&3>2{ktOu&#>RB-79mXvsZG>!WRSS`-H%Lhjhu~@^aDvk zGQ^khLNHv0NvtAvh!cd}6xGPgwJXW4y3rfyzKG77e}P~BfY0-JzR&xdvopP9(@VCO zEyN)w6P_z_!ciBBIO{_$B`SMd;jq$B-=H`>YDiYxE>%{eZbw*lI+ccqi`^tY08CSY zO>EwD(z1S|fok(6NlV+}09{OVG0kq<1feQBD!I)7ssvlv^3EgW5PFuSYd;_jE5RqCtOLo1S=;a;ax;Fl6+rSLWTvQp@ z4z=OuQh*k)o87Mqb`Kxuq?Opw^-nyl;?)tF#=`%{n|kT0b^Xz~lAzE;0dP}&kg delta 62 zcmZotYEs(Z#$sq*USgSVUSg=9oN8>6Y?hd2ZfTa1l4xpTnrLj9lx&`8VU}c`lxAU= RVs31lXqsxaxtyh&2LMtM5}p76 diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 974db47f561ab37c7cbc122000d934e3becc48a2..6a76aff02d4c2d86ea6b788c1c034dcc63efbfa9 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|Ch9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q Rc~Yvev7x2;=0?WoN&x0k6zKo} delta 64 zcmccfmGRD3#ti|ChUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu T7KSP2#>R=Jsb-rS8KWx!=ZY0Y diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index c55001e5401cddf05b79bdbd2a80df0967c3503a..3f3a7b28770272275e0030a565ac0f34112c203c 100644 GIT binary patch delta 62 zcmZ2yxXy4xHltxlmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu PYHVz1X})<5qmVcNbQ2Pe delta 62 zcmZ2yxXy4xHlv|=d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx<~fW);sA9^66yc| diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 17aa8f107f0e1cd9082f4c0dbe8e2f08248ac3b9..e4bbdddc5c45af654f8781816dea77272c7d85e8 100644 GIT binary patch delta 62 zcmdlUw>@q{G^1fjmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu PYHVz1X}-CKakVZ0itQ7L delta 62 zcmdlUw>@q{G^3$;d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx<{rk?x&VwN6XgH^ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 7a5cbf9a52300de7f1d30c55df9471ea442cd5fb..e06c1a2023aa3cd3574a36949d613dff17decb84 100644 GIT binary patch delta 81 zcmbOX~roA7Kw@Gh9Hiasj+#Q gc~Yvev7x28{^VEz<>pHq)$ delta 81 zcmbOR=Jsb>0Smih)I9qPZc6V`ge>o@Snu WYHVz1X}-CRal0TH+R}vYGXelvsv}nb delta 117 zcmX@AbyRDEFQcJ(d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Yin+0IqG_tx<~qjhf@Ek*6TZ&~0B_zT4*&oF diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index d39744d1adc85eb9fbbc958e49cfc6ad62ed640d..955ac2893d08fba3a280936e2f26f2ab401b2db0 100644 GIT binary patch delta 5702 zcmbtYZ%CYV9OvuyoNjkMo+qM5Yv;x}w^^O%p{JWem&zQoc_=%^+)hnBY^iI16t{VE zQCk#iy8Vh@tc`rJH^D07OZ&apMuU141Q#@-f(i>FqV!D)iewY#G}rS`np&= z9e;K>7K=8<#S|?9sN(9q{8QdMBB-JA-kVe;0@hJXS$IoJxYTofH4HD~F7JNOyjCyc z9fkYzVD)l-!rzChm-EKJVNjjDrD7Fi{3y2s8G}ypmB+`hdMEk)PzP4)BwyQj5LKNI zA3{~HS2Y1`;^OM7Se{edRI|~}U_n7skcf^Wak8Ntl+g->qA`5I`T zE=O5DVYf{Vu3jsk3EMzk<4dG0qYeX(t_>8D*;e{RJs+fAESYXIG*eg|Sw~51pesnm z*V91*CrUec4BHKNE=yrbn-rn(MRK~EcBoBNbk889>THBYOq^)EUuB|{K}}>U*DAd! z%?5b+%uZSc6RPDMc!B)#Y3ecHSlCS=rBmLG#=QqL2Up delta 5702 zcmbtYZERCz6wVpkZqV+o>#}T(NC)W{I<(Z$c7>4*w}lZVYqro32Hm=kX6o1kwmD#B z7zLw2Hh49!L5=&t9~0D>6M27#fdqb$kkmwC)I?1*kr2j=W{L5G_}*S(_WQZX{rh~J zbDneW$({e)HLstY6pp<-79Wj`g+u*=bzAzQ=}ash9T-SQwnWl(@xK08x<1+$>&w)K z2V!+~>BwMIOws~?Dy`kazZA?Nf*LCCyhA0zXB@_qg}c0r%UzdN!te_2aPI@nYxN4= zUc9dWR=Ls4|9{BG3W$eeEbkr?*xAmXv1oq;1AXxKvn00 z2T|2aH4Q+UxU}|tEYB%!*u2IC%`_#>)fe$%)Qh#rft{HDxR~6< zxo!KwzKN#BLcZQKi48g>60JUQJ5?Mid(7sa1Ay?PwQ@; z>pg>};3uDluVnh2z&{!;Koel8ZyR~ifx4KPSS21F{SNG+Hjrm{H@Tayjz`c$XqpQr zT>Sd+EE)*QNMPD}9Xuueoc4>gEiGd6$sW8c4ookAedXEH-xh+(v!@OI{jC*fAT(U$ zelYp$%w=#EeD&@25N4jw-u%LkL4|ER38KCCJo3wCTF2k~_!pX>M;vA1!y1E+{ag&c z)NL;|&(pv5f^!hwdnQ-ie-*ncx`er8a^#P_V362cn#LmBA$qF}`C6QY`1rq-tDu3} z92JFx-8Ol+db5beO$YKCUnXS*wK?GESVsYwYo@#EML%_8$+VlHnSyF`4JEOGE+ZLP zO9vb{QQFC4*lyT!SqxIfNf8=fBBwfOyV_7gcN~ONoeI&A6DJz)RoO6QQ4_i9)k<$l zqXWErZU-%a3DxozyhwiiEOj~HnBPSKrBmLC#= zEAhy`gS1gyPEZUD*dse0b*z(~C~`2Js&+Evxe(Q;bT`#Iv6E*y5vCpL$U$nuLu;tU zL27Y;mm0rX`VP@=a9<3YcDiX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<~BwqGPF&0RE*gy%G}RIx{V;MlMVSA$kaJsSa@?F|3PN*v~Qj-%*;ZT z*7V5^GQyjEC8Ei*IeoK(%mp%R-t4HD#7>rjb2d9@dXg8lIh)nA`xMBtb+Vc^-{g27 z53+QF19`Hq1n=f}-{Y)g8zHgzT5vLXUI)2AWU^eP;O1|ktsE4%Ks$al`7V&y+?KeH zi2~cdq%c#WeR=v}O0-L5M^WN;m0VdeGZ`@QBsPC6I6;Z+nZ^If^!ujrBJwR3*(_HX zLrId?s$WJ%sBLC!-c5$K$&Ag-n+w{N$SBc(S_?KC_tbNfk-Qn3GbS%+1lHO4bu8!Rfjm~{@%Rt&<1jn#>PW+n*~nt2$F8& zWWj$0li%OunSAorfAV#2F1^DfK$iB}$$TGpHXFWmCMTc;|3S3tecD7uBHJwZ?>Q$K zjs_;I=`uWwqT82oFy1An1OXbb9cTcV)qU)Adm%>A$q}=Jx0{GCZYL*CJ1Rm9+1@9? T_)Un6AON=PwhQVoK4Am^iCHj_ delta 2705 zcmex*o8{|mmJOkdhUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-to7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<~qg}CepP{erQ-Qd4agV=FKcVLS$=iCR3-CtnlXR5{H<{)4thC)|Q1V ztv#Dflnlw!I&rhQx*Hks0}SYioAotsk{3r4H=oi8B-hrvdY8$tb@M~RE$n24Zslfs ztDX$9v=(m8UF^a}p4Q2^i+MLEtoo!(hIYXRWt)GVQz9ox0JTp3c}{Zk?aQn@q}#k% f@WEeJ(zQ(%e9*V~>@!1QGPFW+Jpbl(zp5DlMVMsj delta 1137 zcmZ4agL&l-<_*4#hUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-t&7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{An>TA9L diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 1f8a74563c8ae853900aae1ed64e0c27ed39897c..6a59f223ae3bf3471cd68c45f014901f9af1a9b5 100644 GIT binary patch delta 122 zcmcbsd{=pcKcitumRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu dYHVz1X}-CEaW1nF$=dWMKVX;IoXJ|k0{|8|B(4Ae delta 122 zcmcbsd{=pcKck^}d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf fin+0IqG_tx<_5;O%tj<@)1Ul+U21bCYY7hkFa;%M diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index c1f938e4d585fb114ece81750b5233e2d05923f1..b45e6e02d1cf080bc8db90f54c2801bd415aa153 100644 GIT binary patch delta 1125 zcmeBu&(!;#X+t=pVM&%*Zd$2vyuMkQQL=?$im5@0QF5|znsJJOMPj14A&6sUYHXfn zo|I~AY-nk|xr0%Xopf!JH;NZ*cH(SjB1>!9<^&!EZnCsKBuiJ^`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~05nPJ^ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 35793acad01b48eceb4e2ded353862cecaf67ead..999286901831cbb87c36eb7a9e8b70d7af250750 100644 GIT binary patch delta 62 zcmew$^+9TbE0bYKmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu PYHVz1X}-CP=@%COfv*#F delta 62 zcmew$^+9TbE0dvld5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx<}#*VTmXXS6VU(w diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 8db5c1b08d584fada39414c9c50f825d140d41f4..d3b0fcd7134052aea8e0e2132280e12667cde97a 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2h9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;IFL!r~WWZ4YT&at^xF@U@f18EoDyi(bhoow5q$k4vh{p9|S3|luV zdiOAs5vPqgOD5Mx3s3&0!?$^{{~9t<(`1Md5}R#8JIV1gO#7yAvO*iEeRF+u9VIru zihV^!h{OGTFj0>Z+wUYlqQv&q=}XCow9Sn<=eWp9E;A=L)NyZCsZil2Q~Lrlw#gH^ zxTY7YGm1>M%5|7rQK7ndcFSRMog?5Zu-Rfl1wZM|+5B*RFdOOGfDu1)^S@ z+rUJIUpE)-5+$dCDcrScbK;>iPBI*;XjCw{;f?g<2Nwi4PdPJzoZR=Jsb-UV81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0N;u};s5{u diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 56f643770ac05932b23e26ef23f2ebb9ccdd52b4..4e2eefdd6b3096503868db699c0af146cdccb212 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wk26+xoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x28eoB6Fv3_xWX;E_O6|Kz{F8-P3dz#mH+i+P z*yaeWE#|%a}5*ysW`U3!l-PVad^UOcch+XZSV1n*lL@fU@1N|S#=Dt6Lxh`5?Hg(YH-9Ov z;wMl0X1$hZPV%%)PUzv?9M;FmMuB#XsVU^z{=tiPbL9M~zI&M&xwiYKu}%K4 zj%Tt-Y|!-S;*6@Btu`JaF9Bpvjz2FwS;wDe^Zq>($S7)nX$Wq_aO?$TI+#i&(eo2r!0`nI5M1N-=V5 S_Y!B6A};_+wgcO4PZ$C6LNI6m delta 2632 zcmaERn&s_jmJNZ7w&vv}migu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb=~q`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OOb{KO_JE diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index c53e1d90628d72ee97b7dd7ef53de4fd4f30038c..34a6ed98c36d90fa10d344c2d1f239d50a0cb3ca 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wk26+xoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x28eoB6Fv3_xWX;E_OzWG6TDJ3>rMqMM*=E)#`e~z6;ZlpEn8ElSAu3;xL$u#JxOujIWZS%tHDIDY) zQDnB6qx3M@+JP?EP{X@n~ehP*QQvKZM&Yz<_q)4 z48pd_3)Tp3j$YA6Ua`@(dBK_uyrlbkbK@=nGPD7k9TPVPpSYqyx{Z()3oxi&d=w(L j;Q&hS3Ewz2AO0>#ff1Xh{(VMn)emfPZCB!CyukR=Jsb=~q`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qSmih)I9qPZc6V`ge>o@Snu PYHVz1X}-COQ9>91W?2$M delta 62 zcmZ3axkz(EB%`5ud5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx<}OAFVE|{55}*J8 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 0c0a050ab33f23584372d0943cfdf1e5ea92f60c..189179d45a3cb8e4a073815ace8f3be91b0f13b2 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}Nh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<}St;WN4f0xT0pVJWB)V76Ns4PG0LIwmF}*iiK?L!jlD3ST^tC5@99J zh|L`W8`#Oz`bk2Eyb$Z$d_#&&jXYZ?&v1+;Pv_>fPUk2KXx7cX9t~uA85q@|xMJNr z-)j{Uc^-fpA??>gsVgc2PEhI!;gAkWU6C7hj#5|fMjc}&D>%C*JEX}?KH$W+c~@L5 zdFcXVgz{$5lmha?p=+~4+DG#I53!j)D}_v(!4411IY5c+@ALI2vHf@94oYmFSXx7F zq$#*@Z@yf0ij%Bl(>+$o;~{_ffw za8Z=J+Occ1!cAK;ZJn%_%d=VKu_U?a8>F4(#Ux(xB5S$<3nTaDm~WC~>fa93zg>?k PyFo1}{_Ts68H?Eg0zVBP delta 2506 zcmbRCjb++5mJN}NhUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-tI7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NTM9~*!G diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index e7dd24fae58e1811f24a7acab5179b8047f18b9c..1ef4f2e0217caf2db644a4d2cc6bfea403c83e87 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<|@VuWN4dg*pf5dB7%{B@;Bx}(rpE5ubbSEBD`6XHI9XB?c$q#xrA8B z)4rKcfQ64dt&Wlw|5UEw#WG%rNs7E0V^o6Ju-MdCAQxW>!8GTy~tWhY%hxOWTqhEniBlU z)V{ePTYljN{~`_eGmu<+_p=;)^yj6+9%*(Tg^3D~=}D)+eRs$hEb# zGLKwak5z9c*Vce~J#uXgY+O%5x;ArmX|a=)1?nfi_u$(6cA^;vnc5X* z3U7Wk>lm5ZH^(fABG1qDllNzHZ!TQbK(4<*+ShE-l_%5R`-_A(&$)DpypjXxc%XL8 z>(|Ki`{wm`W6AaR`n!Ug&ps9BB-7ve?*un5eVRfVEGb%fZOG-I1FynTJwC;w2cjXpm({{iG-rrd0MR_MdH?_b delta 3034 zcmZ3sg>~5$)(xJFhUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-t27%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>i_EW{Q7 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index cad99878dfe5d9f0c7aaef9b3314c2a9a42129a9..c86f749f72e50d8c1ed633bea381c4b62e1bef88 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5fmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu PYHVz1X}-CI@gWZYfJ_r+ delta 62 zcmaDV^HgR-Fr%S)d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx<`%|>JOF`&6T$!h diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 6f7a1dc7a5a7325a855d08eb5cf81b86ccdba592..b4b1922797daf577e1e34fd9d9f1f654815c93c8 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObah9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<|@XIWN4dwFurN}0b@q~$+|3sq}vMAK6A2wk?`hf)`Ki$YZu=v%Pq!A zp7zau1-dxM(>l3FiDPr56cc&DHWR2_c(a8}7nu$RYL6z<-Jk$JqWquy0GHUjRI`Cx zZwnYnY-ZQF$V9f|B{uKU?;+Fn%>qWe%oN!C-*g3;HUpEn#O6+m_mucM%BF)7+mG0- zrNs7Nr%FnKZk<~_CEEGD?~v#C9h^XT3-n)5flpeXZ zZj8B4hOL_q##@o04Oo2d-TX3%nY?)2yZKhyG%_M)^TO;MTx8|pS(D%EaBbEr=jSF< z``QMf%~H)d{A6m+p3c2EW-@sN{;bJB-J6YO&KD%p^7lGylVh#9Hm_N&PoDRSHrH+6 zN?ueKO|ILnvzcknLSC{Q57I6@dHr?n%{ix9dB`_n^ZM&dnq+C8wY`Rs@dtSgg<0F} zxfv7LNVj+UML|Y0cGC3$v*oPm{VI%tlU;WRZ2v6Dc#)GlL$(7AspBI{Z_{>QtMC>h E04qySsQ>@~ delta 2706 zcmbRBnq}5&mJObahUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-t27(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+X~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<{HN9WN4c#I4^Jdjd(`>$&4(8q}vM8K6wF`@Maa(yDa2s-@Jfp7Bg8| z^Ct(eD{cP6w}t}klmGAuPku0sb#s%jHY=H~cp#>-xlq!XodWF@ik2#5X>Z(|?3N@z zrq=RsF7lF06<1^E!`GV!Li{2PL-G_cv2w z`ii$q}}80D{^gjSkANgR=Jsb-sN7_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~yY$#A*Nl diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 2f48b70bec5ee59253775ceddf8191cf2106e814..f3d3e6bfbc3544e34a466287058d5dae6db34e7f 100644 GIT binary patch delta 2688 zcmbuA&nts*9LF1b=CRB~av+{UbJ1*%?J;GDVx_ns37gGRETuM4lOIVrXqqoMkRKP6 zgUv_cB;~S;lPMxOa}iGR>zlv8d&lSS>h*qqKi|*yNi1s<%i3s@#u^;5538ecpV_Wj zy;T;Ut-@#ZdSzAiRaALAiiLmJZL*>&{R6UWaVTb1pIXVbOadKhx&+I=dG=U6#8%U@ z=_IXD1LM;W8K!G}h898@?HCKNx*=942^7e6iIAD&B8?Q5V5b$LI_Vn^p2MWpT2^C9 zhq8xBD2t;9zEnPqRc3T;UQ2-jGqTAGsCCYEhFV3(9$=-%>XuZn=ZkY5F#c{Yqni3L zwC8wZ0~&a$*@dDDEq6%Z^VkG)wilAz){ETXU!0unVdRwm%*C|cd5Q-wrqXUtGWL!h zXp4C74fkR)=Fk3EGQB5N6F4xoF=(JZ|332E@u5jU16_w%@@_=7!*lo_)T#EmN% zR1|qeUVCom_{Hiw@|)uL)@CLJw`Wm1#}9Xp(xC2hR1ggUH;&F@@qEZQ!J+{j3t#D} v>GBDgcjSJF-f#TCn?{j)odFCjy$IxbilH-hzlwD5mZt;l(JzrgAGeu5y}?xp delta 2688 zcmbuA%_~Gv7{(jsj%zYTBn#pe8XHaH&b@a=8ALIq*dWQrof%VDP_9Oed?aO|(Kuv5 zJ~k)|GhT_6l#PuQicGR*Bdp}><}dKfAMoq{IoC_Z>m_5X!BC-uH209AIqd#E z(dn1fpyHMT0abEJs_6Fl71bsC6kpKg2q>bcN`11O)uuYxrj4TmLkH*hH_sj`2iQt_ zHXWzc8(@42A|rHT&M-nKqit&eRyWLQ1dc{>y*y;rah`??OR&=lQ;qPA2hU+bb2Y27 zr9;^x#Fbs32fkQ7g;i#BV_!{y0yC1tdDJ>9ouXFWy$e|Bv9c)@?D^uE1B}1h%c!b0 zg!UY(uR{Y*HhNKXzUdwbd=?*Pp4LJVTe^`u{EL&PHG-V-pShUU+E4J{#Z=miC14Mas0@3gXt~ z3@VB~Bd@(~*YWd}cjTMW@y(4)(za$$yN)019Hv3tXQ?2j0XL4$;uralah%0QOe}I` xriRNWWZu!lBE8=Z0&f~c6DA87T6p2e`xHlK-22MY{#%|2w8y@93V+;X{s4&cWZ3`! diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 3f4d0096ef9551d146b7efcdf8422b0331aeb282..908873558dd6e62e473cf40712797b10f539582e 100644 GIT binary patch delta 2944 zcmX?qj^+G0mJPm)h9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<~qh}WN4fIQH8O7G7C!~={8O_^lO=%pe?-FmURLP+1kZ7&*YL}B~!bB zEbHcc0Z%TnwR3DPm1ZL&*uZ`_kUd1U#ln+!$$5~e8x-cJ7n)7J|yvTonb$M}T2>R=Jsb-t&7_X6`ZTd$Q#`?)DEQO@oIN8vzWpaYH@Mc@q2`pr57vDUSONNz9 z?FO=}oAU)cxyaVevAI;5jf`Le``tkH5ZM+BPu?ZxL8fj{n4glDA~(6WJ{v0dM` zgA&_Y>^mv3{gzWGGkHk{9C3f#qAAg?;(dn<$8R?D^Cu&hZQd9xPmXPjVLjydabxg` z&1q33*kolWH@#*NUMK>9=W!LCG95H)>o;mSmih)I9qPZc6V`ge>o@Snu PYHVz1X}-CI@gWZYfJ_r+ delta 62 zcmaDV^HgR-Fr%S)d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx<`%|>JOF`&6T$!h diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 3896f571548e5f2f1f7f4563a42d99ff9046730b..4ae697e23909ebe3d632b9c26924c9f19b902734 100644 GIT binary patch delta 3483 zcmbuCK}eHf7{_^Q-?Zi?w$h0uNDv{F-}d2Vhr-i9p&TY+NtkV|)v$229V%?-0x7ld zW$aLm)hdL7tsdM95qU5=N$wI|7LA}om)HpEP>jCUOJ4Wi@jLvU|MUMp&-=c7m33of z-I(oT_Ny126aKI^*5&j&yghbbx9W3vy_#S1sXgQ4F1!42c55!b>+CsAvmbWRHC6^N z&eUn%ZirSdD9J^Wm3+!~14h3x&2I(Ba^NLT^_%HN<0v9r4&>$_D9zQY>Wd-q69B1?mQwu|BqceUxF?F( zmFVBWB0AR9;W<>*dD4KLfE;z4UP4u~V-?hE+&hb^8vJhnRVoLLqNlw1(gK?9olpU2 zR^R+2?>*kY2Vz$Jin5S5l0usQU&cniuDg-MH<##|`dynD8?{c4*3bnF#4N}pHkp}cX+Df0FR#04Zn@MCs+dy@R zE3fBGAin3OnU~fSy7K-J@+`>s^b%BB8$u1}>GR%?X4>~jU=fBWT6~A?e~3qm2gv#@ zYlh;Jcw4-{Of>g%u>mi!TwtaB5S|qGJJ~^Wa`|ALNUAu$a=BhScCuqesP`G3Y1%DT zj}yBn@E&L*bt73U8mTG9T=bZ5@zjUd4fg25QJXf3AVm7QoJ?c aiJ|5smPB~km~T8t8xE~v1f3#8P- z!`MYNR;v&SwtCPPBJ!f>N^&>R&7u)>(M@awby1AY>rLM7yFcLbe4p?4d7k%hD(l9| zx-r+w?CO;X*O)qC@AQv4y8MbasJfIu!0YUCdL1sGU-fn?KGhfOwg*&)!|NPX=qf7% zn8xI3t=$l-UQm#WCMyM`?*@#1X`0^(kmb+|E!}6P>y0Cba5=O>Z+1>0SqXG+%bzV! z(<>yk-IV~8$r-xPao$orN=$x^_+;`^E!=COJ4dAE>Q(i{5co-e)JIF{J`0kPm`%bH zL+lFl??4e9>)W9@R8=`;z%F2gI?gPis=2cj)N8^&i>exeuK`smhmN6F-h62RP4{-B z05q#_eoE^((V+Fmt@;yXA%8TDH2=ShjecEoBZ+S=(K+?IHZwMAogS&73+j(skV$Md z;h8;LLkIdqY&3rBN3A&wEM&ofQeLAv;7Jr2<~J+e7KIMWSn0etLKjtcH9W{KBHxu zcJtMv>??M-8+=mdB_4INXH9q$$?`B8#BsjsH2bgvP%c7??R-@cnc&R=dX!dbP)Q6DOJYMK~ZMbabw0KBV^X_q>&s07M4b5h{7BL>$cYE z;Q}fka-4glZ&+v{zGiR1S`P8-uEjX0;1GW*^r2Sw-p%o#^?GqXYRxJw0j%tI*wBc^ z4qX6@!tV%i_R&*lpAE;>qgLPXcGPM(F@?r7RTTgV=4Y;p3E&j1t^J4;s{|%RkCeu7 zb-jszSqVf~@wOoeYv{Im8xWJwP*>v}%=(spGzqlV8?CLFHNr{lMQE=FeV4JdjqvMx zuvK@z2JQ9y12fvI(tQcFuI^ofTDL0_YIQzd30PSPbRn0c5*X#|!OzHLt^|fec=rlX zJ+Vp-R?umjVBlS&;aLen)u|eV&sz0@{i)Gh@-sp*cU*JCO8jFtd@L8 zeZP)^rr4!RLlf*Us<-lpu`_!}Xnd}f1km)7zqu<_?JuE`6tI4cFDa+1;K;~*)s(J2 ztt3Kz;CIxE+3YO!Tn&u@$5iy;w#?6-rI}P9fPehMMtXt-_?MTXe2QwiO_{ks5z*0? rH$5kvn!fl+qqGR_Liz41N>-bK^fU7hrt#_| delta 3969 zcmbuB?MqW(7{7Fko63Fb&s` zRjT*p*GWF>9#5q$&*PA*qu+?Wom!dIqg&=4=ocn4ftr#e!S3vF0N(tQwpYJ=SD4 z)b_>!W;Hm?s;>=cSVwo&OF&IRM?H;qFzZ|X(In8UH(FaU>omu=7ou5@_^)8!cA8(` zgRRE<)o9kb2f1igwfiz^UEjL_weD7}s8xQv7O=7!>_Q$#H8{$dgP)PdTn!G1seNmN zdt#jus-S~h@}e_7`ZLd|p>lKdSme+Si7kiIS)RyF0P)|)w{qLN3Seku$wI@T`HPvS zW~ZT!azAG(SHCf(%>Snv3m1i z?foVSS)!M&EKR5*RlAi#jNREoLg%yXB!JK>{^qVEt-qK?62bX(zPOC8f-9r+xhX|^ zT0w;TK)_Wm<})+23)M6RTvL%hZmazKd74WC3i!uAY@{bhfq!`=!Y68$+mxOS3=vs< sW!rNyYKct8fF0J?Kq-Amrj@(1BSeLoGD^$fDOB#hq6DoeL_gF20OyYZj{pDw diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 35fdee2a1a6b4e8bab09b5f3788e1093309a01fe..3d9d07acc3083c6baca87541c88aeac664fecce2 100644 GIT binary patch delta 4920 zcmb_gTS!xJ9OmSvbE~ad)@;1pdl&uRDt(j7qIP)jX zZq!>Z)zTj|5N}BlVlOig%Pv?#X%b=vA>Gb)B6Vfbi``OcN+~K5&A|ujR*PsCi_0t)^EQzi1r-3J zj*Nqx5K$5F?}|Yvt%*7dAuGwH)$?vun-YVwOIv~+w~}2;Z!N-9CDW_;xqbvx4#D@Y zycUl7oz=DBsK1N#grlCgwg7!$F^OU%Hg%rdIE|iJVbzmylbSurqo6t|totzEp@{3m zm*EWjM(S$}UdP6?d|<1&BcmT1b^~wRS&f-(;60hsfLW=6YWRIlDwfGA>MzjHc26RI z$``RSS8;#AFsRNZTN$WICYzdf6slD~Far)J>5eF=eDWyU%Up_heweE$nXK! zyPn>jOi%4GI;*OKzkj|eDd0FyI#ElSucvrL4mf&{yapUioO9w8peUJkQgu@_ z{c=f-mNvq@rzs2?{^iO=-<|Bjz$VMp`1^uv6Z=wsl6y<&$&B2o@MR zXWk%7|3_a%7iYVG`Ta$pp&wtea1x%H+khKQC`}}6K}ff=9SM5uTMv8uF8_bN|2v0Gy;n@VSG4R9 z%;F($?mp3LHdfVG)>c{VPBGV7U2V@^n{Bt`I;uo_j@2PLoH^!d(PFV@*I2n;PysM% z-B`(KGk4GYcf}Z#mL;8lkS_9R^}J2hq{QIt(^g^Qy4W}O_6$r_GQF6e>jyyPIJ{!f z^+eR~E;*Tq`rDL1BI@bOOVJ0mFkPI5ZJkFm$I+P;Ry`S4t2vN02&$99T88-~}hoCE!3B#K4X-1_hV{cY~T&);mzRDew^#HU(yL z@5OTTaI`^HuqZ{yY791m1|$Y9yW&FLXHtmRb!$!%pzIGFjd#YiJExG*{h{Oh?A~c0 zbLS(xgLtYnN6#mdbGIr?yl*P}sCM5APje$$rMWi$&I2${ni1MR8A8k1! z7e?p9t2l*$m-ayKNZEmbQy(KeOA?%IPp!a}^P|3T046COq8kwvRYcwZS2B&}iT+*4 zmBiqcPm)NqWl+|OcF=&t5FAVu3VCE`4bl>l3+6X!q$MIAClya=8$T;~=V%mJ!8AkL z=Mm)S|LCje{A35PzrP4H^yABBoP@`stB`}A_CRA%Jrx%yIr7c?KWMtXgC8EwU`w)) zao;9*K^rl=G2EmOpbC-JAroAhC4gTX&amX50I7p%@x_!;zcoCm6&8Uc(pBh!&3fSj z9H%&3L%kO_hc7G?7T~v~yPPbjg2gGqFzzKrLFHGrgwvJ^E0B(nGp-L$qzS_sz=!mwW}ISRk(g+12;!KT8k?t? zC#4!28(Nxgu3@~-M!L4i8#zNKKjfHCy3WlTIe(GiPOycBJhh}-IQe5h^yIyQ!kc}0 zpD>fBee+(yzvKiG(B{oxiqjdu0$%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je?Uv!C>s=Xe&o(kNezakqH<)6N>PrRCsGpzibF^Q=^`VD zo=Xu%h$0G09>U$&%@DdVyb?mFtqX%7cGaCi=N0z{oUfPX;`4r+E!TqVn zCC^PoUt06(`2DD*By~B}BBhjMQnl2Sq?@KDi;rlFs#)5^q^ioT8fRQT-Oe#GB7<~N zoyAE0=Lz9bKW%tt0kNrDyj}MZ5u5rn|GrgK4OorH6P^pUH9+VHwS~`|lWau3*Eq-Q zrCRjP==`A60CNI_?mkD22|`ce{S~zMiN;Vc{qStV_mTI&!Yv@dJ%ho z_IlJkj#|I=-b1bL`(f+b!9FB}rNlgC6(7GD4p%u(6qgcZpjUQ1{eeuklvw1|(LKOO z0zDfWMXi6$0D!Wb3SdiFG736Jyi*v2>&TfIc-AZr;y z9vb@y9$MN3iWYWWUYW(F9H-@#I$nBxCkXc45%Y6&Z49*w{O)=hd+#JFZZ-1l%}K;= zL?kY5ogn+RQQKV4;T$ye3hvoUB2l@*DVMLMrh{e*z4EYcUjk=v*+?#bj@<7`CFL(Q w+;s5lIu+PQfZ3;;y*^$oKz4C)1-@|DgCtPk(s8}m0%yK~|G79z$2$%G0p$X-F8}}l delta 3077 zcmbuA-%C?r7{{5@p%a%*b`vxRj13ApXJQALg$tI1J1WU;PZZ-AK&+V_v`Ncy8Hd8 zOEpTx_+z7}Ue4sSXhs)#Bd%w&A{LDaEuPL8!qn47I&Z33L(@bor*qkL;C7CY6`r8I zjtWNdA5RdM`stN-4iF17&u_Xn5V0_4`RAGT4!~-K?{YCP*ax9gG#EN`PO=sL*6AFx zmzt+F>)P{37XZugRw6&p@dgb)5?^7~+Mr@*`NNPGFp|u|)RkMPH8BiZe~pw->v1BA z_PTTZK5G3kehIa%--NBJ6E~0$HdFIdiTL>0olv{;L~%3K0(xcFz3<3$o2dm}ncf17 zB+E~3zK0Smih)I9qPZc6V`ge>o@Snu PYHVz1X})E~3zMOFd5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx=B-S}xB!;G6fpn* diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index ed583d484d71a241e1a9af2af34e6334a33996b6..dc908b063198347991035073cbff09792ba536a8 100644 GIT binary patch delta 1253 zcmdlng>AX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;t?@9|R0G|KXazN~ZqJ9|VG# z$kaP|gP7^&JHiFz>fgLUY&RK^1PX3ru-z<@_2k+O)-NNoiz55;%o&f9VJSGxP6uih-d^F&c+!SE>y3Z~1^@QV9gMAv0MDy%2><{9 delta 1253 zcmdlng>AR=Jsb-Vw7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$=vsF< diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 5f1b8370ca7932df4732d69f1b6b273be3a0dd76..54d2c0e01459c0c317fb379617f0e08e839eb56d 100644 GIT binary patch delta 13101 zcmbuGX;77A6vyYh3vz+WWp!T)MF$nRaEC=pK_PNXQB)LD1Z7Ea!3|AZl0s2SQ7`(K zqorm#YL4Wsj<`EGWMh$zfjMqSi{h4rOQM54_ugjYEC2hE5C8w~ob#OLJn#Fw+@lR` zk2bU|OQ!zwa-(MCyx_mHTW=Zd+v7uVPZ` zB7?tmR)%IfVZ5S17RlDI_N}ZB1N_C^G30HF_w9y-;_$IO3^=Y~Vc5djZ)^og$JvsC z6t9*`ZH0Y`sO2)*D-)~}26@`HnIn8*`6xh1Y46z=$!HrLU+D+wr`vc;5|T5eO}Fh# z%|=?xF5NZ0H$b&f+9i~jpD_#|TJ6E6PacF)2W0O>rA1RlqSCq3UZT00W{yRv>g+_6 z`sW-t*XsNfl=}UGbTrqBf?25a{E}i+`e<1)nrq#M2`IH<`8bqXUYv+hx2}GMQX|&% zL#c*!7LH2}%vxnuSuker`ggKkrzKN^kF)ist%Y_k5H} z`vOs^?JJmCc@U<)e+b?=!@q4nD|~|opk+F81fET0$F`x=J0~}w(smVRP-#IWe9}!n zyBeih&s|2>)ldcZaK{T*P-^MLjcBfwHP2D%#LHVzs|9d1#EonH1QlCD7pArA~w+5xAzJR-FVAE5O%GE@p z!4h+&O8=nTlvd=2YBdj9g=%{mDHPQ{GSPihyVRee&^jjvQWeTQ)|N7m+avkX&gGqG zCCa`28m&e1HFTvyl-r{_ZAP^dLTC+gQD?8!iclJjau=BCFsl90Lc7sAo1$nSz~#ai zI)gIn`q4CiX}?6`JN@Ykl-o0o2BTb4JVm11n+X(;a!p}-EE$Ll9TP^WnOWHJH~JH^HvdJ_~+;F_rv z3yXKoAl1F)H|6%QQ@GcBdILC)MBzGhgh*XXf#O90T>BBMw=uK9=$j7k)T9H0@vcRj~4vhP)cjto+^17BI4MqcQrAr*}Z!pe>gc04;cIaFbQtZQx!RmpIVC;4WH_<0vt#`$MKTA*#`?%zA zEk*Tlr3`LDI(YEXv1)B=R{{|q&r*%z2~)6Wlc(Ny#fqiXxXzeEnll7ZqL#PZfaT05 zxC&j4YXBb+C{-9bnPKQ7v*UPs4*aM&z4sv5-OaBNevKaDuWD;5omJUzQhYjcA=GALUT`7SX z-%{*DhK;26f)5|Zn34_wT%+hG4d8-sYop!;UW@O1^^Ne$K~paoyL>s=2IHkeDLfK) z$LPMz9)NQr^`q#?!_uoB?Me2D)&1ZukYXd3#pwmT!3GffXXsU+mK$g4>xQ6W&m(#P zS~MZWM)p6YpF+wMiVuNNEZ@IwIM1@^ttzTMt;rr{sG_b=bZDL=REKGy!RfjZ-2bL zeMvkG4qLn+B0FqB|Dd#tkb!BTDVbprq3P)<=7HvvkciZ@u$1u7)Uedd@c!vxAt5Q| zjL@L;?6mno^RpMuOUtn2^?TiNn9lWYv5QoWvDPatIwloWyP8 zi5W?7bcGah!$J0(^7|`)FB!BQEC44v8Z(Z%$I1cra2Q)s+tpv zQvaL>=UTBa0i}Mwcp94Px!k#^^wRPIRQh;jJeq6Ghr>|nxmA-;YH2|%O5MKh8A=^c zI0&U0HiV$mYa6Gc)L)9DQR=%DcK_UjN`Kz943*y9GXu@_;oe0k zl@9o#QtMYRwd^oVeg6o&b4Gt#k5>2=4?)Xx>=-1!Rsdc9}q0$cL&ZE-YGWevM zbzvP!wOqW0uB)LO?%~dtucOrBE1S_=%POCv)T!6Dqf~L@9!l+YYX(a7uNjF_-G4uT zQWNgLCtXPGHk6umKN8I~_TfpCy7TX`D7C2mB1(PQ06!!C@oyzcO?&}&Q*_f)kjfQA z(>PT7^$6OCYHy7q^p$`s zMicrx#n;EuTwwo+=yxfbJ`~uX3wYyH2 zk+698Y*Jgd{HEL%b^`ZVL~j7ck;vPijuDB=$XC3`rRxCQX28;**aZ}e>;f_gW0jW4 zH6M{1Qa*bO(q>T`G=@wI{RC?Hn_}A44it;VBV-h@Cp8c8fl&$NfI~C}_^xMPMwVVV za1Y#Px&SCw6;uM8C63BTn-XN}*>_LVZE_V~ zR@1LQ1?-(G4dRTTSOhfjPYL@Mi%6|nE3;cqFis90Q@u4tmmXxTzt-%)bmHn!QYwD|;?hW2419ehM}PyPS% zAU|EXh(^QG>n406+A9*bL~-Y+h00nq276&y+AQ%!2b{g8Ba0N_R188oxbq^5a<&H= z$eB}$q1iTRRjP!e{l?O(7c8EBUfGWpgEw7Jg5ALqaLiRD5b#u;Klg|)GBl=2)oVl5PM@ z4$xYQm36Ad%WKp-=(KX=^vbL8p1RHKY+Sygx={1r7(dM$`1N43D#^IE209f@RFc+C zblsBzFs=0pq1ZF+39Y zhU=cq9)PpV`f>E+Vd+(i_9S~m>RxacNU@PiqV(LpU;~JQv-NUN%Z+pN4I@x-n`3$| zS~MZWM)p3VUqm1Oc-m#X0Ggf}u#p#76r6`8hg{vdIh5}VUxoXE5p z?C)T?b(Gk?MzNO?+n*?hQ)2rwHAhNpzod~&iR}-xEm_D+G7|*(H?J{R$w7hk7naPD zWNLQ^mD=1HY)od*ZFUHC;v&=L^NHe{WfSzswfTIaIk`bLUtV qNtVB3H{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90GCc39smFU diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index f07f64e63f238d49970ba8b2d05ed04078f327e6..253766a6979d316a5c795d3a37fe414735c7cdd2 100644 GIT binary patch delta 117 zcmeyW`Big6IHO@nmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu VYHVz1X}-CG(U6@CZLc`Ec>rrZBIy7C delta 117 zcmeyW`Big6IHRF?d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Yin+0IqG_tx<_<4<_P3ceEq=sVZZ$v`dgEX79n?@+KD1zvrMa6<(X_IWASX$8L5Rj&U z2!cfGqN5fR30klPwId9IY3ol=5S3nv*B%7HlR~0`2X~u8&in3h56|I)gF~`v&V_g`X>a!W;Pc=B`6vI$sJbW64QlvMbCx zgHJ)6Pj+2%K}%*O@8iqetO3LMrWSOA==~#~vD6ITb3$u}QZu|hae5d+XN~5S%ODwD zeT9*HVeK$B#k1Ua6UET1G4pQDeqTONI*tbRy}xTe&^&Om{OX76ar-En%h9x0IY@&Z z6n@c1zk#8vCJ!AYxgShst{k1S&kFOE)kgcARrsN?8gPmEJf(mWswVh;liE;$_;Q;r zqVQJz_IWzsNZ@-wR~!kZ3bezK;QRu;b|k1QQWUt}YFpUwoQlAZ*97-C{gs@2h2w&f z;N0cKjUs&lE*-0Wo|&*q>@QIx@N;At(k%3qJZ!N-UiPR+W8%y@g}^pxVY)s7S8uh* z)DQBBm*2<@u4G!6hM8t;AJZ)Jhuq?Eg^r=|RYTz)oo&N9q}aqxDZp+O$t%{kOJ#5y zQo_`n+Gf9l_}L*{K-SOX@?y6t75w%?%?mTh)`lcmBu+|ifpfqT2vhI``0z|tH_Ea{ Kct@mPE&l;i?fTmQ delta 3290 zcmbuB%WD%+6o)y}rt}dfsiBzqj7YFuNSjVF(-8_SiXggZQBe?-$rD6L!5SeTO#=}G ziPk}{T2Lft!4}kB;UJi{K7s{N>87~tLJ(XjBr3S@PP52*&in!2_xsJg_uM=AwYL0P z+w&BJw96BETAK*<#S%(5rW#32SL1Ob5{?*(9*t?npc>Vp$-z)uQxqeTQ2AZxBw*%9 zCCP`Ic6QiL+(4^xp^1i?^8ugP6O{RYZ?u`L@bi!#=nedQeOs8A&gTOQwB(eT?j7Jg z!DmFAr+crvNK0lV@8S!6tc8a2bv5WFq7M#yrlscijw5O}DK*EN6UR@H&?&Qh@d}aD zmtNCIKD)f1HpNrie5=#YygB)P+J0X?QaMZw9Qtt2exSH;^8DJ$jktZ3O&8!2F7AU- z4;6kn1iuMGS5F>02=Xv7nYjvZ+CGcola*HcoK^UdxfF2WOc64K8>%7reha#&0{n6Z zE>hu*`rR|I$C1GI5Ux5BjF(`GBf*(jc;iS=n**KjyfwD4b;z&_TcrTIT?Q|%ZkDRV zZOEX|9NT2S1OD7Aou{my;EK3ikxG91q2j?zvE?yI#>7$S9pN6Z1SkYg2?tNGNwX?@ K(0f+;)$t$E4-NJJ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 9ff6c47e3a9aad7fc41fec18c850860a228bf48c..f4fd785c09cd6b3cd796c3cb0217d67c6e815f81 100644 GIT binary patch delta 15985 zcmbuGYgAO%701`PckaDB1jgYZK2v;DX-yo!0c@iLF$U12C=x+LM8+|oh>#FljH1hk ziCUI%mYx(%Si}lS>vL*$QmxczYY13ONEAbZSgA_UDq3QsM0(~&Lb7Lc{7PB=nH#f=_Wi`j<7xE#FZoi)* z)pF)t6>vs^0}pk`fd#Vraz}MY7a+4&hpe?5OBBb{;Zv}DUGnge^RS#>alSm45t_J}>txElQTsgSzFF)-_%36hpN_GG6bjUAs?>Zr_FjWo4WdeS-(rP^(40jeWD?;J{W zEQdC)GtXly4*>fib{h^2GCsVSLdPBmeQFh_3UeKt}SJ0D79rn5t{3r*WrL4 zZT<~PoxXJrn(MS*zlc)fwnKxFvxgIQq@&cCJ0GIC{)^8>saGqbP-^|2RVek#s(6(8 z*Xp?_^~`U-Myb}?S5fMwx&Txfcd!DL{_;p3n(MY>Z=lrr;ss3>;z0LJ_YZb zywms53TtOm&@xHq;Im0>IE+#kHaLDjG}oKg{)WscPG}ov4n^EfiflQD}hZy?`#8R}v&@quBHFgu_{>6u(9aVdB5JO&P#EePHjBFlS zW}Ar_P;PJtGohvWER^j=wV@+e7^>|Y#RgDq#b_3d*12#j>p;1E68RF;TxEzht|P;FfTs{!gv8=ht7QRc%$mJTqT zmml>fGvonE*N%OG?M1o8DQp3n@9I=$LAmqOSQ^TmpU$2`wMm(5FRJB>81jDsiJ7Vw zWuDGutAM@7d)Bjjez1@Q(v@W_#uJB7YFN&aPzMq*`~np_69}clFS92+bJ(z&Z2}z% zsb&ournvtMPGSYt03SCvS1$McEi4F3U<}~pmhTh24_`Nyq`0U z)LIW+hy$o)H!Ji7@%)Jc%!@bIvPRH=gn?rSDCTdTV}9J0Ce5U}(`*6IHLe8^Hk;t( z|Mood;qNrDHZTbi2CoJIVrS#>KNpA<47tWq;0EgMVncz`($)Jy>_@w9u_|Qe=`Hxj zUUm~m{;}4FALq=(r)^f!=_rZv>X>7QZfr$0CZ7&vmGis7#f!ns#BHaLnA=ieV5i7k8eAMdd`76&$0km+I z^a#cahi~A-7p6&XBX!qzj1c?K#!Tr >aUluk=>q}@oP>f-XHQYCQIkq~c0_NCCh zLkvnx(gpPSJZ!h`s5PFQi!1fi|~E^+3+9J>Galn&yutUh!`!3BJ;VIEYp~kaEo+ zo~KWcFN0coKU|(W7!Vh&loycw=kieGSkuKZQ{|&0Kr+9bDf{wu3*=7FfP}#@BPO=e zAEWCbq8Uu)KH10H zBZmvJA=3gnkceTv28x~K97T2UhO{R=aPXmuLPG;`&p%!eA1)k1sQ(p1=_F4AaoYHC z<4J=T4cljE@;IdLytdRC#)o?lmp8?IZs5#k_9 z>@(a&hXPj?bpr;U;};aWXSEP6zSM6}df@*B^kZaAs4~H`V?;QF@R9orCSLHl;d!bV zrc|IO0ev`DvB1kC#DP>EuB-#5bl2GR<}~F5il>GI968N|i2t&xg8Q(guN z=nS5O%Vl7G(-ZH$t$4d4_(zwr5oiKE0^za~I0=p)Rks5jFOV73sHhL%o&KCr#s59p z8l?K7(-RFJqgsJ=cD3O z$Y=sa9&VH3TdsB#NOytW>3F6)iDRB0X~_HY-2Qcm9Cy_p|pt z`<%1q%uHQxNL_Ep(R3DWEnOW`WL+ITIcI4^WKL98o;4;aH#f@?X~~L+$O&FjeX_{xJour`NOEy+ct0c!@)TpLRBQEF@1Oq6==bvW17@>G=Cy0I9|_3j&R zz>l~53Z+ipHV4gh+Am*5sj)kt!N}3W@jKH{>dak_&|Lq;XQR|>RS_t)VecxG`bBjd zO8sliT$FnDw_l;u+`89L>gIZ1R2qAz5|#e^Xg-?j_Tz7&)P@rQsI>fjn0ovqOf5ML z@0|QI56}v0=aSJfN$26SNo_oWQkOJWpwhQnE}>F$D}2+LKi`W|)7!3~>-yyva1Wb0 z+EME6&N?*LTi5@KQY&v9MyWTudjKjAS;E%Z*WWHfvHR}M2C({QTGe|BrLsQws=M>m z?@{WE{#Z2EX9ikO>Vd%wkV=Oc`x3-bl)}(4k)~+u7RvpLk)a(`cWMYjUT4INNy|)Z z9$Mx+Gc%yvfIwzOOZ90G+k<%NH@^a{-B& zst;wJ$ziL2y~leuumXOli22dgWz6c1Ll8ACXNjl-i5Px{iX90A(UDi#Q|>uzEM=QP zha#$7%SI@!KZBE4fwjQb4UUz|d2cIQ4BSq>^9RI^#^rx56e}2boh8E!)YHv|1E;04_l4M-cHd^z$j;MS z@Q;1$7LfcCt&yML%*>~4QBvuhhwT0k)N6xL@}Oag)P*(z35Vz57ECfpXVGm;JN=~& zZ`TtiQN#ye#EWTMsFaR~^|tLO5q%RpS+c-w+h&n&0>hAV!_SD8-T=O8b@u$#7bRa> zI7@mApMn>jkGC4dKqz;QzoTRc9ygUX;fWYu~e!8jye+JO~}3! zx>u;MT)K?hZ+gTRwn>N3bh!}w(9j*yF9KZOoV@p-l*frP6JM7lrBX$$^b;Tu5;m6c z0N&9q^t%@6ZKPB5UK3(Z`uKAx8g-y8?NS4fvvZF(U6rQ!pov%hTS|nlG$Hn5ip=`1{fjDfu zx#^U_gGTH(G`k(rw_aQ84HH7$h|7~=KQr{9H=^G2TsQ<%XPcpEBp3*V^%=_HiU_ek zCG;Eap+kW)i~2!>@x(>N=3Xs?ix&+TlwSC=fPRdu4N@k$cZ>*!Kt6iE!OROkGrUN( zBa}+?B%lw*DHeEngxHTNLY4Kvl|)R!mA0w59 z0Ug1UaJd4^Z+hZAcN9-&1pnw(HUUkbM<85w0VlzUW9kl|;{`IEniTaRywhJWsrbjE zZT_kkIz7?Iv1%@`&d&D}A@(72sOkf})zKV_x&e7Q`J_)>NQ<6TqXS)Ua;}TVrl`;< zuZ!E}sl6*eG8bY$p8uhmfEkq8250$D!CAElSuzoRIsLOywIVm1E^cm8S0IzVF240Q zH6A9nUsRD_E<4t{oUXU34KR7`C3PX3^P($i5=>5OS9ikXst&akCXc?RB0tk`R(n~O zihQ^26wkh)Zh&)sy<05-ZVV^+H+R(QaKXawsmO01oaDm~)cXLLL~l=o(>?e|-49%K ze2%QGpq|GnGMJJOuK}(KN0~Br_o~Y73#vkkOxj0a+TWR+_SY_+ zYSjoiEptg z!;d#7Yr~yi7ni-Hy$>wL_x(ut%`m!NSrV1?1g1U*okUUBO>mw0B=SW1`*tmAI&P58 uQ-VBpQQk!@0eArXE{x0@nl;>wFi3>)fm;!re8wX$3W^| z0+G5-&st$Jht diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index e2f4db46daeb3daf33b60e2cc3ae6c881ff1f1ee..4d13ef72846bcd09f0de83e0a12225c00894fa7f 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#h9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;=4p(4WN4ebUnym?CG!nt(rpB3oqVc|fAUuLLb7z1Z9dB}jg>sDlh1Mp zZkE*lb+TQ!@Mf_L8#XevA1IgI%$l#tL7w)_2g*zN$kLj!`BYm2BLE}QE3E(k delta 976 zcmX>#f$7u)rVXi#hUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-s}G4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7i`6l0 diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 6b4ac16f5c0e6e8ace49a21fbc2064ef77ade0bf..f6d33f33d900ca6f9e15b053e90f46c1b230c4ad 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVM&%*Zd$2vyuMkQQL=?$im5@0QF5|znsJJOMPj14A&6sUYHXfn zo|I~AY-njdxrXro8M-#A8*HA-)XhPr)=usMX0o)pY|i5^VI@!NQ&p5Y8yL`JOeSBw5x&^#_HfY$IPk>*NLr;q3-Ij2`5rbFd@8hD-+LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3#gJib diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index a40d0bba92b88e3cf501c57258a47738f58a76e7..3be91e50c2ccddf3ea8b09b7de203200dce8ba8e 100644 GIT binary patch delta 117 zcmdm@yhV9~KcitumRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu VYHVz1X}-CEv74C;Z8oeGJODP`B3%Fg delta 117 zcmdm@yhV9~Kck^}d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Yin+0IqG_tx<_5-YW-_$duvYK@08J4i6#xJL diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 1fbf0be634f0a62414d8823fd9d42b6685945327..364ed43c0abd5b256064e6cc9fae25adb34013c1 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^Ah9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;=4p&fWN4erC=s(+m3bMNS|`VN@lQ@?EhOE&K#Pkv*RYkbkf(KW4V&=h hmE60@(_XQeSMV?!={9d>lsIQdx;Ahi$9R=70sx2Ji|zmb delta 480 zcmcaKo$=Ci#to^AhUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-s}F*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?X~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;>`#GQ$B8z+Ob zYKY$^SLYI33kWa}rHb7a`M`J=oj8QQ@9JfQTCT&)#qtmJAn*K8$MYncu^3z>0h zZrDYxt<@%T$Vr3`xeGV%w3*08hJ%4xC(AW(Z2sc>O`I(4F_Z5|3UBU;c}GrgJ>&*! zpDf?NzF9sgLX<2QL{H{x5S`o?Bd}ScB8t4=i{8xFkReZ|?Gsd`Hp?vF=Ac0P*%jGp zWND9?%zu|{^Xc>3dC1egng4E<1$kPxvxza*ljrG}?LzX5hB{=~8w4!h`L|#7X6$DK E0DdwEDF6Tf delta 1690 zcmaDdi}lGY)(z2&hUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-UV7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5~wGuf1 diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 774d07adf8d726bfd44934ff22d9fcab95acba91..396d5b41de19eeb0a404dc9031c3b5cfbad1596c 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(gh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<{6BvWN4fGktK1nKJ!HKwB94#os$>pPT4$#O^Aamtur>~^IMSP)`hw= zHWvu4XClkinVVmVOd`+LnVVh350h)_C8^KkYVDUhMy^(Qr5oh>^`OcYa&5KO*g>|f zTI9s*=7qW!$aSo>;ZicRZWc7T%Su)PY}~xSs*{I2t&94ac!RA z8$@2@K(tTvKgdm%R=Jsb-sJFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$p(P0QEHzKL<7 zmk~)3T~vbA0gqvk)=eK&L_|c1C>2CmT~rrQ)_G?rb+>0-z8AmedH(zcN^+|1`lV|T~{ThJRg9zP zxcde&l1}e2c~BYo0Z%+KmQJsam)8#=9oEpF+xH^%YG`h=A9eM&sDLYXdRGD%)55y< zK$nn)_9}PLI#=x9g$DK>w4<)|hZ|AX3&&Oi+nlHP_C*5+i_`1jd0lfrlqI`o^SH}4 z1Ln-y`V4HW_bW#8w!XR3F_hIm(({$~>apeZ1n}Yq@8g1Z=MAHG5Z8v$LM~p1PYd3W zHH_wS+lSqlYd%l;cm_EXHP@wIpbl$j;Xl##8b5VLFwffqeBBm;SjOqL-9X0Xp@+15Jp3b{@GC?yGFBRLU5lq6LO zOhhT$Nd|!(BHwj^wMh~Ktwd+U+iFl9O+>GDj*wYm=TQ=YoJ@bROh}1DAK48AQm-zd z)ndt6Vgjzt0IYW1C3-R3O-=#_#-u{5NbVtTEWvklQUMrpjrFLvhUH2OJ(rUq-_GLZ zJ#r10jK8HUV&P*F4$S($GVh*{i~m7p?K6V>cbQ5fWPehCtv98hb=V@Vza%xNjF1bJ z3eH$yl?~$X2zj~?n=y}SGSkT37}^Q!)rmG}0;giAPNdJE1xdlj5OQ3ffDJe*a&5G5 z9$-3HL@T0#=Tylxi~A0mFei9eJ7-00JBpF delta 5860 zcmb`L>r0bS9LG6FXUplrph_aS|<6$xn)drb6YJ?lNp5s<@@F+6uW=F-xI= zrx&MV^+s?uXQi3-m2}_%q(T`)H}l-mgV-)qd7z>Nt6JslYi|Ry#X}wwfXVAY<;%T8 zC_3c7fsCXQJSq<=Gv6ObL&j1GhWPs0UZlf1`g6-}q+T5@XbhvS;cXh=%9Y?E0AqSs z|1Rhf($P-!E?VcpecRE%!2=G|wf0aw>U!?z5@4J2tkB*h;9yaL0bbZX1w>hNpH#wU3N^(Y;!1c>@u=^uhbo=-qkUz#YW3ZlHvV*YRVb zcVu+~Mcn>j2j*JDvp$|e4n^HH?+esn9i8-TF|Z3FwLbs88LjpDk6(bR))Pk>wbvTW z7Oj*d0_H+09L@#SHso2&+Ox-qS9#>EF$R7`0XdU`@!FnEBvI=Q5Q8{YOw@!JRgB_7 zIf2GT_F^PUis-H&8!a(rSrY>mqBDA-bE1!Hl=nqMQETld6GhVzl7O5{f3gfqiAf={0|=yD znMUik4Zc*>;KBUdqU3t2bpEh2=ebTnnuX}WC2@mR6*~sO)1H;on;1Q(Nv=`c_t5ky(Zl*VD>m(+sX(<6Ho1jnO^n`G550~pbY_cwjk*Ez TQGthHT7$@Hs}X+u1tVM&%*Zd$2vyuMkQQL=?$im5@0QF5|znsJJOMPj14A&6sUYHXfn zo|I~AY-njdc>?24GISO4gl!gJUPq3FK&_Jtn)xS(uojYKan8E|H-P>`!4i6EY%Yav@Lp z=KIP4v2_4Au=MSkSBa{mzl)o8Ve>i3bf1FFXbRp`x;TM&7mGS>=bAZ4w%eO gp7zao375%>tnkTs3H+OHqzTH9Wpmi(g61wp0FEJNcmMzZ delta 1199 zcmey>$@Hs}X+u1tp?P_UWxjcdp?-3zu}QL7Vw$<7SxQQxsflT#v1L-Sd7_0`l6g{^ zg<*=hv2mhls@dcTj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGoC8E&Wm diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index da4d25781722c2b0b79e93c73ffecec775ef1677..d8ade11b2abb1b365d6205028c295aa2e208821e 100644 GIT binary patch delta 122 zcmX?Va@1slKcitumRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu dYHVz1X}-CE@idPS$=dWMD+ow$p24@48vqzjB#{6B delta 122 zcmX?Va@1slKck^}d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf fin+0IqG_tx<_5;oJVqpI)1Ry$Aia48-&$?}G8-jH diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 63da61f7c0b253a66d0a44b5a285299c2156a0f0..dd53033460e17708c581fa6778a86df66684c4f6 100644 GIT binary patch delta 1928 zcmbRJif#5Qwhe)dwk26+xoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x28eoB6Fv3_xWX;E_O3{Y#-qdHWF^}p z+?)Nax;V+wp1Zl+#gh#GZ~o{isY|+z(;aykV<(?0lH0tk*o+Ko5&CD88tIW|f6Qb# zMXAYKi`6&JSmH;f8^C64?p+q|Or9IkCvSMczPbCA5*d*W3Im9KpASc5NVk7GQ2$SM v()EGtUA&!7j8Q#~Jk2%RAC)kMk{RMP+njD| delta 1928 zcmbRJif#5Qwhe)dw&vv}migu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb=~q`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~uJgS&#q# diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 308a45288ca4c01699ecfd1e811436863b066f53..955ad220c339d9b792048f712f505de3fd6b5682 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVM&%*Zd$2vyuMkQQL=?$im5@0QF5|znsJJOMPj14A&6sUYHXfn zo|I~AY-nk|xrT8W8QLaa5DA%FHHCljHs(UoEd}Y`yoTi`3wc^6uVE41Y|B;2M1gic zUI}IjwEq)WNQU;!7euPb^KKPnfihFb3#!`9ljT`h$qJ^d%|@!fxyjNR zI$6R%c=IvCmpr6v-~7N%ha3k#uq)iW&c#}pbQ>o>u#1^&pDVn%GeeV{xCLt8Y@fSL OjSQPXxu|MN7b5`HxjAqE delta 1023 zcmZo!!_=~dX@fVTp?P_UWxjcdp?-3zu}QL7Vw$<7SxQQxsflT#v1L-Sd7_0`l6g{^ zg<*=hv2mhls@dim#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0BDUri~s-t diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index f93cf924ef2b9fc94295d812c6d94eaae7e36e44..6c3e2f191a16ff5e68f0442672709999a4f57d45 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#h9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<{HKgWN4cl%Y21&%O=}$mTtbzV#-3g*3Gt@(yXLw1KOCh`88h!JDFO) hiTR0>r8Rl;4ZYb+WNKwMviBfEYbR=Jsb-sN7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0EaH1`2YX_ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 02ccbfe74bf6b2a03fa0923b2dd4aa929352cd2a..5ce0134674d246ac9c01de097b30eeef667c5179 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;PS&o8n0 XsZ%&71=>&f%vB{zyUXS~MP-ZtESBA4 delta 731 zcmccgg7MM|#tpuVhUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-Vw81IpxD_+!P^F^jPg=ATrGwk26+xoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x28eoB6Fv3_xWX;E_Ob^x;aql zJsCD`E|mR5hHb!<)W2C-p_B|8!CE7fbI7%|MYW4uThD3SWF{*qlyCOe4I|IN<(qx= z4~URuYxd-O&VrkFxfqjYGer9=x9{3y+U_UDyVw&vv}migu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb=~q`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dac;4$c4o diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 6a22154a9c9e28232087a7d9e0b69ca52c53864c..baa218a1a8a31c791c98be4ef03f9edceb3b4777 100644 GIT binary patch delta 7883 zcmbuE`%l|d7{+r>*A{7|E%*BtoHZfnfNortN$WC)q!}BMk%#G;Fc^)KWiElB4oz?>U}F41gv2=^5#ni?`vV?+><`cLc`xUE z&&juAOXjg9^VNKo(d5gj^Slm=j%;uC zzG{afBR5-XW)pyF+MXwexq)L+v5=*+XfAyNB(ITfL%t1?*2(nP9Y~d??R7FCeg~GX zUmBBs!l-`PzIGc*^`?}d)R))q2B>n{J_N|LX}e$MrVgXh51#Hur6cJrsPt#Yc~tsD zb~P$}YI8f<(}FDmph}xF1ds)LdgD1aDm}BU5zTXO`!1AvwxAWD$|Cm+O8mCa0T6@L zJ-6#1O1)kT-4%g3J-Hh>MZti-*|QVKRTh;_p?Qv%RRF|buwxY-lsdMr3#Bes?M11J z`#Vr-vM&>$%C_3ODDl4E1rURc`L3Y|rQU4ZfKt2OXhNyynrl$%r8fsq>SAjrO0~Cr z3Q(o3eGny9b?gU->NxnM_eg;rdJFnxVdo1dHRIU5H6Zm;PY*`*%PG-;R#<;>5vBI_ zmZ8++AKyT!^Jjc0b+PXPO5NHIQ{5N)QEK<)Tr^kT)xS{bzp??9nh8F`uAy>-T2xvu z^M+4^Ktop|D@NWiVp6SQL@(<`qaz`?Q+s79T@IfDj58R$uu!oFC$nlPMOS?{XCPzLdI(9NO@U>L`4 z@ikhq!%C(XSthnGoZ^2IabS{1(nK+{TA*-T;&Ts+qE{PrD30hoFeH%7D2`?b{>nsNy;EB25Nv)8_l=U#mlS#tN)7rlw|$r zbk6L-~FR+qTL}9p|%Ga-^9zCi2adG<&ixjFJM*4&C2yhEh zeJFntJgY)!V<^GO&w>Wpm1+w;8_f&Bqi66!JCMqrG-Kc*2P&oN3c?dWfn$nB5 zP##TT)x0qtEJE7hMDa`?kD`>f`4pOoGNI1*c%BIhg0^(=_t7qPzH6oDPw^^rBgFM_ zAE*^aB)5o;P;RC00d4>%ij>O*P^;ygh@qh&eji-VLH))r`8ALqc*@yC%_NVYmfO4z z?0?XO4&3FfKp4U^!%L`kl79u%fRuO~fT~Y7E6-T*=RA)Pif*H?f9Ib7Aw04oWmOBt zqV*1_8?r#{g4qZB3VOdN6N+2r>(G~Is!bO!Zd!EUV}q3bBQSQcl%$JW8AVU5E)6Ur SDVL+M&=Sid^{4Rn#{U2m%Z=Fp delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNgB4o3Oj?&Il4fj3MkWrhP}o2yvJqt{nG+>j zvXH@7yxB{g*~UWl!saf^83v$pENrd=qnfn7C{($HCJm=hd z&iAGrUows_8Lt+y9LJlj&Spnz&W4&=TW*crTjy}veLinqZl2fXtgdl*^X=7+>bm?K zpTlPJ=GEGjHZ}>UW~>ErgzGpa6+yekq`0*$ki1@cbcGg3+9b0Rw;^4cu{Oz+nK^<=KX|$qm5ye&qtc&k=TYes zj#^au)TU1KOp7)PfGRDn2tXD-(;LruQ0bYi`_VdwUf6+B&lYt6R9WJgMTy@Q+W=y? zyXSW7L#fwGp>IWKPEYPcZc#Y!H@mh2waSw6X|&FXiYkB@4m)1uMXBS}Jt%eAw;QD{ z?&(6Q=?xnJsyx(q7bV{Jy8&YOV7_Z9L8&+QZ$PO%Z?vM+b8Yn~_0n5|D0Q);8>Lzg zeF{*erE>@+`nvW2MD;o}$hyNtTIen4m&M&LqSTyY_tt>aOMQJ9)i0+-7usR%$wibJ z2vnfd;~(EZsS9TsQ0ij;1(dpF0H%5_4xrTD%TBb`hO2*}(tl+ODm4;(huy=K2(_fV zSr&|(h=7K!OjeD)tH-2D)u>iBjm5`8a+mVzbhOmY)??dZMZWOcq#2}VuQNz@Q1=)v zSKL7@-D0dF9`g{VJK5DE zSSls7vmtCk9vbXA$g;4Xgj^!+Ll#5&9(Eo};3Cx^DginGmoippri+(Z3)cS?{VB-? z(CM82o9V>-4=h?l%`-FIyTbxTtP~NlBGpPCw+aL0ml7kj%`p=?8=({-6R|s}UhVXG zX22G|D^yRaXrE(N@#6#b4_;F$RR&qvDpKgKXY%!{=|^8Ce_Y(Y!(xTn4?X?Ccnr7& zsX3BA3EowqY7;2M%+G=b%9UCZJsZ!9!Q~s)N2c*MbXZ?+)r)2u*V1w>&qs@RWO8j2 zKOTi$DP!rsp6S_9!DAP@M*LN)r7j==LH5V1a0o&N6-W8e$PzLpW;4r86@@d22d*w zOKuWfk=#ttgIos=6R9p2K&?`6B7ug7`F(IRhxNH%@@pVJ^op~H`Y9em?YDUoc>ZA* z+IyFG05ODjmX}fE6#ok70jc5%0IL3Kv+{x!e=hJCq0%k%_3!)>Ai^UnQmq=nEJ|Qd z{Wuo!c$#~_ub`h6)r69k`8xCwnrYD_i<>45_|70z{}Gs7ETw6ZRz}gAsL2A`NUF=x PL}-Z>kote{_xk?;ML)Yj diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 3fe9adcb66b69d5af441ffcdf3afd1e64a50028e..6fd50492228a55aee1b75381c5052e9e813c912d 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wk26+xoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x28eoB6Fv3_xWX;E_OWW!Y1$!i(+8Io)YSZ9K;?&fDqZH(k=pS*to|Kx8h zg=Cu$vYC@DgpF+N5u2HLuQ5@eyYk}B#GPO=l5RTmZOj3#bIE&o8 zUb=@8+aJlLQKJ35Vh|yxU?$IIU|Khw><}uvxi4}SB`#PUZ^A=?3s%PqZ!XQr zC*K8nn-hxUS;%&Q-sFTLkR=Jsb=~q`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VSmih)I9qPZc6V`ge>o@Snu PYHVz1X}-ChQHcWpSosnE delta 62 zcmZ1|yij<9AETjpd5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx=6XgY4ggv)5?cTO diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index f9ba310b7b7e4077aefd26d85ce72456e4df3932..83ba6958d71cef57a0a1b7f05b4c5425378b5b69 100644 GIT binary patch delta 117 zcmbQJK2d#xH=|)mmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu VYHVz1X}-CJaWNYi+5$Knxd9#fA`t)p delta 117 zcmbQJK2d#xH>06>d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Yin+0IqG_tx<{HMuY-DH);Be#y05mTm$p8QV diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index b3ec73f4bcbd96023c9b86755eee198b5d87de50..b7a5d84fa82e732b3ac3e49c7f4bd8422e936a67 100644 GIT binary patch delta 4131 zcmbuCT}YEr7{__ak9}q4R2G#^Y9yv@^JO2#1TVBU&>1YEi(5o?fQUWgUK z366#62&AiQaG-M~wMqyqup;t8gl-nvMT0IZQs_8W_j}Ied-4CD-}9XFJb&Kpg|h91 zva|=Ru>pHD5?B0Yd!#k!w1#Y!P-`%#M3j)l+1KZ=?tIv7iX-9(gcZfw=3oi9Sz5e| zWZW+1FW+dwNonsR*iRN)V<@?oBs=tMNqJa;mK)d~=kQ($c~$%OJvcc_c2uj1m$Hoe zr@DBVxF{cU`f6~s`q+o_&ky5HCE8d3rSy{Yl$KZ$dZvj_W3O0PFiRqgm*9x8VHcNcEYq=nbjg9*0_3kDlT7{zVEfsf15+d)hp1RE2PQwZoL{y@sW*?~dOgHFoiJD((S}t6!;=<8G zE3HsPhlfB*HeX%mbN$eZ-O)QvTsRHlLb8A|I|8L#L?y*;$2^8`8N-ET{)Oo1k$a#f bEm;#?nSdAgXQJc6XiE1H)jYXxC8i{Fc&F#0vgk5NDpfgxR7lrIK%S5ED!Uiekg;*h+ z;8=)`K)T8X2Rc_$RzhHb6_FP*=w_i^H0Z)2g^qJ|zvuh`-|zW6&pFTY@l5khBCF{c?wA{e{IEHph$je*5@50Gh!d>q)F zDTx^Jn)5{%Sm*82vK01VuPjB~ox`#enNccBQ9CvzOL1{LDoYW$AC{%)oe0WO^pg(U zP;S4@QrhJL6X~OGa3jW2lP8ODQj$)V5)U{?4rx;lZ5m&T5ee#??JEk$?*<{-qJQ7@2W(1Q#PdGQFlD z$1-1$@IuWVe48sl$-VSU4QNSrQ^l5kEaTe$-$Tug{%*(3-i`;$Znhnet3yp+8lW5L zk*bG!qK)t4ANRv7?jd-oFlpj7wP3>S!o0z{5k_#EFmF(K1dz#;H%Ob{Jd%Km9z>Dl z^N9xdggker_uAutOhYd>n&Gk3;g_v|48eTcV>TF&BDm`Si^LFC(@qy;kpm=_Ni~1p z3LCf_5iO{LD$-8t>8&<+i-gE|tR*jT=P6jhf{03VwAl}8KHUL&T%zWdnvM&XtGICV z(lQH_)1d*-k&Rc^_-qe!VR!Vl6BkasxRA`F%nXByi>Rd7?U=(5E~B`x%)JmjJ#-H= cq$y*fE93A2|4j5;7%l2i1}-lC+H*yJ0Va4L2mk;8 diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index ee5dd494b7d0b3e6ab442df136605bd252278151..1c504cbf82aab46cb0acf8d98fd41d4d6c4576fb 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVM&%*Zd$2vyuMkQQL=?$im5@0QF5|znsJJOMPj14A&6sUYHXfn zo|I~AY-njdxrgxv8M+*m9X4NOa+fDh>-6=_O#GAQD3y?|eY2zT4|dYEO*XWu-27Pk zJ~<%-(wd|9fr(68*^C~MYwIMFS>)P!&0LENt(y(4JekS#r;6PJa{al^VLBO(1;^=o z=R4%uTI#llTw4!%J|-s-Iw~iEl0NHZ>!5jJWCSx*Kl|pQ%pW_+(?8k4fNOg9TSk%X zQYwr$1j#pKd!HGjQxfU=w=>RU-*lk9gza+|Ge&rlr#X6Zye-#upw}BXDKTK- zcgDLGq#H2VQQ38}g0skW4nrmd4hr;dvSg}NB}>2Kn(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y<3>3;_TD diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 28194b77b9d74cace458ed11b41c5968d1c74f9d..b166062bc5243ea74d3e281077074159c56b290f 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVM&%*Zd$2vyuMkQQL=?$im5@0QF5|znsJJOMPj14A&6sUYHXfn zo|I~AY-nk|xsFkg3~iGQ<7vk_szXK~%q4TjK!- zd0H3mHgqCOXZqv`-<39(mNfBFpnYSLfDxJ6FG$L7uGm_`LxJ|yhxU`}_=X2^n-wme X;3LoW%?%HWbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgYzyaD)H= diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 721ebfe7e86806dc2a73cb0693c718ca1e85ef3c..c4cd1e3cf95f907413ccb670806329c6e1c4659d 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVM&%*Zd$2vyuMkQQL=?$im5@0QF5|znsJJOMPj14A&6sUYHXfn zo|I~AY-nk|xrULC3~kd50vXdcD>2V!Cf!Pq-r~ur?1kiMO_?0Pr@DCphc+vj`Zovg z9U;@pAiK3TUlw@6M5f(9{hFIgMI_nC)o*ZBc(a+bp%f+h`OUm)$kiXf$2K|dyuxOY X&HJS(Fk^Gx`H79B>)#GcI=2`B{W9HJ delta 751 zcmeBL#@e-vb%Qsfp?P_UWxjcdp?-3zu}QL7Vw$<7SxQQxsflT#v1L-Sd7_0`l6g{^ zg<*=hv2mhls@dimMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFSmih)I9qPZc6V`ge>o@Snu sYHVz1X|A7=pIoe8oL^d$oT@*$kV9khbw&|ZBht+Q>Q&zC!2X3B0NKwfPXGV_ delta 139 zcmdm@wnc42A)}pnd5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf uin+0IqG_s`eoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6Lgw<`w# diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 3dd920291c90f2091239c53668ae6b1f5a9649d6..ac179da895d713a89ccbb29a5ec9fc81cd3b1a69 100644 GIT binary patch delta 760 zcmaF+p6Ts-rVZ|lh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;<_bm*aR=Jsb-ri7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v(?jT1 diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 44840601f98ce42b4fdb58f6b61a34f6deea94bd..2916fc51f3637430fb58c94d6a7132f3a81402f7 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;37WitX%TrkH(zBoVj@o~&{CnvbJ+68(p|oJ6MHNR=~_2C a@bs{fu5GddPs-**p%`8=wFW8Jl>h)T4U5(Q delta 474 zcmbQRl4-(9rVZYVhUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-UF7&nrk%Yi3o@&=|wyg_K&uCbZWtN*(Y8yg_K&uC~~USgSVUSg=9oN8>6Y?hd2ZfTa1l4xpTnrLj9lx&`8VU}c`lxAU= XVs31lXqsxac>-fEIokY~_i+ONFVZ70 diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index f86a5b8493a19ef49d01ef7e64f12cdb1c46c805..be13250a10154a629f90e54d14a5a5c29954d849 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2h9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;9CMQUWPS2UaD7yL1idJ$wjbzT|f7>o(knI#nurs#TC@`w?k#ER$8-2!^ zWIAGcfdZ5Gc3@ys3y|jkhyisg8GZ7|Ghn-y1d|pwd3vV<^~!A*Qek3ICd&Z7?Z6U$ G9wPwTg8-cX delta 1704 zcmdlyiF5NL&JFI2hUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-Ta7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^00}7ytpET3 diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 018dd02d358189917fa8c317727aadcc26e67ebb..e8eb12a861252d71dd70a5597b148ece48f1949a 100644 GIT binary patch delta 2429 zcmbW&%PT}-7zXgZGp>VZ%t9QKTNIPIoaVxWFie`p0!LX*b1_XWJDLqfnS~P4QAb%= zjLb@@7hlOvN_Msurjc1Hm&L4%d_}B&-=Y!UuXMBzkQ^?2r%2qf^#{xDg`ah zm_6dQMIF|tJra>(Qq<}WgorQ%j#u=k zyv{J&+L|?=f~{${6_oUDpGRrAvmB*&?stGv&g0cV&n-pIL$^SqlJlgn6>s7&!px(1_4Jkw5>SJM`Z({BE)3Zu$yzL|_)dp#IeCq*W5uZab* ztCIf%#yZ$s131BnkF}{j6RYF11MCj_Ey!F;DQN^J7+PeavXiOfa+pOcun?|=gp9>o z{*+{y`r@6cxd^X5WUJxgvGzP=#oXViW|>f`jt^+NA1Sa;aQA;nTub7^*d$!^3g6(` NRn4~WtAH>)_zQ5x@Pz;X delta 2429 zcmbW&%_~Gv7zXgp^)&_&vk=$hD~bu@&fGg=LKr5A1+KEvy)z?4*^Fl6tIR?P>8h(N zEJkLf)QeNHlaigSg=xf6`B+#fSN?)|{(#@}yyrcg&gOxA^T2*K%G^pk=3i7|?)Gq0 z@`Pn=R`JV`i01WpHOa4s70oB>iazUeM-)lYyiwU$Wdx{9VA4qEmm7D&9;WFjXIa3g zRlE+#H7d1z7eaJ{uF7|j^=1Ma^y9e2j+&r&=$&Vxv6U+0s?H)dEQDJjnj?G5 zAJ$l^B70|AF3gMf*^-_;ww|YIxVoCmG!yd7p>AvU{om{Z-2Gn?w~}}tHVGGl!WX!9 N)3UYvVpN#u`2~y~{^bAw diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 3063b7fa37564cdd68fe137820c1aa971983e008..098c64300ea5cc098c8564c0986bf9657af75314 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+SdwLyn^tNZuWy!Slx$&`Vrr0Ll$>mwW}ISRk(g+12;!KT8k?t? zC#4!28(NxAu46n*hOQ54Mw^!~tzsch>+}`1jQo=iuosf0-F5SF4p#DPcAdPOLuj)J zFE1-uHoHuAkYe4uTS$PNJnfquq$0?PqYr8zn>jX%%B|Zyro$BHQswn=c;M1& delta 1486 zcmZo@W@~6>+u+M+XkK1onQvZVsGpo_Y?5r2m}YKimXeZaYGRsbY?+j7o@il~WS*2} zVVGiWY@BGCYBsr!@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WPjnbnK{ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index ae848c78b25b08eb11e18cad3d98ec549ba4047e..ef5a78938a3ec457f143daa6d6167658751c7c39 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#h9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;itP8a|3H!b$DJ5i$&WvY&2}DwT$JcP8dMNK zzJ8&}cNPn7-nLj)h*C2`w!QHo-Hh$PGT;t3>H0urhvWAB{EW`zl$oG{XM2JQBQLoj zKOLx9eETCk#&R|C+zu*tS*GhmGb&HlFJTne{w|d94h6*k%XXkqH4>D#rN5F(3DlO6gXq@Uq|if8!8!DAi;8LI->#wxr+s69Q*dZxr~!!NO#zFVAXt&5diXL BU912A delta 2066 zcmZ4ggKhl}whiu#hUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-Ta7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DMIUJ_ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 7df890f44af6b196e19641f4b3818cd99f8c4633..e7d174eacc7dc863fb5d7f17497589b79134cdc2 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#5fmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu aYHVz1X}-CIv7HQUlP55WZVqJjsLmQM*b5EwJWSALO=Nvy{!6E{ZM`u?sWM zdZnjWtb$6&qK_v%5Lgt7BqXt$z6{n~5k~hF^lZ?_?fdugz4-nA=RD^;=e*CtO#Z@5 z{sX__>~42Q!f}_s%pERot#pPe9HH{oR#(^+a#RL`9%tsmUE%VCJ%^9DT+Xc?F|2$8 zFx{4{;&m;mRbRH=BJxc8ON?9p)A&-_4dFhK-ta?b9#y z*!7_ri`ctM%Qf!KPXyR*{e~Opi@FA; zMo?FMCWX41X1h_>Rj;a1*B^86*se|$V!OFX%)gniL(8H`XkXhR#!-5>Pe~yQS#o|_ z9#CQh#!b1>#2R>SM9HPXPUR%9S^rb8ol?^4jK?4^ZzHcORtkC2%vMk$q4=zeQ8{E~ zW;!>f^c;j#>UGC06W?QHHa?h;L8Y6Sn?9Ra8mNs-Eh|S-ZbKd%j>ZSQY$cTxvA1{- z8eJ`BJ`D`w_?X5WJ6H}4dzp&esd`q0uC<5-Dfjbj&jP{bb0 zKKvQ(t>4LzbP$VIVdFf^_y%k~fUO{^Xy1bsxKj8O$YpuQZT6-_dWG~EQ zKWI^0`iV$+w;pj7wY9rT+C2WCUhWA5{G}zOes_6mo9-|3wCb(FGFL!%yZxo@9x9T0g~@P2&>goZ@dP@I7%o$E%? z=@CD6QXw&YK8U)`juDEkxio>Iz0pnp6^__X0F#Xr5_hlLP_*I32LKiR+pweU&TGIi zo#&~0`_V26-#>!7o_=%&a22k{S=clUiFtYlIHpTf|Kt{$=jF+*sB6!&FzPz^q5^gG zO^u1ym&jypwSAZVt1;}kRl{St^pT|WTS2aCP=D1eKgm^!a#46eCvL< zn6FssjoeGtAnOFqJO#J#$zG<>>K^6<25wq`q(Y|+i2Zqvx`VFvvvFXB^AyY_Y^V2w ztT`L7|MR`rNFOh-f#O9d6q0p{4b_-eAeqGgn0*7ibgBVl68}w{%f#*UX|3u*>qqi? Smbb-x;&NP7lKhRwGJXTdc=QGU diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index a9aa4bf2454e501170f926dc0a4aa4966d6c61af..d90d8158557fffcc1394387fe12ce747676fe073 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;}7@wm;ZQptv7Io4_OZ|@vN0J))+C;$Ke delta 479 zcmaDpi}Cp^#tpHIhUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-V=7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7X~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;ubr^t~)tj oS!nVO9^uVp>|0qVG-vY;o_lPRnIXPeL*xt}1!io{SN8P*0Pkg+5C8xG delta 525 zcmdmUpK;H9#tq(#hUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-UF7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl q diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index e01036ddd593c6a875628e4eb9410cd7f61c505a..d1cb1ba96350aca2d25e80086d8eb075b81fa732 100644 GIT binary patch delta 122 zcmX>jdq#FcIHO@nmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu dYHVz1X}-CGv6j(@WNrGBC$NZZ_GPZ;1_1ilBm)2d delta 122 zcmX>jdq#FcIHRF?d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf fin+0IqG_tx<_^YMMkA87=}(@(BDUF=xt<#U6tg6| diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 68db1565a4fcdb529fe5088031ff557f3441e6eb..1b6ec0e28a72a756a5e79cb9b45dad4d89aadd39 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$Qh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;&U*doWpA-6z*~if^{5JIzI&_RaO3*KEkpD$g3a J`S!7NMgTkl)}8!f%(t`<_+$QhUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-Ta7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A(6!p` diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 545ad4caac2945d62aa313b26554a1db0c1046d1..c8c8fe48b5af2e1ee84e6206e1d954797ca69312 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)h9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;W-}qMN5x1oKj&zq+l?n_T_*q5_-SE_tw1qCfhUt0C$7w*%AS G8AbpxQZ^3& delta 1026 zcmbO`n`Q27mJPm)hUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-Vw7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20X17Y&j0`b diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 9ba1c47259ab595ee7899fea6dd60e3009be1e57..8f7427a9d1101de11b246a64a8606f3d481239c2 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#h9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;E|@IaGdI7@h-Cx-cbJs1 delta 483 zcmX?gh4IuC#tq(#hUVoZmigu-hWg2=#wN*TiD~ARW+^F&rY5F|#+FIR=7|<&N#;pu z7KSP2#>R=Jsb-UF82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5diPzmyrMf diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index a6aad4bdc7e9dbd70283dce37500c07f6fdf38bc..c4d003cf7da7adf9dc5c517bb07d0afe0cde3f13 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_ApmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu dYHVz1X});|<9bFTlC|ki-p3-hc{=lPZU85rB|`uJ delta 122 zcmca7cTa9ZI-{X^d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf fin+0IqG_tx<{6CZ8I4HRrayTfi`?ev%*VL_L2D)Z diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 3edf564e06645d804dfc09ee73471f17b7dab83d..a76d31ccdbf878f28083df120f131a6217e5dab7 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnVM&%*Zd$2vyuMkQQL=?$im5@0QF5|znsJJOMPj14A&6sUYHXfn zo|I~AY-njdxq|U08M-dAM{fSjw3LM`t=GuVrO4m3If`={E9qJ{EAr1~B3;{LMgF$U z#X<|o)p}Y~gM%zv^EXeHJ3&rND)Q%V{;eRIOS-L_9s5?0W20kV&gQlWEfJ*KIQb%b K>gEM6(-{GW&C_iF delta 699 zcmZp_#@v35d4oHnp?P_UWxjcdp?-3zu}QL7Vw$<7SxQQxsflT#v1L-Sd7_0`l6g{^ zg<*=hv2mhls@dcU#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1ONiB*S!D$ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 723a9304b76f46b688c393fd2c7723da0ede901f..e25bf04583744738bb693ea88b5e2fb77f4ae6b5 100644 GIT binary patch delta 1680 zcmZp8#d78?3rhp*RNjp&o{WYiS!TIurN;64W@$#r7KSON1}R3#$;N5MDFzmaiROkN zj+v>kd761rsT`?v5<<`os*EXf|j zN|6!bn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb z!~?73^5YoyY+g{O$f%T=my%jxrC_9^5R#vrnx_Ee8*qWSRtk=Jlh4%4x!XATIQn_} zc>1~8aUrvVQ}aqv^O95H`q0cVgqdSso|;*dGP$8ne!y&&m@L;2&1g9}@vHjgg$*;v z4Z%At;+yX_6_KfZ^PLvOTqY%^$qVZ&CYyhHR}Tqxbx8QAD`XZc6yyVgv?MbzC#O;& zH?ue=F)1}CHATTtp(HamwOFAfqbR>LJtM!g1jtNPNJ%V7EKV&!i4~}sj(LR5Qz6E{ z$?LwvOm6thJ_OypiP36v;@2KBV{7u>Z$g`UzAI9oeX-9^R?exb%^1L7v(LYSjFZpW ga8B0x#XZ^Ym&jH-#;rzV6$PLooo9Q$F=HVk044<^i~s-t delta 1242 zcmX@}mZjkp3rhp*RHltAo{Wa(% zH7_|;!2qVf(27eJ2)G;-?8{R#i&7Mdp-QG?u*Xix5R1TVsti6;CwDazGn!8ptWnr3 z*EpYCza_MaZ%%A3B2)Y3gjU5|raH#W8^5SAPWJthgv5@XeC=BpqZ!D7ljR!OH-~&r zCDWG4oj-&&NBmTzK>K2e->j3pCH=PMGZr(lPkm*=00i3~Ff!gZA}dYBZwD3-wTu99 C1cv?q diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 54f889168802e5413e8c685fa9f19b931ec8e452..71f9423fef8e27adea0a99d815bd263021e5cfd5 100644 GIT binary patch delta 381654 zcmb@vcU%<5|3Ch|eh1ufmFxXbQKZ=uHP|&q#TL7Q4ZEn=3)o^qMHd~r*o_tI*u@fi z!4jj!f<1<)Xe=bQ@67Dnk-R^@KYk8x9}nDl&CWjOIj=HhXLoPL!@IIIzu%Q*u8U3W zQ@MZ7p%uDBSMC|tt!ixdN-^Ezx^=72vqJZns!2&zVzE%UQiUo#t90#Ap+ao6Ds!%P zm-{c;QCG0sE+3wnn%Z?p_mMja9Q}oDVq;u!abLw$`YNuPt6U8Fmz5#wnlz+G_uhlE zGO9(V_D{ioeuV$u)pA?i#xEz!y>s_sxGK|Q)2O@k>yb2|UsBiTfkRXK_3km4yHvUq zs2yc@fm%^^8^}Lz5_3U`Uvr*vwFNF97}wh)Fo7g#sEO;Gn;G_Y4Ifu{1z3LgqT?uyz3?To^BLkOSR?lT7 znZyJp$6J=WpR5CS?xjgNMfqURw~xsv%&>r@9-}PWrEm+#ocB<|wJxg%T}SmQ$Nd!% z%zal{%?(Vpa@)(A1>qp}??>T+ERde$DGLgFx`Gj-OJIy+zG{qAl$BA6ySKU&x2#kw z_o{OQ7gIWz%PcM9hLm@3vTy@;y^{u%T@Y(ToZ>X0sY6o-4(^@QZ%8z0Vit&xtyu~* z|1He{Tzi_9;$C*H&NcG-z?@ONB7_+pT#X0Stck4|$@NIof%Muw8&@mB$JH)n;d&;T zz@a#87*Y!zDy|kp_;uNi-l@v0%>9heqy22b;hMG+`nm$}7VS>g=5xE;H!+ z_f8(1l-hehax|an(Pda1=MFC?D8*g6Uy9R~HE{QQr38^+g()JEE9_hjHB2igM=(KN zTdjffCfmUMn3|CwcTZC%=Ly%%Z>KWwTBI0(0z24tc$A$R6j_!#+SSY@`NFw5<>R%gfNi@C96BI1E5iW>t)K7Ua!PvzQ6T9~ z=_mwa27`vSvw|Uso+@1Pu3m0Qbc8TAX2;2BF(ODb=K}5pv95pFjJLNjE93vW?M-`| zvHn1d-_j86^0fp!X#{aEre=BWUa}sfWY3e(2Kw8J$oN$hZWoxr3f~hmDw5d8qZH`VK`@}GF+#g|8gZ{669d0P#CDS<#8Cf?9%zx zRxYuFoR}T-F#UH-^iQ@E-!*}IyV6Y5Iltz-;Sm~Tu@Cl48kCj6I|p~9lS9Cphq}Pn zZXw|8o~C*nwQlZ6*MP~8DY#7@3n*OhP>S6P+YV@#Y_)LtzS5|X&C=5xh~z(gWpHE! z5S3Y0iW}HD3T(fhrUxw}mc?-Ha&@@v-ZK9Ta_rYv!cBZgV!ythY$0L!k7y|FMh2C4 z3A{j~*zN@h2ws!%-|j==ONg9EV}I;GZd@6tW6Mjpm}ndAdT_6Sdk=kax79r<6?MDF z_4v*Ne7=|F!QDmk$Q>5c*|^q;}&;DGTa$qBO)Ks zNqdYy71%M9MTF8^ezJjdP<%JgqO;>4eT)`C2g0If?|!MMPaPj+Kpmo&dr_`xpkw5& zl=g94xoRL~PgCoT{N9yCX*b0G`OkFOyQ;(5Wm=?t4iKrzjp0PvOQe+7V&s=-{Q_ ziF7}47df{<{GT*b{rJjzh`5ZLTv}^Cksc7K$@POo+D#DQkK0AvrlW<}x|Cnn=yg-zCy~BIQNi zBN8Ceq6A)AM5Hc@AChyoiIn*AFCsl7lKTGNM0!J{wZ@M`%EwZgY-?>^yhu*&-pWgV z5h*<7Gby@>NE@F2r#*JkS44VckPzuOkR;idM?^CG$xAszlC&_8 zk}HYSMPeq>St89#i?LU zD3QkMYY-`mNSaQ(^q5G;`|;9KBISgfCnXDsG~m&t4%laYCequsOFLod4w34$`rIWA zi@y@FY`xxzSUN+bOYd$FX)%#*ddCdL=Ux(NR83yWCen{jBt!7I7ev~y>@<;nBGQc> zwNml9Jw&?M>>ZK*BvPeKtA=K#p_6|QQF<(9+5t38jQy0HWO*o-DQ)obdpGwU&G0n7A|N=Lj@iKW@nYj zD9z0pV&gX42^ME%_Bp`WmqlNP)-Vev&8`pfZZDH@t%qAV&4Shl;1&T0oOm|O%IzFohMSUO28G|X z)(Nt>&zzM2y<8m0NwORG0W9d^%UsgZ3q@9iN;N zq<_ObnjFtfPOC1cPqK5yM43=_EQqh~3E_^6Z_mY~DY=&8>T;_m)<(x@kpD|L9k(OB zIwzi41!-ml_iU#THylLlZW0>T^g6f>tS3P<$}R;8YuOdZ z3gf4DKp5`{VWMmo(L3feetJh#XDxJkE;%hquff~HMJS^y6`6hTD2eLg?#-;tiPED9 z>mbAdkC6WSp;K!kwbbMae<-EEW95J8VEgE@98xRSV@p%+#1z~A@wTc{YH|0c^g)&3 z!4!jLPpil^$gIWHTNcGVoLq}*F|HnWby`Klbi+Rz(sV|9%CsZ5E4>;zy^Ng3jT@ZN zTu_G_)Ugb>^|p*nm{Ex+KeJqf42Qylf5Ob&WaCE7>O$=lP3$pYdIv6cWhn(7mvM7E zApY2oF3y?Rn@jnj*i0B}!9THZ)wAY&%heuc=H_PZN4|zfZ;VhE`BY_Y)!d1KIb7&G z-k^7%$10EultabvK#q&mAjO_@auf$;QHvg8bQF^UGird2OUY6QR&%4WvIO(FE%RG& zGv^tE84+_A+JLiJ4JCFCJd|Ug(kPQVJx?WAL?RW3IkFRu?%Kml2>7=Ddaf?$#?_wJ zcrFOzcID)9VIT^b0*~_uhWoUjG74%nC{T_u0N2!BGOpXsIPCg-PP4xs$)za1GW)y< z^eEWY*mC|3AZw?U^diWD2pCTiFmU=33vp&t#ib#LznW7obz&0;`fw|Tb>e0& z4HfwH8YDQ5s%XoN8zC1&axW*jx#i1h3NCRoRz#qcYY^9cr)KVC7Zm<`PN>JNS!u-j z=Qi!aF}>p-%Bmwc$X(ikZWatzaPdn*QK-}rJmTV4M+$Pd{;MMdD@oa?HK<=I)H!|l6I@iocx1W@+uG4Y=oK1&Pn60ZSBqt+S-GTddma$_hg21^_Sr?27jkHcas%y zzsmLB-cy06QGCNgci6b1?J5CBNI7mGCbKr`6#4Hla8nUvVX)Y z?i29*3tw1?8#LSmT#wt?xe@E@aPt;xilbOXq8QJkaLMste5K43kZX9NMV%9#PT}0i zIQIvXfoD`WV+zhl1GUEFu7jy6<7kOC0wK?9CvmIK9 zs>JgqT;&g3t$p3O^0^iee`mXbJ9&7z;0Y?;Z(iXp3wQnKJMQ9Lw%SBiGBu553$F)B>4BXwk zTh7ItN#UxV9?l&;HImCaIhf%9qHr@WD%Y0GO0&Ubzoh;pJ5A$dc`?|10GG^IXp5(t^V{En7xa>@HWEYjGt^if5XAwsQln)D+y< zvH8jn!I$5`-O>E#i2`)>&(~(kzWi!1XXHcUjtzH~2tey)&W7Bq{GDG8!ZrWd3lc{? z)N>o|z4`LXF^4k1RYOpDN7RGQ;*tPxQ4gdbGH0ZmJM-JN5&(U-!}a@XDJZP#(s1D~ zua*P}B!&wdI}W@$A>`q>H(g5(x94qR9&U&JugfAH_}zykB?tcgQxOjgx(Eb4ONA>S6zO(|g5uL(HPcSPy%yh?CdLMjLA^nxBG zZ_P!6U^Qhp$t>7ja=^bVg27bZW9)*Yk^^Qt1TCm$MJ~Z#l&sPx*isT~h%x;?53SYrgDZe$H*dhHtljS?7FTd;xm z1o*6h;INqY$b;VruJKjE)d_-|e7wWiZ3GW#fk_<&KbE9{RY0b8lafpMr~nVEhFajW zu7ajwzPSm>f+Nxr=S~y~= zpnXV*>UM4X)eY2p1Tr{%p5UOBZ&Jr?0#V7Dgkd3qT}7>Oe7_)unoV*9tB$m!`%i*q zGe-TWj?qI$tcqZc!jQ0gI6?}46f#5OC-Snp*j$ZcSogjzi z=6n|9QGcH!5Wb{zIGOMu%}r7W-vpOPn}ueyYq!iNltFWtP#;9J391={I-m{`Sl~dH zaEPeH6+l!$OWG!3q)W&e9OOs-H1grpdU$!aQ0)H(VGiFM-}G7tcn5o@l_UG~sT+UNHWZwE-wh7v_99GQ2ciSWfum z*MV9OMe(3Zt?#73F|wB&j-Dh87J)AB+i4(}B7C6YlQZTE_X_xA>jgrgkWcnnBwR^z ztxJUOXs&m8pg`pn!n>vUvZYQ7=TorrzX%mFKKIET;R%XxC|`JvCKulqswjtjkAzcM z4F2y{0n{oD$j%aV1~I=2?QB|V3hu5-4FfSP?0We2ci}dkA=vX=IJpFX4tVp0Fo$J! zj+)pMbPf~Afucc69r*l683dz>go7;LZ%qdS+^H2U;w=KY7)0re6d|hMEW^qJyA@%l z0<*J38j#RO8VawOL=n`kYMW>li(OxKl70)augko!x=Ylbg;)RqAcR;j!Xr{K=;mK2 zF|d_abe6UZJsEMCI=Zg1=z^Me^jGyo9cY2h--^bG`P^qsMU`o?VoQ;g22f&aQAe74 zzMW_j4VCFhqA?P1aZh_KG$o7LP_XnqqR%vHGW&^+(PZ}lqFXfCJVo?`CL0YFHKw?0 zhKZ6Xf_;?ecUr(SMs$HD-;EXJ(gLT(i^fxC?I($*NqFk7rv-9<$PitkWqW0c7O|N1 zU*3|zU=IY)3l#qD)WcKrL>#X&&~K?|CL2}?T(nH|jE2vG6{2KTnCz9J?!0b*VXbHm zD@=oRqRo_zWCJ@JJ;sPoT1DB4JqEe?y;QjIB&i59bRtan^gmT_=Sf$Ec@8MJ|$PKy??a(Hq^ zl)=(rqR>i#`tzdxl*8PMqAXSpC-X!h%z8+@5*X2(*Vt{*;TO?*W)7=wik4G7w7M-? z#;OPIj_4?}E#BsfhEfh=90gUo@!~88Kizxk5dTIys{0-><9O8q z)EGKc4$71jYvE(B7|>2|R=D^$O?E3SM)ys~^5AfUSVQL~_hQ7SX@UK5;*E5QFuba` zosutmub%jxoKIe9D&Ef%h09xrPtx4s9mH`IY+qOLWeT>myZBpLTTxGOd77-;Ta4D% zgoC)RcofTRg~0R;+6Ig3(@D{gVd5)v=GJDiIFq)bXu5bWEpT+Ucrqo~7KmR;c@FKD z1sY#5TU?4ZsPB5Qo$_6{LHq|z&fhF{(d5ak;_5W1-!6Vj8)V%nK1*}o?H2c-it4{l ztf9HH4~QMK;zLKpUr}a?lVSx;de4d#^s*Wk#FuC*oL9wWn%n3X@pcLpa#MVj=Dxfw z{+n|6a93PI!ME+(r{cF1q4^83e^6Au6c4AD&3i3g9Yo817W*fX^#qba3RYhv*-Fbw zWs;*b_l8`OLix5=O1!kdEVabH%51BZ{7lQ%)Jx{kvJXv?35?UrRH?0R39(L!2Q+|9mwe? zw!o$xBqtafQH-sGKX#G$-NV^U;t#*Sx=Y4VWliZVky6_&8z6}5(RtFpdy?tO|szk=O4u*`B7)o9NL=_C8z7RJd(58?{fi^9gDpArl?U^aDvxNSj z1Ze`u%a(+IwEKf}aA=lffrK~F9*&x5U9&|JR%nQzH_$fBSRH6XkF}C-s9kn#kaVMM zh{%y-QJ1^`CHb_#;RBLajLK{dVz>tykXTJ>hMkT{`kMH`;r6eRR*YjUMa;|?76S9` zNV-vubstEk(O9|jNV1jYF8f__p7x+){*p8Z=Hu$BSej0wt%pYXoaT17OZ!;aCJ)U( z;pt(hmAm8nfwR@5C-_FL{Ytup#cCvG{eUu%dqXaTuWCvC-SCCFQnWQiMw@;0rR}NZ z!oQPR8FnKf^1gJI83($q3y_^K^#o5^NRRLhKG;$!3i@&lLNxe|U{MshZWvVekcJ8c zd!Z{?Iw=Sp*9?-5W$DcjSSOe>RLV35#1{i}u?;FmN}p2e$VN+NQa@aiCKXff+&5nO z6-zLoDq_Lm<1!ssx^B1@#K@A;;rl7lb__-b|H3lCdl^V&yhjbpl%`RlpXW+DQ|B76 zKw6(=N{H$qH^*wge%aCoW53)rFw<{ALQvya_}(GwOGys*$ox7Uok5_iY+<16=|!^b z6gOiAF+ z<8x(p*06vm#OQrCc<`ib5%s8E=Vfl1Ty$ABgOTL75Zx*MUR$C#SXmH=1ILR%9GG6p zifA0T74iy{Y7dp%9|u0Q+#d($HFAF(%+|@>VfX#B74q<9Q8OC&_2A5~wm+eqDkZp`Ia6W5uv%$Ooce05db?4BNfD zE1aDp7m5(Zg)I5tFXsV~L7oUuJhlV!=NP8pV)>6>4#QJPTOyCf&DokQAI6HYV}%?& zS#}HRR>_MnpOAI(jjUMp*2~9YKF2n(sD^LTvCZ-~n8)62@|CPSo^F?qX7<%ryX1>- zu*}@U9xU7T$`@daZx6`Fur{LALEa!uj>uUyjY!}RJ}Qr6S#_X3`x~&VY!fStJ}ti$ zf?6`Zf2bb1uF1==bV3AfR>m+DJaI$*0$CUCzAZnAy>8rH`8}j4n0Q~Fh)1a-kL7NB z{=rju0t$9m@rC>sTrT9LJQ3&je=R?&M8|4E#o#b>++r62UTT^ zfoOo?0D_YOWF#r5rw`K1Zzos7c|pN(0`RLY$Oa0VNb12S>L4=vdZ!Jlf&He&>?)>@HD6_cEO*Y1@&iH>?eH){u*qZB@c&J-k|qP z{4O?H65O6;F;)!MGbs2Hj)|(O;D^}mc5AQ;hkQ+UF!2|oFZcw@(%@xW$S{x}B{#t( zrGh`>8kUp|eu-5!t6Fd+?0Lr<1{2RqXdGOC?O(lBF!40a_rXMUPuc_%)vayEAA58N zu8LK^EHT*3vYtS_MOEnP7rYa7-+aIGbV6_omR=Mi0fZC*&rc23uslEOM{vVl^MdQ+ z_}dDC$#^qmVQ@O`ljN&{FJZ^IxjHxq+vCxOU>DYsbVu-Q7K{JO9_@ti{l4I}7=Pt~ z;2zj2^0UE5v3Aeq@m6VbC3q5c=vy~~8{%X5{opm&fzLh;-j0vs3V3U^e8yWV;ze*h zeEq=J!ABSz93qe0WA+;+DlDWOi(wE*H)yqmbj5?!xY8jlG4sn&A<`(EJ-O{c-cFTIggCGs zTc79knSPbm=jmU0eGbeI>4-h}+{2KK5*_|@N`_)^kDlEJ_D||PAgj+Gr$Mc)A${SS z-$S~xjukNXb;$8RH?uHUIhtjNB!)mpVUW`*w_=mlF)1J6&LG06oXFtPyuNOEl|)}$ zxRUtwpeW`4#IHM6RuaD!RaFwdep6q07Lz^FL`i1KROR+hqzUC~eJVDjI%kOm-eXuKSLld9Z_81S9Fe6%u%Wod?djKHbjg0add z+@O;am1K%Fd$N*Du?9_5k|`F*P?8}tWww&s_-d4;oQFG*yYrPha0kLIS9);6cCS`0 zU}+edX7V@0;JHo8A*BSD`CEWft|%F9DWEs?!az=(Rt!2%d8h)JSCzjoOpFqyJTwDW zcZVIsKT!sOJi9{*@BFO%mc=>$FO~|dyP;%xKJ;HuR*-vFNuT7tdsDehgcLXDj&gHJ zn`?y#*Ud6a{fnL(_I{*HVVPnDU?5WdNhS6NyjHfoQBGC~F2j`~)g}o#HdCn3%;GXE z9jvMwgpU0Ts;5}~-l&=?N5{KP)fFu7aH}$f=vddMYKF^YMXBE4>!(*#b->5R)l>s? zB~=>n5n@*jc-TZWORyF@aYIm;WLJX=mIy0&+*HMIOUdufa*)zNC5JnjshFNT9Q3oQ zHaNRL;{;2FhN@vw3)NwkNG*nmKB4Li)E!hTZy_L*ME(VY%N_GSi{KUCF6$P?=@Le-DKJN(!xm@rc1 zWr-#~f)gs!R5c`o4eT&Uh2Ag08iQ4TP_3rPXH!(@^=6X0Xj&lIV1~*X#^(-Mq53tL zPj=a?>L%rrS9Yk5YD&;HmWOzW@yR3Z%}%NohzSu;bXGNkjYltNJFmLS(#s$sy)fDw94Fd#QTM2Pjxn#N-ryKp#Bw7wX3t+Jg}wqO_Q*rQ>HN&j=9NH6`>d zgLi-c0JMuj(R<{?O|vDTERkA_bx|4`$Ep=d;=4jY}8GvLjl|riniELdh((KP+?$Wi!eg%Cd`J%w~@z^lHi2MA}1tq--8LLzgnf z0&jJ%I~2XqNqn%jFEph@SS`Xs^C(t@h)|Y3r&voJ%ZA=6nFn1jAKHp)sYXl*+4PJJ z-N14$g|sL0)vq!jZx~tuo~RtUnA!9g2BHrVEM?jDz(nB32BEi^t49~B!PBat1~~fL z&@7gjHc`gK=Aj|rpxsgd{4r812j&i;Dwy9QbUHIH0$A2%X$s?8hi+xL*^GE~2AQXP zI#6@9eIYE{HT3&ne#$(re<;fqF+_+TLrGAZ>*~bx#63iN4mBQZhOU8!41jF+S z)Z#G4t{FDjs=mam5p;17Fop>YpjlSAQt<9J^&%D`lJkl^+NB@>O(=i7rwfyUV$DV$HBMyiMlIGK#_WL z3iKh^w%M@4OEvl)18xa;`a+FF$J zSsg`luSqmpXpqed*6e4vT>w#=-cWPQ2-6g>_z8mO0EK2v7fNNYL*wrSzHw=cG&eb1 zgWez_`j0KG*-ev0Wi(Z3=+`Q*No8JX1YOT4>JR3T+^nny^X|Gu%=6iuoT{KzDT|Nc_2uun`cGK*l^u9^f9H34W z(ogdT4Hm@^O()hKef~1U`L|J;b`oCijYj$PJ~3T$jn#t)>aP~Sh!xJ7lR9+tp*x4YkCU#WX4v_&LBS7e4j>O z<&)ih*7#_F1;1$AG#+6EF@z@WWj1*;D=Z3uph)#iTrz>L)k(T2`lAvpZB zsRm|O(#}Mml*P%KUu#jsk)*ta))y?e!tWfVHq@42=Ll^Y&3mW-ziurTJpV##HC)VEa~SAPg??)9nR4%qzJvYYcJ3O4R>kJQH1cl+U_)W(SB`5nv@;VqOXyW zinDXIy=l^NEP(s#@c^AwC$-rWtku~7o#p2PbR2ns%kEwZ(3y5cdy(SyzNSTsXj0p^ zH?`=FJxTs_OY0UQ1EH6@^zi*1?P!`m<(~F6EuHa5JB#L)`%U|pCOrjO^yUM>xc7&4 zCrz$>9;iB@P`ixgetxN4N|T%a)YcXF>yy6GHl%P}-f3si`ab=wEkkpwd@MHDXDzz@ zOX}+;)S<7>kYqin&ac>ga$RFuAS_rHFX0O$t96HH)s?lnX1MC-BXsCDZo+gjxKXF` zyT%iP4!wO$FwYxxdVjgyW}Q{eXGgkqen%VV)A=1uUq_dbEMxf35R7r~Dh8-#J^> z(zT}r4%N~5eLAh4&hL?(8|wTX`So`J#pN{B`9s0eJaE~A7CL_@Y;3Lb`(DR(f!fw} z2-K$S9JuUC7u^=hVQyEQ-=wiUb$*lf=@n4TzCJp%yFzpxHAvUauX7MR7};j?-~cP< zP+cO$%p9)kgvvo=Ll?D+b9}%qT_*+XBAXhpOa18qyG+OkRDO9@0Ke{>0DTD;X!ZGd z0Uf6;47B>p;y|k_Eel-sc6mU@Kd%hvc>CIbj!XX-sBPiKz-8?>2Ws==1ay35N1!&x z?m%tR_5?2bc3(ipih}_iug?wW_}^63 z)9<2HlFXv;d473(GRC>dz2Tr zY~5x3BYN4=tNOXLiufD){*=z4Tl!g)PN!#q%bYLtU1@>2uk;Ut`6{M-(%+$~9wsns zr?}NbhRHPdqQr2Y<{p(9&xEn< zuVg5sWffHn=o4oo_ia_f8Cv#I9YY&xmTKP`{QAvlVo0U#S*f)l#?QBn0e#SdAjGvZ z{7T#A=wuj6HMyyW!QadkgA9Ms%QmJO%2542OgH$=-EETL5VdjKEW>Sz>&i5s_tZ%h z>sAD`(`S|80|gtt*5Ds3tFJfgq}mZ|HteAYXSNt>&|okfF!*EW{z1bjim*S|Ag9Tz zM-BclcH(ivJBl#lguy=&J~?H$O3R)*Yd}*@!tBs_LoQ9uzGz6G915=(=29DTcMTcz zvY7jZ1gh#ee;87!&cX@}H>u79e;LrHVhHZFzYRZ9t!E0uQmJ+fAz^!H**p5MZWN(~ zDQq<@AoGNwg*`#I>J6((E4G&kOQ(9+QXwpca(GcAESV;g8;1G)_fg}pbrfuA>oC8c zZEX|wh`Pp_&S6hgd=<<4hYh4Hb`B03LZfBX_^<{P_x+48bhnPsan1>QMmgA*hsDz> z2CNT@M$2P7``ofW46P1HGWBrSYg%CB>9Fgx#a%ClWz`kjC(9?0Qz63wql`u|!yT34 zmD9z`63#VR0zzkMm2jEexK0f6U-s9)?>$B|K_SV7;YKt;A<3E%Ml?Yo$+6{(Xu3m^ zd&?Wq1cf9OF-A1}ljP_)V~${c?}1uaqoQ#)%@kKLqPYe+zxyjAnro1xpoVb(O{RZ? zuHtiR)iR=qFey+_+lZzeBzdNu5luTta$O@Mny-ly2$STrrbaYJB1unkBN|Ld za!JboZl~5pG#Mee;cbm*GD4EqIt1vrI|t}wCk8G{>KdRE+}(&K!sN1oo<=kgCdqSs zjA$ZEk`4MBokCVk7!uGD%*@Hlm3zNiJP!L=)lr@YyP30xj5d ztq~26wx#RbL;hSV2cyH_mW<4+} z;f;HU01sE@LBRbA9|hcR#nV95e-s3&Zu2})wW-j!g%bMZRlusl-Uh6?wJ4yW&wm@6 zN%`8k2ux@$Obw7IG|Au{p~>&2?Ib2N7bcB7BQv47FfDgcj>m}ZGcKlUKORGK!}+A`3}zO7BEGQnZoDgX1S!6gmYoNDF=#T_;siNY%$>pEVJ4R69|_8ZF(&%#?&RU7P%+ZaywN6xTS-rY||$ZqLRg#I5w?}fmgFke={m%3>*ziDOeYOEHp8Et`wq{^kDRhG4R+@ zQ#!7@ZnlZ#`v|{(@m_v9&6Y!Hm)`0GMce7$lh&|gUAb}fpE}f(4`hYh^fQVdaM%U;JLid?M!NnVPgQl6P4p!adp-;6Ecp~gNj^@06Qm`by3UnSiz zbpg>=O>&4FCJDO-_7yPvyh#UKV@(!#G0)TtXFIPjc@4&g2!AMx&Hdz5z;GSu?9Mxr z8g{#8I?tebh_IL*B0|><0FHg8p0My&Q!uh6t6(4XA-lkZPDyk+tXgxVjDd}nII&?ty5hKLB<`@uAfMXl)i zF1rq!%Q4gq@U`;}n?rf8cp)^Wuy_SV0qF{}42;e-nPI5HEM#p6I3H|QgC8H6z6O7U zn2Q)X6GDcdjCo?}3ty;Gxy&qIGeOWv z@R-}&iNRtJUA&UTMrgol35Q3RJEOTOyjI?f-nF_8bED0FS^Xs26w`gfIY(;0=G^x z_rV>8Wu|#mNq_(X3gdF#%3Tn{|2!GXRgn1Cyywev=T(PEX`p0B6Cxg z$Hs`V)N{EwtaxZ{1(qB(%VDP+bH2hKz2fcu=uO*au8X7h z_yIG^*D3w@DtPsvxeh}J1B?I>!}}8C-Dy9WQ?R!eo;EMT$JrOmV_Cf2Pm8Q=89qyg zStWv8y@f7oo7T7J1n{q)&B<6-N!QJ*89daF>3})3eim-CP`nSwvDFyGC*OZ7# zaK5<*gN7k$4AW~T=(?UD+GS}3cRVqVU~%aqug%F|dUs0{eEG_}oI#BcA&h6K8HHmr zkPv1Gg6BS)TS)!E6#m&COo>tpS!CXmTNW``C4dhQz8qXQXqG}Kvc?8RO5?`q4BC1_tTKtOJg*uy3m>wCEpvf|jAvyxu4+eRgZiPVf+5^+Wf&tC*Fz986ng5lw+mWKWSg0^ogo3Y)_)M5`Cg8HJiWi)fkFakgbN+7Jq9w!I| zJ-gW25(1jcG8c~?4H{L5N5F7uLxpmQh&!wG-IG=D#4bo0lMN z{8&o-x==NE_j}9Ik{FekLkY;6LP_l`86|PtAh31KgHUkzl{pTeFp|PU-7U*XMvef6 zM4@?R-DJyjMsiIdx{<$CEI7??OcZR1HOxOMk$}#_EetPWldWuib7F%<2bvvuC;@Fo zSY9&pshZ`Mj_~J^7QIk#8vZ`o@&n=s2c=ueu*}Ob80hfQ>ID0*SvrHi7h7~+XRL`% z?Vp1GQu|cy-*ae%F42{H#&xS2+r3gu_qcA|D)g+-J*H|>Qk7UNRIXH^O3x}?dsL_p zTdfKp=q%#i8CzOj15FL_bvPyrrAu(8kY4aVv-Cl{9=iKyEw}*OeYdB^%Vq2 z^~U0WGZt7{GbkA%gas1pNcb})hgMsLBg=ux>ntp5dxSL*L`^|)(ssRN6-%515WuGO z77f^P&{7AapOMAE(i<(^ke=X-Ef(~_xzq6Y4vQH3*y&vsRS-H}KWr(dKu7Uu{up!F za+T#a%zqI;j>oc`Kq$!&*;gY)%FMrQVfn5N#sI{$b?#a|Fe;NE7~%7Kmg-nrd%}50zZ880> z95GkZBFitBK&kf@$Vh-U7x%$(uO#Mjz_On$V%#Z23#}(gL}jDM+Lq;3RIyq1O05N0 zE9ld(M;NKVPeE2qNmv-+A*FQ%_SeKvEBcDpX;4jX-Nnd;x6x{YwJ%G@J-(DR1?E_- zL$G;#PAf~)U<`mT_#tGj%X)}`2}CF!G6BH5JU1e&I*|9lVu6p!TG!)#a#ob}G}c(# z7%Pc%XPmVj%gP2-(+g~IT7yB*Olt-BbrtJM7T+$0d3eog0oCVOYYYbv9C{@ZzfpRBs8xk$ zUN1*l&td9^Mq4Xk%CE;;eR%XVPqEfxa5_NDnDgGEgUA~iGCKl6_%zEp1ote&WIxQY zzLX(iBNkdCS?0ukV)A*3Rx?Q4fL;&$v={Rsy|tKY0g@zMCZ6*A14`K1I}nuH6$)mH5q zfzz+7E55ud3oN|2#BkaCQxDMx0RFVDV==`by)6ag`s_}ywv=8C>%Oy&6@rx6?KJT6 zU)EkU+4zGsUCQU)657xgiAaGi5?d{r+$OW-i1^&W!L~&uBXUkVf$^1C1B;yb_Q7Li0uipsR`JgV>Sb&e&?hO zJrGX%lxL@HvD9MG=WXL@fg_h}2Accis;#<&FI(|u;IcZmY!ztPDfu=7EwK5K?HI%7 zejsY`J`vx}ls7h}?+hb|xv)l&Z4~VwPyKBRr^!zrZ0Joi(%R#nY(r?f8Vc>>SVm`5 z(J+vE=a!!TuEno!f^=}P+^*yKgCAvf-F%%*0Wx#YOD=`M_AtIaU<|c0y!DSmi?0r% z&uD~Gm8a_M{uX@|W*;l#8+XcXZ^P1u`bVU*f))Ht%7Hmeqky24o$--w^7J&9&`S>U zO4(;HEM>T)304rXyQv4HFGWvb-6&_TAP}s8%JO!zOaOU~11j1#eR)q67{)=i(4mKE zmFx#a0tjnVv)2})WBS+jvJ68h;#(HPFS1tz_LU6Ap)HSx2y8V&&lz9?4|cIH#;!6b&u4%GlI`eLDFlyu+Zk?^7K485V{gZB zqcQ*h5P%AP9$;68ASf$VUvb0w6lEc134N*@p=@; zzG#_!B*QqsbJ<~UMLtsp(P!!e$g2DjxmAvR4r4b0<9FD{$PulB`|Udv=s4&n`>z6Y zY;w|W3`WNum+hmFXT$s(_GdW%!msuu2|C8yv)_=SW6*E*YdHVjQ#*P@4#KPgJG!d` zVTWh-;~3BN&i)a*o8yB$imhuVU0p4Z0_7CEF~LFLdWSV`b0#V|kdo0P|c2v3HL z!mBY->d3(sx~*_jmxH%qMhC2-b?juR1%Is{Z=0b}DH8TVuayfyVRfShjt_H;6ARw+ zLrMdygY|nZWJ@l6q|*mxURA1qv((5kV5QB$@_UE(E*yAEKWFVEQIt00E@9 z94t?}_yLCTtGkbG2l{2w_rOug@%qc79{AD5!M{p7zGvv-0tksfdCVz?t{6vsB{mw~ z2OC|(Ar~QGQoLhN3CIy>71Y&sY-aGUe=}4;P}fmZ;)bd~a&3nO%yv0CgMlL)`mgRW z_vHb8!}#}&9yN7HBuHrmEgg9!P}(@Svb96W(9;F@jDz#rIt~dDmDU{`7fVDXxRb+N zGAhA|4z#WG9z5vkxXMTcqQK=!#$r*j0}XBO!SFtgpBY);?qeLR(9cn+WK^0Bbf8~o zc@JU-JFYQOfhj{AHiqGq_mKFdj()&3!^hv*fip%re!?A5^KtBM>xXneeYzuzSwF=v z_KA*stfWtq9hVrD1d7p)PI3In+yNECte@_k|jLbl_K03EF>9ZV0Bld%nfC4tW!9KrK#u37NhMhAMN z<~_W(nTOuA)lr3IpQIRi_AxXJWR@<6e$eu>Clxl{&sUImkguTJVMnu)Rd9Ff11(6O z8*v>*o#nCXoOhrXB;G^QMF)Bc;XTaHqHAA)D^UMR>1j_lALL{ytt?HAU+=L}G0s+23O;3qo58sP*EG0!lv9N}j00nwB-SR4;|VoRcWy0NMbSGR$ide79y3T0 zxckEvQ=DF0(XeUG1tkM+Dsaz+$(cOdjJeJ;!GgKqUad+E!Lnt}HD7M7;@fiSI}bf@ z_j06>FGm6HOU_i#d!>_Q&4aF8%`bQUScRMybh*$)1D>vP-elvk31ojQ=e%t>!BA3o%~CgjPkJ>q29yTSEAw602K z>5%+nRiMmCC;E8TF{c_d(?mvq89zB$Ru=!lV|gP20j%cNI7?4CAB%a-WSw{JXEkHw zMdxt_%|JvXk$TbGtImC_)kj=&o?)mShr%Y9cinlJI>(M*oeVe1c$kFSPNszf;m|eT zd7g5Jf8adKs)t(-ofTO6EW}|J$PaOakYxl!zkGC#I>q@HtWHr3=zxP>I*Sw(@NrBW^}-}LKpfZ8R??0 zNn9)sq5c=(P?@Vab7zg*O9fon=m9q}KX-+?^gKCOPvhDrAUvU3=L%4AyGs=ZNQiyd8zm9RC zZ)lRFC@xUtg$jY(`ITIs6s*p>#CY2Pd&RrZ*Yijf(REztE2ktWs28Z>bbZ%N=8hmf zsz3!(nz%+v$Y2UTwQ#j(oM_Af7z`jV^fCJzaw*u^-bDw%o{yq3Ku#N1d5|#J6$z`f zapg<+c9iMln!rrH=^nQVWbboZ;GAwQ^n)FEIsm^-cFp968TeZtbeEP@`F?O2dY#=x z2MxGtpz9*Fz{Ei=E6XCo@4mA6eanP`ac1u{_+ezgx7=d_Ui8OU*8oPx?F%wrQ7aV5!lZ{u=ZPh@;@#wi#294d*W)@NMkr#?v1cFyIc z1rn~f(5F2Qzv-fdmws_=qF}Rbxg6AW58iWKr)^*R$kl+^iY!Cl}hJ+E<(-w80Iec@|FQVnggCNx$mgvHkpM#Q*>BW7?# z1-Dd!j_a$sN3nEk|EhpxJw*VBCCQJ5qD57#5PYuXmceDU+&My|yk>RX=SpPMzv{VJ zR#^XVi^UDyyD^m(jomCami=vX!1v#|nO0lH2&2~uA@_R|{jbg-SW=~d!A!re>PA@mpue|#C zL_lv}_YJI?kNw@}*?gB$**VbtnlbPx!rZ~`Gnh)Jp(UiEAMR#aT4Aj~WTlsw#e^~L zlO<9}g>mjyj6F0`$i4?kypZY(b0@nGv#gd-W9H1if^Lo#hIp+Y#v9%O!rAVfEE7xO zE$ItTx13+G%viW@vHJ&BnE4yrAz)w=mt}rOuLg7;HT-)xYn^*4RyY}l%589WWLbt_ zihgYLLwa}>@^Bj>e7C$?4ah1ae~X*0LXx+*^YKX1aHo4Z%k+n+quCy}5~3vtheu8K zl^6r~_Mlq}3V%S0lA(v(UGb20{fL`sZzE6vUgMzF^m9q!$z$$wNJ}v5gd1&jEP<(~ z+|evEErdM>Bn)@y@e0Ji`$c}9Th8#TG9GsNfxIh`QDocX!!7ssi~}=4sR+II-9510 zraf|_y^|%d&F^lscd`W5eeOO91irG#JuvRPI z0*+|v`G&EFN`+{GZ54p<36t$$c2iY3aJa2!%a>d0UsL`tc(t8pm{jl_Hcs>yCCcaG z|NN)VH?sfyr&Cs$rrgWUU&9SOJU>W4_p`9L(yAb*ucstWd4s&EUJuAFcqoO-`+1nY z4ZT9;E<69Crv*qH=waEoq1O-Pml}6cJZnXQA}~4C^XSVp3MklESbLb~B8#g~fG+$F z4ti2e2Op31{31b=a90m@r+IWhz0hlcpC@`c2vK&2A3RK-cjMJYDpJAhDW35x^N@ei zRe>{mJsNOstw#-mrhAH_*!9P=!gwrej(|n+k^`V6#}W8`zeguV$_mZ(9A&397XEm| z!?e~2_(i?ro|V{Yzn$k8nCN3S)ZC(||H@%P?P7<=23j$LK@J!V(I z;L~8+2cD0tF$EDq6Re(3zj=-^nulkx=64U%L%>+UJi@4F9<(|x0rfJ!7r(1)&2Xtq|?kpjmhk>@D=7$H0nUMX~oC%RIy1 z!bFfC=0%f@Gi9CpCQX{siyj6mf?1(_1zj}WW+kpb4HCyiTlflO7QOGUtDZYXaWxVK#up)S=tQS3{QUn)9@)dTE;^oK~?<|(BpJLVh z*JCmEuf6E8m?9WigRkIqO)r{j7Qy}TUZ(GX6jy|7BmtkRmbdZuh6gtAqQ_#2AlJy- zieYj}<_y@U5&?NECN_bGYu&;dSrQjb1kG-0$g(jAB+OEy-o9-vPd3!G-?80eje`(yqAxFKG2U$Y2S z9qwgXBo-TyRFHB!A_Tlm_o`s@NH2Pfya+xY?L{laB6wk}w{^+lfNUpy{e$;0g5}9q zo`yWK1l?95AbU&Z3@=*n6~VOGUbNsVf=#l#Xu($mzgpn!R5FJlTS`lpdxJv}W%s9n z26$+Tw^|7)L<~0#R)H32NuD;r})^6JL5&`z#`c5 zk{7K5i{Rs*y=Wa+1XthmqIF;qymHrz)`3Ovzyt4OR_plJ3Qnl}!`n{|bfwnQ1&wQO zxiaACYj24bGzoust?=v{uYyHwgK~ZSK%@2HPLNsTW%{H-u5TPj*GERc2Y-1Niv$HA z?W33F5j4bP9LRkW?trB}d#|y$6+yszCV;GBPDp(zO2mhRabvyjvk(c5jXsu*6F;;H z=9+xfSmsy(1n_rlp9Xx~>oY^Nak3I=3{G_T3dHC*(Ca%XLB}c)KJ-Rh0aTUqp*P|R z;E_ll8b}J@)F>a?{V9MMvAz?ye9Ovwxw2LHa<{ATtk976(jU&;#-2LND_R97&^sbpv>kzrln9Z zLg`k%eVEGq?|sKhL}f@@AJe8wF_obmeCXZp0#L5Ak7eFp479(C?-X-n5ECbK^^L<+ zE_P=RQUcVfr|%f!mb;GCkmoY+pZ?`_H6B@#}oSAbvz-Kj_%tYtOQ+MPOdcj-b0^yLb6m zK9CF%Oh=Z9AgMlmU@0BUJmt%mq0t+C>7fkclr0S)Bs1)K#TSC-3j?qF&>Qy!u<=db zK75qk@}VD>DS+2+`_PBT3gF_qK6K};0JgdBLtpAEfHQyN%lH1BFYo(gMR5ssFL1@LYEaI{P;fVl(1$;^Aopm4NIEP(q*grj9* z0sMMwI9etaz`w?aqh(?NEHfn>EfWi%W=41wX77tR{Xh!QTUOsQ>L(54T;N}y>H~)@ z2!F{;Bt5?T5IB8#xQDU3?g!C|GFkv0P3h4PeQh#){g=-VigyaLVYrLSEG>a|HiWkm z3pRq-o#iTVF{L$d+}7|UvEX<9Qy63^-E3!giI&o+u2Qi2u5c$yzkKBP@CiV*C!A$V z5M8^K-ws@|H~jyx_LcEXC12QYy`@4Oid&l|ZPO%eQ*V>hJt^+RitFMO7Fb-%B7-{= ziWNP;;(uI=EV4*(mo6>~ymRMHQg+`@oV*|SWg0Tiea@LPXXcEYd&Pz z$+?g}T>a>)F?;(}B_)@W0>l*VT`u{0P-akY#rF^<=6u21{bROq2Bdm}}PvK>R zAKmnP3cI5G5-?K}Cgp+AH|>7d@61aSu?HlJ*qT(ox|mrs!*(_JRUy+a%e=&$Nbg1> zc0dz9x)b?yM>9XV5&0C3Hy0l@v!(cV%hrAt=tpXfQdJ2jHA&^#21oL=s$V7IdOWil z(SK{u1TJ*(qbDEv=smQDUo_I2&m+d?@O`&=z5Qs;>!%Ri-;aixPr-Sh_*pi{kA|F2 zVfhe08gf2`HU)n7h2JHN@_Ub&j~biI?S~!YRFUx8kQ;p@>rK6~ zcTGuMLE$s%N?60RtS?~=Q_okDfmw@W+Auy#Je5o&!4en9lSt@>^HZoTlh9>{r|>;M zvIglzS)5aw3<;C`L$pWM)gv0jwPeZ9Pf;o&y*l;}YQvdui4(?2^}QnLMTWli zuT4&Tk+dPVlO>)}fKNZi;CgB${65(AXo-!rMKQS(FM09vA`$@&C>rW^Ag$b+xRl&}vSHuUpD5ApjWy~NL%eZ>Da z^pnt~%VO9#Nb-!T4CW7$Bx4*Zr8TM|B!&%BB#!PC(iWXrED;*y>@o=^9yWrzK=KMn zTTEv+A&~hiByMC~Ysrs6@v~JDdUmB4I;@pg*wW8Vn*g=37#Y?>;9vi0cAN zAmh9Q6;V_9mO$A>$x?y9$jcJMUK3D^u1NQ`1d9I>Ja{qbdQ)-~EByCc5>!OZgtxvc z*(DIzcVBV@OQ7LH2`Zvy1fD&Xj1~y=dL}__>~@?lG6f) z&wB~xSSZ6-{Xv3?sLwn3uMqo1;8#hpFe+WK@W*rp3bYRTTlu5%p|Z-YZT*=&RB`Y> zgs=yOvAvT2Glc5{TDh&z1WH%@v(LHtqat@kJm1rQi(rdBRs1n_#4t8j^;cuYUs`#p za3HuRxYzL?jB(Z!VKgcA^XI#&+ob+oFfo(}qw@C_!rsBqI?R6n8YcJxy-Z2dllZ_o zjsH2jieVO}r~0R1ye4C3gymUJBzk{3P_B^h`-U&G{rP>v;!J;f->?`a=lXZRO!C>o z+T=bLPmz+_ohy5gvlhV}Ag;OpEsGzdQMU9i5QgQAZTwN2h!qbKPLsm)Jb!xSuozl( z@Tc?oVuLy)Nqt+FAJUto4e^gg#MZ);nZvLnsJSEj z=@Hao*g49dhT6q2Zk#_|7A=NfCi%C+bf5}&7H?mi;XegAJv6cuf^NwQe;RZb!`vc& z8gv&!r4oM{bQgo=PJcG>I=#!E#&*Rp^ACR-bQi<1L;f`AE{2q2{xs+=2Ak9VH0Umd z(DVLu!L}G`{^=isHpP)oCD!12-9HbbA7%{HJ=h4x&U?b_yZ)chM3$WS;U1y^wmtEe zU_2IWvR*(VJYNfo#p0gdqc{Ewe}34h2sryhN~^)kxBkx77K`DZkN%+u9|P^a_!|)Q z2(34f^!VnFIdp6Bn{*g?(W(}YPWOKIr|SueNjEF$m7muK5zyd;wX_^#D2&Q&Zz(@? zyV6N|*hXj{VY_g+yY!nS{iDE3iV2SxFA6;!F+E^H(Yq~D7t*pJJ@b>ZRLT>TZ1RyN zQf0y08qznIK-DNP1OAN^zL#Ql3KxdM}Uaw%qRW5R*j3MuNSYz4wrm6TovqsAR3#mq4)fZnU6sK}=R;a#M3vp}UN zMv9qlR{*Kvq^KCE0^zVmI#i$%pCH8~6RZH*pD5ig_>Nyw(S20#M76*oU3ypmI+`Wj zg>*t9P+E=@6&F#N3P?!{DL*QEqLH+K`gM}r9NU=+KtRLzb|V!j6t$Mp`-6)~t2`;@ z%y|V+c{}M#q#tBjk;1l)QhNM-F)?(;wloJS>mvPR9+i#VrRxPMEqj@%l~=u`H!<@P zqh1}^txEA?qQ@X9-DO-1{zItCqMvVuN^c_O(Lk}K!T=L6PQ-aXUU~{SL{NoazUK}! z!6n_3T?{>EOX)u1V$cyO-AG&vmF9_0_;bGa_o9W;L+B^9JuOCG%V2kr^rX;p*cd)< zy)*&c1&o+H^zz+CN8)wYq+;j=IVI9aTPnuH9a7ZR5^KadH))<}&4$40q->AW8_w;K zCJUCuxXboS2MR5*?2r@{X#MK}_F{sUg2Pf8Z7qhhV^SJzEe7ccX?wH<>d#8;ApV>g zJzGE^OG^9_!S{l+zG>#w`ieB(jHOKKrZZkODZ9v42lJd)C|X)!c@CY>mJmc5kj zM%cJ8yBb}QAM^ePvFCjHB--QQFH+PCBu<> z`r*RwZJCVjW-bQnAXyd?u3(N*#uXvVWP|)GPJV3m{H00 zaywqwBT1EEj{BHUfug>{L`o)viv1+A$F`=wpe_gS%asM#li|%JUc}xY^B|>%WYu71 z3)v-0k@n!$vNb>7LgZf$b%A?rWF5?Dltuz~7jS4Nt7bk7p)m9|#zI*?a=n=k@RR3aF3pV$Zt>g`w-$#acBjpbb z%6L8ND?`Os|KT;Ezw8j_)pC#w6RiIS@Zn$?D%di?KpB2pML#$Al#~f?CjQ zr0j%wM$2H{j+X7^ybg_(f%&GDIbMbe2LB`8qlvO{oY#mcvi0Wk`Z`s1iu=rKGh~Qt zU;nk$7Bgj~959;5Hkr?G?_3!wQZ#C=F{!gv#>2(r#j?ZJqQ|Jd!Yq%$P^GY8rOX;L zasC%MDHImTuJL9aS}faUhSE4M=k+p+{|~%gY?STfymo9hj~CEZxNlC+=;HMt@D_PV{2} z3&8G*?1p(*b%s-{rMKzJp*ok<@`9sxWzC(C77BFAhuXHPknHvizJEyQ{^30M@dz8is2%xE7#-;KbEd%FeDcO$Uk_I?5M-3YAsYySZHZUk0L9vDF1jlhaS zhX>GiBe3G70Pi zW@7mU@GZxTMFAG(nJ7(eRZmELYJdSN0|L!)zAP544ed4rxLR235H}y?ZTqXpvyA~} zT{tXP1l1w0YCUkAGp4|Se2dC+C0~nuJ;0$PKw@pN1L$4HB5R8>(-p_XKkr>lK|0Cv zdmx2~-2pW)!~dwjz|q8RZvZADXLbD!2k>Bg#J+&fR#d1VhXOwTygWoe1B&(=#?olz zZQ@1Cq6_)YZ8ch zy}b#jylLQL^QfF}5lF98myz|Y&7?B4Z6NC4YlU9r?E|k0RO~vT?5zUmTz+6DjALd9 z71@OfdIdf~P4R^05wZ&b%`POzyk3D3sYonzdQ9L!%)r24Sc0HFg@K>!sA}0B=7_n0 zU4(J$(SksCwDGWPL3bAgj&?!#H%82q8HeQ2%&yRVLtuu``i$bKO@VU-iXFEGqPAI$ z52!}M_tF8r&-Ori%b^T{cLvfO)-tHPJ1`Y9$6>G)>2X#Z3Ut9VFZF8ueh5xapAF2z z1g8}+Y*W(uQXt)wEQ4-W0_mn?8ARL&q??ju;Cnl;5Yrnf;MsZBeUAb+W5Ur27#4|Y zKLyhBtYxs}Yv53O`Wa*!M9;HQmM%f`JZl-esvN{7TRYr>=y}#Mcv>}xo@b>})eNHN zS6|!N9bjU{g2Wtq=N$j3j=*BokjLoT0E$&~ZWA&6@?$_sEyQ ztyV$rgwIRuf{qHUw4iHH4a~{M3jRxb1v!(6J%e%)?!<%w6h)YHLg&6gtGtj%K=oPO zq{Z@SLHo_oVqF;Xd(c@ycMazRO%-%@XMRw!pfmsF=IP9bxUCLqgcMRR8Xr&<1<@oC zWnfVpG}9Z0G#XM42DNvzm@6(QT>RyF6=HuTsOaa>OsfiW&IUdD`RZhpEq&u`^9w<> ziFbsm3HX!-{e~Icj4-HG30wJP_JwMQ5iN= z#NyEBZcru#3u8uEXT#nMu5w1 z^1pby9Q2f(Zg2?Y}<*0RQBSO8R#qH&y^}wc%@?0CS_1(M4F$-u$R4KgfE_cVco(cq~ z-f|DFB}G3o*|_$X>oD`=3N|eU%RM=pUx&#tce5(6+6aV2jc_~_k{zBUAAyJ~2}960 z$@z(qc?;#fm_v~aW@JGyd#h7l@GO#hV%9wvOmOTio-cd$R{2mY47}VgFU3|SOHayc z!=BUfmzY&GCPnY3#*5{fuFAa}h*L`&FSvF`-XHC2jEMXYNYVrOLvfIRnCJ4Xn2kw+ z=$viOE5ps#@-tQ<#r^N)PU2_?H$KZRVqwXz&u9wnqXTT|4M=(^9q6U>j+WvRQmlhl zpp_uN!cDtiH_@rU_e#MBE!apvlQWo#D_nv%@Ne6>2EWIg4`Pj2zR}yAl=ueQgT7Yq z@0|aKI>E=$E?PhYipU2Hxa4mly;^1}4h}T&SIdJ_Fso{e|NfX@_c>|7cH~)5ga=HB z5B_E&w!wm=V7ws;s5{bvPw~O{Mn*6_86w1qusSPv8!vXx2_8}z=h6;|>Cm6H4NkWc z>85oKj^ai+tGn>DlHqpl(6(prcK$Tq-oeobXAD$Jv$!Rx`v=pLN=yvzfx)QP!wEVE z{fOWT7{AkQd+_gsy-rIvIk-P&7ReCUO7G0V;7(jDhgre&7!nif%G_Xj42cyFFAScC z87}A}mXf?B^<$y?%HSgiy9A2hEl%BF!tP*t(1`K*d?=V6G-9p#=49|r-VS?C2h)Q_ z><7P{4WKTk+xNLCBrviaesIp|B-a0~>pgK3kn^;EyVb`xwV)#KJ77(Ym9>qYX1^Djr*t z{mb0k$fSA-%&`%QH3`1fS3E^{5m<3Wn` zoWod!ViA_ZO{D_$8b8Kib*M=X&BO6}*c737kLfv-Ll4kt6xFS1S7AqsCd4b~(W35( zYOo|xk;T>XHCfRUr=A{UUL%DIc%>?|$aZ1~wMouAg)7v{P`KJKtAPZ)Vi&RtF+_A1 zQsmb3gwKr?4pyT1dNx-e(wqR*yg$a@F6*Wk4}F>_y(~yvJB1zG%v1E|t<=7QVkx4P zDB^TD)KP(2Yh{&_J1d5A4(Gcn5Lrfn!k}JaMC1OHMCg_nI59wG;D@2_}^F%1gV zlazH(IKYO%ipv<+R)HWJrm(XV`;-@?3|G`awslW3a;(Cc$Qvl-p!rR)9LowQj1wp1 zNsf%+oxJGmcm-yMfLd>RGIE8&o!pqKu!muViuy(m0$XP(=&Cy#UKSI@JcLD>(1D_( z?zfu|1b!}L$sz?!GDAHG$#Dymk{SyYm=je0FX$9Ag!5+yT}g0?avN-1qM*0Kn97ot zD=-^K0ym%ya)*1RenpCvW{^|BwKWRdNio4PN{&SC3Jxevn*&o9 z{yD0si*X&ytf-b+Ss3RB;U|pqgY1(EPjgt&mv-%TFDg*UlPh#zG+H?V%KtKrE1owM$5E54a>WRkd|yHD42Y8~IQH1&BDXxl zxyW+Gm>n+^cTk!uSIqvw8{U3}@rH1xT;Ym*`aqcbTG54jD!2EFVvMIMR}3T+M$D8w z@`GYK$4maASZxj-Sz6uC0k-_3ScF+wpjsJ7dU+}xfbNX$=9Es_C{dT(jaX#AgR&N6 z*eOv{vafFgydE~C_X^hf1+xs(KiJt8Vz~obcl3qm7DnpQ=BIie8 z{87zdlu#g2o0Ke4v?0?QD?Ow3;?tzF(S!+Cu2=FKR&>f2#XZB&bR~AS$J&BW)LQT$ zL%Ep)7Ud|>^FG$N6mSp9@p0vOklrmRB^seF<&^5SFiS=cpn%wgCT0;H@V&LNgiq`a zJ(l76vFAojGP+mjn-^bEavQKJ7@4zREw1 zJ-SIhr4~y{FiH>NGE^ystYq+DWjV$#8`T69D#hfSyA4wkb6gi)eVu&E2G);OPT|fl zZLG479gZMd)U6F&r_xrim_hm;Y?ewErMpT=&FMsyM&+q0FGF}~3);Xyre;Du5_7B8fpO*qs^rnKwoPBd?;yAl0br7dxtr;I`<;$O(N zzh!4qSob&@_m)^5vG$E z!L%@Rz0%%|JbpC9i=0?TJB?yGomCZD&{MPk~(upfD=r3hU z{_VV5%9R{9`@XU^=2V4It(aq#tgfrAN<%h$Hd>ATm9m&yjpG~TEUem$sI@@|;MIHOXx^NoKPl&$!waaisB{2EN?M4vP_?pTCJgJXRBl+$1XNAWxmh?@QZ3?U z@rR4*C1x4d$S;a~|Ddb{8V?m}QvPokLSbyd(Mv^plh9{jSQXViZnWt&RZBSM&vjLF z{Lmi~^YaShQ{<(ljR46Y?Wf#h3=72#*n#`}ZeRLsDmiiqE32#HqSjF*T4}oeHt( zK#YL3VOD~w1T(Q<2-7;K?4dMW)xv{Ro7B$>;@hYOitR&==BavPC8e+~aIBpw0n@+& zF`x+TFy||bQq?A4}fBh4i8XcV4^sFpfoRO30Do#RxP zVBXm3wcyQo)j_OUL^e$(sea*X{+gniZB`?>O;hbMk4=w46Pxni&155)r9vgQrP^%- zrSnv4cu$(RSXGEqOCwTewJH!!E>T%xhHZg}h%kJ)Y6x#6yHzU8Oo<6a*>p3HNc37& zKTc%dI@L_G)MB|oHGpGH*re)W7S^&7)dP-2wwl>oSGTDSAg!1;R~o2Va5md^sivDH z+1uT!Z}JznRJGKcOnZRwkNKl`DKXuS!D>`;ADSWw#tihk)b| zu(_rxMz@Lp1F_dtRjkC>L)TlXIW}xS0N4Afqhd#gM~_u6#K{gkc&_S&IcrUI)*W7b zP@P9m1zLF-XSL$H>K&%l>8wvd;xFa8lAiVvOXWTAQFD3%jxdNwx!>}!R* z#VqO?d8NVX`XS5AVN;z{@wW6Lr!MCPg0)|W6~=<75jKVC0Usgr3P|F$R-ma!KIdD78iRAfiu^}~^gdk43u;-OG3BlydvKSJg0!gzFnvu99 ztBD)fw+c~Pip88ZAqvb)L4YKV+OXPWYzzA~q;0#9nm?~YLQ(R?fJV|jq=yZoL{@eV znTEsa1?Rhj08*S@An6e@PgDyz-z#JymcyssAs%QB>-vSP;2hcx2$_uKFmYf=3W5XB z2D!%{|87{wuh_?X3=e6J@!a(BdeY{-#*v(vOEd4-j|oZkBvDCCyr9F}kb{`j5hJ2K zS!$)VB`F(2TxQ=4^?*wYL-d|v7YN%NvWIsJ%k3fcoyBj}heDRu!^s~)TuVZ#lB+!% zSD#~VWlNfugm{vZFWNYh9LZo?Sok1hinl0L>^~v)n304^B|c>P!B9V?Ncf{N6zByN zp?@C;30=v>7@!SZ<|KYA$qsE_Ni5E97D{ZzqONV|dS2~&Ug$sk2Tnag?Rhod!J!=; zc(qZXMZ8+>giwjS`0b>^&}r^iP4&rmQH`|im|q<>uLxD}#(oc>htO&@%vz5JQN## zqB9@VAWa8XYfB0f!p8kP2vIf((*sEiTZz&(txWc0gkkowga?xtLl|G}w8#pxv9ef6 z?DS#VuwqcO!w4e@)sVK)&%kj)U* zh?EZtvxn~8!?rq6aaeY=kilUqEa@LthK6C*E(BDds53EBQX?f7QdA?tg#@mONG2ms z+NogSh_G{%6!aJsHd~O{a%|X2;j?H$*bLz_a!S}n8>0mO%m_P%8E5|U^u;gL1ELn; z54upeZv1)?3A6H`>}D5-VOHfSP(Qe`F6=r|rTw7s#;|^t9xJW?&;Oa?(63W|$KE~L zb?r5)+xB3x`FmJ0sk1pO714zlFUKumsAWV}x%0NLfr72w+7Y(==LrDC$VAML1k3LS zOLvFm3eSGCCk%1X2@dWJi$M0eez5RRSX<%Q{~Qj(+)rWrF_xx2t#!tiKkvN5JTMBW(1~o3Chw z({6^*_w%hJEpLZm?)))j&bt$K3$2K1_rn?s1o}J-L)_XDh1m2c47F^;*hf4S2~2w) zhDaAL5;*rF>@2!7X#NhP$w60=DR1x^IQ2FRwGPcRApa27RUk0;6UGgS8o2p6>@3;_ zvcHDu1p-UHV|*bau)R!u3f%%(*6P8+^N-r9mt#AUqrLh*n!xXl>d^uLFBdiDEF^2i zww2ZI(Jk=NO+7*&FvwHA3af$rUh1c44P^R=1Wr}Q5P)Sh)UA+nE;hqA8iSS1od!1iRY5khzMIGP&Gx}1wjBd zr>QH`V1^vb#0&3`t)75*wn#kGpk5{jf4QN04b}cz#yf%&UDT)18i?qw-YXDz-&2i9 z5F*-9a&L7Rn!xeC>SF?d!v5;bSUb8uK#iXecN(lN6$q$@sWErdm<>!RFvAG#f2A`S zO5nvPHRd=XBarf&8g&zrRX#OV{XihFd4hU3wh3G&sUM;Jz}%_o=>h@&LVPdiH$z<@ zV7!`%9}eAStLqCMIc%;Pb0d=}bM!p*|InS`@dB|klq^%kB3)_)z#6aFlU2$ywHrbO7N!8WwZLOfRV9HJqByf{kE&=OTbo=p1ag5u^8KS zt7i&4QunGc=Zsi`4BaO>hqedtL*&Xs>JW5;3_YT5BnWZtm>RQ+&xCL~p?-kw6SGc< z!J_k7HG1((e@>0rGKbCQ)h7kv3ofYFQN83Vg zdH57+B=CL7m2(5aBJCpgTk@7hmB5cUp9^sFW zQUOI;X-5UJ7#RMS1^v7+D7=Xq0*v{^vJ1D|;P}Mw{#ZLCg&fsfLRbCYneb_t zH@~rN(fUh5KS;b8zD7{Vi#ukhgd(}Xiu>Vd7?rTTApJ+}3?rV0w?y}aHlB%n;N-jT zXK3T22=vful|)-e{TTjIFt+e7;iW={u>TrvPu0EMEkY`2J=!XwT+msdeZ&DT`OX_fZ4i!1m0~^ zOb@8)7oow}1e5PTZlXJxmX$ahy2vA{p@pL`RiS!F#1ne#1#BWC2BY3cCd@qgG>WJ~ z%6lbtgdsT*e^W~!-5W-XLAZbBC@ESsVJw;4GNLEiiYSORDIAkH4IDc~NYOen!nl$0 zLOL-i?HW;8aK5*DNAyFzkc?}~nhai_=tjDKN$?=wf+D&>r}5^Jq<~dGHYH+ib;|F5 zMG=|U)`Y^n5l(_hEIMR{l?x!`%>Se(No&1BA*GK@~t|O&7AH;MEYX#@iTu{+C9kw=rlDO zJ%Uk${otPwc|cI$lcteZ1ce=J9!cMyz7qPkj65TJ>RLx8Voop{Iog7ApGc)S9Bm0j za3QCD56_3levzd@FRV0JWP5jr$aeOyNcxW0l`vpV zOn1z!j|w8CYa?CBf%B1asIw+gY91SkRqRaFGYmwvHQXht&GwJT+k)C2?TJkFL>f7i zoR17a)1#GL$?dhYhm^ic8UmJ=BK_KgCi|!yr23kZ z_@LxP;OiK5-I3C;s1oHb_(oZ^sEGo-ZMC8v3SE0aK-5Cv`-tGEX~Or%LZT)jrVv2s z(qxYPyQzET4+v=+tj6mm)23I zUFhfW9#MA$0gC%XeHZj!{7Y0@cludrTog7MZU?T@qqbnOO;Bmt5n9=mWY>(QhOr{5 zE=-;mwNo(H#061r1;UZVQPYL~b^@ZF2*kJk5ha{JfdB1_`a@``Ur$DLL9~FN$rhyW zL!>(?d!IZ7TrWi}KrW0`z}SgRQ}iy%g$$R6d%&}=$!{#6>y4=Df^Cnz6UD}b*7u_R z5OnYJFpBj|yT?&F;qUaPQ3nLk9iK<}3X?$P>nI6T!S?3S_XLS!t)sn#&qj99?*zDX z=jf52zDK4^h7aD+o6Hfv0?QU?TV@IT7S@aIEr{jh8~sHP%U%-A#F7U^ z#|bUlGdlX2AW!r7=$gXkAYJq)pGF6PKbC7jY{7C@G;k)E*vvoca#(cvLiUPRAfU!REKGb?`S&otdDkq!u8RQQEqpCbUswx9gRt`2&48#XA8|#dNBI6FlPMkX!IB1 zbN{L60_>D^_L9^>$h;A~Log((JJDlsV~L*PRDs%eqbCUji|b#83rfp4n z{~e9lIHvAcPbh{b%zQ1nx#D-xc1Ww%6X&ndu4HbVR5|qd5?upnK6;=qCuCGJS0pjt z&|%$+h!}fl6CUG&ra=*G11OER9b!HTp7ceh7(b!GJiEkL3ZGTF#aIiUHG0H^3f{^v zAjU@Uq)ms$lnGP7@ZVx;V54!4e)vts#M`BjEBD)nS zyb9FA7?Ai-B++~Moxm{~$k{r!3jW;CWWT}Ed(Gxi^h zyI_mp-yHATlDvR2Yv@@$wl&5FvYVgu)@W_$)*x2uWidy{$&f;>N5-!Cc^hK4U|SZ% zRv~>lKCmVaqGF%?JP0uq#MXs6F|h`WJVIqcD~FTMiLsbVmh9=blVW$%3>j~Sx{-Am zu^W*>5DL?jT}G{x6?+EbMVT}L3XIH&JxEh235;@cV==inO<0W4f`+knm_0xf3VYo* zG-?vNj?;2&9y{A?MKx&=d(JFHG2t$^irvmxEo>W$N&jaOli}UVi>+psvKY$74zayB ztDyYYac1kPW9L}ZVd($J)-`qzXVtw&EGDbRzwuV}j4j0YGb4(Yd>s)>Q(XQMyW5^T zYck9WmK4OEGRG#gKoN)1gjTfkz=YAUA9-=cI8$-{q}cW}`IYbk=jpNgdGY4V*b^4w zw=g^QBrpC>VpsEG+Pv6}ylB55_7i4MH;SzyiYP2xXL+s0ks-}>0c8T-In zhd5&&SmzjL>;v7Lf@vEfzKxNIAyLo%^u9DTu8&)914Ypu9Ubo&@* z1wN!_gSZ10M4agi@Qqvl^R8IT_t7NG`S(sXq;mcPTNvpVw+S<0p%btwGf&KRBthc} zs*pM@!<=AMa9ps31%W>mar0~~=8HUgo#xd8zN)@H@cux4~fMsD27pH~fG zY$%L38=_Y>j7zo>@xC;P8*Mh8s#)Aa&QIDp4l^A!@e|(^^-G($K9~+bVLFpKz2j=b z{El&-xQHve#9^}Tny?7Pq6wFuOB}$XTig*$e;2TzPv5wAn2m5oq_XS%%HT9K&VY$| z8N#ikGIy|>9JdP7eHp^Y;CLUQf7lZrZ%YptJS*;5b#nS`kQWRtiPLifxV8;zP@ReK z0WMH&N8C4eu>(p^#J#R876Y%vwRRu}oPyn9!QD6uNAcSYFXF0J5{s8V#BH?|i}Sz5 zwc# zM=Dh{;wO#AEG-!IUX3)C#qYs&RHoNz@V|igD5O{92%Cc9Bh5iT3_yb8Vo$G5$`tX( z%uqme(p(jf_5-vHtHY|0cq=>6Aa+H?SK;P&Cn>%rH=fFA@z*WHAACuV-^+_9GUMrM zJJ?`yB0Jts{Oyk1`0xBn*GBR8dC{gxJe`WOpO!U^r|*?x#f2^6xAJ0M>v$T7vTtkT z#qZu&hhOyn+4tCzwsXw_l*C_ad-BP59Z%~>>K|J|82p5cp5J-+_6LA zH}M}N6~xnbcd~D9kBIl;Kd>EbqV7G$MBQ;*{3-s3N8{t4@@jV{#h>8CJyYW!^Wyfx z_&<4Z!OZv_yx4wDybpiGlzH(zc+p`|{0II6x1}b&vsc8|=07;HI{t6|;A3k{`rld{ zAHjd{&xUvlj^I)fe}@0|`R4emNLN09l%0*YCoMMD_8_mu=2wF0yW$tRiJnk%D!xE` z7&&t$z6Z`=2LOFQbJ2T|v_Io9K{V|+jHe6yb~(OY1F;o%e2zb2L-ek}?%Stou5+h3 z#8ESZyF4p5&0Ov@*H_VW<_c_3T@%I4t9NZpD*yI)Jm@3?qJ(>0hCVrm0iJb9)`RfBUhm?g*xEGvVC#)*QvA|8!3 z$WAj5G)*+e`DDhYrDhjWOM-=}VN)wjB4$agLa5TV8k*{!33ar+26Lai0;^F+jSF%H z%9^Vx$s3@tC&iN!JR!D+W`z|gelPcecfB>0xx&2qo7Huy0)2pS5STPr}aCq1|B4)hh`Ae8>gwyMQAZm^M#vE{#4BvGum8y6wpUGi-53i zhGrfwcA2et#yx4r`I@oFDdj*YT&ihl!IZyaxuyo!eb8!rU!;K5NW8X(E&N)fapY_l z6l)B;0lse1ti!S;2i)(wle|dV?&S0i&0nI;`~jL~oOgpg=)NjK7fu=I1iklaRLtbWmRhvm79K$8 z1MGk%Qx4;TJhaocWbECcp|kcA|F*TeR?cV43w^ZyT)aPPX@?`l>kLnQwJK{i*CJuQ zS}s`|nf5t4GNFiW@Fq}eoMS_<_AqagDN5~LB-4DLk@6X5iN9K_9*LnH9M` zHP4OoXr#r=))*HGBd%hdXskVoY4m@isGDi`TZ*h~TWT@s1OJVe(Mp?y&@)gJt+mL* zBVRl9=amfS^R?NSxdyE_0j_q{(pL_##%bR}JO1Y%PZ-Sdp4w)Z4nw8y2DAHXYgmy} z>+-zd=pZdB1DJqAjvmQ(0mD!&eIc|U5G)+7_2tD2Beh)+tt0e;*5r0`tvB2nrr}GsmG|-AMLIxj&ui&>@R$nxE@7Gh{=TGbgns<{t0s3l z@;crUPu|d?5-2kjWS5y#aN!O{1%$!WyoYnuta8Z%?I_+1y2p4uOnIW+!(o~~*Y?9& zRKW}FZ4T43T#Gs8!-U%Uw-%KTu_{$~>h&#zj{ zDJ%xl`kNM&Qkhl0VWDfw^^j?;L+fFtjqU{6S3BG5hI0-JD(Mh@QtTm*9d)P^OiT}* zU3B!Vs?1T{aMhumWdnB|D!DS_u+&TU8|M&O6{82R@X>WdJ4^4Hx;gyudu!{KVS9Jw zx;j*LWu}51^>x2<4$b{^n9Q~eX01erO0di-CkB`}JPN{d2oE-c!v&S8Tk68_-EyK@ zhsw3g^k5lf>Jo!ubZ9rdH&%ytk&QGu;Py}>0dJGN5_NYtOkRqvH`cUArt0XbDRUCV z89MaD_HCvP6?L&z8K0wD%|(gJ#arjJhB{R4WyWDu6Wt8XA*HzvlVFU&%x$4VrC(OI z)+u>2{E~-P!T;LnP#KsR_kTL-=%HX{3WqxDmSZi-tE&!`gqd-O>p=w&Ib7+5885_f zvq2vnDi1T`u(6+RFXvD&K!-TxFLL;Epc!L#qanI&oP$pR-br*Hu0v&GW_o!1tL{AK zaB{S+2x|}Z#^_K9nHh&I<8;?Khs6_h>#!U?PtxJ%)f1=c?sE)x7C&xUuG58chn>DrhdEfuG_quq4waypRrc6o>Kxy<=`cIs45rNv9V$mN ztK4y~sa2{Tz>k|<59&~9ni+?%!@32$N$(uRTSmxn-CYjjcS_eE>uWMj>swd=gDH)j)hNr$;l&S1L!X>uI>uHpyO{nvD;tj&zWiW_uNBzCzPWje$mU$|4I z>x6b3AMWa=@W;=3phK^lmOa#A(l(3E|G*Pn56&U>IX)I2`$C6G-^`lf<114$^nHyF zz;?dTt>mKge6Q} zg;-Qc7)cblH9ZN<-+UXi4hhDkl0O|2FzW;qZ~_E5C!FR3Qzf?q%#sI#>FA!Ym&2&M z6A)gEX4*+mazB_*Jpt407?C+O66zzh+l?%gCfJiw`*3&YRWG5JHQUW1-hMQ99@~7Y zB}ur4S>mI_x&g($CCUer`+~kBH%;`=e0?*`JBO_soXn?RQJ0Z~#;b#~k&Bq)`{%DbK z*9-thLK8aohJ~#X2H7%~1r0hRtmf>l=O=uy5x>3HBjK1c@;N}$JI8UH5hD|-V1_$U zg+g*?*>4F^nB8=SU`p;x7OYBiB*Bvs9wCJy6lwverzF(26E&1SGl5=_6DIMXot=<} zNn1ucUkCEIUzsbRiJm*anxcegw80A5o(awN+!1b+Bm`qs4itvI^`1#JW=FyeE@0oC z3Er5ahhi%(5054RZ<8EJ?tz4-SoI6ZpMfTS{)3zC{No9qxY@2eo$x=-dGNV}XmpRI zxtn`K(WQi=9CyT3Gi+B#1WjlnXj=%lo}fi5k0x}U1!M0ebVf@hq=Y6kCA2O4_BdfZ z7ftg#VXh0ZDS#$)R*2nu`{G1=?`C_wvV3fnU&RXvTXY%WF+I4n1Cf3Dv9iXY5 z`(ir`5%NL<%?tgOTVSVZiS)iH>pmcJ80H4!81X# zX4#=1ge2-XlZc2!RQ4;@!T*yW+BYt7Cx?Bh!`lZ?*q#{Epq%JQzpTVRkX?qJ^vg;c0trJ?A z=YRe>F|jgt!ZiyM3%qfPY4+dj&m~2P@mO|16F+aNF7~>Jjn#$QcLH;G%gr~m#w@e|h56H~TlpxK^fm6(Fb zUDqVc9vyQP6tE_|aZBpXU1V>Mq{ZBE*78nr;>GByNu4_* zl47#zF%=4lpxOIMz_(ixIz$2rGuv5I+`u78$GGCMhb1lNMT_A{^ztTC^0^U7shFhD zM!qbia}2pPBk2pySu`S)?vII~ug*+*$n|<|o{4?Y0u%cdi;~W9_EAfcd@#uiD%cB2 zq6tkBEeD_Cr21&vU@}mwEihz#(!CmHsiGoXwC~BJVDl(ZtUa*cbdoi=-c1$3Mc4xmlJltUV54(aXoqKVG=mUL5Ow|z|VDNHc7d38!_ zpgE*ZVvgttm4yVjey`-Ue2Ua)VDdU~qypDb$$MPHAKaXte4dNB ze`fM4KG5u+lbqu&{-E~Sg%yvvsamlVar<8Dg%&VN@#b=)T zy;7=h)jX=7a*;RfDM`v#UhSGJ<$-a8P^3&UME4)m`X?QH?!x)e9wpPDD9@ROc!A~oe17x+lJN#JMt6gd}I);8rj7udT)3cX>; zxYGsU|Gux(mOEeDb5J(A*!Y>)0N zM>W9Glr&LR;kF&hO+v;|jOjp7s?W~R+#HKnEonwokJT4fZb3S?|gnZ!9g+?le0 z``?vEQl|576HlakK|g|~nN9)Eb1A5IOE6jgov517MAeO;<@uDuPKc=h1#CjT?26tA zZOT%%B86fIp0NIY%46PPRy|C)%X`$^XDRfWG3^@eFuOcuEM~sF**3Mi@Jc6-Id2Wt z+s~xRxy?D*reflF3P*F1u+DnGA@w_|3)rSMCL>?d*Y7MScjYhS+T)S>T!baNyi+mT z>y#Kn^?@r@QeC;ReXN%1i0T#sn9JAb%0P2l>rqn_ia>X{QvZ~R%4(FAYKdvS^Ok9i z$;*fsJ3=#C%ZXd-)Q1R5HKL3ItG1~(IiEu*z-l}fXQeSgJ^ejw$%Zon0 zr#9f8FMC1iJ8qthmZqNLbJx(dseYIh3xOHj-j~_|vA#fP!(j5t{tk7S<`#K6AzF2u)LP8&6pBQ31Dcpr3Jewy*Xc5K(Qkr@9#5eY@Khum&yzhV5Hz)3{t)+6mc zcNJ|1rWJ5ge?BB_8ZS;Bo;Hvd-AAPvXA2v~q>bU<>L#QO;>DAb(^m1~$mwY#cq>%? zJ?$?y(XW19k+zgK$hviDhk0@2*0d?SSo4pxExdU9P+BoBE;yMsn-{eg(mwKH`d_9; zT)UCB+f!8Un!nR-+K9#ZAJRf>i9ETT7qR=A#*Zyj{+8x~aui0D5vsB(!j1ekt?dc6*6CHa@yjcvW3F6Ltg$fEG5s*o7RJI`=k#C2<|1QU@f=Fs z(n}E>fC@mfjS2GKOJo=6Op1yIxjXgn0j|*MXk0F_h zu;k`pJ7&pGeypI(<2Ukyp$gIN?7=tJa)bkw^gS!MT;>8BjTqkf%# zHHuw(QhGgP>$fHf*?kANT9__DD^5Tl6Pnogz^32Ruk*ou$=vjJm=^wfdwN%*88WB` z%wLke$Q%S8;@Zj97RpzpKeeFwhU#>-^@LYN>CG!y+=R3(>4Ojr2$WqVL_I?5jfKs- z(x31MaNQs2Q+e2zb|Bqa^Z?N2PRk1(LJr z{utQJqccVk{q8~T;BhH^M;O9CQiSp3gIk6heUVwBE42MO$iadvcFm|kO554Fk&zEF zT7b$aV>j2zSLY0)f<9EvD61k)N*_rwQhC4A1ZB{4^Mbd8@A8bfytqb@v6&aUsWM9V zdT>Cb>9pB{QM7XhOGCy6{TK|A-sSv9;Ej(x^oSzdSo)LB~LQGbK}}%k*N_?u){7Bc)K3A&otUr-%6QA z+X`{YoX<6I%RSR*hl@N-zfJZw{nox}=0&c7=e0A(VwPiQ5+pIh*be{9_TFT`_suoQ zuW^|Ve!d$D>C#|bd}eKohqo|fc7(Rt%#WC$OsGs~Wm{5fNEdrjcstXLIHqJ`77!@Z z6fquanwoja+TsPNpOtyx=aoSy&@9-Uo#~C3vjMG~Xhol$+$eJm_Sst-XHFC_Vw-2K z!eSJ)$m}j)c(lpfg2kBBHgg5V0C|T@DW-9kbzE>DVh6(-|e26S>1ttUS62_ z9J9Ylo3ayG9CY86q&2VaL-ZGhN5LOOnIBw@gpTdZoF?eF$sTMwas1ua?44l4-po&y zly1?1%vqQrfzcf~BeNJL znPr3gW7dO8q~LDmv7fI`M!n2blLG%C9hb*b+*{t4X z(((8}uMjuV;#1}{geXQpB@FwViAu3tfsp$(bEzd`GutX_f>~s0S!5+)rp*;(-dktc zT8XN0w$H-E$pRKoUEjkD#*B#E>9!}Sv~QRXjC9MIg*l|cV2J#_4@|F_wGgu>KoQjB zw*0;eER|&)t3~|(3Gsr0v@A7ZG$ST3!g2+NWMIGTD z{KTT_P}T*}?!oJL)@RP4&bh3Kp5hO7-^*&{Di$Sgv%)xT&wsKy()XSSeDB(1=kiA+ z`D8!hKZvcDt;OsJQN0*;gk*)(utQhjZieFkZ*YEnlV=R`*SlI=%Ew8`;+fgQ6)R1)QJ=$&ni^j0D) zP}qfBvY^4)R-CSOc(&1g)MK(2RN_rDEqfR@rCu|#xAVpgotr(Gw^Hd+lfW6PvsYvG zaH#*yA$>Px?;tZHV^c}*lI)c~@2}W6vgA-R2k5Xldo)5pGusXH0O^kG#ugU0;aAA^ zwX--UzP?L7VW%Bg;B(uBG?O)UCNBH45!vHR{AO-iK>g5x?Dsz}BPb7M&&Rk5TCY86 zb2uAu!JW{$tw`SS>?$zlNcIgY(mSlcjr?{Zd;ib#{{ida$?P_mNeE-(dNR8zJUO3z z!iK1%1zzOS6qZ=J!P_g@XEDK21$O7ZvL`t+Nx|}QHa#{i2o0rAvai~R z#a*wmX%ap5ZOZFxdc>L)KflRt%d2&>$f?JFyT~?&o?~Y}D6r2tg&BE_?dL<@c;?Kt z_$1opMXwyh>n==&NL=SXa3>GEb1*OZ)rREcf}v{8Qq1ICs7#*h*4HN6{ra{gyVvBn zM^D)u+`nfZ;a~r5>Yn)nLfQta^Hm)plpVtq9aSAVgye^GR7A9E7p@fkP=|$t=ZClN z6cVD03?~$Cyf_E@tA0*PTheD_H8+wh%h`)CQHnL4zEN#Ut*D$fhfIcX_!=&#B_ zBv=H>VFsp~Gw#2ua}MywcZkfv?Cvm_JyAIxXb#h3a~^RH<259ClSr9 zNsE2ez2JHKoN%OVGcXspn4j~)ib)0MyX8E$6N_j2-_n&is2va5N-atJ_MEDsJa3D0#@LBXHFZmlAJYC?0!6&S zrI75(p<@`+{JY&budT)6$Nf3!T%d->a%eUR_Jg8xIejsS0+!Z zc)-=0Idm2-SRE<4l|y&=LUXD?>4TgTSfPmU0H6;z!X@*1ku#3Vu>Nh%J<;{U(l0rY zT%4y?`mHviWE&mycMemnm*p}GD&*GzhAy*GbE-wygx zuB6=VdRMNFU;5}XF|&1{vq07m{X82{CtpVBPa<{Fnot}EXf;;<52xC7iax!PDAwUQ z`Wsv^o0sVOxQO4XHtIuBkvE@mlv%77Cr_?>^m~5ZA6HDCGz%Y8CH8llw<8TUS^W`9kwd5RdPKq>LBmVn;st$e zq=uKkp+EKKIEUp|^((M?@cK*diik}`0p8ux)2x@QEw0?rBVuF`CgYwSld%k_66sqw z+2b2N(J#ZQ;P6v@61o|#z0lLM9gM^Jay?>hEvlgEYyDv~hxPCDJ2{5|AMqUSeA4g0 zM8LEeMv<30+gFE<7KQ?6(yVh$FXHE7ps!h18LC0O%7#CYJ&nQI6PNLwYysR19Yi4^ zz|&xbwAmiyRTYCHNqx~M1RQ(}`AA|Mrr=ehYGh2Q-iKse?&1ths~b8wh~no~Gm8JM zfngP9G@@E;|)g!qEFw;9(zwZzWNKb%q)K#AvVrY~ct4eG?T^qu(e)K1PiU?A92AHxc>)WR5q; zL=D2^$%b8MdIBOmoo1jZ#u>dSGYpfFZt2H)$dS2*lNPVVsn-4r_O|5aJcC(_RV7Ow zc$r=p$LCwO=jYPW0z*5*Sk!l|p&9vgiNO~7EHsS6sLzOi$sb7T_F@w(qUn=w4W&yB z<MpWjM|`6rMF;rdkZ<{yD=`v>v1vO?ue+r(p)7UoZ~;TsG84 zbGUNNK;Iq9+TzU(!-k*d0F=XY%osl7f#J0Wx$a-ri=22w2g#B1bF0CTPljyXEDioK zAg)T!UY0uuqQ4q`K}^PI-3esrSA#3baSN1^rQZ#uKd+DN%W|y{&n8rjyo+|R%w5Ob zWdplh%uz0iH53Nf=lY_}qLE|nLEa92F1f`&uLiKFoVytP_@?f;^Z-4x%9dWa+kXD> zf;z{;G4I?tn8^sO+?D9JzH%j%19H6yeP_KFsA}f^U*6sVJgVdS8~<%&<1UZ@NpK4g z7u=l$ve{&_?nyS;xI4ieN?~ZR;O>Q?I22ka7AQ`EKnbqJTjW18cXnxcfB*OUF!?_3 zQ<;<5dq49zXU?3Nd+$gL4V<%D#4TZ?^cmF;{?#(hz-XXhaVfaGPVbO6+W2-M< zzUv-`PShjz>e#DcRfrwd4}RM_?f_#9`lo9(?H5-@d94``$F!R3pAE?mx($lsF%DlS zuj>hMw&4D<$a2^xCN9>V7!58F#qDBwkR{a+5OLcR+R5V{Q80dL+!IzXI6Wgyi_WY^ zBVA}&5|_#HA&QWC7IE7FHmZnYnYoHXUn;-|;0Z6@2YOV+xma`kY*Zzhh(!8X?YKC5 zKG^Kg!W~vkiJQdorkoUWV`!Z{-0*GOU1oP92vHy|z>;u;#_!{PBYU3SFnWMOW`f<1P|-D9!dXN36& zH^-xyLiKPhvQ-y#$wq_0Ob5 z6VS-p!V4b15SPXnZIa-DYjNMQ*a5YQB!F%XfFEzfW!Q7=F7k${-EDjjXJe1v9Gomo z>IR>`jMLe2PM!QA?g#4XftG?jJTCX0m0%vdV5yU!CB5K+yWl)GWQTja1zlOZ53__- z{(@AFApF=~aEVo0s0DLmv3wk;8iGKSY{0omK}>rq5JaSj7q^X z&T-((Y5|%COR7dR)?7>N#|sY8-1id%>#6wTB*83}c8AK;!W-WRY^=D>?(eyR$t(j~ zi~|r3I&a{60ow17u>NJCU_EVdW0wkSskm^ZAd$s9B#*|}^INF6!)RlCj2 zj=ztk+2OHD5W=l^GTp-NK+tHV-Fwm;@{YC4fUN}d>Qrc@ow?gsDI~q$D<8%NCSxU zi{D4v0zV*LX~*RjwvR`Vid-2;Hcm@lB~}x>50#^nzkx{0gS6*=Uq<1sU%I0YF)kVhyk9;-@sM zl1y0kp!4!(uCRMbyd$5hE?Gu=XS59|evDj@XRfZv#qo{k5O8aSxw=MI#iJz|Y96XloiN0ISQ?BL96*7TFv*tj_?8rHSzTMF?LCO9&4NYH$EV% z`Er-XpP&(X7MvEw3@XC;+N6e8Xt>a#`45L95l20 zZ5J4SIzE=UMhQaqGx2DLTl`8JjyxCdM5{34N<7*|k7$v1BR++SkN=2Y#WIATHPjvs zdK^ERl`g7+_OSG6yo|<&$FJkhxpEZG+6W)hR~WS(!gyK};XcBH44bpz2TKvGY$vSb z@eYGCE{4HiPzT|*uMfGOXQtJytM>-Vj>3mu4}#hF&CXhl7JCN?gTUf0LOxjgN0KLe z6ewhxo%Vm=F@7v1q#z>oo%LLGwj1ag!D6G&>IL)^D&Vq6p#w`3H7i9>v|WX}EeNTg z9zvGs_9i%p;4&M|XFwleHpl0ee!^)D@d2Wq{Q%)*mbY{!tpGv!Ziq0SBjrE*zd%Yo zLKwg@WH*ySp412W3WZ9R`0y_jpjlzp1a?Xkwy*?K?q_>}?~;Tbpm%Sf9jp=y_Yil5 zBb373R@g_Nk50&Ru+cxu3jGa0d?rrDeOrvt>dVOHcA|CA#z%IslJEp)dTsTKJN)9;_cPRQ-3L;pM5q zy_SUfs+q!VoDyl@2$yk^|F=RXu1b2$6Q1BC--W`i4KIA*hI&Wfybe{)lcmDu)GLx! zP_N*YsEt}FWZJdi-xkCrK~z#WM?ZcOsv)9qlP$vaoOEfca0KUr5j%zZxjg&p#~O#qxUapCm~q;t&2ljtITsrUN}aAzc3TVae3Lxx+^% zg)ewu=5;4G`0TVW*@_cW&IwB`Iq~I1;R!09xhh=3(kA*?Bs7KluM3lTi1o|~WsP9Z zI-xJ0cLv<-6OQ&fPKW)(tovz*#tvvmT?J3vxA-zFiI(E+Pr3;Tq#Xz?{R zfwfZt)3yoN1c}ZG?U*@)xFw(sD+z}?9tkY_rxH7K@k$uP%%OebgekNxjxDaw3mS1T@$=OYQ0lu z7$23uH15GL5W)Oq4?4(0ykP8rgh^Zrh4+UgpaVd#bD^d*Ogi{%N6s2HP6n1OZ|zz9!L5*nec3b5#HOc=y6<|E2iSS9#D zoBV_-mhs+agy6yiwC0>B?^2%Ni}rlL%({+Ez`G$}@xoNI9X3u+2zTLfUoK2&NwsLV zG$D;?c^$UB|KC681mHxp0L9x9&|uXj!57XtkdR0#^WD#8CC(f* zS7z=hb7gj~HCJZS3+BqabmLEiQC})((jstvJn#oD-?$IWCDE z7{h{u6ac%rCjx4_Ta6QsQQ~`=C1z7~dbUiArMZjRCN5xk!$#^5spAN4v_uVgWYdI} z&^{{h1?P?+GTNk0ubzn(EDvn|TLEr;6Yo*awjY*=UcQmaYdb2jFBMA?6VXavk{g?p z_)g7j}dGZB5)BC6^CNJN`P60uc%Vrz;Zewc{f2$S6Qj}y@2}2q8yOsDqjb{fD%WEZK8w3+bK4$4Vib7a|+`myq zbrvnBR^|tb0HbAqnN>oFsFGzgL|D~%h`eD|v`An_>I$CgE7Gyr8`L!wxxv$eMUiOg z1ae5&NFdU(GTR{*4YULf7i_(tL?#-^YIYc;6fNWY5Z=~^ZgTDbFQkaj@QILIU=X3< z6A@F>Md-^05f5dF9-_UYuonBuMN??5xLTy5;)(I13Rd0bibb~IaTk#@csd(N0b-HI zj_D#7PF(<}i#)(coyZrCnkBMiRoq+#L}lEd7PtXK;ntj1trwat@NkjY0y}F&Td0C1 zD@5<8Q;gkYw#&6`qKWi^f}NtZ3}Z=%{LY^T`rRBp1pIhV#PC3d-(o=Y;P1?0o9FLQ zw6h$QM4$IJ9TBnYtcy@IQ2Db6J>@H7W6)FnucD0%4H?4#1mi`*%QweG9a&rop{U`= zv!ajIAbH3L^z!r~cA#1j-N|X@B~dA(rPOFoP?0TMc~!KHQxqC*h`g_J$4 zn0NFB@Kv2`GLq{-JnACuggdKP$PO=4)VzRU#CeXAC!n2Gd z8?YcDN%Zwh@g8g#GZ>~OCWSE=&I|y4yJ2c4GsH;@?SyOxhp1Rv^WKBkillw)+UQ6V z(W#Q+8laI5Dz!WM|*@8yg5nNfI6aRt+yq)S|PLum=uS(PTHF^0H>#aO7g+!{bNZz zaN4#u32n&x9zHvhREKprb1`WeL$74gB^diW1b<{T9t_UbB{94vGreQC0|9rEnn3GY zNmdNi3xXXa2Dto>q$mbclAG~8G!6IGE9AR6qFiNm3(5#r_F%;(5{r)Y)KOlV2vWEU)~6*P~ZSuKxvIhu$VFq`b2J zZg?&D!P@spzcYH#Kkb$CDG6;vO6>KKCuaE^@P)lZmf~j(;sueDp(V?N(mGr5l7_pM zyS?~bgD7FY_k(8~#ps+X!mG+f%rIm4OP9atD(=S6Tl@oNt%D>CzV#M|G)%oCPLd|@ zabxj&3vld3V=wrziTEVfxZ&^3#dt`E+7n#bQjF%<6H(Ysj2<9}I3Q4blx2uY+@`Ak zZ8xyqK@tKVg^GtTD?wm>agz9eYfmd|p=E@)%9_(;UN`Yms>!@QW=-V%#BFKr+`;0b zRKLujVl-QxC>1?ijP?m5;=2*z>-5@t0x{Z1jO6YViqUIzA|@w_(e!O1c1aS~P_a%d zwx_rKtq>oe#yX)9+px@zBgRtxmE;7=vczS~cESkY(9?=0a8HhSA~jJ`k$53xYEvQh zqhiDuv#$JcW?i?B7o(ZzMAw{&;%Gi6?wKy;QO7v-jd&!(xPf!&paJN}q}s(|EBMPo zv6fj&3OkRXmDnRkzceyKj`@7u$#(!2V-mJ{a*hzB9b}i#U>5ON<2(7Wx80+U%Q?;&wKimO?oD6Jea^f<&t)2)(38oB~=oZ&oHDGwv3jvWeF(c=JK%; zv}}@au$&+n$7q37ohC|{DV&`wDWVi4)7WFegy|A{W)2avB;QdEb+g%>(Pa+mXc%n> z^8o4?XiWHCGKm#t*nG)3W)6oJO14uDlWQbQ`w`&~dtix#>5-VYWS`|`J3Ls)ZimLJ zC6Acxux70UZK*<JKk|kg)8T#zoh4P@<$9 zn(mT}X64X#x8wzLU0m5KNuwMR4oJqba;Q8gxz5bN;;=+YIb{CKK4zHvi-gDQ58Z#2 z%%B{8Kf&&k_NOG>m^nPCm7q65#3xt$CSf||9LI-i=Oj#%B}sfZc2SZ+ISjtS-e2Th zm9TADqLvuJlbgPt(CNBl4w@8$`fs@Hh6F9VCU(iXEt$&dqf6==$O#}$BjMzGk^z)h z-F-p; z>MCUp<>C#TA0ncTWaf#TmyA+-FK*Z}kr0BEw%_ zW{FjUi{hj?3@!^1%mT{fiP)^mKB-xk3b|RAV5M1?dn&0vy{&Pwv;~U-ZpG3#xHnzu zU{4gdRv=}WYXlL@QSJc~J}8qqQ3KnKmIhEUdYsgciYb$%^;DEkmtLgez}eCPEDD@C zB^?HBzLP$;B?>q#l^$iN0YG3zt&pPK%ZNi{ua(}U9-~<=y-0J1ZIz^#+AEa^U z%th=xMSG=N(7BIT?0QVfvLiJ_#kZvjT$ENawTV;G6xjNz6uovOOm^Rp-eJN~OL~E< zhjmuqQ?|qvw!SSbVI0f;0|xkAm7-I?jY1FD^eV;pm`Y0D4_`Q!TkW=YuQyI(5Cmeir zWPQ-wc$}*#ku{^0HLFrq!=e}RlwLr&Si+xspxy;sT^s8IPmhxsTu4ZbnIqfJ90E+B z@Eag2rZv@cz6@=WLbwMlmbp_=uuNu8#f(+5U@C52CkvtCi%qgqEVBpA$^lm>bB9B= z%SJUw9f)AoSrgOL?vdSM3^v5xzOeg2S#m?z_`*&<$xahC!0xcg^?DwY?PcawyF%g) z%TLM@nRyX}gwwLcoR#d)%c5Dlk~D;Xp|?HYFIQwbZt&RVib=_F} zsxO5|j^>RM%l;*mpJ>eXrmYuPKkT+2@LMJKfyM&)8w=8J6c@`~nRPY+^1-PidOmDf zE=OB5V4gch%Rf+Ga2_Mai$bwmyc#PULu7OAQ$Rn85SH6&VgY=Vf zTR8QQd@vVn@BbqIz@jdxB@74=psCe%#J)>c0N+?L^j?b&xIiOZ;2b&b4Ka} zKb@B^;+_y+)R~NW6}}KYmgjO7?)5_M z$!uW`jt{TBk<*V*FzK%b&_i0IRoV6m?zwxrk0OtYaDP}SXpeN-TJfYIM)iOQK8Kp} zCr5<^vnlIF+;-ufdS&j4M_i1Qdnrm91~@ca?g%wa6elUgK7IJJI@eYqqanX8?J~#$aZc!Wy0kQFLeR^Z|x}2*#cZjhiABh0K%|`b)jw zx*iH17q0Ajn4I8AZ$&P%6A;up{S}Moqv)Jr3cPq5TR3fm0_~4U#GFxzuGGSN6BMR_ z=R%RLs80B@K8`YN6~?sgm)lQaS&O3#V9xMO}=7n z0{}zd{Q`xMC9olN2&EACuvD=HHABp1LxqB6@0-t9&ngu?SzPur!qqW~*_2J?cm>OR zsLxpYCMY(sH1W>}zLOPeD4TOr8_33Ex?)VjY}4->1)iscYwFmy3YHJdSTl$mF^RDS zP?xzdPqB&;nLfXPE^}sqg6SwmQzd!AhszX^&cJC&ychU!ISQUZg{bS-ZdG({NW1Wa z&7lHM5k=O9%YIa(vBY;1M`v(qufh>LIj*pU>-H;p+Y+`rjw+HG;t(7vM5rd7S*H|% z%slJHD;mMh=M?Dq726UHzotzKxTa}nG@OK5%11~WnLbL_FUnsnx z{VfGL>78(VdS7vh<@1CY5hBD&O0V{n!k5{4PvS! ze3bo|mB5HFzNvBu<-gHiiMB2vq_bKn@mFEYzjqrY-VqCnPunUTxo#0Uc2edsEMtPG zUfc7)Z}aAm<=;NQHC)MX&M4Wxz%fF(+7fJEUpyGRk5)3AdPRmY_kXQ-1y?t9YyzFT zDV-Ty6^`hqRP%WCaC3jutuQlYsrZ(5|r!xIdOA=(!-5md}AttkzNdVG+RlR#^z2^8m%~e zpHEY=tTsSo2%sPInxRB%$B6Cje8Y?d5xJ2RW&}{O^y8l?70gqHaq7X{3zYT@jRp{~ zY1@>xaQHH1r7cKtZ|?=`)+v)MI8{X(mFaAC7y}TjGaR)^iFSx3W*f6r$uiRgQ-lcX z8K1zw>ARG7IVXnW4=Asp)5noN!@Oh4{!~16M%k6+5yoT-XE5_JYt3YGqx{+{%5Bu~ zzP+Jj8CN4Rh45^hl4&Y8xjE(!C0b8REPth*g#$z|Of%j{@zd`s6KV0UA1Y_CIZ+|( z^jNu;Wh6p4R6bSCryM%|sbtw>iom45P%@paOKy&Qt<0hvcD_}z%$OxGFWxDcR$Y;s z$G=ymQx2A&m^p0ksanb~tcGsZs%b1$i0)I&)f9PwUa>=saI=ld(~^r%m+e)}7>M9t z7Yk}{EA3&Giz<|bk{JOY1U@2H2KT$E)D|4C2v1cTmO&UnUA*AAHE2{d)Cd0Mqw?W% zi0uMYtN|bv5X7RtRE}_33l-WKhs4RuHmaX!x81LuYAY4_9aO&PsER}F-C;M zwGJUFG~t|x>%vqMSiU7ZSEv#|mg`ME+}~4`X+yLEDFak!52U+FUzjyeb(G~X$P5b* ztSvk_RFy;Z8yREPuhmGies@Qy`m%Hhs2n+%o?z_(k0&9fT&1j*saW13K?GJyS)SFH zS+3NXS*9kd{24p(STG|88NxL~)t=d}F#W;2esQ(_CU5v zMF+jSt*WDR>~Up>ie+<*f1&!p7CTkzS)9rY0}(m2#WtxNx4r)jN=f@vOrrubC2TK0 zxcPueMR~RONyW0|$`^o|!z!lre_z1V{;XO-d5u4&VtCpEUjUx@RmC)d`2uFiNflbX zP3keQR>iVx_zS@7Gb*N0%@;6s=Trrh*USt54PNIjswS|EFbJ=aP~`w0{jOr!IgG0~ zi~#;t7x{8SpKdo)uC(t_-ckiK6WcGi?FiDXRUt6`u8L{nE21BP>E))Xf~oga=s^)b zGXmR(rqJ&GNafBl3c}cM&2v?EI`;YNjp`+H*g-fBu;MS(McU!&Kbkt+?OoNTQO^gS z8jX5L7;k5*K5H8F*sIN>9!K?DmQfE2|rQD0U#UeGs=_2IS;elWD)?m|FG!0n5~t zuynFo&+?v{+&pWV`l$uSVb)Cb5(d){m|L^dOlP2woB#e+jaEkzJNy9DEMGkd%W$O{ zsTL`{FhZ=?oKG~@*_XX)sI(osX-_)a7)WSFb;n)J_2|7OT z-luT}n=h%|;lT@POFJ$ioWG$)6M#va=yO+%W{D87(S3EIJttPaP`|U{#7S?}x2S4m z@6|>0Hft*lTD3xMtF_j&@#RFD0F8?iC${aRLE9LR3-)%=3_`m;;i%*lp&3JS*Fzl&6p7k&7ag&-62g+FRrdaFKNDIt}BG&1`Ss=QPi~CZfQ(4 zGU>Kv7}c=;fyRj%#`2j49V0adj9!tI2Y{+vbtBL#O=|;gBpN(mfLy!Pjx+k*WbJWAqjRtj!D_rXj@zoVW}{bY zn>%v3yQgcnQ(qcATZ_&@Ax3Ziy%w#=BcktOZ4a88vOx2m zyMr2M{$6bn%LvnC5pUpnRBI0&9Mbs0pMKFErWRRnM$2@l{J&x0o^#qRw6(qe-K@#k z>)N@Le(^nRGIfdPkF|ZMOZ0oC9ZhX<{%>s%6}>HVCbK-W)R}C2&{{W!ULbVTb)X?( zrnAn0;;#2F=ic?wiK)5ce02+$J!#`|wFlVOL1zmq{dJMHoD&^yt7FVvl8)@i8gpUcuUqWs<$>Pl&~Of1(qu{iD*L&???bO(T2cFJJzRE3wz z)eUh3%GO)0L9>KVZ;&)m$GUkt8bSNQph-GgmPdp>i*&wPgTnN)w>B^Z2z_q%wn84%>x*u2xIBwF- zWf=`3_Lbm6x8f$yxI^b_i&%^{qE$Z&_US~7`Vcs@X6dpmA8tLU^W*c5!!y6=4=+96#iVxUR(hsG=aCgZmxI1^S@z*W zLtFh5d&E5{ME}karGj31VJk)*U~jE{7Xsrd$0bwWh~*U+VTq910!3UlA3n^}|BV_w zyj!9#!l|-KKZDVQlEGfl?IvJ1zk?6lJwboN4N(ntN%Vr7ztg)j`VqyP|Hjo3j9sXA z12a16UE$IN`Zf-T?6Fn)W7xB1Z`3dFX0z(&FnWY{fjb>+q;*+)VEK!lv0H$sTkvP; z5pLerYe7M~Vjno|n7%nnw?Giqbu4xUDOo9QV88@l1sHlu@7`_de&%;50D%^OTF)~2 z>1X3fvBvys%MGWpMlz3(@$o3lZg<9 z`ym22T7ucP_2}3YezGsjv`nsL85JS83NB>6v`MbA=3RjKPRXquP&&VHa-JhfU0Wxg zu|esrz~nBLD0L4??uaS__6$qjf&YFLnS9d@r5F1oXW{(81Czf&7J^p?CpX2vza5rb zfb%m)Ccnq|>4M}L`0w|L$y4#)lf=nB__}4Xgwx8( z~3csm1BQu#}xR{S=-0$0aeZ4T;IINN|V*(r=c z5s+`F zUW@OC#ce>y=mxO`0TWZKfpc}rUkp~|ffOZJIJ3+LZXJ{2!xGC0f^=dE%M?{~?+k8C z|Ldd_G%3372j~W-PER?)rU`&PGgFvmnGDWwj*0mK(PKAX}OJ=4Z^Y16Q|H z2iVU!^#^7v5`^`xsf+AQ22?aj9pk{!e9q^^VFOYp(A!Q7Nqs|gJ{Oz%4adop1C+HZ_JmW_she5GTqc+Va9x+mvO>`W z5D98iQ{B1YWKdi)PuMs)6-{~Xz01uF+&82$e9Hv?C$t|No}T(WOThSyHPb!I11#<^ zLJTkDrfTeYH@Su%Q<2(?<*Dln;2Bd3oS^gA)I;t>b$D}bDq66DtpK;oOGOJ-h^YKN z6}{^wV#@`oMJ+gS{k~N6j+5k$K9E|*=S1gUQoA(c#F*Qu=xYhNz~@eCjWs9!`Y;u} zkSDqFC#iF2uGP!b9JK5S7d+v8>H#W>tPMr>AbVrS!Jx6Lf#G!o`M`|)-3@fSR_`!( zEb0dbyBX%QdNAzbVbJkF&<`CQK%-90oZxy-Lkm8b^|O93AYFa;CWZ#IN;i-dZmm`yI~F^gAGhuyALvqgCN8(jhVxha05Pf0(00GWnegm1xJ)|(6y`K zJ)^&lgNM2s_EQeu^fIu_J0KkDdK)$}+o6Ad1KwsI+rfU2VeZ%a14JD1S)OAF_xHmL zhq>Y{CMm#@!0ZsvbCAImOt)x;K2h~Dpsz|J3_c(x*3jhZsc}{0KhhAu@Ys%TPX5Qp zuD8gr$Psk1O!k5=v<4od#uTwfpLARJeTsqSPD~Himl*I;L{tl~tjvIyB4V*)g#kr& zB0i}!pmTeP_+gyk3|hg6FSs$;fH$nb;tx{|Z_p+SSllz)a2Bn0#NuLLK;fK-q2C+O z3}qs&SZX*#Z!21EF0JiK!)BU$Ze!wc20Xu zEz%)04R4Bujq@ffEuUUc-p!mlv`5-xw5u(?pnjkkcjw?VyfGZkEgYI=4B^CAWoahw z{Iwzt@0Eow(2Yr3!7{at7(L)xx*PDXNwej?yziTuHkq1VwjixNQ=7!*$FLB=s;JRt zZ8EE--C{O+vu$RhpZLLS^cg$MMqj+gZ1mj+%?Q(fG8=vP5wp>SC(K5do-v!Z{cmYT zYV=i?&AEA3)5f9mpC6!x=TM(^kXriM9kbCF+)FE#Jn{& z9eoHQP8&MiTpE97y2;m%%t|-;dcVVFvp4=ZJ(ZgMn_tt1GnpO7G}7^{zll1E%HPsA z(kR*YN_tDqLC`Y!^o4AFB8LqTHr~P-H_AnSq~m>>u-N=g`gQ7pu8+-1)jvsBa>GWL z@Y-y*mT%MdQM>*5A>Es5?PFn#X89nGA~_l0`h#Z<#$!O;bNFE3^0s*(=;UN<(73&7 zkkJ-A+*Ixi{M!__1JTY#1B2m4bvDKWe@~-7802DP`I2A);KQk|MrVc=1WX7lj{xZ2 zYVHxB%F8&)4s=f%?gno88F#XoVlos47(20ac!|_)bO!n?eNBh_N0g!1WVMdlG5TZqVgfWx38Y-fVS15tejXID*+HrzaXuQ4U72k)?YfsvMCR_p&?_pqta7zs5M( z9&Ft?+zakA8V54^b~->fws1|Bv11^KGq8Svv3UR|Hri{v&F4hN!$$Pvg@Ymd{fKcN z71#Y@d~40+{&3QWMqK2A@u!W$Sh{nhmJr;ySsws4bpXIh$tUj~|8Np8F3pMgev zL|oTA!(`F&mKj|b9YqLgI~p5<4P7&A0kWtE)OE;s;>h_;N@T_=W@BPlh+t<^i;U`% zVY1$|ff*+2JsO@d&7RX|a-!KH;v}<0TqGGgsKOVd8EB7fqI-?pe1TAzv6$vst1|*= zX?;^NexbR(h77b^iQM)i%`6@=X2da@?DVbrrf^4IM!XegDF5P&amOs2WBr<;8sb!G-SD1%%(_#1Ps-?tfI%&n@nyU`E6UXWqqz%{7Bt1@VV z>a{xK4a=K3(pU-Xm9-gjs1j9M%&P6#kpaEfg0m1D_@my31Od)vJD$wY+H%AbPMC@Ycf2way&dh3hj-y@he3 zS+k~_&E~(cC9^X%so&1b`?Q7|@6ALnDTuz0_hq)FW@`O&=0{5|H|*C;^zDhW?rF2} zHk>h=U;Ufe&>hcbYAC|u-_3L~ubb)k)tL=_^=2lTCO~kP{b9Z!u0HcSn*07v<|$h6 z)km3nmiNZQWFt#%HU+mYH1UNWUS_tWl@R_hlf93}h;R@u%M@2{*<_haztt|w7{YI<*``%eQ9Kqo#G{JsxuMUCW@Q5tdhx*YmS?3rcu&OQk zy6{n$#Rr**NuKa*Y}PTBmS%!scwhwR-u}=jF>A9W2ns>pJx__VX0mD0A0Qa-*_&V6 z!sn8#-7F&lOa=_?kl_FWHCdt7U}%$6FPN8-g*Fi)ShhnUIv!0!e#od9d~3`? zNAO_|&@wmcG^=iKP)XKUW)i*2vKBdTB%V&l3Srs$f*2SnF88FYW zg$S>cHCH!_1G8Bi$1N;79iHfv&9qLL+)SW3z{{XoV30LbQcw zqWuyV&f(nD+5UE%*e5Ofye%iT&CBjgMSWQ|Iux9=kdGDF$2g~em&RsSQ89ILcDnu7 zR}KzPgJH~^?0cMoaM+S;rsJ|P4nR1zaR0LGz0MrfX0OZQQsE zCSEeD6>v5CcgBW40JuhFTZ0}?Q0bMove77vM7Emy*)3S6SRz$8#8n8wbW>2yah#Th=3KNvsi0d<2>yM1uN)Q5zt<)`UQoILFlzVT_jLFK?kM#u!v=3$OEPW>L|q_PbAkvH@L zK~rwJf=h`8U)cOb&So!@PIqi`gBa_GVn+2zcLvE$xdC&RZnTG|9CH7}x*hb%9f86b zbP32UbVlif&bbd8p)_}3?kuc}^^n{hSl2x<+}|;ya_{25BNB6OW8IrbbEn|zR>^bE z;QV53F0sw=)Z8CY%Y@^MxiKtVBCCPB5r3a56H{q-FN+1kIE zGVfQGR>bR8-~~IW^OAVHU2uXX?};_g4G$$pD0BpSQ}b9Sm?J*uN#kL?9Xw&k^I@q3 z#H>Hqzc9}qoG#6Cg_DeVQ!IJ4&?`GHJn-v{1Wa%&LtS)l9JsM8&l?>pjn+l*7w7Fm zRKSs?d4P>c97JdemiL^5irm}M79Lxdx7r=CAnkMfzPtq%=#Q2M^H@fGCRAtG|4`mu zMn8%Jh?g_CYLoBARoS+~d1qJ}$HDi7nV@@sK^5FudL}hNf{0$9a64yRItYJ(#cFLcDjk3E-KFhckQTa^U4}V4|>6U*KQ|Z^Ufm9au%D>q# zuWi{kKO0k-(?5S@gM6iKK)xeu1;MPr`TH@8pkWR4*y`c=t65p#2-h5*j?G_&spQ7x zZ*Gu5jtcS*HLPyBByhoPji`Zj^D-&_aKos`r1^8PRbI;T*EPs0{gwGk8dgD*HTk8O z3SZA`6&RG9|F~fWIh2~e4ztKeZ=lB>Fy_Bz8CH;J;u^}gf<5!|Ke-|*c<2Pa%ggrw zGeh%zVdePz`HW*S0l>fj0o%Ye)AJ8np}|Mm?EFi35Ym56{(YQw2Klb`DDAZ*|2Y2J zVOc)fRiYODzC0g2q1M8+EAy}8bkgd40~##Amzz-si_&Xb^Y7yH$Pf8ja9X${e-<9> z*zL_vLfjCqm$4~Y1QyK3D(?s?c!|?>;RUT3 z#)A;KjuSE|H`Z?1r=XMp1owwZ*kw>bN6bVrtbjO2*oXq+9DcC{N0A}m-S`6H9NQ8K zh;xh;6%gl$6BiKY2$mM4;>w+`E+Ca%s4a-YmGx^{!E20rFstANBRK&$kXq>u6w!Qi zgl1uZzniIr{5YY2wvZze3)qJ@7#*T_H8Hq`uFohCVrL5brr-kp+hJ~j2iD7f0cV%D z3pu;oT3q0U8_ml#oLvsA~USnDgvdfg4cn=$!_RSr&SLcUFZvOr|9nB=|hHF8mg|*m%dnjja8JsURCz>r|-3 zW({^Le2CR==23{-8JyaE zuJ9u^^1Ot?R+#f%X<2=Y4MZi_Z=R?P;!Uvc}Kr-JGI#d@X;dZT?S~!}; zgAl9&Y|iIbfnzfYJ)qsJLZ-tCOfXI1#o2`<5FeaVxDY#};`>5R9H8{k~Pe{hlW*x{td8xvZ#3Lu$4)u2c`u`+!X{EYlS2WOQTVB^`m4 zvB(X?ekgQ>%JiWc9{4`Js3{m}%X0(Ij6-{XEvZH45a;oRqP5tz!C6JYIMw7AEn(3C z*E>MedPm$P!6X|FG|Di_+}R80?%g`eZnsAd|gpLOfP&3R|PM(a#gVK z2d)YfJBpHV75uWds1rjlGQZ3XfRlbMinQh}1_zH9z59AC$X+PqRdwa_dVA1uMwtRM z8tLo~>ePAmVDpV4YcTg@QR3GF1K#gNXv*c76c1Q@s%VuJZ!v8CTT!6}O20c_w968u z@t2FrnEIdJi+*P#)EADtR^))V0O`%5C9D`(w~E@axE!)bUw{bs;O!m4py*yvB+~=s zKVj(pUt=E>CDZR%K<`$?(?L#*^I#BbUDg5gZe7eeOX%5#Vkgi!w%7&~-x^Mq%CgKNQFSa%1q0g_ zv%IE5_l|^U2dW=foDto8o56@nx)n?RvC-7~z~WX`AfPSUXev0knBfx`Fai3(u_48e z7(xm}2;Vt_OmP^W%Y8ekSna}zY2Ov=tU2-KqT+K- zynEbt#1HF>8QvX}?}*4BSx&HnH#ZgM@p$)O!j|IZd=S!kQ8UmbQW6Lbz+#5uWJp{l zP2*WYi8W|5qf84L|5#l1^{zJi=GI04fpmcmyNY)(xVRYrMC~nR_;_f#KL`YzC~gdD zCZ%+MQ}-38Tk&RtcZZ61v#UfApJnIxLG|I{`wY?a3vvYN-Ot77#pP@;^H?#%Qq=zq z@#?R|=+o_Nn0%@jZO=Lz{#9E%kD&+o0{Zjzk5eud%Uls-@+I`c-C~wwcbWs128vOgcp(SY;H$Ju`p5bLA)&nAc zSKA_k1mhjPQxqj_5iu}RTf*?|(PWpQ+#Wf<=t{n^L+r$vCFm`{Y}hov z0|(z$(j6-ln@bwh4cEM?cK}Z|m8-zX@n!B{V_VcU&rG{*19opIk$!zU1xvP(?7;|k7z!Reuyh32{Bubw?(1_8STfTJD7>oN!1diFs~P|p2)pbp8OfrF ziBceJf1qTI1;^%(LnSQx(0#`8J6z()$_63>{Y;5WI99?k?D|Y(->)T!EYII21ZPln zrvx2koYWGXjD5DeD|~&XWS$%E0EubfZEcAM2)Iz{3v2%O$FED4&_TU`%3fp)U@#1 z!=?9_{q!H0M@x5Daw?xaUMiu=^*m#?b>d~St+!n*{XjHwhllD)W2kb?>r2b2xaoeW z6%`LZE(KIf|FiUaireUI=~kBGmr#^W13Ig+rQqhYGV(~sF!7xXdF#fMdChe$BM*aG z;B-&u4sMJu^8{H(^>(11U#4P+-8Y@el-v%(4{gehFfxR{6^HDxGR5^;mB46Xbnq9M7gBQ0X3vFr$%w2f~oD=53kFqXoq z6a$;;vgzP?R3)A9d9Au^&(~Kqd2&R)`zNDC{qX?;5FH?(=7GQmm5y-!gtCEr-o<|$ z7!W(XjCE{>8y|UPD{us{>1UMt)x{WE;aM8@NI>x5;B^HoP zOmPDGIjF^uv%}uaDD&*PlX?B>mvn2D!<%tWp{euA9$A6fxoAbSeqkBIgXsSXO`aid zEGpZ;68^t1E#XQ4hb}Ecr?V2Sb}P!}G`!Y6LrYhdZLuWK&~I%S+9Da30?({3vtkT0 z|E$p3Z76PC)5Uj&YqpdvXKfyzy$vG3`z|250xcRp^-~!-=zy>-Jy~{*i0;sEv8=x< zm%ION8QN@|Trl~5+5Og>IM$^+(3%qudX|5r2(^CYXomuF?TUbMG$bQpMvL+rd`^_N zFPBsCWS8=3EXypvsNJmR<&EZ^MZ2#O`?Tv_E@-%Y00pI6l?L@K_qF4!r5IM8Mb)kw zS-y*^y-r-doL0V4UXFI3B5J2<%Z(14csH}$WW%l5I5i`oy+H$$iL3swtEP^i#ha=8EqJ;Iv@_C@@&n82F>)YlXf!n6? z21UyKf1zW?pKU6C&f3Ug|EjkI{_z#zASkMm&piN7+){puIUxKC(4UKn%I)RN8cHw% zRQ*&=pOO3RDBorUYHXUi0h`_B@V^2b2#fZVGp)KO6>d_S&qDO<=2^m@MkR7)8#Jk+3E5%%<<*lSfFO_ za2xWh4$-qZI=^1>s;L)vcedOE)K0JPh5P>~zi2~h3a)xs{wo!$UzDeDCW0Sdl^^Gv z4PN=H9F6&~-@&!-%h8yRh)EyIAJf|s`4uPtk=z!x6o8ev2+Jnno-oC;F zme;Yu1lF=s1sXsSgu2cZhbZp0hzj&%PIAXbnXe7+T5-^x%e5I$Aw(x7VrIr+6^AT% zd%!`vR5ae%@WuWaDsgn&LrE;qL5lL4f$6@Klz_Z{9RX4vo{ zF#~$q|5Fy|GV*j88eIUrEeOmwbfq!BSD`L7M+@f0RUGVRE(e)fFaJ+cLq7FnW?1A!tg)QF@!*Y_n6H`?g}P16Ocq4bBY;Y3dFK zEv-0C9kAslv-`Z>YzAAgwclGumHg^6;WXS-HIoU@tJA5jDWVpbAW2?g=WAl^@_jeKb?(U z(g&Q`On-Lx$IoE>y^7TTHfHw+6_1VnE`N*WFW5R4Z*`m~~( zHRoE5UsY_T^>g{J3iJvD+kE@jN>c!dx2QA)5KF5{Qvf+&UD=ja&s&GeKX{<8b;p)q zWQRfBL9laWcdp_poGaV&!2I_W$>7Ja6-VIju9c|jNS(TPm1t0fSx&d^#6YRaHG8F;9wKbI@oLVlc z)Z#Q{Mdcn#l(t?|8EQ-Kg~lzFM^GjKf`hhKj<++RUff&R41U^IDQb@H5!F@3VMW&6 zto#}A0F^MN(d-jyX9(_8q8Vt1V5bL_XlCgl=<}#@wIlCa?or+DUFF*zd4>q1K0j2^ zB|;yfi3-++2WdkznoxbHHYiG^iVVhoM1+S%>Lb;<(9q!M$S&GUO>URm%={dU4ji<& z(*!2{Rq29WiQg8v!D8F03~QS?7XQQhpa1zEQ0rLb4`yz*=mBb)RN2E}&Q-}gxZ9;_ zxixonmRHq1D^5)HtvYT)#8m@YR5@@`LMOCW55Y|isX{(S#Liu-ez4@k7d@)pQt^GC zs%{i&@W84S^tO+~s;<%t9>iAtNyW#4sz;{W#H!o$wj0u_do=fwvdV$a74cGEb%n=? zH&UwF`10;>wi_{~>JY=Qv$@5TMnE#I$_3o#-*K2-dEO3`jIC1h?!aqftNg5iD%ial zY&^NDAIs+OCU9>sv*le|a5Zv~BRn~~s&$FooFGeFA^-C~v!B;>0GqAQx22wLqy12g zjLt^dJ<_y;k6lKeoXvYi8Wsq;v(_EnUpBgBLujDqTBkd9(70jrFXKRbXmu-aJiOWq z4BK1NAAAg}_6M@vHGW`XIQl^xR_zJA!>b2_>w9bLz&q(;Cy=qHCgN*u^8$7e)sMiI z{WbnBniN$=vQDbVO3i2+7|<5fj#%0V%#5nG0(J*cnLk8T`+}b$t9`(V$Z9{-Hfub= zsi^9%AoXBPV-U1-0-F92Rh`setX5!IboI8mKh-pG<`|g?Z5Ax`1n+;U2>{!=RW|~z z_`X6f4(Yv>9of1x4i0w_5nJ5bd)ws7aA6<*Mvod zM?{4L2SKx{6R7xUu@Qy??kmLW3$c zNENDAg{f3pbyQeHR8XikScgKnR>M*J4;N92uYRnq7x6m5tL|eakF!|u9PqAwGsG`4 zI9weTq7I3SjttX8s?_>OeRxQyTBXuQg{w92%+oQMR{m;@HYy@ALLI4AYr;aJqgBzW zV4Y5{3D-sI!&Twn%!A3EFl*tMDLntk$l##xXnjX6pVc_mJV`Khfu?HJZ4{9G89o#vnygV?VMT90A`M*9QA~G}r6%eh` zq0TNONUsYDkBkb}!&zs(&$J3qM+U1kk>SDN`p}>-U2sHnv?d}lOdEx~G(0FgTnA@W zEIhz#8WA3?4c2NRqC&$WBf_J?!@|O&gSFbw@E}z%%u>zY&kOhu!WSC=CuG0|KHOk!f9 z2CBNMji`WA)Ht9FDkvO4VSAWF6GvizC{(zx&zM>|5p!KbtRCZ+)tHKq=>{)N$v`IJCsL55h{#@+(?oIiVToR^-;0 zRzoMS!ceXG@vH&ywzsCA)v3vjj9S2>^v%$+-DGO>n2{VFedwwA8|QNMGQx^cq#I7n z_MFHI=#_rOHX~+g&2pm1i>I-XUoLZvKXIOTW{6p$6+g zeV9dNX!~BkOhE_q-N<*n(AMceoWsnn?l^JAfOU6HKeJP*rUj!U)RhU zgDSL`AFP^s_b<~2tb20$%0kIZX58KX6h18NJl69-XmY$z{fmSOd6yI)g;_D|$`StxDB*xWsCF$2oJQb5`_- zWv5n)EX(2?PYd;mVKH$8zHS&X&+)NB$*yu%rDnLM#d;D%6`i$7H!5M(u0>8I9dIkw zEWM{t%(kkwzr0z`Gb#_pRlonyjFE>MuG4P3`AoZx?dXA7tyr4ju(CN0(?#ep`1D%L zY(2SCF?%gn`en-ouASFByD&B9+0=F)LD{|2=x}z<9h32<-uP7Wpi<5?sWtD;9;wEj z(A=rW?KV8WTCG%kE3E33s21o>RcEx>q3g$Ye6WP)SqmJNW81FzET|Qai8hkufVGe1 z!Vi@GO51`a>%UcVG&}V5&~mCaokC-!^fZS@U8zLzrscDKQz&JdHPnwb&p4%=W45aN zqi2jc#BuEUP}9x8;MawW^{VAKK2Or~EK{r2G>gTnK65e=*epvGPY*oH3vjRONRN2j zW>|AVFV=6HP3Nrox*0i+9{L6oOkf3isF_Bn`!$Ae)s#zaTMcr|n&~*pF)I^bI?leZ zeMVDJubCB{;bD5dWisvC{LVmk16O0^bGLV?1Cw}*&=H)B{mSf_m;8fB_+2VLC1oYA{ z4CptWqwcttVVSONIi@vbzBl8ur6Aj`IA5B2@x2*)<7gX}<}&EV1ITJTW3QCIKrjJi~TOmSfBEamme?L4;#yFk2b6U-e8cvJB0|X%1}72(+pm z;07>m*Gzw;P|h*wsq2iTdMVptGG%D$nZ0HXFS@>_;RA%+SayX$rQ$}Osaw9SvF$R{ zl)IY;ChKz14Q(a{-?k##V5O>gUgTMG5gyvMHU4+1oz#?%N9n#Zx{udsbm;-ox2_(B$;UVE40g?wPl9 zIm^DLn#?)r5G%4Z(LH)0TaTLMdVa;!apXOt>S-o-uHUgs2gZGmpUVVe1+J+(rh|uN znYfOjTO}I6iotqN)zYb`ti?AMiYA*RzSCyAkJrOATnlTSR+V9AIc$6DqwHk{WR~%& ztsdHc=4quU$Few(qgcLJG3)CZR%$h^qIs<8QQYsD#gE|+YnsNE!jcggMr_+^%p5_bYTB=#hZr472(9BZFvBMw;ZMPc94%%d#8BP#Z>8NbZq98tP`r;{_N)?=Iot>|a zJ7Umd1J9{>xFfY7G6=)Q{r2CozR+Y;byH(WbJ>+rL(K`r{9v3Vf&Pv^m4Y?1+fkK7Hk&byqLN zbIg7+9TqdD%&cD7VWfp_<}FJ$YU<5TH4iN3TvJuOdwVN9&;JDXvq>Fjs{V(1oOEqZOuWOCG8zgmlkp{O-i%oq@lJ!}cXjNn&f z22NCAaU>+co{7=Lic+bDjv2{@wrw%Xu^y;V$Id*tSjjZ4%425g2V0f;5OWzarXP6( zifkOJidS(B=J$Y6!o}(7CZOao0Yo@pCYv6M5EYX=vjFE9jA^456C%KMWIt1J9lcU> zTz0J$S5`!ih>@vlkzp8$Aklzz2h6;mj+r$H5whJuoa)sH^@NI5;Sgm+wd|c~NE`kt*$F4i980|nk>_iK7OQIV-OYpQBh4_l zp;i0@$H)1pisMsb!SvYiu_aO$`b*kIT8`nW`no^!v~s3l6R$@0X`>7reQoD>s~DzD zujEM*6=6r|5w~E;)(DLdovZIVjVfC%m;PnD7SVQ@AhdwkUWF|K8<{kCH}C$%1n;UW z-3(mE4K;%D5k91)yG%!pe7B?KKe%{soW>HeEvt8riuH1iVOOq5Q{H(q_rnR7{V<_L z@wg%aOvYTPJqwy2l=8G*SSK6hI>dU^h|#jTAs5 z1@NDf{*4qsJ*VAB0sN=TLn8&SGrOG^El*OsjTAs51<*(Vd}zv{kpk$L)@Y;v1b5L$ z0W?woyAo546hI>d&`1I74k>P=02(O(GTV(5z;20$Mhbw0Jvoh?DS+eRSFW6SLYKme z?P`KPH*IG5Bi00!)aw3k^}J!@O*462&+CSG<4rf7a11o0gP*!_uV)LtQ03!ipI8pa zI)|aJxmwMzT!2u(3&`C@HOH)gxQycKnr2P{xl*ebZY_$eC~zzRZWk2lR+`r87y*-WEq+sU&}Eoa*_QYfan=9Jkz z%aKibPOnnOLHgUbbjjb7?jn`txW4U0@rBz2BV3^tC#(XN09FHPzz>1hnNCjr0l_4*!UG3HG~gW{#5UM(z|N%LD^{)M#nd2x4a>8bUIDnHEQ@NxqiyiZYaX0+@L`tK zE|Xr>5qbAR7j#CoPH# zpAa**W*i-I+npzM%T1@LFSTmm=v|(y3H-0`FkRQ2FB9 zF8DCr0a!#`kbv-)NRHOyr+QZ4=~9gad_wm~N`r;KuMVifN>C`{UY`zLrQ*>|Yx4A6 zi!3`|$`dA+4ZcyU>GjH;FxzlVePPP%&z7_tt2|Uq{dLOhy(#+u_GIWFtizDsWmG5@ z3H@s1`ry25J-+Twg4Yg0p!QNXp#ii4GD<;#10amy=78_9lVKB&TQ%#Og`(?G250ch z9U#QOu57BtD%Ge0wvk?3&ot*)4b!ffXH}M&q>|vBr)M45BxPEHMF#9>f%h?d(*aOw z+w?qY9d^9Cc~A-`3EBF_|PIjK?co7z|ETW6r4onAHHj zQ5@tl{~1X+NQ$`0wCWht1G&w5G23Q3#>Ty{psVUKefB|z8J30tQ9T#{TGWFe?zi7^FwOvnvYt?f z3IPy2S-rAD@-F+fIeObbE9YDk6EUc;qHb0w-KhYNX9&4r#TSfu%?+&pOrNdpII4MI z`b>Q)dswZEh?Rk28qW+|k6RJClodpJ{T3}-$shx3#JT`x0-QTgXzpbdyrw26YtC*^ zm2BgluUZ$dj#aWvr%)Aj#VxaYmcWiWT#E%hqXxzeBoy#uRsmfPE0k@-{xeeR2VjM@ z$OV-Y0jLC%6aoFBprr~dkgCfRqB72#4ZPj}%`Fv8%shblnPcRlS>>fnA#~kzR8DxM zg#w>!({3`}$~mU%Ae9T2&K_A3EE*RBd>O1W|9~wq1Cs$_QJMoXEG^ri+W{FfxYx4A zF%r3&$OU{!MICUq6dA^*n)05YRxv5ov@|Jx2u*-uQDjrG=BR$lW(`cnTAtAad|A%1 zsij47*ZyVJL5E|w-C_nv6sISMTyR7H3xT_WBm(j$6{@%y^_egN`0i9SJScIG44;|A zq2|;TxH+znV4ZN5QlxYCU(XMif4m` z&+uteSr&j0W_1i>@Th{m&ot`R0aG~^)i8jg>bL!7mx~mjQm+=-xB%2FGm}$g3arbh zMHCEFRKJ_*6$EAOF2GVSe3bU$@#!A;MZkMDlbDo4aEp6WuvcOU#zAGN0L=`RnSpB9 z79NOAPvthm8}_G$ppC};lRJ5@zsPH7IvY^tO z>Jgl)2z;JTDU%a#xMuV1fN0s3uzH69w~B=j4^n1WZWi!$C!$tV>gKf3TV4kJoM~0P zw0ZVtN;yW`O2~Su%eKt!U8dr}!2iJ8#pO?C2Yv-eb=g4SM@8|lhw&AQl@K3Qeh(!^ z_#2cAX7lTB1{;@Q*56)@Hz&z~w6y9#arXp%EBHYQ?EsVtnOUOqZ=7+hV;$ z=Ys9Chf{4DF-TY`adZV53XVK-D9nR2z^Mea1ZJMr&a(YwO`~Mir@E*{Avb0BCW|$I zZYea2!GAJMP}pMLM}w*YsSjmvRiMcfU9HK(*~h zGy1D*-kyEnXx$#|wi{-6Ji1T0MWsR=9=KN~58k0Z62FMKE(R8lZ{b#$_5i_CEXBT< z89`hrkiP&;b+%&hhJG`_R%SmMZTA6_(<3_+8RXnADbOh=Wdo(03zA9mKsEOHCC=bm z7f$MuGP3N3u55%r8X=HI2xKP@Ln8#zA@I@&fiyxO9}=W$gh1*=-i;7Qhv-Wq1cDdY z2!S+0AdL{ne+s%ZLLePNJB<)XBLvb2fjIyBArST4l{0(CLw-MddY8hh?GPqE`OEAB zKLWxehWz%dVF&Awb2?;d%qnqPav_oLd!&Ei?1E~;6y8bPXUj6;w@2Ren?2+C2i>F> z{#$=^+uLO*MF^Z#VVx3QBG?{%$ALNn>N!Z0;eAXAJ9E!U2s?v)ZhmuExndIHf^X3S z5dl>u@l)U`x-h~4^oVMD`i;3~CEqyGx%rG2%kWJ&MB0TXDgv#s!8h6BMJ$>1DQxD(j;G@)yZCS&q}^=czMp}f+AsZ zqe{Vh6*3ens00v_ku%h#T;1?}Rk(B7>~i)wx}6fKet!C#&lbxBHQ_%oO^Zk`xjk6+ zct8+&l8*5t6JCEVIcLTE!V4}aIVAtMLUPkplYFNgKv3!i(EGU_{3(@4WDrkK!cuY)#&E#q_=8}4QSw8?hec{K3oTMVOXo6LD0;Uzb8$| z>k)}kU=sj&$l#Jzqwm1EXP6q{*&t2OuI@Gy*aR0rt-np+7{(}wBqeLF!%+~DzVYf* zje<+cwVni%iBe}8P5^q_u4F4XZZ%I*C|2YIz9fW&=M1Id++eh7lk=Kz}euR6v{2*`O4rSNK-i zJrmB;q6zGPIZNl4`>=8P=2T7X;)hUk^0vZUFLkLvK zH0sH0)W*Y@V>(4Cm2*sc%D=sNW{D{e)?W*TLZ}rPn}Cl%JwQ{);D9WwP9;e$7lu$E zav(sgfSee}BNEgh>loSgYCU;olI4l2Rag(1hO`R5TppPRpBSgLrFF|W7Sj?^aG04E zt7`j#xnEX)zqh$psV3veap*B7q;e)+cTOgQRCa z1bz1*lG6h_(BwB^@NESU=pi7bY!}a$=j|0PQi(fdwIz_ z;0m&hk~L@1DrFl5LPf@~ZPn`01YC?k5!P5-1V)CBRI9OYvfe^$s{9*RT2oRPAP*K$ z2x#tLvWEZ?_+sQ$$#DXds=0N1gh$?wJUpHn&?C)Zd8_!LpqoHeIIsc&gArswrcubc zNPHG?t1=7e61hZ_v&n$uOjU@@d1Tf2r z5K7`(g}AA{4WpVSG=B9F1dCM!-v4Ab$-P$*Eb(}nA2{hf_+=yo)ENKjs-3%fXj^BI-?&F*^s*fId!`9<~WyvMtI7Sc8Q{pREf1JZH%Q1#f%Y@7`ID3JZCLK|dK; zc?MJ9QE}tk)0=D?aAl2+2#^P>il+cKJc~U>!G9sWIqO2Yo4{rT1r8h$lo(e6X;{djQG*JWk(J_qAw0>jXB#QxD92#pC#Z2-=6(`R zKsaz^>fzT>Sl|NZfcYGXDcp(`8bAyClO0B(O z^Pp1pMX{;twY-g^6qacZKn{Cc0X%z%hj^?_6_8|sTB15IaE~yZ1`=!>;QA90f8@GXFaI$Mc~B6X>IfJa?G}2(X-9g;W<||`ydhV zML|iL+%~#B(+~0?)X78+^B4H1Ud>ZFHBkaVABA!bCzP-$H7lTZL)hz0P`~QJ^Ux63 zcIFKBg}{}9nr2W_z|KqnU(^z?OM}l+@WFA4L-ew3rnHYm+?On){VrLet9eJy=&F*H z%4oMzp%p>cr^0SqAmtjnH+Wtt^8rst#KEhhi*f=C?eio2eECvJu}bG>JkHFiwiapsS4nFBAnBSXuq5UUe4EU!LN&bIqy?ub54ZM3zyY zjX&G0D_N}YdjS&aYytJEfbI-9MWKpCAb`pT^aE0A)iS_jc2*FjIk5b zTSXw_lp&zbBx(lu(R2jRlC~5E5NJ%?@iZis9f?!0Z`WlaqRfY3I=in~mFzy)fv*&n z%#6FF?c&wWzAQIgvjnxLcDy#%Z$t(gk-H0jmTglGT4X=HX?&<;c zzSDg8M*y=bz^o&bcEB$N+^}&&bG&iGyuV(h-Z*A{|2?TRo^ss${o+3#Gk@xy|LLvY z71W{eeZAu4AD{0PMohl+lJn1vE;?)c#ns6dMI%R*N1l7}S>t!Ud+x;-U#hM-dHxdh zUo=8GMa3NqAgj%QSlbn@Ip75vuHgW1$C#gUuERW{B)UDURE|J*M z$asV2hzu>osimU!s0c&QgfyH1+LK^DxxtFyJ*ixWTMAIe*Ehcd$4#bHQ?38`f>Tjx z%rr_;Ra4rA1wCNQAu$Nc4NMt;=*Y*1Q3wnH>=WhkRX0^DD%xmBk?T-Y2xCX0unhnYNC2{S@aCZHCW@K@kc5mcfar$w#!mU)Jj-g+=$U$+Vg040 zh8p+If=`rS5Rx04C{ly_AzQ;`kaU2fMT1zR&eY?RDIr&a95Zi_dE0o>-OU>c#cY#m`-@ABa*n|yFYKt#zp!9L zS6u`qM;nX2vv_dHA}uYf4T8x6a0S8wH9#`uHvDsN`K4qU#q9pAHvDSIptyX~5+o9{ zpGpVleoi;+z=Z`h#)sZ05{lX`u7jM55}<3!b)fp568CA0vc@QDjIy>Z!2iZ5Tm9XY zUE%{iSTLb$;i+~W$b+44(Lb^WGU0$<47%Zzy>H=lYkbPy3un$MENS=MkiibzE1t4q zp<9SoTt9Po(!Q^tUoz3TpmwP_evE?*Zv_o+BzmhbYk{=@0PX5>;DCQ*Iz+ls7YV~X zZz?IisHa*q=H5PPP-%Iec;1~0FZ^^FJ!z(L2c|OW7FeT%P!0?lsc*pfNFvq?S@Oyc+@c@npZYK?#C^V9w?4dQabkLQR^b5nhvyv}d`PYU2-UGr~3)s2| zk13F{5K2b*op5@&USNRtt5@&jo|Sy#@tqev(xdD3g{C! zc2uuq$vZ3g#@G8UTHB*!>l84d(&8(m^^2QB~qR<(-r`PnYe__d#z9 ziIWdNDFUIy8U}(QM5Y+{oaRQFpVrzGv(Hl39sJUMaj%2r`vif{PlV~KDnNODk`Lw( zvdAhmD1blGE6zPDx#By_MgP&G41FKVy$Sx$_xMH=-zy5hQ-N9tL!cw+H|Cy|eB(DWcu1dFbePgM zE$XpX#c|d4pDeoZ!#+49-uU#Qroyg|o#apE|8db#YQ;TsdaJQR)L8YcXBHjvPfj^O zUAA%2^SeIS-R3aW{m+Yrsq=rbsPf^btpD?(-tl>x7Tv!WG>$-l;K^ff!>5S9jJF0M zCFpS!gafpX``}cVJ`S4u;1Wyb|Y6_+>Y02^ha2Aa59tm6rzgjpykE!f+WBje+y2E5`>n%b?s&XcDS*!r0_@O4 ztr&-$i3PoBJbJu$fKYIX%FWI>seZG+@cyC``$Dyg+BfrOHAIKq#Mh?sM92=A4k>0! z=a+=y^25(k^Z&YVzj$gdmE3AvbGg+6)T#Tb(q8sxO}+M$MW0b03{uja{^_TOrMLRt zeN}R++n=+q`t1-UPf!C1y4%gZro*>&Jo5zgiT#vx^7dc1^9PMcJ9*Zx8ljR-UfEx* z+zY-usfFN9QyvBeQ?{z_{_hl>bdHx-=z6wbldz-D(i1*WW4N~x3!+E zo+xnc?eE=o?Oy89h!Z~ffi!Rb9Vfg~XrXz+<(zP9XK7yk9w!{xz2%pK)Y0XZeO390 z+q$R`<(2_z#{qYaR@2HY1J#s!Zyuyt$}N3W)04LiQ7`R$?;UyXsP5B;s6&VG7jj-_ z>YgC0*Sk+YKwUkoWuN5DPAqbc^1pJ=fofyhiR#T^{P9&MJUlvfhqs(n`2WiMF!fyb z>Am8+4{VvaSLxh~$A|t!=OwX_s0`SUb`qxP0p8ZCsKNpL_vxdJW-bKo+=DsR)spvm z$$J)_Mh~hE)TWDX9w_g~ov8G1kpbWI@PPCkX#JcX6zHn?$KN)vE9aQ_5NgwjHw;oA z9MaO~U;G2Q)qemNHe=cV_3EK5PYst~lw9{&?QcRoSoObq7j|5B!vX5%Q7!Jj{x|Hp z5!ZRshO4^|Z)yG)KZ>K<9>uNgnFnwFVLAQpU)wQv-j4W3V_GghTV!$jeDuWxR!x?mWkkgp=Gezcmcoa zg9}=^sbJy!L2B%`=XFy4WZs)MnfE?^-d*+guKNn_t^Nw{J>Gj-{k?JL@ZQvOcyFIc zZRhwc`fe$J-=s=n)ljGy;PqIS{D4vpU;rp zM*kTn!bMu20RH7aMKSby$Df|k@roWl5^YEwE4 zdo-L05YJCY$YH5)(LtqK)TLO2q`{*SoTfaQnpYwZNjYM@h?R3tfS}e}r>4cAmWyIi zQ;J?_Q*14$`Fa6Ej%ib!(z@i-5_K(^rosMe>Nl-RdX{95%+`jVM(qTpOaa?c!mLys zYFf=SVpyVup^S8cAvDP_7Q^vRB?cq}Ay;Bn#FtB}!BY->3w;Wzdhz@yDn%~_p89~& zJ0c@CB*sBf2^vqiqlHq?Y|~asMx0}sYVf0HXlmOVOPnIX5_TaX^g@Dxk{FLF1*xb( zS;RmoBc;%f43jcJk1RulI0$u(@RUtqhtnb8p4}^{QW#Ype&S9-)SO#ZY2#fe=Ui06pnqsFB38qo zkbDOzPZo@ zw?0xZXf{>JFKG_X*D(1$I2a(VPZ;gv72}}#E@j)+dHOANMQ*KzT-dO;M9z$9p29uPszBvHVJq_wU4R8ehf+fK>NE^F2Gcp8w0f37 zsa@06l#`YoRAilm^oWvMhXt6Q>8`62FDvUwvxddt|i3Ndn6;_dm3Rns(J<5LZRKh5kN05I(!zR-#rOEw{o}p7O zn`Lq*XHXaQ*e_cS9;NLzuxi3{W*`HE&Jg3;Bf3PoUnj$1vZAGRg{7S2L!IEn$bK*# zxER9Be&}?d+;_6?m@O;U!cWW?RH9}#>w?spcV~~3MG+MMm}UaVNSJ_y!-slM0=`u3 z2lP>`zHEDlKLju^0Lq2hMC2V%904+7QZ@BrM)PchuVQ`7@`M;g~T3SD*6VjKGZwH ze3D*DF(ORM#Z)zXC{j3r2|?q9SRa!K6j9ghy9F|ow`Nn}3jG2~91gKCXp|^Ar+S=x z5)=~%UU&i|7?RS2WSgzmkY}6q6@;0|5F1%UeGDfL{UfNh98?Y+S&#ueuq=@jN~d`0 zxmii^3@Oov-p&bw5Mm~{U0B6P?Wump;)Rd9lp^vbA#`B%BZ-FU1;`)tRXn^98zn*l zUCDq=H4n4xdWnl$%C=ioDY@8>X6&Pm>ACoz(dKARYqxxfau9SYkYvHsL|rwY8Nfo! z(g0{EhEA39?wo#Rr`*(CT{sX7O~x|{It(?Es9Alp1MLYLri?ph>>_K(yQ*DWs3so1 zh8_|LI;zDf{SPV>0ej4iI^Gj$7uK=FQ*6@FvXm_qcMG>4?*uFk^d@*9Y!B41#~@da{AXNugSEXx-juuNBfi88*l^-31C zlF1|mgo*JF#7rvlK|#$^qvQ8cD#V$tlpe$dlbzt=hb>;owPYGj&|c(pv+ULqw3Ms5U%vF9(OzYA z`$di2u^Ut&j}TToP-?=57y7Kp&@|cbv821qymWOtRkLdLQ|iEW!c}MW%?>LY${}D>b#lwSxiI3^X)3N_XuPO{E*S; zgis+Sb7YJ_6~aqI2_PE*BmvV3%r=ZMh#uJKA-k&iS{ zrmnhiY0qM!Iceh=R@gdfXjC#ZU|$vDF4wkW7AvlT4Gw!q(&>OM@npja;TyPAw5lQS zL|eiHxLWXJg{byIoxsLUSmmIaGXj+70$4mq@UmsY)w;h>&bA3A0bfhYGn!I1h|5?4 z*Z@=o#vnp57HnTEM4nxROVz=?W5-yQJqxr9wFm$J98XpRze_EI;nRm?& zA`+XV8!ZEtNeDmq`M9m59+9saIs+=aJj@1eM#?YgWj~k>3@15#v4j3u=Iw$qu`SLa z$k>caQgEOih7N2M6b^)M%##8pg~29*MGbeTW+RZ5Vs=yNQ#J>Q*fgs%#4|iq5DctK zHDv3c>1gjQ8tkJ@9W^in`Ct{4EHNsQkptr}Vzep0{>e(4%s2%_k!xhS7uWH8j0N}@dGp~ zxfqeCtXJj0XC{P_EC+-*G{QC9q$*)KkI4mi!OkI8%C?!vU63ZYOv(iS$5-;_7ibjdTEFbsnC4dTm&-Cco^(_yh#RDZiiL-_e%|ZvADhhDK&rseLnYLWh37ad=H`6M}YhA6rXz@W%D7vFHtsVW4 z4b`AXtP!;lPsm}z4vnxUyJvt+Q5wH)3Ur8`;l!+k%rR*B5-AfMZMc_M>*Dc$pS7Ye z6#~Po$J1e;LGql{Gdt20u}{pnS33t9WMNPy8*zB5C=yrayV2K!03cDs=%U56z$T8{k;1Z-&@!peLV?zNgUk5^(278@FIqQ zn4PeAGMLsx`IY4#o-cSc zp{H#lP=bn8mIcJ=bk@Dmnyw1pS-fxAaoJb`y@S}7;YAlS(4Hi+3mH4x zP(n=!D->bjOkANnqFwxX8PA9i>+X?w_I+7>vjZ7y&Mn)id|S%7ED30({CU7w+1git z(grdO-xj$yUsf{UVHv@SE}zMT8TLSb=$_qRb^`9T>}X;;gda zgwNX{vJXk1%T&br91pu~DFU527VD!d$0EooS;ZJ-S{aRX;=6=LD-xR!_Dda4mOH5n zzi4GQi+lgn%2}V2Yh6 znE{bY29}^S1vm^bI#@cuasagTkbTaB=@7uk>4_b<$YpDqam$Q0U$K;PMZ3lp6yv@J zVZ3jXFJh$vi_8OogAH$!j9C(Uic^PCyk!{cdGOZi6WHE!xFw1iL#VnBn3vqpF%vm@XM7*KX zOwi;wovHr|Z`)a&C_$o|2|c$61F+V@lSrTuwoQT=kyckex7jt2H)Ek=xgfrX5;J=@ zrXRL%6+JHBy@Zrgo=r%U4T|-$%+*KONt+fQR3gwRO0fjx#ob0VHWKd-$2Y98SG3YV zN13GnHtQO^t|V|>$W*zt_)g^0BVgK;jnxIF+4|@>Wss8tr9*3*GzMuGHp_(J37I1> zO_CzpViMsfc1_UTL_bF`aOgo%>0i4Zr6-$KF7J`iVsEhEt|dK!RU z1f~-zy;2UGJigZz{U;aAgbO@45Ycppe(a>lu`&^o47*T4C!r1_(`Ze?HM&~wZRt@&D+UaN z0|zznT_T0Vnkc3WNk}qhvAT9AGEibD5f&tEDXTBx3^re~Rl%W!xttVxsxD2G36~gB za)2FFS}^M|bK)n9WPnjY6I|rm%h?7i=^C78v7Nm11?Mh1;BZH8xBsFb)F$=l;hswR zl{+4VB#4-6*+W#B4E)DPITy1l6ygitUmzsq*$<^dv_7Xdb_h1++^=23E9ZiCE?-@W zIPGwh(~ZcC!98E8g6m+KXlO@hc^MTW+;T{Uwt+pxOhdo4ye+ioQZZ{y=Kya<~hU4X_qu^5ui=qO0hH4N2c zeW`7#N1(=jXEXBzNotl<5!fJ}M5Kz|3z$me(Q)&Wyu-Q=TA)}aUBT3l=q9n;;jSQ8 zPgw|SHJgI49aVI$@kD!v41I>(H1CiKxgUQ0k^@G$?Ii((Egr`m(rO+L)%p0hP+}8k zhTqm8j0=T511-CBM@_lAdC9SFx_-o^wqy^BhVI zR0W4hH)=NClp)GbAO^U6rg%aXDflp5#YtW`RSLcXfINiMPr_gU}j%lo$qBKLRBvLJ-;lsCe7bwon`@ zN+xL>4TqAd2J{SwI*_Q4ibjvAAkB_Vxp(^Ac#N5*{RHn(&N1D7%n{Bcv>lN1z=b8+ zi#GsJk$o?)%UV!NcD{A5m)I_4rsVb59}Ar^{t+4qLY@pHF5QiveE(5=I^! z7n0zEcpI$s3Bi0l`Wn~VfUm#4` zp69YTe_?wrZp>iSnQ&C_U6PrZb^O0pv*p z1WXt44#Y%ihHM7Yp17oio`?c;0wGZ4wjN%aU0`?_E z(ulzYNNiQP$@1$0lW2|*=jWAB#>4t9#&gVgIOtq-7%|LCS>3S%R59<4C5zdh#d8Oi za;|8n=h(T-^hm%SRvYGLiBppkCJ~rqBr}p z5CsadNK66vfPy5zQ2;}PxE!_W>a;0~1?`8sg;pf9g^6e&fe~;9_=gs;Qi3>DBM}3r zqdcgQ4Oxk)Zx+B0VG9C2t}ROhG9&KJbxgFEvMeLCnC#5hpk~-LQ<0lwX9o3+4z`o| zjKHk8-VymcVE!bgz$7IC4T+0U28KjNm)w4p{TK3hfanoZgC&70CfmRO`u;KkGer2& z^I@s*h-Ou(Vdu$7DLZfw7JPO^YoLssrFh#1FD9ri<9<>z9n!-CZOP0){%2 zOt@e^laMqiI`l%q0P&Q1HAGHTZCyPIQi!bQ(qa9|?u~Yb2tUqs=B<+TYvAI!gAi@V zydW!u0+Ze1p#Vlim4sQ2*e?2-5r1l;2mt~WQIr8`tbiCWVFIcksI4auk3)ijEo@gf zE78qj3G3&Q&Ze3MYPE=2}y>Nn)Nv&^T!=-tk3@L@>@qNS+K`J*jIcqo;us zmcb0lqRjmvC?xPkY?LUfgTe27^QpdoJ2?&fDn1? z$=F7QP5^6Gz&b|GPf|mAJvEe5WnRYwgW<_~Djim^?EYBmkbKU&QEej(1V`otrCd|1 zQN1aVJV%iY=Za_tNlXpVN`c{!BxC=9^OuaWy3DOZNSytcO8}XI3AQ;2zz>=*Q8!Yc z$LgW`5;zOu!y-e(rd(=X@N!JRkPcP+c93kgcS3_R%?D}d9zEs^%LG-9o>9+3b3aLp z1Lp(*CHp6ljj9oLV^3HkA|ehi5fD)iwOLdFt0U0{7=_>*NlZR^rbHBhkwxRZ-uMiG3O}AmiY>R6B;JI~islx^?A9P&hpz|*|Qqzvmv{7eWYH0jge#U64 zy^b$C4mujMFQHo5^#(w?(WWC*B+|z9{c{c*gPQ*jK(c)wTt+M;`V#(5Txa$k?dcY}9Qw>NY>TUbNb%+x#chsJjwoIi-`y=DSh1*{IvB7mPOQ zHg{FK?#xd&>NXp7n~l0nNu~Ug8sbLXW}|MiQMcKs+icWrW|WII>NXp7n~l27M%`wk zZnHg?X`^oQpHz%C>NXp7n>%Z18+Dt{%o-3k>Na;T7H!mRHtIGTb(@X4%|_j3TeWMW zZZo@hvQf9$sN2jaD(-;cZ`5tJFBfgpZ8qvQcQ2}K)NMBEHvf6OXrpdZBwR8zQyX=g z%ckE{Xw+@~)3VV<-DYN)W20{Kv}U1`$gG}h)NOuPv1p@ivr)I%t{8P!-Ddpg{>xA3 zUU*ks_xqurQl}iWe4T#DMCXFqrRMlCC{e(w3=sk91yvKB0F(>Rn~(#9AYs>pj{?S9 zq|o=gsia;x=B=J;{K)0!72b`1GIIGjUDU#9S2Zc^t^51O{^;dHyMNR#p7OD`daK87 zxwg*@zi^lHx;_4dyJAv*)p`20^{+2K{BZBR)cS6>bW^`ub6sckkK^C!9KV0sictl% z;`*7rkedtzU6akFWTX&WX+%Kjqv>YTSkuL)7XDKf&IxqNK*S)4Hhp-DyMA2am28pq@MV z&VALq3V-)~ciKSp=3^_a`5*kQ!KsezoDC};RC^vZZK#_0_=*wTlOLD-wy{6p+E*Pp zZRn!!uNbQSc*L~*)me|P*hj7Y?41Mpj~rDVc}{f6CFf2$XZ*!e{EMRT>X7fR82dl* zMK^rr2P=5p5r5_fcm7H%{80M${%L2N_@_IEe8kQ;^oETe+{x?fyuQKfE?#%X8$Y<` z6C>3(uIOLyjvqVd-n~AefqmmSWA44>dnE+rsLQ94U(`8azN$dNV}>wGKz;#js`5*7 zW|ebJg2v#^IfK`|bMKX~TtK&rLJ1^hFnmJU4*ekVVen!_P(y^s08N`+&OS%Cldrqs z%)j0npZVAO3h(UYK=`}k-TR*}sJ&j8KR_M-%ln76d(VFR{$D1CxvK|lcR2B=Miea+GX)Nc$8`f<2^(X}NMa~XW9b)^m%Pg15G zxR%k7s=*Bojh6#ik!Dv@#@BhvRw6XzKzAQP7Epm!1i}>`c835-1s~zDNP|)DiWzO> z4VlKPzPh8b^5hcSjG2~U20Rdjrk-lm=;rPvi1Dj1@S$#qT^+^<7$;y4szH_rMXZ*R z-4tOsK^GS)aOPP{t3l#YgG*Kj_8>c`DJYeP#1qCh-&bg|VLXGl*g?(Chq)L^Nk|4n zUy*Z>uDW(M+^RV?Q_bHzoBsQA4K?nMo6kI8ctXVqDYSb` z(5tyfg&>a;_z0i`LQ2`z-*N_H!r3t8W3y)!rou3s^^iIsreOxn>Yg1ri860pC6OmR z$bge5`@#aWyhNTfLJokw2)}~^$z%lU8muvBC<;HWCtMnD3)5NEhNB#aE3|{iS0nuE z!7c}#2RvRC$eUBGn^gT5b{^SQU?Lc^SGI2~$D znTFLJzglLbgA5W?_+KI8u_0df&;-z6SJIGTiiB|oQR+krL3F`|Q4a+w=)jmWG^Eg= zHAgiS0hT&#Wun$mgs?*x7IipLVO@z}H;1bmlGqv)g4JjjRZ1zxa-!*0&M{mktz@hn zp-R!pVX*!n!5jrHTG)J-fT{*vd;ScTh+EaeGvgxC4h1F5PTZ7|wo?Y2zU%s>7)l&z= zecxJn$dT%UuB%4gFk#p?c|8zM81}8@Z>jTxRU_jAyRG`vmy|c`nn39YTI%4 ziR!w=tM2+}v7dd_q$R7qTKG-;=8{!!b}l^B?z)H}^xi9;aNnx2^$^n!{#t+I+l7y6 z?0Ylb8gRp;m8*EIjwh{L)Ae(OpS3gjjeo2e^U-hR{I^P~>6$HlZaAU)x8oDKKR9(r z;TP?`oae;#j6d|jkJYc|=_l)NJoJ&T=X~|nAaz9dZ}*9(j(YHn@#>9}){ea4gPR_V zKe*|kogDj-b4HBqi%iup^tv_O$)g?JYF5kFR~GyE=L!f7bJ4Y3}tsns0r6?Tm^#b}`NQ z&1?JgP!pRu_lXv1KK6N4ja?LiWful_m_kw9a@2E!Zr(5NoWc<| z4^b`UbqfkDYW}U)jZ$X}TX*aLGHbbhkSMGqJ92rr^b(rSa;uWRsPnxk@1{Qu6w$N`r)lKuRU$uj{VCh zMM1A!K_wA#YJ{~27U=BEpr%Bg!?W3qy|eJf{Ievw6_1;|?$QHQ?UQ`@Z*E<;y{9^G z3(Y^SSU0M-dS(U9Pkn3MtB0sBo<{SeE$jCAY!Sf|T_;9?-Vj{8aAE3%v=L^gXec>b z3+FEvcIY!vyzz`GIzlk+N16r2t?zM;Bikv|HmYdsB{It*WA0Yax`ZE}&)GuPPua^kD5ZouS+4Ic zl!=dInXVJD^IchH(@o=*6XM||-xZBr9spwT>=H$H(qJyZ;x>MDT9{Xw+M-rcF8+8lBkqCe=?p;TldRgrAp;|Z^{AY-0w zHKoJIF`CGfIqK$fpQWbMe{rh#4|N0kWHj{uxMWh_VdxVjYR|Fm#>ezjxO94Z+|GBKB%y;os)RW zPvZSPvZM6={crV6yulmxc`=UndGR~1{=D!&yDuk)JMg1^`3+Y;{xGk9=k;A)-{bWN zuSa=3#%n#V4ZI%b^?hDH;PpdZPw@H?uOIVzlGjtbe!}Z%UeEA)me)pJ&+*#C>v>); z@cL|+NR1$@ zXQJMqBVA!sh@n?R&IE}YkxWR_emN(lX}|c-)=P_v>fDJhjf~^ZzI4@I>cPRAN5)_J z!b?x~RP#Q|yPvMgyIlwJ?mIPUnqT1Ec@tl{cxV~JsFg<~3>~fvk&h5Dz(90$Mc3A; z)jhPlvyv9T5;QGDM+{#I71}B~BOd(Vh{B}SbI(ew-!p2nKUi((jh!*ai^)??qWSy@(hU32 zy!52azZMNd!u;r`A%l(og!Gyy0wLV284;qwYWsJ|Jti7$#mI&s9gQ6%O)TVb14PUIS!?5sM+-18=zeg=(-}yWc)E0e2rn!mnHPBR;#NTWE-ue znf-E()r4X|liYriZyc&7-MqO+iL!eHBy@JHXs3}RMCzLvkX*LI_7V{Zgg)t!c9ku< zjT8+VGr$x)8LcL_Ky-(YEq?di%|qhVZ;F^pfQo}C)=1w*iW5~D((Fhwp*(~PPdxUV z#U%N&ZMunsc`4H*DvSEU&7Umj>cTB^2Onmc?PO4@L5L|`_PYjBKInadt*|2p32zjS zVtvO_9#PIpnu;;3{|^yk$bLi}RLR-sWp&IBn>7FjS+^@n#27@&tDJpNnwKW_Ef275hgCW zj!n>~8nT>=i-xui3Qt4`Sld{*li4)YKgltQY?+8(W!p@piLbqV$-YH|{+Ql<1W)iI zjHnXu!}yi1ZUb$i-`?FkpiN93g&7|uLY*;FMU)mNFho7MrdLth4BPZi7@jPQgb~05 zuv++j6%lFVHHl&Ick!@9e?8l1U4;_ROP0ZOJ)U>;jBaXUym`nc^j*Qry8el6V|cV> zv>S9G>Ze?)C*s0PA84IcQGeEI0W&hfWQhPz!Z=&Z_8jZN=GhO;=%8s5=5*8D*Fl8h zv+iU9rjZh zj=m?|6(kjZCR(FfM9?atFTRZySTgX6L=?eB*$7ifs1z}vh^OqKWXW?!*&L>1S8kHJ!4=x0CP;YX{ct} zt);=mBR6e6rlg^firgB&6A3AXRnSX74AB|_e}X1p>P?oBfY!rgi4vy+02QK9HjW}% zNxF?vd)#mTEsqtNkiun%A}?=>{Th<66_gRd=2YY&HvDSIkacG?-&<(PG?{vlITnQl z-&GG^w7IYPRlK<07(*Xzxb23T=6E4UA>1T{Dr?LF2GBLc%~3-YIi$K1nY~9!9#85- z%7*j99}jx1yTvh>g0nhi$Fno9={yY`BWeOqJS*4Vc-_H7@sRc!3r+V6Hh z%DxSJXqUns@tfywnbx)Nqjt&PpZsMu1-xIpcItldb9;W%d$9CRhkE5ns6dlv!@WTzwunyOp!*#7}7)R*t5tga?et*lC zMmXMRf^?$|(;4k~qsoMjwIhh&X-DWlj*d8jxJ5;6`tcU4_iiVuzE5s>qLVe+C4T+l zmLdIieXUhKIC*=1>z4O>wtHKxd1=e>>eQcXIqPs6IG{<9ng|Q)qsq21+Rz?4GVxJiq0-%twFf z3tP_mfAg|WO-s~2_41bMhaASx|DPZ9D}J`+`~U4H|35hBA5qu7x}{g<<7ec%BX6Df zUY9-gIQ!O#-Ma3v#~J@m--~#}8(VI;vHQYjy4FG4{a%7ZVdJEid#Y#8fBCRQ-|pO9 z{r$q14_D6}+^h2qM_=%AeDnoBJMPbg$JNwo>%)bY)v)tghpRKg)-S0}lUhgI^1!yi zYDd`mNpV74yXKJmdt6MIob@&CX zgVovRw2oDKUBlt}b6O{5>Zz6~DFXQmpiLIYe=0sXwzHGmJ)CVztd)9e; z`tCKY2dMSu@y%bjnNP=jt#yz(`FuY3)e;U@pU*{p=iJsK)$teb-rcwH9@nwI`hgst zdo73m*87!x)iIMe{0lcjoq9Nj-;u-TnmIh?Kd$VeZlBC=aVGQLHy5{i?{szBLJrqY zeq|qZ=oCJEavFzornH`+-jHujJ{Wo-AM{$p;WZcXBYVlsdG8Mg_fmz6xH)HD$l+tx z^Yv3N;=Gv`aQMv|xTo*Q;Zcgi%pkQBPI96dTSZe30DTH!kJRW?ju;)91~-)#ty;r)SBdeeA2PUr>`~ z(|YFc*9NQ8F5|q%%YG3VD*q3{!x131@4)>)QD^Ov))&6c=NS9-zyi;8ocNBL8|FG&bvzP z{k7L|@1K_k`u3+M^j4jw@fSzPUAtf!7xSIzw36HYzI<@eJPvo=m&>Q~EuC)Uz1Hci z=cqro&>H{a?fundGx%VcJn3C0|5o06>>}P9eEN1q*-Q?Pldn(y;te_McZD3jv3;OA z>v|49HiJX1@^p2!Jgwxs6K~*yIdeIr!=0h-lN+}6+)Dr>_}y~&`c1oiLDNmVw^7FGwKwr- zWBF;x-|l-eA1pnOCo|!V?E_S^93CNK@LRvxuBqX3IQ*JSGN1nI)FaembNG>+<+lI! z_U(Pt`YsUo+;r9Jz0}EbIdAk=_+a(i*4b*Uw9amBy;x10LTl>TuMbu|=e3?wcr~2` z7tU*)qdqO;cJHURc2=LB-+Gz4QRcWo{cbr;jW566MIE_-Z)}!F&tD&_UXjBdGEm3f zLWewCuC8V3>t9m)-^vG_<%UkZwe@P%SH@XsVe1vjI+xZd_r2avJ-twV+)NI~ENZ<) zE&VDNyZUdh4^n?y#0Pz3MjfwOm#a7Bx0Y{fyK5)RZa3l)}Qk8-*9=N?Jdb)``;ky0ktotrw(K zmDV%Tnj)>&rFFHm9+TGW2~%lqk*1P2pOn@&r1hS()=29PX+0{fSXw`k*0a*uBCYqO z^`^8INbC2~S}Lu7Nb9%K>gCh=i?oJF>(|mcNLnjtO`T{;^KE%^thDZz*2&UZF0C&~ z>*vxsM_TKob&0fIlh$?8x=mVhrPU&>CDNKNt$U^QsI=BfYnikjm)0B7+9<7WOqJ$V zX)co1ucW1<^=D}uVxHfeoZTJK2fO=-O+t<}=%TBUWTv<67)C(@caOqwrAbF{SXmDZ8cnkTIjq_tgI zr%P*s@L6QCc5J>j`P~3~6na)?jJfC#?ge^|-VQY27NVW2N<$v`&)N zucY-wY3-0!jn>qOFG}-bdGl3iT`R3tY0Z(=Q_@;2ttHaBM_TVn>mg~akk$ri{Z3lX zO6!NxYL(V^r1eW_{XtrPlGbmewP!@@A!+UXd1?Mkn)^%Z7t%UJT2D*Mk=9+(`na?f zN^6|79+1}A()y9KCepg}=1!MPu3miW)wdoz@nz-ze5=aG|Km zUwdQFEw8=XRo(yUYdzu*?rwdg{VAVbP&n+CDSz*~=+3P@;->pre_a3Y_V-@tsrc|% zwWD{Tt9ok0${z7&R<^>}lzjcmBlwuFKQX@Pf!6KyH_Kn(&5393`N??Ws@6*i>a?$K zo4nHv?xLPu!;jUzvF(8Ph;O%ET##nJg|~0*rCPs>BRQe(ef{IVJlHxf{Xnf>_iFM< zlj>`B>7<@pzP(?(d9D0-`8ze{kk{%TulQW&Zt9gGmv)U`iCdqke_Z-Q+h6l>S2gJ( z{JM6*;=Yfz{;K{(Wv9)~jwio5 zSWO94kNEWUt?TO_uYbDr(0JVAt*_UQffO~nBJ43(%!pl@A%cHS~sPi#8~Uq@yDuhFLmv&9{Z2Iy2hoA zt$!$}6Si%gEV~WrXg6`g2X5bbz`EyKFE2=|Up(uD)<309r5*TMuXxFet-q)r51F&Q zSA6^C);H_Nqf7ku$#1bJuD`1L;P|nZrE?@-a$BqX4r!`Y4{_4Od%E>ktLAn)P~ANC z=l$azueL%6mV8`(oNIY+RkyzC+Lmr*_2t)F`^QIaYyD~ci^{LJ4y}LD-dFNPoOy^E z`|WPs7QNcqBfjO0*2miYmYCo2yZZ6G_gZ_!SN^i~mV)Yj$Lo{Ry-3U3T<`C`fqx+5 zChq*}*2@ZV++WRmv9+gq>c!rD7X9>%&T7RQy?e(G|3xj z>36Lc6y&&nymW{B3~8z7NXwHGgD( zsHPmctw}ZC_i8sa@2Nh02>X!DZC;!sAuA>>X;>5mP)ieL- z(^d8T;;TL4r{8ORsNFd+Kjqi;;|Cskb#FE9_E$TpvA@`-Nqy^$KHb!F2kCm40!ju3Mi>&xv2_wsp{+={Gk2@wJ|6)Z=Vd$Cmfj)B{_YUq07!YyIah zT(NaTe01-vPo;k-hl`f~ytDfHtFQHoKeP8%hTnB(zE)IY|5(=5lr^t(Raea2HhEG1 ztzT8W7q&g4#r?PLTae@a@%Q)HI=SBb#K5g5)|Q%-X3-9xs%TW{Vs zR8BZ>$TmmqnDlyO=We@;TG_Pq1hsr<+Z?=aaqAQ6&qvYI+IHXr)K^NJa_q5f-R-BP zt@{<^xc{PITVE)=5dU=8*7wsl)b{^F*LMe0bu@iH7Yj%eP(hkt0qkP$ioIaL7Q14N zUK<)?S1gHgjZtijy~WsK!B{pH6l0H~n4+k+pQBII7)xT;`2BXyxs*Kb_s`v(o!Qwo zJ2P9(-ty+VNXe*R{zpp@SOmcXioqS;<_@AmIQpud;cd9(`Ix zR+m#JRWonXqtP|YSM+G1nr6&VCa}~pU)7^0>X;vDQA%ipVK`IIyg^4zXkfmsM}b1O z$h_nchnZcinK?+zY+_!bCte?7E+Wb_Ged^C01(~Qqkpw9!v=8b{Z{5zdh|&f^A0Ua zD5i+m+fEKQ7XXx}Skb|JUngB0Z-(qMgYKQpHk}Ho0d#FfsiLBPSMzZ_G5wsiu&B~4 zx4<$z%+PJjb$TCjX_48}yhmp>>k~6(2Xh4qqR-Je{mfhRXzTzfxttfN?jm528Oo30 zQ^U{&k-OC*A|lbeNvB5_SoA3H^V~Fs-A0-_>#6CVnm^a0^+(GA<`RE2=0-b@&5h=a zGcVE!CQdNV*P}%ynrG_K6_d=f^l0Q{^E@p|5S(hl{<#?%cJWB8TJvVe?(P;{mo1ql zC9|)~EqFc691OARYY7nLXGmd^QCcw*!*N;+oF#{yQxfNxZy=>sviZG%E;P1Hkh?`t z?DN2ln%F9c(D~*m1{w9IxXspZikwwCj5aR8Sl(M;CLP0O^vW?cFztBhU|O;iM(6gI za`-r(G|VD>k=e~ngU3y?h6}sNJV}R>%rHt5mYAVjCA~;kYWC1jX>}al)O4*moKo+V z_7odZItfjXg@#c0l3;J~ zWV89Aj^R#ArC`srZxk=_W~;fC#!z(Lo=YQbJpFUbT#7O?f{Rl6ufgzh_L>8PafejJ zT=``e(231=nJ4P?fv@C8*N>?Iln@x=DIV`Jf2&i%mxv*ISV({{?=@f36WOPcBP7X# z=+j-`Ui5&u{=d12q=V)IS{?yL@RPXoyzIbx(t&RkUmCRw!@Tl{)Y~4@;D5L_7rW5h znV3jykCT2dPc%q4fUaAuUIL9o$1vTcwkP^c4q#4c-W1jYcAB(QnFw{81 z>`Mn!*h98$txuVc=!Bb+U~dlW)d@wjOvtjvLRumLOY}j9w-~Kq6nQ)(NQ^%xRT!7U ziLsAEDrv@e*9G%A4I}1UGQ&qz#?{%K1>E7SCIXtUcDGn^U5!Y2+}{WP?J zXp$whlS~seuA3|9nXkV`HIifoToHiqYd1{_bKzj+|Qsv6L7Y<|k&~k#>PGU9VXxQ)*OL zIqDh{<{@B=p@|uD<)Vi16`59Zih-UgjtSc4ZlL#6M9)Z#r!8Qnv5-Tz*1QxJ~R8dG1y=;h?91esUz%vne7_M zz;G+4)kyoHj3;IGE9*`PJ>gHaeF^0xbBT(t&22fqnEMt}IhS$TM3j2^UKzAvBy?_@ z514t3^s8s7%*ezdk9;U~9@?GuF+WmlF<6RgjP{0Ds!-hOGI%#odVW<4Th3`r`o(JX zs!UJnSM{RAO2CdOYPq0cIosTYWhzpQLkiwKU4k<9dsr@N*y%O(3Ro*!g2i8+7R=Yc zzu*F6^L{X`f93M5uK8G!4H6CzgNs`XZX6}>?jkb%Em$x}6ou^ox5AMX=;O~3p0tJS zOGyhfH)CZNQ)H#cx|CE8mH0f+@{5kyTN*8hjf-p`PL{S<^>V zhJ{<;r!ZeRR$OY=sgZv9#^q3i1qzNyav9WE80kZPQ!sR_Ez>9B~Y$Q=MF9_UCGrxdsUb zkV}LkC^MjJ1=_b9PCiTExf+&lG#Y_QLgO+y+FqIL$CX%u`1y-!bu7?b5+fin&2=Ks zcNOUkEPv>z{f#V5brg3s@>ltnsE%tYdyN@&X>O^fQ=^NOfZ+;_pDZWG;Mhh zSy=0UhOHqo8d{Re%2lQ zM?Tf#E$wM=6_=;HF5XhXAmISY?qsnT{uKK=TZ+1ADHpn06r}7)uzWPo{8pIed3W5xp&uZj2WReJxPIOqx*9QbnZqmz*Um zG6z~BbgHL=Ev0lSD9b98d9_@m*5JuQEl{vb-+Xv3{e+RZT$`nVJ~gvkC?%X#bb0j{ zZ8@XYFBdH$$5>!)xF%eN%p(%U$@yj5g$~0BRe#Dn;_9a6NfxYM0SBZlgb}RrMvbD> zNrAzdB!y10tkbZBDO#BlMpP(G_DNN}>1l@w?jmfmkNqbH~6=4n#y7z5$bSw79I5F)HIEHKE7k%ft;vt*?imJ>-UJn|y6b(!WB z^vO0lSx% zik$HhA&M`yVBuMihMq2sDv|cU5+s%{v7FWm#J-kZ-8jD(U1l?uN}1hT7nTo)j-{#E za)?>iMh?xe(c0yfbi;R|;|j}k1MM+5>QP*vy`grV*k%<-r?@#Ph=Z#v@YWIa7Z~wE zZXBihn=L)^Muj#U9_Q&+J(ZsQbhnQPTWcAo=UBJS(nQZOAlzDow)`Gdk)AB8gc`_! z8L-g;d(FJT&_(%OX^pb_zh?dGtrpmQNloDgWbt9q-c)=_S$#jC&34OqomuD(OI5wt zh?fvz6kCb5tc)rwpatR9Fb@#*p!93HF**7j?2v}YEM%#2be{z~L0mJG)z6J?o`WFc zgtjETJ&3NcpLbReBfqySM)#|bIOv+1P1ViPR@ee|C*&C&3zbyEgTPPfavxUORX#yl&vW{x+38(gxk2_h6U~#qW&ZoS(H?^QU%&_$mI(S z_{FkTM?)D^rR?97vaC9^ZXN!ctS0A%i&&MC##Aaru{A0MQ08$odgU$ICya)wg}Q82 zDUi}{N;gaj?6uocN*Jv%-(IP#KxaaUa3U0`o+r|R-dQ#ermmh(p#FWQ~Py zQ7cBy@2aJVi1e^N*Q@Npm(_%FzNZxu!;N8sv}JW=9MA4U3l4i*(P?RaU|r~4+?q&9 zaB_G_NU6oG>4u}Cg`XAO*7u`k14~eo0Bifz<6-7^1z6`B5c4P2PjL}dt5RwjSZ*(A z-L4^^FZ=vU!-{Kx)~k#a(2;H3n8B7l(3W6OEuUVU6>7b%(Sb`FjV|W3S*K%LRWZ_f zLnHAlXYKHBl3dj);9vf#RR|ioim*ppy)@!|jUcfow>m3U&AT#ILVt6uB(cQS5}4R# zt)Q=~Sx<0Y(KpswMdQMrOJ*(WW&^c4h&@BxUKv9NuDZ4h2iCPNG)Oo=yr^fza#cnt zp^bG2#d%lPrENf(cGmt{Dy{AW z-pP+(@w1H8-NmMkR_vT{1%Mf>XD!;*+E}KtyM{{~ud+X5_pIEU~!*+)5G`x73U)UPF+aG%>aaEevq_iz6egCnauP zLwnfHrK7BFh%aAYZ9A7>Y%w}A z!-{Q@3D$G}Ll7p?CqiP7FT8;xj5if1Av3ld`5lWbPGyp@sC)dG^`a!$eAt$cu_!#n z+6RS;fzzxXB>H13t=tH*N7clQvywH736y*5|G;I30r%fon9Rt3YL2zCY{a-rXnxY) zu@xxmU92~K9e~}egn8CDSq7T?M)JvPo8N?*CFoq>#c;9FJC5VF);5 zhTCs5m z!f?4O2^M~}1I6B*xiyd_3Y3WUGB?+GmIpmuPzyfK@mhZ3^mo=Db#&?l^eQ$Vxh_HC z!oJ*U6u|gU;>ub9!g9chJ)2@ft@=)N>})%3)yP|O+rLMT{`sYA%OUWP^-F_<0|Yt? zYf~AOgIio=AGJQ!P~@r`{s8N<+GWJYAEe=8%EiCn6z<`;z%trW-}{7hn1RZt!ld9* zUJ$)F3HiCc+O@VCl3|@-kg#^9Cmx@&-qB$>p0s{c-B9r{(+c;KiPE#J(Uj^_-$UH_ z5faad0!I;8e@MJQ)8FW%=+0;wc%ZHabv}rntL-racQ09w>ga0WKqti1_o59(>~G)u z$$C)7pskR{^0)w)lu_45+`Vc&m7nGG^L71%0Kthjff=$LhT*{v$1?t~=fR2~*hXmKB@4xm`i%ilEg`RS)qpM;dfS z@cF6T4xxNVix(=XL}{@$Y<@1TtZ}i0Ng^#Yd+V`+N-NwfDe3b&H5% z_i{N)%CxEtyr_$NJ$Jgg$mS`c{wwD#=aa1kwy+3$ASVc?q5rkC>W`pR^U^50km^g7 zmZGQoK8CNMW8`tLYz~bsU(cJGrJ{h|PyV+XD6w+A;(-$2XTGvx`+yP945cZybG?#uc%3aoeEkN7BQFcZ#v_k;1M+Nq zC$)*z*x9Z;u|-uc+WQf@@z95Y()2XDp%;a3MH@3d%4y0OaTMz%HW+L;aMT!~*J$qa zdd0-uLbls_BKDwBqZ^G%)0Re!yeViec$6q=gFDT6#!tgkZ}zRtN27T<7Ng;}tWhzl zvACr>mD!7aY3yOcLO@c>O$rg=X)EETWo8GstG6vghk1!3#f57@sf+3bQ-Z0UhsNhO zUt9k1)o8ZNXzWgxzelAW_}N^O!8#drjx^N^qUy^U7bA})=&(X1Y%ZxxKkPy;-QBpP zh%9A;AHl8R?ng#HD!vP&zA>|<2OZyy8PF=oRkrX8wtdveA<5A+;RjGY&IaX%477Gc zs7;^80x}AvBpHhu5w<^F(XzH@dVVS10@K;4!+CS4cT{c<^MwLA<3vJ?&819YE7_nk zxz3o$F=^gvVUbuxj%4&T*h5?`PNXH-E>qO4x((YzfcaP@m@<7-PpZ+WX%L-UQOZ-4 ziM3%_#puKZ=$eGCO}%K-wx*>iyL(f23jHrSpm8l5^(hUmVBuBvq(JEG*I-bCx?YG=mfp&^x;j5i0%z+kVM9~<~eSc%Bnpn-K?0#cUU7EbadQ% z=xE%J9!kC+oE7Lq6C0+f7~9l_CBfi2R@@-Ue_6T<`8Bj^s|Vq1ZiC4H96(r$;0{K2 z8=f1V&@7T}wSvstYGH%gV>GvXuJK-oxYo)BCzuoYid4igNVk1)vl#KTjSXk2jKOY_ zm$0?7!3r_V(_~AnxbmWUM;mM@Ct@do?Szl;>m-Gq6R}YD5^-Im&`VfgOCm-`$tns| zF-nKAkFVvY1SKv`H1B1*t8>OCgpNU(6==|hIQTz@G4a3dZNru^7X;^}G-Zy)4f2Ok zEj)!!KO0VurWb{H;0pOL^7D6z$J7C`BLRogKT}{^68g3%OxEr#d_==RHmFKq0*H@g zvNmbx5HUDW4jyA5i}=74FQJk*w&$1RFtJzC*d<^@ z`YlTQKFOvUsA>sEfIx+?dnf4yIt&w$D+2?A88gWiEb2_RLDS1b0gZx5$x)0)Va^pm zQuE^GzSNptt)r-Q=3RgBMY2>J%n6xd#jJTOY?29@sg(y;iyP6J(uF7PhV1B; zh3P=)mc9bk5DJYskAu)P1O#JCnMi&OFy?x{ml{SKlk@K4{zkNjHH#Tf!=Qc!0W2eJ>*bDpR zLm((TT&h>hy%r@sT-=u)#E>p1Xjpl(Sp* zFVAilO&QJljoqI+6|r4|eIbu%js_q&{bKt`v);3>&t5IFY;bK@PeUL+mLs zPumXb7+6cpkLN9eg*an_hsWeRx0kArh-+ta1&@V1E?Ny2*7La|!jt0ni@6<}D{A!N zZA-7CKS_hhEcvED=uFhQNyQGHG{*q_!xvl2U1iNIyNruH5Z9rYh`MHLp*PoMX?;X$ zwr#)0O(gtmd#N*qJufYiezn|T+POQZ~vcd5n@G-4a+#L z7q>sNP{#n;cnSq?ypt=I>07W7ILmCiuT#RLLxcHtEGf2Fb9;)LC3(_^imIPDW-pMP zkUc^OXKo+L%F^5%TM61!30kn^f1&4oRc-L&xiWA|OQ+547)V`$I^z1^5zLcc@3S$K z-6Jc+94Yce2M=-OcU_<92EwmQM=$cbgp7F?W}iOHRbS|`$~3n@M^Ev`AGyOP6UEa% zbB7NrqadL^%_~w~+S>QrHIW4js%x6LrhF(x7VGFC%rA2%3g7g~dhL>T%I%}H8y)=! z*JAy}>$fh!5I96AsSmYOZAU-auXq8d%hz zr6=GbF<?J4sIm;bWdQ`Q8qwuwL?A3BB5@4sSd_wcsEjxt8dt*GW} z$LgG6@87WM3P~@F^9^|yd7z)H3uB~%DH;XXabHTp?2ivFY5&eZgR0>!7k|;WED$v) zUJnM<;~Slb~)GkeYTZwi&~A!oC2-Ce7&3_>WiS~P0_~m+OFe>LCx$~8UTiCAve1+=b@IF-*&I8 zx&1Zb>>G77TSU~-m$IvMuO=$AwBOM%0?Rg>X)zCJnkW=7EgRoGOl)myhr`SmX{1DI zdpoX(<-!EGs<3yo+jJtn03};^XIUV023K_E(wu-`JI zwY7xHKG!pkf71i^`J{pw{;3@Ye_RRKDI$Bc9V<_UVLZKrb&TCh$Fs*Fd8FO#R*9`1sUoJ&$iaT8gFr${)XBs37{}}>vbh#aVg$ByIa9#_sm$_wmpQ1R7@8d6;th8eh zD$xS!4&RF8W`v{#Q})+=0>$Up_cqYBVz>{84{S@&*tHlJKVR2&Y0g@S2CUn2E+O$s zpORwPdZ`n-b%EvMBg&MG$hfDE%l!Sl(T+tkV6CQ7w9}IMM$_$1xVdn1v$Q4}Qr7$3 z_3p)JuDDlLShmXYs?UQq#b>=q6e;)3S>5;CE-`=u@RcU?R%WSw6{+~2eceU)4mp`6 zMm*hVFXE;Vv19peryZZCzU}KnPu}(Q5b=BL$Cwf~d00o4>W5uWw|>R7J&Zwn?O4fk z5wOQzqWXUOD;<_5oEo3FSDONN*!{)AbSc-}CO{$b=f=ao$1o+$a4E!_-%H5@oL^{? zPTmU_YYt0!VGLW`IY;e^4)>kofOy@8ZcLayz+0^OLFxucxf5H(Zdx8$Ekd zRD4o@eL`fNloLWy3;2zgKU{=MP5Fw`nbNXzB79&k8Z)%NFCo!Ct>rT>@#IH4cGn~p zUr6Z4gn9#ui>K!bRF_cQ;xu63KtJkR4&6}nqN`Lwslk-Exqs2L%zM5^FWa$rZ2H?AKmXIe6sBDi6urL5BlAeJ(waoswF6WUw?Pe z_=X&6#$Y2zuW9C)dw!z+FVfU=cDODNb)qiY_2#6VM^9a=I>?Z*HmMm#9noEn`+HLMpZz_^YcUk@c*TxY5u>pk;w6<>F-puF6eh;s zvtv!EF_O)`a{eAp{?Fg@&ZiRR|JQz8r;*jCx##bd5HlX+ABbR)^vHf&C(7*_vUkR& z$wt2cTDPoxES(W9D^KA?{)W%}(`yY5604ushrj36| z*I>9ye-!&$DlEX-Wo&JxCv6=ZAuhjQvo0~vhwwwT4lYgCG6s9o>#dl{uU^T%X245HL&`XLUjb8}pv8|Prd@MJ(qQVKcR)3)=tu-vt#;nj2FuK9 z@zITYvGnn$1a|?a`mT;)HyD^2WdCs(b`q+{>T@0`RU*Bb1N#&VvxWy{37Y%a&_JwA zhkMeg%|qRVPpktfn`wAS%QXA94=q7gcMQcRp$Dv*>HOMIL-!^byV}+xMjU1JBB1IFk@RqSu)tpPn-pr1Tzx(*_zv~a-70j#Y?g?B3lyb*?ZQ>U@t zp%C)h^=Urj6@a1lfE+JRdtzKzw^bC26O(ha-BruLHQi>7b^_(g~{ z9YOW687|Zmj+d=O)L;8@6YT5LmNuh31f0rWbqu$ZF@FA|y|jWWbd?1!_lNz@*OqSJ zTfDT(6PVIXPAR|vM|(JS8)&01gac1&jHI!}trcinFU-m~KWlL@=*|&DVT`epvGfBlwD<9 zY5M0gEc>^Qb70?{(cB0|Uw7UMrR2Kf+{LL04y;)uTCVL$%iLsK6oqt!nfz;_16GPN z%L)io;JpsByAi71D=$2!IBa^NJgQ(GB4V23ou0^R70Fm6%y3|*Kd2+dsOv1pK(cql zB*~uTn2KdXM@*7Fa~$wtWmHpF>%N&7PKo#Lxzq1WfSx(m0W+bY<#)tDm!S(syjzHVtx_1JeY!}>0iq~E@(8hxiqaN8wM}yBGlsS5!x;yn zMf0y*i2|Q8~=E{DP6R_J(Zj(o)=d$7cor^WNVL6WJRanE=G{O%5M7 zBqo||VdBIV$6qq>z&1y)O!WH^cVLhhLHKmNyomW0>KnfcG`yx0PQDrF-{ktPRn3eHIr{+PTW{&UqA&0lcea<|tlTuA zNjS|D_)je1Tq>*!CI0PN!fiVvwHIK0ZO~}QjQo3oW23>3GW}DaU~MgvU$F_{o9QA;Z$26klI;tToUGgUl&k z``L31Z97oRl|AsfV+yXq6+?FRnHr5zad-7TCYd$caYDy%tAW7-SUu*H6tXLd=}nX!WY^m!I^B|;0+@Hzy{O;U zo$x)6+<1(KOc0Of4%`TNaqvcH~(behLYM_kY%t`WzqX86}<1#^ZRrVEN zeaGuGa~-y9wL)G*kzuWWG&td-10P2` zSOcr%dd~^x0dCIr)M>rTG|hE$Rx(I9K%6M#gphKyZ4u`PJ(^L}IYf`fdN@%TCOA{f zX)@5EOer4)--fb!f&ZK{@I5SjEu0 za$xoOa=9!h@2qK%QGcd~YsvKh~|+-*Ral^`E@ z4y!XAtOl+*Tklp7;nkgW4KfOqG1wU=zNz8-RD(rmO($fVQ5$M1)@Qqi6|=%THk zIEU(}Qhl5w_2}1qrJylY#u8^G(X77{i>T8RP(DU;5yeh&m0EcampTdjP-=6LKG+F; z1$=;r8sa29dTpo^s+Uuz4|itj(fE2Ry`K8@6eo5nId$7K zZn&&-$PDKb>}USry6%iO(;|pwA=fi<;3FF1wgaszyQ5_}cpTPXXq+!&hg;KCM7sR`v*pcE4)KOU`IXFxe_mvaA zJV#G1k=5l4!84p?M7O1Ka5{RyuHhxOrgS|OauMwfrP+A7tPrAlg}z(i{6vQ_Ya57; ztK@W&c!65M)nigj-J&9soIP|HwJ0mvtaY}~VN|8OIKEEyB-5ill||DH&Mq1(Hf(f` z)uX|iolgxEHUn~lr{x;b!L6v;gBkd2CVZQ-I<}o>V6ipe8|O+bdh}aoO=ww}*m9>6 zhbC<+LJQ$3y1tZH&1HM8?3Qy3Fg{27&bdvGp55z&Th6H~_dCz((NXEn(|WYw_fVl4 z!Mj7w^Lq5>BTnp3bGGNg`KO-x{Fu|KN1Z2}PCa@v!+BSao;~fnrboXy<6N&t6V5sp z8fbS<2nF8D>p^SIqqTE-K{5(okgY}3pU~QdV%9}xe+?GDUvlE$N1{a36=y3wIz3Bj zLQW07?!2a_zP{l+qNkqv#ra52J$}=9Oi%qH$N86@nsV2fq(_TcWnVHgVRIhUQ|CCH zE%oRP)%ivzxO?9jRY;@tf9SlWr@ndQJg=u-f8rdhN1OlU{HPOjeIYx9i>Us}IY1{^ z|JL~}zQjCfO_I+B4x;Q+`mqAl`hd~+Lnt5QG`iOe=caf_aM0>#r9EwKqaT|dS)o9o z0n}AXX*UH{Tf!oxkn)=zolr!}!_3_vZuUIi=lF+gdAwW$0OCcdPyU5ipcw9-Pf3{?8)a7K*M zK&U}V8J)CbumT;=xqb{$e$u0x!j%1bbWj;tPbT;~Lixu)l^&yPyqegYwv79cdII^ z_2~TS$_G8VJXV>G^N%i296#)L$G=P%uq6I;y*pszvE!jM7lF?5R}H zQB!-#ZeXgQ-U<{KM^E%o=IGIm{S?fKtG&^7JYm_6J`O-L5(c<@@G%2rfq?ZP{WwU0 zPG)#?ccs4Alqdy@VHT{op|YSQek3#ApI^v~*Ph3Wcjvb;k?$8gnHOJ}U&V~C%1>f~d@~X`#YpRNQO`EDgh<)fAHUHQdI(a!NoS%aM}kB60dMIXm2L8au7N~ULiDuU-{ z@iPKLNKa>s3alzeO`^;LivGuFl|Od;jNp;tEbozY7C$45ztgx0N>H#I3yEo*?EW8P zQ~A>zKO>Ak(#8qOu99*bB)Zf|U`pd>gz*{mO;V~D{-7_DltHWpQn|^?K*q0f%Bh{o z9Uzl5NOpjP_-#-*%~QEMWReESe#wI-9M_<&OgXUt^jUr=+4y;W&^WaKG`#>cvj8-^ z05rLn8y7Dh%S|;-DF96?0L>@>CC@4V&M5%REdb3g0DVyaI$QucS^$z_A$vwjNh-^Q zgru0H8V@8NF2qQwb5e~53qXeoKt~Edq97y+GZ#B^IaUBVQ2@#)0G$?4!?HG7#xn(w zXA3~*3qThOKnJ3WFqciQlG8)7 zk<%rW=SdzUCrlo626IJ1Qq`fr0?_R4?*B=aNcn7TsxcX09yG52Bxjez$=R05(<~2? z^DPgW{JjRriIQrZS^%1n4`TI<CSP+T8z5TJXO~3;#FC^uI|<{x@k^{-k87MN?N7 z`j7Uf3&s`sk&H90{@pK10?^q4 z(D?$;#RAaf0#Ndm0$^4F=z0O@Mgi!T0+3X%QU;{DO=Ufs2l);0V4T#gsm2lopuk!M zz~BNJauRWrn)&c8u=FB-tBsUkHo6 zmufGB)A5{!FH~k4&XIkgQr1`MT;$yfH9N$3gNiQ##ZHP_q?D}+FO!ST=?*_*eGlnp zNQYB0|GpoREdB8lHCUz}p|2OAghO;}k+RE>K|@oNDy5_c3f7vtVmt)ZJ;az!+fvX~ z+vp`IlBFLi*(HU*E$JMFpZR6+^HmgnHpfUWMY^bx;%F5lIjZ8v)20f&{h+weS)$~Sc1PKkHr|A zgH(C366-59K1w(Ql|RIoO`{eoeL8K{87^xLZ|FfA=?zJDSC)~}0ZG?7$|PwHkaI$J zcjUx~G5!f4(-N?1eb5zFjpQ-N7CO=2{U%vcR(VF>%k62A|SF<~Bl zN-UN{yJ-lrCrc}VqE=~v=B%;Pj6~@)Balur0_ij(xT^)yX9gsFW&~2RAdo&Y0_ig& zIIjiLX9o0_7D$Z_NczkO?o`%7=`;hBPBVgUwLm(}fTYum;37pYQ984?XyP@aiIiS*k?5Hep~N|S|(l{Gx5sL#0x(Y&pHz?`%Jv*Gs#6?GK!Zo z%Ea@>#1qHF)5OFx!^G=76EF8nyxKGIV$a0>kBL`$CSK^7Sny3O>n0X*6EE^iyv8%J z5Sv(fO}xM}vFD#`Vo^1*oinkZrm&o*u$ZQ>l%}wdrtrEhg+(-lCDgH#w-WnFL3`WOvZ0jqk9_O4Lc zA^3X*wA?Xjzf$RrVEsy^6N2AYa$=KJ*o!$vD_3!%eU;M98)_Q=)-e=6<)+i7RZ0!{ z5Imo#`+_ogwbCP!NiNO+$vi1WlUL1y`kM>zTVK!rV8utzS1XNSfvcw}tr2{d1_N%U zeQ8Qd1W(hT-^^5nlmQ4*Na=;ZN=k18_13_ynd!?lOnGUI(h89GTD0_Msy-8gwrat{b&RXNo`Xs2m5#t=tVe(CppWZ0L%R(q zZwIAqK=19qC-Ufw9aMWGs;vmDyK37wcjuQ#E) zbEy4hY)a#`hr zvW2rX-pbihw<-z9?bxdHL(pWK(j398ZA@}$8y8;U8zl~jJ-@-w<uY3_%hYpfu>)kFL$7Vm&v{Zg2S0|(!gW{QL~Lo2*r&JjiOmQ6)%va z?8FFzQVSaF!p`<(qFoUB%k*j&1p6|L+^vj8kiAoX>KoqD>pkegx77JNWrPnC+?L*$?+*q#XoWQ6wOV{IZZ(%A zzrBh(2utt9e#TbnvKK=uXxv_igrJjq(J(dXEfdd##qtkKa_Mqi6y`D z5mCB8t)NDS!Ds)cB$@N@Fs&7MNt=Qpj1^2N#tZ!1`T6M?IqHmz1Fh%$IPM@rasU zW@yW0Wmr`%zDE<}+=m}czWtg3)aKbkS-Wl6bm1|ccot)vc|R(K677nI;UO*i2?O_# z+^;B85X`v(L3~K>t|(KzIb+Lq$k?d^J+q@mc!IHd+L(%XvP+z7GhYUB+>OEwFa(mJwvXBkLm{I~>&g4_}Sr9@_sivkLnK z1Gk43{h|y<@W(Ict3A~9SB4J%it*b+A-|#QP1Nu=rLVW#H8+l)2*yRepwqu%R^h$D ziom}44OuqPpqpT~i7wwn&P`O~76x<^rQO0nY@%1UP~A;5B!?3(EMJZJ54)l~lqwgqV(rze4==L3CQ7G;%dQG8&chPGKRWL&i6-qHf))e~N453kI zhy^mL&V zQ1K6C37{i?D2os@eXJ}-aOp8a34fy2Yv|`caaOg4x<6s)*C)z+K)s)$5^HJ7Q<%=R zbm1vf_F4*k2Cru=O@0Pbv6ikP@W$E_e-Y-y_%8Y{ZM~(GmyelMr8&=)q8cva9&l0j zb8+RU`NddVx_piqvX<^Y$H1+nwtvCdSWDmh1q;2FKKuotT8kTb9Gv|dBfXZQUSRmw z(ibndZ1W39!CGqil7meznae*fnM?mysQPl6@d{RTIc2_r{asEzuVJv4)1cSDoub*V zVX#k8#%tJ;Q{?>y2KyBCM&K2f)~=ZT8nw;^ZgV(dIKYUikiL! z*Hg6kEiC>iy7?A<%_)j_2dCu}efkcj{uCWS5X0;adVyWCcOhMWr1}8V^oKkXGLFQ* zUng#YIj-Kfc3JZ6qk0%r8uuQxSLx7uuvF>Yd-!WA)&GFnZ>LW_z+>7@>pq|n+v&~+ zrJc7tRWg3k3XFYQ(}5ytwY1Xpi__^+YEe)m{e$Xlr(^%1ncJ!GM{wRw9X~4VwQQfa zN4CTctCQ7gl<`wt_gpVxJKg<=;orWxii-TJC#&u7ds0Q&X$G}5c%X)D5iBvNoe8ys_}GN2%hUw=xI^49?7SNO6bGGy}Bm_*l$gAqZCTadwytBF^to8+F48; zpm90!73dZ$!3QMhN1t8wd`r5#F=n%J3DA3&%0lqy;O)kKCG!_@aw)Lc%L-A83aY#! zT-TRhAj&rsPd&MPjlI;CD0YsQ91^#YiTkQax-J3}&`KV>EdDPwq zW0Xd#ebk-^9{Q-=5H#^syCYcUtG4t`lM-}(AF9##5EcKZMCLx)yJ2#%Cc6A%hDvA18XlhBdpSL^|H6HjcDt700+Uku#kgw9@_KbzX zN-^>HQfhDHxljsivQTg!YGtAEfsg|WoeJbc{~)Fu76fsyP(~0Z`ju9@X@zWd$2Qn? z4@!w6DN`rI{s7D_J-F|^Rf(x{|`5`rOP7TOuii7$h>r1%gnX?+MoPeZtfj-hIA zjrWxj;C;UoeGFIY^Q$d{msjvOOCi-Atlow)s}5lhdJ9n)XMPsus@T_&$o#CV%-oc| z3RjDRXni>P+d_YbbE`X*QTqYfS%yo0Uj~C=4(s8ODArt;iqdwDLQZUwcI*08{?s9RP~DjTgf zpk*qa2fJDUGs8l^Rp1VZisGhCj^d{M7^U_AE-;$AesnYh)+wNTZHYCM8z6(Q3WI#ZFkl&ZvuLn?8;y_M8__=~!+SllFrg9$$;(R?LL+hbheLQg%WBh}PFkxbejw$f-{ zS6DX#qv4tBD&PgxuC6vWyr9pjqeEVhsIE3e@S-}V^$TiL18VC9rPWZYRh8Sf#x!i+ zN{3TtbWrZzYWC#1MAwn9TyqSmqlU;FP_&PO-#q@eZ{bRxL4T)H^@D2IZ#9Vzt zBWtRI5S*_G{riS|YN4m!&?mK!VK04N3qrG(?$&~o?WKCPAy9iMtu~}=FTJXbp4m&i z>VVl^+OGxfb&>BmMc2hxKBuX5LHV3=>Z(H#G_D7kdrrIRL9U*YTYU}&)CZU6bi6(! z@HquF;KYdy!1Fo%)Bwdkr>KUg*>f7#5X1ePerSj`Jg1V4Fg(v`R3k3vSR>9?qA_O} z-&mdC^IUexg5ubI9u-hTb_u@1+uk#VVw=D=KBxLkAeYbS%O;o(&*@1MRQnwHHihV( zqd`s4G3V%TQ|Qxk^p6&_Z>HA6>3VWAP~MiAU%`E95&u&0C|Jj?kLcn4w4LNo&;Q2*tI5_#L6uZ6L5m z=y4llI7HrUQQbq-yDh}*5Up>kHbZcyEoAQyg|tJ4Lo}fs=G`GW+76w4i2iAZ@(xkw z_G$|R%i43kU)nQCNCz07LzLJ7J$Q)rYtY|X(5NHK)FGPP5rTY(PIOe`5WMfmq}G&wArJso@|Q)QP!l=!9`NME5%}>q?!O z%LFYr(wR$m*_qqdq6=5v)CG;spj};{t1@H>_R}cg_8Bt7p@h88Tbp-k>aVK0=ojT(M}A>BsHKS2rG$npvDZKLYFk>Lt;?hOgNLi>6{oUc$&A1LxGG^Y=y z-xad;0m)7Jrw_8HAeW2&5?m;E6iXQ=f6Na-2cH~>vL zL(d1GU(ZmRfefu1h>}jwv4N216I6THDE- zLj->eRhuBFGz=qrkfsbn2OgyJ!_WZ-smyS-hT%AM8IC4r)41UfC4Bxh9F@+dH^adt zo7#+kq-WEz5ol00-5Y^E%BDsmAq3g9Mhjk!RJ(Y~+f>FqRdLc|s7B95!P?;qtrC=6 z1*$EZ)_`aV|iyv!#<=llG7ft$zT(Gkby#>6A{>`p$xFdN6?g4@SmIW^NDz# zTMCYn@z>JN@?!_S&&8gigOZa<*JZGs9?Kw&ye1(asw9JT_y=~B!d`r&S}0#z60t+7 zx5ed3<-@Xjq_yP*ZIzttbXo@2$s&U{^iBqQDflx4FysiDo|Cnm7Fr}9pIIe6U8TtL zYvWR!UgwS4(im6-t&|(ITyok;2V}6HvSjd{9?9Sc6`PFU5XB&9%C_X*$^3j8l*%nd zo?#oe-~>Cbl)hJTOG&4BlG8TYEQ2ff$9V)d>F#7TIzk>)8_(dFIxlCoJf_y_mr9YJ zgVsUKWN?56$lwgkkiiLBgP=bvt3yz6c??)rX$%fZ_CG;)568@J#DI}bbR zLvG>tG;<2d*-X`C@GEta!S7_0!AeR&&_7c$@Ehu$k3mZuQtP#shu6l{IJwSa-wl&a z$I5eTV+hWz^RRvA=H|VXHWkI}rZQ92j~JLT)6{u5iQ6&_Ucqg$PE*4)D1=H)hv7I$ z$+NJAPMxk+NBs13bsB;OGt`*~4$n{*B4|8QU5+4YrusF4{n)?VHDt?|deiGG8r=L{uP*4$oJsLIXMG ztCbLVEr5|QQ`ZGhrDoc^0Lub1sSBVy%~b0P_(5ix_62yD$^Hd6nyJN?a5l}f{Y%u| zO#ghzl${o;T|&&Vr(gZ7|14Uyq{y%dpO2rs3WtIytOQ+Ls5W!|SrT=|q17)wB`9K% zS`J#UxDD)C7SC0<>j25BWmP@$D-s8(!K1Sqi_C9hOV6fBnZuY_QHgKw?yeQ>!| z7?N+O&nlF{Nxcof(5+Q)kAI=ktKr7~Lj6`lEPkQmY4~5U+pE=P9>2&I*Dr0LGYRiG)tiqDusU&Z6pT)CCCM>`|+b zWep0;qKLH^+bo)`1ty)Pl29tUP3{t?rHaxI z+qg3Cw?U0$QJ-%(IQ$K!Y!(G=S0`wkHYXU!zj0tF?cT0-){;7R!>6W0@n_wE-$FZO z(dcivg_dvCNq`b|s8bNk_+G_di0$A;G~208(Yf`+BL!RWCkc0UVp?TUqg`q;f~|+p zV#_YImqrzd4?mt=2`o>{r_NbAFW4Ie4z(@yE zr|;BKh-0|JXwG-=G|{WyVeQ0SSOWouyBY!vaxDZHS{Yze>ma~@R-ii=ZNxFEaR@M= zO%Px#%hH;CP}Dr2jSyfgLn&ZC<_Zs}WP`D+jR3>g5&=dqn%?e*dB`FRV|i+HKrM|p z#;-h0IRM|b;2@qjpjOn9atF~TU5)zx3}WAO)ep=th^1+MI%Z53Q96`%7M)9ngU=&b zjsg$5ipd?$-nmJ+!@2sP8i5=b&KNQuRD%)6m{y>W?=ky%V54ck_ppIHx^fzv`d)4I zuYrv@#HC|k>rl!eZYf5$&A$fL|1kFl2DTrZS<_*3*lEf*44ZeFzB_`M7@ld+9Qyj0`ZPgI-9E!_;;me_28Q5FSA^%gbe>pVi6t^fL78TY7X^osVGrPteM5 z$@CLEfUR`>C-_5K$>$1&-cHe1u<8-iFAH0ME3QD3<7(>_42huFtLkh7`>&!-f*NH( z^qB5b&8&x!H4B#M9fe<0H^`)G>URi6URU=Z@XuBcAUKn)ru*>yhu^Z%hxnnnA7M?m zTvvya-_L3Z&{X)DGycD_&N`rrJ#F{_a}b`7nXrS9H~@m8I#Zp18w=ywyP@Q%c- zn6(fGZ*gAN+cC?LN_;0~CB*tWoN5$}Cd^V#qhsbnjK3SRFa_>8els4uM$q_C*pntRsCM0t34>_(0G=1BxCf{eFHii3$QP<| z4;e;3jQIztu`!5mp~`1+>Wmq)2r0vgSpeZ48?#8ilJO!5?xJ2KQB5;qDXc27G3_{n zto*u0YY*hn4+f@ZP~Wb&a0%`f7;bPxZ7~&S&m-L7zEH^@r7m#HuHVm2+A{tbU4X-w&$fvzUd+`95=28q_%}jf%`{77klF z93x1BC|A56E(drK>@6vVxkF>@h?#W|k7Wq_w|8C06s zm?EmlEBu#@D;SdzcuYo(`#+0mp;DGKQ=(+kc=q!+KIRX+ebN0jF0P)cjju5no~j~m zVrHh`JKg2^Q5-+`P&jR~&v;s&Es>d6ZOof52@IRRjhO@S=SO_ zAN8Mc$+BLBe!)S%#Fv;VKI`?)+8}dMGECYxq|e|W+nUYh;-wA$uXxh(M2-52f$&6S z`Gy_giTd|j%zFI_$M+g&*!LPL($6eByR#XnW~4ULx;>el$AsPN%Vq?u$GMpsA&Mn1 zS3}%NV6KE1laN#S5}9j|x|oPfT#3z*xaSx^*uURE+%WJfBSV6a zJtRnF{~V*UlLQ6#=!Z=Fr_P)KPeoIhp;_28v>#0A2OZ@e+%GsNs5{x+Nntj`^NE0z zW-W*TDNPr|tCZ$+h%u?mX%Hz>BjCkqd1{75)4=g!btsKF38H>la~8ziv1Cks>qt@1a_i*<6r< zy=0mRFZfYS+|5F2Oh&Vb9`+B_?JS7=p$hgfL)Fsc7|98J&FQL03TShD%^5yie8xN! zrym5Kq+iJ3K0$#4!;N>UYF4we+YYrntJxajb5=7m9w}zXhRW}$&DqT6N$=@_c`tKP zmF5n1nEQTaP(m8QtNhGJ7`4uhfpt%L<}i0a9L&LRU`}%jQn_=P+aYe};?(rq7>M^& z`8?)22n)k9IXO34Mx!u8u}P|PgTulu7c&GeC9t8Q~k}}9&@=vZzoU} z2i?x3G6tA+@bsxm04klU(&aY~LR`sj9)JihU><{LThKfWk*AP(3F2cRHrZX+JdD(+ zBIXH*nnhWpC}ti<>Pj*55X79~=23`tB{=0<(%gg8&64IWh_F(eYFygfi&XM5X1-tI zYFWmlH%%g|nWa^gGDT9R8aN2!oSu*2d|V(4z6F0c#*cH9Uj-BY#V=FtzAX-W-RNrA6-w=3hv?tbn06PxY^8j)Hhm(HsvEQi;WvO6K1w z_@P{#r|4n)sEgNrsJDQ+UCGR#zEw8eQ7Ca0u54@-uEo77iz!vPmQ>Zame6XZA1u+V zdUyloOEt3sMA_Ft=)HOw*)iE5g^L$t36%l+zj zO*0UpKrJ&c#sA)w!3#6${uG=n<7${`RA@~zH8*-1 zF!Mrh-N0-QvAuywZ;zyD$Oa(|&GJY^Hbk$iP+1z8-66&_GJ8P8Ho`bsq3SkfxT&$( zO}`=1zb@L)zpfh4%501;#hYnhG`a~JJ#4~WYd6JK!Am7gv3IXf9?j4RD^%}hW-sj^ ztSKCXHB}KU;h<1+41g7?WOJ@_VRNqY8&cZ#cuUwGZ>cLg(1I(w*n*=i-;%}3mRyT_ zE3UIgE3>yQS)vO{mgu5hG(jx|em6Z)OR3+v$kN|U1F2-KITg~{?4ye$>x&}E`l>3; zQKUi}Tr;5gZOnlXd)t`3A@a2~2SChkYlc9iZf6dKnAi@37jGoBH%Dtf{3cF<@jB>^ z?M+Y5zWus~^ueXi3iYzR84Tl&9k8#hP}e({hAzV|)`U&fWfpeihHmO;_JWajC+?fk zoy?9%MR($^uGZP?qDxjU0-& zQKYNsgA@iyPkMbO(9EdLb~W=sf7cZ?&QTq@p|x|=`ECe#j;hq%><6)_J34xfN*Rc) zI!6r%H0e<}3S-q8btBNMm{sW`jh_!+Oe7B+)<1AyP~X5{Jh%$S^zPz4%+Yw9zNoL6 zLtW`%7E6j(3Fyd_&nKyB+S|nEbq7?+4ue@e(W~=S%3e5?&R5fW;gmREWeCEtX}$^z z!fAfK@;A&W5Zeu$yXLE!y>XhIuP*n->0`d?)5i>j_}T}XXub;Ri+zAA9fsE*G6dr+ zjTcLT(XME9CfNJ~qIN%whG-Sp4{eTCIs2m=UQg+dtskvY4loBp{58Prr{B$J<%Wm; zc*^j7yxBpu8;G4fTJ;#nC2tHghifA%F^sIl+GzJ6GpWWC-GL{%s{sR1w%}k4%xG15 zFpgZ&YUNZPVdo!bP@J3uN^KXcI zE?mk)tDrIFRET$D*s}jvY|Lo&d@N2F(Q5FY*dvholk@3ipny#ty( zRNG#t3qNW=3l6H3x-ivDl$3752Lv>_n?vGq|S~&EUM~8Qi9(p*RUgV~r}_ezj-fWErh`%>;a| zZikuKRgzg|QRro7VbeWV+q5VghBGZvVP+m}*BGzpNA+G?B3uLuV#AHeJ*}>pTbk6`>Ng?vn0fr zIXKvySC8hHjUY-ZM0;LsR;Zp~cJ*GNf{&`sT(btmw7F>UN0o3Mi{bOI-9D;k^KfMN zsCv!EQS75SJ0HiikE-|rGdl#z`KXw!sJF^OGm~1pz$}b^uAN%|ryEqZg&2$*)XIhE zl?^KABJ)p(Rf{lCH>iNc7{nXY`o-|QLFHY-;-4irY;f@$cn)W_!awNBtv9o&ZcEWa z@oL6WjH-C`bt#I*tI^BgFJ8GV#~6=S)0bl$$19J2a5RXgj_QJ6{HTb9W>)35(yWuB zTR$8VgMtTj>J)Co&sl+;AzqDI!NuOMz$T7Y{a0dR#jB?)(P{Cj`6`U1c(s2OVnZOS zvEAdfA<*gZC=yCbJSmhfQWioywr5Zo=jJ zMYV4WE;hbwG7CWW-;9&}MQV1l0Q}PsUu-$J&CC&2WlB3yyIfRDx8Nkj&V%qz&8pk6Wy^0h{gbZNXN}dqN!6ik zW+SzCtLY7cD_gO{!fqQ}tybH&nFF$rrLn#-!k`}-rhNkk4-D!SZm_=|_+Q+b?Pf&} zn*59NP?Wm6!_2HMY&X-X%sb3t$Zog;S6W}x(j8_gi0eCWX!xQkMVZ}`e<9zwFd-N} zYV%r*I6tdR78SAEOr&Sak*7>I>6p`95CA;mHHsI@KzOc5SLn8)hVR3(@e|ZG}Cgm^cbAt zYYOR+JMxg(65`S!>~dRG&ckMNh@po$s*{J!)+zZdsVwVJl77@h8a7K0nSS*71A4pb z?;~9Gog=tVMMI9VpGik?^@`RVW#<)+aXhoNcyWyDsCL}!0F$N1&9<4ij&HkA2mR2c zbO@ekU~aQYcLJ^5r-D!5{$Zb5e*#xA`&7z*G5q(bKmNsjwom=1MZJ^gkbP>yNzTi7 z3Ku$DE~9F6%Jg^JqK2Kqc-W#gpTe%NMg4oqEQfci5}r1TW~6_fV;fb>%9lXyxcUq1 zgMSg4s=;X-_afAS(`FHfGpDhU@aohVbZdkfqs4-RIH+X zhxXL=Ma$duw*J%}b4Hs#rRoUw}OkYzQuA4PeUDG`=S@(pY4qeCdgF-iO z47sNI-oTOan)-CZZ0o@<4aC=USFQoQeAV!qW^ugEwehCu|4Yv2o7gC!s>3a_D#Vgo z*jYlA?`=FG38h`}F=oN@4{h>+U4n7go7Jm3 zW=)9F(Kugn3jd;u#*>so>PR&18xN^3(dd^$s@GkVI;1Y%#c>7id)>oD*CDn29waGE-$=}eg2RNyN`l?aQ6c}~ zGG~u^_8<2BJ*vk;c;BOLJ;e6eqpHNEqE z>XeC=yi@5c>>BS>kcGqaJGINg7JsLb#bQuKs#>u)k438BSe(Nn)y`O0MyiyL%<2%$ z9^qm*Qq6mWy)IJ4J;I(9sp>w)poml(9;3^4tH+PcvJg3+!1V?7JPs$YnNKh>E~u?f zQ0jt8`V^xSD+WBp#<`$QJ;fNhpaPzu=Psx@&v4edpxmCLZ5LFC7LT7}FkMiMUa-mT z7r5rRp!{DlocNPGi!qn5(I4*}Nzc<+D z!qm7oC>5s6H`v(@sw!{Mg$LD$x2Wczy8RZ1h=Z#7J6Il6tKVT%@WoCQh^Ftcf#0aZ z@69G2$7wXycO_AAw;p6v#XgvY@D^B?4`!}ka#nu8V~OkP>j!l7bye;oI_bLF^bwA( zt8Aapb89g>2RHv~)!9!Nb8A(_&lnDCF)as{YnA^OwCu2&`Q0q47JR`C!C|%LigZ2?yFfJO?saYYC?D+U2S*=Ogp;2ypPskqd*xw-Pytf!K>Sw)Z!cYPq>se&@ytW?n7x>RMteEp!wl_b5|Z8SYjkH%s{@v2v?(?uf-w zZ{4lD8clV3tQsY=>ZvzLtN`fQJgn9pk7>&V9Y~_mjK#9F|9DvSkn_UBTCH=wA5NlX zCb!zCbG5DHs@>mXGN{m;vF<8sQY){v$a^e_>gV-eJ{6MGYOhh(f0L-9UB?zv$&y*s zbftaWW~;r)tcDQZ*IEIpL~^U8+fp^6s?}LNN&f$QRZU@)_{G=e6jn30IQ1&ERa})! zi8jTl4k@jc9<&OE@!x5?0e4ecjgV6?m9-Y)LK>^1Dw*191$}C2t2+eBx4{;wpT-)e z4Q3#u&S|X~ZdX-YTB|ce({w0sRV~e6l~mE`tYXkpr?-YeOiXWWfVkjoHCGe8u&J)9 z^IldD2o$ZXLNcIVxnLa#l*y`+cw6P5qhL)n!P_E^(tn`o^)p)Y-R`QkS*?bucqWX5 zyQ+OAs|&>bOx7HayVR_;pOdIY*)V8TW~(Q1zGt?UK`hH+g=&Lh2|QG%ms5%=!-tEW z@v)}BU}|;@wZDDQjJxWNuQdt+^^EYKWj&0&*F4nsEK>@rtm0 zub|Zcb55+n9;e83O#s~Q3@f5W`&q?*squ-QRUUp(V|5jj9b=TM?VxKcuX5+G+PU3U zV{=%&AfDu~xvx77jq*WA`Thz5)xMb3RvR2G zZExM@#juAhQ1!~8J!6YwKU|grj)hnL!e2ORfcj_ap;J?3j_l127#C- zLm=FiDz3bh{g;@_SFq9`8!=~6Ju2XM{8A06fL)FQFRMNvI|;3QV_f@Fxs|pus5})d zpI;i%vm*Ay1qxADfaFthE=kPViE6Tm91>*WF;#b^v9K~>>AC$e!ZYF z_P3=fQx&TzMDHpXRZG>aD%Mg69PZY8ETs^J_w-O>w=d4G+EhcM`Djo~U9W~tUy8{i zR)ZvL72j6}I-t5$78&cSTTLLoRJQ^lP*Gd8w}ut)i^ohgtt`5o>&L6e>Nu;ku4y&# z;FkBF=%JRiTv}W`tZC&$|0JnpHPW{G2de>9u+v>FZKYQ)Bgf)7UQL|u+*9!h4TsC3 z>QgOi5XuDC#%O=3vev<1c&R4VvFiTZt1s$UrGBozPF<^luK(=>5B2Tn@@#5-U5tpA z>SkT5?k|ybsE6H=Yw4^q)JJD?RTb2@`c~FooSdwWK0cSvu1N)dd)4&=D zQMaKL4so}kH4FkKWmRY+oHbsn4PC8b>PaIUs@bZfs@E8&)?;dVV|43I^`EX4CB)*^`MZLMZ1x+%88PF1LxwHV@TGn_hhs_gA?R0?ly^@SeU-s+|T zTVSm2RBwkz<(#fiP;Rbd}atOJHy?jntcVRsm!nA_@$_+<-tF zV^q?P*xfjo>S}yPZtb&IPAv3r6m172O3Vz}Ko}R~&V? z3tbQex>++J;s)as;MN_d*Vn2?cWVVivOu_ft#$@lrywc~wK}Q)dRPYZhCQt_5Se>f z|3WRAnpe0d^~^RZUfA1Wr+CLvO3M@*9cq^;)5M<5Zqe zIM{I$d#SilIAL--`>KPZxogqbo@%Pg`Ue~he)UURL&jntaa$WG_djt^d99lLi6%Z% zss6IORrH^hcNSXR3peV^bMTG2=irdR{RRegp?h_b`fEFFdjZmH2>*c$ArmdX>3TG>%0H8Ey7jQ#y#1V#L9mT&PH5W6LokF4l`V1BM4N6uL>)xl?Qts zozhc1D7dwxdad9(R%Mxs5fH1!%(Z6yTy>*)IQnvtao^RFP^*ACHP5Q3os9hMp{h39 z=A-h@$CY!e8a*FJ#8~xw5pFlisxAuKWyAt26Hvp&R&KR>0S-Q~YQ|y<3n?wc<@e8# z%v^|L#|d?6A;!fLu<`4oDI(4DYG>R0xs&S zYs(R#MEa=*xgpDNh_`45D8b|`hTVBunHI9E7hnq zR>363lANBH`lOPtwial^=IZlm%U_$7P;J)WT*v7M;PU^$SI-gw?RfY{#p`rRV%&ylSKMyW2)}KN2T`%9|`d=$$vAyEdvro2+q3c*{JmtQu{x@~fenv86Yv zeVcJs+NknJ;0Ux)#ci?5tLO-H`bOm&X$AhWF;_+6N`w9P#MZ8}1$R?iG@m-K1)G`6 zw})uB6_@ZQ)Sa!kd_AEWY{OMP4~{D8?KX4<7cHs=ZAZ&_&ln4FawqoCp*wI`Jb|am z*q|p=mnh2x@gNGZvA5c4$xie<8~24My$fd{whK_lcH!QajmxS+yRG6bdW3CU$KsXa z!woNQ%uAu4US*KVNU58YP4mV8vN(XVeVvq(?MGlQ*?-aYIUT_Ext)|zKRLV0OTfhi z9;RaAFD7r(GRQB$&xb)l0X}{V3Jb6+EkuReOFUJ?~V*=Yk*bij2KPoib<2sY*Jr9 zP!|Rb1$@UUc<|a-K(XNrnhKyr@L0uD`4a) z2K@xQ$Fv?ac7OnGTevZpz$I#IL#(n3i=htSwhs4B>az2*VF6y`kDz>hy|*FOF9R4& zfalcgxyKe`9l##`a#BX@ea`+{K#J!KCJ3N8LGU<9z*_(p$P^(rUb4wF0R=xXm?2=( zHwH5WH2=;ZOh6N?G7YD*1>AFEpahgp#9$r)7q_jEJCg-sGRcF%A_40?87vWSF)4#( z0%*Ds>ivhn0qXKeSd|!H6#<@EbOjTH0M71zTUWq|Y0W&qoBjAt*{sL}m9|Z`wxX04eWG98iWP+q`04Jrv(p^H=%(6Nr2i&|4d2AQxViegQ0zx$yCBPp4V+7da|1Sad zfFGZc&ObZ?>=8dnOzaUqRe(L>X9%!I{44?X_MI)j9`SPp(1=Iu3j_>u=@GwJh&|$$ z39v`}3IXxw*=S&{ILLgfIkyp5Ac@)mgo^5FTft(Zyn$=>;eA4A%;D`KMSx2_%{MS zp4r_p*?^Dd37wSjd;s^ly8z#T3_Jxi)*yK%8vpFlE|W@3>@sNu*k!y3@FX@`g#sHl zqXRgK%udSqFNCvw1gsvyAgchkq5AmmC!{I}T;>q4R)bsu+74rjJOZ|9kWauH4FUwT zAI?Pz2$=N;gF*yc+>~dU6cLjGBiN*vfN%{;2$=F0Ta*&ebR2^+0uuerpqzlPi3}O0V%OYG@51zphcqr`Y_<@AG`Jahrck!4irBzy=2mHz1fu5=uw z?o;+A z2}t>c!2)eE#FM(VSP1*J5Hf_8oy2)cRBS-We=DI)GdM*-06pI{TY|!y33@f+l~)gV$4n zgG2<_BNd_N4@rdBWs?3{CWQmI(o{~$xPm2`;2@0vnoA3iPC)Cl47>z*rDNc21A6|V zNhUGz^J0@M0^&9B6)+4FZBb1&0W|X#AiDsXa|@7Dz=KQ-atoN3g@DV*ON3{>(vngr z6W{=DYyl@_OvMUR$Sx#+CguVZ5s<3@gJJ@%YEVMJpn_~sN`Na`lQKe96lIfg0%-Ym zR8v7fba4ii1WYf%po)O9r5IEb;406chJeQ!)N%=-DZi+u4uN|#;O^q%iU9Qq&}?6$ z9hQ3sXygFypC(Sq$!<>I3E9)~@UU;?0Jd-Kq>MnUCQs+zwnEBcLNE%n7eF(F0XhnJ zQG4Uzb650Zr>M=po=seFnW4@cFk|QznL(q{rg&@Y+WJtu_x3EWoch zgZ>0~l5dih32#SsB-H8>_<$qcqQAt2LC-5)1~ zoSMldrv-$BF*qw=&s+xQ1?0vgZNz?20L|J4xJ=+39SCS)Hh^mcb`Vhd&~h^~-Tx8c z4!TYGyD9%XR%1hfy99nb7CmqP+dp(t#>RzQqbXqe3I?$PQmdvzV0I!X{q@RNcYg zI{{}xIXOv?#Rl9RiJX-2_a3%)7qIOp0}lbEjxk7@h4w#o8LLThG5PyAo1_#_>I8$- z0%A2tD`4$Own#5v`Y8q(1hhWGAfo_Rn{!Mu3u$|SfscUVml$Lf5Tk*gfEicVB8Pyh zHyPv-Q27>vJOb8gkk2K=`!<{8C%}`?X=O-sav=wBCl_&2Mzgz|T}(jJ2MkIGxUNAd z0d4P1_8TY8So|tUbpn-tu&)A}o0I!z}nh2PtK{EkwG-x59T^tu_B_PD5JGl)JUU9SR zXEtf?0PgjUPRf`Y&)J;?6#l@VtAJ4-8FUw5d+bSo=gWuTgA{11LBK_X>*yo-TfVS| zU;*BVxIljai!~T1fWDgnmxBdt&|rvwvq{)un1J;j1YE`+LTF_GI2kD*R)f(3I$$jT zSd0-sivs}sDS(y%02n90ZtMgCF?4LjM>oh~vIhA77q@<@PD<-t!0qWf^pky-!2L-sdU~pK#X$_7Fpp_8d z0JtMyML!021q>R%;J$!FgBbiLAjc2}F#-ZcFt7x;vg#4= zNXYR&+2n};TABfYJQG0QMFDsrVEZHnasLBT7{m*pr5aG=jR5-W3BWr(|8NJ~pTXpV zn4Aq|@JT?Ia0XulWCL=J1cJHSv*dnC^cyCVaq>L@AIXkU@)ax0f7m$4egA6`&{$ZD|HOVL@^g$Lx zo>@Tstqgnw*imF7KnqA1N4Bv=4hL{pxtx@fotMCTvd^_WAwT~Ja0nMD;G~QUJK0|$ z0rNE|BH+d@wkRf`{cZ*&1YA19pp<~7*BF$s0oosbok=+{S$2~_1p$w5F{mWq?~CuIz_xIiNT^d%a2Xd>XrBL>X` zT>Z+Rg@DW77_<^l|2u=$0$i^&X)A=*$v`#j1q38y&{06{L<~9$pj9(aq^kg0F9V>v z0Q$fUKo0@;JQ(zH3HjHPi6Nk2G6sDF)WKRBa1tzl7S{miFJMnf1_K3*NyT8WfDx$~ z3~_+Vn46Z#FoziQ!5nz~L%=&P1|tOoWnwT|0Ikk}B4Y$R&cfhN0rVjqSd0_kmV<$7 zybxNp111v%Jk8BuvVenm8B7(>CV;_o0r?6r2o=p1^AcOq^W@vCwK-M0x!1K4mLN*c!H;xLZ(38P&0jD+iR{$+%f+D8`_ysXI zBVdsR=LFDlCMa@&0Y876qRAyOd7;4-0loThnQH=)4PbCX0DbxhUT+CFJ&3^_0SgB+ zxGUhdA^6xc%G?)1Uq}M@Prz*rVg!u%lPxR()h97{BtRcmji&^j^Jxk9HE{aE0eqZ| zvr`!Vo5MIi-pMz-aW+GNHv;JUNdWHz;M+?CJ`#9Kb(C4a;EMyej&DxN2w%k6zxg`$ z!|==v4ifm%{XctXzl2F5F}Z~|gJI$>fL3e)@E{)Q z0GIX<9L=Pxm`uTAFPM}UupB)MP*K3L2Mj6;NQy^~u&64)4yy)%c#5-W3|rK80OG{{ zU)M<*&tf^hzJNFkV7P23;5+_t1khMO$~Xp11^B*V&|Cm5VuKaB6HwwETXYbxQ-e+dE`MT+E&@(|WzbDPBR77@Jy5{X1c`b7?M$rob3{jHXDPn0{-x0@RxwiIT-vcKv&^1CK7p1l^(zcLQv@x2XLj+oRpIt zO5h^d`{5HJun%(p+s}4Vyo?XBm4NS9*9TypfGmX*^ZSPjguE`wCW{0tF3n(xfD+{x zEE904I)i@%*kP?Au$qT`9ky8O0FHCLPSN>yK|Rjj=;Rxd>oeFaU`hi9kpgI0AT(vG zfTp^R9RzUTlqnUv9KexqNBJ{;$0Z(T# zcq*WO7=z~m2F_;SdMRX@V)9Br@O%cZ1;j06@K(Trr3~H+XuFKTM*+0l5hD96;D!cY zZGiLt^?%spyO``=#lQ^<;OH*gxQ0PO0Y2*(Bo;u+BB7cj0vc{);3<4g(* zxO9R+Q2}-oB?#bJ=r_aj6kC*b0Ebo9NjcdS2$*DlUfWl80PL~v0S_$(t}a53JYv#KK#eC10tMLJ(Tl)x>Yolz*`l`t zxPSUODZ_Zl+5H5p`^I2^fU_G3$UXYN#MuF-#oSm za9Cp{yMYfo_=|vx3yjUq_Isx11oFMJ~y90DAm{;U*rN<O@*g^Yn_@aCV>>=A3Hw+9eNQoX zEFkp-22UN};!jMX%yS}^B0=#4va#p!9PF9|WY0WAI79 zp*IY^WTofNTxr?&OumUp>_-N_WkXoIDJ=V)goF;@uo6@10%aG$C*u&chXXh}sgp7S ze&e1@F5q@D2CkGsf-*2kEns>^25AKx@nMi&z}DOhG6<-hmqA7WEdm&17C;}(M4Uc0 zK>O2RdM`*;F`(C=qnhlYm;hbCC`sT7c{tsaEy_569h7rY#@TwDU4g(OvY&>Jb)sFB9YFRj zqpFj1@@o*lGa0-ksSDJ009R1gNf}*Qu)q2O7Pn{6kibE5KpzD}jZGZD4w^YBBfMJ@ zKK`{3^2y)=tpwa0$e=ZWA0N83a{#;S;G_(N4-cZoP6Y6*gBO$|(A5EK-`z^K()up?V6z>aL0191JVLtEhx!wzk=06VgE0_?~(3a}%KAn=kp ztn)+<+9+EIgcCTkhhyL20Pew^+35Jk`94vczsJcprtM;|U%;Z>3=Rpnufb6PM|B-1 z1lX0H5@6SIR=_luuI7ReyPC@a>}swFu&cRAz@oP0+RKsMaR9gNu9I@I9}sv<_Qt<# zA49-JgbP@bkCptW^BxPhcZk6=0a($GEM5x00)7PI1z`C;0&fM_m3|;Fo1%!w;|U9w z@mWZ@03yaW0!zu{RuA5aZhlVWb~T9v=xRdp8A%A?SsW&--{qQq+b~RN6 z*wxe!U{_O{0BbM`9hu9Ijz3(+4((4exlQ#}^<%GpJAk`zf|D{* zrQz(!0*a(#Fik+>^bA4;6!KyaCSb0&2S5LvBg8K=o6Hk%(TBl80cCYqO9a?)E*D@& zwo-r{*%|?MWa|mIxUqIX|RfF0Rx0=(r4lw=?K9Kbzzz)2aK za!|I*I4s28)W-zaoBCe?_NG29AeXM=oB*uNNP%Az;G-?B2(ZJtt^u9@Z6~+H#C8%* z0RPzH6&uOxeF57$b2Segz-=>~lz{~t$^Mam)>Roi6;QnzgBKWrb{+RMc_pB6eKvU` z01G>k*Y^T0Hev8dfLlujUj=+@!Qi*-PA#FoGf3zFJb%~3-66C*B~{}oAW(zk0=zr2 zMJfTQG)OBTK!@rjV5J5b1=v04$|A(>qpSk#KFTh@?xI`*>@LbH!0w^|0d^M^B*15i z4r4g>BDMwgf4h&0i^;V=*`$;>vAd|O0J}#j2(WvkvH-hBstK@rq$UCUi|RL{P#3Dj zWz=y9kD+=_%FZ_$65yl!1bvim;sCa9=A;ax8%Nzzz?wh?tp(Vp^L7HTfF)o5cNAiu zNxBG_)Q6pP7ZBfOW@q>TN8IeWAK`vPFBfcN@}V4Q$n+T#QPJQDEyVX_c=!%q`nhZQOSYhO}WVFK(6 z-8lm6z~>3D16e4*4rB=f{{N%xbvcn^G&VNRmpR}74(pJUG7iq;?4tt4EM#y( z!12WlP6;UFTFT_Ckd!MKTo6!v4TH-9y02w$O~8P43~mb8vys6a0gE;>xF?|O76$)i zcR6i~*TfW)L0j46k$`r(^-l%Z-SI+z-2txz*d6djfZYM_1-J_74)`R*?trfX><;)1 z3qI=2V0S=50d@zt3$Q!DQ-Iw8$pzRQkjf>*?truc><;h}V0S=90z8HmU*ayx;s72G zzD~*+VtxYJ?PU9$0!r`E*ME70jN8X1{sKm7P(Z-#gKSY)z-0}J321thElLWgt3eq7 zw9qGZ3sshZ5Y*9nN_0tS$3plSqJptLyu|-1x-WoI!FvoSC zO_~dd*44BUfQ3*g);0pJYS3Q59K9Jj39z?IR{?g%2MQ>?hn@DyLF1o0!0!0oVq$lE zumHQ`2MDk`ey{+$e&y0E&#>f4d>X4(+x8JF>e1?8qJnup^5h zfcKnm@B4~lk97cd>0>8l%`b)NWD}oEElWqFwbJ+ph*sD&;uy?*20_;j}3$PDgcLj{-;NrL*2x-@m zL5zS-y3$wy8#H(#zz*xVfDs+oN1OoL>1zSD(|0-P+r}qU@wBn!TsJXzJB0HB!Vq{B zm{NFAmc%73R%wBkdI|ok#XnkH*5a%d|7meRiyK;;)B-PxQt@S4L}_u3PQ;*}wV0*F zLM`ypE9HIA;;9zvwRob%IxX;8HCf_KToOC9xTnQjE#_%4Q;YptETV--Q35aMl31a| z94(X<^R>X6!esJXi?>?b*W$bu^sY2a=-p%pdczcg-YbQ8uf;_zR%?Mb7G0D{?;S#H z*J7&{^ad6nz3~J=FET;U>q!vw77hfx!~#Jtra;i^B@pz|2n4<90kK&NdMyK~JzCH^ z1xV3<;9ZdPe|8A^e>%hxEv{%m|G@Y917T?Rc>lIrOAG7hv z5L?=FgZpp4%?QtDEKrBMW3#FbFO_F<9Gutxj5lV8P42noXLg_1#-Es1i4vWP6zU(` zGaN4PO342_XHP49#ZNpeVvjpjxcVomHhafg*xAyT z{$I5#f3(UPR$&*n2d|^BD|`_mV{8e0dZAFJ*z92&_i<*VWHK#qfa#VWX~`ti=b=;c zt7$#A6iAJLx7*pw=j4kmOszO%!&vnoQ)~gxJ(3K~g6hs6X2(ZZSO=YM9ol%Ef_#oiwonsS5#+5a;=ca-VApQ!4bFP8Bc8=p}{d}A|(Z9d8L>`zo> z@x`b*{UgimiT8Xs9xj+U?7|6d%!!|wMhuY*Dn+%^7fd9;42mfWWe}6VhkTo`4 zV%kSS)#iM$e$-dDY>SPmO14;E)u{P34($3*ILvi{>5U(0*7QaHH}Ee1l%qanjZNlx z`)5`l8`#w!nZM_qACrD*i#i+O+Rwb0!|{d^cLqo6_rHx6E&PICtl$53H@xs<+Y=A_ zc7b=dOFvPSs=;-}7k|e4{jiH|R47=`b=4o&8}I068~w!4&vW`|7=WM5^pl5v%G1wn z$~Z$m-|1%`{WPbH1oU%~l4(f$NLm#A6rf}rXmnd14w1cFjB&`_zG@+l}#C%ChOh1L`=LWIk^iz_O zW$@!|v?4W@pa*G3NJ|zFl{QCgYd3c~_D{{Dn*Ke;kG{X>;ZA3PsW}PY+r23)PY-=Y znCh#Frn9oS(`jL9E|tdD%7q*{IZVx`mK~Up4=FlFObt*?3*yUB`c#2ZUCLU%32~}W z3v$oR3Ei0S8O^J7daLm&#h@Cai=rK)U4{zx8;8LFi?uzv6>-S2Ao zq4YM@BzJ6XcRFNE^;c;;x8!%Ha|jHY7TB5tJI?vsvDxrli8R6*nMj^&* zwIW|^am05cUu;QyZz83CtZy!gM8BgzovHt`N44lXFzRk&V^m}R*sxmudnxf1Uxm;g zlt`7%(aPaF5So?pBP}Xf|Ja+CYSZPSv9JPuSlfgTH)!oFzSy8O|K^UCy0xQucW|`% z_y&WqYeN3&kD~Hde>^E|AYFMHBk{!p{jr1|_|$>c&fyyeTFbb?(YoQQ2AVy>*9^4g zz1z_e9(A-i_;7*FO>>#Fs7$RMM|iniiaOQ%@zjuZbbV{Y$Ki*yk)Iu{S^_Lh&ulT) z?$=tRyQ4*UIND9D(ywzHBy+TtSeM^e6&3m5ai(QF|IYYVVws@C3PwN$O0!!oH_OSi(&CSYMy z%_?94RIPcewzUwWa=6=XgTqz!=6U^95%07fQH6Ru*;v5q6IJ#atC{MBQOjT%Q{z)q z+^i=Tn|slvyOH`Z2y0uhoTw2Mbe>9+h1~vhV`KQP24O7_>t$)J#TG|vho!5Gdr_T-KTBP);#{)d_b&)*Nw7MU)~<-Q z7z;$%3sPZWD6Rc=k+i6dJD$Bw*N<+Wj2u`NSdX_ z!bVyfD%x`sb_t?eb z8GY2jGsO}|4S4#jed=WUsX!`s+}`ewy7Bp0-A>u)*3L-b1;W~+Y>u`CtLGRoQB~SK zPn_C|?);1o`9WB_hE;Ej6;W+_KfjryINc5!`LULUUNWNsmdwyvO01QkwR@rkVz~@s zPE?QS&*x5SI-g2mPXy$#}(HcfOTBm!C_8JRI81thV`@A?@ zwjJGz8Yi(XguSH1V@GR(g&#C4+%b`@wJ;nlO0>+q9d^2(qjefUT2!A_FTzrL(QU3# zRDrM-g3WI{k4oS3MY;8UZz=B$?p^f^=8m{SWi7<`h?{#1<3opjPp|f0Y?Ll)cG{Oq zyxq=6l?-^qt?k9VxYqXI)>mt}uCsuw_*{Pe zp4Ps9b+qIO6WeSRW~u62_oR;2AcdoOr*^cZn2DR<}0);u$&vDFY`7cLYAhfmF+ z(ll(DBdUvg+@w_5j#2{)U^c0qhZ>G)q*^WIDN7&DnzQ(JBBwB;QO|`u zkC}{GdyFZJT8qNmMXi;^q(x(U)Qz)o^@h5(Qpq^XIn;CQqA}S}YlSh(P-_z~y-;iJ zvm9+QCKPHm6*CF7wi+`CwKfq`2ep=Tk)!RvWI@eBFiTKtC6>D!H69ZKHGK7tqg}yF zK+R5I3ZT|XtrHEC{xs`}*?wBvyxGylV}74z9Wbv?Ywa<66|bDX)v<^$sPHs1XQhA;#J|?lkIE)2=}|q7rO(~;xUod8sZs^*0$mS1ZyEi;7kftxwY$`F6w^cx8|^H^jOcBfF}fc(og_yS+!>3 z#@cun74z@gkRBBy$;!gy9X$i5DQ4|xtpKL$Xze!U>1eGv=I3b5?GtHHa|*xPJTGBI ze>au1>Z80-{Z78~O3?HIxon#vi9ILhGiKE2**V!WIa;->j`jePXLRl@%$m{KmH8PBbsN>J#M!^5n+FCD4h-%VC{BKHTJ%S!m4^lf4eYM6o_=2`m0y?O?tc0DbmYa)n(l^UzH~4RyH3p`!z`0w5qxoVVkA;#VpG0-ut;}6V9CwuI{%Q?XB*Iyic5P zLBsND&#U)YN>*}f800n~JY*CelLladiJpma2NO%Q_8(@Huohyh2up(D8WPgA(EkA% CD>Uu^ delta 379868 zcmb@vcUV+M`#=0_W0$haR<`$D6$=9P7!`YqiY;~p3wA-pUceR`Dtgedi#=AXj2$eo zE7-eYY_X%UB{BNW%$Z%1=llEPb$GlkJaf;P`OICXoSAcW?X!E*nGf$t)7M8;8IfEq zu}X4O`5wJ0RP0eXKA}pr$~}9=SE^VkzCyL`J*vc4t=zpz_k^lZJ*!lx5MQZR<+;~; z%6ye}))TC-%Hor&R;)C#%IKZXZ3BhvBC9x}qP~l)_+4}*N0~_UFC$IbJ$`7fo_&X8 zq*W`QJTM9W`4IkpH_K%?_214c_tDvhp;o%fB9-(V)U(&f43HY{swhk|g2BT&m^o3& zlH9~nHck-k;bME*fpbrDuQ1KaO&F%-(!Cl%8E_%}VHqyUYZ912%lD7W+?diK+!Bvb z;NqedySVLTom^BIy}$)7fUz!7Mw%NZY#?<=ABi9XZ10h5;o{>;3rd0u=E#!hehKjA zTx#Dl^jLJqGlOA2cAod-);pgZj@aTSK4++dFpGbEze3 za6?O&!76P(hcL|v1ZN*Q5k>^}W@ZFpFs`4$#pTC&xrrsiLBX{$N>xUh!jIJ>aoC__ z1W|^IjZuF1>HyYDI-kNbAyxh zVHs&kKT^;5WaKi*8ENIXmMP&zVu`d+|Lugn1Co0ocM9WHhHC<_nbOK({ggwjhJpCP zE(S0m-W3iC6CA;uD#6XEF4g8PmWdQp1}k6Ks&aEZngt)*266#?YjK0igbN(t@OL#F zsInIfzHjoPL@D5$n&9@?C4F?C(%dSqm)q!8f%5krNx1tiH>e#|(+loDO|fy;I@J~s z2J~EJ7Xx>(Y&h3CA(|`fQ8Khhro>^%1Nw3~ZaXrd9jK#fmYElB6^TIxez{1^Xis z0^1q!&MR7%k@nxX8N8-Zk$-qo_lOwoUA$L7G%e*d&AT6FBTQYy8xf$_kfHzbTCPXe z(tdBi8uZ6P7#Gz=BknaanfP@WvbPFHg7Uxoh4*@&uW>1T?8IZb$AxpNy(Z;<8{O|- zm&%mqDtHa3kQNjyn=j^;hevaDI+ydiKIe8<2ZNEuxE0|VkUM$4g~WgZ2;(U7ENF3FXlL3Jfqf&Q*MeX98Thn3oXPHIR2@kj1m*9gHs z{D;fy9*(_?v&9E-)q5&%>~g}A(cJB_cEqexU;z0`Qw&IVE>OGFV;6VW-2lYC_Xf-O z9w^NQT3R35xX=U?cBO0r-oZIx+3GZCeQ_D>Rg-=I{Q5M-3PP7>nT06$sb|xkDKD-B zH>+zDc1>Ro)x4(@dn;lC_a=yqe|R$L3Ka4p4@ig~%$*PS0P&*~FNy~($kacUa9dG; zA(zHMMte&;x6*AQfkLFheVz9I72bdZ)|+rMm)c2>dM6ruw6ndCVC7uh3_A<@Ru-k) z760cyGo(G*oj%&c6wvP+q0(NRA=E-bZ8?3BQ0oabB=tI>J`$=>afeWs2^HGt0ihNV zDlwj??i0$C$x}}W)hCOm3R4JK;u25pAyl<0j|t3qLKO&~5b6}6Jmq+5H=)L^eM#>9 zK`5`KkWd>4HR$CBLft0ROT|Y*Z6?%#xt|F2Mx27B@3)*Mv&qe_^Zz6_4-hJP!e>Ig zCDhd#UkJ67P(kf^Du+;iH~P;ptizpz>X$1b)D=S2y3A8I3FQh3Aom`K|C556|8t*= zklV=3t_y<+^@LD;^a?^{5lSDzG-S2K*NKJ1)M`ekgM{k( zC6-W22zBInOG5oZsA;NJgnCFQVO$$Rog`FHrM861AXG~KY@Ym+kU!V^k=)!%D9_S% zgt|ef?&+NgHIGmi&vYTwGeTMJ@zi!gxj*sL9YU?^lR!$|B2br5|-fx8Jmd8_%3H3|rcyjL%p$;wNskww|I68&g zTR^BUjVBN)k5CcEcq)@nv3Dl$Mc)yUyD*UyT}h~ziIWL+oKXGV@>DLNN>!Xf?!6|| z-8wwAk5KDRhW~=Y@Cc!zP6r*w)GI>8wqJ7sQ&$P~_5I^hDVV%O$OB6npT^W#Ld`3` zmQXtg)vxr;Tln4ee`Q0jB;U)Vo%@3AKVyyG#)e@V#_G>Fe{< zCqi*Ge|(7VeI``vquXC#3KDAR-eWJDn7E*!jRbeOfgAN)&QLkG@osQXMmiY==46!O zwhoQv)-Cl&@j!s-+8Jg}H?lYPW=UCYepWbFX=~pAM?^&VhzL;op~%cBh7I5lTqT3N^6%-_RLZrMX|nIteTqTjPP?&irQF^)X?BE_`y` zST*-}UQJFnwoY(*KRnE-d9L&HrP zUl%n{nmax|0>suU9n968+Y}MixyaNy+=9t9&|i5F)4&zNy-Kad?M|&OsEn{9KtWxP z3@hX|S9(Ha!DghE?i8mw*K@s+!^(-N8i^7UeR{|yg{F+J%^jN&N$~HFbaT^J*A*Q2 z*B#s{(i{>84{lhT??{t`i%H|_AeH8zm~6}?rqw307yeX2ibpq}F?&y|ja;A^rkAu95B8$}1bA2>dcSa?y{_+T{N!0vLIg!`*kj*wuH@h3r$?+{7 zYAZaF@{H6c)sJscg7gy`RNUe@eGvnT35IZ995;D<9j^Y|#-uuSZC-JBu*Hnj<5a^c zbF1e~63qXXUm?N6iHk(meMnp3vP5qMj#%IajW6nmiZQt+VfE`_hoKlaOl%d0rP+kv3;GiabUh#iU(&O7>-On zDqURe8XPf4xzPEoxQ`h+&bv&-9hff%g`;XKIW6ePDTnnVVJw_i-v^8okH>S|av5&I zE)Q@_>m%jr%uth>1sRXDT;!qzDIVp0P3A8_O)Vh`ioDfZMk+QSc{MdR4hVJh#BLI&v3w*5}r)(hDkasu2d@c-+CtW$vzv z>fP`Qdnn6it9c|Ze-Xyr&c&=LE4afAToWFMrxh5^!6}z$LF}bRLENfgR-z@M{WY~w zmxN~mm;Dw8h84)lo{WaHCt8R+787 z!2yyg^^QdJP@gH*pXS z@U(c+a>#In7(c$_4sX%%JMlNWFj#F&oqmLgz@eB;}-F%0IaM@rvDJ5`% z2`4s~xYV*@PLWxXI3Cu+V{YJ%1i>TH2iSJXxlcP3g1Llq+s;~2JT1duG20t(x?M_P zS_v+6rv=1y7!$-b+JwC?57n>1rS2+^Le`9e9#7V=T;*}l6Vv1Q8qWDgH?U@ynT8uy z)JkHbFRQ9>^T(;U^j$iz?ZbE}m%b<<5YN4E-3eUneFH$Q{z({W0?)v3<`j|{6aGZT zIiNNWPsMQdRA06Qc@mzHp-gVufn=`ozErN(-qBpno^fEj;YlEuy+0Xz-m)+d-5my+ zi5AI7&X>PX&VhX+K&tUc0M~R+G8ei3&yY%0xB!Y~^@AvSt~Zhd!{K)x9jJ&`j*@E58%0NhL8tpX`llz08`NUp{4 zR4)H;3YV9g%C$Ix{tl;t!t~wf=CKc4-qBR<{4W!@7AIuf^&=m-ykkM!jl(0j*kdxJ zxD{N-6T?CCRoOBw=2RlL;xwvsB8kgAIg)F1as*fM^hl7ImCa{vJB4d};x?V0DEQ1p zoO#dvl|Po#oFBWO3}VD{E}09-8_$itFcGDP0%hB)fm}%bP;kE4wLq@y+2P#8{88MT z^J77oCMY94Zzu=OjpH)U%DB%LtZ3>r{$iBiKKZ|p{J)3WcCn=36iIL6f-ZFpz!TSg z&$vOCY6|Y|+;VBC;M*Sw?`(Nxk^t4da&?yU+iQahV;<^vZoIox0M?9BH{xa&?D}>P zuH_XsC>Z-t%Wb^>{@bf#9!dd64MF9d5f8qKivz$#JO}_~w~dl2L%cq^0I&)ask5zkl&GhAWDbl6oOL{ z(l}VJ74#~;GRXTgTzh*$+=j(w;H zkE(_m;mhuV=3<|)vAqR{1B#(L3f!bp*ARGYkRXz>E*T~Wqsg*kkZyS~(TZzTmpqCrjt;0#Wf~!I%JHnxTG=U@5i8vHgNbYBI@Tq&i-fp1%lM zkfa*^a>}3UIZtwrXw-1ZMZq&#Huaid8g&KZO~FekkD&imFe{Kx?tU(KOmjE?E{LYp zUVjv9qq*C@3i7G9&lL#YPL%PrlefDI^;8sbZ((^V zYrO%&J2V+RM3_$tXhsO5WW`W=<)W!b&=VDSnECdtYnj3<`RN=O7M}`+B2+Ih+ zy&it97z4W1{viO^M)i@wF_VSCB2f6ToC<=e!UqaIIdg$(0R=mEO&BQUbD!K59;XP03WR5Aa>=hk1?6GiBjGd_ ztN&XnfTU7^%nVUi5cy1KWz$k~aBp>T7>I0T)xrUYEMz_YToO7RLMt03k$ykuH&fK{x+G ziG*$3qBB%7bo%8Yb#zT-(Rn5B=x-Z{I?)1Mn~27X`P`SyMU`o?Vr!9^22fmEQD>Ta zu7hYZ4V4-3qOlUbn!dNFJq1hcC;CdGCVhbDC`qbeuR$U-mnK2nGD-A=CL0eCHKn*~ zhl_es1nX$gGg`nfR&<^wKaLaS(gG(Zh$c|ZI!+c%r#!ry?$7-xO>}{l?UOEA%wpDm zc}p6DJrF=2Q25NQg(v5WI9_F7z%tP+HmoGLc)92$4WET8MZH;JGFORu^11=Kb)vbf zFb&s>woq;)8`-&$ZxZP!Hx;&u04q2BvqZk$uiQ>{ZYu2(y`w^X2SsyOx#_n@w4cIM z-p|fW%>$x_)cF@26m6o(Rym?|RAYfhMN3$Dtba^YnsIPWg31%3nN+~dr$mccd3bVK zl*ZCwqR>i$+H<0Tga{r=s(dnA#XJ#JO+!U>#wrF!l zw47BB++EQTW?OtH5DlX|jC~-=_;wy3GHFF-6@)zzt*6bOe=1t^?akx4K@yZb7wu%` zq4O)z2+G65LKYS9JQ&}K&N7?fr+0om)cnZqj-x+`>M~CMTJ4SzXV}2T4-q=})F%Fo zc2vK*#Ej!rD^O$DFc~OSTC9eT-C{sH!P#E%F`DdAQj8v%keNkJxL8H!Cif%7r)Yuw z(c(>XiZG(8xC7eo#7l|$^~LvPeDYFr@qV6BxT2N#1kD}MNgPeV_H`Fuq+rW>ikr~Z zJ|&3D(PZVmVzj&_xZ?ie(JYS^{L?pR86s{#Cq+Yti!afcTe~UZbSlNC8REUPz>zuP zDU`|fK>Q|v=b__rzwi|^#U-df{eKo)DZh(0ieJ#=f-PbPO`gaSe@~Oz9pVpEAoDKq z8JhbsTilB(YT!PxissHaAhywl4;>MIM>z{TAr7QT_Ze{@tybf__yU!}epzg!xs9)h zcTlj9o8rqf_st#gpOlBs_rx^zSObwHi=DgpWNN)skEBKj&-M98NqY;QtkO*KH&smiSjj$?M;WMRYXM?29-!w(C58vU**{9q zR3FDD__eJ>v!K4j1e!b+85w%aAOT@D|#`@fKR&VzGo386xD3RD_vp{37&P zC#fX{xgq7%Fngnf@f zZb{lO4zxVroV4L`n15H&gK}8!fn++3le>>3Su}U~Gs!vHdyf4>(lD5hsmtPkR2pf$ zQ~|GOZcl4KKQr6Jp#>;BHCzSavSS8-Gt~l)^D?gcE?_H*%}BiZ0Fj5^kOjcEwF7)z z@cDWHzIF7z1_2$Z-Ml{pm>ISqA#%M`me~fX*9}OI8xp{iRsn~3fe*G05Cwg^1|b^w zMzSah)f*0#y#hjof`!o0J797Ux~?4@Fpi}wLttItwqXHG^FLe}pvo2~9~JPFjuFx^ z0kfzdu1yILQ}5h2A>ccfP(n>aft+Jf4Oq5*gc?Lj<5S^ZQv*6M7#;iz%K-1EA(io= zk(eHkLK*!!FQ6-Ru0aa}8n8?UQ9ISH*+aekWqbGamksYP&7@^-4)&K_G}K?V z&M<#j@d)W=TK4cbf7#R&f7$Q}{<6;}O1IIno2UEB_Mho5tDWU9dv&&74=d*T%XS6+ zveHHVvZoeHcTn84mHx6#SNqGpTjMXAy-u1-%TC?mFWVr?U-tDjf7$Ijq<83uvtplA zTAbMM;;_)bm|UrqH7p`_BDn`M-W>LiPRv9)BOLU10m zSHYy(GNqVL&aE#Cr^z#oWhZHJO> zka<{U0i^O@qh*UI4{OKCeqzFT;*wHPr_mrDc z+hy}u<$JnAHip@m-|m*7ZC@hFvOVkpwSBK_A%*F9KsJC?lr{%tpQuK<9F|RGg&A^0 z7R|D1K|Osfu)K6LGc12fb~^+#=+a&X9am+gSo$jhHal&&0v^91d(BG)kKd7@qlzR* zX5W)t;8g~bewD@2QSQQHnTnSE{i!U5?;v2k*Rm6|n&piwmKGTIPPSjpgEbZgb`Rr| z2MmFoXth$dK#`iy{XR0VO(36KSuOA*Mc7ayup`TOfMhEV;%Wz)z`aj_CJ5>V?vWC0 zfyZ?MH6T3zWzKCHShLvJQW)DZa8nS^cu42K-;{h(GBD7m$8&=MeR|9q9B2>V3)~wK zn9UE`aNVT9rZPTPm=^fEfx)ZZ>~vA~nmN#rL2(LprgI_JUj|JT5#QoiiU zr-8>=PAm`;=Z+0DKxE>Hp}fe$WkFRL1FJm1VAx-z0NFGE)Yk^77Ics);ryWBXaTsT z2|~|Rn@Q@!C(0n-q)@5}Do1^}z9GnGak(kTXYtpTAfKvq&LE$vUb%y|&}y5*gWf54 zO>D0kG=}Q3M)jb0>Qq_vgZ`wBvae;(O{&Ya9fQyo22u9t&Ox~}*|clW7Mcu<3tCB& z`{RR_6-Oz0nAaz$Ep52c;GhlBY#v$_I2JvS!4_+R2Js#WG;4!sFn-+{6dhO`Sb$&y z;Lm%4(4i8dmP&_$-q6mc%GsdrXq!t=_Yj1APlHU< zp&z{r>ca9ABmQ%6b&xe%=7pEu2XWL%$4G)ZvaB(Sz!HLj(Fqm8WFtlJ!oT(fucHm^I1t>H+R$(&cn59sR=(ecy)OkP(-?ViGq@^E zR{AvIg59v|WhzYeJ(zVItQF~k>suO|7ETc-Gv z1Ez*Fp$I3^Li#Y64iNwE|M->}Tz(&9g6A?q#;SNrc3l@zmq}4LCJAEipkO(S-W2kg zc1X3d{5IvXnQRJBsC)cZ`cOMLljisz0UbnpMKe|`Wv_Ws!u5h`GE$- z?S~;tcpVB~oC3A8Li)q^&qBJhj&CscUC1%ot1Swak6{_hiA@kr806IQENbA^2Kf~_ zU{tfqnGW3(<=uA6eac(ymHVP%LWKN(5*3{*%Y9LysVetHg`}Z;Kjr;GGr4a;QKPlo z7ZpEsl>4HhY&W^Dzq;2$?u&|Dz2v^An9*AvMs>1%fLy`k^wA*=LENwy8LX8o-xa|7 zyKIa+h-KxAv`WAfaN#(41QqkzB)M;bxnhdkH^H1RP41guu1}Nu2L04Ia^GXg4jJ+( zw99(EK)#xGS*usb)l}l+Yvj{dBt{c({<$SQyIDT8gy188+<)pNIm2;(^iE|M*cPo8 zb6qC|gP7?LCEVuw-9X2QLN$naXBLAwH{`)UeMR2(+b4-!>?AYDY^Ep!?_QBNVd(aK z0QJD08*+vxw7&XYkabU9l0R{O@1`7`InBM*Rs~kxl`mtL$_o)_G{gA#FRoOu$0PZ0 zhI!(Dp>%p8-z>+jfZuSlyq8Z=5E ziq;LLa5H$^Trr#hkb1QYBz02A;La8brqiM=J1XMA(qW-W7~e{f!xF0q;r6$)4_e+= z#PRNWv6CWA1RPPLR3NdNVgVagAGkbD@qlIcLX0#4%HsHcKHnF@0lpF4D=;#M%9?6yVGBY;m{+Nn6AVpBTdjOCCuk}8gW1);?W#X>P* z1bjN9n90URA80wJxW~}LVDGcp zp*$o$Q%q+y!`$bJA6cTkcID8P;Hxk+j1La(jp73zrC{+VCa3TL+TiIwP-n&H;9fuZv$Hw{BV zSw=4+R5y7j+nW~DV{CA}GPDn6#GwggdYKDrx4bs=1*>VW>)PP{u+XiPk*Ye*P%YJnEG9PzQK1_dp2R>TkAqQ)cJOJ{(1k2pJ*d&9@b8A9cNo2_ zDL|E#05z|JW156!u*{$_4YM>G34f{}yS zgUkW2?}FlSLtuj8xrIt`7+W{o6gJCJUSQS;svHFLVL}~fkx`}uytiGsn1zuEYE>-A zyo~Jg^`sJg5Q(fi_ncL>X6Xq1U;u%kryTf%{)#;14t|({-7hJ(Q7?2~Q6387z3}Zl z;o zsvBixh)w0|1!_4|dYaqYt3oew5w@dBs?f7;zHca{s!Bt@b~#lt%Ua_856HD%%zhXK zYALM&AhMyVCs-J*(ts6pRSK~5cjY+HrlP7GZzytu80u(6)ms*6|J7UwY+pr{%ugub zoocFZn$&;q7xsP)6?!p_2-~-|stluq{UMSoLcj|#q5+bQ2$9)HHHS{FVt!CDOw=F} zM@iWe#`>8)+tSZ;o3^U!46_`*M;_Qi6#@c}8#M4lN7V!|?`K`QsWMpmc!&@WQ+{jp zRvnp3+4e;I1Ds=EWe?ear)NN5Epbu=}WLlPL zR}i0Uxle_D!h_`YxT5mV0t>IHoHTj*hN?A1h`6gdE9c7wzfes*sqf|FUUvM+3`cxjy zpn4&`rst|h;cL)QzW$kGd^_9;^)_6u-Wk4~Ip_Fx6#0C)ybF9gqb^~Kq4ut-3vl`G zZmLIPdiQO06uJWRo|_i_byqzGXO6h97K_n!>?8GZOq+jGf52DubM+z2^o1AdWB9t@ z6%QU$sNRa{*KgEY@O9bm>Ne=gg9f};H^P-$d{i&TEx-CxT@}+M|E3!Js=kHk)$3PV)$t zIH=cnd?m7t8nX=LS)3YT&u$(Kv8T9{hS;-iX$`SwN?8rDXI_Mc=(|sprWM8@ddZ8{ zG{(TjikcjJy-`V%jj!odG|hd504gNUuBNGvIcZQ`L#+R)riNI*Zf#9JoWHfMhImP0 zeGRdC^F|tC^)f&3GG{i|5N}eq*k`rXg!ZgvICk-w`I;kG?&g;?UGR1D70pjLzrsz81k=@S^Yw?^(V>XG z-$t8^qvpr<+G>I5njWtuE*jfI`wPYi>!t05uU1unl~w6+4i z-kGG0!1fMF(+bmz_5I9&hW zF72EUbZvH6I~DVHC7&+`E^6Q7a;DhaU?ne3$JM$JT(9>!9qCca{;WHO#d)(?cM_N1w^i2+yN&FCj=0ywgSzXOpG~$CA2_3XgK@T=)8*r9N}etb;}=}gt-|V^bWgVw zmvj88i^F=D@Ip5k^Ak|0dxqtE^GSCZ*E{~FZZFnHsxWLamPZm2b`sw|uMHcD%hxf4 z?ZWvVondEj`D5-d(&@`fgr#Htmsbdj!T9%TgpI)0c8$V_`L8q$gSg(TwqeA4E82y< z$99%?|UljH_UIVi(zZ(3C`nLgB29CoL~ZpjZ;d)_ImwIh80ZFbTjXw zgma9MfY4cLIb3eluNQ-)Fq;bg=+Z}v_~at5K7%G}hU+7QeD1h1`Z6@Rx17EfO$J8l z<7skCv>vVc3E1})^^oR@tLRr!uL@b5kbjm(gUo$@+Q%Uwc1I(Kn)S_onJ+ z)Aq*C)R&^UaF*X-(sVugkOFD%!94v*TK2#Kzha{n>6_95vzF-5$9zfI^O^cXwCQE5 z^es@+@a1ZKEG^i4ogRG{h7_#$vtElCLw9YU@Mpag4%(o9E9Gwv-tKp@UAz2F)?ts| z$rkSOJK5y}ex5x!eghvotgnOMvybY#&;|z`(`V6S#Bn`3WJlO|bV6Sfm0NIB?*!8l z^$lU#Dg76EZ^;?IOE$~%`@q5r`i@i_(Ph669J}K8!`0XQewcdOuderZeE}eR-x~=2 z()R$fAL!-q#(l&9&r7KXe)lVU-VCdjCK%CGZg?EJppPP1&7~&}AX{n)$zg(USm1`Dg_=_5;_+NFy3kK^#--v248O=En)EW27AK|zTQAw z*5FfpVuZh1WTe5@1%y^G__}}>l?}cwAikQvwM*6g)iP@MTk9NS@CCcPp1-yB4g9Sg zZRD>uxrxE2?Yhkjz8Ly7*5HdFb8Ekt{o5LnrGitqZ~o`;s@7c$!`aq$P}$WmI#6&5 z&g^a2C`8xF{R}M_x_OwLXecKT?B>^+q0>|)K+D0bOaa7H5QsVSFcg#=VtDlJl7a1u z4b9=qp@ym~&tq|A&}@jw4z^t~b_F@Z4OT`L!1=KT`ibBvBMhNp(Cx1dDzJ8pVIw0T zM1WdmnNVdLOi3|}6Y`A6CmL9e77+aqtZI`COdIJ%2uG$EW>9XrOe-cg)2AC+Gq^5x zmSp}g%KSNoFCtzyYdFIsHY1INmop51vOG0JjEse2fFX%$_ zU1mV%M2Vla$uzL+*%K*dtTf!DnjE&49cI%yLoTC9yMoMYgA9~CZ%BlLw-_diz@Ms4 zIvBLwFqX;(b{ZHSn`3t&*b2C2mx1Y<(-;9F?n*K_$zH=ikaxon0k}Pemn`nF*HDpR zy9jLGYls6eD<4R}tNR8c%*Zu-Ve+!QhHgN4!k`2j9~q)S(o2H`^gU+y^V=oC98suo zPYnIwz~hFJEc>>CKMX&Df|U<~VTtpG-a_IhV8l6t1~|qUOfWCs(1LnQ`AbY5<8J^g z++_%XH7*-^vsnJ$FhF5lgvqZ%g3I`vwckei4R&h@~HjBaaPCR~QrElP8ACjBeGN?|wXm2DIlu zx}Uqh`@5h1A6T7fARP74(2hYgi1Y&aZW*5XY)D{KZMWSy#xe}e1Jr!C`8mc=VB2R% zfUkwdBt{?U22ul!QZObLbwr_oMj@*p;9Rg#2{t@3R0l6YjGq|#AS@D(GWLm~KYXn) zGJU?crQ6sE9ttxKmh#SlNE$JOf6vQVqPh?6TU( zbXu$k;lNs>mSI;P3bq-)58~royu%mgDf^7|Xq;a@U>wNc4G6X~Jb%#Gm?6#qt_)D+ z0I=ecki!qM({_NAn*)$GToHq_+asGd`mBt|H%7?}{kgGM(wRQ6b zCXE38am9!xZ#dAw;Oj<)@8AO;tPSqEVSK=%#Ug|Tw~fAK+=;u!`Na^@27?QXy%_Wi z5jRXH|53dJP~Kr`40k>;j%4s~tjV^Z+s4~+c<8P1BBLgG1P~lyiiJbp8}kAgl!$^A zeI`516a>$HHMR=igUQ0D3zZMG({knFg`Q>}R$J3m8L8 zED_>^3Wkw#(_Rrs4DF}}e<@81iy>k#Kv+&PGBi}1nBv3FRuR-)t!Xq3+rE0!;{OeQ z&|perh#0)KC+m5glldYfi2 zve_J>U5YHR;17P+<@weq-GU<$3Ftb)l>Y7gDA}neJ1=p^(1~jF_21vW9R$3YYU&KH zj52A_#|HYfP{BXPn1-X@I>5;ZXzPw;=8qvkr#EIh*nid375urxq^X{^wtVuyB>Y!p zL~^ynD#=mhd-SSMu}9_jgeui4_v{&8sbZ!03e~#zs1jeba`!6T6RJk_tWu#ue5GEM zA;MGhECFpAi>9!UL&!MTVwPzw%j#IQ!qgj_zh(-DyE)TvbO0CW2Ye5hx)Xw>cyF@7 znF~#A859f=0{Yd9kvm%G;Gs1p^a3nlr@?v?%hLt~mIxxIqEKo7vuQO;sQ3}U=ATU} zu=Sv+E=WBsjfN#RnR@WLf=jlV&==2$TV391dWSx8fj#WTZqt`QKKWaY$xM^lQ~qSk zMbj~sXGQ7Z%pU|Vwf?I|GQ}& zBR3E!kLgWhV!-B~OxGw6mH#rWXXJr5AotmHzc>c8!O~w%V%mSy5}LD%#my#>xjoDC zu_F8I4KP2ay4f9Q-pbo`$U?39YOhMb0wA~6>6;y*lITigP>XF3b1+=^C}jPFM@e^)ocRa z&o@WIbJfhbat3=Mtbt%f1G5B1HZt!L@gv_KP0a}`KIaDm2#mgwsBB?IZzK{8UTS4V zr;$i9qm3E8kw}s~x|zrEg8+Qf%ltdb_7Z8g#XFN6&KYDzzgbR(@2*44XPJe-U;u$h z`BxBs9cD&9`%c&uj5ed!`bhHp7_*mhE}m%C(lI!Es<{$_D*|HGf{hQfFnE@^A+ui) zgs-#BLxj8{Htd4S{yNw_o~lG zwQicXv-lK71PIX#7u`0uqW1ZG-#nMvXZd6EZW<0fe>3l($&$~^>sk0GD<-tO@d^YR z@IvnCxA$oNr5mS=kb-UHtWtRDck?C|s|?m!l0dG9Gt=Extff*1cV z_o2zApUtW0olBg1TWCR1N0QwnmfAGAU255eUe&|}h6Gy{7mty%3Jc3@8%gpL|MfMs z(t=(U#N2?NH5P_Ppb%mGz+&5#Z!CjBQfrlLL3s=P;L%*Or7?PS6*KeP&cY1%C#VfJ zbz07`IQhR(3fz`_-ge+{3Co6WcftSSD!P>AdhxlsSlV)ia<#Rb<>%sXm0jKvNjVOBA(O`EwTZ206(+e8GZ#vz{cMT(*3VzA%7wR`I64THV{03Z$$WPAjmW z2?{B&<&otm!}nnzk{Hdch@469ElgjdMG*5~jZYS|%RyK<`KQH8lV3ht&_F_RkA1PA z#Q{k+5?aTzjL@i|;S08+(Vu(_;nw>g4O}9#YIyd+2B}rEKw}96>Dz=VSQu;#>N0fh?nW7F1%co;l$Wy_rGm{olY=T+H-CFa z^4iw9 z-_9rSVbz1x>sV1x5+2Vru(qQ-R%&ehiRPYdW}Q(ScJrCp8)U5m#<#PE!N^ut^zi}A zBWU@fmE{BrFE0Xw2yhKcr|Cmz0y=KDqfe83jST{aN=B)`wjZtX>^N(CDLCM1se=Q1 zTSrpceCW#*lD?K=VQ_zIQLpDK7$6)XV3&8Ab1RN z$Tr)obJ^n;hYW)KUPil!{npiid~(7sR`gjk(s6V-VU-5+$zd0*{iJ-d@P_pcEpYdi zwWWm5jk#|<6~HG=zgdsd0&kvL(Xl}Sw&uANJ**-jINno28r+|p2`SgU1*vtfIE)0QHkRMjd{fsp9_CwZOdqVnl|hoj#&V(r)m;cud)nxh z|KCoVLoCP!wi32?3^D6Nv%x<~+J0o|I1xf7bVS-3$PpLh+wfy**kmF^OpdYbVPk0> z)YP$UVele|xLM9}^b*yBV2;Dq6(o+dX}`PA-tqf1N|)4+n%g82q>SgSZTW1U1nqjq8O-9JT4aZ zw%x{DjOb^(!pH@VL>sIyz*ebvth7k9-N&p%4Y6HiWCi9AwH;s?LWqZCF0+LI$4n1( z+nJ+mzu<1A<#=|t^+DR8Hq{o!te+wn>m*wNR??R#whN3(0!3&?rrLgI=wiUX)MbM| z&#+y@OpTfKzhJ7?9NYf?0aGvM+VU||hcawuim$1$3v8WO7Rgvs5Ggzhu>xZ=ZKnn3 zYF=eyIvh{b{-u*GWP!yo8=l={(_+;7TX@vXS+*)HTPXx}_EDP}q?asX1O;DR$*}2u z9y{(Jk6k9m)`A(^(H~(KR4iqJiKlIsFw1q%+0ZvxvY{c*hCaQM4GZ%5W;R{q>7kcx z8s_HWcA)*L9`|e=8He(Ppx~{IPPex_vGu}37a7z`zO)sxb}kTM4n{Kq*y@9=E$UU^ z&wtv|Sr!GvT9H9^9T?xkp@HE7`$Rm^APnY;?elOOt?hbp2D$wnw#_Gn zeLSNklR$c|%M1!5yj|cNy}do7@+eGx)iNe{&|>d}MRYst=dc>zc>|0l9!SBLbgvPdeeReJw~V$cuvHI? zwUdaOJf7#JX{tSoxee461%R(r%UM8@z&Q}Mnre6BHil2PFJ#7SCUB<1-swEj%z5_H z!GZ(ee(g$)!1Cqxwcl=^qJ>Z9al0MvTw!NAy5hWGPX>Kg*;$q=sO}nmr|ZRP+LtcT^fL}Hp9#f_TO2Y9aWwUP3kSsfjtM& z^RI&CcKQrD=aBuXkY{$?VLQw24sH*k_LyF$_A#pfrB2vYAoZwS30kPihJ%^E*jbhl z|H5N=X9EGO;lD$%?4A7kjIAz~zsdeOYg_I<3)hhMdyW@w&w z!Tjs?i$b7`L_c7+>y|x-m510ncBWMWQo&}}y}*8sI%v!Tb{=j&v{zv1u82bwggE#$ z11x-IKTDnB+-p{+m<@b@HaPf={S%{o{t46So&6!zQp1n-18kQ1C*X@u_OJf~zApb| zKS}x8^5uWP*X~vhre(vw%xHrjgbwsUH_}C4l{i=qZ2lMEFsY*@b7zgbK>-|@9y%>| zggVf{easxJuX5}Y@JXe{;bnQ?Lm18VIM5fH*P|`M*f~xeKl`6;@i(*6=5J=a!(n8Z zl#^zf>+kSu0D#s2Ik0wFe+vl_4)g*zk*Rv5108WDNl~=F-SZXvxeF>ezOcMzNLa`; z-qFE6F^+7i!SZz-=-qYFnxMYFiBk<6EZ*(1w z8e8F)R*sG=%m07D^2Zm!u8s~m9wt1BNCVs2Im&_9A&#=JN;^k^gqNsP7so{APObSK zrvhZ|bDH4X9uD-A5JZ9|y&bdoQ3w9k4?S;X?MQs!QkXlyfyNMGfYphPJZg(cgB@m; z^#-pgk3+hkf2mL~-sqkVKacWznRBe)pI(e}3}W=-{{L9e44Up}&9b0Dd{P*)pqV$@ z(Tl28HqUX8A3@;N1&-S^_vm8B0LK12e>4z%Gzl9sa$H!To*$&pAA@~=6z(B$mf4jXmdgZCZR zsqE_>IT|v1@u7Wm1q9Iw2vA2$e&vt!?+g9xiQYPx7UMpj`{yd?{wIf|DYa9Ax=ohe;vM0D<5wzog2MJJ)`D92YIABIBKQcv<0O zT2c*O=S&8j+qvu@DbCpyNYzf3@Ax5cu)4OT3dr@&Ti-4m@B!N3 zaf9<$mdGOrc$o#!GOND~40zT`2MbF%MU*jdStrYC$_J}}qsuuvvGl)w1W;JRsRA`- zIMKYq0F2U*g{i6;}TR%+0rsgq?PR>aL;KRB6I zV?_w7TR1OM-ArrcJX|c-FWJV)v@R>+=DT)IG>;~hGIew^{7T0^^t`8&lWB#9xJd`; zqnu8D*?vFXxrujeuq=Vqc?e)QtlP)Q^z)%UmcpUCzw-uFkbIEyAe*@;H@gy@?-)A- ziZE}8^EBmV;ILwHqaER7T8UxZKxD2rl#zL3ov>JHsW9HzhOq-DY6%9RgUSwsxl^1u zEbFVoHC=NTTtbi23Papx5b5@|f^d#=7t7p}xJ~Lp)M=xAlyPw166a40Fc86@FWvRu z-&zODY;<;JS&$%z)#P{Gz{Bl`oqOe+NJ6D>o?5Ym2^b2Q5gh{)Sw zk5dlOG6cOPgINZR4>~oV@F%n^8Ft9oosL((9dC!Lw|_ytQ^s)48TW+)K>nq&5er6@Y79T$cK*mX zFcXxD(EY0utvZN!iyk@As)HnZKXam02T8Vh&WpoxTuA zwF+D9x8p9B3BDg^!bum?YQqoUKI7Vt8M$}Pb(~Qn*?F$|EHec?T#3o7@!mFD)9J6cPNay<4VP@vg1Cpt6=cyu>Awq->fkO z5kfPpo-e<-jxwr;=VI+M7t`@xpOU7-(Jx)u*i)hki^K zv8=a>fX;n#MYDF#Sg-x@!om#EQLAZ)AJ|vuM(4tEU`4U}Bg<66$5MTi<-m+kzJYEkcZ*^-pagN_%bWNHq$a)ri-m9CiPhbycnu`F(LsBBSd8B& zdQyUK;BzTAIx&_5FO+tp^D8-UQCYsho)J7l6i1O9Pf##-Ht4$S1h zvNiYy-qm!Y!#g=}e~g>y6C*_p#r3=+1qDmXnD|pOi4EQ8)JzWK8oS#t%sE(efPlYK$A5o6CXc$GO`UFBHhRx#~Z;A0t>^fXdU6 zQx>B?j{{`S$(ZIwhv;%(${aU3M3)1bWw_BHx*Yi3LU)(q`3%`=TDHO+9EwbRct)RgqqB86FyVq5 zovq7(kFU7V*}5FK=B68+t;>Oz?zz#~x*T}mfqM$8b$rVOJCwh050C+Ml}?R-V{e&K z;ORSeabA9f+upl9EXq=ac?W>TKYQ&U{ga#JV+;sjJV@1+4Tlf@a4!*o$Ss{zV9wv} z(+ti=uyWsfZLq{w_f-~uA_(N18d<>{5AY<(!GIoJbg-$`^Hs=m*GcbT*+ubTD`2j{ zQ;lVU(W zLRk;mAtlL$5uV?9$>7o`Pc}v9QQ2SZyQ=6y;*Qt7|sVOcO? z0EnDtq!4at;92IgPh(G3vApM66A#m3iO56zuTL}2Qp$}k*2C~n0~BGUxAZWrn2Hce zw(;zv+`RqKv#VIT8QR{%v_DhC&9F`$^r=1)=heG|4JmuzI zPxiPbSZxwKM`;gMs-I_Lu_Rm3--CV$lW1vVqGwaFunLnr%UPbE{auirsuEXaigB?L7UY?HIG+JdIqpOu_i*rtoH| znMcZX4|<&++Z}eg>Dfq=VYfZ#@FU6n?T!b1BaI|C-SceXeFXOY)q_4HNOG6`=0_Oy z%#Tp+$nd+vzq~MqT9QlF=Bd?BajfSO*0q=GaiAgL_xbcUIpw{ z(c6xSdZLOKZAKEQ=YQ`-n~@|rF~-aEc{ij(+89}vo^9xz#&QI*2nN03rG@4WUbHPq z7+c!Ki?$_6Qjy?A+ma+1FvyFxB}p0Ba7E~)Y01jX1eZ!2B z8dGj4oUy{|V(jtagkA?2_~l_R7__~)5&pf=`<)nJ zN9`(83B+Z+EfaCf^!a-nZE0Eza^Dpe9Se?{|CcENlG3&%6_XVvm<)lM>a< z;x{Ol?)6?1A)%5FdKvay0Rn=sWsdg(ODBXXFDlxY1cg(|g~P}b-ZK)cWVAa8mFK)c zm^pL4m*uM&7#}XX;AQ&JS08fWbvoiy4Caif2_TCTvN#xHvS@A1nE|=tPm0)B!PquN$52RYj;)b4eQ#) z-aFQ@cf~F$I(E@@t*fHz+ScA(>$-MVeb3Cj3GVmz{^QB-4?p)3?>zIIGiT29Gr5)M zy_*61D}kz3+zG%0vH&Xtg3_uN>%rV_lU%)VLTD&nHG>h!9zfrg;V)WA3_Y zwLoNz;Ak>>zIxyt%)rmgM@HAy3WU%TSIHp%K+H+i3ZVG9fv8bm1;W$%foB+%y#d%l z7PT@+5{L?~SwUrhEbu9#(mvEmtptSyqPl~O%G@OlT#0*+5OMwTiY5>iNUzf8QGu`m zdzJ2v2~5ItPq>sX7hM-3bL1xrsQpp}RBd`-Jxq6-qq>^{tC8s!Wj?}!sBc37JGgNm zEQns+*)$N=L$A`~&4jFGwGjSp(K65mou%>KT{qGzr)~{WwT{V!{8c@$GI2kiU6UBU zG-yoEcMhDz>O60<2Nwj!BKs9%g^9 z7!(M5POj2cg@O0jcS$1y-(q^B=EC~sq}YlHf>!AyL5-uP1opwGZ^oj)<$Q}~)p>y? z#Q2B;Kout2l4XIgGk*il@4S#s9PJ0_H!Sk`rjmWrLqqCGIwLYS7I!BpWSN zv!|Z~wnks2GwMlr@wE6s!i%SVfFujuzVWw{(zf5`XR9Nixx1_`tEd<%2(ZSYB85vV7a7j|Ap6 zIqrc0l0R*Q*Y!gr8ib3bK)TqI%UyhWi9`S+H>$={;r{kBM8qKp5UxK&anzPfLh!1^}-^_Nmf8wcT4 zy;qVXCYx9$sey44|HBUIWuKUn_$t}^l7xISq$VRyOB`vP(~X-2vb7+I2;*rVq*+Fn*lDC-)^MZcF z3+G95nHjI>Gc99FtsCMS8@ZoZ67@Lx*}wzf|IiCR2Q* zm_e8&0}2^TM|3d+AlOrD#mNsQbU?7nu495^e$$gY@x_>z%v+4irz{w zYm?>zk$f|nqNV`pd{K#?BvMR&)eIX(`$(mz(Ub*YXNYv3NM@Z}is>vdC<<2m0bQ7o zIE-#rNg-kktHWflT8inoT4bVcHB!_7s{-Lov~;V;hQ>)TUHJ+uRe}^X)T%%@qLsoO zY+N^nBVWy|!YcDS@n@s5u5$j@(bRCis^L}A8!yrYCytsn$1Eqf7 zTupGIp|sFWkg;(yeC0Bu`qL}TrKnh={~_m3i(5)d#Ud=omtr>D{}15HHqz(l8do7+ zX?rOg1mHH&rW4*KDgbYGw!#xI7+Ta#3ITUGrEWd`|4`M7p3>`xUX#$$^a_&tf3qy= zH9!h+Mj1I8HAo6^M)|Al5b0^mnJHeTTA8fce}{Wwuu`6-gy#DP$(x$U4*$kZn&50mV9+5)CQ7&E0`4&O%FR=W&X_0iBbvzVxp1QKd)a7(f zvGk;!(8ZX)QJRG8h;=1gJTt7Yc1i+Dp@XpDic}a`QbUO}8V&-p0-V27nvJy!I%1!6 zP9=e|?4YziTuG^D<4Lz2mfB)#B{d$Az87t)*)b`M7&*)66Vf~^OF<#VGg3#Ic-A_9 z0b9WVhAb@!Or`EB}4Ys($!F2M`afe)oH0OTKZcp@Dn zzP@-aU2k25F^`2O(tGbL_Uru7VyPECNhO%UF;vNp-wci`JIcZ_gX0PqJ~(!+B7?y( z*TV3sG8i25*Boz|SvN7&W!~sgF4swY*=E*S!i@$i{bg>V9UZPKGuPrt^<^-K<@uT# z$WRBWnY*Iku6_~Gy+dX3Xwqfb&}Y9nz0L$WHCzU9K{>NSYS~<8n}@`d)9Yt)Dp6+D zrqZ$unIGMvm7!)+O|4|TNXsM{W>YDo9YYkEGI2@sVzTUrEeN$RU3Lr6QDSHm(B5DM zbdY!oAI6b=4t_zTC|TxA1M_6TPQZu9y>T+hyh!Diiw34l^oQ17ydoqViy%3^hb! zRA~7S*FZH4*lqlfY#S@X%-B?DHha7bHA<{NcsNlu zj#23`MTQCgS^@NVs_Yc=S0`r34p^n$=Cfqw3@Dh$F!x|oFxo#)h8iI<1nRy-_R$Vl zxU9t2WWcCTj3dB#ZeAs`#q>|PFdXLALX9(>Q7pU63ajgS*%7Rc85-YT;<{00V-+Wk z@@%tg7o)Uht96t}d8x{oW^R}5L02t{WOsMSAVktbvS1h96fIzpdt|Z5HgpWB+f~N5 z#}?3Khh$?gv*3aSlmkq~vYzRb47Hn*V;QbM)6EZPI$n}p!*q5zOvzAyS#}Fz{B*kM z??aE?ku|G=HOb*O?mEz`FJv3hdam;YE?t6k!BYC^oh-@`%AR*qy1X@aQ~G_Cp-u^L zSe5pnqM&NCwvI8JcC^^BPb5*UM{n2@fG8*ev$;AMVe5TZ^ld4!h;hr z<0YUaz)%=3alIMif?=QUL+Y;!hQk;SsY^<5N2FDW1o`q|@9f|r%<`dyAmKZHPqqw( z9lsB0Y};Vi@%xZ&>KY6?ejn1+eS%?2=|kGHZ!l~reMmL^gJH+-L)vv{Fzon!NdFoc z3_E@w(zWA)S@)7&nj8$rL>|(z>A^a*1uA9-^BunhR5~~KBN_&*f?wCron|c#wn6H8 z3|ZoK!}@&Q;K+GbO*yN%5jVdYTXy03~n*&J-m$PjK3uM77% z-*+ZoMi;t}FERP<1Wq}6QRk9iiJi?B3P&A_?QB+94md9Pet&3Lt0Z-Mga%Ueo?w*M z8W|EYia72M#tcJw+Q1{h;xKgBf#8pDdq`1R4>Iv^@L%6A5@CQ807qj?3=)?L3!N)Y z29JaVZAK*GY%pdE8({6D7t4cPFufk0_{{IYZz{oM5A8h39~Xl$3p^a==gYx*j2DK) zOa6P{vxtV>4vu#v-F|QDL+0HK_9FR(AvNjd=fT(EA_b~iHl##IV|IVb*VYZp>i zOcmi6a#JXO+Mr5E1B|2jFC`LuBDf8SNrUJaOHTx2S~0*Y{br4p`H37gAtNcTbiX5ElgR2ve*N!Q3FiVHzffphnfV6GNAN6L#rcM#v7)o$t>@RTDFylnyqA{El%^ z6$q(6hWsg(l&W#auLx_YzaiTZf=F#a758ZyR!1WK*pJ z%KR#@&UOsxfbrZMp(4;xVULiJP_2OB16AFJ5Oysg>!Kb09MTo8C1kJh4xzBmRiNt@3j197>({EG=I+{2 zk5Guo!+-r)Jrwr2^4GzBq3l{hh7eUhlwC{6UOP!bVV^61H3o;azzhy}iC4trd8Q1F z$Ec9Qu$VkMqeDv&02Ba@VB8TXeKaW>AL>E!&jeSY{WC(tM1Qcy82TPLO8EwnOnjkm zr9}-xA?6}ibeE=~eZ`V^{!{3E@%3Jt(4AtbZRiqO#TMZ@DkNFfBh-~l>>iqD4GIMm zu>(s7^bVclg9M|X+*+baUrq}>XpKti(J?ba&xnd_H#c;ssJ*`zgla_XMXj(-do_s1 zn$U(wS(zc#psM1~GonlNSRXpt7Y8teG&n9De?xlxTcoenMjezb}S4aIbM zFlikEyRQ{zLNWJ{jdXy^d7GUNtwVgHRE=qk^3c(kcG3)knj3MDU!)&@4-K#*$lG-wz4;gef6c*;2$ZJx!H=%bb z2{diqhpxrZxm8=a9Gj^!H0s!DW)K95+4(F63qVKF-usL;g-A z)2y}}6MKo-GOg<`k4O1dvr?MXll$5VN*U2We#IK4Gzye|McS%RDUDKjw8&*ah#a%` zhUtXda?v}}0do0MtH`ug${~z7x0ZGh^7GaxMyZkGrZUWh^d?HaPvmkqR(=f0g}AS6 z;aof}UM~7jqLZU0hs>;gN|HN>P(P>1Pa;`ycO0D|UykYP&*&Alne=Kd7b8kP&y}wh zz0Imd@^c7AWvhBb2CEy;w5e6g7wfX?d5s) zf>C>Rm0z|>L9e>WJu$Aw%u7nE^ptyvT2l0}l8t*`xgOJhu3*!Apxj$zGkl2rl2y8C zHB^q;Tvx%S#R$2h$mZwKDECu=l`|ISm@5z(PLMwr9ng=Htz;8ARek{DnJd`*GhO~v zWb<;S{5Pvg>d0*QFvQ4{a5ma1a`9%}`HSQMn5~Q)W<+5azw4?u^)8lsW2R0xOv0Fu zX>`tZ`Cv3cnf^vKYF{SbjYe2@QeKDd`%V5Fv#P_T$h`wM9>HZzHR+biavx_>_*v^i zuiTdRMf(~vqIfq`%6<6*p^>0*PvzS&(;u8@>sE3%dhL}QMy8zO!ME}%LUTy3eU$%> z#?|h8>P?RJa}Z9xQ#kqFzLJnbnqAmRv=$gFz3v$1A$S$~wQ?B5O=tZZhyr1GUFjAE zQH1!fZQR4&Vm20W<-FYN3kO#M!knnlKWwJR|6Sd%<7gkv5Gf#vEe5?1WFfsqW_cYL zV&SimhoxaAZGNB_x)xm;L&HoU|N`eK>rAXX<_~vc{L2Ch57578(}al%wHSa3xjE4{_6TD ztS{Do(fsFOmoQ4=^$wasd-633Vkb;^8&-gZ>6r@ASm3ZqEn!bn>X)!yzNABTxF5;C zogGZRcqdM#1-%#DQ!wQ9Z!Oz`n~GDSX7)K)l<%OQ=tNU!Zx?CIWWihCI6 zXvV_KszKUO!ZwN-eu_tSHjByN`ikQS_X9wa=;t34e<8dH;fYrSD&Rig#Uw?l*zo-X zC}2FrG>ts(NcgclUJB}##cR09MGs9vk6 z#fqQr-JOuAfHlZ&ikft3vLc5m=2@x&bG0^uCi5FA+^A2wLWe9Kj!=gf<}2K3{VavM zz0G18Zd9B=))fwit}BW>KX3Z6k;2&)v|`sxfe64rZ#Po}VVo=1W=Ru;J>Ae+0e7=6 zCVA}?CEs6Hn7I@X21EeJm(RZ(Zm&Sit^PltQadRIGn+ZoMS;0B@4tvdtA)cC%5I9~ zXpI#$12;S1s$vj*-do`X%xI;)3Oh_kfm5qHL{XLedsHE(w+1R!BHdj91sD&eC8%&d zG;OG&E?U0fV-;>h-asj*+R=&?XhHzvDiZQ0zm5?-K=GOJ3e1whj8tVuqF4^huFX?8 z(IG{OAI$EBZlA4yI}a9#Tpb^zC_WU)p7L-1>$rksgMzXggRcbQn8gGwk=j*u5A2&AYNIkKy64fLscWU zb}M{ouf|Fr8*1F5n9R)L+E%Ls=9vC8e>={h{fC-AeYrz1iIEzzOMzK9wV+WD^eLu_ zTM)>W&dRp*TA8B28knji@tDGCZf~Un1s_%q<1NgLEKmg`@`U0KP!jJvz`NLa$UUh* z9g$}l%%uuna_by;ZsyrYQn}(KvNka!3P@TT@ci|DSD*qrSIAsEN;!Zk%si9LTg4tkF+<+{31A3rZp1sq4hE+Aq`*Y{wSbXjwE~^#wtp3iF?|INv!(Ec zGleD5J&eyDd*v@!;TRA(=&baoS&m9nN3DVn!0^FNK^5h0>-qfSs=R=4NM=5j$&fM_ zXw39h?nlF%t*sQgWaL0ts0&G`rNkVTVT>q1WrL#-P6R6al^Ix4v@ZB9Y=t0@*p1X0 z41K6Bfy#>_ANDS~){zorU!>#dPYk1Oh#lfuVM^X14pS;ox0{1o>`T{2DT6J3?5{W_ z@7w*Fs6_Vd`jQVxN;vzXQ-)&(jGPi61YvZ~60_{j_kv+9kuWu zI5W;iF;eMBH;q!Vp#zN`s~myZ)CU85J{? zk^*EsRu(T-E8k(NxEV=D2X9n5c>pCo?m4jm8fV3Hr86lispLVA>{q5hNt4QD%0erO zBaPNQq-?=}3V%_KunK7I5oMA+$bI#Max=5RiN7f&?78)f@*gmHy1HEXl|Robo7>sU z*?CD>o2kj~s5I3@QLM1~d{APx{aVl{$cc&zU`EifDUu$XJ^$WW(gbIR9`TY?`Cc>#PIQM6*9YSx{CDmQhl_d^aLpC=%Z@Q zWMvhR4ymR(zzj9UPql^7{i~ip|5AYJm5a?eVPE~%wtjA;XsBOx5~)&I<==0uR#l;u z!&Ui}NJ&m(4?0Ax`i!w8UA(G0bLg1P3#4sGn#9F>(~i-q^_a2&ghz;S`1^zEM^bl~ zO7zi}5>#Dnxf)2GUWK^ujFW|srk3nZ>X%IB&2kh%#fj1M+z*H>8c-P=o5%}yw; zyM0x2v08!h_oub`tCnK5!Ys(2{xnbp`c z%b8ZPk<3;#z;p+pPBob64fq00@`TzlRiQ1^SPqe4Ze4d@;`ki-jl?xed@xI3-k5PlcI zgjirGz%0gW7pOoO;t~G9Dh>n?s*-mNtNN0lBYELe<{f?xV^9`Kd%rMNZ^|BesL`eWfKTPbX4z+(SZWUbs8y zW(xNpbsD*~rlp2(7YCAbJ3F1cXya#3%5G&;A@1kq*pb?e!>4|~1@YWoHV(h={Yi<< zpl}tHGz~AeCHaP259;(&xTccuYG@U%!1NXvByrKH>yWX{om!FBZNmL<#5xLt8cEym z0((x0tm+g#4Tsf(p6eV=k>d2Al7eu!F^Xx3oa+%j5zFC2&u}j^hYfwgSBe~3_Y0ql zmgd8WW!CO*&=d_|SIq z!Vh6)NX&>%WSOnbfuwB?cbjuP!i!#56mIkus(^ZH_&%{>RN4{#gRAhX=5Y9m`Z)Q+ ziP3L!4RWP>qndM_Y#m6ml5lTw@>wfaVvr1Upo{K@Pw^F`ivKs<3DcT@R6-^@4o3ti z1;X!@5pV|uuis_i5vxQo`spH;R}p@d&NdOB#Q(2S z5aA@I3K$sC-dRjFGNM>al{X-K^DnCYK(3dwN z0%{1QDSIDr5z%f@z)6PYh-*_GPIti%~3N5@%A2bDTCgYI|Ey zgQHQ6S&Qdl0NN3RT~bK=lI2~$xf(N=hU7i?K7gNEr~{B{Y)UJ)Rlfxi6c!e)BZMGZ zsk$L~IYjM5yLD4Xnt?k4uBqm>CO(N&$5iqTX02xsl@9QEnt;byO-D zaneym7Y$RN1yZzNqq09ED^H|>h>{BmBB={z3lt*7WgL~RbN00zw?B; z10zuTH@ro*I;}>99Oc@-a8}Sj#Cg012K=tRgRT<){-N&9G|=@jUIQDisP{39F4xqf zu*Ep-x*D!0cuHE_QZK|}%)hO^fmTG#d+J7vK(7aC#Ld!zEpBC2(=l+(Q$X>7s%CB2S5ro2D2`pmkNv zTXYG$_s|Su1O|9(R$~bq^wIo<)CRK&?QfA%bDNpaum}xinn&mqsWp61wI)h~ z?x{YC*5I4v?s1x#AjI56j1>x=FkP$Zh_(b%l4dAV;@K3<8f-nRo~G%HAV9ZfXsW_s zh8)Vq3-6q(nSjV!&|HK`vz!Tk@kh;Ctnl?3fh)%*j%%vv%Lr_3j&BFvw$NNbyWu{q zH0v0F+HEw5xD}+R?p!8hnSi!$3_rBcK_g*^VVJrO*l^bQ%sl86fa%qz1DI zkrzSQXbtKRB2Rp3tmZx=uyulF4^{(ilQa*}eqi2I&2&Z}s0d#R`pnQ2GK?3q@Xeve z9L*2RBdh0W)?*bhYQE+dbY*z7P^b(gOEj2CPF|Xh%QTHJlZ-s^*EK>(Okam@4==CR z)IyuW+)bMCtQh@E@TSmttL6^F$ST#0!4_km9h#5K6uR%$tiocH?$OL*Jks}TFuRL* zfebz%IEU7U@J-~Z!q_Lv4Ui_e9qazb+-T_`gs1aCKI!<1vJo*EL*3B_0kU-aXISu7a9Ze z4?p~a?Yvh&`qQ6ZYj!cTkoQ=xC!kRvc#HuBea5=2Z)pwqqG8J~#I;f+vg&<{*3>rg zE^-RJAuV%?RI~DDYgWaTT_TbGtRVp)ce>Oy@}eEABlY);w8L5i{aP(@CMNO7xELcj zRVT7K86J})Cr$k$Um+}-p-@1%i`n#bRJ|xIeOqJ3(JVlH93l$H+iT*Nh|l)FaZBEJ%-*&utfFPhJ;9Vpj9HvH@w8BM4;E zKk}*#Jg*IiZ0vzh5%-Iy$47e5;}awMV(pL=Z3oqyo*6k5tz1CxrMKrqo(2y=x6F%t z%A{JfAkxzjAr)6q*osIQ+8!aXD>-v0X*lh;3JM&!OkE%8%uI-Ej{Kc*?6x&hiLH9n zZ)ap31{S}^3VQ?)7y5EvWGGriOO8a|$I3t;aTV%*GIATMs=u6$oaTlsDbn&&QXiUp zJ#sBm$+O#5s05JQ=*oMM85ouDx*+{m<4T7;jckFg3$479d(o3`BA=j*4-jDESG8mZ zn*KiWIWxA%Pm$%ULO6YnbOLqn@Q9K!t;gC%y<|EIaf-Tx=1UdH{pm-KDAYv>+^qqE zC!OaVrDt6JtRD3YZBvs{l3mFpzy5F>e6Z3)_xMMxV3;j`h{C&V!1SWk1EaJUo8a=5 zGosP7-aRMfL4>WC6il3bw^tffY_0uG0D@YONS^aT1RFW5Aw1IIws{^qN+0Id#h(u zA77+=Oj~wj;KpPR((O}{7x@wz)s=P_Z!JjxtVU&1qUO~Ce!mn)Wn)W|7VVF!!c1cE zVJobhfsp6-!Dlr2HL5<^)PFi35U?(tNn(-24YQT-U_ z$seQGIGMKn9909h*wI4g=&J1RDK61Le(>B86n%rGpDl~NhgA^qH>Jdq2u1WQtWg7i zEBQPz+DGt|PO9i9%u~MBMDw20?WpL0s#xsuZYf?Ax~aM777P#$(x9y9GN!=CO`p8A&2$(T*c+$Td04%D?*w9*=m4g?U~$f=o;9cgr*=yFyID-RUd z-WepYoiil*CS%)gXtWRJpqhm(c{wrKmHJPJ&a#R!1(5$%GX7^ld^Nsa$0w7 zwA4B_fVJKg)H8$%YWs1wpf-oS(YKh|9`1`y_eL5bEjbq*j;05R-N~(WP(#Y!qzs~! zE<^`90U_zN=x2;rwHwj9Fe4^VV>5EyGj$TZ`!ZUF*+5}N@FB|zQXPn+LyQ|OdmRm- zYM#>C@1h|h+*6wVDf$7k#xR>0RAh3N2i@WnV?e5}8A%LHT}%U9V*Ydi8aCBpf|zfV z)r^_Q=#~1%JYZFOVQ|bM_Ip%V%ry4L8f$1m6DRomMB+xRIgqNH6;2bLu}fw9B=aTFkh|-j3l7L(97{dztQQJc!{{)A3P^p8cKq zS4-enTU+r|2_XG6!>Hw-S*HFktGlDm?k6)-{kIXZ1B zedimy#TxM|u$(BAWe(%FsD5luCRUYz*iTF>CrK<9OCB1Vz)H4zZ0r*zPqV~WKlU7; zkNv>X^-f32)r<}?#ePNhQkoG+T#uU~4Q>)U3--g)gI#0g&;g^*e~zt%)O9oBR-EQ0 z^u-^hBz2>8hQ=NT=RqEgj74_pIHWhVA07LcDfq?M*eGP-H6u5RVm-*T_EBEMy(FzG zO`HZICa`f&TSBX8Vb&a!Q&)NlX5zL91`o-BZ2is(D z+)dUsj2sVSF`mJ0>1+rk0or~4O1O{=uTDQ#{S--A)|>llv-MEGAy?K{PzwnG0G*9r-*g9%5Sl9KXj2IPoLXOAF&qSz`=33Ydd!ZEn$lqvDb>}AqV2+w0v27rZrNjC}0h6HY-WCF+LL0b1*AjMHHHwKJ;Tr{6MQ%2{10(U9o#ZR`dQXGpvWnEd8w2!x^V@}7Xxtb-tbu}Ipc(S4p zIHv4+{90zNzu$^q%$~jP#aHEK`zSt#JdzZ-vuhb7os^uuSt zjDP$3w0H`IxHc~#^y5pLy<7wfy`XFMZAc$ z$BC|vWPfDB4kX#hJ?;mP8&L_Lzdt>haYfsa+=|jU(19@tupOq9X2&NKVwOkDNOeel zkhT@QmY#sB*9?ZP%So7FXH!aI^Aa#y?>QB~@a3)Qsvi?lZ2{~_6}On-%4I| z;OvAawLrDJn=!B?!N|(}L@CyYIuSFz8?CuB;fp8KwHhZ9D!Ie6_LYS0&hVUcC&AMN zo{OI)1XYIT(RT^III!QpBowgcJG(@UJv`-=6Mu$Mrz>0&Q-KwI?2*`z{hi>GxRL$; zlbVTsPVjX8A+a0UzJP8`5-3f?4B*ZBtVtTl68B*ZlQE#b1SiH|ns*BYx+OF*+8P8z zBf|VDFYsFArXul}6$+?DnyC^oU2h8mx;i}3))A~>T}+~cS=YIg#874}U(*wx*ue8i zW+E)(m(tzYiE#M^JaZE@?Ehby5@EkY>CT3Uui4LU8YM#ix0If3k_eGEO6ip5iNCO? zv1KAG`jpZt`H5%P^Ut=4@ysY|bV}^aU?z7>bYss2-4o$*)l#~)XJR6IKI)w~n*CnT zFA@6PrL^Cm#Dna2bz$NH_ADQk7{LDj?MP08I*bu`d>WhhC*yHxeBwv;-T6t0SJ-po z)WrAfxwmvge0IiH_`PvrNc;?8?M2_Viuj%Jqrq?Dwae65*EGQu<{};&qnqwXKPdkp8hBxp^khi8S9@$BVoe+p#j8zB_S| zhuOzyPbI>sxl*$KbYdaSV){|QZw8)%ME{Y98A5{5aE@+t^u@&b4M5s89~1uom$IW! z`;>X4E-u=M%)|WSu3gJK(xPhG0Zd8WwX~V65L?&LHf4YBs;@f~qM+gR_jt?-`A?jQJn&G4F))Ppf-?snB_yYG1ic^ zBZ`R-`gGYets{gKZs0}Y3bX@g{c+kKm}&4%UGs_BPwbDzQ?05-LQWKNa%BQ+o}q<% z&Pr+1Ia*i^Eu{??Xy@1?%Z(N-)3$&{hx6UJLR*`u+HVcMq5)n_lBg?ipu>x`E{x{n z_1ZQ}-_N#a_hM->OSdCm4O&;4zf+rPCQSEIZBxeBdmp+YRzMSgb|ht2oZy(#eyz$C zIIlRVJ;`L~en#uZWSIQB_78*%6zW<%#*<{G~tVPeK zrR1@;B_sIexpoV(@6dm)-*X?D|5jU@HEMkBWc(Yg7tuCPs7Vie){bGElPc-3KA6E1 zfOnt}+gHuVUv$)UW2E)2y2|XCmUe zqYluC(zKH4o}xSK9Qav?Za3?*6^H3AF#Q)Qb*GV3J5m@Do_4kQg($n#PbY6vb%@v; zd{XI2ulxSQDP8vh;S3J7(KV$bGIYuI$ixH^JIoEru0aY6x*^z&_ag^WcOdZtebk{Y-)D@7vE1lC<2RA1EB6!lH z19YfpR1Aq6{k5YTH4WCq2=+!74b=sRujfbTIwQ)50B%citC`N1-WaEon`x3p6T$Jg zU)9&7xs!DBG3vJf699H1XMXMIK<7`jP`_7XpL+?vxhwdTWucSS;vy zOLb!q1r2arN$x6`_T9fsr^D1hGeR|5vO;HT4FY0PmU^t#m3RrJetwq@GdhYI4$6Ms0YnTx~-~~)E(7!L}8ltm*d)eZ2NBoJm#FN)_ zsDQp)1-UmZDmZ@|qXNQV{O;o1HBVe}UpG=L2K^(v9;Q6j?Gs^|J=OKWT2$dP-7OKO z`%B#%EX?-5b*NZoTqF9|x-KGzeQ$M`i3kp3`(B5NZOIca_-Nta{aH5;tB00fbf^%& zoWnI6eQQw<*>-xg9%k9=PoRCZtCN1H$YEh+J;F~4HRO?t9<`^2>!FjI9`5$!j_R7b z9_=g}cFcMTD`vmHj($1T9IMvTqoVzC73};$ zKU3t;EKrY$w8~-DN%W|IzdUhru!Y0JP&|joFe^BmS6Qm1UX8Do6E%8N>|d^jN->ry zF(6KlcGLUg^>`QAP^+h+J=9LZ+hmVq{cRB@KTY2gYuY2y^)U7s93<9!|KNR86t27RRHuroL7Fg+V8iNO7${) zyV>QC9u+p2b5I}AFBFUP_EEfLgdf-65n%#P>HA{Unf06AO`MePTCT?|4sfA%pVRjg z*+gH^V~#g-m@a=<97mta_y+ah6+J47Fz2xH8gz<;Dp&ia9_zX+r9O+t7vi2RbI z6#ZaQtt3pf<3#4xPWl0<-L7PjG|7pSJ4JfZ9`%!Y*oo^|#5WM4x$y-!e@W6^%p@OB z>q-Irh9DuGEKhPnvTR2~Ba(Jt5_|MbZpdQ^Q-~!Th!Mk#Kgc(5-xDH(GRnxxX@CQF zRkT67q%|VDKRYJ9vlo87Taa|j6`2o(FvAHV&ae?l)iBMRph6a8ST;H-2D6sV5iCK5 z$->piE+lMH(nF+B1fUjD&6K1%j)I0d&PqCIBfRS7B;{kmXF-)~N1pb*=}sWva67uT zI4Krwuq^5@fvCgn>9vxiFs#Zcz`%X$Y)C@K>`b~Q3fOyBlCL9HaS%Q@mIS{}aUpqS zNq<>^;z}V1@m|qv7aULeAe!x}-;#b2IS)LW6pOC05JR{pExwR+RKy*2*$Ufb0f`9& zBzB;|eLK8dC(T|cgilS+sCe1?xVIZthQ3x!o5UTf% zCCT{O&EpfN+a?!al*6k|*O50}$?&I8b#}QV*TYsF3L%DjV=D|{@rfzKCw?tjV27H? zWn!(-)J_&>IA~&>WN}WKcB!9yNo-#V_PHK!9~5A_V@v}$!9Ks7?i~v-cn0wwxW(FH%1m#LjsY5d(qK1lDCNloO%~;zznPkg)qc=gcZ{^ z&yuq+J!nYRn#TQ;yiN4aeUbS1`Hbo`PAM?e!m0|Hcezc|H)zIEKy*POXJ0b}lBwGoB{;(i_pK)kRFdQtpfU~Z~;_QEGGb(r|Us>Z3aFdY#tz?6biZ}L1YW-}e1pE>|DAHt;o zn9rg`F6fcEPV6Ez?4PQ~03Hy3}E4 zfwJevR3~+($1J2bwx#-Eq8)R+0E|B^-j{kslxoI-)O#ZTai>#E=$W0WF;PJ(h$8- z3PhWWimSaoO^+^8ON3+!5t8SkRR%ECXx5IjNg}5QyV5p^{&&@{Y174DlTW05LT3Td zj?<|3*)-H02fSSW8!wqayyS+o#ksU2RS;bP0BlS??T+0=Tis0CjueU`c+-vd(jJKw zX7z)#J7SHR_ayC!_&WP#+Bi&qd#giwH+Hp<*WA}8yB(*~<)Y11aY)CE;{ooA=$*=( z)4!ssfJ1sCGU63n1GDg@yLd6wKCkqr0xa3>n~qsl2Vxwx2E9}*-CZ=c_cha9P}PEg zxqXhUN+FiA5!FQj1X$fl|3fDDi-tMrl`zG3u2M!L@;oZekw7G6Iq_(j{s3XAW|VQ% zwsrb-k<#B2)6FLL*W`3xu~a>#rN0sl(Yq-9wfI_NW_knB^W`o~e!-@1jv5CG@p1uN8u{o*AH_|U)>NF<> ziK|cuvuvJG?e`$vJfoWWDE)wFo<2|0H(>%@K^FNHQI-irSWgyo7 zDWKL7b!cOsQ5mB+Hr%8TDH%Tx%fl>JtCnG&`ng&&<0xY4hn|yWY!fE<$ZSOh=Abhm zbRZCH*@13QW_%PCvoj(?AsW}a*bE0u-;&Sz*Db&4Oc&@gd@v65oLA;gG%hPcUCVqD zbX>;_^H%NnE*T>*9s)24U^>yft{I~-9*?mS5V{s*+!LKe>;4&qqOm_6lrc?wojf$7 zzxe7oGQ-?o*fb_%jQFd5LdF2`_2lG?)#B@j=^4Ysa;Q2pviLbW~XRH@r7oNl+0imS%X<+may7659DZ6;>U2MS^+dHGizZ|Y!| zSxu}2^2(W*BUgYmmJW8wJc6`{vGlcT=5V3V$QXA#hjNe1as&qo0=yHmzv7!Y9al5P zQvd3i*_eeYuD`mqGW&=eR{CYm!g6@(pLq$P0>U{As+TEFQj?$tnTxR;h6H4;MeE^8 zP^NjS@YLW;%wY~L%H5Dm)NVVTxJ6iIkysZ0Dl;($YdB0+c;+X;E0HFVnV3Cl9A<4) z<}QRf>5SOS#$xvG6Eat0OY=u<<}pO}f<=`lWo{QWIXg8IvoVgV;Bi{!N=!2fi93;x zZ3ot(iH6L9<{%FAx4g{f$V$?Q6c-P0qxp?8hl&l(^QLCsMTfP>Y$eW2Jj>6lh8a`< zBiEnyE7k)gTW1ZGpC9pz>Km?JHZLiR);hF zFcR}>F(Tw%RZ=p{-huib&wOnu2g#YtAPnZ#QCTC2anArx>UAM=ryAiO0bx9O=aJiOVcX#k0BkpH4r>ZJhdqkCdcFi(t=UvsTo7IG_=|f3Yx>)hF zp;?>7Z@Cp5n^L%qcW|lY*qBbVWw`F-2+%63*xWSFHE{PpsuU1({tkOIw`88_;P3@2sa-w~cAmO;H7@2eU9SdPs%wfeH>Gq-O}@sq|h}H&F$vA6itf^l{c#(Ym(SWNQT# z>~zegq8S}`$~GHU@5(k>ShMM#+-zS&rvY3* zcCxLIedC7Nm_Q&r`|XXgCyFpR&9diUr6_Km4JK}M>E%fpw8~zNg_+bkd!@jJCbY}0 zfhp_dU9t;FQO!a*RdvozK$sc@gadZuY2}_iv~Q2>RSsOqRN5~aT7dk(o}P5{;Ovj$ zuhT|mH*gd__+>(Nq+k!!WokBfb!Hm$v!#aJk(4&;;Lt*T_%{%l8L zX!e5_F`ge9L-!VEzjGIe9@~`-Q!?BbJMP04qmT=QTpYwgpk>)(Fl`5?JYq(6byBvt zvjcG_4cpPYW7$jX1-1^Sv-gT@&zEOog17un2JyNACn`Ii-B#qi_>b%(HiFjsT*}@h zzQ$h3-iGO+LT3NtKDLuyhni*(qkW;2?6{rX|NHHo$B%TGd%rR%ypw(G`_q$=&$Bh8 zFldk$-G4WG7GidZ0s<~>c;w8+>~7&O3l;Zj(CL0Ti!h4`fS@7yS-GxssVwKXzs+VLnq*-{jt0^6 z5epodKBd1a4bRTG=fJg0gMQ2j6iT1AZj=KPD@^zFXw#f*C*k#nHaXD0;=ev=o0H}u zye9R?sqZSh_8*c{E`Hl&OwM>O;nx==2TmpNWNQ}Y3<(roRfluV3zkoPj^{v=z(1&a zHfN%@@Ve)2&QI>btK@YKTwu*V=>Bg`duQSGj(u*Pm_fkc*wbu%$lNtgwLO+>xTVG$VJN@LJs4kn1RXI;wGQSMmQpx5zz> zv{((Pt4pXtM*N%`NQSjCc+vjtbB9$nOXS=$*ACMw;3mU>DF81LWeXjcYbz4g4b3&% zkY-Ho!pdUtOv@c2np2M%xjV!Hj+mD_SuCmYWfqaM*5t0iECGQRHjv(1a(CJ+5jxjB zOLA9zzu)5R$qMfEq$H-_+`}S?r5$ZPK(QVsBwu#cTjcnU7O4&X#JiLv%gNBhA zFLcMQ{$Oa~K`obRR%==o`O6xFx4E= zO{X(8hB7hxcF_jR$`FUy7h~{3bC@1)cqnohuQjZ|7Q?t%pi~}@i&73B0z9+?3ibmg5|L7M?-zY7>Cu1-o&uO;6$M>(aesV>gVP|pSCqb zB5j+4xzXP{8lKs5spz?`hNq6g>zO`=N8;yzid3`A)8|$hT~j0ku>DrPP8X?l4pr_iSD1~IV0a`Gw z`8RtEuk3`^_XiD`qCh_$Ge9H@{z36sLvKv50WO7c(fwLP``F+>Ce5+&qL;55b_$}9 z;u{87DT^@Fq~-SwC$K^hmH~wfj);=^JTr_FW!U)Ia942sblE3Ev?$JBw#M!Df@GVW zjdu_O3kufp#YHHP3xUS`>@%2Qi z5qcNAYzotjYsA;^Oe36w;=c}UV%#DAn$*nrR@6*pOQWxtMelaTa#2Zn-Hh&{I)3hD z%*J%tS!JO)gN*a-1)Y2vW;}`1NlOAa&h)3T#(zbsU8Wc_D+^*BnQOczDrW0aV=p)f z!TgD8voQiS2p78?H*HP|0}c0m#(m%Kk1IM)b>A3$i2a>r?aAf@KTk5E4EmlW`;CLX zACug^Z)`<(9WaJqss&3-20UoyMt(bJ^dMuKJGCY|zZjuIbrRp90#G7!s2(3S<~f4S z;!YZ`<3w9ZAD=Q_L`+39y)32E&lrEL1OytLGj7Hb`2D=G4pO&E>ES<&XBmN+myO%8 z1bnU<-4O#)K?84Y7|$^R$8H--u>`X28Zi;hC=@{(TgW@RExy)Vxx!Bp2_BtA27+`1Y}AK1wJ~|}^4i(KgsT0P94O>4m~rja)pP;Fl@&Za+shPJ*{r&{Lri~Q zRL4ySko@S1VWyuMC*P5#{#Z_A`ttkL$j}!JYtZcRCK*#5x5&wpO}o+T7$$u(%~ZtL z70xg%MEad?`xL*3dz1NwVlHp5D4z$-I(>RRo%m|n`f{?Zc?<^5*ua0)Ke3|K`9cg{0wFf!3+Oz{F zPJbF&Y{JaHP+;?_l8}AhjV8>3Bp~#s>o%F%A{E)6ZYwdZ7ddp_Zo*7Da}H}uO|}^G zJ$KzST_+-o{&FDN7RkO>iHk^t6ty6CXU9-|DNxY@5JxWF*XjZ2!YF15q!yDF0qG{eb3h>59q4 zRw#>qu9-G{KL-jNrX$w&=#2ZOS6<}FvDQB1#6#%Hj98FYlm7a_lq;G>gMUpuzn{*W z<#_{W>}S)@h~5{Zoj{g-Hn|gnM~IXx`)VrxegZp|=h-6iX4OipqMa+{Z4ljM1IN6z z-%o*I4W6c)VsD^Ua%! z>5D+(F665$FOa|$^FCDNmzOL0%o+9bmVdu8Sb=arIsN!UURR`AM1&AY-gr?rN2F*r z6vS(29g$k{Jct6%-S{y@-fFAV5~0dVu#QcPI&Zef=4NExDy!IJMdzXVOcljEKQ0e0 z%j3EUPDB?Hvq3qXt<5V#dKA%QYA59tifq=U0+R$Pfr1xX>@d^BUL-4QAAEwoQmNnC-{rRdx`F4*$Qj zy$5&`N82v^$-Q?2Hej3HjBzh?2)$!jwq(g_mRw}Zy<09gbOs8^i&Xx`sHTH!;qQaQlPNBN>7! z^qI|*6Ku9LAs|3-z;UOet5}9m0)xRwOxySwIW$F$8<~0H6Te2MF?Kl;yzhGScPv(c zRv|%fu^;|)GdjbLYj+VhjqPszZ_(Cv@Ce{ksiYfz@hVzt!#Q>G$LJqC&g@|vl*-<9$%X$irvN)(BcS!sndN;2Bjyn4L;ZBOYtAQit)v1N_+! z6NGE|>`#+~Gg+D()TzNYzZF_raO2#c)xyavp)0{bfCGC7%oV~KhLrV@`NFk)V;j3z zXv1gcFBitKsE77p$~(d)|88;48-y|kj(+7%Q;W0O!_wl&&5Z;>Ek4+LukZzH??Vu} z{H^Up9T0xxl``&Oa@D%-e5ntq>NXqgtyzCtP67W&2+d_UE+I3Fhr&e+&D2PS14IDWh_>3$M?$6vasMy8@lS;t`Hpws z3*qAbBGc8s3rkqq$N!7z-9LnX@=Ra672^LQ)71CE%Pc+NKbYF#dw&TN8`27>sqOF+ zLChO#u8qF4jWO{4J>E6uI`7|kjbdQ+8`=OOd}8+SZNbVfMrq5PE$k2jofIuFy>rZS zmVxTCXf8>0cBr;bj1BJ8HD(0g_f6{=!}^eib{Q^+z+!+M#S;x05CijdDCfu_G0k}S zw4-Cp`2xkFm}N}Mt?|8-3(9yW^h3&;6ia+v8#AS0mNH`5p@5~$U2yl57zZoPW(gTF z0sM{GygX_%c-D-k6vs5;qrc7NCYz0^jDasDsL&tA#SG#l6-|zDXPMYTY*u}Bv<33% zS>Fgf+hRz@xhQ6?E#-w`Yhw6Y$B~O-@>m<@Kk%(kuRiHkICp8xNxqvNwJs)w7wFjL z82FT)%J$ulF_<@~Y*)-1-prbPF-!Q%njDK+!g8}gz0_s(T{}GTOiT>3MF|1|1Y6wu zYz*`<VHbw0+Cw`0bY7+4>VijsFTCWViWpWcaK`p|<|W$i#L#ELEtwcsv=>zf1V5m&&bmQpU`G+d z>>tx~vFZ(XJ&?SU=*gFpnYDjeTQnn36o?jf5m}+tcO)M8vA>9Ave-YM7+!Uf>oHLI z-V)T(F z6SXu4ae|!VJkeZ<$PM-GE#g1!nHeuy0}hCLC`BhMAhp$sf*5XXj5Wg7yxm2O(69oL z4X)FR5bqVv$3;P)k>!zA5r5M?m*{-0St>s9Z7 zJmN%N_*#|d6(|dz9WTmnFeJV*RkVwsp&6o|2~p{{qAetK{!Y}KsJrtV(KV9V%@+-6 zNNxDqVo?aOF`eHfStf#q+SJAw!`yK6a#4GR;PkV00Nf3GtPyn~RQqkM?+sBhfTI}`42^NmI+3@PpdQ`o6E+BqQg(4eHLII9 zN457vtZM*JNdljX?C`4lBBr}(U>T31?8UyQ`kq9N7QPmFAVWkf!(%2Qa6HO*E^368 zk3aDC}QyD$53b(Y2J!i(Lz|t|6X&C{cf;gwx_RJiDU1MRzN9qsv z++$f5Af3)kA8l*yXGo z4z!NF%-Ak8IM6><#By^F(o0eAuCbmd^{!(8j){zAiBpIYr5Iq|+oAR!LOk)v{;`v| z7K$GZjfI^wh<0G6ZtP4;E}JNfg(X<%S$|RN8UCz;G!{PEp=Zy@V&TmR%`TM3F5t5x zl(ExoxU)}FVjEj<*+%-ipeYn_j$HZM-kR&gWw zvkThA&0~3}MQu1^YF$5U7a8}Gb3zmmWfY=U&p0!NdnoGKh{C$|jeEd*vE9%(c(z3y zy4~owzI?VME)G6yrDsP<;@+vbtYlXl(^nK!p2{EZw!%&K$Nj+CDiKA{{v79P!!^tA zPsEMq`39bg+s`ZA>|)$rK6~zJ+(zCivu?$~%OWaJ(w(? zcoGMn^3v>IPvd6t1s44g2ak#9*%j~OtQkJABnF@%+(Wcc`ak>TSy#p2`DDV_-V;C_B3@Y{& z``|N;#IOc9#k%MvPH7OSjh8aW1bLkB(xNl?teC z0LGubB}(cf4rb}a{)sX=K)jUKvQ>~6F=_^xSj7g5D_DXZ%Bs#?+z4kyiG{Y*R``5h zv6fZesID0-2X$tUIKqwtYb+FNSeb2$7Y{HO9Oa&rNE5`PSQU>0m10=+ka#t&PZZzc z90LEEB8K>go}H%?LwrQDsp(>PUqG`5vc!)Zxa^)X@f7}Se3e+mXHSk7m$OP&9WS;) zPr8Vm(6d>P^NSa|Z<{7|HVTaJG%>6~s10o<}coQ#T$ujXf-Z92*Flpxc7V$*BK*4tLYKCwTgYWqY1mB_T{o?yy-T=r` zZwz<#PArOf@d3I!^U)IietyFtG0V!cfRc!nhs6iXt6NvXP5f~&%g4h61p$gD?Owh; zA@0QDP=KPwqt1yxS%OCC!>;cy68EWv<*MjvMKdmmOBq$AhP5!oHhB3}@fIp6*4-30 zvLrI&nf2g3G#7UdoQLLGKM;R3qq*Qm;(4|-ck`8aGsB}cL{;48z4!+P>KHDbY(cA^ zDv;dmNOM*Gk`JxE+}j9|7z`eB)?Dx&jUJwriw21#4Tu|T(erqT4Vp9}OM^!E8^7&; zo*}VD^I|39FJ}nriZw@dnUZ!mHBJ)Bpe_>t`sJpvVN8#gFf>#`5I}L$G_)#7bOXfePm!=vBiU)jG4oHBFoY)m7iO6$lGY64rV(ibweSEefqN%P`}^IJFg|Qoo18c;$ads&32K**YMf8_;@@1vOg8^`*=N_OpLc?nWIMaq%#YVF3rJuvz_hjC%x||e9zLp~q@S)bng7Q% z@h^GO+c%odmT!(9%}Z6c-E?;Oj(B&z?D0ME-5I8dZ~`v0j)xuHkHuS|;ZGnCymcf# zf>}y}g#ioRhtQV#=2U!pYfj3*3-Pc}9~Jo1ucqwDOD1=odLw_*lrU8#xRyQVzll9Nzz|P-PNhmm8|B! zqmw2x6L^*(T}TK_&z7>>@lYX7=SY8MCJnf#-S(U$OjIpwSHT14s}`VD*ApD;~o z$4nr6ru2J4pmr9!_c_moafH=;c?kM_AmBJx%JOQAT5;$P((}v&4$hZuB?L-pq>EUE z*tbZ^bcajX_gTtm;L37#4K!IPeax(ZRjZ{Fhz5ezu@lH#FZE$|!r)EPafHD3EmD?A zXH<(Xf0VK;B*u+iYp_&F2srGJGOgG|M$x`Ir7xLHaAmhNjSv{HPs;LOgKD5+zw`z( z0keZr86luJ%pL<&ACU@}eW3es>2yNiB#!TS1TIp&+VD>N4C9M6x_487u znUB|;URRq1_3AJC(xx4b>D;|=L-f#5P;a#Om?0@x_)S#AutX0_;U z1KA*8GYU_BAni{m)jpI?B9!8vvbWM1&!jA0J8<&E{VrVz7OMV3%J3Bo2hsPn^fZHu z;y&-B?}>AC|G?fw7JihnOpm6-x2j~Y*5+mOyP1r6m=3g%MKH+DDbB%KMgx`Qw(JDz z?POuh1ok+}G(-cfTx85$w9Hk;v_LlPA6y&Bz9j^fHjyzc@kj=#`(843_g~*kRz(N| z`N~*t6mYhmYy`s-7UBc3C}L%DQ>^MFQ`@fIi+w+)qP z025D%l);xWm$9^~Y%fWhc9(4?>FFM_Z6qDnOJ-*Y>5P7|_9Xpju&fiyWAQ#BSsYFu zDQiw{e&|E4xpQyKR;oBgd9M%G9=y zrtFsOw}-UjF&WE}$rvhY_nGlUSp}0*pO&TIHdkfihyvH#l)YvGQA>Lv=X)|Q+_7Gk z&lpwo!ho<46vDMvixhFkrh%G6kwKMkGvY0x#N^SWoD+9RPjj` zz$h*Ui~(3lOgr5=;RZ2nhHXL|QRHFAgb&1Xe|Al{O3p8IPhj&*UIcGk;gvAZMEq*A z1eQrgq-&(ay%E6KU|YY0YQnOnRl;$?GObMl?aMl~OUNct%U*tZzW z9sfBbVV4seZULKk9M7_mdK0p>^Y)nF$AoID)){(N>TOOA`-U}A zSA6J7LNfRQ=@dLsyDJH9T$q+|Gl6M>!)M@!w-QJgj1Bb(Jyf&IL#PmJkb# zj~kipJ~JBQ?DK>=W>r$)pqB|7NjtdxCgB9>yw<-JCi5_qL zPEJDzxtaV5IUQvohcBHkV=pT?Eq2^mzK0x7vgOJN?YVLRj`9Rn4OAbJTBE>=br#sl zT}}cUuJ`WPM9#F_B~j{UNaQVFMEZ*;A32rZ(ocSp2ym_iC(zfe7xmtGR ze%r8~qLqh&Gx@A(l@jZRaU($@L(j9kLZF5t*rS2Usk zmQaFKUffacpHf$}>#WQX|8+sWz;qw>vd*Z~o44d1%zkRD40c?K+qz%o*OV$L<2vu0(lfjDa z%%cr~!2n}t>{9TC2t^^Y60%0sH(If_hr)=4Y3n zAbOP!S6C4}sz)n^5WTL8RnXAz8?oXp!}kIRW=kb(Qz<&yAkhNfK`19x!7%CN^Q^Dh zV|Sfqt-hr~^V${j8(j6CrLaSvbP6d$Tiq0*9EGo>DVneZIdE|*nwp^~Wvh4ys-3Oq z$V~~`m#NrqiJtfKb4B0gD^@oEFc?29P>5LiEf9xN3dWC06`RaBHtWh2EHB7EV?D1> z^knhS&j?q)R?OnrRE$@!%oqENwP%8215301jNm<4v5IGNerf~RxKC4j-7wvJ^{oOH zI;Vbf>^sF&M!&(}h!VyYz`M+^a}+ChBGZ0opv#<{r`(SDxj zr=`$W1{Nw{kBiNUfQGaS58MJPvN<8~lAjc5EFHR$qZ7(Je%A>-KLMlfn!SqNHk9qQ zqY6nw9D+l|fSSqk%sQ>`XXaTqUeOo_oLAVIQ+9aRMa3!R)DPndf|*lN?0F*s<*^T`4zJe1QEwHQx4|&ulH5L7x$EZR%<1ELqfB?+bZE35}JM1 zPU*l6i`b#FGLNBCz+l%70>N)&&UqMe2~#rc8%d%M>=3S8X^w>La|WRgQA&o*k7x|j z_S9WBbbUi7FYMG!>BQitc=%UJwLq{5Z|tYMVJW!I&87c!h?3z2J(X+cP^GISsy*D- z6NQC z(i?#u&rMb~VUwosSz($4w`e4uLO8A0_>h9jR%vc!6jWS1pv%hjfBam`R zgD4fuQHFBj;hpo8b_^{BfwD)SZ?-6H@USJy3LE4wxsNBVTcb=i<3ts&SEjRa1Xw3L zdV>;nccN#CZHZ<#ikGY~C?tKR$cxtg_!d#V;Q#MIc;QuPgs3E?_L zbz+ex>NRqR9&fZ(d6=UasY5*RWjj@K1|md=k*G!pD?X=Ns)A9VSmlmt>y>usgkwJJ zD|KHr47GDnF}8dT8TWEk-8SQBhI^=(o_$lA&xG}ssBz^GFZ|w19y_ zgOP|L7QI(F;BQ*0&hq1RW?R+I{3!lad(~z>Yt>QZZH1nX8tR6F162@ql3oPc2dk!Y zUWC_#swS|!EO?<%#lpM@l@szgI>a44ZKN*3(Y;jHtk9{CgFR77f3V1?`$}(|H9&Qg z<>rV~fT4m)UcONyO!BoJWs>jyXjNa95dzTVXj-hLJ3b)+ewoL52C0QOvqUwMi!)GMmC@XNzgBhSJE(8QsaPTof{g&%292DevcglwtLE`xN91G` zOPFN>!~l5JiE9Gg=Bi+^8QK~q)TqXrp~^i2+_3Kw)jmEVdA?G`6nmIzqx8|PjZEDT zpv0isttvZ|utUYiz=F-HqkJfGWt)m+X6-*veQ?X|s{{|(= z9u-rNV4_6y<%2iwQ>l1fEq_+AOvC;cVB$d))2D0yf~h^MTE_Dle@w-2^N0Qgc=ou8 zDWLfm%%W4O5?EuZX@57=xmLyUb@9Idv(KuSf}DTB*q&Dv@cNqZt7;BI==m?e3l~)r zSON|TGYYHh@#AYMmPM~P!x04Zr@F|Si-fw}RJrhxkn*-Fh?&@)g)g{B2*=!4F)hSI z<)bhV_Eh53hbp*lBq18Id1UO`-5#r$UNaJGyy}IjJ0JVJf1`TE-0c94JuZK*y2uZ> zNuP`Z?$)kqW7P9epoXYN`FmeC+`&eD))@8JsZCLjgSwg}>H$%tsG{X9SmwK@>RX)D zSbd8Nc(BYz{TEA^^AAL8{6|Z54lh|zTQvl9G;|x@UJc7!(80>Nqk1&Mh>fA1uPnGQ z=V6$d>Dvx~NW=>xO$1wZCj=?0*F8+S|EZU{152y}=rL$d+gmm`bAUR4**^#Z0t8D8 zu}&Qy=CmHF?!fTWj@)L@XJo$kvQS-afzJK}D;Lt;N*0RM4BKGPhl%@+Bw3-$!ZkTNrF5wh1Xt|ncmlKm_(F%29!>FuYtzJ*GB3Y+i+90j0Tdz(c z4c23`dJsz|X*ARz{B*mz%$s58YI!L3_nP_th}h zP~s#TIM$Blet#!S6qDDm9$ysx(0kaJ*)k<`7X?_AJc`qDrs1n&;%$ZlPv4 zITkO|z$CP*xbq6`I`dVUeZ-LuZqXbjqEFeanaC0q8buc3jYl*WO@hult6|z3oWNla zw3Img<7*t(12;6w3CGk2nnGg6TTe8ji5Wxw(99&V9r{z#o1|7|S}NmJb1l`)CQI!s za=yQVwkv6Dl}_5G(i_eblOs@>6^j#?XB;j4`R?wq+# zw9_)JIA!eWIA9FGy9rN27f!C|Ani6HzipKE2coBCeY9K2v2?IjLej0Hv^n+-X!Pxo zQlo8+cgwUeSD6>3w^F;lA;W8XSj$}(6vEH_RSc0lnRBNxY_{&1=d^~E7 zmTA2JU@;#Hf6)GA1_Xo)w7b8Y00xYDrtXx~{c^GPIjOsTnRdsQ*G;rIAE&R-mN65+ ztF`9{fywK%Ke7^V*r2Uu3Z@onE6~So#Z9q(o7UR~SkPc<-X5)(Q635hJ0@MWvBI18 zYkjN)Yw+14TDdu-fhV*E3rN?U(Yldz-!IzRBwcbzn+|njms{F*_9RI!{-*6{ z3#r*F?G;}()g+_mlKR$2`MS3)IyJ||1>N>YYKg|XM=WBzoyJwP>vr+7T)=5ko zf`boyt_PMbH}7MGb?uU#+5vY-aMC*mNQJ$UM6DTRz`Zp|I{=I`j&o*GW0t8=lqDdw zLyG8ZEBq)g=}&0%_ee1eajo|u*<&k`juFqAwLWQHBQ~vm?nVy@_LFT*VEXS66pnb6y{^nRx3zlJlBCP3D?1WOXQe0903Em1c4ZHBcKod=|WNzi(`C7z?YJq!47$Z z4ZfPhGVlB|R@>`IlUW`p0>UsKbn27N6V0kma!1dtlD%=Jd2%gFgalyaT(|kkI=K=y zV*}CfILBm9doH`CNwUU)%lfrR-VcvoNrB(}lYLF}cEy%c?SxpTRgl&Z-KNo5R~zeYzW-QDH)8UX^@`NBDDG@^HQi z$>ij(_{-LPn|$7b&CPVE?#kWfXq`){7mi+;e7QNb67GFCc`i#I2e#o6+lR^=@Pbpx z>v+1dbIId)_5OY}*@>6k^~@GN-+FYvwJllSwNZU11hN(VuT(JH&l zQ;b%*Y?V^PBdG0Dta*eIrxY=N_KsVM(JEP&`=7{8jZ?!;m%bcvys_YcT{u^LRsJq+GAIto}jkffRj)Sz({zlyHII1QwN~WLgPcb5mXS z;^MX_cua%XBEN|#mdL3p*{=Fc#A;mu#Cc(DvK6hSsIg=ID?Tsxh+-8eoe zWs^m+ip)8VNP=?J5$oBn(^JeDOOzW z!_O&oPW0C&=Th2P(p;NMDdVUv@XjkKe{s1J*HgZCq`&4rO8M1>=47u@b_-~(<7;E? z?VFSh+_~-VQZ{k9l0Q=xa3~!Sbum&i!#GqevLmY&KKSA52r;g;o&7IqvSkAKZgO|(NphL(Ba5#_1PS?=`y1v`Ce zfg^Srn|i>F3XX48r@|L2Lj7f z&x$Q|MRtOh=&ZBu&o4JMeV+`T?uxqHylY=Q7Dl&0t~#czlg|#+HN{=rby@+iaqQf@ zF<$GTYiT7o^0)E3dsAHlnxiYq3e#C4=VrPGUoI&Eek0KLFm&VT&2_t3niNGi;iqF6 zzv0?4Zv1Z7QYW+qt(11q{mdrDIQ*)k?j@rHlQeG*62glml~ab zQ3pI`k3Q)(cy5YL;3hbN=auMSJ=P;Q-Jn}f(x&A)c&T{=->A?zK_7;njMLq+fb`5{ z9lRYof|pL!SwkzvYiH?hn?pJs>EI>m5!`C7F53pu*^71ONV$}y9A4w)x_#vM(h8k9 z$bheH;mT)i(=D}xW6xbWSaJFYUbs(J%Muxbsz$;qn!6t8a-7Z!1@-37bgC_)8o*! zwXa~2pJ%#F&S2%U<3*nM&L>?7Q!6vVA%L?%z51kEVH>lw0RW6gx~5Unv~*9~PE2yu zBaNDTa-%eA^5IR=oQY@&K56ix^9U|(#g!k{CT%w8q%mM?I=&1OH?QNI&CY< z9J8}TR=?}%uE@70jelRhXKLDHqD0zM66U3KU}`ExU<|-2qPj5~I8kCYajJ9N!l`c8 zkDTf%wsESPzKc`cn*Ch)@}D`?bw9+ZuK!6+b;Hhbs`C0Jt&FG+UFME8SJP$_)xEFh zu0M5;Q{B`DY2%6N+?%FT)jepI4oi3)!MQEc4>PJRgPUORsAGBr^aGs2B6_5!GAIm# zB}$2!hL1|89_AOFPCe|hFr9kXL{U2Ru%U73)Wf6+>D0pt)m-@@nsn-6Hc9E!!(8?0 z)We$Oq*D*Oo10EOEUkn)jx?lO61DZLN~fLAxv}Y^h}v3Bz_unpWTXaI59rX>0T?6ay+M}l%%3#gCw#DsHl#^b^prFwK`WWQv zq4z}to%JklT#W!$c&dxuiNVW}5rHKPhHI<1Fu2lFKN>a$@7~xI-S*LMXH&&wEb`NL zW*H!W$Yk83mHsk(k4ZSRYpZAYwx8%?GOlW;XL^54FW%8n51VsS4&yuP8FY#PhH1_w zt-e*T{up2V$51`P#(bO#V#4*A%w{N$(qG{@q;}V{Ox2{K{MZ}1!=xd4mJih^%$cEjrbv%o>@!mTis#TOTF-KKL}A7Y z^}`wamdSWpoc=V=K_9PY*#L!dI3(5YW(h^%;&kkrsGn>{`hOBT@6qcAFnV`70wf!} zDofwVpSE&*cb>k5AD3;sTVD^~)s)-wya;J_r^gF^jVC;enxjhzdqKx zqJ3F<7o7J9!WfSEix>J%ygZ%X=wUT$#Bkqmu9qV zE7y!&eD=AUslYxDQ-Sud)o-)S0TXMs6w~Qf4gV&swT8{Q27Yreqx9&wA@J z$frca5uc`+vIq1T(Tpujgle*HHN{)=GDH?eRrwZYjAK?6h3jv~NaD%wsxqnS?SzcU z{MlL4On#6$BjYqL(x7imXMMiQ2xV?twcYhT`1QODYkOm}8nhyVZ&tllX1rl}V8uBY z0lu<2V>T~Fml+m~jnpITGI`Yp*k@j0rcQz9 zIAzX*1*?er_jk{Pz29lp-ZOJ2pS{>96E;YvXHk>Pu{K=RzeT38tNE*CCRyByAgphl z39kxhHoI-+N|+x+&UWmPX>4p}y)wHu;m(eX%QSX(%_Ny(UTNbLnJ@W{ZIaehg)BMK z*h{*mW^U)JxT4GSvgW`na!hAW6Ho@c}A)0+kf5z19zK|8D(p1`jfuTWZHg)+TIB4fZi<2^uxF3XRd}7_J~sFugx@$ zA^PiB+zIA6!22lTEQgx>bnTb5Y!fPfvnKw*yeCkZ9zIrPY-i=e-C3j2(qVHyY&!7Ep zFY`2C@zuwfNh}Xlsmd~c&uoV3e{JfGKfcOr1!ll4K4p$&ZX^T_4-{k>yV={;Sw_8Y zw#_m+zREt!*j_q2W*POK?w)1Tds34uqu#rDXBqXL+ak-T_o_Bohj~|&bTL)YA;?t4 zrQj^1+s+QnGU_rR+*H6JGRvsTZBbdj@V1}ZJ8PSR;2;`3JnP|?_oehDTFHI5y`MTF z>)4lHk5uj8!TTpsmKDm3lX&2BBeRaNv@#nj4KGCrx%;{-mUTg>j7QVJ z2^l5BZ}nO4VOAJ$z~;GGXIN#!152{TGLz_S$XWoi8VQMK6S9I?)_|Z224Q?r^Vlpo zO6ijg-{&Icxvm)SI>TFPVw;8j*({FZ8k(JsPj=2``W%;Dd?qj(R(hZuVnebgf4PY< zz{pv;Kw7;+M7Exf0p&n0&&B3dD#JcHp!4Zfl~wiRGxi| za|(QEY&MybOUkBB&Q51}kqC4K;Ssa5A8-QVp^LJaHbEvh2ykrh-X+<)oj6k8Y|d^< z#d5_z?aW@zx2~)s+179mOIT05WD?8oYW6k8hTk8#L}pu}9#5h6ird)`fzh6==3#bA zmidGr3WvA?5FI(9BmT^Oz?)*AMb1Y)D{{<f_0f2Fhny1(Y(@^x@yE+M=9oioToUYxcLe0Tf_XF~yEiZg9;njnl#rYw zAT~Lh*e$0eU$(ke&S<{C+des=ENz2Sk0$lYVHs)RS}FGk{OA5T2VqJO&_i>E<&6Jw zHDJJsVdS5PBSz)y;`D$lggGp$GD7u2Zbc3?8{YvD2J^099Ra2 zYI0^mP9iJJM0t*g_oAnYoVz??ePT`}E8<&C4$~?|RI0+{oc+9V2J3QIMpX)9F}(!l*4aDIfGd`?vYb-hLe}X zD(qI7V`GOp%7Z;|m&rNL7$P_fU@c&zAzjj#**OY6`(i;(Bj~`%*(PgqhIQbw`4@6d z@dbo8bNavlN(wBi&l$}3WPd%#vE~$m8$Zgi;XYt>k{xsX@YEi8kpld|A@?ABj6y_Js>jSZ`Uv4st$K)&u z$i3Q_%YHo|cMLC>=iuDsyb?~1FrAf;&b`Q=9T1m$o>xsLSuU)2OTn-_7xvho*-4sQ zqZ+TK=C0xzIG(M~?a4C!g2FnZfa$kf&>%@GZ!FEpm0NKdJ6)6;#}dVTM*QirjU%oZ zlY5p|PSwQRS-cQ!r{y-|v%*=qop^z#qulW5)4lia2d*ffF9LCfARryKQ4`J}*yqocj}h)@pa|Zobz&zsF?ZDF<`M@?*E( z$=u)hY^(FR!}-g`T+Yp9YR4bv#}_$;=XvAlb-5uHoWK|BbDJ~zIgcpsk>`l| zKg?~xJNnfJxwa635tshsd2Th&eBSHacDx$Se=s>@TeG~c84U=vYwKGg=kPo)JisO| zf|uu8hdkEkhDTKN$aBE4&Uu3%{3k+e@X0d@5!*V?D8#gmdB#>%*ClTevk)%D(VZ|D zMa%P_*fno3vppyn*rN-t{{{U`)cX%LQ7;>9qJAbe?+Bwm(OA$Ixykd+qwEQoU*Ri2 zk+<^8;|97oe{*Htah9eh=vLr~JFD{~0>LsoAu;c%C34M98H9GH<}rL6PoHZ66}TOG zde;`8)a7}xm;*@lLwo1v`JywWc`kU8K5vS-U?uj<&I|MZa{VA9982sC*G8k8OY$1Q z4$Sa5gVn;kJwOE=TAatSVkJStfTm!13`?oV8=2eSV{7tOx&aINs(JjLym@AD&}x4k zOTcGDb;A7)K@>6Tx@GE3q!!j(q(#l&4=yz-Z@ zwIwQ83p~#|{{f@B@CY56=jRYA^L+CcHHgY>zx)FY)5_pB`P+a>b^CmlIf$RN8{Hv4 zv|&s-bjC57z>p8JWL?P|1zX-`F6992MptXqauf#B!b6DscmC^GcF`uwhgZWck%ZE3f4F zEUQ|6cKv?J{6!5j(B#DYQbNTliCHT+FggE8!xVBLHGd6Zk&)g&kKL!wf6WqBP?frb zSXtnn`T2jj02LBHq3`qZ-O-GYd~aMaKK}>Cz)Xk;Fals}ylPthehUab(q`pfB0)&M z+4&Di8i4X$>>%y6C?9s7Uy1FPzniM zll0J!`I|^uxGf)+-&=`ocjw1}La}OZzR(`ht;h4PlHX^Z%wI-+kN72@20>OA@;j0s zD(F(ajPROvjXR%kBVR{?rK5MbV{|{il>;2_e3`$6oX`9-zpFE(tL+LZNj;q$3kpcO z*ttN&^vN|D4@P}=#}?JLEwJKt!kFK@Aj6Wk1omrH(29BRB)}Me3yG+MIu=|es%Yt7 zFpG%1EwJDfN!NrGv|+f}#NaxPpi(a2Zq=utlmUc{hf3UKU_mFsL^`y9I!Ea60_q$- zBMXj#BJll~0_q%FVhgBqj1?D9=ZKCkpw1B_D@Y~A{Xtzoja{fIfTcB8;^S!ruL5W1+LX&Q*F?UqpjVsrm(=*)!0aWnoz(ul0y>$LWGQq}~=63hYSJ^S@s3 z3-H-?tDuuDIsC04mlUgcS}=fR<{a&Lo*yf4Mapfx)6g;VLU;7eqHvp0yYvL@f?ik_ zen%W_yhGu7*0I!Bku|P$EL0M;2DuhKBH}l9FC?uEPi<1TiPcF^@9=yte8r~_R)*yp z#KzWzO_;YLDyVDG{D=X|! zS@;{F;g@XXf$ggbC8S+zrxuQ3@gRUzppE%fmFU>?LU(LCvyf?*0V7N^d~sGG?T+`) zE}TysQZcvCgLF`N^9o0>I2<5{puGpJ-O>CNg>ER&8aBE(vA9sm;t(b*3|O;?%Z02d zB=?H==XG4W4&G8&z+xSE;8KW3?I`Ts_sjbn3>QBDGFw*{y(4|hQnRABjUk=yT~tHd zzo%ajd{MX(e{4~-lBCO9740W!N}HlO(o6>XbHCdJaKCTr!u_5b#Qh!<$^Gu$mHT~H zH}3cH9!2NL^}>GK?`{LQ-**n=elHtbbdvl&WEA(iZ8Z1$W+C@`o~Y;{84BbHMNJ!G z**3(e?x^=Z>tt+5EZWZK#?(tXAq#zxD;oK+&;={gha?Kn-1MSmXq1h>6+PDv>47$- z7M%yq<8?)=iEe|kih@X*m|w*744v2=f!*Ekp3)*;w=Xw70)#R=Wm-`hamP0^ITv^_ ztLQJ{0x#ASeMRVnZQ@MuYBOho`9E?dP;4toCMGztyQnimXJmS=>xU;DE{d>3Th|s3 zLN+IhHh;MwrU%!vD*Y{x%c-L4UygwU*NO(Ag{zB0X zb4X(@7a5pFn`=ea*a-E-qpla(0~aK_RkVl|BkOiidzMB58tIFGfEQVlAry-r6h$!I zME)IyUyN()Z$+`zAQriYTk-5gkv*vQ`G=xPD@e1=iyIU5PqHrdvV(MqYq7f}q_|P> z8wWNWs8H|L#naH)v6cKfQN7y~v(8|8zOL921&l1VM#Z;>IgyWhzhNMy>QtPH2DB?? zc{B&tj>525)Q>FA2p88g@LklcSoXJtp+5K*x3&=6LoI@eSw7`8qWR#l!NrdmdJhZ; z-#Y;T`VwX2kYdC#CIg6uE+UGwqGDGxdxvvJq?eZV!0$#D2RI7u;r0o|UM`UK)fX%6 zAze~bd{h8wdP%X~8qzCcxZ@>X7x%M*;|G(9;S;-iSo(c&z9pn*7Zle!q93D_gV4vd z#SBk`>Dxi@IF_yC@U0ESc>=VdA8f^(xT)B~N-)zjhmT=W4eey9^KX28*9LW%Zcw2n zKNTCk+?i(G+T0jDk1gqf?ROM!V{l><0E*mQ%e{@87hZ$5K?-#Rd;`V={T64?0O#iL8 zqXS3y`0L`4ob7POKa0!w?DoHkE%@vy^O8iqY#*1BWtQA!Z#+xjt0^k-zQ!d=Yc3n) zYdZVhuO!)uJDbz4q=OfiUE8|^zFMJ|jpOz zp)s@&*kXt3E?H61o+FKFG$jmEH;q~x!s+gaw&Yt|j<+teWD~Cs|NN4pya<+tlC^w+ z1LI2ILp3Vn+zBPW*l^kM86~^;vO`fxIIp{J7nJnm!EP-nxyCT>+eowvY1+O>xS?bY znibV!5ORLo!XGI%mNaPCR!T~3(4!4y8gy#B!40i%2Sa%;3xf^XwW&n<U&*0}MSGLAb|I@t6Un!_mgWC9SzP)ID&?3=32_zK1Kiv9n}F0|5PTm)#|! zSR^r0^2Z(am8^p8aS59{2TEo(h>g#|5)W237!-7vCo`*Le1>0PoE9;71pDmf=ikcqj;fdbXmbfFoUrW7l?VXa=tl|=XaKcc_eM_o* zT=cla#)iwzd{r`((*%C7pXS-5k0ZWI{(^g#B zdbd)TBSbGt^(lofUTLBS1*u7M917(mT8qYqX_CO&-*j8a3&cRr-l* zb+}7@DU3i=%<09YZFn&cm6zV)&*HC3<*?5@QFYsCCgI;rHwnLTW+|+3P79R$U@9jHwZe9L zN?|G|Q7r!MVCe&9AN?ER(Nb*A34HEEsg#Q5hI^eYwdQ>w?y^bKTdtOVLw}&Z^;{%Z!x;ft9fwGP!*`m8v1{DLvTaE@Lw|4L&Yr`Ri zR)YZH6(3|KY9#I&&zHnG`!$*6x`QivqJg|d7X+ze2e8Wt#W@F0Gm_PGFaZR$} z5B~Dydcz?buArg7aEl?NA|e$d>ng)EK@E2Uc)iN7>&xv;??u6je`i#yFIoQ|!}|Yf zfuIJ@m|z%fC3t1JBW;UDPBX9uccg8Z7W>zry`7BhYU6Z6(w9q0H0De2e2||LAlI!= zvBV2z80r`s*T1n)!o(Culr$Tb)uvmLy_;_E=(?TxbKHN^tyKwGr# zqM^SFcXsc61FR=b42&l~G(2p>Wyd;~`CD??{T^kX_{(a2%HY10mR;so22mN!X0$B3 z3F{CL1bK%t_@ISmPjxB#hUKf#e_1!{MOowOb2`|@o#>~1?=oS-^@Dg&e&thG`PSQ( z)0SdrSr#vL-Ker1yx42v%a-!SSIWy^c`Yhns-_HNe2H?9O-fX)=OBfFPkG+ zMEc4>h%Qd)x}mH=edWg2!L)@HsgZ;PIvEeppPo64BNK@$Q31S=Ha zthYfux0LZ+qH=3l^9IoBUwyEI--zq0ZDm_5KzVO=lpSdxq7N?GRmQYrfKgb&%LmWc zTejT{C=EVPwyMFD*8W_^v}@cyDHRwc*u0YcjwCBPWx<`Et;{>489$|Q+Cl>un40^Wmia= z^Rf))S}wv*|0uf(K7)_HFN0OW7vZ@d%GQ%~@Tanmq})KOa@eqX5q7gFuXKQPmIrq% zZ&V)U4#(ehD5uwHI+fGw+&h==BIRoX%FmJOmxPzYg29V$K_vHko37<&?cn%LzjCb= zqzOaIVUx=ewBI(>6Zt+UZ;d)X{>cdyjwrukAMEd!mzk!`@C)pU`iw63X%-L=U`PH7 zwHbNZj6|(pps_?yS9ED)d7J+V(DKpcvjq|8#UybrTpC?o%hHh(`&P%5k3uuN4FT9s zR6dCnWm{aitp{&Z?2}dwd&@4uV{_3p zLb~v04ma}<_q)##j>pxb<^2hMi`sJ7&U_Ir{(Bet?QC9Wg-p|T6v0jYe;$f(9BQsCD>P2~5keF**jb4{?ZEM?` z^6!WqW`8J$i4Kc!Z?g*88eA+YXlvMOSwUNa!MY-X=;24likE_FkMfSy*TVdfl}kl; zIQf-JMU=p7Hhk0TR2+(wf#!B-!Kd;-)MH%vA-vM9q9tjkCpvC=gdP z#|||Wsb=td!Qu)rNzW{;(3rU${`WQ#fv9e2MQ`-+g1Zx1pBv(X&g6%ZsAw^!v`K6~`5%5FTA$Dqn({AI_7S6<}{Y#UwqJD>eYRQcF=R#I8dU$#bG z`G7yWR9$HgPYX#E`%)^ez%yEsU8AdP>n(W3DbH(M<$*6(9;*2jH%5LN#yF!VHuvmj zRa~$|fgKj81<&xR@s&Q7f*l0C8LppF`IT)0;9YRV?8;sx$fc2>BMN9y>5A;!$M}G0 z#$*euXD11WX;Ai|-W}0Cw=q_Duj`m2vjhid-N^6FVmIWMyU7Cov}}woD+>%l){R4T zeHVM6;bBz{$Z>B?dz8MrrYU+CR@Db7ch^`WNmx~Tv^T8E7tJGoR)<%4B27e<2lCrf zGmQ1x<$G&9(S?Yr$4Kxq)V4pe$`7460NY8;Jpex(+*i{Eg?Fp+H23#whiWYs!vvmv zH5O>}(#1_t�>AJ}I!>s8*)PO3i2oMG{pIHKfZFc{!?#+$3!d>T`LE7pi+z>4+Xj zRZ0GTs{`&<9BM^*R#78s7~Sv4WTFDN2V6{=B%C5EWNLIcBtB7>6>LxPf2iP|V_Xh=j766~y+ z_@7J7d^WoYURY2y-_B1Jt_q3@O$-eTR0oHKYm*{_5`#2R;em;opwO_O$Oww)`yWc7 z?3Tz2H>;|eV&@kWnxs-`R1rz)@TgE#RES!o)+B~%!y>gI!NFmX!92zPREkoZ@C`v! z1%@StMg#{(1%|0Z69YA>5LIwsL{dm(SY$|8Vz80o|6Yot`1_oy-F80VQISz0Nui;U zk>T)Ho1{*R(k5yHgTl3%;II&+dcShA@BdyV2+epl8#eML}l=wfDq7u7ptU6=orw$E`2#E-b)P!pyLW4q*)Pbsq;E3SF z;GiIlCNx6L>F__6qKNxG5^JIJ4z1(3xA)2Kk1BYJg(6S`(TW z6&j`vi;Rp6R%tZasGy{XsKf}g$ZoC&4s1P5X5ka8j?#u{HA&j=$k50jtvW&-loXYu z1>=TBL}*c;&eJ?#D*V_f0^i6$RT!L23JunVg@#83tAeB8FfueKJUB5dI0`LlKHUR9 zUpn`)!2f@*KB=X@UrW8JsAX5bkf3e&1oNujF92oaU!;0mpZ8KMni#I>L zU~QpfI@Qqg9oyDJyQ0-1&vi5{w0+w%ozOI69{;0-ylz$D&^EoC)2pQl7cH^Xvh@q5 z9BiEXfkQ7oZPJxj@^o!GG6T)4=)TDrn4uTeWc{dGJ}ZZ&s}TcQM#pO|k^z{#^2tyg z6QB9cf|kPE?C0alsQSpPQ_eW{_zxa+%o#bO)!zN+oI6&VbQ;@6ztL@DN_kgy!aWNP zP+NDj?p2B^o)u`!bi=7sEY0yvL)In!@j}n3#@p5};IX<@y;fy;_ANuNaHQ+-M5|_G z=!RpmXx%n@;plkQ<*TkQG`Rt@)QW1J%T%=@-}CgUXE?59X_~K&+;i!e`2J&CIttA> zJ)67cpTWwb^tk1pikW8-sb{~v;IN|0x^J-%R;pg5!m{l-hUteE3xMebz8dj?C7i+f z#XQtn)zE5Hixt?dR7}mU+L~vYvT$gTZp0S`>mDnV_?{g__iB-2R%%w2j9$ zy6wid9WTQ)yVHs)+_OM0h1ngd!j8qd`opFL`xdpT=Q2Agj%7s^RtML&4I}iq-C8Ad zdn_GAZY*=s3d5QoRdmgBeJ@}bR}IUqM4ozlS?id1_??UIDHLnWNfz~r&&fxI<5x7V zTGI`#T{lBtakb+%%wKp%p_JWux^R@U`_(*k!t1S$dV9-)Dbr2Y>@n#=%`q&75%bKh zge-Sey~;jQu?#ITBTX&e!lX-A{cPhv&N!KLiwkpe9+I~EJTfxJsBP_jw3dD29A=#w zePG8vrR)m})rj^b2bK&|RzoL>Lcdz627wn^k&by%V-|)M!zo!twMt-Cy%0motg_1U z*n+?bjj-Z{X3etGtufv3LaV|CXK0}e;$)Cm70<6YRVHW{=;@(bf6~f^m)*6yYr@&K zB^%xciaDpTJZ{m{?AI0yDq&;=cIcZmhjC|DWEi>?&j{^+W#7``5sS9S?%--QzSDI! z6HFAt5A{&=CU}P0c2qnr9^Te+XQ3FdSyv-1a%xzI23A+iwmpq4#j4bzTDl|7 zd~m_tg>p{U74^V{OLXjlte%;mHkT6YSkTmDn3h(vj0*F<64?&plX+#=v|6oJsl~$= zZJE=z?1b!kHpZLJZqBw9RN1@@lRJ+2f~gfxJbWRm0_IGh1tEq&jRUwpP7QOUR@K=u zYhDyDU$pYkLb;aNV~ulry_LlyyT^2kJO9lE`yZ^^J*Jz>n!u`1i}}QjVqg`8E&iG8stX)Uv+_7r1#qD)U+n93p zh579H|Gx5|V&r&U&5Up?Y89vE1-2DpI2wi>Xtl7K?(oTGFu@LV%d(u1=~<~(E1u_7 zO%p@X#>r9s!K=o`+ZVN8UnqJ`&9U7eiZqrltrj?5&DI<@@(eo)oOr|&i+^1xW3*-U zTUAF4T6kiK+41gux-5k_--nk+5&MHP1Nz}B!e9mm!pt)^aDzhG=U z@A7u+&FqfZ46GKdoYS$L&aRG83n#JuRj}Q)ipPAZa2q|Fy~qe^uBGDvRJ#`nt>#ut zFY*G5o!K&7tzxh_JC!hW{8}|NBg@}jb!TCM<+x77UWVgPky&NfI1-w!V?S5a#9^z) z#_2MV({X*7$nG~WBpvnogoR_&VO?8BOtCp`?e$Q47Q)qnZ;)>wZmd2tim&z&Y?_Omf|Hv((f1G1N+ zrf1$W)9RjErJSo$`b!HADg}1L{>|xzdO-MvkX8+Ag!#d?9;wQmy!LJ-=n8{m!V zwTLIkp2wqfYYw5bWs8=M-_Wt;F3!%>F(a(d7Qf939NXasxuS}J(VwmqR~Jv@yD2x7%UM+weNT?0S=-8CTl1wXgvJ%wl5Y+4knDtoFeMyR0z*8 z3<##;!C1Co5z%1vC#om0kaAAfRdw%$>|$Ydx1Pj5G|(5tcuyKJ1I$EE(|s+} zEJHjPJ7ikK6F0QZ?ptQ;`ld#p*wF|TN9@@~z^38jld+!%xH02bJyvKkS*A3i-a0M> zhAqS0BC2O5ZhI7OJt}4g$mvk&1QK)mOYOve`uxIui>yx-UuPjDELRC!BdF@!IpU2t zw?r5Gi&@Bt5}ekziA^_P!!~(ndbR3DxSM{cxkP|`OG_=q?VH-z$iyhoe3OWZOffwm zIBQjjnG?IQUG?nCs|d#?9%XjlxZfAfUZ*#?Sskmwz;;7zoPZ?MF$)(SFx_yQ?H;?C z7g@gNI0R3zm<*T2*LA`wPB4oDzn?_O>Y?H6V7ywsh=7{5tqr#<^D&u~-Dg_P;Ow>i zB?jHQ-aBhoTC>lqgRgD9VG*xucwHN}-tdJFA5nNce))S}=(B0hU*3~eAn3YjQ4|u9mIZ-I zD%bWcUjwoOEE52j8Zn*|aE}*LT&050LOp0hv@B zSiT8>7%&KhEjoa9GQ?mU$yoK6$in|Dgfq!RZ! z@cl~71xN$f5=^&8Hr&#{p+|Nth;M6JHK%W}!ddaqfU?N`N>BpJY? zgO+KB*gcc%r2c&)jJy!!TE#X=_k%Ad0c%Fp8rY3^$5~QLK^+9uF~E#mam zz~xPT2QUdU4uoS2L1C8o0))!E3q^WE1<2MS1%CoATT?0d6 zQ(!@&+OKg#!Z2{$Do{>OKr8|l&hE9A~9$Xig z8q+qJ^pPWQS=J58+Nim!fdi8mj+N@{vCpG+?dOU_sf zcb|&Y?E4iY7?wXRSvm$pMAk(Kd~Qlw(nAFn3$;(}hzaH>(gN`5p66&F)v4XmW2)u2 zdfyExU(`YYCweUARf-a**>R})VfBoefy^rwQ3`=9jg3#X1@5U`6EvVfsTAnUI@&p> z!$7V1#p2^jY?E0%O2$i5GjC}bTyoi_D3+^&>GDAMSb<%0G>6lQBC7bniArH$9Un%? z9JM{B1Hh`nZp)RpToVX6-7#E%!u7>}9rZ837XcD`EU`M^+$dm;2!U-?-KZA0G2pnz z0B&b@T}u&GwVYm)rN6SeWh%f(gGvwEuGtpFbAl12F4MIr)dT6|R_efQ2aHZgom3#j zsv!^|9tC(Yw+c|*W6~5(2VzsSsg>ku1O~IN0$`8dlAX}e0k>NfwRQc1ZU9S8ui&w% zC@5xkDyy}lj$Yd`bvi(_o&d2x2XDtxY}jB|G}B|(bpaPq!Wv<6q?go`K>D~;KxC{g zj^_C_DQpZuZR+4b?_RQx;KL~0$$l(GFUVKUfb4~F&c0*dr|TGJfJvFxWJ~SNK~2@b z1|3zgY@MM5_S6tWl^(Kon3#aiE~6YN9hGj)jhG`mZ7Q3ptk?#|nCxJzv}|%|z3TSW zivc=^3~5(zxKu#{{iEbA1n()RN0WNxn8G?XE+?~RYDr6R%g2j3ohGn9ZFW2GqRpkVco!s5WHQR6{{ zEju^G&n!ob-%47xlh^faooz-52wG;R-8SO%>9*T!_1M7x_=33enc6xaM~9nBp|35q zPgsE9X$#%gMWGZG66_2W&BcVrrlK|pxH>RiDXUep#!|L3^JD9-qew3EA@$mqxHDM; zv)7)NbH{q5>as5^0A(pvauJ2GZU~~UO6fF{%(X380Su`XqvS=e+s6REG4H4#X5+$z z0U#Y{I>7ykXR^q2!!Wr)6z~U@20jxAFc01XLr%e66||?RrBf`gN7ep(%g4$&9VP(G zL)H6VXcj&mm)74F_3QZg`99i zBL?!H#aolfiz+uQeW1Hf$SD|X~aNw z5AHN#AdMJEBL>pLnEXE)1G)d58xL1oFNz1mFa5q{K|i(psajJ)fE%BDS;x>mO8e3+ z1JtrXH}zG=@AvAk_-k*qy!~EeZiMwW28wdj#A%UNvnURibV&g77{CM)tgc2#ALcV+ zw&cAHV*YM?|AE*2de8V1)2`DCf7c(~`g*AXx0LIV%py8UJ`746Fd*`~B>xC+toX+K z#pRr1LX{A9P8)Om&nK41;OY(-3w{#9IMQQ!0Fx#hj?}@sk*`j;Z~o%kgA$U`H=OHF z{z=IpYzAP1)FGrpkP5(V=Ub#4VL~Oo<`I@$zPOxoP?VnF0mE*1Wn>we2Z&hR2nq&r zytUAS&IE!2Au}P@?33XVD%#wml1qMV;td}U%D`hn7d#OBM`U-PTY;en;ECo0fKMFA z$GmbZmhw8j`iYgA z+IZ>Gfu$Oxi^A&WS3yX@R_DQy3h@_LRjJxx7;n610SRhd_h8c?%o{?S;c%MJ3xP-= z$0!-N7@|`^6A@<$3W?_rD`^0U94T-3MnM{I>9z+#NZ4ft_H*rne4Czy9PYJpcBX(raW;) zE*=J7cn&~gRYKChrlfFcHZU?$Z84ceE;YMX@Cxv`=5{DFac3Otx@TXqlLZwTI0HyZ z1nVqJ5X?!aYIT9P*+7v42v|5-72!dO z0G&aS;;X_j07X*lAH2N+sBi(^f#DI(m#{|C25L2O#V(w-Njewin5YvAPhfIzb4juZHlQlNAZR!sivv@^8o}x%1ghiXd2g(QVK}?vl(;Id-^Bc9 zTJ5Xe-n``S5==fGq+no%nCCu(&~W;IIAi&sRVN~~Bx!C~>h!>NgqRJ)Pt`G5j&5vAA%EqZewkhn-IenC?e=B* zsae&fl_Hxk94xGH?4oe4O7e?5IhiMx1yFuh>njC@l)2XmL*v*w?_%b2sr1758#%11u7Z{S?JGf7!v_x!Iu_4u(k~% zyecRw7`&@+!tpqOH^Qe52!`Y{MLCUakfGV?i=AjGCC`7zo zT$r~6m_&B38qbh@s+`kpMJ>N{soMmP35$BNX_Bgho=Vfx^XZM+)RN zv*V=DhJ<%kpXtV%0BO&7YsrC!I9`vf0xQLj0cGc0>Cq2}DRaOcid&bca>$ps_^C)0CgNLU~v4dp47oP{U>mB zjTxEUclTubmtp{L6!KUWe8{*lrhvmaKy$$I`4JGKl>9uQ9@oJjnZ$iCEh>=mG8bh{ zV?Pdj8MY~XB#Q`eBg|bWh+#8_EfwolvuYp%9nZH?98x*EQ@ef<=xSv3sCGP$U1;{0 zS$Ga$Fu~VE++`mwcTTqwL1Zjsms&UBVvdIuFMoFB>cZTdN78GafEvykhrNJGIX6k5 zM+uKxH4NgZ##fr`Cg~ z=D}79LdmFOXF+2@)(#vE^fMTDxC?#I;Sp{Fn2t)fEtuC~>RSPq$?7r1&WdkU1f>nv zV^s%t&DJRLCr~HidvjB93svDZK#I#gzYt_#c*> z327g=H&z3irvZ$##_AwABVO>}3z;+$te_Q+thW8(Ye` zDs}aj+Yc%UMi}s#5P4D*0PNIYRmATAQ3dN~HDx0#S?Hu-DPpQaPFDel9s%QK>A-}* zVoFKxH+&O~3D_q=zu9mt3bq(=A0uQ%0y_;T4J{PKreD{1DP?yYC7V@l$H@YpxLO2K zG)hlGcuTR}phjh7rXZ)Lg9f&s&D~WnR+35(i+B_x%&brc0ns3ZJD5?R&MlYlis&4q z&^{MAAx&uHg_j+oSt=?#6ZZ{Q0a)@bb4oz$+5IOmfSjHQ^o?D*sKm}h=mpyxa{%cj ztWxGnSTlf+61KAImJ?y58W>*Cs01jm3tb3RC6Gbs60o>B5qC1XnoJ}?nA{;N4Ip5b zFo!9DNET7n3$^Y1h22ctIX&x%t5weF*-8oT#my?w2ev4{YN-Lh=k~?*#s*|`xvb*# znUxogON_u}=d8pC%zhrdHXzgtvPNUCX_$GJpv+E;zyrH(9FuodGP9=l!2L*k?&KltGkB8(NW92f|~!4<)ellQl47> z=~I*6jyHa2`Tcvo`*&{@;$%_!e(gW-_wfNIEPv~AU|PbXVWEf)m4*hn2dYNU&ykhW z(DY3)x;e+xF}iy`z5IoVd+s$lDddiK{A&5yXZGB0azbg>1iA@W0OV!{QFvexNKm3Y zFOuAFM8|7B(SBjyA^<;t8c?2)Dq!wHIKseLb3m&B@Iv1TF?q<;NS~mpjJh4UwVlW|)J%m@4YoHI zX=PXCBw_)&qKzb5&8IU!{&Y zli)U2Nc3kap?p_I@>~P$@;(N2%o_SB#G@{>v?2A5;dR>Om64 zjw$>}pm(ZBumU_lTNc2(S4&G?a*s+%UWWEx@yH;+!9ZL>kTnok0#AV;6D&>w8N${v zL#5wJAyUpk0C0bM%eeUNkt@~@0%qe0k)vBhjJX0}l|;XoAn0sXAb+AtC8^5EJu3Od z8O7umO)%r~+=S0Epw0&}BML?+%L$-pazKwrbPX_8yuSLo`Dn7wlvG?FI^ow2uW)ZH^06PFR(g;0qXm7FC9Qdcwhn#bi zx^R*jAJ05;#r=~Y3U1|S7zWbc&IoM^7U)aKu>I554ZpZa}rPyh4dVvhTe+}fUB zPwxH&?%n1U=c=Fnam5jtht%)!ZGTGcanGOXaYpz5`-;!?`jy?kofI$r^NJ09%20y_ zkRMX)0ALrnS@1+~gQ28r_)J}+K5280O72qWtrZ^`PALx>#88nzA`4>}s6cQ&p_tXs z<%ZO>NjV}^d6@?#<%s`0OeHtn#fs&ok5*sYPwk_c$EyKc8O1I;Z~Ga%&pOD8=Zse) z(lNd3r^>s2rGD!_yq}U=-}9$>A5>g1LA}`PnBC5a8~*`yT9Zm=)~?=qA2dmE|A%ZS zs&#$X2B@iE&?8b^0fq*^5YRC08|4NS0OILDjq;949zn|_HDfr^*pvw&b8S$H0b8lC z>EidX!hy7m?4Z81XCDN0qN(PdRF?V(O5AFYr0d*tc0?E)(e4R$4Rv%J=L0NOSn-`2N)X(mZR2ni}^R-1^#BHDFTfXm$USxAs%N zn%KIJI_`|tW_9$W)-mehNv$K*(Py?!SF7dicj|AO)$b>@j#B$h?*8_u$-F&p=UX+o zb@TwO*)Rctx@zW`t?;w$HGjOCHS&(3@jH`SPc8fpb$LL1!PM48edb2~MdzmBnz95t zlDA2uWDsz^id*JCP8Ysc!;p6UzmH#ZX>}03v!lreasbs%$-zAjpgh%1-g5w)i{9TH zKrxn?{(&3;Nn?6=`ccvc%)OQFpGfc7OXu($mYm%>L>2G)>Hzi3!L9xOue^xK>W)KN zpH5CajcHZo0i2pVfm6@;pLzuEAA}wIcRqsjaQRo2Uwmk)IU4JtFJ9GNO<#IA*|B(Te{6f4`Z~e@4wYlZ`zDhfzwWu}^SkPY$ zpta(z>zmaTXRzMRd*7}5sHU)WZ}rzl?%!8^GGv)fK6~v9KD*(Cwd2*je754EFO5_0 zJF|6|I(Et(`>M~JnI1M)EjhDwxVrcH>&L6_otggJSaoj1XNP>}+5tV5b}{nd+jv{Dqu%F{G9zhb?Dix{nYVi@AlcIbNFoJ^IsdIR-WBD;(xs7Z>@NE zwA%CB)~D61=Wgx0&v~;iXGOfAHv6LU{Y%cCeL;PBROg=GI{ts?UR?CYYsadsf0#E^ z+2^-9|9?8IN$R-^T5tTHenk7+e9oKw_SoaJo6i~0e~&#*{zzeuJ(9&oJ$`oUzW;-R zG~Vl?*1-dm)gR-{`CMyxc!`=T;r2%ofO;zw9wm!R4Ad6RGlP?gl z0k|YENQnhRsCa}_8ML)_7xzan1xPgn5-nsVh?zLluV`LCoYS?Z zHr?2Id?~x@K%(!OI`5{|!6gH46#{SyG%&&w!`p}W#6-@Z2Kl#}7Hbr#?scewFd+j+ zAI70d#j9!r6Y#~zIH~0a!c&k|oWKTxfB;%Xgk>n2@?7M9h}SqIcqmIU>sli@y(Wbk zMlq{T-AkoL&TMbBiwGuJ)YMT@O2HY$EfBw0HpQDdUV!95rY@aLH9VvRWIzmuVsHpO z+<*$#kSs+6;ezG}DarV_yUx=MMMf&bI+ctGCr)*%g_j5eg56ymSt?Msm_e!LI zYA#!S|F1Hvzu~#J7(-N=xYf{y2vwM97?^SD#WrVqYZYkUSwhneYNYaNs$Cf@x-4ynR!fNM%7`Ks1nGEd`(fas;TR z5XE#IDNeFts+vhMW_MainA*!Zof2BKTQtS&8lnFBXzM;D8;S&qzio1wtawzxJE#iT zlt@>pX|>_HZx>xD3Pizw6BT5gW7ZR^LHMhN(t~gd!M~I05wQlEf#)!^t6Z=FNeiE_ z`Z?r-YbbstWbJu9rb<3J9im4h)9dJw?FSxQaeAmASnw)@2tEa@2FZ#G**%$E_!0|I_GAkWnFun(l(}?eN911pi%Ox z6oQjhMUalU0D+imvCpt7qKtrqQJw1vNdbl$mHp64FkRS-C_IN&jBEqtx_VlO%(g%Z zor>y2V1(jh*u0#Yg^CA49k7rTwyt`E9V@%TiYiZPKe3e4VOod$xsKMoo7hv?97$)h z8ZZ>0UqO0JBC&9yRMg`G+II41I3X+;a7++FC(lpqJ^~&t|APQPH>moQd6lmC#Qq}$ zJXmMJEil0t1{5N@8k#t8bX9v+_Gfk61FOVx@gmu8KCECc=tij2|DL*k2!5vd~fEslb|#*>ADL%24l6O~ zB#Z?1Pz(jG2x$p5VgU82!+){z^u80al0?F90zcH(*D=4cA5X6;|Ljp&>ovc!Z&#w^ zQ&uv+N?3cD*LA`@3+f_tuuQ23ZpuI65OPSr&+(*r@z&5x$@nXbec5MG$!l z12#8+C5VnxBMS&k%2AQeM$| zXO$rd%j()ngdf#k-^4&97Y4vYGuVZJyuc-9*z8?U4@4ptXw@mz$XQl=EF#if!jlIr zfK58cWS8;jD4jp`l4RsCDD=gMguo0mja&i77*uBw8A9YQL{}>Xn&fm{Cs)hq`s%Be z>WYarwJ3^mq|Kn;LfEECq!}|%NM_)(gGH-OY7*#hQ$T*luz>OkvIfXKY-|Ps$bl`y zAxFjCk|V63q#fXjLc++_9h?9JQ^1a(1_S>=YU!5Xqs!`5uEBtBC96-e5U=A89`}j% zDTh>=b+^YAzh&h>4t_b3Wq&hkK(U`k$ zOn3lUgR+;r7D?c&yA>tX$x~k0GNzn)O{^j*4^*Uy=oe-PI}Ot&@;$Iuuqwj0KzV=4 z1672p3>F5F<3YNIU6(}&P9Ip=(3-Jp>b6hplvYK~F)%P*Y~lSv&Ci8}0r@)NNI_VU zQ7K$D^%<7gGu2+56WTtO*Y(w>w-c2&I)pKGLHI zdd5tO*?r6C$)Z?<7%5Uk6;h2jWK_$u+E+a>6d|iReU+%W;RcbBWup_ritGmq3S1Ph zK~c(HXD~}PfMRy9YTNb&dTytwp(r~UNl_%TVE9493#uQ%k8uHFi!%v8k<|?DL1KK7WY^k#IwhR!jj8htR>C#m8iZ1a+e! zagS?+FtBA!Kt}k{7WN2JOoS?{s6`reUyM`6j6gCA^euZKPn%^BvyHt3mMK$|fKv{h za!${6!`H~}HF3z;%i7zgOo!a4N4x{ASngj0o>&MmE6Bw%&>+Hu%|!>LQ+F_P&@-v^ zuldi0+5{u3CKED#C(8i;hTS~g0GjJb*d z+3~D?E&J3LO#&fE=vv5_>i{m0kkz4WG<=OX9svUKB_D##tPiVos+?Rpq_w;T9rxfjk@3tRlP&!~|!U(=%Nph%F0^ zx@1!>K~x3hVt_~L2@NXLJOmWs61FT%bp$jMk*_r$N29KZD+M!T;e}%E0|TqV1`Gck zELm8;O22GnU1c?|=VW8f?Krs*?V=_9)m4|Yl{Mf1&4$y1HHugm)Lg`*@eC{6Ph3t2 zg4mFSj?AodUtZPHAcq5e4Wkt<9VQAY=+KTktfA-#Cf4KDi3{1-vY%0Pck2;8%Z%Y^ z_L`nf=B?92Znf^Dur?1ZrI9sbMj#K_n+SmnjfFxtb=# zzhP}NA!CAO3JTnsLA1uj{X+4vrl=R_4&&GGFd4nT0-;1?O@iW)>IgzCFqd2UZsh=Z z-S61iY7{d&_E*>~y1L^2wh`)m9qr{N;5h{JB?QAvAwo-l6KXqvl@* z36=^2Iz;-h*n@nVG%>-SNvZtITlu#>~hi!60jh($wD%!GXkGG;~rMs?j=%k0_3 zCC4IW^knxs;!Wg@Kf0~`z`a}@{qVG=0Y+BL^vFbQR175QNLb@xk>W~m;ov@&A(z^c zIe5-`ZF9~O>P01$GdO$2L~?GHIBV*FSGJ5Tm3*akJcGE+uStZ= zC)yQNHq2W>^f9O3P-#2bXAuq0=n_(RiH97jez2o`NRg}zFxLQxH4CCI{QcO95cOin zLhz^_U$)aHAh3a>gJ(`n6OSB644g4hSAf>oVrGxgS)>?=RRZ@8uZ|o$hBgpgau$$_ z!eXbcCj3;7iDY*V`tF_u=x=BCtZws>VP(2OK*}_s6Z~c(J5RqPeQRj50M1Xg2z z-xe{SGdpIhCW>0DW_GHcJ!6TkW*)n4sQP7}Rg?M=K5Hh{Bqc;eYN$d;^u*l7V1Q4P zeO43lUf3r6NFmA2N+*1&O_`|Zl+`jVBFcP3Uat)+duaN-B9_^AEV7gB?WxHvV@lcA z#Wadr>M=;G$`I8(3=@2B902$(3CBqY(FO{MB5snfA?Qeg)223wX&K?JTjXp)2wRAT z_<<`iatIGaPrM1Jxac^DGmeRX8RP(JXJ3S^6P$5+N0Sg_PS0+#zm;=(u1~pSgM+G_ z#2JPjVK~AXY}e$}k^F2kzRb&}rI;c6$dOBPsi*W@l_V1~Vbp@Ya@%1vmmTyG*G%OL<);!sxS_RvBbnaI-{U*(K^p7@ycB&KPnHRAj(P8WHD$h*c*tOB^op zZJUg@=RxtCghujuOoOL69jX%!ZFAJR@2?!Aj_7I|)z7dTpv*GE#ubU1A{0W<6VC!# zO|Z2TZGp#j*{!Q~olQRn{4X{UA^s#RlJ!g|vfJHybTS8{(JS_tbHjFpMapCWv#!cc z>9Kig5>peSL$bO+$Elh?<^mKtaRoQ6Pb}iN3a4@e=d^HdCV3qKU9dyh=t1wSg}n~3 z1CK-~TS}D>7gLKECMp-KppGC%eD&cmzG~I+6EeF^>R~1DI902c z!xFndH9~|#xE_?zA*0vB(7*@NnIJ?-#l%gGVdCV}BvE9F-xZSAW>jKwy2O0g;`Dmt zj^ZIW?TPUT*D9N&hv>LX;vbwieiOOXMI@=qIlZPEKnb%Yt4D=>p{w>kwoxBs5ud4P zOa-bg(0`$DxF)LX7O5xG@q5}=9D^}PosZ7m5a9p#xXEP9aM@hk&mQ}7iERV-l63~| z^MnW;;5%z6Or(|>)hJU=MPPFJe*B@uMlq+;#Atk@ymC^r-CXI(L(iHPK{sr(*Rpb8 zzN70yr7~Q_1Vari9c;O!Cb52M`>Mj+oM+R^N6Q|Up0@j(%(+*xiK%Z-ZW&8}Kl6&B z`Xocq3aEt5+~UEqbV6Uw9SHmg)qA%2Bq*Zozl1HEkeF*iON}?pHV0d-xUzPrGaZAf z$XtwxXI(DrzHpl(+=BIv+s6zh{s#d!adwifD1j(wpS#(8vpaXxuwS=RdJBbJG0J5e{GzD9WtR-z$t_aq+h)JO&+r$9WNTv=)( zr#2S2pvcDA?3%#xkkI zz9;C2$0un3?o#*M%I+~a|1wrlR)=*I$gy{?-2V`>ClfuOJPddORR-`BvYG_j@Sovc z_Du9_!uZJPOGM`&yEH4-&sho+efAS^{oN-EpqH$n*lTL#+^X)WwNF##^-xH&a*Eoz zqjj&Qkix$z-WS9RQvAqj$RiTBNkjZbEk7R(k~Cmoz;=vImPRO_M`uGsPeZ~(z$Nqz zH!od-1Qz;mlmh``60-}T6>3;rLQ24bA}%r>@x)>jR5E*HcqB8bL=rrsKepdD7i&{1 z-8&a~WSF5@>m5?)gfi%tm{yfE4PA$+?VcF|aqXqdWyrC&jqnlvq{Rl-BNa#Iif*H$^lHf`zP(LH`NLs{L211{XuA zfFc|~LX4OP8#l@ihp7!G13ZUidE z*CEUrpsQFuQ4e$2fMpLOb*R~?ButqKx~yK)h-p)1e`?mDZJzo~dF4cQF3so>V1$zd zWjGOlec z4Qz4=RRl;0MZ_g6GG+#eFkC|KE0KjfEzIY=kIe3GF_aD@64KmId(&m}yeAvS$JOfQvq}*Sb&
  • B@ zjI0W9f6F(D`&$mtu#NaCz|~Dzf@_yY0lY-SN-7_?7(WNFp9P$lk@~Sp#`o7kZbxy3 zq5?vmF(@Hm=nDp=1z^=ZRoQX^>_RIF(8U;41lXli*Fe4hwTr1GDt0k-72pHq8p5@2 zpui1PxArL+Gjt*H}JtMw_jS_s(ql|gF(ShY`Sv~>x=qJ4^V5P&876zD9VNg@UT z0;+j2=pmqmcB_{F+fPG*hsyB-H#kdw1@Iyq-Km?bsskBn(Pp6!l_QoNR@`uX9y^kj=?MeiPAF&5l|!p zgHQnrGBF4j;N#6;p@1u{Y)qC2DX;xnF2Htll>pnbwE}F4Sl z5|!ied>zL_eq)e8z%&gK3&3KIDvK8bzWxVll3Y|Wb!L@R0#a#^R)D{DHG_b)8e|q= zw_sKQb`#|gpqfa%fAJM!w^1Ge+(u!Bp8&gw`~}!eR9FGNQgoWYz84b>yNODQ#*N=u zql^MBKH7F0m6tqri&PR|w@6h1c8k;yV7EwZ1-7U@RV09mspkOhLJgdlo$N9iE5f7v zR6WW!a{y;(;lvE1JKJk5U_&5-wgPZHS4XykfKj~|bQWM=NCN%^)BCYX4+Gw3BC zxpvDCFhYa=0&K?z39!o@ssJC9O;gzDZ~=q#{o^Q?L%6bIoS1QF7-twSz`g;PDBz>M zBbX$hw>CLdfZY>j2(S^zXOWIs65?wah}5tV7HDsG2_TWPCg-E!V(6j1)N&O;H-cmD;Qi5ka8`9%Qis$ zOKxCtO;mbpWN<^k;0Ok{1?=C#;GTe`+Za3)P<{u4Cj#DTUi(+sKzXrqCv zx)2k~i6T!e0XNSvs4L)-1`Pz{yvQ1j1!U5onSk(1tkF`yeO*c$8=(KIWlT|SJ5jl= zK}P}M`Y?16U>}!m0_=tl6ks=eZvl40_Z6Vq-DM0AVmJI?0d~U=6JR&|2myA(j}~Az z{5S!2!%q-kH~b$OsQzy^{1j2K8-BU~yWxWc*bP5NfZg!(1lSEfUx3~43j}bxqyH}! zVmJIU0d~W$Q~)1M#WU($<72hP0enKNb7D^NMg{nBXQ;{gn;pRVTb&r5hV=DkyO0ET zIm0diaT>S<9Dm9h`vg>Z!r-8Q{aWLQ0IbWZdf0IRzS^x*xzzQC9qp^h8Bwu4KQF-c z?2-W6v#SDZ&#nuwJ-a2q_Ux{J8ZPbH10l9+j|JGCMJeDc^{Q$U?Er4m=T6MX^PDRi zDXBh?9o@EhWdzMWBE_ZxNE+r>`iwQTO zucTuQTGhgN1i(=R`~*z;$-rO0SPcpb$mGdo6ceyIA%l_vQYj6be`SOW*M5~3U^`k# z0dAk)Te6X=3Vc%y_M!=c8j{5>x3&Pg+z|TK+xlI&VuB;yRVXMs@!0pr0 zi5a=ma&j91wK6hjC!mrB9R+mE&Kg|=xOEY(ZbIxr0|nT{^cG+j(^r69%m4v)F@puz z#SBv*L{)7u*3QMD9AN`{{@W-?ADD~N#|jA58T6XF%EC!s)|e<7w#i8XY#UPr*fwS; zz%T2tBCqmdR&MqFK@o1@Ig)O_yPPM$es?)v!0w`KVSxbq{oi5%4RsmI1lWbH6aX9i z{$Y&}JI{IrxPM_aU*%|o1K7{aPRziPzAAZ}fVip*b_jT@4eS;$x(;jX(Li1Qu->mS zvR_m(G-Pl{fZfZF3b5Tep#Yy4Q`>Qt)1qM)b5?*|$^`*j3eLaFVq}*deXcoxD|_9E z8TQF{OMqSIT>ZCb3-Vv!b0 zwV1EP6)i4nfe&3(zE~~riLZ*?(qfku_=H)({aWCwY!y?VTSKhI2hvKe(^2&?GGgkB zS%}42sBb$Fi_$`U5Q$ir7GJd3tA+Zs3~BSUP+vG9raoMPP~Rg#+|@#Tl7bjML~$vp zz9)hBpv6rs-f5w}!$6w)5CYL#Ti4La6`PLa2YlLWFCf z{sW4b`o|`O`hTShQvKHvLj7Y9LjAi7Lj7k5LjC^+Lj4;9LjB_bLcOJiP%oMx)XP$c z9a^Y&Lx`z2J`n2d2!whE0HGejA=I-M1SwG}jBn5oRd*^7>Ix2_u2T?dOovcID1;ia zAl%e5Q*`wt%8QU-KU!HfBqK#`nVB{%Mwu0fB0xj(VWv*uTtGkv)(#fl6X&?^in8-7j6LEpA4@KPBf{)>Nn z)p*l?@whC}$<@as>?b>rgCZ4M`yUosX)hby{9jsZzZd27j!uRxRp5FKs_%`Q_*Uf? zYoUktaLyez#l{Za(WS75!Z+_|-_R`wIT0VPa2BS8y|(`v^`%DzqP?hNRumIQy|YGF zPNI%ZNN^zTUH>1Fn4FRz2Ypu%2|mtKeL<~GCEIsaC`H}ukRrpNzFn`(N_rpqZL zXLObf#Y_I%d;a=Q66MT^BY5Fg<{cV&hO2b?Ka`rR`jhebUvXjVDS#rpLy!E$iTGlO zoz#>P`$VV10{-4U(SBaH?4)n>$R|2GrEYzLD{%KeICRcMrueRi?Xa>BUGzaK;nSgi zSply*zeau1mT=nl{;xbo`m+C4{px>GLcd*Rm#_VYLSHQ1{NI$4P8l~OWl*kYA1ag! z?%n$@>#P{QhO%9TUU6&@pw!cfnZJKc_6f~#Au(PV2B{I`Y60AQyjDM+{`g6$exg+L zjQZK7ehMg-O#Kv9KQ9!kt3rv?&tnx$qe354$XkUnsh@o++DwHCsh>C%&8|YHRLJF4 zzdzN_CH3<_{Tx(3xs^^n^;1IqR98RIDxswc`KX`L>Zh^#X`p`Isnm)pbY6w3s8AdA z6JPy&Q|zw#Nw1>URj8J~`h=^Uir-T4aw_y$g^sA7;|1Iq^F+7xz*cet^F|lOc5h4b zM*AmL*M;Eh*P+Z>Vf{E4TAvix(&u``T)K`gMf7)K$@<&WvERdmj%=UEj zXzBc<$Q4Q}@P!hg?1pClYznwlPNL@#QGgDXhZtukEDiZ8X+aoM*q^OHY za5mbu&B}(Dy2}jCL%w^lOI5f0(K#}z3*R_>;e${Wgt$TB`J?M$*RqHCqt!lbz6GLd zVjvDI5M3s_y5d1a`46G4co6D}2N6Mg3PhLpRBj^{N1qEs*T6<3mHea2eJa%WsvP;lx2-G&ar4)P4Z|ZbwZgsIiW?^jlozjwP@{U?xMAyPfr`D?m>;Q*!n>4n$Qz_9_Y|T zY<8eSnb$a>?%3WyvuD`XK!-Bzb3zGDIH7RtV4zdeTvH);_O{O>GkAP-U+n)pIH30{#t(({A`k~yKZSfHO-kWu1EJZc^n zo0A6J%bdvl`04YKl`5-yW@7`^yVVQMcEGB&I&>CG&+1SGtSGBPU9eEB4q?+Cgxt-2 zUbL#)PTg=DEtY_AXfYO4)uE3ooX|zApsHEAHBM+M)=br`64pl5A|KY?D2?+i(7h zWi2zP+kPYUF{p89C)OS{HoNaUdyzh;&z~wS&ovMZg<^G24h0#pXV}=ALpe*iYk0JC zceWofKYVjWDy>VSK{(_w)(N@BsgS$8Pi*$m8Pr3Nv2!*Ehf0K~kh^c|*volKsYfCs z`+5)#1!8S29cs1133b3KSImNp=S#T`)&415&An|*?8!=%7peRQ|AGdGl3-ye9r{~B z%dobTX3tNgf3t?CCyS} zQ6wE2A)!%N7D=-MSnWuMa$}hz4h0!!uu9ahuwb9={Q}*2FT|$u$)KJCjUcRAq!&Co zf#r&f`R@90vC~o~QxAtms>BJfP?7uI_t^Sf{M7@Zks<>Kho0qhLOZbL4znPmU77^y zh`&i(DVKY2r?^|GGN|WC<5NLsaOeis&M{)$o%_e#&Q(%9WEusrB8OhfqY_r$(4mxA zazlq6N+=MEZWxc;Mo8R(Ssiz&oSqjzIJ65ZS?EyfTTbW_)~?Vj(_JUj_`VbB^3Vyr z!}1iYhZZ`(-WRuO=5tTV@p5kY4(f^5ID^$D?1d_xJE3M+PC~PyofF!jR)!ODOUS#g z!_EzKLR|){kb6+um!YXM>{lfe#{-<6p&hhPh1{9@ysWS(!&a5{9>02Kb!S}ajjirp z>0e#Rfr^14!u6_ga+b9!dT}%+Vj#f5)SDhnqQYX|Xg%iq@+6k?|R93B54|7;`$SZS7I~Zi_eV#Dh zFiO)nDg#9pYn|F1==pkjs+^0JdxdgBi$h_UiK;_qFa_0E>`syS_4ckMqm)*eq97bf zS;7hJ!HiGMnqaD@4#m|}A@`e+ufL^Are0wfC!2!&<^DA7^|+KCVeaAdx?uWbs5EX8 zyCCI@d-JB(-*cDTtH@bQbktKMFJXqG4m}^>gxr|Ys9AZ;Wi?_GM`V1%A{_Zo8% z^^Cjwn1iT8MKSqMho)lIp$;XU=Y(cpo}p&Jm|&oK!Xho)glp$;Wo>V*Ep974^4 zFnLgiO0B}gFCBb~`GPw1X0;Rg8#4qoJB^uvI#eb?LYNDvSuaci)S+$LoX`|Z`_rrw z=KJYT#~n_HFu{*mC8GkS_UYs{nA4|2Lok_7hvs0?o(^T+XNQ7}SD4F*!7dv$AJ8Sc zdtALY^YfIPr;b2^W6cv+Wp@QDe1zgfr~6Au<6Ng z^)YizhjQI?LYFalO|$NIozMl$R=%gFD0}j+F?bXJE4Uy)H!m0 zYK4_=+!a>7_3B;nu5#xDCXnf=XVI8BrbFW~WlV?uPUnPHV~&_{*FD_p-TkWmn^exl znB%3Va;?ehg!W)k7qcKNvyfPg;VTpLD&*c+|K0PN$?$RwV>o7Q8AshqXT2-tmkeij zJR@NfkPq%#yWaI{lKdvfP-A&3&RhMb;p-lp;60rvsb0Dn>3TtvLt&W2q(j$-I-!i? zolv^zD&(&C*ZT_7n?F%G6A%c824mup4zFPcXX&F=IrQ@#}^fHFDm|F+rk8X`8_CQ&1Zh@q31qih~HejTr}FJNMcXZ z`HERKdcuxx7AI6AhZA~?`7}E94kps*&<=kmbQ@D=j1BJF7e4ID;qlBpJNCl?KM%{@ zF#X3}{>jvfN@EWufEaV#NvnP=Rz5?xBI)~raOfRoav0(6rXxRQP498Z-8cB-h+@g! zE1klaL1Db7xC0+c$8TQ7y^>zvj8Ca+d`#y~dF12%XCeZl5O~L(?V- zpBfgNj(i7U-1e#UEMcpL3mcdA087=gPrqS-L%MVu)rAYhVX~roA7Kw@Gh9Hiasj+#Q Sc~Yvev7x2;=BR=Jsb-tEGR|HM0NRWds{jB1 diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index daa783c01610ebac4b01338c389b8ad25fdd7a92..70b456f933a76535b46e8bc7dde88b13fea5ba1a 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4NJ1ja??tU\n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2347,10 +2347,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.094115Z", - "iopub.status.busy": "2024-06-07T11:11:15.093604Z", - "iopub.status.idle": "2024-06-07T11:11:15.101488Z", - "shell.execute_reply": "2024-06-07T11:11:15.100867Z" + "iopub.execute_input": "2024-06-10T22:12:35.076628Z", + "iopub.status.busy": "2024-06-10T22:12:35.076434Z", + "iopub.status.idle": "2024-06-10T22:12:35.082165Z", + "shell.execute_reply": "2024-06-10T22:12:35.081601Z" }, "nbsphinx": "hidden" }, @@ -2387,10 +2387,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.103964Z", - "iopub.status.busy": "2024-06-07T11:11:15.103743Z", - "iopub.status.idle": "2024-06-07T11:11:15.616236Z", - "shell.execute_reply": "2024-06-07T11:11:15.615605Z" + "iopub.execute_input": "2024-06-10T22:12:35.084609Z", + "iopub.status.busy": "2024-06-10T22:12:35.084418Z", + "iopub.status.idle": "2024-06-10T22:12:35.587131Z", + "shell.execute_reply": "2024-06-10T22:12:35.586528Z" } }, "outputs": [ @@ -2432,10 +2432,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.618904Z", - "iopub.status.busy": "2024-06-07T11:11:15.618444Z", - "iopub.status.idle": "2024-06-07T11:11:15.627052Z", - "shell.execute_reply": "2024-06-07T11:11:15.626512Z" + "iopub.execute_input": "2024-06-10T22:12:35.589248Z", + "iopub.status.busy": "2024-06-10T22:12:35.589068Z", + "iopub.status.idle": "2024-06-10T22:12:35.596888Z", + "shell.execute_reply": "2024-06-10T22:12:35.596452Z" } }, "outputs": [ @@ -2460,47 +2460,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2521,10 +2521,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.629232Z", - "iopub.status.busy": "2024-06-07T11:11:15.628898Z", - "iopub.status.idle": "2024-06-07T11:11:15.839845Z", - "shell.execute_reply": "2024-06-07T11:11:15.839225Z" + "iopub.execute_input": "2024-06-10T22:12:35.598779Z", + "iopub.status.busy": "2024-06-10T22:12:35.598607Z", + "iopub.status.idle": "2024-06-10T22:12:35.794283Z", + "shell.execute_reply": "2024-06-10T22:12:35.793683Z" } }, "outputs": [ @@ -2564,10 +2564,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.842424Z", - "iopub.status.busy": "2024-06-07T11:11:15.842031Z", - "iopub.status.idle": "2024-06-07T11:11:15.847042Z", - "shell.execute_reply": "2024-06-07T11:11:15.846549Z" + "iopub.execute_input": "2024-06-10T22:12:35.796620Z", + "iopub.status.busy": "2024-06-10T22:12:35.796429Z", + "iopub.status.idle": "2024-06-10T22:12:35.801616Z", + "shell.execute_reply": "2024-06-10T22:12:35.801032Z" }, "nbsphinx": "hidden" }, @@ -2604,146 +2604,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "081ccbc2b32640aa9071b3cb410b2efc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09f1561fe68d49139a432a57edc8ee30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0d1342e295364183854efa5f4e3c3100": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af9ec09323024cfdaf7f76706c86d24b", - "placeholder": "​", - "style": "IPY_MODEL_ba6bdd30d90446fd815de921b624be4b", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "0e706842735c4bd8b0b5cb56dd9d07bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0e71560598a94d948cd9827e5731bd9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0e720c4f0e2f44bbb6afccf6a95bd4a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b356d094c9e04e26b6c291b5ac206c2c", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ddf5b630d649454590eb5fe80b825456", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "0f9e499f418e4b55ba078d929558a2a0": { + "00e86caf713e4c8e85f8b10d9020485f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "1337f6bbca804a179252f35069ee5209": { + "0131d7f70c724bc6b0de8cfc0709aeed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2796,60 +2673,25 @@ "width": null } }, - "144528e76cdf49f5ab9e9a3a3e1fdeed": { - "model_module": "@jupyter-widgets/base", + "01afb1d5b03540d1a0bb38f1e4ff4302": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "162dd636570145ad9db03ff31cd8220d": { + "08eafc5235aa4e8a88bc57e468511413": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2902,60 +2744,30 @@ "width": null } }, - "16ac0e28e1fe4d649ed964b67b7deaf4": { - "model_module": "@jupyter-widgets/base", + "0a8065b4d43b446b858b0637f26295fe": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f05b6ff2a6a4f07ad9f1fe2bf2dbe8f", + "placeholder": "​", + "style": "IPY_MODEL_01afb1d5b03540d1a0bb38f1e4ff4302", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.10it/s]" } }, - "17846cd9ac244489ad70bb21d524ae9a": { + "0f05b6ff2a6a4f07ad9f1fe2bf2dbe8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3008,7 +2820,7 @@ "width": null } }, - "1a16187b882344098c1441a7b3196c3d": { + "0f53cb4005184862ac41c967880900e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3023,68 +2835,122 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29bda0bd6ccd436da8ad5a3380f43881", + "layout": "IPY_MODEL_a5c8845f43234aa3924694c20a6141ac", "placeholder": "​", - "style": "IPY_MODEL_b857d8132f4b407c829e0d1a9faf4019", + "style": "IPY_MODEL_3417d3212b0949ba8793984784680997", "tabbable": null, "tooltip": null, - "value": "Downloading builder script: 100%" + "value": "100%" } }, - "1afdfc591dbb4fe0a48e66fc01379e3d": { - "model_module": "@jupyter-widgets/base", + "1016e065ac3a411192d4b690b6b60675": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_45ff8082bb3b4731849bbfcd4b5d13ba", + "IPY_MODEL_742ab0d9c163425d859f3ad6725de409", + "IPY_MODEL_6e27a4d18cb54094a65ade28a97a3958" + ], + "layout": "IPY_MODEL_39a120c020ab4b4fac07540b1109cdad", + "tabbable": null, + "tooltip": null + } + }, + "112bb000b7c84171b464826167919406": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_882ff61647044685b7b099bc1489e174", + "IPY_MODEL_1d4a06722b4c4e66be2b3502697b5bd2", + "IPY_MODEL_f56de69942734156835abe802d7f0113" + ], + "layout": "IPY_MODEL_6fc384b103264005b0c774c71ae8f6ac", + "tabbable": null, + "tooltip": null + } + }, + "12d35bfe4c7547b39ec7f75032e9d8fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "130d2c00c2e14a208aeef3b9ef5a2a90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14912cba688f4745b2895c669682b655", + "placeholder": "​", + "style": "IPY_MODEL_ddeefeb08a334e3aafd73da3746dd191", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 786kB/s]" + } + }, + "1330caa3497d4cf3b266a73fb356d564": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1b0ee35eadb74e818ac2522f934435f8": { + "144c0b83b2964db49014d44941d99d42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3137,30 +3003,7 @@ "width": null } }, - "1cbaea221fda4ab6bb8003832a877330": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_312885f84b704adea9ce0505ae62ec25", - "placeholder": "​", - "style": "IPY_MODEL_62b7219ede41458189eed4b18b6a7ac2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "1e9ac1dfe69b4b4683ebe606f16198e8": { + "14912cba688f4745b2895c669682b655": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3213,7 +3056,7 @@ "width": null } }, - "1fc59bb26f3f420d85a2954c6f460442": { + "14f99bd1b2fd43b29e2c777395d4adbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3266,23 +3109,25 @@ "width": null } }, - "21fecef548b24fdc9378fb7fa9473372": { + "185d99ee15e7447b97124f77a75f7fcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "25568ca6ed9d4c9294ab2d66d49db036": { + "1d4a06722b4c4e66be2b3502697b5bd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3298,17 +3143,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b478aac9907246bb836a183729db1e49", + "layout": "IPY_MODEL_7d6188687ae940908f66dd1cb3848e0b", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3237a4d2e09f4b45af89d91446ad0470", + "style": "IPY_MODEL_9166e263b79a4fef94c0087261ed466d", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "279ac211a5da4a6eb800cb3840aabf60": { + "1df940a0538c4722837844d07b87d356": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3324,70 +3169,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_328b9546bc934fde9a0e014badd4d087", + "layout": "IPY_MODEL_5d8db53b8809469ba7382a57ee85b5ee", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ae2e838d2d404bf5a7b18a6c12a4bea5", + "style": "IPY_MODEL_c7dfbeae351c4acbaa2fd1fb38431e92", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "29bda0bd6ccd436da8ad5a3380f43881": { - "model_module": "@jupyter-widgets/base", + "1ef74a6e8d60441586e919d89b9b080f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_565eaead041544d09cf2bdbe886881c9", + "IPY_MODEL_b199f7fc9989426db35d3a525ec77964", + "IPY_MODEL_626b1cd4385045d7a359a06ff456f0a6" + ], + "layout": "IPY_MODEL_78d7370878c14c3b9eb043742bbc0a5f", + "tabbable": null, + "tooltip": null } }, - "2a385a90d5af458a836d1a6b7f1fe250": { + "1f0f575d555344d192d3f7f87bc46b5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3440,41 +3256,33 @@ "width": null } }, - "2a864ae7cdfd491996f68b73ddcab088": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b7ee86755e04d9785b9fc1bbb22ab86": { + "258e31748b1545eb955ce4355f95b4d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c8a4a12f5c74244a1c4d2a2d94812d1", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dae6c1b5b63b4ab2aa8c276d40a2b2f9", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "2baa91d8c929410280f9da666b599ec2": { + "25ad979948d047d1bd494a743160519d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3489,38 +3297,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae927de9c84145cc9370bcf378f1fd79", + "layout": "IPY_MODEL_cb5cea43fd014855a293b359f20fbe1c", "placeholder": "​", - "style": "IPY_MODEL_cddfe3352db04e188c79fd06e93a2c67", + "style": "IPY_MODEL_499ec560a2ac4a5f9e891f2ac01d0fde", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6257.45 examples/s]" + "value": "Downloading data: 100%" } }, - "2f4ccbea82fe4800828d02758b490dee": { + "25f35da97d504755af02397c62ea02cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_79cb8c15a4274faea6fd3afa4292ed5f", - "placeholder": "​", - "style": "IPY_MODEL_54c75f5a691f4473b1e6a2a0c3acf57f", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2f56601e334c44a58ee5736380eafa21": { + "28c1c99d5c704e00a9bcfe8912dea621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3538,7 +3339,54 @@ "text_color": null } }, - "301fd2240e664fecb89784733e5c8451": { + "2c06b7667eb543b09ac4219c83a6e2e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbc56091c4b84a1a89f1c2c6c2ffbe31", + "placeholder": "​", + "style": "IPY_MODEL_57323d1d16ac4b95b3529db7306498fb", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1197.00it/s]" + } + }, + "2c1a3f6bd502450cae1a0e177f23abec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_96fd99dbd4184afbbfb83bfa6860326d", + "IPY_MODEL_e9a1575e39f04009b43d25b01fd06d48", + "IPY_MODEL_98d540816d184dd199abef1df5492866" + ], + "layout": "IPY_MODEL_4d45f2a9daaa4722a6ed9157793afcfe", + "tabbable": null, + "tooltip": null + } + }, + "2c8a4a12f5c74244a1c4d2a2d94812d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3591,31 +3439,30 @@ "width": null } }, - "3047bf1ef4f642c0b446195b237b9bd9": { + "2e6e8fc0d4e647109e70f747ce1e566a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_953f907157844a80971a65011643552e", - "IPY_MODEL_89aec6bbef64449ebbaafd817d159a90", - "IPY_MODEL_b0f0de7f15e741c7be64c44c5053df66" - ], - "layout": "IPY_MODEL_162dd636570145ad9db03ff31cd8220d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c5417a03daa4a8e9f039c1a6cca0c1d", + "placeholder": "​", + "style": "IPY_MODEL_ae417815c1ed4318aea2e623fc6a1305", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading readme: 100%" } }, - "305729a42c7440479e3a1cb93e66149c": { + "2ed4048a35d94682a60e27c1e99ea1ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3633,30 +3480,7 @@ "text_color": null } }, - "306a732d2b23408a94b4ed133ee6fe9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1337f6bbca804a179252f35069ee5209", - "placeholder": "​", - "style": "IPY_MODEL_09f1561fe68d49139a432a57edc8ee30", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "31117915a25f4460aef9b5d8e93ba5cb": { + "2f61940a472e4f69926a7290dc73b340": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3709,7 +3533,23 @@ "width": null } }, - "312885f84b704adea9ce0505ae62ec25": { + "2fd3015c5af84a7194fc96d2e1094d6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "322c025022564d60bb82fc9860162300": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3762,23 +3602,25 @@ "width": null } }, - "3237a4d2e09f4b45af89d91446ad0470": { + "3417d3212b0949ba8793984784680997": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "328b9546bc934fde9a0e014badd4d087": { + "37676f232b724a89a4985d49ab622156": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3831,7 +3673,7 @@ "width": null } }, - "34e4bcd63f7544748a8eac6271b267d9": { + "3872cd4106aa4977bf38ed1e9c4b172c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3884,7 +3726,7 @@ "width": null } }, - "361da7548e9b401e8f93368069be91e8": { + "39498c6d7cac431daa5d657cd2b92944": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3899,15 +3741,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a58330e393734496a2dba1ef4cf94dc5", + "layout": "IPY_MODEL_9ea50138ca684556ab20a0c41dfa514e", "placeholder": "​", - "style": "IPY_MODEL_87c4e3b0f1344f12bf35885881681266", + "style": "IPY_MODEL_95e1542cee3f4092893d88ea66159b61", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/60000 [00:07<00:00, 8619.01 examples/s]" } }, - "366f54387ff54d158576384978e37ba3": { + "39a120c020ab4b4fac07540b1109cdad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3960,7 +3802,7 @@ "width": null } }, - "378a6ed9b84f4202bbc970db72a4988d": { + "3a5f5efc715b4a39ab8aca4116106e68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4013,33 +3855,23 @@ "width": null } }, - "38c3bcc0b1af44bfa6d44057aec8b9b6": { + "3c3141f8e8a84afa8287305de6569b0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eab658dbfeb74ea183663ce20b0b9daf", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de215806c1cf4cbd8825765915dbd856", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3949f08b9c364d0aa1cdeb1865b0e5ab": { + "3cd0e82ccb364e1dbe86bf277cb571e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4092,47 +3924,60 @@ "width": null } }, - "3ae69a6c0c42416f8f9afd45f926f52a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ded622138d049f1b06e565207634e8a", - "IPY_MODEL_279ac211a5da4a6eb800cb3840aabf60", - "IPY_MODEL_99579d85a7e64cfe80464358731b7546" - ], - "layout": "IPY_MODEL_31117915a25f4460aef9b5d8e93ba5cb", - "tabbable": null, - "tooltip": null - } - }, - "3bfb08851c4c4442b74576766ed5b1c5": { - "model_module": "@jupyter-widgets/controls", + "3d5db6c2e6f347ccb47db129f24f7b03": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3cba828cc9484c378da64c180946ee0f": { + "3dad1275856040619d7851b2f8a66206": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4185,30 +4030,7 @@ "width": null } }, - "3d02d81630604450adccb876dfce8fd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_970633ef8edf47c6ae8465913784559f", - "placeholder": "​", - "style": "IPY_MODEL_e41a1a61b92f44f68597a5705d7f8108", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8745.08 examples/s]" - } - }, - "3eb89c0437944fddb5716441c7c4b069": { + "3e7d861b775f469b8558cb04a87d7036": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4223,73 +4045,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3cba828cc9484c378da64c180946ee0f", + "layout": "IPY_MODEL_4b0f654028474242926a7ec7641f2196", "placeholder": "​", - "style": "IPY_MODEL_5b8cd062b8974026a5aeda6241b8aaf7", + "style": "IPY_MODEL_b2f1d5404e7748ab8e69d04cf6b3d849", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.02it/s]" + "value": "Generating train split: 100%" } }, - "42bc2e2c0cdb4946903db4de34da7160": { - "model_module": "@jupyter-widgets/controls", + "3ea99cca5ae44f25a1c0abec4b47e02f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "49a18a62d5b84715a7d42233f120be5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8fd89e16ca33414d942c5d3078c2dd6a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f7890d347bc64340ba8a5ca6f1791cdc", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "49f9c42258fa4a82b20faf49a1ba046f": { + "418bf771c9e14e74a700f29bcc43b325": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4a0ad9e3cf224a82af25df8d8bb06fac": { + "41e709d95a73456dbd20844b2e092dc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4307,7 +4142,23 @@ "text_color": null } }, - "4dd1d221b26646c2a5203544ba7356b2": { + "44229470ecb843b4b3da52805d85cae0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "453808ec2bb844b98d1e90b4a23da1a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4323,17 +4174,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82d0b721e9da411a8344eeac3c70e42e", - "max": 60000.0, + "layout": "IPY_MODEL_322c025022564d60bb82fc9860162300", + "max": 4422102.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_49f9c42258fa4a82b20faf49a1ba046f", + "style": "IPY_MODEL_81eeb67259bd4b7382905e90e402c667", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 4422102.0 + } + }, + "45ff8082bb3b4731849bbfcd4b5d13ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8141c7c389a4284b23b53662e00f324", + "placeholder": "​", + "style": "IPY_MODEL_e559214db03240988f70fd9f03879199", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "4ddad7383a8b4c9bb3a2d548f4368d1e": { + "499ec560a2ac4a5f9e891f2ac01d0fde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4351,7 +4225,7 @@ "text_color": null } }, - "4fa558077cd549b58369d59fa11f84ec": { + "4b0f654028474242926a7ec7641f2196": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4404,7 +4278,7 @@ "width": null } }, - "5013335dea8a48ecaec5d4633333f9f3": { + "4b4bb18d9215426ba65edde95f3d1f38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4457,7 +4331,7 @@ "width": null } }, - "510ecab1b73540b9863e31dc8f9e62bc": { + "4d45f2a9daaa4722a6ed9157793afcfe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4510,7 +4384,54 @@ "width": null } }, - "51eb1fbbd7a9442d9fae89af465bbb0e": { + "50cb6a1cb9bd4d90be453578ef585f05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a5f5efc715b4a39ab8aca4116106e68", + "placeholder": "​", + "style": "IPY_MODEL_9cd724f444fd483c9a35c8ab3c42c9f7", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 98.9MB/s]" + } + }, + "51121752bffa4865a34c97a41fa78b5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca2d7e23ead341db97151abfdced2d28", + "IPY_MODEL_453808ec2bb844b98d1e90b4a23da1a0", + "IPY_MODEL_50cb6a1cb9bd4d90be453578ef585f05" + ], + "layout": "IPY_MODEL_b537bccb4a6043c5ba31dae9e76058ec", + "tabbable": null, + "tooltip": null + } + }, + "55131f31e0cd4b76913c6590148090e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4563,25 +4484,7 @@ "width": null } }, - "54c75f5a691f4473b1e6a2a0c3acf57f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "56623545144f421782e9850961bfbdd6": { + "55531f258179477c861b4d98e82a94a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4634,7 +4537,7 @@ "width": null } }, - "592cd55ccf6d44879639b9d08653bd9d": { + "55efe5322a2c4f729609a9383b70acae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4652,7 +4555,7 @@ "text_color": null } }, - "5aab3b1bf8944d248e86b61a67249aad": { + "565eaead041544d09cf2bdbe886881c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4667,15 +4570,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_144528e76cdf49f5ab9e9a3a3e1fdeed", + "layout": "IPY_MODEL_ae761d6e2f4a4a44b9184c74ea028e9b", "placeholder": "​", - "style": "IPY_MODEL_9c23c07cf08f45e99661325f9e5438a0", + "style": "IPY_MODEL_b2669e7e40514123acce864dc3cede00", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.33it/s]" + "value": "Map (num_proc=4): 100%" } }, - "5b8cd062b8974026a5aeda6241b8aaf7": { + "57323d1d16ac4b95b3529db7306498fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4693,69 +4596,7 @@ "text_color": null } }, - "5ca1c0c814d14be09b5ad6e1cbbd5717": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5ded622138d049f1b06e565207634e8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_34e4bcd63f7544748a8eac6271b267d9", - "placeholder": "​", - "style": "IPY_MODEL_305729a42c7440479e3a1cb93e66149c", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5e1c001eb2e04cb58cf6ffbf874b9455": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1fc59bb26f3f420d85a2954c6f460442", - "placeholder": "​", - "style": "IPY_MODEL_ddc790a8814c4c51a574edf90e4097b6", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "5ebca19b30c84c44bfa3dde11c625eb8": { + "59310f9e486f4494be349b5d7324f960": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4808,7 +4649,7 @@ "width": null } }, - "608c9566c4844ee896cd7a5567ab365e": { + "5aa964409b28401294e094d65524332f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4823,51 +4664,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e7ce547ac3a842e6b85956b5d11217f6", + "layout": "IPY_MODEL_edbef9253ccc4667a6417afcfa1a07e9", "placeholder": "​", - "style": "IPY_MODEL_0e706842735c4bd8b0b5cb56dd9d07bd", + "style": "IPY_MODEL_41e709d95a73456dbd20844b2e092dc5", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 612kB/s]" - } - }, - "62b7219ede41458189eed4b18b6a7ac2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "63e0d03dee384c5680d424fdf3e46b4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 29.5k/29.5k [00:00<00:00, 3.90MB/s]" } }, - "63ea3298ca7b4a78ad32a2b048bf8e66": { + "5c85f9aa0f8940ac91a9d72f781ac185": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4920,7 +4725,7 @@ "width": null } }, - "649c9279288044c09188b2f0758d2aad": { + "5d8db53b8809469ba7382a57ee85b5ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4973,42 +4778,16 @@ "width": null } }, - "655ce078853b4b97b47d5ba2e442723b": { - "model_module": "@jupyter-widgets/controls", + "5fa3cc2064a84439932cf351c06320aa": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa7b3fb29ef24fb2b120774a5fc8aef7", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eff875dcc30c4107b992f5a5634c8d75", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "67180d76ce044924b795e6bbbe8fa608": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -5052,60 +4831,30 @@ "width": null } }, - "67417eaea71c4f25bc897cea96a6dcc7": { - "model_module": "@jupyter-widgets/base", + "5fb0179822b44f61a78693ddb4874d11": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f0f575d555344d192d3f7f87bc46b5f", + "placeholder": "​", + "style": "IPY_MODEL_185d99ee15e7447b97124f77a75f7fcb", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "6846595e53834db69e602ddbd4cc0e67": { + "5ff408675d994ba98dd9dc472810a00b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5121,17 +4870,160 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bb917caff2424d47a94540ebe2b8cb27", + "layout": "IPY_MODEL_37676f232b724a89a4985d49ab622156", "max": 5148.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f69620da0f43491594cb2cdb11ac484d", + "style": "IPY_MODEL_2fd3015c5af84a7194fc96d2e1094d6f", "tabbable": null, "tooltip": null, "value": 5148.0 } }, - "6848eabddcaf4dfa96378e638ad748ba": { + "6021a4f2ce39498b8ad8e2caaf1b90c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6185323bd5a94253802eb1811a4dd598": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_80445c16990e4046a63fc7a770d93c47", + "IPY_MODEL_74487bb6f4cf475287746e1aae3c3ed3", + "IPY_MODEL_85f01eec0a474dbbb472b69e669e43b2" + ], + "layout": "IPY_MODEL_ce53bbdacb7a4ee8b588bbbf002a6b1e", + "tabbable": null, + "tooltip": null + } + }, + "61acef61a06247739bbfe0b51085d6a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "626b1cd4385045d7a359a06ff456f0a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc21a649e38945b1ae529d483df29a48", + "placeholder": "​", + "style": "IPY_MODEL_12d35bfe4c7547b39ec7f75032e9d8fe", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6617.78 examples/s]" + } + }, + "63596c20943f45349f0194f5dc625c3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3872cd4106aa4977bf38ed1e9c4b172c", + "placeholder": "​", + "style": "IPY_MODEL_28c1c99d5c704e00a9bcfe8912dea621", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.19it/s]" + } + }, + "63e21e8d63d742bd868cd3f0c29ada51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6504a7c596154f5e83e9a295f8e8ade5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b4701ae5a6284e89af880bf11b91242f", + "placeholder": "​", + "style": "IPY_MODEL_7156f8e9e30c4de68607004c7cbe86c2", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 109MB/s]" + } + }, + "67cfa89bb12d4b128287c8158a6befde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5184,7 +5076,31 @@ "width": null } }, - "6a819de44d624f56bd99acfefca10088": { + "6a7c1c7802034af3a31fa7c97aab7fb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a52a772c0a154af782dc78be2989970c", + "IPY_MODEL_7db81a2120d144af888494b455a9f5d7", + "IPY_MODEL_88b0bfb54b8b4c7a99a309b1dc3e82d2" + ], + "layout": "IPY_MODEL_7d9b0610df014ba2a2c1d3dc49652a58", + "tabbable": null, + "tooltip": null + } + }, + "6d71f5fbe87740d191dbf5a9a36755af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5237,7 +5153,7 @@ "width": null } }, - "6e4921c20efa43cca4297f41d21e2ffd": { + "6e27a4d18cb54094a65ade28a97a3958": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5252,39 +5168,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ecce5f933584c3dbf8cddfdb4f0a8c3", + "layout": "IPY_MODEL_ef65352a97434eb589998a22cd472c6c", "placeholder": "​", - "style": "IPY_MODEL_821a5741d9b84312857a91b6fd2706a0", + "style": "IPY_MODEL_e236939d9a8c45a4b775f92034c332d1", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8681.56 examples/s]" + "value": " 4.83k/4.83k [00:00<00:00, 543kB/s]" } }, - "6ec8379fd121455ea52939a0f025ead3": { + "6e867d7b0eca4306a4d23fa448b9467f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0d1342e295364183854efa5f4e3c3100", - "IPY_MODEL_25568ca6ed9d4c9294ab2d66d49db036", - "IPY_MODEL_a55f00be9cf645e1a4495a1aff02fdff" - ], - "layout": "IPY_MODEL_649c9279288044c09188b2f0758d2aad", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e7e02abd40c4793bc5deb62fa4c2391", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8774d617b5884bf493cc0821e66bba11", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 8845.0 } }, - "6ecce5f933584c3dbf8cddfdb4f0a8c3": { + "6fa12060da564f44b62996def69f7286": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5337,112 +5255,16 @@ "width": null } }, - "739e13401e4749ea80073c18bc88c586": { - "model_module": "@jupyter-widgets/controls", + "6fc384b103264005b0c774c71ae8f6ac": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f2cb389ac72444fb81aff74cf5f851dc", - "IPY_MODEL_4dd1d221b26646c2a5203544ba7356b2", - "IPY_MODEL_6e4921c20efa43cca4297f41d21e2ffd" - ], - "layout": "IPY_MODEL_9a4de9d35963491993207328cceac0be", - "tabbable": null, - "tooltip": null - } - }, - "7435eb1bbb3e443482b4b7bec4a7bf06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67417eaea71c4f25bc897cea96a6dcc7", - "placeholder": "​", - "style": "IPY_MODEL_c332583e65784a9b960ba2407e5623cd", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "75a6bf153584443e9e9d40f728499503": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3a6b413e2b643728146a238c6355773", - "placeholder": "​", - "style": "IPY_MODEL_ed1435b30e9e4bb2b5dd98d95524389f", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1230.27it/s]" - } - }, - "7692a6b7492844938c75c758f3a3782f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ebca19b30c84c44bfa3dde11c625eb8", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2b7ee86755e04d9785b9fc1bbb22ab86", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "79cb8c15a4274faea6fd3afa4292ed5f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -5486,7 +5308,25 @@ "width": null } }, - "7b15b3e7f2df4d23ac641326e3a16633": { + "7156f8e9e30c4de68607004c7cbe86c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "71a7ef8e4d6c45b0be37612d29034787": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5504,7 +5344,7 @@ "text_color": null } }, - "7ca74c02857a4df49264605f1d3abf59": { + "73c64730eb80480d90bdb5128448c361": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5557,118 +5397,59 @@ "width": null } }, - "7e1ac95612694f068fdac1936c361b8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d803ad2d475d4987bb80c9d0e2e59065", - "placeholder": "​", - "style": "IPY_MODEL_97a52fb4676e40ddb86059d3402e0764", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "8116105672bb4676bf44bc7f44316c45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_82788d921e614079bd14f12af34a318a", - "IPY_MODEL_49a18a62d5b84715a7d42233f120be5b", - "IPY_MODEL_5aab3b1bf8944d248e86b61a67249aad" - ], - "layout": "IPY_MODEL_1b0ee35eadb74e818ac2522f934435f8", - "tabbable": null, - "tooltip": null - } - }, - "821a5741d9b84312857a91b6fd2706a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "82788d921e614079bd14f12af34a318a": { + "742ab0d9c163425d859f3ad6725de409": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c8c8ebe30d23457bb2059b22cfb13589", - "placeholder": "​", - "style": "IPY_MODEL_e2293188342242dd8d8e4b045cd95c3e", + "layout": "IPY_MODEL_08eafc5235aa4e8a88bc57e468511413", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7cbf12a742be4e568c38eb99f08581d1", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 4833.0 } }, - "82c674807c414931809fd8b995d031a3": { + "74487bb6f4cf475287746e1aae3c3ed3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ca74c02857a4df49264605f1d3abf59", - "placeholder": "​", - "style": "IPY_MODEL_2a864ae7cdfd491996f68b73ddcab088", + "layout": "IPY_MODEL_3cd0e82ccb364e1dbe86bf277cb571e2", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44229470ecb843b4b3da52805d85cae0", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 10000.0 } }, - "82d0b721e9da411a8344eeac3c70e42e": { + "78d7370878c14c3b9eb043742bbc0a5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5721,49 +5502,23 @@ "width": null } }, - "82d2ffe36dcc4b23813d9c2fde9097b9": { + "7cbf12a742be4e568c38eb99f08581d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83e94bf816a94bcfa65afdfdbebf5c73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7e1ac95612694f068fdac1936c361b8b", - "IPY_MODEL_6846595e53834db69e602ddbd4cc0e67", - "IPY_MODEL_c192734e158a43ecaf22994464943937" - ], - "layout": "IPY_MODEL_1e9ac1dfe69b4b4683ebe606f16198e8", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "87784a22ac1144afb857916b326373bd": { + "7d4f9fb0b9c54dfd9f59153661bfd00d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5816,75 +5571,7 @@ "width": null } }, - "87c4e3b0f1344f12bf35885881681266": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "89aec6bbef64449ebbaafd817d159a90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_378a6ed9b84f4202bbc970db72a4988d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f169405d5db749aaa1cd982aa3665c2b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "8f9fbf98ef344320a36155889f4c7caf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a63a882458894eb39a6eddd04ac60d73", - "IPY_MODEL_c9cb229367e9436388fce242404742a4", - "IPY_MODEL_e7eb9ad5044f492894f64dd829acb692" - ], - "layout": "IPY_MODEL_6848eabddcaf4dfa96378e638ad748ba", - "tabbable": null, - "tooltip": null - } - }, - "8fd89e16ca33414d942c5d3078c2dd6a": { + "7d6188687ae940908f66dd1cb3848e0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5937,59 +5624,10 @@ "width": null } }, - "93d13aca9a9745a4be6f96bf79c3d912": { - "model_module": "@jupyter-widgets/controls", + "7d9b0610df014ba2a2c1d3dc49652a58": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_87784a22ac1144afb857916b326373bd", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_21fecef548b24fdc9378fb7fa9473372", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "953f907157844a80971a65011643552e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0671b253bb84cf886f1cc23ac16e3ff", - "placeholder": "​", - "style": "IPY_MODEL_4ddad7383a8b4c9bb3a2d548f4368d1e", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "970633ef8edf47c6ae8465913784559f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -6039,25 +5677,33 @@ "width": null } }, - "97a52fb4676e40ddb86059d3402e0764": { + "7db81a2120d144af888494b455a9f5d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b8ea11fd99c5407d8cc5d29ae9a9241d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_00e86caf713e4c8e85f8b10d9020485f", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "98f356175fb04b74ae1936d1a2749491": { + "7fd415d07e684c53990d241ac23b5c0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6075,60 +5721,25 @@ "text_color": null } }, - "98fc6d83638e48ceb0f70c24b4d5ad2f": { - "model_module": "@jupyter-widgets/base", + "80382e0368864ca1a2bb2f0fefe13c0c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "99579d85a7e64cfe80464358731b7546": { + "80445c16990e4046a63fc7a770d93c47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6143,15 +5754,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fdcf19ff310c4f8a9ab0eca50aa429d9", + "layout": "IPY_MODEL_3dad1275856040619d7851b2f8a66206", "placeholder": "​", - "style": "IPY_MODEL_98f356175fb04b74ae1936d1a2749491", + "style": "IPY_MODEL_f01ca56ec2be48d39f47764819685320", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.33it/s]" + "value": "Generating test split: 100%" + } + }, + "8098e2606cde4b3a8bf890ad2fe989ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_86a91a43f4c9418e832c17584cebe5b1", + "IPY_MODEL_efb0a4e83e884082ab70d6cc5eebaa8f", + "IPY_MODEL_0a8065b4d43b446b858b0637f26295fe" + ], + "layout": "IPY_MODEL_da46ae3607a34cf6ab521ca915b4db3e", + "tabbable": null, + "tooltip": null + } + }, + "81eeb67259bd4b7382905e90e402c667": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9a4de9d35963491993207328cceac0be": { + "85427a47f21d4321a483ecf1f04b5f7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6204,51 +5855,7 @@ "width": null } }, - "9c23c07cf08f45e99661325f9e5438a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9e0f969e11c2430782cb878273809fcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dbd288eefbf74aa8aff88b174d84fda2", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3bfb08851c4c4442b74576766ed5b1c5", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "a23e8df951ea449f8ca1e12b42504a39": { + "856b5be7a3484ed3b9e2a2bc6f8bb99b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6301,7 +5908,7 @@ "width": null } }, - "a55f00be9cf645e1a4495a1aff02fdff": { + "85f01eec0a474dbbb472b69e669e43b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6316,15 +5923,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e49e17a3f34d4ec890262b23883c866f", + "layout": "IPY_MODEL_f0772ecea852431983168cb6f1ff12ee", "placeholder": "​", - "style": "IPY_MODEL_d9e47bd9e107403ba6e1b8bd3301235f", + "style": "IPY_MODEL_55efe5322a2c4f729609a9383b70acae", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1564.95it/s]" + "value": " 10000/10000 [00:01<00:00, 8684.27 examples/s]" } }, - "a58330e393734496a2dba1ef4cf94dc5": { + "8611e5dc2e174314b3da9acf02db2554": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6377,7 +5984,7 @@ "width": null } }, - "a63a882458894eb39a6eddd04ac60d73": { + "86a91a43f4c9418e832c17584cebe5b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6392,41 +5999,54 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_366f54387ff54d158576384978e37ba3", + "layout": "IPY_MODEL_cf8f9687f1104749b9f8354ef98457d6", "placeholder": "​", - "style": "IPY_MODEL_82d2ffe36dcc4b23813d9c2fde9097b9", + "style": "IPY_MODEL_418bf771c9e14e74a700f29bcc43b325", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "100%" } }, - "a643fa921f274fa5a1f11497aaa70ef2": { + "8774d617b5884bf493cc0821e66bba11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "882ff61647044685b7b099bc1489e174": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bec7f556418f40798296e065f6fc4c4d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ad469460c6ce496988300df35a28916a", + "layout": "IPY_MODEL_91fcaaa96daf4862885bf73dce4f64da", + "placeholder": "​", + "style": "IPY_MODEL_7fd415d07e684c53990d241ac23b5c0a", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "a6a52a5b6f8846178ca3e222cec3189d": { + "88b0bfb54b8b4c7a99a309b1dc3e82d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6441,15 +6061,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e5caa8c5dd7544e49cc4ba43ea7dda29", + "layout": "IPY_MODEL_856b5be7a3484ed3b9e2a2bc6f8bb99b", "placeholder": "​", - "style": "IPY_MODEL_b1a00117fa2347daa032645af02b6684", + "style": "IPY_MODEL_c01ad096f54c49be9aaa2368453364d5", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.18MB/s]" + "value": " 40/40 [00:00<00:00, 62.76it/s]" } }, - "a97ca8c55b6a428db18a1ad9449de343": { + "8963ec0440ba463ba0e0c4613fb599b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6502,7 +6122,7 @@ "width": null } }, - "ac1544f96e364d90b3da5b3eb3efbee2": { + "8c736ea2179d4e1eb6b19bb0400c86a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6517,47 +6137,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2a385a90d5af458a836d1a6b7f1fe250", + "layout": "IPY_MODEL_994de9b8dd8644f5b018a25d862efbf0", "placeholder": "​", - "style": "IPY_MODEL_e70162ebd8a84438814da558703a248b", + "style": "IPY_MODEL_b2f9d1014c1b4b05afb19a0863cf3bce", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 40/40 [00:00<00:00, 63.18it/s]" } }, - "ad469460c6ce496988300df35a28916a": { + "8e40e624c16d4d8aa4394a22da7fe159": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ae2e838d2d404bf5a7b18a6c12a4bea5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8963ec0440ba463ba0e0c4613fb599b4", + "placeholder": "​", + "style": "IPY_MODEL_80382e0368864ca1a2bb2f0fefe13c0c", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.39MB/s]" } }, - "ae927de9c84145cc9370bcf378f1fd79": { + "8e7e02abd40c4793bc5deb62fa4c2391": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6610,60 +6221,49 @@ "width": null } }, - "aeba0f4d6a5745f5885b0a273d80ebd4": { - "model_module": "@jupyter-widgets/base", + "9166e263b79a4fef94c0087261ed466d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "91fb3ad5bf86420bacb98c48b10e77f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1b1096b465f4d4dbb278e61131cf24b", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_25f35da97d504755af02397c62ea02cb", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "af9ec09323024cfdaf7f76706c86d24b": { + "91fcaaa96daf4862885bf73dce4f64da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6716,7 +6316,23 @@ "width": null } }, - "b0f0de7f15e741c7be64c44c5053df66": { + "92b6b481caa8470680c614ed30a7ff99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9377daff25ca4a5d9bfc82b576bce935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6731,15 +6347,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f5d34f00f93042aea8ffc3425e8937ae", + "layout": "IPY_MODEL_6d71f5fbe87740d191dbf5a9a36755af", "placeholder": "​", - "style": "IPY_MODEL_0f9e499f418e4b55ba078d929558a2a0", + "style": "IPY_MODEL_63e21e8d63d742bd868cd3f0c29ada51", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.49it/s]" + "value": "Downloading data: 100%" } }, - "b1a00117fa2347daa032645af02b6684": { + "95e1542cee3f4092893d88ea66159b61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6757,25 +6373,69 @@ "text_color": null } }, - "b2935e09ceeb41ab9f3a9f36cf5f4cc1": { + "9628e0898983418eb02c11e9fecf9d59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "96fd99dbd4184afbbfb83bfa6860326d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c2979bf18ceb4a3c884acf55c86d7390", + "placeholder": "​", + "style": "IPY_MODEL_2ed4048a35d94682a60e27c1e99ea1ff", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "98d540816d184dd199abef1df5492866": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6fa12060da564f44b62996def69f7286", + "placeholder": "​", + "style": "IPY_MODEL_f75d4db3439f40d2b73d6a0f468a1c18", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.61it/s]" } }, - "b356d094c9e04e26b6c291b5ac206c2c": { + "994de9b8dd8644f5b018a25d862efbf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6828,7 +6488,31 @@ "width": null } }, - "b478aac9907246bb836a183729db1e49": { + "9c3e112254ce4258b5a10904cc845bb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3e7d861b775f469b8558cb04a87d7036", + "IPY_MODEL_d4a482f364e545b28123af1589752e91", + "IPY_MODEL_39498c6d7cac431daa5d657cd2b92944" + ], + "layout": "IPY_MODEL_67cfa89bb12d4b128287c8158a6befde", + "tabbable": null, + "tooltip": null + } + }, + "9c5417a03daa4a8e9f039c1a6cca0c1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6881,30 +6565,7 @@ "width": null } }, - "b7ef85f256f3486f98398b87cd126e64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dcdd65154ceb4813be17ab44de9ee9ab", - "placeholder": "​", - "style": "IPY_MODEL_7b15b3e7f2df4d23ac641326e3a16633", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b857d8132f4b407c829e0d1a9faf4019": { + "9cd724f444fd483c9a35c8ab3c42c9f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6922,51 +6583,23 @@ "text_color": null } }, - "b8600d02c4664ddeb817f5df220b52f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aeba0f4d6a5745f5885b0a273d80ebd4", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ca1c0c814d14be09b5ad6e1cbbd5717", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "ba6bdd30d90446fd815de921b624be4b": { + "9e5c16b7ee3b43088e416b3224aa85d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "bb917caff2424d47a94540ebe2b8cb27": { + "9ea50138ca684556ab20a0c41dfa514e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7019,23 +6652,7 @@ "width": null } }, - "bdea5886d15943119c55eebfd4ccc5ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bec7f556418f40798296e065f6fc4c4d": { + "a33ecc61dd924973adc939055324f2ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7088,7 +6705,7 @@ "width": null } }, - "c192734e158a43ecaf22994464943937": { + "a52a772c0a154af782dc78be2989970c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7103,33 +6720,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce2e3af0a10643079c007812b264f6b5", + "layout": "IPY_MODEL_144c0b83b2964db49014d44941d99d42", "placeholder": "​", - "style": "IPY_MODEL_2f56601e334c44a58ee5736380eafa21", + "style": "IPY_MODEL_71a7ef8e4d6c45b0be37612d29034787", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 912kB/s]" - } - }, - "c332583e65784a9b960ba2407e5623cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "c569e1b543b4432499e19a95b006b193": { + "a5c8845f43234aa3924694c20a6141ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7182,19 +6781,102 @@ "width": null } }, - "c8c8ebe30d23457bb2059b22cfb13589": { - "model_module": "@jupyter-widgets/base", + "a6d83555373447788011c674ea09f4ce": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a983887621784d0ebf7dd830501eb9bd", + "IPY_MODEL_c81e73a0f18d4424a5f3341d674f21b7", + "IPY_MODEL_5aa964409b28401294e094d65524332f" + ], + "layout": "IPY_MODEL_14f99bd1b2fd43b29e2c777395d4adbf", + "tabbable": null, + "tooltip": null + } + }, + "a983887621784d0ebf7dd830501eb9bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0131d7f70c724bc6b0de8cfc0709aeed", + "placeholder": "​", + "style": "IPY_MODEL_ea8bb6bc0c334864b49fc2826dc712af", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "adb6ba728cd54f1097a5976b64f7558e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ae417815c1ed4318aea2e623fc6a1305": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ae761d6e2f4a4a44b9184c74ea028e9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, @@ -7235,31 +6917,60 @@ "width": null } }, - "c979d1ac522b4ee79ed056924fb17ac7": { - "model_module": "@jupyter-widgets/controls", + "aea9c5d15e58431da2f12df272070dda": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_306a732d2b23408a94b4ed133ee6fe9b", - "IPY_MODEL_0e720c4f0e2f44bbb6afccf6a95bd4a8", - "IPY_MODEL_3d02d81630604450adccb876dfce8fd6" - ], - "layout": "IPY_MODEL_98fc6d83638e48ceb0f70c24b4d5ad2f", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c9cb229367e9436388fce242404742a4": { + "b199f7fc9989426db35d3a525ec77964": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7275,17 +6986,95 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d096b84b70b5457da9989f8ebb8c9d06", - "max": 4422102.0, + "layout": "IPY_MODEL_3ea99cca5ae44f25a1c0abec4b47e02f", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e254dd5e025b43d19af0dc3e05d56fbf", + "style": "IPY_MODEL_9e5c16b7ee3b43088e416b3224aa85d4", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 60000.0 + } + }, + "b1dc1a81fd8f49d1a447d6a0a9e76158": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_df759f9942c7470fa465bc8cb984ab55", + "IPY_MODEL_c2d8a315738945399d3c490e60ea6002", + "IPY_MODEL_2c06b7667eb543b09ac4219c83a6e2e0" + ], + "layout": "IPY_MODEL_55131f31e0cd4b76913c6590148090e3", + "tabbable": null, + "tooltip": null + } + }, + "b2669e7e40514123acce864dc3cede00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b2f1d5404e7748ab8e69d04cf6b3d849": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b2f9d1014c1b4b05afb19a0863cf3bce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cddfe3352db04e188c79fd06e93a2c67": { + "b43a1253534a445ba7724ecb16bc2636": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7303,7 +7092,7 @@ "text_color": null } }, - "ce2e3af0a10643079c007812b264f6b5": { + "b4701ae5a6284e89af880bf11b91242f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7356,7 +7145,7 @@ "width": null } }, - "d096b84b70b5457da9989f8ebb8c9d06": { + "b537bccb4a6043c5ba31dae9e76058ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7409,57 +7198,54 @@ "width": null } }, - "d52b2edc469c42db9538fef8561e2bae": { + "b54233cf2e9c4bc586fd11586ab34aae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e1c001eb2e04cb58cf6ffbf874b9455", - "IPY_MODEL_93d13aca9a9745a4be6f96bf79c3d912", - "IPY_MODEL_ebf3b97deaec4c2794ebf97e73f8f570" - ], - "layout": "IPY_MODEL_510ecab1b73540b9863e31dc8f9e62bc", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59310f9e486f4494be349b5d7324f960", + "placeholder": "​", + "style": "IPY_MODEL_adb6ba728cd54f1097a5976b64f7558e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.76it/s]" } }, - "d53e7f97efc740b98703309b0ad77387": { + "b771c32cb97b4d5e87f6eb83215903d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a23e8df951ea449f8ca1e12b42504a39", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bdea5886d15943119c55eebfd4ccc5ba", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5fb0179822b44f61a78693ddb4874d11", + "IPY_MODEL_91fb3ad5bf86420bacb98c48b10e77f2", + "IPY_MODEL_63596c20943f45349f0194f5dc625c3e" + ], + "layout": "IPY_MODEL_bd576f9061f54d6b930bf6aa0cb57112", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "d803ad2d475d4987bb80c9d0e2e59065": { + "b8ea11fd99c5407d8cc5d29ae9a9241d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7512,25 +7298,31 @@ "width": null } }, - "d9e47bd9e107403ba6e1b8bd3301235f": { + "b94ccf30588e4de094111c4579b26cd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_25ad979948d047d1bd494a743160519d", + "IPY_MODEL_d0b6da91330d42bab0e43c0f9aa32460", + "IPY_MODEL_6504a7c596154f5e83e9a295f8e8ade5" + ], + "layout": "IPY_MODEL_5fa3cc2064a84439932cf351c06320aa", + "tabbable": null, + "tooltip": null } }, - "dbd288eefbf74aa8aff88b174d84fda2": { + "bd576f9061f54d6b930bf6aa0cb57112": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7583,7 +7375,7 @@ "width": null } }, - "dcdd65154ceb4813be17ab44de9ee9ab": { + "bdccd1406c714b65be9ef4f501f5299b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7636,7 +7428,7 @@ "width": null } }, - "dd514e64271d459cb1648731504a4790": { + "bedf8efd352249e79b143c83d4969b5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7651,16 +7443,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b7ef85f256f3486f98398b87cd126e64", - "IPY_MODEL_38c3bcc0b1af44bfa6d44057aec8b9b6", - "IPY_MODEL_f813b343a18e4b7aa78aa8d98fa199b6" + "IPY_MODEL_0f53cb4005184862ac41c967880900e8", + "IPY_MODEL_258e31748b1545eb955ce4355f95b4d1", + "IPY_MODEL_8c736ea2179d4e1eb6b19bb0400c86a5" ], - "layout": "IPY_MODEL_1afdfc591dbb4fe0a48e66fc01379e3d", + "layout": "IPY_MODEL_a33ecc61dd924973adc939055324f2ef", "tabbable": null, "tooltip": null } }, - "ddc790a8814c4c51a574edf90e4097b6": { + "c01ad096f54c49be9aaa2368453364d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7678,97 +7470,7 @@ "text_color": null } }, - "ddf5b630d649454590eb5fe80b825456": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "de215806c1cf4cbd8825765915dbd856": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e2293188342242dd8d8e4b045cd95c3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e239c64c6b984a6a9e6f031ef10fd99f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_361da7548e9b401e8f93368069be91e8", - "IPY_MODEL_b8600d02c4664ddeb817f5df220b52f2", - "IPY_MODEL_fa2fd92280bc499695ac595b6ace28f3" - ], - "layout": "IPY_MODEL_51eb1fbbd7a9442d9fae89af465bbb0e", - "tabbable": null, - "tooltip": null - } - }, - "e254dd5e025b43d19af0dc3e05d56fbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e37646c1503d4b83a8d450acd82b3840": { + "c2979bf18ceb4a3c884acf55c86d7390": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7821,25 +7523,121 @@ "width": null } }, - "e41a1a61b92f44f68597a5705d7f8108": { + "c2d8a315738945399d3c490e60ea6002": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bdccd1406c714b65be9ef4f501f5299b", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9628e0898983418eb02c11e9fecf9d59", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "c3a8d5ce177d4ad69ee3b7563cfc4078": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d5db6c2e6f347ccb47db129f24f7b03", + "placeholder": "​", + "style": "IPY_MODEL_b43a1253534a445ba7724ecb16bc2636", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "c7dfbeae351c4acbaa2fd1fb38431e92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "c81e73a0f18d4424a5f3341d674f21b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7d4f9fb0b9c54dfd9f59153661bfd00d", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_92b6b481caa8470680c614ed30a7ff99", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "ca2d7e23ead341db97151abfdced2d28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa8a8269b32749de91a9fcd8b0738fc2", + "placeholder": "​", + "style": "IPY_MODEL_d4fcff61ca554dffbbb000872114c1d5", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "e49e17a3f34d4ec890262b23883c866f": { + "cb5cea43fd014855a293b359f20fbe1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7892,7 +7690,7 @@ "width": null } }, - "e5caa8c5dd7544e49cc4ba43ea7dda29": { + "cbc56091c4b84a1a89f1c2c6c2ffbe31": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7945,25 +7743,7 @@ "width": null } }, - "e70162ebd8a84438814da558703a248b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e7ce547ac3a842e6b85956b5d11217f6": { + "ce53bbdacb7a4ee8b588bbbf002a6b1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8016,30 +7796,7 @@ "width": null } }, - "e7eb9ad5044f492894f64dd829acb692": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_301fd2240e664fecb89784733e5c8451", - "placeholder": "​", - "style": "IPY_MODEL_0e71560598a94d948cd9827e5731bd9e", - "tabbable": null, - "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 72.8MB/s]" - } - }, - "eab658dbfeb74ea183663ce20b0b9daf": { + "cf8f9687f1104749b9f8354ef98457d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8092,48 +7849,51 @@ "width": null } }, - "ebf3b97deaec4c2794ebf97e73f8f570": { + "d0717eceae004e6da59c8aa3d0ed794a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67180d76ce044924b795e6bbbe8fa608", - "placeholder": "​", - "style": "IPY_MODEL_b2935e09ceeb41ab9f3a9f36cf5f4cc1", - "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.47MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ed1435b30e9e4bb2b5dd98d95524389f": { + "d0b6da91330d42bab0e43c0f9aa32460": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2f61940a472e4f69926a7290dc73b340", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_61acef61a06247739bbfe0b51085d6a9", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "ee50d39b2a804bd787f7295897d49f54": { + "d38f99d3c855485f9137c5c82da7d017": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8148,32 +7908,84 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2f4ccbea82fe4800828d02758b490dee", - "IPY_MODEL_655ce078853b4b97b47d5ba2e442723b", - "IPY_MODEL_75a6bf153584443e9e9d40f728499503" + "IPY_MODEL_c3a8d5ce177d4ad69ee3b7563cfc4078", + "IPY_MODEL_1df940a0538c4722837844d07b87d356", + "IPY_MODEL_b54233cf2e9c4bc586fd11586ab34aae" ], - "layout": "IPY_MODEL_a97ca8c55b6a428db18a1ad9449de343", + "layout": "IPY_MODEL_8611e5dc2e174314b3da9acf02db2554", "tabbable": null, "tooltip": null } }, - "eff875dcc30c4107b992f5a5634c8d75": { + "d3cfdc0619ae40fe91f65a1e084132f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2e6e8fc0d4e647109e70f747ce1e566a", + "IPY_MODEL_6e867d7b0eca4306a4d23fa448b9467f", + "IPY_MODEL_8e40e624c16d4d8aa4394a22da7fe159" + ], + "layout": "IPY_MODEL_55531f258179477c861b4d98e82a94a9", + "tabbable": null, + "tooltip": null + } + }, + "d4a482f364e545b28123af1589752e91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_73c64730eb80480d90bdb5128448c361", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6021a4f2ce39498b8ad8e2caaf1b90c4", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "d4fcff61ca554dffbbb000872114c1d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f0671b253bb84cf886f1cc23ac16e3ff": { + "da46ae3607a34cf6ab521ca915b4db3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8226,7 +8038,7 @@ "width": null } }, - "f169405d5db749aaa1cd982aa3665c2b": { + "dae6c1b5b63b4ab2aa8c276d40a2b2f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -8242,7 +8054,25 @@ "description_width": "" } }, - "f2cb389ac72444fb81aff74cf5f851dc": { + "ddeefeb08a334e3aafd73da3746dd191": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "df759f9942c7470fa465bc8cb984ab55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8257,15 +8087,75 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4fa558077cd549b58369d59fa11f84ec", + "layout": "IPY_MODEL_85427a47f21d4321a483ecf1f04b5f7b", "placeholder": "​", - "style": "IPY_MODEL_4a0ad9e3cf224a82af25df8d8bb06fac", + "style": "IPY_MODEL_1330caa3497d4cf3b266a73fb356d564", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": "Computing checksums: 100%" } }, - "f3a6b413e2b643728146a238c6355773": { + "e236939d9a8c45a4b775f92034c332d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e559214db03240988f70fd9f03879199": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e5c11abd1e8149f7b54dab9ba407e0af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9377daff25ca4a5d9bfc82b576bce935", + "IPY_MODEL_5ff408675d994ba98dd9dc472810a00b", + "IPY_MODEL_130d2c00c2e14a208aeef3b9ef5a2a90" + ], + "layout": "IPY_MODEL_4b4bb18d9215426ba65edde95f3d1f38", + "tabbable": null, + "tooltip": null + } + }, + "e8141c7c389a4284b23b53662e00f324": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8318,7 +8208,51 @@ "width": null } }, - "f5d34f00f93042aea8ffc3425e8937ae": { + "e9a1575e39f04009b43d25b01fd06d48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c85f9aa0f8940ac91a9d72f781ac185", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3c3141f8e8a84afa8287305de6569b0a", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "ea8bb6bc0c334864b49fc2826dc712af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "edbef9253ccc4667a6417afcfa1a07e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8371,157 +8305,173 @@ "width": null } }, - "f69620da0f43491594cb2cdb11ac484d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f7890d347bc64340ba8a5ca6f1791cdc": { - "model_module": "@jupyter-widgets/controls", + "ef65352a97434eb589998a22cd472c6c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f78b9fa3b1fb4c3cb04ec76372a5882f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7435eb1bbb3e443482b4b7bec4a7bf06", - "IPY_MODEL_fa89642dc784435c99bc86a4fa6d9aca", - "IPY_MODEL_3eb89c0437944fddb5716441c7c4b069" - ], - "layout": "IPY_MODEL_6a819de44d624f56bd99acfefca10088", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f813b343a18e4b7aa78aa8d98fa199b6": { + "efb0a4e83e884082ab70d6cc5eebaa8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_17846cd9ac244489ad70bb21d524ae9a", - "placeholder": "​", - "style": "IPY_MODEL_081ccbc2b32640aa9071b3cb410b2efc", + "layout": "IPY_MODEL_aea9c5d15e58431da2f12df272070dda", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f125e48ae6fc4fd98b853d004b76e061", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.43it/s]" + "value": 40.0 } }, - "f9ba3c1594a041aeadc1fe1a948233c4": { + "f01ca56ec2be48d39f47764819685320": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_82c674807c414931809fd8b995d031a3", - "IPY_MODEL_9e0f969e11c2430782cb878273809fcf", - "IPY_MODEL_a6a52a5b6f8846178ca3e222cec3189d" - ], - "layout": "IPY_MODEL_16ac0e28e1fe4d649ed964b67b7deaf4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fa2fd92280bc499695ac595b6ace28f3": { - "model_module": "@jupyter-widgets/controls", + "f0772ecea852431983168cb6f1ff12ee": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3949f08b9c364d0aa1cdeb1865b0e5ab", - "placeholder": "​", - "style": "IPY_MODEL_592cd55ccf6d44879639b9d08653bd9d", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 113MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fa5a141cbb7a497cb9ea5f4712fbca7d": { + "f125e48ae6fc4fd98b853d004b76e061": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1a16187b882344098c1441a7b3196c3d", - "IPY_MODEL_d53e7f97efc740b98703309b0ad77387", - "IPY_MODEL_608c9566c4844ee896cd7a5567ab365e" - ], - "layout": "IPY_MODEL_5013335dea8a48ecaec5d4633333f9f3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fa7b3fb29ef24fb2b120774a5fc8aef7": { + "f1b1096b465f4d4dbb278e61131cf24b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8574,81 +8524,101 @@ "width": null } }, - "fa89642dc784435c99bc86a4fa6d9aca": { + "f56de69942734156835abe802d7f0113": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c569e1b543b4432499e19a95b006b193", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42bc2e2c0cdb4946903db4de34da7160", + "layout": "IPY_MODEL_ff78b8c10ccb41cf9fdb2fefe7d03f80", + "placeholder": "​", + "style": "IPY_MODEL_d0717eceae004e6da59c8aa3d0ed794a", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 60000/60000 [00:38<00:00, 1699.45it/s]" } }, - "fb109c8e518240d08b7f6615fbda4212": { + "f75d4db3439f40d2b73d6a0f468a1c18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac1544f96e364d90b3da5b3eb3efbee2", - "IPY_MODEL_7692a6b7492844938c75c758f3a3782f", - "IPY_MODEL_2baa91d8c929410280f9da666b599ec2" - ], - "layout": "IPY_MODEL_63ea3298ca7b4a78ad32a2b048bf8e66", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fdcd4ba820d649c5b36da888c36ed6b4": { - "model_module": "@jupyter-widgets/controls", + "fa8a8269b32749de91a9fcd8b0738fc2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1cbaea221fda4ab6bb8003832a877330", - "IPY_MODEL_a643fa921f274fa5a1f11497aaa70ef2", - "IPY_MODEL_ffde01a2d2174a65846da31df70358c9" - ], - "layout": "IPY_MODEL_e37646c1503d4b83a8d450acd82b3840", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fdcf19ff310c4f8a9ab0eca50aa429d9": { + "fc21a649e38945b1ae529d483df29a48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8701,27 +8671,57 @@ "width": null } }, - "ffde01a2d2174a65846da31df70358c9": { - "model_module": "@jupyter-widgets/controls", + "ff78b8c10ccb41cf9fdb2fefe7d03f80": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_56623545144f421782e9850961bfbdd6", - "placeholder": "​", - "style": "IPY_MODEL_63e0d03dee384c5680d424fdf3e46b4f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.94it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 8d0ccf3dd..9ac6e642d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:19.472001Z", - "iopub.status.busy": "2024-06-07T11:11:19.471538Z", - "iopub.status.idle": "2024-06-07T11:11:20.617587Z", - "shell.execute_reply": "2024-06-07T11:11:20.616983Z" + "iopub.execute_input": "2024-06-10T22:12:39.435385Z", + "iopub.status.busy": "2024-06-10T22:12:39.435218Z", + "iopub.status.idle": "2024-06-10T22:12:40.593424Z", + "shell.execute_reply": "2024-06-10T22:12:40.592813Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.620434Z", - "iopub.status.busy": "2024-06-07T11:11:20.619960Z", - "iopub.status.idle": "2024-06-07T11:11:20.640048Z", - "shell.execute_reply": "2024-06-07T11:11:20.639548Z" + "iopub.execute_input": "2024-06-10T22:12:40.595945Z", + "iopub.status.busy": "2024-06-10T22:12:40.595629Z", + "iopub.status.idle": "2024-06-10T22:12:40.615429Z", + "shell.execute_reply": "2024-06-10T22:12:40.614808Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.642857Z", - "iopub.status.busy": "2024-06-07T11:11:20.642409Z", - "iopub.status.idle": "2024-06-07T11:11:20.680289Z", - "shell.execute_reply": "2024-06-07T11:11:20.679746Z" + "iopub.execute_input": "2024-06-10T22:12:40.618350Z", + "iopub.status.busy": "2024-06-10T22:12:40.617897Z", + "iopub.status.idle": "2024-06-10T22:12:40.644480Z", + "shell.execute_reply": "2024-06-10T22:12:40.643777Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.682408Z", - "iopub.status.busy": "2024-06-07T11:11:20.682184Z", - "iopub.status.idle": "2024-06-07T11:11:20.685961Z", - "shell.execute_reply": "2024-06-07T11:11:20.685403Z" + "iopub.execute_input": "2024-06-10T22:12:40.646715Z", + "iopub.status.busy": "2024-06-10T22:12:40.646393Z", + "iopub.status.idle": "2024-06-10T22:12:40.649716Z", + "shell.execute_reply": "2024-06-10T22:12:40.649260Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.688308Z", - "iopub.status.busy": "2024-06-07T11:11:20.687861Z", - "iopub.status.idle": "2024-06-07T11:11:20.696471Z", - "shell.execute_reply": "2024-06-07T11:11:20.695994Z" + "iopub.execute_input": "2024-06-10T22:12:40.651880Z", + "iopub.status.busy": "2024-06-10T22:12:40.651548Z", + "iopub.status.idle": "2024-06-10T22:12:40.659331Z", + "shell.execute_reply": "2024-06-10T22:12:40.658901Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.698937Z", - "iopub.status.busy": "2024-06-07T11:11:20.698511Z", - "iopub.status.idle": "2024-06-07T11:11:20.701592Z", - "shell.execute_reply": "2024-06-07T11:11:20.701048Z" + "iopub.execute_input": "2024-06-10T22:12:40.661462Z", + "iopub.status.busy": "2024-06-10T22:12:40.661133Z", + "iopub.status.idle": "2024-06-10T22:12:40.663722Z", + "shell.execute_reply": "2024-06-10T22:12:40.663281Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.703703Z", - "iopub.status.busy": "2024-06-07T11:11:20.703399Z", - "iopub.status.idle": "2024-06-07T11:11:23.776842Z", - "shell.execute_reply": "2024-06-07T11:11:23.776169Z" + "iopub.execute_input": "2024-06-10T22:12:40.665770Z", + "iopub.status.busy": "2024-06-10T22:12:40.665451Z", + "iopub.status.idle": "2024-06-10T22:12:43.662755Z", + "shell.execute_reply": "2024-06-10T22:12:43.662135Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:23.779794Z", - "iopub.status.busy": "2024-06-07T11:11:23.779358Z", - "iopub.status.idle": "2024-06-07T11:11:23.789381Z", - "shell.execute_reply": "2024-06-07T11:11:23.788890Z" + "iopub.execute_input": "2024-06-10T22:12:43.665489Z", + "iopub.status.busy": "2024-06-10T22:12:43.665100Z", + "iopub.status.idle": "2024-06-10T22:12:43.675135Z", + "shell.execute_reply": "2024-06-10T22:12:43.674716Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:23.791686Z", - "iopub.status.busy": "2024-06-07T11:11:23.791327Z", - "iopub.status.idle": "2024-06-07T11:11:25.678169Z", - "shell.execute_reply": "2024-06-07T11:11:25.677508Z" + "iopub.execute_input": "2024-06-10T22:12:43.677215Z", + "iopub.status.busy": "2024-06-10T22:12:43.676870Z", + "iopub.status.idle": "2024-06-10T22:12:45.480247Z", + "shell.execute_reply": "2024-06-10T22:12:45.479608Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.681229Z", - "iopub.status.busy": "2024-06-07T11:11:25.680571Z", - "iopub.status.idle": "2024-06-07T11:11:25.705861Z", - "shell.execute_reply": "2024-06-07T11:11:25.705289Z" + "iopub.execute_input": "2024-06-10T22:12:45.485095Z", + "iopub.status.busy": "2024-06-10T22:12:45.483722Z", + "iopub.status.idle": "2024-06-10T22:12:45.509704Z", + "shell.execute_reply": "2024-06-10T22:12:45.509160Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.708755Z", - "iopub.status.busy": "2024-06-07T11:11:25.708354Z", - "iopub.status.idle": "2024-06-07T11:11:25.718800Z", - "shell.execute_reply": "2024-06-07T11:11:25.718249Z" + "iopub.execute_input": "2024-06-10T22:12:45.513459Z", + "iopub.status.busy": "2024-06-10T22:12:45.512508Z", + "iopub.status.idle": "2024-06-10T22:12:45.524289Z", + "shell.execute_reply": "2024-06-10T22:12:45.523777Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.721622Z", - "iopub.status.busy": "2024-06-07T11:11:25.721184Z", - "iopub.status.idle": "2024-06-07T11:11:25.733219Z", - "shell.execute_reply": "2024-06-07T11:11:25.732659Z" + "iopub.execute_input": "2024-06-10T22:12:45.527934Z", + "iopub.status.busy": "2024-06-10T22:12:45.527011Z", + "iopub.status.idle": "2024-06-10T22:12:45.539469Z", + "shell.execute_reply": "2024-06-10T22:12:45.539012Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.735806Z", - "iopub.status.busy": "2024-06-07T11:11:25.735461Z", - "iopub.status.idle": "2024-06-07T11:11:25.743754Z", - "shell.execute_reply": "2024-06-07T11:11:25.743285Z" + "iopub.execute_input": "2024-06-10T22:12:45.541846Z", + "iopub.status.busy": "2024-06-10T22:12:45.541476Z", + "iopub.status.idle": "2024-06-10T22:12:45.549479Z", + "shell.execute_reply": "2024-06-10T22:12:45.549028Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.745905Z", - "iopub.status.busy": "2024-06-07T11:11:25.745598Z", - "iopub.status.idle": "2024-06-07T11:11:25.754844Z", - "shell.execute_reply": "2024-06-07T11:11:25.754234Z" + "iopub.execute_input": "2024-06-10T22:12:45.551354Z", + "iopub.status.busy": "2024-06-10T22:12:45.551192Z", + "iopub.status.idle": "2024-06-10T22:12:45.559765Z", + "shell.execute_reply": "2024-06-10T22:12:45.559315Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.757246Z", - "iopub.status.busy": "2024-06-07T11:11:25.756809Z", - "iopub.status.idle": "2024-06-07T11:11:25.765171Z", - "shell.execute_reply": "2024-06-07T11:11:25.764585Z" + "iopub.execute_input": "2024-06-10T22:12:45.561663Z", + "iopub.status.busy": "2024-06-10T22:12:45.561503Z", + "iopub.status.idle": "2024-06-10T22:12:45.569107Z", + "shell.execute_reply": "2024-06-10T22:12:45.568645Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.767617Z", - "iopub.status.busy": "2024-06-07T11:11:25.767145Z", - "iopub.status.idle": "2024-06-07T11:11:25.775480Z", - "shell.execute_reply": "2024-06-07T11:11:25.774885Z" + "iopub.execute_input": "2024-06-10T22:12:45.570933Z", + "iopub.status.busy": "2024-06-10T22:12:45.570768Z", + "iopub.status.idle": "2024-06-10T22:12:45.577974Z", + "shell.execute_reply": "2024-06-10T22:12:45.577513Z" } }, "outputs": [ @@ -1303,10 +1303,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.777838Z", - "iopub.status.busy": "2024-06-07T11:11:25.777388Z", - "iopub.status.idle": "2024-06-07T11:11:25.786837Z", - "shell.execute_reply": "2024-06-07T11:11:25.786205Z" + "iopub.execute_input": "2024-06-10T22:12:45.580083Z", + "iopub.status.busy": "2024-06-10T22:12:45.579671Z", + "iopub.status.idle": "2024-06-10T22:12:45.588135Z", + "shell.execute_reply": "2024-06-10T22:12:45.587569Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 55c4cde53..377fed8fe 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:28.519114Z", - "iopub.status.busy": "2024-06-07T11:11:28.518624Z", - "iopub.status.idle": "2024-06-07T11:11:31.421325Z", - "shell.execute_reply": "2024-06-07T11:11:31.420664Z" + "iopub.execute_input": "2024-06-10T22:12:48.285365Z", + "iopub.status.busy": "2024-06-10T22:12:48.285180Z", + "iopub.status.idle": "2024-06-10T22:12:51.103707Z", + "shell.execute_reply": "2024-06-10T22:12:51.102999Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.424144Z", - "iopub.status.busy": "2024-06-07T11:11:31.423766Z", - "iopub.status.idle": "2024-06-07T11:11:31.427285Z", - "shell.execute_reply": "2024-06-07T11:11:31.426737Z" + "iopub.execute_input": "2024-06-10T22:12:51.106638Z", + "iopub.status.busy": "2024-06-10T22:12:51.106272Z", + "iopub.status.idle": "2024-06-10T22:12:51.109932Z", + "shell.execute_reply": "2024-06-10T22:12:51.109379Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.429504Z", - "iopub.status.busy": "2024-06-07T11:11:31.429211Z", - "iopub.status.idle": "2024-06-07T11:11:31.432383Z", - "shell.execute_reply": "2024-06-07T11:11:31.431945Z" + "iopub.execute_input": "2024-06-10T22:12:51.112023Z", + "iopub.status.busy": "2024-06-10T22:12:51.111682Z", + "iopub.status.idle": "2024-06-10T22:12:51.115012Z", + "shell.execute_reply": "2024-06-10T22:12:51.114462Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.434631Z", - "iopub.status.busy": "2024-06-07T11:11:31.434298Z", - "iopub.status.idle": "2024-06-07T11:11:31.474990Z", - "shell.execute_reply": "2024-06-07T11:11:31.474392Z" + "iopub.execute_input": "2024-06-10T22:12:51.117329Z", + "iopub.status.busy": "2024-06-10T22:12:51.117045Z", + "iopub.status.idle": "2024-06-10T22:12:51.144614Z", + "shell.execute_reply": "2024-06-10T22:12:51.144043Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.477334Z", - "iopub.status.busy": "2024-06-07T11:11:31.476961Z", - "iopub.status.idle": "2024-06-07T11:11:31.480919Z", - "shell.execute_reply": "2024-06-07T11:11:31.480424Z" + "iopub.execute_input": "2024-06-10T22:12:51.146862Z", + "iopub.status.busy": "2024-06-10T22:12:51.146545Z", + "iopub.status.idle": "2024-06-10T22:12:51.150392Z", + "shell.execute_reply": "2024-06-10T22:12:51.149852Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" + "Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.483237Z", - "iopub.status.busy": "2024-06-07T11:11:31.482879Z", - "iopub.status.idle": "2024-06-07T11:11:31.486114Z", - "shell.execute_reply": "2024-06-07T11:11:31.485546Z" + "iopub.execute_input": "2024-06-10T22:12:51.152509Z", + "iopub.status.busy": "2024-06-10T22:12:51.152174Z", + "iopub.status.idle": "2024-06-10T22:12:51.155442Z", + "shell.execute_reply": "2024-06-10T22:12:51.154895Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.488317Z", - "iopub.status.busy": "2024-06-07T11:11:31.487982Z", - "iopub.status.idle": "2024-06-07T11:11:35.347916Z", - "shell.execute_reply": "2024-06-07T11:11:35.347347Z" + "iopub.execute_input": "2024-06-10T22:12:51.157702Z", + "iopub.status.busy": "2024-06-10T22:12:51.157351Z", + "iopub.status.idle": "2024-06-10T22:12:54.868526Z", + "shell.execute_reply": "2024-06-10T22:12:54.867863Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:35.350841Z", - "iopub.status.busy": "2024-06-07T11:11:35.350400Z", - "iopub.status.idle": "2024-06-07T11:11:36.243697Z", - "shell.execute_reply": "2024-06-07T11:11:36.243102Z" + "iopub.execute_input": "2024-06-10T22:12:54.871522Z", + "iopub.status.busy": "2024-06-10T22:12:54.871061Z", + "iopub.status.idle": "2024-06-10T22:12:55.787403Z", + "shell.execute_reply": "2024-06-10T22:12:55.786811Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:36.247681Z", - "iopub.status.busy": "2024-06-07T11:11:36.246509Z", - "iopub.status.idle": "2024-06-07T11:11:36.250908Z", - "shell.execute_reply": "2024-06-07T11:11:36.250393Z" + "iopub.execute_input": "2024-06-10T22:12:55.790386Z", + "iopub.status.busy": "2024-06-10T22:12:55.789990Z", + "iopub.status.idle": "2024-06-10T22:12:55.793114Z", + "shell.execute_reply": "2024-06-10T22:12:55.792594Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:36.254757Z", - "iopub.status.busy": "2024-06-07T11:11:36.253758Z", - "iopub.status.idle": "2024-06-07T11:11:37.926073Z", - "shell.execute_reply": "2024-06-07T11:11:37.925382Z" + "iopub.execute_input": "2024-06-10T22:12:55.795547Z", + "iopub.status.busy": "2024-06-10T22:12:55.795130Z", + "iopub.status.idle": "2024-06-10T22:12:57.484724Z", + "shell.execute_reply": "2024-06-10T22:12:57.484098Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.929993Z", - "iopub.status.busy": "2024-06-07T11:11:37.928824Z", - "iopub.status.idle": "2024-06-07T11:11:37.954806Z", - "shell.execute_reply": "2024-06-07T11:11:37.954307Z" + "iopub.execute_input": "2024-06-10T22:12:57.487890Z", + "iopub.status.busy": "2024-06-10T22:12:57.487297Z", + "iopub.status.idle": "2024-06-10T22:12:57.511884Z", + "shell.execute_reply": "2024-06-10T22:12:57.511347Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.958378Z", - "iopub.status.busy": "2024-06-07T11:11:37.957425Z", - "iopub.status.idle": "2024-06-07T11:11:37.968446Z", - "shell.execute_reply": "2024-06-07T11:11:37.968047Z" + "iopub.execute_input": "2024-06-10T22:12:57.524137Z", + "iopub.status.busy": "2024-06-10T22:12:57.523544Z", + "iopub.status.idle": "2024-06-10T22:12:57.534521Z", + "shell.execute_reply": "2024-06-10T22:12:57.533980Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.970650Z", - "iopub.status.busy": "2024-06-07T11:11:37.970473Z", - "iopub.status.idle": "2024-06-07T11:11:37.975334Z", - "shell.execute_reply": "2024-06-07T11:11:37.974870Z" + "iopub.execute_input": "2024-06-10T22:12:57.536886Z", + "iopub.status.busy": "2024-06-10T22:12:57.536531Z", + "iopub.status.idle": "2024-06-10T22:12:57.541460Z", + "shell.execute_reply": "2024-06-10T22:12:57.540867Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.977483Z", - "iopub.status.busy": "2024-06-07T11:11:37.977051Z", - "iopub.status.idle": "2024-06-07T11:11:37.983603Z", - "shell.execute_reply": "2024-06-07T11:11:37.983035Z" + "iopub.execute_input": "2024-06-10T22:12:57.543826Z", + "iopub.status.busy": "2024-06-10T22:12:57.543463Z", + "iopub.status.idle": "2024-06-10T22:12:57.550139Z", + "shell.execute_reply": "2024-06-10T22:12:57.549654Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.985585Z", - "iopub.status.busy": "2024-06-07T11:11:37.985396Z", - "iopub.status.idle": "2024-06-07T11:11:37.991837Z", - "shell.execute_reply": "2024-06-07T11:11:37.991381Z" + "iopub.execute_input": "2024-06-10T22:12:57.552314Z", + "iopub.status.busy": "2024-06-10T22:12:57.551877Z", + "iopub.status.idle": "2024-06-10T22:12:57.558732Z", + "shell.execute_reply": "2024-06-10T22:12:57.558165Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.993692Z", - "iopub.status.busy": "2024-06-07T11:11:37.993520Z", - "iopub.status.idle": "2024-06-07T11:11:37.999349Z", - "shell.execute_reply": "2024-06-07T11:11:37.998902Z" + "iopub.execute_input": "2024-06-10T22:12:57.560832Z", + "iopub.status.busy": "2024-06-10T22:12:57.560436Z", + "iopub.status.idle": "2024-06-10T22:12:57.566295Z", + "shell.execute_reply": "2024-06-10T22:12:57.565863Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.001230Z", - "iopub.status.busy": "2024-06-07T11:11:38.001058Z", - "iopub.status.idle": "2024-06-07T11:11:38.009522Z", - "shell.execute_reply": "2024-06-07T11:11:38.009010Z" + "iopub.execute_input": "2024-06-10T22:12:57.568521Z", + "iopub.status.busy": "2024-06-10T22:12:57.568038Z", + "iopub.status.idle": "2024-06-10T22:12:57.576771Z", + "shell.execute_reply": "2024-06-10T22:12:57.576209Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.011527Z", - "iopub.status.busy": "2024-06-07T11:11:38.011215Z", - "iopub.status.idle": "2024-06-07T11:11:38.016568Z", - "shell.execute_reply": "2024-06-07T11:11:38.016098Z" + "iopub.execute_input": "2024-06-10T22:12:57.579088Z", + "iopub.status.busy": "2024-06-10T22:12:57.578623Z", + "iopub.status.idle": "2024-06-10T22:12:57.584540Z", + "shell.execute_reply": "2024-06-10T22:12:57.583958Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.018530Z", - "iopub.status.busy": "2024-06-07T11:11:38.018203Z", - "iopub.status.idle": "2024-06-07T11:11:38.023643Z", - "shell.execute_reply": "2024-06-07T11:11:38.023196Z" + "iopub.execute_input": "2024-06-10T22:12:57.586645Z", + "iopub.status.busy": "2024-06-10T22:12:57.586341Z", + "iopub.status.idle": "2024-06-10T22:12:57.591767Z", + "shell.execute_reply": "2024-06-10T22:12:57.591220Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.025642Z", - "iopub.status.busy": "2024-06-07T11:11:38.025328Z", - "iopub.status.idle": "2024-06-07T11:11:38.028922Z", - "shell.execute_reply": "2024-06-07T11:11:38.028378Z" + "iopub.execute_input": "2024-06-10T22:12:57.593780Z", + "iopub.status.busy": "2024-06-10T22:12:57.593461Z", + "iopub.status.idle": "2024-06-10T22:12:57.596988Z", + "shell.execute_reply": "2024-06-10T22:12:57.596548Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.031122Z", - "iopub.status.busy": "2024-06-07T11:11:38.030794Z", - "iopub.status.idle": "2024-06-07T11:11:38.035846Z", - "shell.execute_reply": "2024-06-07T11:11:38.035398Z" + "iopub.execute_input": "2024-06-10T22:12:57.599061Z", + "iopub.status.busy": "2024-06-10T22:12:57.598746Z", + "iopub.status.idle": "2024-06-10T22:12:57.604436Z", + "shell.execute_reply": "2024-06-10T22:12:57.603858Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index aadacae1d..773265528 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:41.095725Z", - "iopub.status.busy": "2024-06-07T11:11:41.095550Z", - "iopub.status.idle": "2024-06-07T11:11:42.215839Z", - "shell.execute_reply": "2024-06-07T11:11:42.215282Z" + "iopub.execute_input": "2024-06-10T22:13:01.151861Z", + "iopub.status.busy": "2024-06-10T22:13:01.151682Z", + "iopub.status.idle": "2024-06-10T22:13:02.354261Z", + "shell.execute_reply": "2024-06-10T22:13:02.353674Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:42.218406Z", - "iopub.status.busy": "2024-06-07T11:11:42.217970Z", - "iopub.status.idle": "2024-06-07T11:11:42.220662Z", - "shell.execute_reply": "2024-06-07T11:11:42.220228Z" + "iopub.execute_input": "2024-06-10T22:13:02.356837Z", + "iopub.status.busy": "2024-06-10T22:13:02.356530Z", + "iopub.status.idle": "2024-06-10T22:13:02.359500Z", + "shell.execute_reply": "2024-06-10T22:13:02.359044Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:42.222759Z", - "iopub.status.busy": "2024-06-07T11:11:42.222435Z", - "iopub.status.idle": "2024-06-07T11:11:42.234462Z", - "shell.execute_reply": "2024-06-07T11:11:42.234038Z" + "iopub.execute_input": "2024-06-10T22:13:02.361679Z", + "iopub.status.busy": "2024-06-10T22:13:02.361425Z", + "iopub.status.idle": "2024-06-10T22:13:02.373800Z", + "shell.execute_reply": "2024-06-10T22:13:02.373240Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:42.236585Z", - "iopub.status.busy": "2024-06-07T11:11:42.236210Z", - "iopub.status.idle": "2024-06-07T11:11:47.718449Z", - "shell.execute_reply": "2024-06-07T11:11:47.717939Z" + "iopub.execute_input": "2024-06-10T22:13:02.375879Z", + "iopub.status.busy": "2024-06-10T22:13:02.375564Z", + "iopub.status.idle": "2024-06-10T22:13:06.692592Z", + "shell.execute_reply": "2024-06-10T22:13:06.692021Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index c356addca..3c397a524 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:49.764003Z", - "iopub.status.busy": "2024-06-07T11:11:49.763525Z", - "iopub.status.idle": "2024-06-07T11:11:50.865094Z", - "shell.execute_reply": "2024-06-07T11:11:50.864492Z" + "iopub.execute_input": "2024-06-10T22:13:09.138291Z", + "iopub.status.busy": "2024-06-10T22:13:09.138131Z", + "iopub.status.idle": "2024-06-10T22:13:10.351981Z", + "shell.execute_reply": "2024-06-10T22:13:10.351362Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:50.867926Z", - "iopub.status.busy": "2024-06-07T11:11:50.867598Z", - "iopub.status.idle": "2024-06-07T11:11:50.871072Z", - "shell.execute_reply": "2024-06-07T11:11:50.870551Z" + "iopub.execute_input": "2024-06-10T22:13:10.354939Z", + "iopub.status.busy": "2024-06-10T22:13:10.354467Z", + "iopub.status.idle": "2024-06-10T22:13:10.357832Z", + "shell.execute_reply": "2024-06-10T22:13:10.357376Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:50.872917Z", - "iopub.status.busy": "2024-06-07T11:11:50.872716Z", - "iopub.status.idle": "2024-06-07T11:11:53.803704Z", - "shell.execute_reply": "2024-06-07T11:11:53.803110Z" + "iopub.execute_input": "2024-06-10T22:13:10.359924Z", + "iopub.status.busy": "2024-06-10T22:13:10.359641Z", + "iopub.status.idle": "2024-06-10T22:13:13.745240Z", + "shell.execute_reply": "2024-06-10T22:13:13.744386Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.806613Z", - "iopub.status.busy": "2024-06-07T11:11:53.806037Z", - "iopub.status.idle": "2024-06-07T11:11:53.840267Z", - "shell.execute_reply": "2024-06-07T11:11:53.839582Z" + "iopub.execute_input": "2024-06-10T22:13:13.748843Z", + "iopub.status.busy": "2024-06-10T22:13:13.748130Z", + "iopub.status.idle": "2024-06-10T22:13:13.790444Z", + "shell.execute_reply": "2024-06-10T22:13:13.789683Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.843161Z", - "iopub.status.busy": "2024-06-07T11:11:53.842667Z", - "iopub.status.idle": "2024-06-07T11:11:53.874119Z", - "shell.execute_reply": "2024-06-07T11:11:53.873390Z" + "iopub.execute_input": "2024-06-10T22:13:13.793453Z", + "iopub.status.busy": "2024-06-10T22:13:13.793128Z", + "iopub.status.idle": "2024-06-10T22:13:13.832088Z", + "shell.execute_reply": "2024-06-10T22:13:13.831318Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.876908Z", - "iopub.status.busy": "2024-06-07T11:11:53.876418Z", - "iopub.status.idle": "2024-06-07T11:11:53.879606Z", - "shell.execute_reply": "2024-06-07T11:11:53.879053Z" + "iopub.execute_input": "2024-06-10T22:13:13.835067Z", + "iopub.status.busy": "2024-06-10T22:13:13.834788Z", + "iopub.status.idle": "2024-06-10T22:13:13.838274Z", + "shell.execute_reply": "2024-06-10T22:13:13.837783Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.881777Z", - "iopub.status.busy": "2024-06-07T11:11:53.881370Z", - "iopub.status.idle": "2024-06-07T11:11:53.884083Z", - "shell.execute_reply": "2024-06-07T11:11:53.883625Z" + "iopub.execute_input": "2024-06-10T22:13:13.840559Z", + "iopub.status.busy": "2024-06-10T22:13:13.840128Z", + "iopub.status.idle": "2024-06-10T22:13:13.843040Z", + "shell.execute_reply": "2024-06-10T22:13:13.842562Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.886433Z", - "iopub.status.busy": "2024-06-07T11:11:53.885948Z", - "iopub.status.idle": "2024-06-07T11:11:53.908982Z", - "shell.execute_reply": "2024-06-07T11:11:53.908435Z" + "iopub.execute_input": "2024-06-10T22:13:13.845046Z", + "iopub.status.busy": "2024-06-10T22:13:13.844835Z", + "iopub.status.idle": "2024-06-10T22:13:13.870164Z", + "shell.execute_reply": "2024-06-10T22:13:13.869544Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e216dbf6dcc542f091e0ddd88c45fa10", + "model_id": "9a2e17d2440c4aea8ee83d96cf0f8946", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f0f6229cdc74dcc85b4d7f65bd6e5b1", + "model_id": "326634eea24f4a5dbc6c28d00e6aad15", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.915399Z", - "iopub.status.busy": "2024-06-07T11:11:53.915078Z", - "iopub.status.idle": "2024-06-07T11:11:53.921714Z", - "shell.execute_reply": "2024-06-07T11:11:53.921172Z" + "iopub.execute_input": "2024-06-10T22:13:13.876826Z", + "iopub.status.busy": "2024-06-10T22:13:13.876615Z", + "iopub.status.idle": "2024-06-10T22:13:13.883805Z", + "shell.execute_reply": "2024-06-10T22:13:13.883373Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.923794Z", - "iopub.status.busy": "2024-06-07T11:11:53.923488Z", - "iopub.status.idle": "2024-06-07T11:11:53.926809Z", - "shell.execute_reply": "2024-06-07T11:11:53.926380Z" + "iopub.execute_input": "2024-06-10T22:13:13.886086Z", + "iopub.status.busy": "2024-06-10T22:13:13.885749Z", + "iopub.status.idle": "2024-06-10T22:13:13.889164Z", + "shell.execute_reply": "2024-06-10T22:13:13.888703Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.928725Z", - "iopub.status.busy": "2024-06-07T11:11:53.928474Z", - "iopub.status.idle": "2024-06-07T11:11:53.934913Z", - "shell.execute_reply": "2024-06-07T11:11:53.934451Z" + "iopub.execute_input": "2024-06-10T22:13:13.891241Z", + "iopub.status.busy": "2024-06-10T22:13:13.890909Z", + "iopub.status.idle": "2024-06-10T22:13:13.897223Z", + "shell.execute_reply": "2024-06-10T22:13:13.896755Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.937020Z", - "iopub.status.busy": "2024-06-07T11:11:53.936697Z", - "iopub.status.idle": "2024-06-07T11:11:53.979676Z", - "shell.execute_reply": "2024-06-07T11:11:53.979118Z" + "iopub.execute_input": "2024-06-10T22:13:13.899099Z", + "iopub.status.busy": "2024-06-10T22:13:13.898920Z", + "iopub.status.idle": "2024-06-10T22:13:13.937483Z", + "shell.execute_reply": "2024-06-10T22:13:13.936843Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.982451Z", - "iopub.status.busy": "2024-06-07T11:11:53.982072Z", - "iopub.status.idle": "2024-06-07T11:11:54.017192Z", - "shell.execute_reply": "2024-06-07T11:11:54.016623Z" + "iopub.execute_input": "2024-06-10T22:13:13.940491Z", + "iopub.status.busy": "2024-06-10T22:13:13.940049Z", + "iopub.status.idle": "2024-06-10T22:13:13.980352Z", + "shell.execute_reply": "2024-06-10T22:13:13.979609Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:54.019943Z", - "iopub.status.busy": "2024-06-07T11:11:54.019623Z", - "iopub.status.idle": "2024-06-07T11:11:54.148580Z", - "shell.execute_reply": "2024-06-07T11:11:54.148013Z" + "iopub.execute_input": "2024-06-10T22:13:13.983589Z", + "iopub.status.busy": "2024-06-10T22:13:13.983064Z", + "iopub.status.idle": "2024-06-10T22:13:14.111424Z", + "shell.execute_reply": "2024-06-10T22:13:14.110837Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:54.151418Z", - "iopub.status.busy": "2024-06-07T11:11:54.150792Z", - "iopub.status.idle": "2024-06-07T11:11:57.242252Z", - "shell.execute_reply": "2024-06-07T11:11:57.241531Z" + "iopub.execute_input": "2024-06-10T22:13:14.114376Z", + "iopub.status.busy": "2024-06-10T22:13:14.113594Z", + "iopub.status.idle": "2024-06-10T22:13:17.174442Z", + "shell.execute_reply": "2024-06-10T22:13:17.173664Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.245069Z", - "iopub.status.busy": "2024-06-07T11:11:57.244719Z", - "iopub.status.idle": "2024-06-07T11:11:57.312758Z", - "shell.execute_reply": "2024-06-07T11:11:57.312156Z" + "iopub.execute_input": "2024-06-10T22:13:17.177726Z", + "iopub.status.busy": "2024-06-10T22:13:17.177349Z", + "iopub.status.idle": "2024-06-10T22:13:17.240653Z", + "shell.execute_reply": "2024-06-10T22:13:17.240050Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.315197Z", - "iopub.status.busy": "2024-06-07T11:11:57.314734Z", - "iopub.status.idle": "2024-06-07T11:11:57.355434Z", - "shell.execute_reply": "2024-06-07T11:11:57.354872Z" + "iopub.execute_input": "2024-06-10T22:13:17.242731Z", + "iopub.status.busy": "2024-06-10T22:13:17.242544Z", + "iopub.status.idle": "2024-06-10T22:13:17.284095Z", + "shell.execute_reply": "2024-06-10T22:13:17.283597Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "78a3c6b0", + "id": "5a716e70", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "3c063402", + "id": "eb8b7b98", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "1db2e93e", + "id": "67eef22b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.357864Z", - "iopub.status.busy": "2024-06-07T11:11:57.357356Z", - "iopub.status.idle": "2024-06-07T11:11:57.422844Z", - "shell.execute_reply": "2024-06-07T11:11:57.422266Z" + "iopub.execute_input": "2024-06-10T22:13:17.286304Z", + "iopub.status.busy": "2024-06-10T22:13:17.285958Z", + "iopub.status.idle": "2024-06-10T22:13:17.381482Z", + "shell.execute_reply": "2024-06-10T22:13:17.380937Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "77321d8a", + "id": "1652744c", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "7a2a0271", + "id": "a15a1fe0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.425538Z", - "iopub.status.busy": "2024-06-07T11:11:57.424974Z", - "iopub.status.idle": "2024-06-07T11:11:57.491621Z", - "shell.execute_reply": "2024-06-07T11:11:57.491062Z" + "iopub.execute_input": "2024-06-10T22:13:17.384014Z", + "iopub.status.busy": "2024-06-10T22:13:17.383654Z", + "iopub.status.idle": "2024-06-10T22:13:17.453517Z", + "shell.execute_reply": "2024-06-10T22:13:17.453013Z" } }, "outputs": [ @@ -1438,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "0a3d18c8", + "id": "d1959d1c", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1449,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "47e2cffc", + "id": "90d86358", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.494020Z", - "iopub.status.busy": "2024-06-07T11:11:57.493759Z", - "iopub.status.idle": "2024-06-07T11:11:57.510914Z", - "shell.execute_reply": "2024-06-07T11:11:57.510363Z" + "iopub.execute_input": "2024-06-10T22:13:17.456208Z", + "iopub.status.busy": "2024-06-10T22:13:17.455842Z", + "iopub.status.idle": "2024-06-10T22:13:17.463835Z", + "shell.execute_reply": "2024-06-10T22:13:17.463382Z" } }, "outputs": [], @@ -1557,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "bef6bc21", + "id": "c69042ee", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1572,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "89642cd2", + "id": "5b3d8c23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.512969Z", - "iopub.status.busy": "2024-06-07T11:11:57.512799Z", - "iopub.status.idle": "2024-06-07T11:11:57.533219Z", - "shell.execute_reply": "2024-06-07T11:11:57.532731Z" + "iopub.execute_input": "2024-06-10T22:13:17.465787Z", + "iopub.status.busy": "2024-06-10T22:13:17.465626Z", + "iopub.status.idle": "2024-06-10T22:13:17.484697Z", + "shell.execute_reply": "2024-06-10T22:13:17.484089Z" } }, "outputs": [ @@ -1595,7 +1595,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7818/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7681/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1629,13 +1629,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "f8485875", + "id": "f88e2cd1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.535170Z", - "iopub.status.busy": "2024-06-07T11:11:57.534993Z", - "iopub.status.idle": "2024-06-07T11:11:57.538144Z", - "shell.execute_reply": "2024-06-07T11:11:57.537628Z" + "iopub.execute_input": "2024-06-10T22:13:17.487043Z", + "iopub.status.busy": "2024-06-10T22:13:17.486706Z", + "iopub.status.idle": "2024-06-10T22:13:17.490150Z", + "shell.execute_reply": "2024-06-10T22:13:17.489680Z" } }, "outputs": [ @@ -1730,7 +1730,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "23cdd6f3532f4256ae002a97ae9d69ab": { + "2862feb7de2643f2b3a5f341a36f3d5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,7 +1783,54 @@ "width": null } }, - "30eb5e2532fc4267b002ccfe8816dc46": { + "326634eea24f4a5dbc6c28d00e6aad15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c711dd911ad486ebdb708899f4b7ce4", + "IPY_MODEL_60fe96f8c0234456b230e8a5567ff8c7", + "IPY_MODEL_c000026cc1004d77ba5547f3c9c51193" + ], + "layout": "IPY_MODEL_5743604cd10b489b87434f6b65c23e52", + "tabbable": null, + "tooltip": null + } + }, + "3c711dd911ad486ebdb708899f4b7ce4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8bbf8ea9b522498190dbb03aaec62562", + "placeholder": "​", + "style": "IPY_MODEL_8eb9bf77367b47abb03c9de0a32a8197", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "48733238350d40fcb9f3c812b056dfc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1801,7 +1848,33 @@ "text_color": null } }, - "33db0a3ac78f4666944d4db6bd4b7226": { + "56b20d2738b448e6ad46bdf7ad20e0d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_73868979086341b89a20e3c29dd136ca", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_96f865db6c224abb8f6ec3e86a5705c8", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "5743604cd10b489b87434f6b65c23e52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1854,54 +1927,7 @@ "width": null } }, - "4f0f6229cdc74dcc85b4d7f65bd6e5b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fd5b30fdfee64a2da200f49d406cb153", - "IPY_MODEL_5c97e414ca4648bdbd6ca255319cd43d", - "IPY_MODEL_d2dcf39f4f854d308b32019d689bfac2" - ], - "layout": "IPY_MODEL_dacf95c60381417e895b6eeb41fc8dfd", - "tabbable": null, - "tooltip": null - } - }, - "545b620faabd40aa9d049bbb1a3c70a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23cdd6f3532f4256ae002a97ae9d69ab", - "placeholder": "​", - "style": "IPY_MODEL_851d149fe31f4882a6c2e5dd4c4a9946", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1082736.33it/s]" - } - }, - "5c97e414ca4648bdbd6ca255319cd43d": { + "60fe96f8c0234456b230e8a5567ff8c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1917,35 +1943,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a36ea6e5dae64a398e8ba2fc0fc302b8", + "layout": "IPY_MODEL_eb3def0fc36e43e6b8f90536fcfe911a", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d2e4ec0816cd44dcaa048081c82c00cb", + "style": "IPY_MODEL_c55ecd1ac61a42c0895840cc4d080ac2", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "708c9e939f964de89a6f4155559367a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "851d149fe31f4882a6c2e5dd4c4a9946": { + "6c1535cce8934a06b5a60137e560091a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1963,23 +1971,7 @@ "text_color": null } }, - "8aea491da66c4b2f94d04317b87c4abc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9df7dd45c09e4b0a8cc5dc03d53698eb": { + "73868979086341b89a20e3c29dd136ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2032,33 +2024,7 @@ "width": null } }, - "a23ace6146ca4b94a1ed832b985c08b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f18b237ed2c04950a4ab829aaf756488", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8aea491da66c4b2f94d04317b87c4abc", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "a36ea6e5dae64a398e8ba2fc0fc302b8": { + "8bbf8ea9b522498190dbb03aaec62562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2111,30 +2077,65 @@ "width": null } }, - "ad2d645766404fbba5fe5fa820134193": { + "8eb9bf77367b47abb03c9de0a32a8197": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "96f865db6c224abb8f6ec3e86a5705c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9a2e17d2440c4aea8ee83d96cf0f8946": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6cf2db315d6456d8afc73fea330f14a", - "placeholder": "​", - "style": "IPY_MODEL_b26ecdf7095546839fbca9078effe12c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c852f14386a84ad7ae7a05bac012b0cb", + "IPY_MODEL_56b20d2738b448e6ad46bdf7ad20e0d6", + "IPY_MODEL_bfd0af23b74a40a39f0b973d77dd4089" + ], + "layout": "IPY_MODEL_aa9ae8e089e243f297c42921ba5bcbb0", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "tooltip": null } }, - "b26ecdf7095546839fbca9078effe12c": { + "a6b35b72d72d41b889c9dae7ac1d13e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2152,7 +2153,7 @@ "text_color": null } }, - "c503cc5dede54cd89c172958cce4a886": { + "aa9ae8e089e243f297c42921ba5bcbb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2205,7 +2206,30 @@ "width": null } }, - "d2dcf39f4f854d308b32019d689bfac2": { + "bfd0af23b74a40a39f0b973d77dd4089": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e409c019c2d74cf5a7cb8e8152db7a0c", + "placeholder": "​", + "style": "IPY_MODEL_6c1535cce8934a06b5a60137e560091a", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1043411.11it/s]" + } + }, + "c000026cc1004d77ba5547f3c9c51193": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2220,15 +2244,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_33db0a3ac78f4666944d4db6bd4b7226", + "layout": "IPY_MODEL_2862feb7de2643f2b3a5f341a36f3d5d", "placeholder": "​", - "style": "IPY_MODEL_30eb5e2532fc4267b002ccfe8816dc46", + "style": "IPY_MODEL_a6b35b72d72d41b889c9dae7ac1d13e2", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1560845.49it/s]" + "value": " 10000/? [00:00<00:00, 1495455.49it/s]" } }, - "d2e4ec0816cd44dcaa048081c82c00cb": { + "c55ecd1ac61a42c0895840cc4d080ac2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2244,7 +2268,30 @@ "description_width": "" } }, - "dacf95c60381417e895b6eeb41fc8dfd": { + "c852f14386a84ad7ae7a05bac012b0cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d65ce6ca74ad4126926369ef0df86d04", + "placeholder": "​", + "style": "IPY_MODEL_48733238350d40fcb9f3c812b056dfc9", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "d65ce6ca74ad4126926369ef0df86d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2297,31 +2344,7 @@ "width": null } }, - "e216dbf6dcc542f091e0ddd88c45fa10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ad2d645766404fbba5fe5fa820134193", - "IPY_MODEL_a23ace6146ca4b94a1ed832b985c08b0", - "IPY_MODEL_545b620faabd40aa9d049bbb1a3c70a7" - ], - "layout": "IPY_MODEL_c503cc5dede54cd89c172958cce4a886", - "tabbable": null, - "tooltip": null - } - }, - "e6cf2db315d6456d8afc73fea330f14a": { + "e409c019c2d74cf5a7cb8e8152db7a0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2374,7 +2397,7 @@ "width": null } }, - "f18b237ed2c04950a4ab829aaf756488": { + "eb3def0fc36e43e6b8f90536fcfe911a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2426,29 +2449,6 @@ "visibility": null, "width": null } - }, - "fd5b30fdfee64a2da200f49d406cb153": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9df7dd45c09e4b0a8cc5dc03d53698eb", - "placeholder": "​", - "style": "IPY_MODEL_708c9e939f964de89a6f4155559367a9", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index d1327d983..410815f44 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:00.785925Z", - "iopub.status.busy": "2024-06-07T11:12:00.785757Z", - "iopub.status.idle": "2024-06-07T11:12:01.948284Z", - "shell.execute_reply": "2024-06-07T11:12:01.947729Z" + "iopub.execute_input": "2024-06-10T22:13:21.116526Z", + "iopub.status.busy": "2024-06-10T22:13:21.116353Z", + "iopub.status.idle": "2024-06-10T22:13:22.373966Z", + "shell.execute_reply": "2024-06-10T22:13:22.373296Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:01.950690Z", - "iopub.status.busy": "2024-06-07T11:12:01.950421Z", - "iopub.status.idle": "2024-06-07T11:12:02.133413Z", - "shell.execute_reply": "2024-06-07T11:12:02.132855Z" + "iopub.execute_input": "2024-06-10T22:13:22.376686Z", + "iopub.status.busy": "2024-06-10T22:13:22.376375Z", + "iopub.status.idle": "2024-06-10T22:13:22.563735Z", + "shell.execute_reply": "2024-06-10T22:13:22.562694Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:02.136113Z", - "iopub.status.busy": "2024-06-07T11:12:02.135651Z", - "iopub.status.idle": "2024-06-07T11:12:02.147310Z", - "shell.execute_reply": "2024-06-07T11:12:02.146845Z" + "iopub.execute_input": "2024-06-10T22:13:22.567287Z", + "iopub.status.busy": "2024-06-10T22:13:22.566952Z", + "iopub.status.idle": "2024-06-10T22:13:22.581124Z", + "shell.execute_reply": "2024-06-10T22:13:22.580404Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:02.149568Z", - "iopub.status.busy": "2024-06-07T11:12:02.149130Z", - "iopub.status.idle": "2024-06-07T11:12:02.384744Z", - "shell.execute_reply": "2024-06-07T11:12:02.384182Z" + "iopub.execute_input": "2024-06-10T22:13:22.583845Z", + "iopub.status.busy": "2024-06-10T22:13:22.583330Z", + "iopub.status.idle": "2024-06-10T22:13:22.823795Z", + "shell.execute_reply": "2024-06-10T22:13:22.823212Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:02.387038Z", - "iopub.status.busy": "2024-06-07T11:12:02.386806Z", - "iopub.status.idle": "2024-06-07T11:12:02.412944Z", - "shell.execute_reply": "2024-06-07T11:12:02.412363Z" + "iopub.execute_input": "2024-06-10T22:13:22.826316Z", + "iopub.status.busy": "2024-06-10T22:13:22.825957Z", + "iopub.status.idle": "2024-06-10T22:13:22.852233Z", + "shell.execute_reply": "2024-06-10T22:13:22.851739Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:02.415430Z", - "iopub.status.busy": "2024-06-07T11:12:02.415001Z", - "iopub.status.idle": "2024-06-07T11:12:04.091259Z", - "shell.execute_reply": "2024-06-07T11:12:04.090627Z" + "iopub.execute_input": "2024-06-10T22:13:22.854941Z", + "iopub.status.busy": "2024-06-10T22:13:22.854550Z", + "iopub.status.idle": "2024-06-10T22:13:24.650495Z", + "shell.execute_reply": "2024-06-10T22:13:24.649809Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:04.093697Z", - "iopub.status.busy": "2024-06-07T11:12:04.093163Z", - "iopub.status.idle": "2024-06-07T11:12:04.110931Z", - "shell.execute_reply": "2024-06-07T11:12:04.110451Z" + "iopub.execute_input": "2024-06-10T22:13:24.653117Z", + "iopub.status.busy": "2024-06-10T22:13:24.652550Z", + "iopub.status.idle": "2024-06-10T22:13:24.671277Z", + "shell.execute_reply": "2024-06-10T22:13:24.670734Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:04.112875Z", - "iopub.status.busy": "2024-06-07T11:12:04.112691Z", - "iopub.status.idle": "2024-06-07T11:12:05.552835Z", - "shell.execute_reply": "2024-06-07T11:12:05.552204Z" + "iopub.execute_input": "2024-06-10T22:13:24.673640Z", + "iopub.status.busy": "2024-06-10T22:13:24.673268Z", + "iopub.status.idle": "2024-06-10T22:13:26.136282Z", + "shell.execute_reply": "2024-06-10T22:13:26.135602Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.555667Z", - "iopub.status.busy": "2024-06-07T11:12:05.555065Z", - "iopub.status.idle": "2024-06-07T11:12:05.568626Z", - "shell.execute_reply": "2024-06-07T11:12:05.568180Z" + "iopub.execute_input": "2024-06-10T22:13:26.139370Z", + "iopub.status.busy": "2024-06-10T22:13:26.138676Z", + "iopub.status.idle": "2024-06-10T22:13:26.153040Z", + "shell.execute_reply": "2024-06-10T22:13:26.152496Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.570812Z", - "iopub.status.busy": "2024-06-07T11:12:05.570483Z", - "iopub.status.idle": "2024-06-07T11:12:05.652054Z", - "shell.execute_reply": "2024-06-07T11:12:05.651442Z" + "iopub.execute_input": "2024-06-10T22:13:26.155252Z", + "iopub.status.busy": "2024-06-10T22:13:26.155054Z", + "iopub.status.idle": "2024-06-10T22:13:26.234314Z", + "shell.execute_reply": "2024-06-10T22:13:26.233635Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.654595Z", - "iopub.status.busy": "2024-06-07T11:12:05.654249Z", - "iopub.status.idle": "2024-06-07T11:12:05.867946Z", - "shell.execute_reply": "2024-06-07T11:12:05.867340Z" + "iopub.execute_input": "2024-06-10T22:13:26.236848Z", + "iopub.status.busy": "2024-06-10T22:13:26.236551Z", + "iopub.status.idle": "2024-06-10T22:13:26.450037Z", + "shell.execute_reply": "2024-06-10T22:13:26.449440Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.870241Z", - "iopub.status.busy": "2024-06-07T11:12:05.869891Z", - "iopub.status.idle": "2024-06-07T11:12:05.887009Z", - "shell.execute_reply": "2024-06-07T11:12:05.886545Z" + "iopub.execute_input": "2024-06-10T22:13:26.452570Z", + "iopub.status.busy": "2024-06-10T22:13:26.452183Z", + "iopub.status.idle": "2024-06-10T22:13:26.469654Z", + "shell.execute_reply": "2024-06-10T22:13:26.469125Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.889023Z", - "iopub.status.busy": "2024-06-07T11:12:05.888759Z", - "iopub.status.idle": "2024-06-07T11:12:05.898383Z", - "shell.execute_reply": "2024-06-07T11:12:05.897921Z" + "iopub.execute_input": "2024-06-10T22:13:26.471952Z", + "iopub.status.busy": "2024-06-10T22:13:26.471594Z", + "iopub.status.idle": "2024-06-10T22:13:26.481788Z", + "shell.execute_reply": "2024-06-10T22:13:26.481312Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.900476Z", - "iopub.status.busy": "2024-06-07T11:12:05.900148Z", - "iopub.status.idle": "2024-06-07T11:12:05.990684Z", - "shell.execute_reply": "2024-06-07T11:12:05.990078Z" + "iopub.execute_input": "2024-06-10T22:13:26.484023Z", + "iopub.status.busy": "2024-06-10T22:13:26.483657Z", + "iopub.status.idle": "2024-06-10T22:13:26.570570Z", + "shell.execute_reply": "2024-06-10T22:13:26.569959Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.993310Z", - "iopub.status.busy": "2024-06-07T11:12:05.992922Z", - "iopub.status.idle": "2024-06-07T11:12:06.136187Z", - "shell.execute_reply": "2024-06-07T11:12:06.135525Z" + "iopub.execute_input": "2024-06-10T22:13:26.573233Z", + "iopub.status.busy": "2024-06-10T22:13:26.572836Z", + "iopub.status.idle": "2024-06-10T22:13:26.705964Z", + "shell.execute_reply": "2024-06-10T22:13:26.705307Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.138799Z", - "iopub.status.busy": "2024-06-07T11:12:06.138401Z", - "iopub.status.idle": "2024-06-07T11:12:06.142217Z", - "shell.execute_reply": "2024-06-07T11:12:06.141657Z" + "iopub.execute_input": "2024-06-10T22:13:26.708783Z", + "iopub.status.busy": "2024-06-10T22:13:26.708376Z", + "iopub.status.idle": "2024-06-10T22:13:26.712266Z", + "shell.execute_reply": "2024-06-10T22:13:26.711709Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.144400Z", - "iopub.status.busy": "2024-06-07T11:12:06.144066Z", - "iopub.status.idle": "2024-06-07T11:12:06.147821Z", - "shell.execute_reply": "2024-06-07T11:12:06.147261Z" + "iopub.execute_input": "2024-06-10T22:13:26.714486Z", + "iopub.status.busy": "2024-06-10T22:13:26.714156Z", + "iopub.status.idle": "2024-06-10T22:13:26.718223Z", + "shell.execute_reply": "2024-06-10T22:13:26.717744Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.149756Z", - "iopub.status.busy": "2024-06-07T11:12:06.149574Z", - "iopub.status.idle": "2024-06-07T11:12:06.187063Z", - "shell.execute_reply": "2024-06-07T11:12:06.186515Z" + "iopub.execute_input": "2024-06-10T22:13:26.720323Z", + "iopub.status.busy": "2024-06-10T22:13:26.720006Z", + "iopub.status.idle": "2024-06-10T22:13:26.758255Z", + "shell.execute_reply": "2024-06-10T22:13:26.757660Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.189429Z", - "iopub.status.busy": "2024-06-07T11:12:06.188989Z", - "iopub.status.idle": "2024-06-07T11:12:06.231903Z", - "shell.execute_reply": "2024-06-07T11:12:06.231290Z" + "iopub.execute_input": "2024-06-10T22:13:26.760724Z", + "iopub.status.busy": "2024-06-10T22:13:26.760347Z", + "iopub.status.idle": "2024-06-10T22:13:26.803178Z", + "shell.execute_reply": "2024-06-10T22:13:26.802650Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.234232Z", - "iopub.status.busy": "2024-06-07T11:12:06.233809Z", - "iopub.status.idle": "2024-06-07T11:12:06.330748Z", - "shell.execute_reply": "2024-06-07T11:12:06.330155Z" + "iopub.execute_input": "2024-06-10T22:13:26.805612Z", + "iopub.status.busy": "2024-06-10T22:13:26.805231Z", + "iopub.status.idle": "2024-06-10T22:13:26.901205Z", + "shell.execute_reply": "2024-06-10T22:13:26.900416Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.333380Z", - "iopub.status.busy": "2024-06-07T11:12:06.333081Z", - "iopub.status.idle": "2024-06-07T11:12:06.438344Z", - "shell.execute_reply": "2024-06-07T11:12:06.437711Z" + "iopub.execute_input": "2024-06-10T22:13:26.904204Z", + "iopub.status.busy": "2024-06-10T22:13:26.903773Z", + "iopub.status.idle": "2024-06-10T22:13:26.998338Z", + "shell.execute_reply": "2024-06-10T22:13:26.997739Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.441005Z", - "iopub.status.busy": "2024-06-07T11:12:06.440558Z", - "iopub.status.idle": "2024-06-07T11:12:06.651472Z", - "shell.execute_reply": "2024-06-07T11:12:06.650868Z" + "iopub.execute_input": "2024-06-10T22:13:27.000851Z", + "iopub.status.busy": "2024-06-10T22:13:27.000511Z", + "iopub.status.idle": "2024-06-10T22:13:27.214305Z", + "shell.execute_reply": "2024-06-10T22:13:27.213678Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.653696Z", - "iopub.status.busy": "2024-06-07T11:12:06.653486Z", - "iopub.status.idle": "2024-06-07T11:12:06.870281Z", - "shell.execute_reply": "2024-06-07T11:12:06.869692Z" + "iopub.execute_input": "2024-06-10T22:13:27.216680Z", + "iopub.status.busy": "2024-06-10T22:13:27.216332Z", + "iopub.status.idle": "2024-06-10T22:13:27.411213Z", + "shell.execute_reply": "2024-06-10T22:13:27.410625Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.872557Z", - "iopub.status.busy": "2024-06-07T11:12:06.872317Z", - "iopub.status.idle": "2024-06-07T11:12:06.878707Z", - "shell.execute_reply": "2024-06-07T11:12:06.878150Z" + "iopub.execute_input": "2024-06-10T22:13:27.413709Z", + "iopub.status.busy": "2024-06-10T22:13:27.413352Z", + "iopub.status.idle": "2024-06-10T22:13:27.419627Z", + "shell.execute_reply": "2024-06-10T22:13:27.419173Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.880645Z", - "iopub.status.busy": "2024-06-07T11:12:06.880468Z", - "iopub.status.idle": "2024-06-07T11:12:07.096022Z", - "shell.execute_reply": "2024-06-07T11:12:07.095450Z" + "iopub.execute_input": "2024-06-10T22:13:27.421693Z", + "iopub.status.busy": "2024-06-10T22:13:27.421395Z", + "iopub.status.idle": "2024-06-10T22:13:27.641360Z", + "shell.execute_reply": "2024-06-10T22:13:27.640765Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:07.098213Z", - "iopub.status.busy": "2024-06-07T11:12:07.098024Z", - "iopub.status.idle": "2024-06-07T11:12:08.170572Z", - "shell.execute_reply": "2024-06-07T11:12:08.170020Z" + "iopub.execute_input": "2024-06-10T22:13:27.643744Z", + "iopub.status.busy": "2024-06-10T22:13:27.643453Z", + "iopub.status.idle": "2024-06-10T22:13:28.719263Z", + "shell.execute_reply": "2024-06-10T22:13:28.718631Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index adffa6169..3423f2892 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:11.800813Z", - "iopub.status.busy": "2024-06-07T11:12:11.800352Z", - "iopub.status.idle": "2024-06-07T11:12:12.939320Z", - "shell.execute_reply": "2024-06-07T11:12:12.938767Z" + "iopub.execute_input": "2024-06-10T22:13:32.353426Z", + "iopub.status.busy": "2024-06-10T22:13:32.353252Z", + "iopub.status.idle": "2024-06-10T22:13:33.525039Z", + "shell.execute_reply": "2024-06-10T22:13:33.524438Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:12.941914Z", - "iopub.status.busy": "2024-06-07T11:12:12.941627Z", - "iopub.status.idle": "2024-06-07T11:12:12.944625Z", - "shell.execute_reply": "2024-06-07T11:12:12.944208Z" + "iopub.execute_input": "2024-06-10T22:13:33.527758Z", + "iopub.status.busy": "2024-06-10T22:13:33.527265Z", + "iopub.status.idle": "2024-06-10T22:13:33.530537Z", + "shell.execute_reply": "2024-06-10T22:13:33.530058Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:12.946791Z", - "iopub.status.busy": "2024-06-07T11:12:12.946466Z", - "iopub.status.idle": "2024-06-07T11:12:12.954865Z", - "shell.execute_reply": "2024-06-07T11:12:12.954437Z" + "iopub.execute_input": "2024-06-10T22:13:33.532787Z", + "iopub.status.busy": "2024-06-10T22:13:33.532401Z", + "iopub.status.idle": "2024-06-10T22:13:33.541457Z", + "shell.execute_reply": "2024-06-10T22:13:33.540873Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:12.956805Z", - "iopub.status.busy": "2024-06-07T11:12:12.956628Z", - "iopub.status.idle": "2024-06-07T11:12:13.003505Z", - "shell.execute_reply": "2024-06-07T11:12:13.002955Z" + "iopub.execute_input": "2024-06-10T22:13:33.543652Z", + "iopub.status.busy": "2024-06-10T22:13:33.543324Z", + "iopub.status.idle": "2024-06-10T22:13:33.592523Z", + "shell.execute_reply": "2024-06-10T22:13:33.591960Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.005802Z", - "iopub.status.busy": "2024-06-07T11:12:13.005620Z", - "iopub.status.idle": "2024-06-07T11:12:13.022415Z", - "shell.execute_reply": "2024-06-07T11:12:13.021946Z" + "iopub.execute_input": "2024-06-10T22:13:33.595206Z", + "iopub.status.busy": "2024-06-10T22:13:33.594821Z", + "iopub.status.idle": "2024-06-10T22:13:33.612446Z", + "shell.execute_reply": "2024-06-10T22:13:33.611965Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.024328Z", - "iopub.status.busy": "2024-06-07T11:12:13.024156Z", - "iopub.status.idle": "2024-06-07T11:12:13.028096Z", - "shell.execute_reply": "2024-06-07T11:12:13.027540Z" + "iopub.execute_input": "2024-06-10T22:13:33.614719Z", + "iopub.status.busy": "2024-06-10T22:13:33.614385Z", + "iopub.status.idle": "2024-06-10T22:13:33.618306Z", + "shell.execute_reply": "2024-06-10T22:13:33.617830Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.030331Z", - "iopub.status.busy": "2024-06-07T11:12:13.030020Z", - "iopub.status.idle": "2024-06-07T11:12:13.045131Z", - "shell.execute_reply": "2024-06-07T11:12:13.044605Z" + "iopub.execute_input": "2024-06-10T22:13:33.620467Z", + "iopub.status.busy": "2024-06-10T22:13:33.620148Z", + "iopub.status.idle": "2024-06-10T22:13:33.635160Z", + "shell.execute_reply": "2024-06-10T22:13:33.634673Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.047221Z", - "iopub.status.busy": "2024-06-07T11:12:13.047040Z", - "iopub.status.idle": "2024-06-07T11:12:13.073082Z", - "shell.execute_reply": "2024-06-07T11:12:13.072615Z" + "iopub.execute_input": "2024-06-10T22:13:33.637458Z", + "iopub.status.busy": "2024-06-10T22:13:33.637015Z", + "iopub.status.idle": "2024-06-10T22:13:33.663269Z", + "shell.execute_reply": "2024-06-10T22:13:33.662781Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.075298Z", - "iopub.status.busy": "2024-06-07T11:12:13.075124Z", - "iopub.status.idle": "2024-06-07T11:12:14.816171Z", - "shell.execute_reply": "2024-06-07T11:12:14.815603Z" + "iopub.execute_input": "2024-06-10T22:13:33.665700Z", + "iopub.status.busy": "2024-06-10T22:13:33.665352Z", + "iopub.status.idle": "2024-06-10T22:13:35.490934Z", + "shell.execute_reply": "2024-06-10T22:13:35.490245Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.818915Z", - "iopub.status.busy": "2024-06-07T11:12:14.818447Z", - "iopub.status.idle": "2024-06-07T11:12:14.825339Z", - "shell.execute_reply": "2024-06-07T11:12:14.824850Z" + "iopub.execute_input": "2024-06-10T22:13:35.493935Z", + "iopub.status.busy": "2024-06-10T22:13:35.493387Z", + "iopub.status.idle": "2024-06-10T22:13:35.500517Z", + "shell.execute_reply": "2024-06-10T22:13:35.499965Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.827311Z", - "iopub.status.busy": "2024-06-07T11:12:14.827141Z", - "iopub.status.idle": "2024-06-07T11:12:14.839621Z", - "shell.execute_reply": "2024-06-07T11:12:14.839146Z" + "iopub.execute_input": "2024-06-10T22:13:35.502708Z", + "iopub.status.busy": "2024-06-10T22:13:35.502358Z", + "iopub.status.idle": "2024-06-10T22:13:35.515167Z", + "shell.execute_reply": "2024-06-10T22:13:35.514619Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.841705Z", - "iopub.status.busy": "2024-06-07T11:12:14.841376Z", - "iopub.status.idle": "2024-06-07T11:12:14.847611Z", - "shell.execute_reply": "2024-06-07T11:12:14.847197Z" + "iopub.execute_input": "2024-06-10T22:13:35.517265Z", + "iopub.status.busy": "2024-06-10T22:13:35.516951Z", + "iopub.status.idle": "2024-06-10T22:13:35.523368Z", + "shell.execute_reply": "2024-06-10T22:13:35.522830Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.849498Z", - "iopub.status.busy": "2024-06-07T11:12:14.849308Z", - "iopub.status.idle": "2024-06-07T11:12:14.851879Z", - "shell.execute_reply": "2024-06-07T11:12:14.851457Z" + "iopub.execute_input": "2024-06-10T22:13:35.525374Z", + "iopub.status.busy": "2024-06-10T22:13:35.525199Z", + "iopub.status.idle": "2024-06-10T22:13:35.527760Z", + "shell.execute_reply": "2024-06-10T22:13:35.527322Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.853782Z", - "iopub.status.busy": "2024-06-07T11:12:14.853611Z", - "iopub.status.idle": "2024-06-07T11:12:14.856992Z", - "shell.execute_reply": "2024-06-07T11:12:14.856477Z" + "iopub.execute_input": "2024-06-10T22:13:35.529587Z", + "iopub.status.busy": "2024-06-10T22:13:35.529421Z", + "iopub.status.idle": "2024-06-10T22:13:35.532807Z", + "shell.execute_reply": "2024-06-10T22:13:35.532280Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.858896Z", - "iopub.status.busy": "2024-06-07T11:12:14.858715Z", - "iopub.status.idle": "2024-06-07T11:12:14.861370Z", - "shell.execute_reply": "2024-06-07T11:12:14.860927Z" + "iopub.execute_input": "2024-06-10T22:13:35.534897Z", + "iopub.status.busy": "2024-06-10T22:13:35.534578Z", + "iopub.status.idle": "2024-06-10T22:13:35.537133Z", + "shell.execute_reply": "2024-06-10T22:13:35.536686Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.863301Z", - "iopub.status.busy": "2024-06-07T11:12:14.863133Z", - "iopub.status.idle": "2024-06-07T11:12:14.867404Z", - "shell.execute_reply": "2024-06-07T11:12:14.866953Z" + "iopub.execute_input": "2024-06-10T22:13:35.539156Z", + "iopub.status.busy": "2024-06-10T22:13:35.538851Z", + "iopub.status.idle": "2024-06-10T22:13:35.542955Z", + "shell.execute_reply": "2024-06-10T22:13:35.542415Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.869364Z", - "iopub.status.busy": "2024-06-07T11:12:14.869194Z", - "iopub.status.idle": "2024-06-07T11:12:14.899467Z", - "shell.execute_reply": "2024-06-07T11:12:14.898881Z" + "iopub.execute_input": "2024-06-10T22:13:35.544887Z", + "iopub.status.busy": "2024-06-10T22:13:35.544717Z", + "iopub.status.idle": "2024-06-10T22:13:35.573890Z", + "shell.execute_reply": "2024-06-10T22:13:35.573394Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.901941Z", - "iopub.status.busy": "2024-06-07T11:12:14.901598Z", - "iopub.status.idle": "2024-06-07T11:12:14.906631Z", - "shell.execute_reply": "2024-06-07T11:12:14.906069Z" + "iopub.execute_input": "2024-06-10T22:13:35.576276Z", + "iopub.status.busy": "2024-06-10T22:13:35.575923Z", + "iopub.status.idle": "2024-06-10T22:13:35.580824Z", + "shell.execute_reply": "2024-06-10T22:13:35.580377Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index abfc2ae80..0f06645fb 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:17.722932Z", - "iopub.status.busy": "2024-06-07T11:12:17.722752Z", - "iopub.status.idle": "2024-06-07T11:12:18.921268Z", - "shell.execute_reply": "2024-06-07T11:12:18.920641Z" + "iopub.execute_input": "2024-06-10T22:13:38.358099Z", + "iopub.status.busy": "2024-06-10T22:13:38.357682Z", + "iopub.status.idle": "2024-06-10T22:13:39.596119Z", + "shell.execute_reply": "2024-06-10T22:13:39.595537Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:18.923669Z", - "iopub.status.busy": "2024-06-07T11:12:18.923407Z", - "iopub.status.idle": "2024-06-07T11:12:19.122358Z", - "shell.execute_reply": "2024-06-07T11:12:19.121752Z" + "iopub.execute_input": "2024-06-10T22:13:39.598936Z", + "iopub.status.busy": "2024-06-10T22:13:39.598448Z", + "iopub.status.idle": "2024-06-10T22:13:39.800034Z", + "shell.execute_reply": "2024-06-10T22:13:39.799480Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:19.125267Z", - "iopub.status.busy": "2024-06-07T11:12:19.124771Z", - "iopub.status.idle": "2024-06-07T11:12:19.138331Z", - "shell.execute_reply": "2024-06-07T11:12:19.137780Z" + "iopub.execute_input": "2024-06-10T22:13:39.802805Z", + "iopub.status.busy": "2024-06-10T22:13:39.802331Z", + "iopub.status.idle": "2024-06-10T22:13:39.815885Z", + "shell.execute_reply": "2024-06-10T22:13:39.815417Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:19.140444Z", - "iopub.status.busy": "2024-06-07T11:12:19.140267Z", - "iopub.status.idle": "2024-06-07T11:12:21.835278Z", - "shell.execute_reply": "2024-06-07T11:12:21.834708Z" + "iopub.execute_input": "2024-06-10T22:13:39.818005Z", + "iopub.status.busy": "2024-06-10T22:13:39.817666Z", + "iopub.status.idle": "2024-06-10T22:13:42.560542Z", + "shell.execute_reply": "2024-06-10T22:13:42.559998Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:21.837557Z", - "iopub.status.busy": "2024-06-07T11:12:21.837120Z", - "iopub.status.idle": "2024-06-07T11:12:23.188088Z", - "shell.execute_reply": "2024-06-07T11:12:23.187470Z" + "iopub.execute_input": "2024-06-10T22:13:42.562940Z", + "iopub.status.busy": "2024-06-10T22:13:42.562592Z", + "iopub.status.idle": "2024-06-10T22:13:43.929330Z", + "shell.execute_reply": "2024-06-10T22:13:43.928743Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:23.190827Z", - "iopub.status.busy": "2024-06-07T11:12:23.190412Z", - "iopub.status.idle": "2024-06-07T11:12:23.194420Z", - "shell.execute_reply": "2024-06-07T11:12:23.193866Z" + "iopub.execute_input": "2024-06-10T22:13:43.931736Z", + "iopub.status.busy": "2024-06-10T22:13:43.931542Z", + "iopub.status.idle": "2024-06-10T22:13:43.935740Z", + "shell.execute_reply": "2024-06-10T22:13:43.935158Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:23.196488Z", - "iopub.status.busy": "2024-06-07T11:12:23.196100Z", - "iopub.status.idle": "2024-06-07T11:12:25.021821Z", - "shell.execute_reply": "2024-06-07T11:12:25.021145Z" + "iopub.execute_input": "2024-06-10T22:13:43.937673Z", + "iopub.status.busy": "2024-06-10T22:13:43.937493Z", + "iopub.status.idle": "2024-06-10T22:13:45.858600Z", + "shell.execute_reply": "2024-06-10T22:13:45.857995Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:25.024659Z", - "iopub.status.busy": "2024-06-07T11:12:25.024002Z", - "iopub.status.idle": "2024-06-07T11:12:25.034268Z", - "shell.execute_reply": "2024-06-07T11:12:25.033688Z" + "iopub.execute_input": "2024-06-10T22:13:45.861469Z", + "iopub.status.busy": "2024-06-10T22:13:45.860889Z", + "iopub.status.idle": "2024-06-10T22:13:45.869307Z", + "shell.execute_reply": "2024-06-10T22:13:45.868691Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:25.036616Z", - "iopub.status.busy": "2024-06-07T11:12:25.036206Z", - "iopub.status.idle": "2024-06-07T11:12:27.632751Z", - "shell.execute_reply": "2024-06-07T11:12:27.632229Z" + "iopub.execute_input": "2024-06-10T22:13:45.871595Z", + "iopub.status.busy": "2024-06-10T22:13:45.871247Z", + "iopub.status.idle": "2024-06-10T22:13:48.486923Z", + "shell.execute_reply": "2024-06-10T22:13:48.486314Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:27.635014Z", - "iopub.status.busy": "2024-06-07T11:12:27.634689Z", - "iopub.status.idle": "2024-06-07T11:12:27.638390Z", - "shell.execute_reply": "2024-06-07T11:12:27.637915Z" + "iopub.execute_input": "2024-06-10T22:13:48.489198Z", + "iopub.status.busy": "2024-06-10T22:13:48.488828Z", + "iopub.status.idle": "2024-06-10T22:13:48.492398Z", + "shell.execute_reply": "2024-06-10T22:13:48.491870Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:27.640339Z", - "iopub.status.busy": "2024-06-07T11:12:27.640072Z", - "iopub.status.idle": "2024-06-07T11:12:27.643581Z", - "shell.execute_reply": "2024-06-07T11:12:27.643140Z" + "iopub.execute_input": "2024-06-10T22:13:48.494537Z", + "iopub.status.busy": "2024-06-10T22:13:48.494139Z", + "iopub.status.idle": "2024-06-10T22:13:48.497849Z", + "shell.execute_reply": "2024-06-10T22:13:48.497303Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:27.645545Z", - "iopub.status.busy": "2024-06-07T11:12:27.645208Z", - "iopub.status.idle": "2024-06-07T11:12:27.648166Z", - "shell.execute_reply": "2024-06-07T11:12:27.647736Z" + "iopub.execute_input": "2024-06-10T22:13:48.499790Z", + "iopub.status.busy": "2024-06-10T22:13:48.499492Z", + "iopub.status.idle": "2024-06-10T22:13:48.502700Z", + "shell.execute_reply": "2024-06-10T22:13:48.502161Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index d8be7a52e..17cf93827 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:30.164683Z", - "iopub.status.busy": "2024-06-07T11:12:30.164505Z", - "iopub.status.idle": "2024-06-07T11:12:31.362427Z", - "shell.execute_reply": "2024-06-07T11:12:31.361853Z" + "iopub.execute_input": "2024-06-10T22:13:51.153996Z", + "iopub.status.busy": "2024-06-10T22:13:51.153825Z", + "iopub.status.idle": "2024-06-10T22:13:52.425688Z", + "shell.execute_reply": "2024-06-10T22:13:52.425062Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:31.365301Z", - "iopub.status.busy": "2024-06-07T11:12:31.364679Z", - "iopub.status.idle": "2024-06-07T11:12:32.384644Z", - "shell.execute_reply": "2024-06-07T11:12:32.384014Z" + "iopub.execute_input": "2024-06-10T22:13:52.428403Z", + "iopub.status.busy": "2024-06-10T22:13:52.428094Z", + "iopub.status.idle": "2024-06-10T22:13:53.659713Z", + "shell.execute_reply": "2024-06-10T22:13:53.659070Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.387174Z", - "iopub.status.busy": "2024-06-07T11:12:32.386974Z", - "iopub.status.idle": "2024-06-07T11:12:32.390253Z", - "shell.execute_reply": "2024-06-07T11:12:32.389802Z" + "iopub.execute_input": "2024-06-10T22:13:53.662472Z", + "iopub.status.busy": "2024-06-10T22:13:53.662087Z", + "iopub.status.idle": "2024-06-10T22:13:53.665900Z", + "shell.execute_reply": "2024-06-10T22:13:53.665464Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.392419Z", - "iopub.status.busy": "2024-06-07T11:12:32.392093Z", - "iopub.status.idle": "2024-06-07T11:12:32.398177Z", - "shell.execute_reply": "2024-06-07T11:12:32.397736Z" + "iopub.execute_input": "2024-06-10T22:13:53.668046Z", + "iopub.status.busy": "2024-06-10T22:13:53.667716Z", + "iopub.status.idle": "2024-06-10T22:13:53.673725Z", + "shell.execute_reply": "2024-06-10T22:13:53.673224Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.400259Z", - "iopub.status.busy": "2024-06-07T11:12:32.399930Z", - "iopub.status.idle": "2024-06-07T11:12:32.898253Z", - "shell.execute_reply": "2024-06-07T11:12:32.897712Z" + "iopub.execute_input": "2024-06-10T22:13:53.676723Z", + "iopub.status.busy": "2024-06-10T22:13:53.676269Z", + "iopub.status.idle": "2024-06-10T22:13:54.179912Z", + "shell.execute_reply": "2024-06-10T22:13:54.179278Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.900478Z", - "iopub.status.busy": "2024-06-07T11:12:32.900127Z", - "iopub.status.idle": "2024-06-07T11:12:32.905718Z", - "shell.execute_reply": "2024-06-07T11:12:32.905243Z" + "iopub.execute_input": "2024-06-10T22:13:54.182848Z", + "iopub.status.busy": "2024-06-10T22:13:54.182419Z", + "iopub.status.idle": "2024-06-10T22:13:54.187962Z", + "shell.execute_reply": "2024-06-10T22:13:54.187500Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.907751Z", - "iopub.status.busy": "2024-06-07T11:12:32.907425Z", - "iopub.status.idle": "2024-06-07T11:12:32.911322Z", - "shell.execute_reply": "2024-06-07T11:12:32.910894Z" + "iopub.execute_input": "2024-06-10T22:13:54.190161Z", + "iopub.status.busy": "2024-06-10T22:13:54.189786Z", + "iopub.status.idle": "2024-06-10T22:13:54.193826Z", + "shell.execute_reply": "2024-06-10T22:13:54.193382Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.913331Z", - "iopub.status.busy": "2024-06-07T11:12:32.913001Z", - "iopub.status.idle": "2024-06-07T11:12:33.818323Z", - "shell.execute_reply": "2024-06-07T11:12:33.817693Z" + "iopub.execute_input": "2024-06-10T22:13:54.196023Z", + "iopub.status.busy": "2024-06-10T22:13:54.195692Z", + "iopub.status.idle": "2024-06-10T22:13:55.143874Z", + "shell.execute_reply": "2024-06-10T22:13:55.143227Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:33.820627Z", - "iopub.status.busy": "2024-06-07T11:12:33.820419Z", - "iopub.status.idle": "2024-06-07T11:12:34.082854Z", - "shell.execute_reply": "2024-06-07T11:12:34.082234Z" + "iopub.execute_input": "2024-06-10T22:13:55.146153Z", + "iopub.status.busy": "2024-06-10T22:13:55.145958Z", + "iopub.status.idle": "2024-06-10T22:13:55.365011Z", + "shell.execute_reply": "2024-06-10T22:13:55.364428Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:34.084959Z", - "iopub.status.busy": "2024-06-07T11:12:34.084764Z", - "iopub.status.idle": "2024-06-07T11:12:34.089320Z", - "shell.execute_reply": "2024-06-07T11:12:34.088754Z" + "iopub.execute_input": "2024-06-10T22:13:55.367101Z", + "iopub.status.busy": "2024-06-10T22:13:55.366914Z", + "iopub.status.idle": "2024-06-10T22:13:55.371562Z", + "shell.execute_reply": "2024-06-10T22:13:55.371028Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:34.091486Z", - "iopub.status.busy": "2024-06-07T11:12:34.091085Z", - "iopub.status.idle": "2024-06-07T11:12:34.553409Z", - "shell.execute_reply": "2024-06-07T11:12:34.552806Z" + "iopub.execute_input": "2024-06-10T22:13:55.373932Z", + "iopub.status.busy": "2024-06-10T22:13:55.373506Z", + "iopub.status.idle": "2024-06-10T22:13:55.836940Z", + "shell.execute_reply": "2024-06-10T22:13:55.836389Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:34.556453Z", - "iopub.status.busy": "2024-06-07T11:12:34.556265Z", - "iopub.status.idle": "2024-06-07T11:12:34.889795Z", - "shell.execute_reply": "2024-06-07T11:12:34.889215Z" + "iopub.execute_input": "2024-06-10T22:13:55.840201Z", + "iopub.status.busy": "2024-06-10T22:13:55.839823Z", + "iopub.status.idle": "2024-06-10T22:13:56.177397Z", + "shell.execute_reply": "2024-06-10T22:13:56.176929Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:34.892515Z", - "iopub.status.busy": "2024-06-07T11:12:34.892302Z", - "iopub.status.idle": "2024-06-07T11:12:35.260696Z", - "shell.execute_reply": "2024-06-07T11:12:35.260077Z" + "iopub.execute_input": "2024-06-10T22:13:56.179791Z", + "iopub.status.busy": "2024-06-10T22:13:56.179440Z", + "iopub.status.idle": "2024-06-10T22:13:56.547802Z", + "shell.execute_reply": "2024-06-10T22:13:56.547195Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:35.263547Z", - "iopub.status.busy": "2024-06-07T11:12:35.263167Z", - "iopub.status.idle": "2024-06-07T11:12:35.708715Z", - "shell.execute_reply": "2024-06-07T11:12:35.708092Z" + "iopub.execute_input": "2024-06-10T22:13:56.550918Z", + "iopub.status.busy": "2024-06-10T22:13:56.550559Z", + "iopub.status.idle": "2024-06-10T22:13:56.994603Z", + "shell.execute_reply": "2024-06-10T22:13:56.994035Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:35.712958Z", - "iopub.status.busy": "2024-06-07T11:12:35.712623Z", - "iopub.status.idle": "2024-06-07T11:12:36.142395Z", - "shell.execute_reply": "2024-06-07T11:12:36.141774Z" + "iopub.execute_input": "2024-06-10T22:13:56.999023Z", + "iopub.status.busy": "2024-06-10T22:13:56.998628Z", + "iopub.status.idle": "2024-06-10T22:13:57.465860Z", + "shell.execute_reply": "2024-06-10T22:13:57.465234Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:36.145581Z", - "iopub.status.busy": "2024-06-07T11:12:36.145217Z", - "iopub.status.idle": "2024-06-07T11:12:36.363296Z", - "shell.execute_reply": "2024-06-07T11:12:36.362718Z" + "iopub.execute_input": "2024-06-10T22:13:57.469228Z", + "iopub.status.busy": "2024-06-10T22:13:57.468692Z", + "iopub.status.idle": "2024-06-10T22:13:57.685124Z", + "shell.execute_reply": "2024-06-10T22:13:57.684481Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:36.365581Z", - "iopub.status.busy": "2024-06-07T11:12:36.365231Z", - "iopub.status.idle": "2024-06-07T11:12:36.546399Z", - "shell.execute_reply": "2024-06-07T11:12:36.545780Z" + "iopub.execute_input": "2024-06-10T22:13:57.687466Z", + "iopub.status.busy": "2024-06-10T22:13:57.687120Z", + "iopub.status.idle": "2024-06-10T22:13:57.889185Z", + "shell.execute_reply": "2024-06-10T22:13:57.888564Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:36.548733Z", - "iopub.status.busy": "2024-06-07T11:12:36.548397Z", - "iopub.status.idle": "2024-06-07T11:12:36.551261Z", - "shell.execute_reply": "2024-06-07T11:12:36.550819Z" + "iopub.execute_input": "2024-06-10T22:13:57.891380Z", + "iopub.status.busy": "2024-06-10T22:13:57.891188Z", + "iopub.status.idle": "2024-06-10T22:13:57.894107Z", + "shell.execute_reply": "2024-06-10T22:13:57.893679Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:36.553289Z", - "iopub.status.busy": "2024-06-07T11:12:36.552955Z", - "iopub.status.idle": "2024-06-07T11:12:37.534118Z", - "shell.execute_reply": "2024-06-07T11:12:37.533554Z" + "iopub.execute_input": "2024-06-10T22:13:57.896255Z", + "iopub.status.busy": "2024-06-10T22:13:57.895864Z", + "iopub.status.idle": "2024-06-10T22:13:58.911819Z", + "shell.execute_reply": "2024-06-10T22:13:58.911226Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:37.536768Z", - "iopub.status.busy": "2024-06-07T11:12:37.536581Z", - "iopub.status.idle": "2024-06-07T11:12:37.681635Z", - "shell.execute_reply": "2024-06-07T11:12:37.680971Z" + "iopub.execute_input": "2024-06-10T22:13:58.914197Z", + "iopub.status.busy": "2024-06-10T22:13:58.913997Z", + "iopub.status.idle": "2024-06-10T22:13:59.040721Z", + "shell.execute_reply": "2024-06-10T22:13:59.040162Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:37.683933Z", - "iopub.status.busy": "2024-06-07T11:12:37.683482Z", - "iopub.status.idle": "2024-06-07T11:12:37.840531Z", - "shell.execute_reply": "2024-06-07T11:12:37.840028Z" + "iopub.execute_input": "2024-06-10T22:13:59.043034Z", + "iopub.status.busy": "2024-06-10T22:13:59.042832Z", + "iopub.status.idle": "2024-06-10T22:13:59.172902Z", + "shell.execute_reply": "2024-06-10T22:13:59.172393Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:37.843119Z", - "iopub.status.busy": "2024-06-07T11:12:37.842752Z", - "iopub.status.idle": "2024-06-07T11:12:38.590870Z", - "shell.execute_reply": "2024-06-07T11:12:38.590250Z" + "iopub.execute_input": "2024-06-10T22:13:59.175407Z", + "iopub.status.busy": "2024-06-10T22:13:59.175049Z", + "iopub.status.idle": "2024-06-10T22:13:59.979373Z", + "shell.execute_reply": "2024-06-10T22:13:59.978774Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:38.593406Z", - "iopub.status.busy": "2024-06-07T11:12:38.592984Z", - "iopub.status.idle": "2024-06-07T11:12:38.596804Z", - "shell.execute_reply": "2024-06-07T11:12:38.596262Z" + "iopub.execute_input": "2024-06-10T22:13:59.981602Z", + "iopub.status.busy": "2024-06-10T22:13:59.981275Z", + "iopub.status.idle": "2024-06-10T22:13:59.985031Z", + "shell.execute_reply": "2024-06-10T22:13:59.984557Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 74827d403..9f7d52bb8 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:40.974327Z", - "iopub.status.busy": "2024-06-07T11:12:40.973973Z", - "iopub.status.idle": "2024-06-07T11:12:43.789452Z", - "shell.execute_reply": "2024-06-07T11:12:43.788887Z" + "iopub.execute_input": "2024-06-10T22:14:02.407045Z", + "iopub.status.busy": "2024-06-10T22:14:02.406569Z", + "iopub.status.idle": "2024-06-10T22:14:05.327680Z", + "shell.execute_reply": "2024-06-10T22:14:05.327021Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:43.792154Z", - "iopub.status.busy": "2024-06-07T11:12:43.791682Z", - "iopub.status.idle": "2024-06-07T11:12:44.130961Z", - "shell.execute_reply": "2024-06-07T11:12:44.130412Z" + "iopub.execute_input": "2024-06-10T22:14:05.330654Z", + "iopub.status.busy": "2024-06-10T22:14:05.330282Z", + "iopub.status.idle": "2024-06-10T22:14:05.703850Z", + "shell.execute_reply": "2024-06-10T22:14:05.703278Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:44.133565Z", - "iopub.status.busy": "2024-06-07T11:12:44.133144Z", - "iopub.status.idle": "2024-06-07T11:12:44.137167Z", - "shell.execute_reply": "2024-06-07T11:12:44.136751Z" + "iopub.execute_input": "2024-06-10T22:14:05.706660Z", + "iopub.status.busy": "2024-06-10T22:14:05.706124Z", + "iopub.status.idle": "2024-06-10T22:14:05.710216Z", + "shell.execute_reply": "2024-06-10T22:14:05.709775Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:44.139219Z", - "iopub.status.busy": "2024-06-07T11:12:44.139020Z", - "iopub.status.idle": "2024-06-07T11:12:48.575707Z", - "shell.execute_reply": "2024-06-07T11:12:48.575125Z" + "iopub.execute_input": "2024-06-10T22:14:05.712155Z", + "iopub.status.busy": "2024-06-10T22:14:05.711968Z", + "iopub.status.idle": "2024-06-10T22:14:10.701297Z", + "shell.execute_reply": "2024-06-10T22:14:10.700636Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 917504/170498071 [00:00<00:21, 8017522.83it/s]" + " 1%| | 1671168/170498071 [00:00<00:10, 15939118.22it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 10354688/170498071 [00:00<00:02, 55921409.49it/s]" + " 6%|▌ | 10256384/170498071 [00:00<00:02, 56199009.47it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 21528576/170498071 [00:00<00:01, 80572078.96it/s]" + " 11%|█ | 18743296/170498071 [00:00<00:02, 69054369.52it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32899072/170498071 [00:00<00:01, 93394960.78it/s]" + " 16%|█▋ | 27787264/170498071 [00:00<00:01, 77405919.77it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44040192/170498071 [00:00<00:01, 99775690.25it/s]" + " 21%|██ | 35913728/170498071 [00:00<00:01, 78734204.27it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 55246848/170498071 [00:00<00:01, 103857715.48it/s]" + " 27%|██▋ | 45776896/170498071 [00:00<00:01, 85419438.40it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 66322432/170498071 [00:00<00:00, 106080753.75it/s]" + " 32%|███▏ | 54657024/170498071 [00:00<00:01, 86468107.88it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 77299712/170498071 [00:00<00:00, 107214741.51it/s]" + " 37%|███▋ | 63340544/170498071 [00:00<00:01, 86211997.48it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88768512/170498071 [00:00<00:00, 109465492.84it/s]" + " 42%|████▏ | 71991296/170498071 [00:00<00:01, 85344466.89it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 99909632/170498071 [00:01<00:00, 109973267.69it/s]" + " 47%|████▋ | 80969728/170498071 [00:01<00:01, 86699364.75it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 111247360/170498071 [00:01<00:00, 110973517.39it/s]" + " 53%|█████▎ | 89653248/170498071 [00:01<00:00, 84860829.31it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 122421248/170498071 [00:01<00:00, 111172366.19it/s]" + " 58%|█████▊ | 98304000/170498071 [00:01<00:00, 85301918.18it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 133824512/170498071 [00:01<00:00, 111988569.25it/s]" + " 63%|██████▎ | 106954752/170498071 [00:01<00:00, 85587291.52it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 145031168/170498071 [00:01<00:00, 111882507.96it/s]" + " 68%|██████▊ | 115539968/170498071 [00:01<00:00, 85339001.59it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 156237824/170498071 [00:01<00:00, 111864010.32it/s]" + " 74%|███████▎ | 125337600/170498071 [00:01<00:00, 88789295.60it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 167510016/170498071 [00:01<00:00, 112049745.19it/s]" + " 79%|███████▊ | 134250496/170498071 [00:01<00:00, 82082255.41it/s]" ] }, { @@ -380,7 +380,39 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 103700713.31it/s]" + " 84%|████████▎ | 142573568/170498071 [00:01<00:00, 75946240.77it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 88%|████████▊ | 150437888/170498071 [00:01<00:00, 76586272.25it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 93%|█████████▎| 158203904/170498071 [00:01<00:00, 76443928.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 166133760/170498071 [00:02<00:00, 77191098.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 79243594.26it/s]" ] }, { @@ -498,10 +530,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:48.577991Z", - "iopub.status.busy": "2024-06-07T11:12:48.577687Z", - "iopub.status.idle": "2024-06-07T11:12:48.582384Z", - "shell.execute_reply": "2024-06-07T11:12:48.581911Z" + "iopub.execute_input": "2024-06-10T22:14:10.703733Z", + "iopub.status.busy": "2024-06-10T22:14:10.703295Z", + "iopub.status.idle": "2024-06-10T22:14:10.708165Z", + "shell.execute_reply": "2024-06-10T22:14:10.707585Z" }, "nbsphinx": "hidden" }, @@ -552,10 +584,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:48.584555Z", - "iopub.status.busy": "2024-06-07T11:12:48.584101Z", - "iopub.status.idle": "2024-06-07T11:12:49.110902Z", - "shell.execute_reply": "2024-06-07T11:12:49.110312Z" + "iopub.execute_input": "2024-06-10T22:14:10.710337Z", + "iopub.status.busy": "2024-06-10T22:14:10.709906Z", + "iopub.status.idle": "2024-06-10T22:14:11.262562Z", + "shell.execute_reply": "2024-06-10T22:14:11.262049Z" } }, "outputs": [ @@ -588,10 +620,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:49.113356Z", - "iopub.status.busy": "2024-06-07T11:12:49.112909Z", - "iopub.status.idle": "2024-06-07T11:12:49.612743Z", - "shell.execute_reply": "2024-06-07T11:12:49.612176Z" + "iopub.execute_input": "2024-06-10T22:14:11.264854Z", + "iopub.status.busy": "2024-06-10T22:14:11.264519Z", + "iopub.status.idle": "2024-06-10T22:14:11.795123Z", + "shell.execute_reply": "2024-06-10T22:14:11.794522Z" } }, "outputs": [ @@ -629,10 +661,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:49.615077Z", - "iopub.status.busy": "2024-06-07T11:12:49.614623Z", - "iopub.status.idle": "2024-06-07T11:12:49.618081Z", - "shell.execute_reply": "2024-06-07T11:12:49.617653Z" + "iopub.execute_input": "2024-06-10T22:14:11.797295Z", + "iopub.status.busy": "2024-06-10T22:14:11.797105Z", + "iopub.status.idle": "2024-06-10T22:14:11.800597Z", + "shell.execute_reply": "2024-06-10T22:14:11.800164Z" } }, "outputs": [], @@ -655,17 +687,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:49.620083Z", - "iopub.status.busy": "2024-06-07T11:12:49.619780Z", - "iopub.status.idle": "2024-06-07T11:13:02.207904Z", - "shell.execute_reply": "2024-06-07T11:13:02.207162Z" + "iopub.execute_input": "2024-06-10T22:14:11.802529Z", + "iopub.status.busy": "2024-06-10T22:14:11.802356Z", + "iopub.status.idle": "2024-06-10T22:14:24.532392Z", + "shell.execute_reply": "2024-06-10T22:14:24.531682Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4556e004258844e684efe169f5dd57aa", + "model_id": "8817a38d84da4ec4a061736044c0a959", "version_major": 2, "version_minor": 0 }, @@ -724,10 +756,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:02.210092Z", - "iopub.status.busy": "2024-06-07T11:13:02.209913Z", - "iopub.status.idle": "2024-06-07T11:13:04.328905Z", - "shell.execute_reply": "2024-06-07T11:13:04.328330Z" + "iopub.execute_input": "2024-06-10T22:14:24.534939Z", + "iopub.status.busy": "2024-06-10T22:14:24.534583Z", + "iopub.status.idle": "2024-06-10T22:14:26.797024Z", + "shell.execute_reply": "2024-06-10T22:14:26.796423Z" } }, "outputs": [ @@ -771,10 +803,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:04.330953Z", - "iopub.status.busy": "2024-06-07T11:13:04.330776Z", - "iopub.status.idle": "2024-06-07T11:13:04.572249Z", - "shell.execute_reply": "2024-06-07T11:13:04.571658Z" + "iopub.execute_input": "2024-06-10T22:14:26.799299Z", + "iopub.status.busy": "2024-06-10T22:14:26.798951Z", + "iopub.status.idle": "2024-06-10T22:14:27.051943Z", + "shell.execute_reply": "2024-06-10T22:14:27.051174Z" } }, "outputs": [ @@ -810,10 +842,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:04.575204Z", - "iopub.status.busy": "2024-06-07T11:13:04.574737Z", - "iopub.status.idle": "2024-06-07T11:13:05.240146Z", - "shell.execute_reply": "2024-06-07T11:13:05.239580Z" + "iopub.execute_input": "2024-06-10T22:14:27.055424Z", + "iopub.status.busy": "2024-06-10T22:14:27.054877Z", + "iopub.status.idle": "2024-06-10T22:14:27.742419Z", + "shell.execute_reply": "2024-06-10T22:14:27.741724Z" } }, "outputs": [ @@ -863,10 +895,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:05.243050Z", - "iopub.status.busy": "2024-06-07T11:13:05.242590Z", - "iopub.status.idle": "2024-06-07T11:13:05.579051Z", - "shell.execute_reply": "2024-06-07T11:13:05.578511Z" + "iopub.execute_input": "2024-06-10T22:14:27.745438Z", + "iopub.status.busy": "2024-06-10T22:14:27.745063Z", + "iopub.status.idle": "2024-06-10T22:14:28.073038Z", + "shell.execute_reply": "2024-06-10T22:14:28.072085Z" } }, "outputs": [ @@ -914,10 +946,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:05.581255Z", - "iopub.status.busy": "2024-06-07T11:13:05.580929Z", - "iopub.status.idle": "2024-06-07T11:13:05.810984Z", - "shell.execute_reply": "2024-06-07T11:13:05.810368Z" + "iopub.execute_input": "2024-06-10T22:14:28.075657Z", + "iopub.status.busy": "2024-06-10T22:14:28.075394Z", + "iopub.status.idle": "2024-06-10T22:14:28.319614Z", + "shell.execute_reply": "2024-06-10T22:14:28.318962Z" } }, "outputs": [ @@ -973,10 +1005,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:05.813638Z", - "iopub.status.busy": "2024-06-07T11:13:05.813179Z", - "iopub.status.idle": "2024-06-07T11:13:05.912851Z", - "shell.execute_reply": "2024-06-07T11:13:05.912358Z" + "iopub.execute_input": "2024-06-10T22:14:28.322267Z", + "iopub.status.busy": "2024-06-10T22:14:28.321823Z", + "iopub.status.idle": "2024-06-10T22:14:28.412619Z", + "shell.execute_reply": "2024-06-10T22:14:28.412100Z" } }, "outputs": [], @@ -997,10 +1029,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:05.915301Z", - "iopub.status.busy": "2024-06-07T11:13:05.914958Z", - "iopub.status.idle": "2024-06-07T11:13:16.169722Z", - "shell.execute_reply": "2024-06-07T11:13:16.169066Z" + "iopub.execute_input": "2024-06-10T22:14:28.415273Z", + "iopub.status.busy": "2024-06-10T22:14:28.414920Z", + "iopub.status.idle": "2024-06-10T22:14:40.039152Z", + "shell.execute_reply": "2024-06-10T22:14:40.038378Z" } }, "outputs": [ @@ -1037,10 +1069,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:16.172106Z", - "iopub.status.busy": "2024-06-07T11:13:16.171872Z", - "iopub.status.idle": "2024-06-07T11:13:17.914050Z", - "shell.execute_reply": "2024-06-07T11:13:17.913495Z" + "iopub.execute_input": "2024-06-10T22:14:40.042204Z", + "iopub.status.busy": "2024-06-10T22:14:40.041749Z", + "iopub.status.idle": "2024-06-10T22:14:42.057955Z", + "shell.execute_reply": "2024-06-10T22:14:42.057316Z" } }, "outputs": [ @@ -1071,10 +1103,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:17.916646Z", - "iopub.status.busy": "2024-06-07T11:13:17.916275Z", - "iopub.status.idle": "2024-06-07T11:13:18.116478Z", - "shell.execute_reply": "2024-06-07T11:13:18.115870Z" + "iopub.execute_input": "2024-06-10T22:14:42.060883Z", + "iopub.status.busy": "2024-06-10T22:14:42.060429Z", + "iopub.status.idle": "2024-06-10T22:14:42.264416Z", + "shell.execute_reply": "2024-06-10T22:14:42.263782Z" } }, "outputs": [], @@ -1088,10 +1120,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:18.119043Z", - "iopub.status.busy": "2024-06-07T11:13:18.118714Z", - "iopub.status.idle": "2024-06-07T11:13:18.121927Z", - "shell.execute_reply": "2024-06-07T11:13:18.121397Z" + "iopub.execute_input": "2024-06-10T22:14:42.266980Z", + "iopub.status.busy": "2024-06-10T22:14:42.266670Z", + "iopub.status.idle": "2024-06-10T22:14:42.269869Z", + "shell.execute_reply": "2024-06-10T22:14:42.269345Z" } }, "outputs": [], @@ -1113,10 +1145,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:18.123924Z", - "iopub.status.busy": "2024-06-07T11:13:18.123597Z", - "iopub.status.idle": "2024-06-07T11:13:18.131571Z", - "shell.execute_reply": "2024-06-07T11:13:18.131158Z" + "iopub.execute_input": "2024-06-10T22:14:42.272049Z", + "iopub.status.busy": "2024-06-10T22:14:42.271744Z", + "iopub.status.idle": "2024-06-10T22:14:42.279990Z", + "shell.execute_reply": "2024-06-10T22:14:42.279438Z" }, "nbsphinx": "hidden" }, @@ -1161,7 +1193,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08e602a9d40f4e29b6b7ebbde2fc1609": { + "08ec7890b2584a8f90fc0a92b955700c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1177,17 +1209,81 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8644869e961249f9b2534074fd66420c", + "layout": "IPY_MODEL_e4c11893781f4d85b1712b4a80b6a436", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5f41be52301c47c6adc9fef245cb6857", + "style": "IPY_MODEL_f92c25becce042d3a94a8626cca30cef", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "4556e004258844e684efe169f5dd57aa": { + "185e2626a91940b6892f4a7cfa6465e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "20a99185053c4dcda7050674956dc7d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a5beebf8b44c4b6393b74e7d7f47dc1f", + "placeholder": "​", + "style": "IPY_MODEL_185e2626a91940b6892f4a7cfa6465e2", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "7700961ad6f745da89779f000f437934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7fecfa805e943688ea2224b597e20e8", + "placeholder": "​", + "style": "IPY_MODEL_c23aeb8c3a7146a89967d5a00a1e6e80", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 272MB/s]" + } + }, + "8817a38d84da4ec4a061736044c0a959": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1202,16 +1298,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8e202cf98eb94b9d97ed83ec90e74300", - "IPY_MODEL_08e602a9d40f4e29b6b7ebbde2fc1609", - "IPY_MODEL_6cc99a7b73744b56ab37e515ceb783ab" + "IPY_MODEL_20a99185053c4dcda7050674956dc7d8", + "IPY_MODEL_08ec7890b2584a8f90fc0a92b955700c", + "IPY_MODEL_7700961ad6f745da89779f000f437934" ], - "layout": "IPY_MODEL_ee0dd83ecb8a4693b6b2d41796e233f1", + "layout": "IPY_MODEL_eafcb138fe5245fa89f293d52c113dc9", "tabbable": null, "tooltip": null } }, - "5763629ee5c041fdaf46dcc49c1d735e": { + "a5beebf8b44c4b6393b74e7d7f47dc1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1264,46 +1360,7 @@ "width": null } }, - "5f41be52301c47c6adc9fef245cb6857": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6cc99a7b73744b56ab37e515ceb783ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5763629ee5c041fdaf46dcc49c1d735e", - "placeholder": "​", - "style": "IPY_MODEL_8ef4650d3c7141ca8edcf87a49dea4cf", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 240MB/s]" - } - }, - "8644869e961249f9b2534074fd66420c": { + "a7fecfa805e943688ea2224b597e20e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1356,30 +1413,7 @@ "width": null } }, - "8e202cf98eb94b9d97ed83ec90e74300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a35b4dacf24f47189a3bcc4880b291f2", - "placeholder": "​", - "style": "IPY_MODEL_a53b263df44840a0a93d04b4fafa89ab", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "8ef4650d3c7141ca8edcf87a49dea4cf": { + "c23aeb8c3a7146a89967d5a00a1e6e80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1397,7 +1431,7 @@ "text_color": null } }, - "a35b4dacf24f47189a3bcc4880b291f2": { + "e4c11893781f4d85b1712b4a80b6a436": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1450,25 +1484,7 @@ "width": null } }, - "a53b263df44840a0a93d04b4fafa89ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee0dd83ecb8a4693b6b2d41796e233f1": { + "eafcb138fe5245fa89f293d52c113dc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1520,6 +1536,22 @@ "visibility": null, "width": null } + }, + "f92c25becce042d3a94a8626cca30cef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 75d048fa1..8f499904f 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:22.457057Z", - "iopub.status.busy": "2024-06-07T11:13:22.456885Z", - "iopub.status.idle": "2024-06-07T11:13:23.623481Z", - "shell.execute_reply": "2024-06-07T11:13:23.622936Z" + "iopub.execute_input": "2024-06-10T22:14:46.601589Z", + "iopub.status.busy": "2024-06-10T22:14:46.601405Z", + "iopub.status.idle": "2024-06-10T22:14:47.963397Z", + "shell.execute_reply": "2024-06-10T22:14:47.962724Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.626101Z", - "iopub.status.busy": "2024-06-07T11:13:23.625582Z", - "iopub.status.idle": "2024-06-07T11:13:23.642717Z", - "shell.execute_reply": "2024-06-07T11:13:23.642163Z" + "iopub.execute_input": "2024-06-10T22:14:47.966480Z", + "iopub.status.busy": "2024-06-10T22:14:47.966119Z", + "iopub.status.idle": "2024-06-10T22:14:47.986617Z", + "shell.execute_reply": "2024-06-10T22:14:47.985940Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.644833Z", - "iopub.status.busy": "2024-06-07T11:13:23.644452Z", - "iopub.status.idle": "2024-06-07T11:13:23.647494Z", - "shell.execute_reply": "2024-06-07T11:13:23.647031Z" + "iopub.execute_input": "2024-06-10T22:14:47.989571Z", + "iopub.status.busy": "2024-06-10T22:14:47.989187Z", + "iopub.status.idle": "2024-06-10T22:14:47.992579Z", + "shell.execute_reply": "2024-06-10T22:14:47.992025Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.649293Z", - "iopub.status.busy": "2024-06-07T11:13:23.649120Z", - "iopub.status.idle": "2024-06-07T11:13:23.758486Z", - "shell.execute_reply": "2024-06-07T11:13:23.757935Z" + "iopub.execute_input": "2024-06-10T22:14:47.994802Z", + "iopub.status.busy": "2024-06-10T22:14:47.994344Z", + "iopub.status.idle": "2024-06-10T22:14:48.073110Z", + "shell.execute_reply": "2024-06-10T22:14:48.072479Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.760645Z", - "iopub.status.busy": "2024-06-07T11:13:23.760459Z", - "iopub.status.idle": "2024-06-07T11:13:23.945647Z", - "shell.execute_reply": "2024-06-07T11:13:23.945005Z" + "iopub.execute_input": "2024-06-10T22:14:48.075336Z", + "iopub.status.busy": "2024-06-10T22:14:48.075150Z", + "iopub.status.idle": "2024-06-10T22:14:48.262148Z", + "shell.execute_reply": "2024-06-10T22:14:48.261574Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.948147Z", - "iopub.status.busy": "2024-06-07T11:13:23.947790Z", - "iopub.status.idle": "2024-06-07T11:13:24.158064Z", - "shell.execute_reply": "2024-06-07T11:13:24.157488Z" + "iopub.execute_input": "2024-06-10T22:14:48.265011Z", + "iopub.status.busy": "2024-06-10T22:14:48.264530Z", + "iopub.status.idle": "2024-06-10T22:14:48.516385Z", + "shell.execute_reply": "2024-06-10T22:14:48.515693Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:24.160309Z", - "iopub.status.busy": "2024-06-07T11:13:24.159973Z", - "iopub.status.idle": "2024-06-07T11:13:24.164463Z", - "shell.execute_reply": "2024-06-07T11:13:24.164038Z" + "iopub.execute_input": "2024-06-10T22:14:48.518922Z", + "iopub.status.busy": "2024-06-10T22:14:48.518556Z", + "iopub.status.idle": "2024-06-10T22:14:48.523753Z", + "shell.execute_reply": "2024-06-10T22:14:48.523278Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:24.166459Z", - "iopub.status.busy": "2024-06-07T11:13:24.166135Z", - "iopub.status.idle": "2024-06-07T11:13:24.171904Z", - "shell.execute_reply": "2024-06-07T11:13:24.171392Z" + "iopub.execute_input": "2024-06-10T22:14:48.525961Z", + "iopub.status.busy": "2024-06-10T22:14:48.525642Z", + "iopub.status.idle": "2024-06-10T22:14:48.532430Z", + "shell.execute_reply": "2024-06-10T22:14:48.531915Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:24.174043Z", - "iopub.status.busy": "2024-06-07T11:13:24.173661Z", - "iopub.status.idle": "2024-06-07T11:13:24.176350Z", - "shell.execute_reply": "2024-06-07T11:13:24.175828Z" + "iopub.execute_input": "2024-06-10T22:14:48.535036Z", + "iopub.status.busy": "2024-06-10T22:14:48.534633Z", + "iopub.status.idle": "2024-06-10T22:14:48.538085Z", + "shell.execute_reply": "2024-06-10T22:14:48.537632Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:24.178338Z", - "iopub.status.busy": "2024-06-07T11:13:24.178048Z", - "iopub.status.idle": "2024-06-07T11:13:32.368966Z", - "shell.execute_reply": "2024-06-07T11:13:32.368335Z" + "iopub.execute_input": "2024-06-10T22:14:48.540321Z", + "iopub.status.busy": "2024-06-10T22:14:48.539950Z", + "iopub.status.idle": "2024-06-10T22:14:57.363053Z", + "shell.execute_reply": "2024-06-10T22:14:57.362452Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.372203Z", - "iopub.status.busy": "2024-06-07T11:13:32.371560Z", - "iopub.status.idle": "2024-06-07T11:13:32.378708Z", - "shell.execute_reply": "2024-06-07T11:13:32.378235Z" + "iopub.execute_input": "2024-06-10T22:14:57.365901Z", + "iopub.status.busy": "2024-06-10T22:14:57.365505Z", + "iopub.status.idle": "2024-06-10T22:14:57.373214Z", + "shell.execute_reply": "2024-06-10T22:14:57.372648Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.380773Z", - "iopub.status.busy": "2024-06-07T11:13:32.380443Z", - "iopub.status.idle": "2024-06-07T11:13:32.384052Z", - "shell.execute_reply": "2024-06-07T11:13:32.383621Z" + "iopub.execute_input": "2024-06-10T22:14:57.375312Z", + "iopub.status.busy": "2024-06-10T22:14:57.374997Z", + "iopub.status.idle": "2024-06-10T22:14:57.378596Z", + "shell.execute_reply": "2024-06-10T22:14:57.378153Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.386009Z", - "iopub.status.busy": "2024-06-07T11:13:32.385699Z", - "iopub.status.idle": "2024-06-07T11:13:32.389012Z", - "shell.execute_reply": "2024-06-07T11:13:32.388462Z" + "iopub.execute_input": "2024-06-10T22:14:57.380585Z", + "iopub.status.busy": "2024-06-10T22:14:57.380272Z", + "iopub.status.idle": "2024-06-10T22:14:57.383616Z", + "shell.execute_reply": "2024-06-10T22:14:57.383070Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.390975Z", - "iopub.status.busy": "2024-06-07T11:13:32.390672Z", - "iopub.status.idle": "2024-06-07T11:13:32.393766Z", - "shell.execute_reply": "2024-06-07T11:13:32.393272Z" + "iopub.execute_input": "2024-06-10T22:14:57.385690Z", + "iopub.status.busy": "2024-06-10T22:14:57.385387Z", + "iopub.status.idle": "2024-06-10T22:14:57.388436Z", + "shell.execute_reply": "2024-06-10T22:14:57.387971Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.395742Z", - "iopub.status.busy": "2024-06-07T11:13:32.395438Z", - "iopub.status.idle": "2024-06-07T11:13:32.403538Z", - "shell.execute_reply": "2024-06-07T11:13:32.403081Z" + "iopub.execute_input": "2024-06-10T22:14:57.390349Z", + "iopub.status.busy": "2024-06-10T22:14:57.390034Z", + "iopub.status.idle": "2024-06-10T22:14:57.398191Z", + "shell.execute_reply": "2024-06-10T22:14:57.397748Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.405599Z", - "iopub.status.busy": "2024-06-07T11:13:32.405271Z", - "iopub.status.idle": "2024-06-07T11:13:32.407745Z", - "shell.execute_reply": "2024-06-07T11:13:32.407324Z" + "iopub.execute_input": "2024-06-10T22:14:57.400118Z", + "iopub.status.busy": "2024-06-10T22:14:57.399797Z", + "iopub.status.idle": "2024-06-10T22:14:57.402422Z", + "shell.execute_reply": "2024-06-10T22:14:57.401972Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.409824Z", - "iopub.status.busy": "2024-06-07T11:13:32.409516Z", - "iopub.status.idle": "2024-06-07T11:13:32.529589Z", - "shell.execute_reply": "2024-06-07T11:13:32.528990Z" + "iopub.execute_input": "2024-06-10T22:14:57.404524Z", + "iopub.status.busy": "2024-06-10T22:14:57.404088Z", + "iopub.status.idle": "2024-06-10T22:14:57.523103Z", + "shell.execute_reply": "2024-06-10T22:14:57.522531Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.531987Z", - "iopub.status.busy": "2024-06-07T11:13:32.531643Z", - "iopub.status.idle": "2024-06-07T11:13:32.636728Z", - "shell.execute_reply": "2024-06-07T11:13:32.636152Z" + "iopub.execute_input": "2024-06-10T22:14:57.525307Z", + "iopub.status.busy": "2024-06-10T22:14:57.525127Z", + "iopub.status.idle": "2024-06-10T22:14:57.628992Z", + "shell.execute_reply": "2024-06-10T22:14:57.628473Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.639460Z", - "iopub.status.busy": "2024-06-07T11:13:32.638946Z", - "iopub.status.idle": "2024-06-07T11:13:33.136914Z", - "shell.execute_reply": "2024-06-07T11:13:33.136382Z" + "iopub.execute_input": "2024-06-10T22:14:57.631148Z", + "iopub.status.busy": "2024-06-10T22:14:57.630973Z", + "iopub.status.idle": "2024-06-10T22:14:58.114361Z", + "shell.execute_reply": "2024-06-10T22:14:58.113818Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:33.139616Z", - "iopub.status.busy": "2024-06-07T11:13:33.139195Z", - "iopub.status.idle": "2024-06-07T11:13:33.216578Z", - "shell.execute_reply": "2024-06-07T11:13:33.216024Z" + "iopub.execute_input": "2024-06-10T22:14:58.116950Z", + "iopub.status.busy": "2024-06-10T22:14:58.116740Z", + "iopub.status.idle": "2024-06-10T22:14:58.197289Z", + "shell.execute_reply": "2024-06-10T22:14:58.196702Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:33.218834Z", - "iopub.status.busy": "2024-06-07T11:13:33.218479Z", - "iopub.status.idle": "2024-06-07T11:13:33.227587Z", - "shell.execute_reply": "2024-06-07T11:13:33.226994Z" + "iopub.execute_input": "2024-06-10T22:14:58.199614Z", + "iopub.status.busy": "2024-06-10T22:14:58.199233Z", + "iopub.status.idle": "2024-06-10T22:14:58.207769Z", + "shell.execute_reply": "2024-06-10T22:14:58.207304Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:33.230097Z", - "iopub.status.busy": "2024-06-07T11:13:33.229550Z", - "iopub.status.idle": "2024-06-07T11:13:33.232597Z", - "shell.execute_reply": "2024-06-07T11:13:33.232041Z" + "iopub.execute_input": "2024-06-10T22:14:58.209778Z", + "iopub.status.busy": "2024-06-10T22:14:58.209453Z", + "iopub.status.idle": "2024-06-10T22:14:58.212027Z", + "shell.execute_reply": "2024-06-10T22:14:58.211588Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:33.234586Z", - "iopub.status.busy": "2024-06-07T11:13:33.234261Z", - "iopub.status.idle": "2024-06-07T11:13:38.735861Z", - "shell.execute_reply": "2024-06-07T11:13:38.735056Z" + "iopub.execute_input": "2024-06-10T22:14:58.214137Z", + "iopub.status.busy": "2024-06-10T22:14:58.213819Z", + "iopub.status.idle": "2024-06-10T22:15:03.627726Z", + "shell.execute_reply": "2024-06-10T22:15:03.627107Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:38.738627Z", - "iopub.status.busy": "2024-06-07T11:13:38.738109Z", - "iopub.status.idle": "2024-06-07T11:13:38.747199Z", - "shell.execute_reply": "2024-06-07T11:13:38.746710Z" + "iopub.execute_input": "2024-06-10T22:15:03.630081Z", + "iopub.status.busy": "2024-06-10T22:15:03.629882Z", + "iopub.status.idle": "2024-06-10T22:15:03.638937Z", + "shell.execute_reply": "2024-06-10T22:15:03.638474Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:38.749375Z", - "iopub.status.busy": "2024-06-07T11:13:38.749182Z", - "iopub.status.idle": "2024-06-07T11:13:38.815000Z", - "shell.execute_reply": "2024-06-07T11:13:38.814490Z" + "iopub.execute_input": "2024-06-10T22:15:03.640866Z", + "iopub.status.busy": "2024-06-10T22:15:03.640688Z", + "iopub.status.idle": "2024-06-10T22:15:03.705548Z", + "shell.execute_reply": "2024-06-10T22:15:03.705035Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 7a520dbe7..be9a9cddb 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:41.633265Z", - "iopub.status.busy": "2024-06-07T11:13:41.633077Z", - "iopub.status.idle": "2024-06-07T11:13:42.863467Z", - "shell.execute_reply": "2024-06-07T11:13:42.862721Z" + "iopub.execute_input": "2024-06-10T22:15:06.746803Z", + "iopub.status.busy": "2024-06-10T22:15:06.746396Z", + "iopub.status.idle": "2024-06-10T22:15:08.025245Z", + "shell.execute_reply": "2024-06-10T22:15:08.024547Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:42.866359Z", - "iopub.status.busy": "2024-06-07T11:13:42.866088Z", - "iopub.status.idle": "2024-06-07T11:14:22.567596Z", - "shell.execute_reply": "2024-06-07T11:14:22.566969Z" + "iopub.execute_input": "2024-06-10T22:15:08.028045Z", + "iopub.status.busy": "2024-06-10T22:15:08.027654Z", + "iopub.status.idle": "2024-06-10T22:16:04.871816Z", + "shell.execute_reply": "2024-06-10T22:16:04.871065Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:22.570203Z", - "iopub.status.busy": "2024-06-07T11:14:22.569833Z", - "iopub.status.idle": "2024-06-07T11:14:23.673853Z", - "shell.execute_reply": "2024-06-07T11:14:23.673205Z" + "iopub.execute_input": "2024-06-10T22:16:04.874476Z", + "iopub.status.busy": "2024-06-10T22:16:04.874287Z", + "iopub.status.idle": "2024-06-10T22:16:06.049701Z", + "shell.execute_reply": "2024-06-10T22:16:06.049069Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.676484Z", - "iopub.status.busy": "2024-06-07T11:14:23.676049Z", - "iopub.status.idle": "2024-06-07T11:14:23.679724Z", - "shell.execute_reply": "2024-06-07T11:14:23.679291Z" + "iopub.execute_input": "2024-06-10T22:16:06.052325Z", + "iopub.status.busy": "2024-06-10T22:16:06.052013Z", + "iopub.status.idle": "2024-06-10T22:16:06.055512Z", + "shell.execute_reply": "2024-06-10T22:16:06.055042Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.681764Z", - "iopub.status.busy": "2024-06-07T11:14:23.681498Z", - "iopub.status.idle": "2024-06-07T11:14:23.685370Z", - "shell.execute_reply": "2024-06-07T11:14:23.684909Z" + "iopub.execute_input": "2024-06-10T22:16:06.057752Z", + "iopub.status.busy": "2024-06-10T22:16:06.057325Z", + "iopub.status.idle": "2024-06-10T22:16:06.061364Z", + "shell.execute_reply": "2024-06-10T22:16:06.060833Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.687492Z", - "iopub.status.busy": "2024-06-07T11:14:23.687183Z", - "iopub.status.idle": "2024-06-07T11:14:23.690708Z", - "shell.execute_reply": "2024-06-07T11:14:23.690269Z" + "iopub.execute_input": "2024-06-10T22:16:06.063574Z", + "iopub.status.busy": "2024-06-10T22:16:06.063187Z", + "iopub.status.idle": "2024-06-10T22:16:06.066929Z", + "shell.execute_reply": "2024-06-10T22:16:06.066359Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.692723Z", - "iopub.status.busy": "2024-06-07T11:14:23.692310Z", - "iopub.status.idle": "2024-06-07T11:14:23.695215Z", - "shell.execute_reply": "2024-06-07T11:14:23.694706Z" + "iopub.execute_input": "2024-06-10T22:16:06.069120Z", + "iopub.status.busy": "2024-06-10T22:16:06.068613Z", + "iopub.status.idle": "2024-06-10T22:16:06.071626Z", + "shell.execute_reply": "2024-06-10T22:16:06.071208Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.697324Z", - "iopub.status.busy": "2024-06-07T11:14:23.697012Z", - "iopub.status.idle": "2024-06-07T11:14:57.715964Z", - "shell.execute_reply": "2024-06-07T11:14:57.715352Z" + "iopub.execute_input": "2024-06-10T22:16:06.073640Z", + "iopub.status.busy": "2024-06-10T22:16:06.073320Z", + "iopub.status.idle": "2024-06-10T22:16:39.784120Z", + "shell.execute_reply": "2024-06-10T22:16:39.783483Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e8266628fc941b4bf18dcadf020b8af", + "model_id": "a405bd76ea4240168ab84903143b1d22", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b5ebcf671a614d49a4e7047730a75dfd", + "model_id": "1cab7337a5134728b238afb1207c2e16", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:57.718673Z", - "iopub.status.busy": "2024-06-07T11:14:57.718432Z", - "iopub.status.idle": "2024-06-07T11:14:58.391302Z", - "shell.execute_reply": "2024-06-07T11:14:58.390709Z" + "iopub.execute_input": "2024-06-10T22:16:39.786849Z", + "iopub.status.busy": "2024-06-10T22:16:39.786440Z", + "iopub.status.idle": "2024-06-10T22:16:40.465480Z", + "shell.execute_reply": "2024-06-10T22:16:40.464938Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:58.393567Z", - "iopub.status.busy": "2024-06-07T11:14:58.393135Z", - "iopub.status.idle": "2024-06-07T11:15:01.140035Z", - "shell.execute_reply": "2024-06-07T11:15:01.139443Z" + "iopub.execute_input": "2024-06-10T22:16:40.467844Z", + "iopub.status.busy": "2024-06-10T22:16:40.467455Z", + "iopub.status.idle": "2024-06-10T22:16:43.243537Z", + "shell.execute_reply": "2024-06-10T22:16:43.242992Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:01.142296Z", - "iopub.status.busy": "2024-06-07T11:15:01.141947Z", - "iopub.status.idle": "2024-06-07T11:15:33.667226Z", - "shell.execute_reply": "2024-06-07T11:15:33.666734Z" + "iopub.execute_input": "2024-06-10T22:16:43.245814Z", + "iopub.status.busy": "2024-06-10T22:16:43.245483Z", + "iopub.status.idle": "2024-06-10T22:17:15.426143Z", + "shell.execute_reply": "2024-06-10T22:17:15.425688Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cd17687ea1d4456d87e7bf7b8208cb6a", + "model_id": "8b2590e4ee6240cbadf69b0e406f1f6f", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:33.669239Z", - "iopub.status.busy": "2024-06-07T11:15:33.669060Z", - "iopub.status.idle": "2024-06-07T11:15:48.152215Z", - "shell.execute_reply": "2024-06-07T11:15:48.151663Z" + "iopub.execute_input": "2024-06-10T22:17:15.428232Z", + "iopub.status.busy": "2024-06-10T22:17:15.428052Z", + "iopub.status.idle": "2024-06-10T22:17:30.036465Z", + "shell.execute_reply": "2024-06-10T22:17:30.035891Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:48.154624Z", - "iopub.status.busy": "2024-06-07T11:15:48.154425Z", - "iopub.status.idle": "2024-06-07T11:15:51.994662Z", - "shell.execute_reply": "2024-06-07T11:15:51.994164Z" + "iopub.execute_input": "2024-06-10T22:17:30.039015Z", + "iopub.status.busy": "2024-06-10T22:17:30.038809Z", + "iopub.status.idle": "2024-06-10T22:17:33.812633Z", + "shell.execute_reply": "2024-06-10T22:17:33.812110Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:51.996696Z", - "iopub.status.busy": "2024-06-07T11:15:51.996516Z", - "iopub.status.idle": "2024-06-07T11:15:53.447714Z", - "shell.execute_reply": "2024-06-07T11:15:53.447083Z" + "iopub.execute_input": "2024-06-10T22:17:33.814712Z", + "iopub.status.busy": "2024-06-10T22:17:33.814528Z", + "iopub.status.idle": "2024-06-10T22:17:35.239992Z", + "shell.execute_reply": "2024-06-10T22:17:35.239415Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0039b1e3b5d24ed394bec67181313e41", + "model_id": "e81d95d8b6bc4962b97a4ca2f9cea7f2", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:53.450302Z", - "iopub.status.busy": "2024-06-07T11:15:53.450118Z", - "iopub.status.idle": "2024-06-07T11:15:53.482950Z", - "shell.execute_reply": "2024-06-07T11:15:53.481844Z" + "iopub.execute_input": "2024-06-10T22:17:35.242610Z", + "iopub.status.busy": "2024-06-10T22:17:35.242225Z", + "iopub.status.idle": "2024-06-10T22:17:35.272786Z", + "shell.execute_reply": "2024-06-10T22:17:35.272221Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:53.486646Z", - "iopub.status.busy": "2024-06-07T11:15:53.486386Z", - "iopub.status.idle": "2024-06-07T11:15:59.636100Z", - "shell.execute_reply": "2024-06-07T11:15:59.635590Z" + "iopub.execute_input": "2024-06-10T22:17:35.275346Z", + "iopub.status.busy": "2024-06-10T22:17:35.274958Z", + "iopub.status.idle": "2024-06-10T22:17:41.270747Z", + "shell.execute_reply": "2024-06-10T22:17:41.270164Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:59.638473Z", - "iopub.status.busy": "2024-06-07T11:15:59.638126Z", - "iopub.status.idle": "2024-06-07T11:15:59.694204Z", - "shell.execute_reply": "2024-06-07T11:15:59.693681Z" + "iopub.execute_input": "2024-06-10T22:17:41.272989Z", + "iopub.status.busy": "2024-06-10T22:17:41.272627Z", + "iopub.status.idle": "2024-06-10T22:17:41.329124Z", + "shell.execute_reply": "2024-06-10T22:17:41.328511Z" }, "nbsphinx": "hidden" }, @@ -1038,54 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0039b1e3b5d24ed394bec67181313e41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cdf1bc0368124525865e4dfbe50d3b2e", - "IPY_MODEL_424d9949f33f4c5ea40ccba9e73f9353", - "IPY_MODEL_4422d539a8c64824be05445c9dea005a" - ], - "layout": "IPY_MODEL_159a9a4a44c7488f94db4a71a93a64f8", - "tabbable": null, - "tooltip": null - } - }, - "01dc7c7f1b4d4d82a529531a58042f4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_272658dba82b4ee288b4282b63236002", - "placeholder": "​", - "style": "IPY_MODEL_fece2a1ada064790b82512be2393555c", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "02024670245944c6a43046d8345e39e0": { + "069d62f313a34fce922923af720802d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1138,25 +1091,7 @@ "width": null } }, - "0b5bff299b4449cd8018b9db86dad4b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "159a9a4a44c7488f94db4a71a93a64f8": { + "0c93bb2cd1224bdc84079017e43429f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1209,7 +1144,95 @@ "width": null } }, - "272658dba82b4ee288b4282b63236002": { + "155ee60034db48c4b4e0677986370ff3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e4a07bde3a74e148864b7700e692af4", + "placeholder": "​", + "style": "IPY_MODEL_27f5f2ba8cb14d0a91eeba394a7bebd4", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "1bae0c62e31b4d2998c8e0b6cf2e1dfe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b307e15575e4a55bbbe94c8568b4c07", + "placeholder": "​", + "style": "IPY_MODEL_5c60457c6b5948ee880fde3aa728a52d", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.43it/s]" + } + }, + "1cab7337a5134728b238afb1207c2e16": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_155ee60034db48c4b4e0677986370ff3", + "IPY_MODEL_3d5ff5392adb41edb8df3dd86ed79af8", + "IPY_MODEL_1bae0c62e31b4d2998c8e0b6cf2e1dfe" + ], + "layout": "IPY_MODEL_cbd1df140b6242378240f5e67e015809", + "tabbable": null, + "tooltip": null + } + }, + "27f5f2ba8cb14d0a91eeba394a7bebd4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3115edca25944b31b49c0b77915d1923": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1262,30 +1285,49 @@ "width": null } }, - "31ddefea64414b7bb43e4b175ddbb50f": { + "370ab1674b4c417cb166f3bc0ead6e2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d5ff5392adb41edb8df3dd86ed79af8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_02024670245944c6a43046d8345e39e0", - "placeholder": "​", - "style": "IPY_MODEL_4d9b409c09e445a3bf903bf568e96d4f", + "layout": "IPY_MODEL_824dc0b2d89e47859d9bff3855022113", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9d219e313cbc45e88d0d4a5c874f5fa2", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 823.96it/s]" + "value": 30.0 } }, - "33a30e9c3e17483f9a9a75324aafc628": { + "3e4a07bde3a74e148864b7700e692af4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1338,7 +1380,25 @@ "width": null } }, - "36e3a2d2d10c46c0890250bfa03f67fc": { + "40837cc385eb4cde9c4bf1b66d76b555": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4766bf08a55649edb0eb6997c4e0d119": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1391,33 +1451,7 @@ "width": null } }, - "424d9949f33f4c5ea40ccba9e73f9353": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ad5d84d1aa0455d8f06c37279560d81", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ba653dd5644a4623930b9ed0bd812034", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "4422d539a8c64824be05445c9dea005a": { + "485b2b12f61e4e2a8916f1fe8c3eeea0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1432,15 +1466,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_36e3a2d2d10c46c0890250bfa03f67fc", + "layout": "IPY_MODEL_5701332c04ad41f0b0c7f8a7326034fe", "placeholder": "​", - "style": "IPY_MODEL_0b5bff299b4449cd8018b9db86dad4b1", + "style": "IPY_MODEL_c4459535166c4876ac7d9cac2c0b3f0a", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.12it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "456992924b764a79921db8b27877b920": { + "5701332c04ad41f0b0c7f8a7326034fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1493,7 +1527,7 @@ "width": null } }, - "462c25bcc88a47fe9dba86800f768f23": { + "587fb49afe7e452e8b9054c47150e310": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1546,7 +1580,25 @@ "width": null } }, - "48f3ccb6d08d491496bc7c0c78b428c8": { + "5c60457c6b5948ee880fde3aa728a52d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6fdb7dc35e1f47be9408239402e45cb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1599,43 +1651,7 @@ "width": null } }, - "4d9b409c09e445a3bf903bf568e96d4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "58d70aea073e46b09dc8fdf2b9ce62d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "63674e4e58e1469e9d2b7545eaf4762d": { + "765118cd2e4849028cb54f74b1247222": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1650,15 +1666,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_681176fb1b484bf0b12e9ab472bca24f", + "layout": "IPY_MODEL_c6c8cf3ccdd748f189e7453d84f3fe23", "placeholder": "​", - "style": "IPY_MODEL_58d70aea073e46b09dc8fdf2b9ce62d7", + "style": "IPY_MODEL_a25099387deb4c41b6d4d1905acdbe48", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "100%" } }, - "681176fb1b484bf0b12e9ab472bca24f": { + "7b307e15575e4a55bbbe94c8568b4c07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1711,7 +1727,7 @@ "width": null } }, - "69d9ddbe65194fb690cb729f9c5b3aaf": { + "824dc0b2d89e47859d9bff3855022113": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1764,14 +1780,56 @@ "width": null } }, - "770596981e85421283336c080f17fa13": { + "8b2590e4ee6240cbadf69b0e406f1f6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_765118cd2e4849028cb54f74b1247222", + "IPY_MODEL_d126189cb59048e2a6d57e0f2c37197e", + "IPY_MODEL_fe4a4d952cf345d1aace991841711b49" + ], + "layout": "IPY_MODEL_d2d9fe79e86c4c8ab2cef10fb6edd54b", + "tabbable": null, + "tooltip": null + } + }, + "9701d0b6cfbc45aa9cb35a4e68515c1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d219e313cbc45e88d0d4a5c874f5fa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1780,7 +1838,43 @@ "description_width": "" } }, - "7e8266628fc941b4bf18dcadf020b8af": { + "9e22ba88411b4c98937ad9abf1c321da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a25099387deb4c41b6d4d1905acdbe48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a405bd76ea4240168ab84903143b1d22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1795,84 +1889,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_63674e4e58e1469e9d2b7545eaf4762d", - "IPY_MODEL_e331785f7a474f2097437322e2f4976a", - "IPY_MODEL_31ddefea64414b7bb43e4b175ddbb50f" + "IPY_MODEL_485b2b12f61e4e2a8916f1fe8c3eeea0", + "IPY_MODEL_cc3aaf56c4b042d6b507309870b96219", + "IPY_MODEL_ff056a8323944276a4e555272ee3eee2" ], - "layout": "IPY_MODEL_456992924b764a79921db8b27877b920", + "layout": "IPY_MODEL_3115edca25944b31b49c0b77915d1923", "tabbable": null, "tooltip": null } }, - "834d78931762498fbb2fd0a765af2160": { + "a5136e1bd0c046028b22a7771061e8a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_33a30e9c3e17483f9a9a75324aafc628", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_770596981e85421283336c080f17fa13", + "layout": "IPY_MODEL_fcf52af6f4b141acb106085939d775d0", + "placeholder": "​", + "style": "IPY_MODEL_b342f6da1895419abbcf4e29ab2dfdf2", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "842cdb624f454adaac6a2c4eafadc8a0": { + "b342f6da1895419abbcf4e29ab2dfdf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "84b203c550b5494c83706d88a040daea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f2b6b88c865b4e9fa7be8cd3efa1cffe", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_842cdb624f454adaac6a2c4eafadc8a0", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "888b89fd991d4378a4b03dadb10e903d": { + "b6921b7a91ca46a4bd8fc7d9b8ec11a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1888,7 +1955,7 @@ "description_width": "" } }, - "89404e1c0bf44ed0adb94b2e37d47739": { + "c4459535166c4876ac7d9cac2c0b3f0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1906,7 +1973,7 @@ "text_color": null } }, - "8ad5d84d1aa0455d8f06c37279560d81": { + "c53a2f4d9c904261abfe681398d916a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1959,7 +2026,7 @@ "width": null } }, - "8f6baf6102bf4300bd06bdba8f67a178": { + "c6c8cf3ccdd748f189e7453d84f3fe23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2012,7 +2079,7 @@ "width": null } }, - "8f74a8bedb9a474b869c5e7be44fb83f": { + "cbd1df140b6242378240f5e67e015809": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2065,7 +2132,98 @@ "width": null } }, - "985ffda7f52e4b0c9bcb49093dd321d4": { + "cc3aaf56c4b042d6b507309870b96219": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6fdb7dc35e1f47be9408239402e45cb6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ce51fc175c474cb7b9aa5c4fa47251a7", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ce51fc175c474cb7b9aa5c4fa47251a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d0a6884d253342ffa218b5ea3681e8bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0c93bb2cd1224bdc84079017e43429f8", + "placeholder": "​", + "style": "IPY_MODEL_9701d0b6cfbc45aa9cb35a4e68515c1e", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.27it/s]" + } + }, + "d126189cb59048e2a6d57e0f2c37197e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4766bf08a55649edb0eb6997c4e0d119", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b6921b7a91ca46a4bd8fc7d9b8ec11a0", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "d2d9fe79e86c4c8ab2cef10fb6edd54b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2118,101 +2276,33 @@ "width": null } }, - "988b7f917302422cbde432537a86e20d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a3a1e24187ee4365acbdf73d8a3d758c": { + "d84a9735aa484dacaae11b9b76aacd45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b583ea6a0a6d4c94843955f81bfa00e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b5ebcf671a614d49a4e7047730a75dfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eb9cb67782fe469f9deed2869d57a350", - "IPY_MODEL_834d78931762498fbb2fd0a765af2160", - "IPY_MODEL_d7f021c3712d4633a1752faf1688871e" - ], - "layout": "IPY_MODEL_8f6baf6102bf4300bd06bdba8f67a178", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e08166db00cc43f29a6259cd777919d5", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_370ab1674b4c417cb166f3bc0ead6e2a", "tabbable": null, - "tooltip": null - } - }, - "ba653dd5644a4623930b9ed0bd812034": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 30.0 } }, - "c00f14f1fa3946bcb4cad835ac1fe6af": { + "e08166db00cc43f29a6259cd777919d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2265,7 +2355,7 @@ "width": null } }, - "cd17687ea1d4456d87e7bf7b8208cb6a": { + "e81d95d8b6bc4962b97a4ca2f9cea7f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2280,134 +2370,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_01dc7c7f1b4d4d82a529531a58042f4f", - "IPY_MODEL_84b203c550b5494c83706d88a040daea", - "IPY_MODEL_cfc0195d1c7b4151ad84de4df3f0d0bd" + "IPY_MODEL_a5136e1bd0c046028b22a7771061e8a5", + "IPY_MODEL_d84a9735aa484dacaae11b9b76aacd45", + "IPY_MODEL_d0a6884d253342ffa218b5ea3681e8bd" ], - "layout": "IPY_MODEL_8f74a8bedb9a474b869c5e7be44fb83f", + "layout": "IPY_MODEL_069d62f313a34fce922923af720802d3", "tabbable": null, "tooltip": null } }, - "cdf1bc0368124525865e4dfbe50d3b2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_985ffda7f52e4b0c9bcb49093dd321d4", - "placeholder": "​", - "style": "IPY_MODEL_89404e1c0bf44ed0adb94b2e37d47739", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "cfc0195d1c7b4151ad84de4df3f0d0bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_48f3ccb6d08d491496bc7c0c78b428c8", - "placeholder": "​", - "style": "IPY_MODEL_b583ea6a0a6d4c94843955f81bfa00e1", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 155073.56it/s]" - } - }, - "d7f021c3712d4633a1752faf1688871e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c00f14f1fa3946bcb4cad835ac1fe6af", - "placeholder": "​", - "style": "IPY_MODEL_a3a1e24187ee4365acbdf73d8a3d758c", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.38it/s]" - } - }, - "e331785f7a474f2097437322e2f4976a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_462c25bcc88a47fe9dba86800f768f23", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_888b89fd991d4378a4b03dadb10e903d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "eb9cb67782fe469f9deed2869d57a350": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69d9ddbe65194fb690cb729f9c5b3aaf", - "placeholder": "​", - "style": "IPY_MODEL_988b7f917302422cbde432537a86e20d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "f2b6b88c865b4e9fa7be8cd3efa1cffe": { + "fcf52af6f4b141acb106085939d775d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2460,22 +2432,50 @@ "width": null } }, - "fece2a1ada064790b82512be2393555c": { + "fe4a4d952cf345d1aace991841711b49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_587fb49afe7e452e8b9054c47150e310", + "placeholder": "​", + "style": "IPY_MODEL_9e22ba88411b4c98937ad9abf1c321da", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 155918.42it/s]" + } + }, + "ff056a8323944276a4e555272ee3eee2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c53a2f4d9c904261abfe681398d916a8", + "placeholder": "​", + "style": "IPY_MODEL_40837cc385eb4cde9c4bf1b66d76b555", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 792.16it/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index f187c5383..5afe74539 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:02.017270Z", - "iopub.status.busy": "2024-06-07T11:16:02.017087Z", - "iopub.status.idle": "2024-06-07T11:16:03.143424Z", - "shell.execute_reply": "2024-06-07T11:16:03.142797Z" + "iopub.execute_input": "2024-06-10T22:17:43.757812Z", + "iopub.status.busy": "2024-06-10T22:17:43.757642Z", + "iopub.status.idle": "2024-06-10T22:17:45.086145Z", + "shell.execute_reply": "2024-06-10T22:17:45.085477Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-07 11:16:02-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-10 22:17:43-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,22 +94,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.244, 2400:52e0:1a00::1067:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... " + "169.150.236.99, 2400:52e0:1a00::1068:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n" + "connected.\r\n", + "HTTP request sent, awaiting response... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... 200 OK\r\n", + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -122,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 6.24MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K 4.77MB/s in 0.2s \r\n", "\r\n", - "2024-06-07 11:16:02 (6.24 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-10 22:17:44 (4.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-07 11:16:02-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.104.249, 3.5.29.117, 3.5.9.169, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.104.249|:443... connected.\r\n", + "--2024-06-10 22:17:44-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.199.41, 52.216.162.251, 52.217.172.185, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.199.41|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -167,9 +168,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", + "pred_probs.npz 96%[==================> ] 15.71M 74.3MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 75.9MB/s in 0.2s \r\n", "\r\n", - "2024-06-07 11:16:03 (198 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-10 22:17:44 (75.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:03.146319Z", - "iopub.status.busy": "2024-06-07T11:16:03.145812Z", - "iopub.status.idle": "2024-06-07T11:16:04.343982Z", - "shell.execute_reply": "2024-06-07T11:16:04.343440Z" + "iopub.execute_input": "2024-06-10T22:17:45.088919Z", + "iopub.status.busy": "2024-06-10T22:17:45.088557Z", + "iopub.status.idle": "2024-06-10T22:17:46.456159Z", + "shell.execute_reply": "2024-06-10T22:17:46.455605Z" }, "nbsphinx": "hidden" }, @@ -200,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:04.346364Z", - "iopub.status.busy": "2024-06-07T11:16:04.346088Z", - "iopub.status.idle": "2024-06-07T11:16:04.349331Z", - "shell.execute_reply": "2024-06-07T11:16:04.348909Z" + "iopub.execute_input": "2024-06-10T22:17:46.458688Z", + "iopub.status.busy": "2024-06-10T22:17:46.458251Z", + "iopub.status.idle": "2024-06-10T22:17:46.461670Z", + "shell.execute_reply": "2024-06-10T22:17:46.461213Z" } }, "outputs": [], @@ -279,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:04.351409Z", - "iopub.status.busy": "2024-06-07T11:16:04.351081Z", - "iopub.status.idle": "2024-06-07T11:16:04.353976Z", - "shell.execute_reply": "2024-06-07T11:16:04.353543Z" + "iopub.execute_input": "2024-06-10T22:17:46.463664Z", + "iopub.status.busy": "2024-06-10T22:17:46.463336Z", + "iopub.status.idle": "2024-06-10T22:17:46.466395Z", + "shell.execute_reply": "2024-06-10T22:17:46.465851Z" }, "nbsphinx": "hidden" }, @@ -300,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:04.356009Z", - "iopub.status.busy": "2024-06-07T11:16:04.355685Z", - "iopub.status.idle": "2024-06-07T11:16:13.223272Z", - "shell.execute_reply": "2024-06-07T11:16:13.222636Z" + "iopub.execute_input": "2024-06-10T22:17:46.468363Z", + "iopub.status.busy": "2024-06-10T22:17:46.468044Z", + "iopub.status.idle": "2024-06-10T22:17:55.391261Z", + "shell.execute_reply": "2024-06-10T22:17:55.390662Z" } }, "outputs": [], @@ -377,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:13.225823Z", - "iopub.status.busy": "2024-06-07T11:16:13.225615Z", - "iopub.status.idle": "2024-06-07T11:16:13.232134Z", - "shell.execute_reply": "2024-06-07T11:16:13.231560Z" + "iopub.execute_input": "2024-06-10T22:17:55.394120Z", + "iopub.status.busy": "2024-06-10T22:17:55.393483Z", + "iopub.status.idle": "2024-06-10T22:17:55.399256Z", + "shell.execute_reply": "2024-06-10T22:17:55.398799Z" }, "nbsphinx": "hidden" }, @@ -420,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:13.234135Z", - "iopub.status.busy": "2024-06-07T11:16:13.233929Z", - "iopub.status.idle": "2024-06-07T11:16:13.573950Z", - "shell.execute_reply": "2024-06-07T11:16:13.573388Z" + "iopub.execute_input": "2024-06-10T22:17:55.401418Z", + "iopub.status.busy": "2024-06-10T22:17:55.400971Z", + "iopub.status.idle": "2024-06-10T22:17:55.735092Z", + "shell.execute_reply": "2024-06-10T22:17:55.734457Z" } }, "outputs": [], @@ -460,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:13.576250Z", - "iopub.status.busy": "2024-06-07T11:16:13.576061Z", - "iopub.status.idle": "2024-06-07T11:16:13.580667Z", - "shell.execute_reply": "2024-06-07T11:16:13.580204Z" + "iopub.execute_input": "2024-06-10T22:17:55.737821Z", + "iopub.status.busy": "2024-06-10T22:17:55.737387Z", + "iopub.status.idle": "2024-06-10T22:17:55.741991Z", + "shell.execute_reply": "2024-06-10T22:17:55.741503Z" } }, "outputs": [ @@ -535,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:13.582699Z", - "iopub.status.busy": "2024-06-07T11:16:13.582371Z", - "iopub.status.idle": "2024-06-07T11:16:15.893335Z", - "shell.execute_reply": "2024-06-07T11:16:15.892539Z" + "iopub.execute_input": "2024-06-10T22:17:55.743913Z", + "iopub.status.busy": "2024-06-10T22:17:55.743624Z", + "iopub.status.idle": "2024-06-10T22:17:58.038181Z", + "shell.execute_reply": "2024-06-10T22:17:58.037528Z" } }, "outputs": [], @@ -560,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.896646Z", - "iopub.status.busy": "2024-06-07T11:16:15.896089Z", - "iopub.status.idle": "2024-06-07T11:16:15.900170Z", - "shell.execute_reply": "2024-06-07T11:16:15.899651Z" + "iopub.execute_input": "2024-06-10T22:17:58.041144Z", + "iopub.status.busy": "2024-06-10T22:17:58.040559Z", + "iopub.status.idle": "2024-06-10T22:17:58.044593Z", + "shell.execute_reply": "2024-06-10T22:17:58.044062Z" } }, "outputs": [ @@ -599,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.902245Z", - "iopub.status.busy": "2024-06-07T11:16:15.901828Z", - "iopub.status.idle": "2024-06-07T11:16:15.907433Z", - "shell.execute_reply": "2024-06-07T11:16:15.906893Z" + "iopub.execute_input": "2024-06-10T22:17:58.046722Z", + "iopub.status.busy": "2024-06-10T22:17:58.046402Z", + "iopub.status.idle": "2024-06-10T22:17:58.051713Z", + "shell.execute_reply": "2024-06-10T22:17:58.051255Z" } }, "outputs": [ @@ -780,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.909394Z", - "iopub.status.busy": "2024-06-07T11:16:15.909083Z", - "iopub.status.idle": "2024-06-07T11:16:15.934676Z", - "shell.execute_reply": "2024-06-07T11:16:15.934241Z" + "iopub.execute_input": "2024-06-10T22:17:58.053724Z", + "iopub.status.busy": "2024-06-10T22:17:58.053419Z", + "iopub.status.idle": "2024-06-10T22:17:58.079125Z", + "shell.execute_reply": "2024-06-10T22:17:58.078681Z" } }, "outputs": [ @@ -885,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.936677Z", - "iopub.status.busy": "2024-06-07T11:16:15.936504Z", - "iopub.status.idle": "2024-06-07T11:16:15.940793Z", - "shell.execute_reply": "2024-06-07T11:16:15.940262Z" + "iopub.execute_input": "2024-06-10T22:17:58.081051Z", + "iopub.status.busy": "2024-06-10T22:17:58.080862Z", + "iopub.status.idle": "2024-06-10T22:17:58.084952Z", + "shell.execute_reply": "2024-06-10T22:17:58.084427Z" } }, "outputs": [ @@ -962,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.942947Z", - "iopub.status.busy": "2024-06-07T11:16:15.942646Z", - "iopub.status.idle": "2024-06-07T11:16:17.325864Z", - "shell.execute_reply": "2024-06-07T11:16:17.325245Z" + "iopub.execute_input": "2024-06-10T22:17:58.086923Z", + "iopub.status.busy": "2024-06-10T22:17:58.086619Z", + "iopub.status.idle": "2024-06-10T22:17:59.497667Z", + "shell.execute_reply": "2024-06-10T22:17:59.497133Z" } }, "outputs": [ @@ -1137,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:17.328017Z", - "iopub.status.busy": "2024-06-07T11:16:17.327822Z", - "iopub.status.idle": "2024-06-07T11:16:17.331825Z", - "shell.execute_reply": "2024-06-07T11:16:17.331395Z" + "iopub.execute_input": "2024-06-10T22:17:59.499844Z", + "iopub.status.busy": "2024-06-10T22:17:59.499502Z", + "iopub.status.idle": "2024-06-10T22:17:59.503676Z", + "shell.execute_reply": "2024-06-10T22:17:59.503201Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 038521573fa765f1ce5c0eda20d53f34837c90c1..6a815a5ea900a2f3d78fbccb3c9ea08fcb4c68bc 100644 GIT binary patch delta 62 zcmX>tep-A(E~8;dmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu PYHVz1X})tep-A(E~BA&d5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx=6Q^|TmW~F69NDL diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 698ff6409ca3b5a3623d0e390b736549ac27a3c9..17a5af8ea0b267a32b3313ffdec2ae0d01bbfb29 100644 GIT binary patch delta 64 zcmcb6i}~&?<_%{!4NJ1ja??tUaSpcXIy delta 64 zcmcb6i}~&?<_%{!4b96-Ec4Av4E2*!jZKox64T5r%~DblO-)P_jV+Us%@ZxmlFXCR UEDTf3jg1pcQ_VL2`vK_E&bTx!)QXq)4{QUp)0VvH>X$_r|w zWQ@NM6^N0NXn@+7AqJ&9$b%0C!wV)vAjAYoyznF@Dt`aWoSqq^XZyn2w9U!sIs5Fj z*WT+}>-*L^4?cX(0}r3`^b4oceP32z$zSEOn^k7P&?re{A@Iy2G0th){6|Tyv-XK| zYW1;yoc`wSy8DIJdA&FGudPXJt?b>kU-UNYzp(fF{hi*E`!DI8a$sfeiv6GLtvPV* z|GDy^yMEWZ_h9$39d7Q{v~70RZF3tob~oIybML-wvpe@}o87x_=N)Md-`KHpE;Zk( z&$+#|rg!+BGkQl3uIkCV*YwW2d*+UPC+bEkLKy@v)4FK><*2F{Fp=^Z_^rYG;~_TD-;lYZF8b8ne zQ|rRk3%^*_y5y18PwKxOuCD6}O{EviGi|j9+WD-rWZXNKjr2kEU%$SZThjF*8l{!j z9$#bDI_qdkIml$Qbkg-7i|t2R9ZiX}*{JBHAlw-yjgdyjY?3C@)w`c-t>|C%>FVWH z(Qy6bL)A@1yS00wWxFa^gm+d-a|MU2OUQMMmR?UIs#9Gk~Y#9l;J`vX`~R+(ipiUj=K72r@gX%@#WT%{<*e#yj46x z{ouwn>G;J@P`|dZP3tRvTy?s^hRn5!5}_ngBtBZlQxHBm+^nB>iIGHb`oM84kz;Zu z1gTXB%o_=CoN(!hR>#}q67fpPCMj^2W!6*&<+RQwx<0)BRjX)t;7GS<_jR~iAHKPL zYJJ1cs!KQ8+ppQYcl+7{2R3%sMny>01Q=yj;Mq*3&f(-p4lMc1N3T`LWUP;1`eEx} z;i2MMSiJ62x6IzS<>Q~YVOAF+baHhlT-n;~8|!uNRI9rsmzpqLSHF8f`;;zHfR82% zXGjt%a!*Cl896m7FJh!4?-7nHdpxG&QAj;VZ5BC6;q{|cv`_zC{ixMRi87U?Rmpk; zs56o$BxoX3N;a{2*K@6vBfymm*E7#nTe>B?jVGJyXP>Rk>?R(ivmO}(vFCJh+D1tc zxQtQc^E~vVlZoe6IV+qe!dUGn;Tgb+0*ON8`my_~m3<)Tr%g^sxRK}_w^3M;j3qi~ zL5U4qGnq#rS~6U>wzTO?!R$SUtM&C&4_9Z_PyMF4u%nUd6S6;UjshLj8JYBhMSYt_~h6!X5?-aDidWU2APvG z^LQ&54nw>Z4KLvBKd-blY+_oCAs+&?s8PNiMG`msEmCF4Haiv$9 z#84qZ^W^H%rJX=r$)z#GHFwUe3&9vCVxT5vPgS5mn~d7Ak@wjvlx8WjLxD9G`8G9m z0_6~e#Q88pTtgE?RzyZeqfkL2I0y=-B?^yiOd79oCCl}9{)ie^GF)H%7t}b)J;SMh zeN+LZ9Ny4c!AZzOpqkBRO(X(|3S}(yR#*>WB@<0}X&$q}#}g5Xg5W4mO3~;TQj8a# zM#5R7E(6QR&Lgyy3=adeXm=2xGjCQGb!g^>0vp^q!IAMLPU)%knxGP^c}Fal6i|%9 zvDD-|mk@W9Qpc=UTILgu0BVsy<|InM0FyvowVHB8Z8QQuB>g++JGGz1v#%5n{%G2J#b=h)5pFh=zn(X)>oWAVYKT-cd>{aNPR&qsZDX-d=sH zb+GV8ljteM=H%+qtpRJ@di^`qs&2`x1+aB^pw4@bheRqRco7Qq+#4QdfGcNkElCb#is-=H^RXr{GePkk${lB}7Z47QqRXl7+U; za0;4lS+InI74|{3Kw^^cnp4FUSeW1-l~D&Y2T)H?ECLx(%Pzt+E9@qr|3Qk7qI1la zga(O1A!5eFT*0uckJD;v(Qr*!_0bOC1-S^?i#C-&`vJu}D<>5?T3QJ@Vq(Byg3w2| z%Q3+ubphJc&>0hST}C4DCI}EQAqIu+*R9Utc85f4W^udq zs~g)}u~GCsN*z)otvN8pl#c;H389w!$OH5kK)#@hDQF2pczTPB0$P%NVrbKiC5@S= zS)iPt!fD8Fh+3g6Z8{U^1c2r5R_#?2Vs!BX3|;9I4lop>kZ?=uu4=E_#Mve?1~e5R zJ(Xp+&*Aa4GWb&RP6f3M#2WKOPL{O+im$62@FQCO&QU5Y*vqNp^7}Zt^y4&L~-Uwkwm+YleYE6S5>R(EnBPA{qCmf z&Q=GlvBbSf2Bj073}`Fh48_KTsCe_t3*D2_0c!Kv>c;Nk_O)sN2bF$p`?MJi6mgd< zno1I+%UGis^1TOS;9VaPwhQtHi6DWbacCofP8O0qvH_Mbq!gCjc*sKb7_F$uN<-Hg z-4slVE)%CDF;>6+Mzve8j1KwQbK1;llP%TDP8O--F>`rAA~n?uJ^3jB@qc?aCe zG7_SvUJEoL9MU9D))Dk010Rx{F~rRCQ<^3As^7q=hk zr|v|BE7&JPYPscW)!8#3U0fn8@s8-8KyF%eI8e3;S||-NKi6K>AJQ=vpvutZ(ozcu zy(UQzj~<|bu7K28=<%U#iJltdA%v-p1YP?Cb}6VvT2hS#HBc7gm16Nz1U3xZ;t86- z{obDT1vB8m5YFgCHUuo8F-1Ic=pB=$rxWUXUa3Z2&2T~xztmC!-y+A5N;HjI3T3N> zu9yE3D+gVn86VMFL4OJA4RMH}fk)I+yeaB^OoKhgU0VDIG!I-VnZNsRb?LA>G*Egs z-CwQW#Kk5$Rsc0eXVwc`Eo(#qMh`LMFsOf?Sk;G!+Xa!cc<+8x{|e7$Ch?UQ58L;& zJQu${noppy;E)-j@$tizIrs8^eQ5A!$I|WJ-Ld@U=`3M7OPJ0Q-aGA@1nqQ|@INz* zVKto25~j0+lTLglF*KbeoP3Hgoh3|X3GeeuHPczbbe1rkCA{AdW4_sPYCWAL%#TN= zvxMm^VLD3~pK?tS(CIAUB(sd^EMYoJILWAII!l<&5-`!2&JxZX{?^!ZmSEMwEJ63b Ke{cKiXZ#n`ARZI| delta 13589 zcmeHNTdZAG6?N}Zh4Lzuwg}|*?6%SdtnGR~G$;}!F)9Hb+ou|}wb=TD zkq9})9WW}yL`-;RBU?vjkGy9@k8B@({m5|i8T>mqvUc>;ku{^M zj^6xVtbXvbKfikKzC(xSckMekzw6N9eS6cw{I30b_AR6>TbofnwxPXkceQS`{hoJ? zzI$x*=uP)r^^V=?@Zpaw?8fr_?qHhV72Lsy#aqH2x3C+Z_kV1m|L7J%+B?7N@Ikk5 zD5ry4=8v`q_EdADFWz&<|8dXJ>OT)hmmELQU&^36)TtA5?E?p@D@MCNZ$~el*wlV2 z;KM7&uUXk2po@P*PplaoJt6<=UpoEp=f8h_Lp5;%j~eiTf+%WO4xDBel1+l^JbLk& zF@9i@L9S>4(3)U`R!FE;^mP zvcg&JosU5zX%c5ln$dyBPBeuzY}9?*qtE^p!4VmRX3P@lMIg~}$B53{NW*1di@}u^ zbzishXR9x4lr@%TA&gP@nX(Tyg+!=Ikx5Qvf7a5X)8vIqE*#SCcXbv3nHNfXPdST1 z3a169f=tf2{F=!*ulV(*3mY$l=31Jlq85~APn>3&1x9I%Li;|j;-c=Hm;SN3ruyj* zR#lt6QGKiZ+x_+Xhg?L&q?3hAXWhPfD%rKk@L&$am?E!Q_M*j zVQ50NpxNexM-*Bo-yS$qUC|y(gLUI?TwH&=Y7B7_|1S%cq)?VQX7SMos#uWBs{R+o z`}5#z)fD2$?ROunZz+f1zFk>-7dJk!Oe`MK2jU2!TrkFj^TsMYe&pVIVMXJ0k~|11 zsnEhIkE}@~T8j$kOw^`*&+5UI<7ejTN2_6w$WTXRaxM#Jv;!a_=lIA}BD#H~t=F{A zpRHE3-{U%<3Nr^ZiDlJJMEZ`GDoVD2}0U-!!?67V}$yhYRGj8)@h|^P=e%WjV1)t zpe)yc^YQJ^)lXMVVOP^1V<-#TKL6=~Za;9c-uyOp_f6Xm?c8|u=+|e(RkOyBcn`n$>VD=IAq2HuQFz909qNHwKQ3#jg*8qHOYnv1PfvCcJ9gg z)^Y@Z;P&=MPu3R?4QjkZ`4hsf#HLIcZiMpS^cbb+sj9f~kftlG`&JBz@I2W7b;T2C059gf4lD>8c$TVX%P9r~Z3r+P zBcV&}K1ZamPUr;C22aOe*S}UxVQQp-&{SRp$FoMJDbXdK z5taqzK>(7p8+M#~$Mw>Xj0KdU$U~qo7ib{X#+-3{+crA}S4|kOVIGv7B8fUf4>G8& ztdu2S7%6hhW-&zzdy7emF25}kU5b)+?oajHdd4Nmk_jMRM5U3Fz>>-&=PYubI?GT8 z(4c~Hb6|Q9nNQ$$#&Oe-Gd@h=Z3v0ui4P#?j77LBouN%~qTtbNV@Er0nP&35d=!hP zDg@92PqhoLRBzo%)fDawiUZ0+j`$&h2mFv@#%g2?rNNEC*vP$tFdpweQ+>TUR(htT z7%JpvUb?z)Yv~-~n!xR%+)@F{}p;_o`y^;ZXk}>5;4r!YEk-Ah$sRKYN zQWDnM#5ts;g1<53b-0sOXRVBnk)V>1?6u8`XcH|{(L(^X9qtMNr1ssb>JJS|d-u5e zYBgBZaLJ&{y+m!yP-)S2`ACH6>V@S-E$U9x5EEGP93ogmqb+g1m(&FRIWsjycyl=i zMY>W0ha^DoUJu49p|sQq;a{vRwW| zy>?oYW{58ceeffL4+&U84I~_kEGEOwY0|>}p?&FngB@seEw?pmdv3h%=E2G#39zeZ zqI5tJ22DE|;Yk^U93*7mQ|D=bBS#qwR)StlXrWN!n4s1Jy(;EuL)f73Wd)1GVV}WG z6jXzXV&R#n)Sko%3X8kbpVzd!Z%>KGZXIk{PkGcdqU~tCfP(hu2x)ZD&}M~mOI>}0 zv4u5+>{P~h*k76>-Vxl12Q^v46#FR!N&B%gQu(E z^81o=)Lz)PN8PV-eeE{8P1q?RiWXgPQ1{pq{WxvVXH*c|fhtZQ!lxP$r55L+8ZAA~ zQV10?^EGO;bY2dt+lh&$!a}E`6B4EQ&<(~cO<_=dy)5jg2>0vg6J5QHl5@tu(QmjzPC%H z{pW$f)#xM>;V4QhI)uU-<`c#Bq4NnhP0(ZNblAQX>kUZSgXKA%kf!7!+^!1*EgA1R z-@B+jPgZlCq9Kl>f78K@di0BBLa!dZB4x(6J=ZaOY10XHyTYaroAcY4*`}u0%|_|0 z*67(!Rbak)%{^LE#^Ucnta3a}$ z?*4lI^0)ot4gEiRF4+0yJ*z)58$rxQ5QTR7Yy{Cy%9f(CaA)UHIU7ODMi8?R#PTDf z*$84bg7`O+kJ$)fHiDRqAi6(&nT;Tp{!!0t1hF_on~fl5BZ%1uqWjCp;cNu4>>OY= rf_SQ$jUbkcK4v3`>A}iu1Th;y%tjE4pxLSLeSdFLcV5%Tl)&)R>2D565CA+0HDv9EFe5*4*l1t+0Y z2L%-r6b}xhbd-{b9aJxfjn>#Y5VaY!I1vd1ti*wVj;-Ih_a?p1(tD;3Zb-<>eVeSk z*80BneS5thUD^75Yr;Xm(oCCMKO0wKWUbyqFRHIxd zwg38u+1B)t=bF#6j;fQkmO>>OO3nqzRSH6LQYspmrr{O#|N8pz201y zJT}&}qX>V`eGi^Hedgnz_|!R|dKG5v-qR!1vqyJN^bcHRhq{sc>d@?C{WHhdMw@FU zTLgHV^uR42br04YQ5(vCfDEp8mji6=bP_M+T^@f zr4G=rRD8hyi>6cXLKI4f1$^#W7q!ptIgSNB&-~g+3ElEYI9fTv*1yRYCtU9 zOgh7P4yo8sxzi#~AAiTjS6Lggu~btcE)_fxmB=a?l;MH21_Y@Zc`FAe zt4p!OifKSe43jZi@ThPU!I%GKUI&l^+tJFzF`;U3l~Ij_ z>LS}cDTz+M!MSWOs}<*pJECZ+_Yuv?Tyjh}Y5Q=!S8M64AU+JZE3R5l3^U^vJPO}pa*+eV^> z{^xhFGo4!h3l@#)j9%^NZ5ZM)64ubnN)^aVNSJvSpPM83p zSR)kad2B(@!T^4ZQo zq>+du_!q)o!4?%2xIrG%!>9SwI1KE0@CP*>WDtBrD#Z$_1%lt7yWSjHO2cu0I98{$ z!Hg6t%B)PxrD&C;K~Lt|Jr=sZ{~{CZs=(lJf8;RRJ%xx%3Rf(LLyE`U4NcG%d;7SbO%8X9Spe@9D9c-KN@D za?4cXnuG?B1UytNGGNj>4>7>Zbcs))S->d3g$V=Wf=*KP%IQ+vFt51hCF{8e&XtYh z+uRbYFXmV^z-5-2hb)!HjGFnkH(chG3E;mfzU)t&WDm5f!_VY;r~mUwc2^6v%3wII z>m!+99o%40C1x8uZ1nu5AAOqbvTefnOjbna;d5-T+NTmKD3oEP%@m!z3`3@XOUQHu zvLT5w;A>Z9j5a|y^YmJ?fm35qe|t9*o#Cq^4qf5>i-vWrPc;cyH0(izqf|aAr2-sP z(bYJ==nASVN~*!QnL89-rIZZZB|JTR#IjX}Lc`!fOoTUNFkPk81b?CdVqD8C=r$5p z_E+Brx~&dd2640fD<5GWIH|Z?QaA-2b(C}!p-@oLL$i>ebs4p{X30u*fEN5Uj0d5c zh0DkX35N;OcwI$JZ{poZpWPV3!DQ7Z~fLc=iG8 zsa%;whm!?pvqNWT&<1Ftg$FCq)!>aXgU~M=WykT%fgj5eb%R#Ia1K)ul@p4aV$$@; zaduPRRonfDD$HHz7K)v@qw!igUNq80bVijmMHxRzSA;Zd`Ve_ZZ4_|B^!VJl< zv%_WFFlb#2cnSd@HpYavXqxkFyQ1aVLb?;=#lcIWRWav`nTt8mf8ly_aQ^-oiM)9K z#MM#z%?H`pc6elHmjAx^W_`rlglYrNV*G{vsa9-PZR73r2z>~~i5SAd}<00u@ zK-pD)^X2BfgHAs^+2$Hb$wgJ7l7M_#JZJ&-nkw=a{k419);y7s=y9&ps{`Y4F(cjC z$d2s@eabGe4wgs+L*!g`Q1FUzf={Y*FiseMX5sm*!zd(!0XMw0F(U@MRa|nAhT$DI zYzL+dx~#67UvTZ+?MPO0iM#Yg<~A=*-!}Vo{++u&K7ZhI z>-EZdy|P}ftk)~+^~&vq&U(GFUazdzE3=;|jJ@9%52f{bWwF;;uUFo@J6f+-*6Wq^ kdgZNmfa~?j>aEUty|P}fyyXh)|7^Wtr++`R@$4P{1-bX^KmY&$ delta 8951 zcmeHLOQ@Y!754P(8%cxK;%yP3_xuK>NFH}T)_x7d2R;b2=K2Z-4ei=5TLhEXf};|P zgQ5m z_WoXb{p7{%XI|WX{*OnM|K8*AqJLcN=4vQAZa%tF*pg)vQ}!HO@~H(?yfJL6`@zkl zPu)B^!QVUPH;+!=Ix*RrziOvDPfgzH|MjRiv!j%;Ht5ny@e)C zHI^~k)W3dCY|nSEiyM>Kq1B`BpZ~5n+Z|rnQUBAcVz>X|W8zp>a*JGKi1?v~iiwg- zRHCA$xY_xW=f!u#ERj;2HL=f%N;MowRg!FMNX?a=KQ6X^{;&}JYj(h%)@}I_t75DwD${(iKF%+HLR_1SZlM44RiS2wmv4)PWdHe>ryuEX*om21sA!=! zpD1dIRtC1kwG@ViIz`wSt}RsKC@Gn|j*_c3rAecWnNO~X7tjNh#7#%aOu^M8O(?k5 z>|!LD!>Wg|nu{LfXvv|8z3bD{CtdvZXLcXEaQulUPIkw=Ppor^xd27Z*yLj?vIJ9V z%T~|7^aXKI%#6=26{i3k4~Vtos;|H_z@13yx%!s4I=NCuF6B7to!LA8(1T|``?&`m z8o{MpU#&+D>-dF}{a>CF_jV%<>BT{OwEykjrdu%gAJqts0$sAoGLs z-Dkx0NjI_q-=BDM`jzhR+D#6Gd+E*TU9*-dLpoZl87fqO&jt9ZPL6V>xMb4&=_6a; z6gwVDQ8ijnp0rU(5``F}vpP86`pdr(A6oJ4&(mK_x@c>3%_!%zCzi|&2bFX3p#~pg zS%GzA18o2+A6{H7I{I2?j8`?1wI+dQ#Ra2NR?%hUrL*A{*-WA0AQ>f9BJET(u|V;Z zw3#^un&17T_|v4TO;>5MGn#OhGKGSFH+-E=sb!T`4U82X8W^j&&$c7|jsHyV-?i?v ze(*Nwf(*JPXd@G(!ZuJVM4OB=P=VszN=BSy?<$lUsHBMHsXACn)s>^G5Jo_0d;ZEh z(;rT*jNQ*Vo5n!8zIyEF_PICK*Fo+nhJ3Tf?M9*^lawh&FEx3SSk1qGUR)A89J0+? zX7mi1Rk3?v4RA!ag=n@`?=CG1E-BvCb`k|`$xO2>p?QMGn4tDfJO9`x*`hByUFbTMgA zlbj0p=7n>56;!j-%!-0z8yG0)58uF2=ViZlpEz~edvn0?Vp7?9Xt;Kov@{VG9i)XC zAW_M1i+r|}7ST8vf(CgRxkYS0dtDW-I2pDk(x1>m0fB&k;;F(~G?LuH0inup$uxiccd-4=XP`V(+h8)} z97SJq0%jd6qitBq)GfywtK6SBCB8ZvsXH+5rBmXrj=fYspI_!c1a8Q=2UephNL;C` zJYrUi%fUJH2Ju(0dWL*9Eup7K&gNawnnAtAg-at11uYXb2lgZ6J)faMBh#U24b+ zlO0{E${r_f8)e9=hSw{F6c+(v>M#FSY!4DLR(8>XnvE146a)eDNdL+|#QnQ2oVEun zugNBH?x4Dog!@W?WpZGBL6Fp`+-l7d0gjDiz*7L(%x537sX=E)$j1j+H+DhmJQ_pk z`f7Ff;njWCjrFz9x+6Pqp^#g^y8$_+wcu=YQcHxVoQ)cicE{NxCwk}Lb9fM`kdsu} z0(1ttljDkW$%1P>Sy{6oy?{WJ;AOK_YGveY&fS=d)a{==E51BhcA(suJ@LL7OC%?) zlxM`>(h!3Yv`8lnl_aFH<%^+12Ga`LgUSZ{0tqw|(5N`zgZRWMl{rLi>7^_+WE3qO10 z?yqmADx0awW~y><+P9gi*v(XBGgaA4RW?(V%~WM=tTROD%~WL=MeT>r%~WMGRoP5c i4vf9lA90(h%DYcIU6n_e0QX^HNYDxF67|^CzCx%j^ zBU=XzQV$hP6~%!%um*Ysu`y2U#MlS{L6M3GLeyF;f&R&rzrOjc+~lN7_A(OwM3%jGOh{Ecc_oYT%5qI4F7CVI;N*Wf{paz;yN^Eo^VY|} z3q{4XQpBRRUTaZ!G=!@et-k!q-#=eHbn*Oa^V?f14G+qZ6T*^k!4{h$H* zRQ1sL*S6-f{i7#--16*o@tRp#0&%Tf3W}mg+;bNUH;eC85B1;s+%HD&ytQSHWbh(K z$rCxngCxsbppqiaym#!(i3?@!J{T6vmD74R?1L{+M)h?Pv19wA+_3CLW(@|C@E?cm~tlQ z5RB6{OFn<~%J@^0HWll<6o{D$DMaQr<(vY3MKC4peDtI7h0%-$k%}=gk;0QPvXTkT zN#ue?w6VMVhw*{=zK=J*9#sQ(58d0GsK)KSdA2#$O@GzwnH5(61d`0)X$<4Oq=c3w z?nR1B&i{60{P3i8JlmpUBw;M6C_F>MsK|w6QihG^^a8JBhotmH47BkM1rUnH;&xs!u$6?9&e(e(bTM z?O{iNEEVS$AJD-|&Rz6|DbEw1zj9@KW>O`TzElUE|911m(c`gFrNfB%-jffUI`RH@ zzvuX=N|(yrrz>wJ4?lRcyZ?Ig#_9T`x?f%!ADx!uqRc7AA^^K=DdF)$0AYipXz0+K>rMhpt7N>F)9Y#D3{*%||CQKqoh_$J^PDNUfWQ^YSyu>Ur=u7BSmN-kPd*n}G!}j^+yQ8*p0XgJTi~ai-n>)H= zua56+3wS|mjV_Xkijq!%h#8zi1fK*;1Fg?0Lfhf7w+4h&%EEVJrqY&T_vy+z=_SGr zPS+>Zof{$jdv0%DH-jOHFiA=SF1^^IFc!iD4-~ENVvd)G7HD`ViV~W~9T`9-S|AdQ zfYuX^twb#|Zk}+@b;0j~4xZSy{&3)Cd+nRRERG?TeNCm<} z1at##1+oe$*4mpTUBLMmQmJqWKOnMoCA;h*Lzi+SJ+#>XF2^$L2f$>EC#E5R)+gAx zD5KGg50D)?5*@QH_Mm8OCARK!VGBu{u_VC&NkM1>Det|^ASqZ17+T})931fQ1l$K( zBrN!Y?3l?_5> z*N62tglq~Yn`Pk{#t8v68Z80j%o;MF_3pX%HCw%oeQYu{Fo}^f2Vh|w(m^{g2>2jy z6T_0w7f5R%@&^AB10*5Y58-z?H>kFn9lMO}K z3T=C1fUuEUB?dn*2w4HNw2kol49*`8!|P}QW=jp@PjL<}cnOc4d*wD54&X&NQt}wF zAS@+7>}@W~Jkx4OA=8v_Mutp|Btf$kPp**apBQfd7KTy_f}RES3Vw3vZy& z3R1gsIKw;>lnvM$D8?|Bata}F3};M5d^mA7%s&r(w%I%X=^w{mAGMXc47Ra;jT@ro zV5gvF>h>gMbPX zSwzfzV3z18U%uO$V=k zE(^9{xwxt={&qmEQXah>)RM$ju&dvxn^eb8WMSylDrz*+VX8mdze=vxnU5Avb%-H4E0w9Pnn#zwP$*8VFFihodOYNRR@E$RLhJFqDh9E4KS zj;xc0QV$hr6~%#ePz>}6V$*bD2U@KX5ENR>{#JQ*py z%KH4@_r3Xn4<}cYbvX+yg0LYA86vkV2c3DgoCHrI25rw@cjVCQe>wfe^!&}o9{*KG zI(qB8H8J8|%HR*h4IgEJ5$Ex-x88ZEdg%PQ%ZnRZCL=d0X?!h_FTwI4yvR1@m~8To zz4^|=)iaM?KDcQ2PagS2XFOi01Q8g^l#F#Yd*w3zAgxs{EiYC*bnfzj#W#O5`NXwd zBI_k?#*^~IOLQWUmdr(R+-a|u->V)PzW2nRC*S*GmmH6lOO;shc*NozSH)&#LU!CZ zF@CRhX!zdyX!^4oI+5_;MN=@8h$k14C|swI6Ds85m~Zva@V&=xpFWq`tSK{IR3YZc zNa48W+(_${M90a+NqAWb&N^IydVjLnTAcdF^xKox8AoVX zXRXYHJ9;#%_Jn2*9@Xy89hz+|uKP;!$4OU-P5s@UX-;&N*uMY4ndW#u|9!KsEhVc+ zO!(|PDO^+({3RhX$~wmW;%n2b#qU1ad}-DS&Yh20WD$wbkIu3bwX(@EQkst$ojx*q zdeY+BnLBhs@Dvhv(vd2uM2?5hPA|@#Xnr~ADzRPvxibyxDq)w&u>Sf#HJ|UaMJOv{ z^2rc_I;5tN5sxUZ(q{4YOVh8-TJ!=ZX{@)(kku-n$)b-!$pD1L1#-SHY4HjMm7~D9 zron{l~w4*Wm{qIMy8o zR|pmJ6 zjgjk^Nc8vp6ioifEa3=UR+dT+sLOoyVCmY`K1^$KEH8vJ)%Om>8vT<}_C5S&R#h-7x8 z(lL=uGHIYZWF>jfhIDd*Q#SZGUy(&E@QATW++`y7v>3z;EJxrjJebH{2Cf5hU{|h$ zAHcG;xcl9+FVE)dC-36y$7WAX9$a4ya=SrN>BBvcsy)vDsXJb84tABKV*m1`>CsLn zl!}AJz0bt5_mZ?uOnZznP3%hjbk;tkoVh_AVhK`3$1{&iS^QX!8Mh59#uA2=;npz1 zAPF`plsj7M(ZtFvp7~Jo#-y#p?a#j4+>Xh*KI*G4Hb?s7Z%?loX4iY?X`uJzJY|#< zYRWAr(Qp>k*Rw@W2n-Qul#L#?c%g(o|r&P z;XM+^=@LjPf{vps(eTkCfZWObZv8EmLyT81FyL!B!{*Xwje)~Muz)oMbSm&8#qb+$ zdOdi2HII2TAP0qX0#0hMCFU(FMlonY?#6lC9c`YT%w@8GmWB-Sm>|J9qZC82L@FkT zq2ISh+4}G-jxei)Ue4s@DEr7Uw_}nO!WfG}WTgdxK_I@+jS=v1iRH*w3qy^paE|bRAz+e$3yfnB8fK@`k{T=t zU_u51S;>ItH6Iur!!6rg=u<2tCbXs^1gH#RIff`b^sPiI#F5HI?O3^hTMo6h7W*m& zmxGN(Xj;)f+QFlt^Il@4UDeuSUM87i-M$X{T}7pFW|Y>-S?6;j>-zm79#D=5?)I9vpd!6zK5=@>)} z79_Kn{CxVY!d~6lI_+H$E_0g%hHSv3 zc3^c~@WNO+<7(0Aq~hFSXZA)|f;xlf#m^8nYag+3Vzb;m_d3E}p|OlA11W^>V}u7O zp;^7OIdQ&t_14*QSnt+H9|2bler4vhcvFZ-ghq8pVn}IKawh1Mq6HU=mtSA1W2}$x z0?@dF(7?iMA}?G5tVzo zny^bgZ0~G7evEb?4F*9N>?cTmNg#Nqv9n>11M?+lO}m;(GkmK&RQ%^lV+X1IWK91sMDZSY(olTzpcmOC^9(I{640u;jE zSRxZ$3Z;NjAb_B|bQy8>LA+!L+7*FiTxDfN1XqO=xim@k_nn^}SeYYoebh7zxD#z9 z=+&jIgI&WCg=n!!!VO6lqzwzP@F1=7X4_5x>M_<~qJTbq@58-q!3NH1c;Rb8a#q9zi*hphJC>gU1PG z9VjF8!0gtdd$#$>q^(?_Kl>zB&`S8_GJQ{n??c8W%kj!kji?JS4FQS1vY_>CTvgn> zoeI*fFU+2y#Md^Xjrq7SAMw8cHs<4h^FKG{BYfKJ&8^#*j~nxGV?OTs hCnFp4@jqCe8}o5vK92w1@c-6)G>bpnG5hs3{{nQ`jNbqN diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index eca8d7f5dab5fc059de8e272abfefad1b3fd8064..b0fd1d4ff9319af81d5441d8da632e5b17f5fa3c 100644 GIT binary patch delta 2189 zcmeH|ONdWV9LJqwiZSCcl2}GT7{Lc5>&+l=*-Del-UtFla^|Tfb91sWN zAg#2DNSwl+BTt;8k$R+zk+`}MoXRL|pcHF)63ofL9B_D7Vx3?iY{^nj2UwnO=>#7@ zI#U6seu;yb&Ao#IJzb%%z0&V``@-s$Y;{+Ed*yqytG|CR-RuUJ(|7=L^RWnagEW2> z%u0s>xc2Y2*TL-Tw|@kF<5jA-yuiH%X?{02_E*{keHjrE6D_PY#4{GOmW~rdSnz@n zYke9U1t&^X`SDj^n1Ivy#s>K0dd-UF88gz(QLr{`xC57EQE4Zop&b5t^ z7%GII`P~tCsHV{}%e1o6SizWz)G8Y=l2|iN13@_$hF3s_RX{v2jtRGnX>E{Jh+wRo zvdSTo-@6Onf>LH0xewb`{+XC66L5W|s53qai7=up2xoopo{&hnD~_c4nmwmp8*dnO z+%p}BQO;Y8F=d(sWzx=%aOuTIa9-Z?23`VcE*4@u3&AO)ij`U(qM+2GRLGX3caLFhzVa~~0%i0B z-a}jppQ`4@BwRBaBZSmCqSDwTT#~Vf47M`5!q&`Dq+~F~)GT*J1yPczL6yGcYSxR= z*-x-OA9@LofTJa&a!oB+)7Bk(E8E*PZQfQXd!Ik6%Uamf(UP7$hl@*#t9E5oTK*Zz fy8W{{&hKy7Gi}0Y6Hc4(_dkjMX~MiP;qAIF0P&wT delta 2183 zcmeH|J7^U_7=<%q;G&6W5MLs*MJDF7ItZO&+PY~Gyh?y?{-ez?R@ffbuKQA zsSz=j_gPP<|v#j6?HqU-Hfph#<}pq9HfR5t$4H5`sV++okC< zC4;~SYfM9+xlN0w6vQe>~;1jvZ6+;SzAwT3EcmDbpL#E1|KVMSw-Z7vRc zh7UotgdF=8U|!0NdLH)0vy<>p#zjcE3TkssQgqlzqJtsA=OMk)%T5gAD7A$sE~)oY z8f>XG$YX5@VS33))qAX1NI^K8WE?5ttw|T5jHHaZSbYt*w2YL1TSiK-OGX|qz&#a7 z1?tUF{ICEwXM!;&1QsdQka9-aQ9=yXLg!4TRcUQk$)YcgyRmrw4c-8k%kHSVmUSOK zex`o(*ug_b>SYW0tGXmL+dWu|Q}5uWQd^60?2OyLL(y@rGI-})*Xfnkt+Z~Xb*s*1WSgq0yyTGUmLH6JZ2;k8s*?b}Z)d!9<4cGLA| z9hl`o7e%dv@xIb!B|>_`LK_$I%oe3=Kd$eo^l?|+bl|`&+R`gy*aW4ubKVO+%{pC0 z5o%pj?Z@>!l|F8(ICx-Yq|BrwjbB`RQk9VZ##HkTA4!1 zn3uBhQU{L7=rZOZk6O4&#OA8wgZK45^z`w;(NBNnZr&~ws^SGR!@_iCc%djo5NxQ| zCeK6rc70E!xBKip|M0-fN^exA^3ue>$0;weDwm!&)@5nJ@?`s-N+0*tfAu4;naZkm zI@-#YR%k7ax7?Lb`oMyP7wuyE9$GB+$j9Dr^Vn=lWgZy3Xhz<;Ll2yKVfMgB{wBWE zuWx$s|1E!g{kQDS)5jk8=9buGvg)Zd7x@bimdHzq55G{@rT^i&cHw-)?&G za8ti_@bu|_c*)tfoV+{UR=w+rnciN0M%vJ-IrzH4-|K&Ft9kU;;NjEHoqmzU{=VFs zG>Z*>|1@oIUX``4>Qb33)1e|fNUaL5N*!#-&2oeLo=ThY{PDrzGmeSitBmkhl$Fj^ z^m*-rh-F4V^WlM0*S&w{J0FQv`mC>9-fpnafvb65bI}_I(}~#@*6wa|^Q9{n`}}f` zq}_g-U+nhEBj=yq@!gMWcl?`vvE%PT&(8 zQ|0Rr2DtR(_B@sL>;GIeIOmL6?wl-CR^-9ux-^w{wXJfm zGHHTPyD`7#sq}eITr>D*Z=MkY^IQm#I|83{GS^o7%u4GBI9k~D{raBb^L}Rf!NGj` z!Hpj&o94NV^PAaa8II&ATyI>^obziNoAaN0 zVdIv;D{uYc`Sai0_{ojwJMKDJ#-F(D)q9Cw)o$76}SIHbx3KieRJnm2j`w8 zwh2rj%MKCjoLKzs%=9}=5zEgK`{*lq}^WWQ?aoKR%+Qg|bqZ#=(o zQS*c*Ff1JYUtcoB;s36U9iN|h`S7PUnxPsV*_h3mcw+df$sq&o7R{H#@cia4 zDHEfveDppqjH|T82c?$t`<@xyKAO5BuVogU&hkoE#`;3}Di5K?RjII>-~8d>dGj}Y zdH8dKDbK`Ql%bGTQ681v1fY3o9siq3xVis_(xWFPzdxAu*jCLYr^avXwf*GRMxy!R zsquGDQ@Kb%z`KR0Gp}>1G^4D|Dj{l>HHUAQoHrMD4sRY&J(`e7UFJe%n&j(iC+d>* zD4)>K{Jviue{L|2$jAE$Nn*lh0mvCXW< zB!}UfUw+5%!pn?SxBdOg@4EH)J@;HXJFY^MnJ6gLVy<&t$3i$>C6`p@eU&^0SC6(RqA29@9HG3V^AZ}TDm88stC&@mmn>`q>$c~}#e8@$ z<@c4Z3sLIIYR7G;a73qFQAy&AZCz~IW44he#&XtU)vUPKjlVlSf9iu(RRQTDV3w@P zVInvoD^;DF5b~99L6NIGQAAnqtuCUBgoLby)~hS23Q^4CL&MJwrf_qDb!uW?sY}R4 zt#Gz16@WZw8luXp=8wK-_^TXGw{hJJhzGrP+a*16&uG$|{L=Wur7B!|+UF9#Cu;~V z=>jBQ;VmU!NkQ+4D>}}J#9X`{3bG+K9BH2Y((sJ=r@k<{XK-)Nf$ej=p1WG_b-bSa z3(4_5{<+Pgv!11e=IJkvPE4~J`c;ca$gFg21Hdf0EQqpjDp$HWT#R?}ft9f!{=r6Z ze9oy9=PQw$ghfjmmsx9(;7S?$Z0QHL1GCAR(4Ho^70fN0Fu$2UMI zcG?b2yl`}R^VHYJXU~Y=Ma8YE;S-=3Ow5QUiVT~HI z$qAK*f93}vOVZpt{>AWfgRP7t5L^h_mqNQz5}~*jBphi40Q}TnjbFXItbJzN%i3eL z+V#H+r({zhV`ZWxP4jZGhJprS$UMkQXLBjXw~w}*G!`~1R0_W=D=K2)1iUS1gb>(V z@TZek&u5oxequ1SM)2l^304|iLzSp1us4Q(?a6d)zUkbw+XNNv_iSplX@t zm|i;E+YV07mzJ0OHt*uE0JQTFC}<7Z|-~7@W}kSe>(iN!Ld%$&7F5`s%f{~ z*vNN{Wx|vfPOCDnfQE*PNs6;B+LXrYq9&Iis`@S}kvre;R zu}s{HEH`^{c+s}n4q_$GNp4#}Eg~a>Hu5Y~S>aL)H>Hkc-UgFtkC@dE6Zhn~o|D?= zZ|IC&chv3mH)^e}{i}EUZQ8T6bil7~#LrH~Q$=kcGML89SWZIZxzFk%5HcmeORVI& zM=HrngL`JgsB2)Oi)@hg9k@PmbIKt>Xxqx&`!Dr!6V5bhyrQAe=@G7x*q$Y z@s~{g(X89Fbt%<}<_|8JoVis;iqQYJTRHe@aZ(OI~kE8t5@Rre*<{Fc_ ziwNyr)^)xhxxLG%Ukhr}MbXfDUlFs?Rhg<{nF0vJx-b6YqUqCZr zT$kC?X!D{i0+y+2LV;oHs2Oq}LGDsoDQsmE!rI9P)I!9WT5HW!_NoX`At1zD6*?;d zt4^V=bwN?&fN8`54zc7=Dh|syv>$`?u!Pv>jK@IiZu7ofPLE}`lJWlJ`z9A%9{l!d z&ZEwDc~P)FR7_Qv95Jqpq;3b6;0Dd_e~|)jt6L|Y6aD`E;NG57@_T)$=Z@~nbZCxU z+jctB^(`o6x{J4*bu<~MEa%i>VjTi-QFFpJL#3G?emKDx!V=`YDGVqFlmaBhF>RSu zR6DwyKmCEpFAt_L4O&pwnG!&j6MV`tl+=rvmm&&illO5+T2!gJt=i@@*G}FF`0cW4 zQ|J)QjXyN`?k!t7SsU z%V=7p(t24?&XuvI^5B+776fGihhiKVvI?qo$a8*WlCndW<+#9Ny_P9amr0Ih0h&AV zNR?J=hqj;jUMQ9+LkPSbtTlQw2lZCSxJH( z|Ac?4@_>^8t;3uG0^X#@tXVkNR=3&aiA0>tj*c$6%z3*)oPZ^Ax(iC!Dx)*Y;!MRy z0c}wLYqb(Qwz}IUS`^Y^$(|E3dp)e@YUX>N?%6Z3o7?(U_ShFD%iNZi1uZTpl!Q=P za!gKKse$=|Ynuh2V)Bia*9#OB^w=Oydm=m>B`HmkwCbv;Lupn~Wk!Lnq#>IGV#q?c z)g(bHDq@&up8OCfy>+-A`+4K;m|QdKF}*;QZt6KjxHuXfBw!_@X@pv(sAVl66>GP$ zmaSA_f{v9Az*;H@I(?{LVJ8&O%*@ZZVe;r;TGo#8kC*}G0Y*auu|EYwUm(`xW~K6( z^_b4vM9^*3>XZm>oEETHRs>p*Kn6eoA8J`7VlpEES8CppT5K*zL6*`|hvvcX=2<9# z9Mnd^*K-aImK6`PxdW8KbAsOh)?_;w=vtsHCaacS)?-nox0lmygZWAp`@{E6W`gFg zZ6V%q_byLq41m8@^l2rQ*ICN^!Xmd*ZPPMTE$Q%FmT+EP)+K=^lpG@UvyCFAdq<#KYbl=QuufO%|-mbsFnRG5qwVa7#y-?j$CSI`Sge*#E5OBVR^oNi8;Y1o) zk!~*Sbrl3x@Bo^UJ`pZ!O$9HCmO5+o05CXR2DP&228)m^Y4xe;a|$$!Rm*VO`dN={ z*?jpas<$57x}{700H2R18b=;DIBu}0aO)^;s^gDey99ArEZ`}Pzzm={{UOQ zvH?brV}r++LsA=IM9BR`yt33IcC> z5a}RPkyxjEL1xp&*qB2jK#9n*jz+TJzW^037j;SO2Z^8(c(a!f;yZ4$L>-v03kTy5A!A^pI|C+APC zqXwnfEtjd?l6#hUm`bikv{bC+%G$QNJM^0CzmA-^LR9t~nBD6}J=aw3eY$7w^iGnS z^(?PyVPpXl;Ausf?O6r^T4laTwP9P9}=So|e>|&+pf-D>4yq&D3x~*o-_y5-9x<0ebeJ94^5=mE) zSSkd(Rw*+_6+$JD`d>?jl*n!8L~SOPK39uWuh~>uR`8FCu2Y9wdI?seyE0XluUc|@ z#37B60DYS(RBfY0M{vJzsiffW+u%LdCDMYLMIpN1l@;^niL6}pCKCPBuayvm)3MRWBZj*rft{h7o;rV5QB zyhzkE8e|R~3P25LJpnE`pMyQXl|7~xUWcyOWi&2HSGbey3BhAKbFJGIyl9@6vB&`< zRYgxM!Y`b+K&i4h-3zBfN>3;2w33BO z0pZG^9Ffdu3+6=VLIs&7$! z_h96NBLONn6UifGB9LgZquw0{E zuFyVUYz@kOMIUuNU#J~ZOYtNDb;_d^m=fXJ1k@hNZbSxH`P2D()?<6gnDm%kdft2f zY=Y-Wx9xoEdCpUAI^mr!;HOeC35cNhgk$6OnWgm6-SFK!`GcEBmO{AcKBIlocJ~dn zdat|n?3qpO_B-z%9i8?pYK5nS&O(ohu=%(MVKLEqa9%ZXaV(@?*61WFuI56$p}YVf zkjNm((SQulOU&a($0R#69_lv(2Bmruu+dtTnaL>&OMw8}-jUYdddwot{`b+fvmUdt zr6ZWnHv*EbFvfx9Y&ze>6IT z<kmeI6lFk$}W;Z3N??jzc#3G`ggeLQCOp4sGUv*z>f zA03(XtO~XB2D(lF{SrqY%WxEwE(L8TL{45RWb}2l4L1VZX^U7psR*Blr6{JkOjRFk z%HFg>&a$to%yH3-djb{1{q$UUm`dsqczM#`iV8;s)nywLinC37Z6|{A^FUME$ws1;}hfzgmE&h#a9a2%{Z@!+>#1EMRl-8&H%C@nnRl8J}3EsC?bvIiJVZB z6Xg;{_LyGMKC}jOnO)W3&bem%y_Y(>;%5$y7pN~vU@hcz0>H9V(AUAT)eAmkr$FtQ z$4P;6uMF37R(lhc>%OG>uxHQy?V`zP-}+8dl?)sLzhqV$uvdnkz>t;f2eIFC8JF}4 z%7`r_7lN)MSh@@#S!9lsMaKq}(k@F$J06^R^@W)OoA^E>{0{McZt%PytVlds>D z({7VXzk?WsEYDF>K)6uGfCJhnshMdCt@C;}Pty|0#zWj03~DyEOCL(qe6% z<62Obrw$_SJ{_3M5(-jEVGzyn)3&>E+GkswKYr_0kI~dy*_@qk9y(StIA$5|q8k=M zfXUCA>0C|22HuDA`Y(3<3}{Hl2xDOZL8@YIlzu4cA(U5W189>Kt((gTwx(5#QQV}2 zFgI2(qf1d(<(0|XB|mX4J(xY_zxvK`MvF$LVbf+gQ43-k%3q`@75akyGI)}Tx!^2S zjmv_XOoMBc_#%r0O+=a%kn|-zdW4#V^0LGIi0GNfCe9_sOIuEjlxG>;&OoSU0pNB> z*B;w#UssRm)xNF;p2XQ!)qxUq1tyI)v^3#dL&Ta49t%jxE9Pn!Pu@J*BARtfPR=2N zera%T&l&CWpq`t#ua~lC>#ALfvS(2Xs^r9!kckeU@)V{M{f!WXZ!jqUX3Wi!2WtV0 zE0KWMCOY0Iif|gFXo+f-oD?Ra71kE5lvD(%2o$uLB&j>|ii`oz;BrWH1?D&fvArzd zy6snOax1!RXKevTayz(HnleYOA|e0}Q|AKMflj8Hut{t6j?kkO$(+Ut@*gZDt48RD zfrS7nGOOmiAOaR&7(l^8$1=J%9Y>HWP({w9#8H5~=WTnv>b9sBMca%Tw#y=A;HNgP z+zLw4a7sjj=uIfRLL_7+0riVssAUUko0(~VLNun0pr9nH={RuF1eAE{Jj8w9X019&uvAUYnz8y`Xve5foCeb}Lqb`_k zG{IUBL^5Mq!mVxn>7J!+VMi-@_ngtb)Yfw`_h|>+yBANpTF=V#LV`PnhQ>M39BF}G zsoKsn`g+(DC5w7KxOaT#2v|r*DP72pNqTsGz=~j&z!kt62)|-}>bVI72~EEYZ4+s0 z&`(C2dy<8Vge3)9SG{z_1$gW{TMbWMyXUf#7jZdeq(@=1us1r0G z=1ZPy%6BPH!&Qh@WHZP+IS%(+ zgYL!q9r~d_0nUp$bz5g8qFdI!8CB=64_*u3NW39>l9JgHIIGkN#69P+_q=ZW+GVeG zpWP+5(_Q~r&90I2OlYeViII6-r@dGQU*U>~M4e6BDd0nI)7Z^JY&zk1q z3XvY&0a_l39>+rZ7vL;Dk{n1=Eflo}YPvmQaQ6$uHjnk#j>*Zc+=6?_xyd5sUxHhx ziSTKthVM&Id`HfLMQtO!aMC3i4j*I3Au8z)p(I5(Etzg`${3M5aQBX z-kk~lA@8xR&59RNe{kuDzc9L~2F__LcW^i88{Ep(lDg-67!o$xLzMKK;67%*=LYZd z$GUq@)viBwFE5Fp|9kW1=B8g5-?Sb)T@RkF2T%8@bL+v=-FeqUj;seydj~+*gQq)_ z!t24)1zKv^lJ(%}%DC&2ZCK2~LG!=?t_M%ogQx4k)Aiu#dhm4b;O=_xbUk>w9z1=y z@!)+L!Fup?-?-~~@N_+R`V!yQy&gPW51w|;ysigN`L4R2>CByeg!SO*dhm2Tc)BzB zx*j~;H?+GRJY5f-t_M$FdQf;@^Z$DA^rdEA*Mp}$!=LNH)Aiu#dhqmR#$MZ&DZbOW zYvgr3c)A`u?H~S3-ypgkJblS|*Y)7(?$>qo4Q8%`i-A9qIRHK3UhXr{Y0futRcbSJYiE2~m6D`ex?B~}8-IBfL5LuF-F zK!}wP65(CE^32$d^#iYi(W`d-g292Y!3&bH-GQ}>hV>FQf7q6YU9ho@(FS(-fsNP) zB35CszwGKe)AveKwL~~jIHD&Mcjor3+ov)s&pF@sopV}W__N6u{%rEdZ|#)X58P|- z%I=ki%b;{=iYl|l`y$n8p{y&jA~!B`RW5y|RFMYrvA@}Q{8iJcNDHZD>0DN5o0ZOn zBCT{LlggDv=Id7<=>2f#RrkMt_s72TpI^UYk|r(*zSPE+I`Ph?Dz8G7r$&av6`^@I z-*HuZw_9&Mf5$W=%9e)JIGgLj6gHSjC>bg#DsOEyf4fP?RS$gQ%A8F0-;& z++D|2^SgWQj`(&eSREe_>(s8S3X>LT=slMX zQe)0};N;h*5B%)k7ccbkt#mhH;!)#u?|AAlr#xK6`%i{;8Ck79Fy7$NnyjlI& zwY^Io82)|!LO*-kxA)GO-M`lRxwWYh8mHsL>dNS(6i#a+ZR!%0IqSS_7TR^y?CD|e zvU8`Z2*wts6!?~wrs8OELUdZ$#8hcgEZ(f+Djve@%P;NSu+FV#Szcc{>9KcNvblE$ zAAUtIF6;R}yY;zUb#+PasWU%3biwUM?k(;JcV08q8;kddI~wYp`+EPh`?_&`YJcy; zXRbSQBl8VD+nv<&9sbct+~F$AovjMxWaV_JN+)zEGo!Mkz!#H+7j|3~y>Rx-f!?lj zCsG>8$<7kzw8@OCG|rguRY_CowAtgl8SZ|_Y;dPAq_>7A}W zd+mIy&vr@N@Hgi34PUxs@A9TE-mcm7XY=`{|9@N?&-Tvxv1@woXY-e?U%tcm2;Ok^ zAJ2FQA6%RGRO-Ol&Lk(%mQEU-XG*3*7do?|*)QL5Rot(?x~_NOxzoy*Ub`Ysgg4rj zsZ+)mIU!4#;Emgi(H&RC_j}@o-oJXy)PyounXSA`Bzr}2ORTbms6@gyei2o>uHyZE zY;u2ZHo1T8`+fa0Ut7DVK6bFbvpyF8b?EB;M*SyWTiaa^pILip{ev6*t84KL-`=wL zcBB5v|6O}o{i~;c`nhNL_ASqH@ePOi`)cv*+OGQG*LkbQ;%mIYzWNEh_VW6|Us+q9 zz5DBHxA(qPHV@36d3Nmw){gq(9d{hLr@ZSOVLE;5JxAu>zV)7a-WkqOI@kG>KVl;h z$|gzt_u|j@yn_o;kz^vi5HHa9;O0;Hdwzkk%FJKm0;z<3-UXQws`;gOMP~Bm^5&)a zTjav(&9_iO%Dn!qq`$wu<{N7l{NuazeY!t==;Hp*%hz zo89;GP5-j`Cwl#V_K)`N=aKM{wf>P8`{W$`W;efiR`ajXD;|8y`kNkn%dVgL)Z+DT z)`yQazxNO3#NX_4>Q7$NfBEbKgZ_VdWxez2{(*XW_1b#<=U4T|^+&$8wo%`5b$@q# z-NxG9`tJ_*FQ|X^FcI=Uo__69S8u-dLs#}MYOcF@gV(OzAUyMHd+Iwj`WM!BJhS$S z`d2oZOZL={$Jc&WuU*;%+aEvFC)j?=tzS7i?{NQJYxVnH*}r&gI;~G!*55rmCsiV? zk3YtOpZG}crS&)^<6NJz2{$GEm(<6;*gO9`f~?4`P3$=~we_X{t+(glkMvmmHC+19 zEtl4JCA@Y#TmJR<+HjDk($t?$`qLND{2|@{aQ*6!uMO(|rTcs9yG;M(-`e%d^LzVh zYx?<%dKZs=XKzw}F6+A&Ov+INW_W4XPL_D;w$}&X0JXt`orF|!?vvtogBWt%WVDR=hsF3 z>662kOcH2cA)GfQKz9yq3y(yja#3lO=dUYb&4&j9 zR65#K|Ne)DmyNSBq#EL{id-kbaKAP+F7*5i();d8X1*JD)q@($b~q zQr3&i)!g63vtz%${>#0w$V=V;hLvmNg`C^>S&_oS3K&3I-+Z!v@$A&G{x9{Wq208p zd)(=?!?bVK^T>UJQT^Vx_OH0w$mEXiIDF5W4%~O&Rnr5hkV>hPvy>M)4`mU`)N8|Q zN}>A9PP{HIuR}YF%iCQ){n`GxvycAH;J)6`j>qK>VEMH--E!o{*T3ewZaC6$MzgI~ zoAwP12i|m5{eRxIzGvF8G*v(K>A}HC4*S>fF%EA^lLygo970*JfGg~TeWzAKa&embp z*T4DOI9rF=`uM@2xH8Xmx*_IIQ&weaokJv1m4;a6X_43zS+UYaXx-dE6F$5zA*~Qj zsY_j^vPd%>h&&?TUYuCY^+mI%zjyHA-Z%}i6v%4`o9S8<+e|3Y^SIN2Hj?W21tSzC_^)CULV}A0BetI&|Y0B)0fl z`x8pjtsc~IOp~owckNm9w+F8q?47i)tgKI*KRmSGAxLO%;%Q4O(pO3*B5L|v1m|au zeqVI9l%$9B$I0{(A0k_&g*O~R=X{#UMb7%u{=0i*4!YCa1ni5&|%i z*pkN;q1Cpo)4v$LVcKCktBcDAhwIP%#qfd&*_TurAo&?N$(n*P0NI-3R$1-K*^?iP z`7O^%9h4Il61A>K<&}!d#_von6LZ?nezi9?(ia&aCRj3|cK0TVMvVG$D!|6a`z)Hp<-aWI|fZo_Z$-a-7>P=L; z>H7GW26EbN*)FHIFMWOZPp*<`i?^|qier-zs43F`D#*A13s&bG?k=OZb(B@=UFVOs zcpKG^wg;7O^`DL-y3N}O%X9lwiniX(hcX zC?G9iu0z$j8s5m!1ZZd`x7H%>~E=^XH>rM8M}gNlkr*wj;l zE0&Jzw8OS-ysyjb=?r)IBoJ^4%2eLt`8ps3gC7g60u@PLBuk5#I9ZT|iEjXPo%x~= zU=&~m0A5@@BYeOor{I?HnzSJB;3R zcp&RJxST%OzhXmg$b8BFsPL5nw-3N4qCV9*Z;f^)b1?^3O}rnsS1aqMej0pn>Y?Gg zdq>+Jl-lZe9Y?gxZrz?4EWkN;kOD3y@z9SRoPNMZU0>dTAb<1OI!m z;0+;3Nm~GyBy}3}NNf_mR6(RZHI=^u;nzA$ho%Ah2_2)rmx5Lmp2*p>!>x9n#f zrqv?LwVHNksN5A}AuFG-VF8=~ly^C+h|nD;06s6cC{#+Ogc6&RE%qa@mD6g~idi`22rXpH1p{pYV5 zU9piR8_UiG-^@edVk`qvK}8@edEf~_?cpi)i60rxwSwCR`&;Yxv)(0x_x6rCR_AKpGMmJ#_NgBo?3r|}33XwS)||64_8wHx54?^E9zY!&-4{9D(tyN<>Qu%W z$WTO{iY$O!!Ud&wk}5weeD>&njpPl}2A~pXa+?u}CwW01I5x{lNr&yMe(c84 z>!%%NeFG(LdEMwG6X35Ze8Msy-)J-h2@#`2NJ46bSwKmPPC&CtEY?EOxHZ6UYCWwF z5VOoIC4fmrvqzK}K$sj)qzN*8DTyGUJn8ZpRJTB3(+=AWpd7c`u21~yQ4%$i%O?b; zpon6H6ea=#3w6vux{y-*#4VPRR7fCTTtx>DtUCpt;AEU#L0Tx1hOSMxV*rH?gr1lZ zdD=ulfE)$ZEa(~p= zDu*bCqw%+siO9f_X;tQQIlcKS{oRcoIS$}Tj&E5ix;7-D7h-*t7OCM8=e|C6XMgu^ zo*MoXazYA|&w!bV%|vPd%cQPI0)R71P-WuLY>;EsYP`zo?Cql)Chdl^dX605bNOJ$ zgu_U1kSH@rrlA6bslbdC-&%UP(ixyN(odS2;HHJKl4b}rAQ|9xg+KvBO~_`@0TfB} z%CdCGW(m-SmZLn$;h|ZYJ8gvzk)kioW|!Go9vs4R+O1X*Gu|>m)u1&%0_Ggvl_hXw z?oH*TQE8fGO-h~wc(bCRKm;2!au8}IiOkzH1*_+Fv4V^x(y^1mM*;gB-eA2J6>kb} zOT}_J?l8MZ#~o(pOArlM{No=UO+})pdS`FF_p}&^Y*t1v9ND5~KcS(8EJ(!KdV2ku z)r|=i!b3kn*#fOK1D|B5Tx4`&XH}nkm;~IoS;sR9+uW@EU~Y5Dj@{cNYI~*~i`tYS z6E9qr;FI))k(kIqsKcnvWriY`G)#5O`eM6blA?TRj-E?Il*w%&(Kht#>DP|l*BgUH zBv?lhaUn(}Jb?BE$b~D=oM8SxIM}`LFQ8kS(NO>C=SDY8+l`tzVmw^`n?Hn_;Z*bm z5+D!@G_p;ujP)t3TgoceVWDo(l*mI3swAApRS?#ZY;q`MhqklA55Sd8@t>nZO zWtMP85oaYCANGf;2TesV`lG=odR=Dgr~V}l)?u}5NZG4@jtT)yGKl_Be!(@6Zjm}m z9~%@&rJT>^98U9OE}BYj!TCzg`KXm}E>ByCDa5S!&>Sv;5h2MU@W@nI#$ZE}6;Fsp z(W+WhE;=lp#=Gqnn}8DYv>-`;m0pG!W2D+m=Nt78S=mU5i>0K^!L^exyrCp$>_0 z_yx}jZ7LD`vpJY!o-v_E%^R{nlR&TF(kdWj<*=rD`Yg$AE`P+LOG28fKxnaT&JnPx zD2^2g#^-N_O!R{s{i^EqsheLG8ls(qv&LGb%!||mrxp-*=&=VrvYhS79d!l z1>wL@ivts9u;q+)VoCwHTwDy9n3^I_GFClOq7A7!&y0sQgM=H+^}^wh+D5zCCN+0i zZPtPavN1$3+Yt5L?;Bh^wvcq=iGV5xAd~?KI1`9vPE!T-vnM~$fBT@b*%*YoReEfH zOxto)*D2lVq#e6vqT4<6)zO}5`^r$=V_|KY29Bq+pb!`~Am7otib9WIXlO`u`KE-&Us0K#-Tb@#JJFFdAx%OZ zgDU`3v9!imLK;i%MWPp^YhF^DKqtt^D5&TrEL%9ml@3~g3%C#(QMOUZJB-)IKff+1 z6}Osp_4QAUzIRdt_!Mb?2SSTz8LOD6^cCC3LJ(kH!#|2JiUrk34ddJ#1`tfD5x+WfJ<9&L=0 zG^4{fCbx?rUWH2N34ku>B18Wm!X?~yPT~$`A+>dM;x}8~;Kq)pvn^e{d3I4nix4DMeCg$8G(mWvBttF;+)eo!qH1;26!`&YabDy>*(w<1 zFlm`AI9C+*r+}@%7>WysTDTc{WkKsbWwqF6f)6Y*TZdg=%e}+bk6W#}MrwTX{`DOb zB#I2c3MFJAC8{;tx-1hIm&8S?1v3LiplzYg6tJw4LN{j-pqZoVklo~LuFp*v#i5Li zs7C4_6(d68t26`9uMJ5`mYG?H*?IV%bXbijL)I63X8k4O6fLF__yA)L3G_0rs#4Lq zL(NHLMT4=X{1|-0=!_&UIJiy$8KznUm7-Xf zQ)^uuvySPG7+=n0vmfdmZGTYP=vmjn+?veDwr%?tli9R>_^YER=eI7+FZ?W_Ae3r@ zd$HNX&_V>Z!WG_AHC^;k-Sn>hn+E%nkgGh3d9YJtge8qMwL#M^lA$Rek*5#oTvr^!eVn)pk}N|IFYYPhWs?MOx10CHYCmj8xq3GtNd&R>$)xw)#)| z*)(G7)#ycSn|1~|b}Y>`&Q>yS7hq=^g%GwvwB$)eY9)km(k^r$>eFQs7&Sx6=lK~c zVCt}3)cb-ik;Z-I#p@cn7zBX+)ZNyS$ zqp~bB`i;0H&L?HQ5}^vxO}|L2m@U^SN~KVCaIKiR3i>OIKo_Mc5oD!>;~!nWc3j4BB_snXW5^<8 ztpXQ`<#KI8APGeIbetlw0u(93&;%zED$zyYLgx5fUKBGF<5Ms+f*q9sBuvD;ic$uB zJ>U%z9W}&Q@OUulI?TAW8C(dbt@aR!=a_L`qK=vEu-OpFlCzm2m#B-H@-zZBot=!^ zqVv)(O9dmg2t4(1y36(vfzLX6*Km)8vfut-%vQhYIGEdfvSZWirY zGV}&0_y96%LLWlxCq5snW+ZFmDV&-A9Wg z-2ux0a$qpp7|<)}C8ciQLb{~xPrB?25aguYFzyqp)fc+;o#Pxm!y#yR1dNmlT0(6M z5?O-#3ExXeZ6BQwvC9LA75$N=qCAoinc$+_Tld~Jyd-u}(5ahHqyU&9|4W>ZZe|%9 zxC(}#3x0h$p_T2%7nz{VZd$4Zko=RuIs55EP3fAT=P~xT03sMxw*^F(MhZVWzH@Z< zU`mZ$mGrF8yag!@^tKqfs8KCxSEdF`hr!;_Cwu!G^$TbaZsy^jP;F;`!^o-7fQ9(j zYApocgorMC+x+b6bYn|W0}miK#YsdmZ^$_$C8AXVR*oULzW$Gg^Fq??gK_)B>5L|% zU+5jBEZ_EUws}re$Xib3HrXTvezok{Y5j59zNQMsj}S7ZMsHGz8C8fY=SCo1ih8A> zNgRMe^?kF1=0ifM6G2jzRF}{ZkR3CM(h}b0sZ5^MA1A0E%2Ai5Cn)NVF_D4KXozA6 zlyU1O{x=z|-8{ql5j{@ZO*a~(sOMabiBxY=^b0gCO}B>&%*B(a0mXq+x_~FZ-Y95f zRl*U*Cjpq$trFNAt^7tc)ul!ZL5M-kCpXfztYLmOS2jnlD;Z@q@OK)UNCq8dn{L4l ztE$0_G(=GtiK#zU6(ANK9mFM)wp&1|C88jJP^+QyZ1GH*KIwM*^yJMO``b+~3KsLkcHs@fS6-!;F(l^#wUeXc zneMKFh|T@9^OUsvM-bl-Hk9Y~ndVvVME~b|M>`(Swq}oxv$;J5w(r^*=-9EMIZwNC z%tU;}Fa_kA>5&YL1Bp$Tl!o=#)41TN1rrWn7E#huPU9{*iK2@ba!}CCBh6xT25_V3 zs-XveUM=R+Ln=lD5S)3kRCAVkizfiDHna7y&kSBS>9E>N&NKv#ViFE9?;g_yopQ9b z3z$EjcaQ|C74y#GF%XM_AuV<2)2Nb?WFD9(=Yubh@{1Yb+o|3ZvIh2qmeByB2}H58 zM4+HhJZ1g|`M>FSkL9Zti%t8)q}?L@p%k*~3rJuSx;qkTj-0M2OW|)xuz5;L9Jz>& zrG+Gi#6|PA@+1ZTWlFCzU;#K-0ct68H+AZ91>F{qG%99rHbSXpP@bN7T+GUJ7+kJU&#_{8OYeRw3y1S+^=IugFXrHLp(~##B_#2K&d{|pS*E1lT8&L z`$5H#z9fV$7n@Xb%LEK;wm=g-g64nemSG7ykpT zgG~~nNu)|x2}dlS3{wvo5@x~q0Qj(wx-9`Q0VDd)YVYv zYAAF*guNOHT@8gcqo@sio34gJn~ywbADvtcg|3D|S3{v^nMYj>g)Ys}u7*NaL!qmo z(4`OZSq+7reIRu;6uKG;eg0>iFUyjvq0rS(=;>M1MQ_t;DD*(b{N$n;a5WUV8VX$v zg}%@jYSWjs8VX%Zx~_&oZyT(JLRUkfXB}PMTK!%Pg)WVwu7*NaL!oCI+1=K7wHgY2 z{xIrlD0DRx`n>-!SRBka(+;^B3T+>}TMdP_52UV!LRE0ET@8hSmih)I9qPZc6V`ge>o@Snu PYHVz1X})<9qZc;-e8CdZ delta 62 zcmca3c}H?XBBP;sd5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx=1GiR+yH&~6D|M% diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index b79ce08655ebb73f428be51fab98e6497d1169b2..f06a8b5ce8b123c6f2e778dbaa5914fe9bb369a2 100644 GIT binary patch delta 68 zcmcb*ll|&W_6_?u4NJ1ja??tUnMP!$%)w# zlb0o{Pc}_an0z)_eDaADH}W)kq@9~Sv5ir3a%{R5S4Lu9dTLC3L1y0M#!Sh{jG1!N z4+b$xv#9GRs86>0Cp~$6hQ#EB>C)oqsU;W<2LXWg_lkNUVPri~aF}XEUbh1IZ=Hy9##U{T_e7`dFF|;x3r8fSwl@0;wy@EKZEiFN)7i ZEG|hcnyj8}MRh})y>hmDfZ#fx(muB*)9m$SqQSl zkU|sCc;*p|bDH)KN^+gGPn=V$*Ka?5~E1rW6+`IVQ4jGWwtbGZ7#u=OUGp zqpFMG@{=EKZ*l%bt_o!n`5zx~n_8_7ohSn!AK?$8^AH0ytVeW3iB$&35m zuif8uqbaA~CQt7ka-->vpCxP1YHpOV+JZsg)Ei6&Bp#TJk#ZGWM{kjHGh?f=QOF1B zFyXv6S*5^}QBG=*p=^Ch=F81TM+@D_@5x#-R-R!2@Nh4LLGn>3AG3B5Plu=qp87=h z+uZ1kwXM=kCHH&bH)wF zRuPbcx0z$-Fb`729J&{NB;PjUU?j^_V3wT0^R!Faf%GmwzcLiKMdrKBf5}%(HE#Lj z8iBSF*7ii8Z0-=(CIJ@X*ubI|Axo!&H_1@RqDK^AAkwNpC6^&2W4UmkymSgE*GVb> zOWh>d1u@Q)&+d?e-OBvvQZx2Bg3FA1Op^e|Z3b^Ok6K4ehbc&Zv1=DbSDGr0fmjs= z56_=5-#fE(@#4{T$vNwiNnmVZf@fxR5X>^_o%F$bxJR=l(+SP)&~@@r z^M0jjehI_Avhv#MiIXqAe0)__x^@5RO5*I&nWN>4gQKU$6(U{ zlHf_9yevqra>&V2dQXIhgOn*m>Vl$9uz(4Z24_|fIOCwWpUJ{~30`Pg1-Kby8-Q^k zdX5~DaZ)Os@vR>6HE6H~V9?-0)*toEO$m3lS^Hol8M6saRjrcV@=P zTc5S&N_(MktN;%-ChSJ$aL)ko!Om@Y(3Hm5CngG`l1DXwG1g|`bx2|$HfXYjqi$#H|``Tf}c$BdxcW$P2%5&*8ikIOW@`w=0_46Z8 zoUMsXa6ZWHZ~*);6#@kis76$Q6dFg94U%>%|B&yRDu6+d)%Zy3ln_=5DUS)eN0Cws zu0UX~ffvSlgU=!>kAs!*Bw4q$IKt{x%x+#htnJ#QsaS=GV`* zMJq?CI?CCCt}?13i712&wxW_}KKb&)(M6Z!x!)gYp~~vCj+wFt-Y?h$$eC+s-jehq@A(}IPeZ8yurHU7K z{Jwtot*cFU>`n3X)+Se*{?J=uUA9$)q>V46vxI0R0;ZrNassV`5PEe}ygj!RupmT5 z=v;=RYXp*DluyBDexs8&#h&i^qm#w{$amtsrbTTq7pK5wgcJc)p#FuAr^MBBjRYu|#qa(@>)}SVanA zEk;$YoJN;*u|&WXiV@s2=iNPumY9&_w5*7UKq5viY)mOBG}%k+Uid-m?c2r4`DQeZ zLD*;*T&QCvXm8v>W8PR>dH4A8>C*?= z74dQN!9&ZXqFLr+Us-+a#Ni_^y?p4zm}z&e9!Z>EK7ODRyC#e6n66FdKJ)A}1!!DB z?i7T@0XMEtLPA}$tl3DN?$Ef8bb-PgDVGVj&mc+&{Fnn%+^zmC7Pqr#bMyriFo{fb zBJM>QwY5fZp8`We!Uh({0vK3)==n0I|5$7z6UG)~>SKWh8ihrfUjkxA5G=cSnB{uZ|9@ArG^8 jIh&WWdASqG*}S~}yq?X=*}Qz<2jl;9UiLgM|9I?QH~zV^ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index fc7ee57e3e08e1cd663605c6c44afc214acfb181..a0fcdf8962f4857b07231c58ca348a3567f08c0b 100644 GIT binary patch delta 76 zcmext<8 delta 76 zcmexsaadwQAfsVPmRW9Esd2o%S(;I@g<*=RL5fjwvT>Smih)I9qPZc6V`ge>o@Snu PYHVz1X}-CM@gNrfZF~~+ delta 62 zcmX>saadwQAfusqd5LAdd5NKZa;mXOvRPu9xusc3N}{QWX`-=ZQnGoXg;|n$QksQf Rin+0IqG_tx<|f92TmWvg6HovE diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 67bd2c73833466dfa53b1a28ab5546aae04300be..caeed5b8acde74a3e44c298b77790fa23ba4cea4 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4NJ1ja??tUfZ#fyazvX1=Ne}PX zrCpCjfhCB@_#gm~5{#COel}8;Uz@NDA={@FeM6Ehj_fR2T05 z`^@C2Ig~y;2HNv=x4?L^rUy#f9n*^TD^p9ht=qZSxA8Or8``q;Gq@J6aYb1@8FOT=Mp0~ZA+7~%$5R!@ri9EHE#VCwD zrdq<7Yf5k@x>iWhKq(dWR14!Zr#!rBhKTP#ghOl}iybDnzWKMlDsL>gTNBe@0G?cQ$p UTBYCZ-j08;|LR^dbg$U`6UgylUjP6A delta 2259 zcmeH|&1;=S6vjIxO-);b)FvrZ&Fi&vb(_q`nJ*J7Xk4^-sYpXD?Ip~|nI_PfU;=Fl zX{zEv2qN6n7sZW=yHp6F-jx=*E8S%0&bEI+{{p3xtAQx7@2b1J+j-8+^E+prdH=lK z{n^jmT{rjL+OyWR+QanKc{`)$*>FGsLAj)@iqT1sPFNqbGs9# zjeJ|Ky-Mn>)8VZFHoD`stv`M$w#oW-l(oJK*U5*iH{Ge%cU0r{#6bqH zjMRT?>w$bpURIPl8-XT3Zhf95dLNOez!WVXFOVbU10?;wAh}1XJv@AeoU1^V@F9RP)N{)c-wx)a@LY+QaxZ{7>a2(qJS3M~F7%t) zfwDM5UTn{PK)%V2ky9R$HRvsP8?DA@1O`h{gP^pX3w|S&7XF$cw5U9Mi)*NmS_#E1 zq6`#RiY|eQ8Onyum`L2lG-xm{N*YDb3|MdmV@O6jun`@Ea&0WnU~rlo{s&2gV6D?$ z3k~3xf{*@{$rkJG%vPa`Gh>`dkV@hg&F_= diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index eaf08775f213938bfadbfdf94b626540d49abc55..813556f57650d2ee906a91211c54086659aadb8d 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213VM&%*Zd$2vyuMkQQL=?$im5@0QF5|znsJJOMPj14A&6sUYHXfn Ro|I~AY-nk|Ih)bg2>^|469xbP delta 64 zcmbQ&&N#1~af213p?P_UWxjcdp?-3zu}QL7Vw$<7SxQQxsflT#v1L-Sd7_0`l6g{^ Tg<*=hv2mhls@djjMq?)cj-?Y~ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index f5554d252caa98a8b002a5b1bce9c98758b4d792..3a78ec69b6577d349ebb480cddb98552a5320bcc 100644 GIT binary patch delta 68 zcmdmUm~GEtwhdc24NJ1ja??tUx@pAG;tU>7$4 delta 68 zcmdmUm~GEtwhdc24b96-Ec4Av4E2*!jZKox64T5r%~DblO-)P_jV+Us%@ZxmlFXCR YEDTf3jg1pcQ_Y&6a&CXh$#{J_05=F1lK=n! diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index ccde8be0aef419f55541f26d4402a41aada0a102..b00e4950af2a9e507b412eb5f2002ca521eccaa0 100644 GIT binary patch delta 7740 zcmeHMON(V!73ON0beY7cseU9~=iHMriK0cFqyn@(bV5-zyj8**#rEv^*)6M2xb?#H{y*kH2UoO)()$$({N6 z{^l?CHz%-Ctul;DDIz1Eh!+-E zG{t%&g=Uh5mw(-y-R`bn-jy^&$Yjsv{nUysu#^s zKH;t7W683OGUx334<|_E1Ks|9(yjJfa)0gH4eKhdegFQMX0Lzsp7zmx_gwR(X;czb zC4}d2lbZWbvbJ10n-Gd0uAOgwu+gDd(%{mq%7J3a4i{f|&>ENsN~!+pmFD=E(OZ+Q z6sEMda;z>1Bu^P9gb_K9If(&h-d|GomOXl=T%@_8J6Q{U->B8O*U);HT zdAHk{wgb;k zeDhmppZdnv9)I#|rA^)8)3uA+d2zS@_ph2`-RjhY9Bceg|L!}@9j%~*tVOaeld;Mr z7fL}H6%&H<;lmqabzKtNWyxg(*j2VRu|$BKHB?mbVgWjtR4Gb2;Zq=^Y()qdp+bXC7&9=4O2JToC>=?!I0)@ni>8Os`>6k1FUVGyeb-p0TwG4FWJ z!J`K~rcFq+)S^?a6he3tzoq^tdt(ta)7#;_c`jS&JR#`t}{V0lM#VY zNKB~^#$gz((iYHSW|5AHnvpUQ@N#4`io(ix1s+`Cl}JnJv^@CCq82D&pd_5L(PkEO zEMSt3+2uoy$) zsc=F}f`l|^4^~vxCNr)qTa4?co98#`yol*>2$7Xq%EK6|^sqgAdiBMYd<&741lux=o#U4Qn+F$D`_B|au1HZZ$XQdFkJt~N7`rG)e-d5&$p-B zsH2TV#+Z^JTM$4tq-3&GWXT7ERw(A2v?h%NLZFUB7{g5Ym_jDI)XtsJigOzil))&n z1Q4yL7y?Z~1&9LzS?Lx-a7Kq1|Ev9u!2IG4XYAoQZ76FBsKS?QAWTHI0YM^S!xaO* z7KD7Md10f?VjMS?I8Yazbr5sOfj@ba0|kfMR*?Wc%vmm0BSWgRR!Rhfi0o)ZKz+Ev*?eAD%%oGYiEA zM6wu37U8^xdWgx4s=+0-xB+m44_u=m$4)lj8?B2Bk!7EB7GvSJ4#CorcSb7j(a*_8 z?=!0I0;CbTpVTreYaz^uvl79q{&reoQ6NZNfE?l;aWc)I0i;7lD$QHDn@!yy2@*7U zfL9Sm6NgwJNAZJ5B|+{l>AP`b(V2(DAc8gE8HDh-BD|evjI{x0|B9Zkc%LN}5txM05;Kl*pcJvYG8d|?gFH_&>Kmnu_ZWt_c!H!=T*dyESDO15 zG8Ga*1H4HnIVKO8!);L6OQ>Iwm36D#@;o-#-bk6p`+q*)ZtV)Q1U#l) z(xO0rc}WG6K?oB#aP2ij;&T3nLVwxIRTBgoALf zvatBbA~LHOp*&V78wd*|!iGjj5a$m>$s#B$`~wCF2_)9QdEGOn$H3HY@f2Q#@P}?X4WR-5oczj zljKq~VfnJ=s>Sw>4O{p9xF^Eti=v{=l1o;eV@cSp6H2JUV)@4As_~7#+3Egr-;9k+ zQpc2>3v6rgIpS&^QN_-yoL_ssyRb2H&PC^I_8yfei=~lN4mk=cp44#l?e4^|`<-rc ze#a-LFHHKPl(0@$i+6IBE3PuTQ2%8Ow!>c15u9I3O7gFSF8*;ssN&m$385d%pIJ5avRenp&pWb%o80n&ns71t80Hm-oT42a*T zs8=HAQcEz*f*}IPnwy>a>T5a7uT{ooPDnQv~W_L@#eXUyWf6h z`|{u&PjB?rlJ>?sQJiKeq*F?nM2@PkH3&7I{G|Koqz5{(bsiivlD(@j z%9_!@j1E-_L#y;_WOqyYwG!{s&u0%16{Cgc8jYtEt@PC=9Tln>!Fpk1ie_S~7wD;y zrA#pwR#K}`Q;MXqncTG`Uthq;XsmUzf~a^=E+tE6eAYH7P5V&A_apNznAiKG^DbJ* z?nu4!eM0{eTt$W0p+Tg`&=jY1NTL>q;Xdnv3Zh6B=<6r}r;A#uRoMlVt#;`K>wYnr zT1b*e$_km;;LyQ0Swj^Doz05*D_6QdOqzL@g*4M1kZ$u!QaCWdMR$ym`~C}uKoR01d=cDe$=SwkSl+dH|+#?}=c=2r{3hgavL549Yy zan`C&{H!~DdO=2rfQil}XLRJ^Yp}7nlvM$}Qmtiq^Haw%{;5B~=*1z=*;8NI5Iu38Q*mK@P96xg@0vS&ug(0;r?$SjnK3O6#?u?8NdMW-%D8a@H_5 z0j?4trszvXH**3+9NyZPuDaA2OV}pQzA9B22OF4xvEYk^2rE6n`$Bjxb$^=78XH)O zWFtQ>L~`cgi)#+HY6;s#3DZ<$PaZp0a6ohH^1?>%JQEj@2n`uVpWwCO^<_~ukJE@> zLGdhQuriT?`-M%E8og`8a4ed#igI6D8hLri%x2yNj(_>o^lYz8Q9)*z1tlI`h$o3w z2bL+wMos(ZMDvTaN)Lm|>{E6mT*R2+3A7bjPvl<$@JvDCuG!D~nJtqG5 x`E)%duE)g1|ETLRaXls;F{G}?#PyiC9uwDN;(AQ{pHuz+&zLyJnE1O}{{>q3%!B{{ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 69c1c0e71634f148d7c05c7d152d049fb8087fc1..705730ad44ee6d95635b9d3dbe9b16c3514d34d0 100644 GIT binary patch delta 1597 zcmeBw!gcWp*M<|Eh9y~MxoM@w@%mX~roA7Kw@Gh9Hiasj+#Q zc~Yvev7x2;=AWFuP37%b85nE|ic;;kbajmkj7)S5%ybP66pW0l49%@fj3>)_hid5Q z=_weRS?U>@8t54ro9S6v>L?hQ7#LWY8l@Uo872Z*R)z*<7L)rNOn6b$O*RbQK6!%+ z8?U9QrJkjUw}OI+p1Jwtbv}}U2un;9G{B+<9e;BpiB7)f>pD3%GDg?b1ZbRDo1 z4;Fpv;yxN0Ccwx5hlZ}#YQ|}k3j!>Wq6Cy0;+0V%nCOIX$NL-$NpZiN#CUfMiA9U| zH6hpV#rK9#|H=8g*@wL^*GXyv^Ei!i_hHf^m6{p44qxQHbum|*lEEH3B||V`WO{$| lx&-O@oKsgaGctg{R=Jsb-sha{e}zH(_O9uqh}?wd2y&H8L z5)pB(p_8=&xlrN~dkoJAJV#m#yH36zoJ3?S=Y_=bp~SM~_+iqblhO=ZM`~>DOt4VMV2_=WAs8|2J-c~lLeTul1{EBW-~Zv9 Ys>*1{J~f@0k%57sHH2|%2-Dw<0Qi4%r2qf` diff --git a/master/_modules/cleanlab/token_classification/summary.html b/master/_modules/cleanlab/token_classification/summary.html index 82df0c79f..b370fb559 100644 --- a/master/_modules/cleanlab/token_classification/summary.html +++ b/master/_modules/cleanlab/token_classification/summary.html @@ -694,20 +694,22 @@

    Source code for cleanlab.token_classification.summary

    Let’s print the first example in the train set.

    @@ -870,43 +870,43 @@

    2. Load and format the text dataset
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1205,7 +1205,7 @@

    4. Train a more robust model from noisy labels -{"state": {"34d4316bd4c945b58882adde91f79c7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a2b9e5edfe68481eb7b1f9feabd477eb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "80a5bd4f42e54692a29bd484162c5296": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_34d4316bd4c945b58882adde91f79c7f", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a2b9e5edfe68481eb7b1f9feabd477eb", "tabbable": null, "tooltip": null, "value": 391.0}}, "3438be2f09f44bc0a001342224ab8967": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b7e53c415147496b835e0d9981da8d78": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5322a15eaaf4a87a0b2d33eaa26e07a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3438be2f09f44bc0a001342224ab8967", "placeholder": "\u200b", "style": "IPY_MODEL_b7e53c415147496b835e0d9981da8d78", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "bd0e04d543ba4ec287398f0c171e46d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5151a1d39cab43a7a27d5fd17e8c4595": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "37ec9a7661c640fd98700c6a6937c33f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd0e04d543ba4ec287398f0c171e46d8", "placeholder": "\u200b", "style": "IPY_MODEL_5151a1d39cab43a7a27d5fd17e8c4595", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200760.2kB/s]"}}, "66d3b0941a36403c9cf14fae5aa9301e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "170a4da5c3a5406182fc31face9e437f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c5322a15eaaf4a87a0b2d33eaa26e07a", "IPY_MODEL_80a5bd4f42e54692a29bd484162c5296", "IPY_MODEL_37ec9a7661c640fd98700c6a6937c33f"], "layout": "IPY_MODEL_66d3b0941a36403c9cf14fae5aa9301e", "tabbable": null, "tooltip": null}}, "d495b06d72744507a3286f42869c97e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e1feef8a52142748717ee3d2127353d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "28bfe65df988485da991e92785500a65": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d495b06d72744507a3286f42869c97e3", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8e1feef8a52142748717ee3d2127353d", "tabbable": null, "tooltip": null, "value": 2211.0}}, "84a9567b4e9442909723ac516239ba49": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cfe20fe5fbc84430ae609332e540d127": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e5faad19fd734f5e81e0f68425d9ec80": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_84a9567b4e9442909723ac516239ba49", "placeholder": "\u200b", "style": "IPY_MODEL_cfe20fe5fbc84430ae609332e540d127", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "0e98ec94755d4b7e8a622ca21204c867": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "785d545ccfad41098a9bcf1e2564d909": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f9ca58d4a684d27a409ef12c8413ca7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0e98ec94755d4b7e8a622ca21204c867", "placeholder": "\u200b", "style": "IPY_MODEL_785d545ccfad41098a9bcf1e2564d909", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007383kB/s]"}}, "c0725521fae64c749e1ed744520d3d0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6a194c400b246ef81c1d960cd145187": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e5faad19fd734f5e81e0f68425d9ec80", "IPY_MODEL_28bfe65df988485da991e92785500a65", "IPY_MODEL_0f9ca58d4a684d27a409ef12c8413ca7"], "layout": "IPY_MODEL_c0725521fae64c749e1ed744520d3d0c", "tabbable": null, "tooltip": null}}, "23fd177ddcae4ebb9c5d158ef5b0c588": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04b3e9cc3a3e4a858dbb7c2c49c3f56f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c54bd420cc84422ca2549a47e7eecb1f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_23fd177ddcae4ebb9c5d158ef5b0c588", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_04b3e9cc3a3e4a858dbb7c2c49c3f56f", "tabbable": null, "tooltip": null, "value": 665.0}}, "dc4b6ca3f75646498a98492c6bc45504": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "580f49811bd04542ac1c099dff5d1924": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2b529ed0d7fc402da3f669043a54fdf8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dc4b6ca3f75646498a98492c6bc45504", "placeholder": "\u200b", "style": "IPY_MODEL_580f49811bd04542ac1c099dff5d1924", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "f2350f5245fa4d679e14106f0fff4ff4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c71e64efa224700be41523eecde9bc9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2adb0bc343fe416ca7f29bfe11e4f9de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f2350f5245fa4d679e14106f0fff4ff4", "placeholder": "\u200b", "style": "IPY_MODEL_7c71e64efa224700be41523eecde9bc9", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007116kB/s]"}}, "8109098fd0984cbfaee9c89742211ca5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14faada7fb694a93babdc4e58e322582": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2b529ed0d7fc402da3f669043a54fdf8", "IPY_MODEL_c54bd420cc84422ca2549a47e7eecb1f", "IPY_MODEL_2adb0bc343fe416ca7f29bfe11e4f9de"], "layout": "IPY_MODEL_8109098fd0984cbfaee9c89742211ca5", "tabbable": null, "tooltip": null}}, "8d799f3df81f47f9b65cf9f226b0fcee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6b15557cfd14ee4999e33d4f62fc80f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "597f768bdd064c0fb79f6078d926db7a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d799f3df81f47f9b65cf9f226b0fcee", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c6b15557cfd14ee4999e33d4f62fc80f", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "352272b56a1f4d5d971e6048cc3a9386": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b38c2eb3c524d8790abe684808c2f26": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ffc60e4a8e324353b601da7760d0fbf3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_352272b56a1f4d5d971e6048cc3a9386", "placeholder": "\u200b", "style": "IPY_MODEL_4b38c2eb3c524d8790abe684808c2f26", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "234b1f04915248bd96d272bf851b58e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50f8439d9b544353804260974cc7afe5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5787d409dde4e4f9265880110d94f80": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_234b1f04915248bd96d272bf851b58e4", "placeholder": "\u200b", "style": "IPY_MODEL_50f8439d9b544353804260974cc7afe5", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200751.0MB/s]"}}, "b1e63f05643e46d99f86be06530f3638": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a05c4722905b4c0da3a207f385835c27": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ffc60e4a8e324353b601da7760d0fbf3", "IPY_MODEL_597f768bdd064c0fb79f6078d926db7a", "IPY_MODEL_c5787d409dde4e4f9265880110d94f80"], "layout": "IPY_MODEL_b1e63f05643e46d99f86be06530f3638", "tabbable": null, "tooltip": null}}, "84f3710dc24f41f5ae8a3b0caa7fa9d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0fe17c0d86d4b4aada9001cdc652acd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f9a1057803734ec3b240a0572dd57426": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_84f3710dc24f41f5ae8a3b0caa7fa9d0", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b0fe17c0d86d4b4aada9001cdc652acd", "tabbable": null, "tooltip": null, "value": 466062.0}}, "b525cdb25bf34a7aa67d39c34f08402a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cfaa61471e7644fb91afac399a1e496e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e91809dbe24346a682fd6ce7f8c32e32": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b525cdb25bf34a7aa67d39c34f08402a", "placeholder": "\u200b", "style": "IPY_MODEL_cfaa61471e7644fb91afac399a1e496e", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "d2f7dabc331148ac9b0aecada7ffe438": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f2d47e5f69c49d7a1489fa423c7aa76": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1672b0e53b3a460d94ffb15832c01735": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d2f7dabc331148ac9b0aecada7ffe438", "placeholder": "\u200b", "style": "IPY_MODEL_7f2d47e5f69c49d7a1489fa423c7aa76", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200714.9MB/s]"}}, "6b6afcf5d022405c8572eb38ad0ac71a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "69893f44886f44efbc9ece016ed25315": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e91809dbe24346a682fd6ce7f8c32e32", "IPY_MODEL_f9a1057803734ec3b240a0572dd57426", "IPY_MODEL_1672b0e53b3a460d94ffb15832c01735"], "layout": "IPY_MODEL_6b6afcf5d022405c8572eb38ad0ac71a", "tabbable": null, "tooltip": null}}, "b6d8fd918c1b47bbabff0f10598fbf2c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b4d5d65bc524d37b16f45fad7b2962f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f580072f76264dc2961854f2d2de821f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b6d8fd918c1b47bbabff0f10598fbf2c", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1b4d5d65bc524d37b16f45fad7b2962f", "tabbable": null, "tooltip": null, "value": 48.0}}, "0c427532a682482295ddf926f0043c3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd6a12ec9ebc4e38b18a2419bb256df7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c57f613c306d48b197405793ca157b0d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c427532a682482295ddf926f0043c3c", "placeholder": "\u200b", "style": "IPY_MODEL_fd6a12ec9ebc4e38b18a2419bb256df7", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "f13d71d5b49b480fba877316acea40e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b79bc688b9441fdb47d968c18f77b4b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d04310785c664d95b767773c304249c2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f13d71d5b49b480fba877316acea40e0", "placeholder": "\u200b", "style": "IPY_MODEL_4b79bc688b9441fdb47d968c18f77b4b", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.49kB/s]"}}, "92acac4042434d78a726106c16300f53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1bc9e7f46afb467bb132d454a7431402": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c57f613c306d48b197405793ca157b0d", "IPY_MODEL_f580072f76264dc2961854f2d2de821f", "IPY_MODEL_d04310785c664d95b767773c304249c2"], "layout": "IPY_MODEL_92acac4042434d78a726106c16300f53", "tabbable": null, "tooltip": null}}, "f3a02179eaf84dc2bca6c6374dbaecde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c8dbd8fb58d84ca7982789ec389f23c9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "78438f2d01374a26bc63fb3a55625112": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3a02179eaf84dc2bca6c6374dbaecde", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c8dbd8fb58d84ca7982789ec389f23c9", "tabbable": null, "tooltip": null, "value": 231508.0}}, "05ced002ca604901a0c052ff4f6c3cad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b4a3074370140d8a32b114a099f37b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "536b60a201984d7980f57d53ed744d34": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_05ced002ca604901a0c052ff4f6c3cad", "placeholder": "\u200b", "style": "IPY_MODEL_9b4a3074370140d8a32b114a099f37b9", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "8004a11673c94b82be13a5f0c49a0956": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8399bcdb3f841eead550ac0867ba505": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5ae8a0a35d464d91b8be5eb4684a685f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8004a11673c94b82be13a5f0c49a0956", "placeholder": "\u200b", "style": "IPY_MODEL_a8399bcdb3f841eead550ac0867ba505", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200728.6MB/s]"}}, "9d5a977c17c242818587ce5d17d95665": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4473758d6d7413fb0a7272c211dd47b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_536b60a201984d7980f57d53ed744d34", "IPY_MODEL_78438f2d01374a26bc63fb3a55625112", "IPY_MODEL_5ae8a0a35d464d91b8be5eb4684a685f"], "layout": "IPY_MODEL_9d5a977c17c242818587ce5d17d95665", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"4715b42b27974c7abf7f523baaf85bc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcd8676b7bbc4299a9a1eefc5e9f5a5a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "771059f86db5403a82588587df8e705a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4715b42b27974c7abf7f523baaf85bc4", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bcd8676b7bbc4299a9a1eefc5e9f5a5a", "tabbable": null, "tooltip": null, "value": 391.0}}, "6c9b52f667364719ae65320fe05785f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b71bc7515f304e1699c674d83f45055e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "74659d1dc68347658544591dd350a1ad": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c9b52f667364719ae65320fe05785f9", "placeholder": "\u200b", "style": "IPY_MODEL_b71bc7515f304e1699c674d83f45055e", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "c9cf376d55ca4ed0bd9a3ec4bea403b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20e0f45c33504fdea8cc576cc2b857d7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cb9eae0b65594cf3af5f717c6a77f8da": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9cf376d55ca4ed0bd9a3ec4bea403b9", "placeholder": "\u200b", "style": "IPY_MODEL_20e0f45c33504fdea8cc576cc2b857d7", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200760.9kB/s]"}}, "d600f70c3c29452f8f1aaea86862ebf3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d2607738b7743f894cf58d14b522742": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_74659d1dc68347658544591dd350a1ad", "IPY_MODEL_771059f86db5403a82588587df8e705a", "IPY_MODEL_cb9eae0b65594cf3af5f717c6a77f8da"], "layout": "IPY_MODEL_d600f70c3c29452f8f1aaea86862ebf3", "tabbable": null, "tooltip": null}}, "98fbd8f4a80e46d3b14e7fcc4d6b4dd1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55e2fbcc5a3d457a8bad9cb36403d961": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ee126f596e9b445a853e5cc046ee9e2f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_98fbd8f4a80e46d3b14e7fcc4d6b4dd1", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_55e2fbcc5a3d457a8bad9cb36403d961", "tabbable": null, "tooltip": null, "value": 2211.0}}, "e3d5a9bbf7504a7ea79d51c9c221a5ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0b396a94ab04897a103f1dcd4f864f5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "47e6d3daa39d494e8907c74109c3725f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e3d5a9bbf7504a7ea79d51c9c221a5ef", "placeholder": "\u200b", "style": "IPY_MODEL_f0b396a94ab04897a103f1dcd4f864f5", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "7ff3eff204614cf1a81f0148ca6bbfcc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "981e29fffe4441a890d1824674ba1221": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c1e28f2734548be81a7c128dc5fe68a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ff3eff204614cf1a81f0148ca6bbfcc", "placeholder": "\u200b", "style": "IPY_MODEL_981e29fffe4441a890d1824674ba1221", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007276kB/s]"}}, "a03a6561b3c840268ec66335d952f1fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ef98d4e341fc4856821185cc478a60ca": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_47e6d3daa39d494e8907c74109c3725f", "IPY_MODEL_ee126f596e9b445a853e5cc046ee9e2f", "IPY_MODEL_5c1e28f2734548be81a7c128dc5fe68a"], "layout": "IPY_MODEL_a03a6561b3c840268ec66335d952f1fa", "tabbable": null, "tooltip": null}}, "128d29acc88a4dc18efb16c14dd5d7a2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb613555fab8489d9aef3047f50feabc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9e74f605da1d46c5bfc04c790628f88e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_128d29acc88a4dc18efb16c14dd5d7a2", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fb613555fab8489d9aef3047f50feabc", "tabbable": null, "tooltip": null, "value": 665.0}}, "13b289dd96ec466a8ec99430cf0404e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e9550a891b949b3a55e1e5d93df6d93": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ca13e661da2d45b4b1d032d1af7eac3c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13b289dd96ec466a8ec99430cf0404e3", "placeholder": "\u200b", "style": "IPY_MODEL_6e9550a891b949b3a55e1e5d93df6d93", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "f1f3811e239a432eb5b3ab17b7083f63": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9351614d4a2e403dae47e111a29b675f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d0d08e10ba8e480e9713619d84e475ba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f1f3811e239a432eb5b3ab17b7083f63", "placeholder": "\u200b", "style": "IPY_MODEL_9351614d4a2e403dae47e111a29b675f", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007108kB/s]"}}, "59fde4da81684c3c9958f315c5963921": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c86864d9213f44bdbdbef878d53a5ec8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ca13e661da2d45b4b1d032d1af7eac3c", "IPY_MODEL_9e74f605da1d46c5bfc04c790628f88e", "IPY_MODEL_d0d08e10ba8e480e9713619d84e475ba"], "layout": "IPY_MODEL_59fde4da81684c3c9958f315c5963921", "tabbable": null, "tooltip": null}}, "3c1abbb3f620400ba1c402d2db512840": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bbe1d5543c55400a8f804432ca7084be": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4463cf39f52d42609e89d03ddb23996b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c1abbb3f620400ba1c402d2db512840", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bbe1d5543c55400a8f804432ca7084be", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "5b240a4c7cd141a8958f5d6570b1e6f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5044949dd0c044b29256312644ad1e3c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2a0325ac939e4207bc4b502b0c1be46e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5b240a4c7cd141a8958f5d6570b1e6f9", "placeholder": "\u200b", "style": "IPY_MODEL_5044949dd0c044b29256312644ad1e3c", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "7a006eed443743b887e9314a508782b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7d5f6da54e52454f99e9414c28869b5c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "851011b926814fcc855690a87f198ea9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a006eed443743b887e9314a508782b0", "placeholder": "\u200b", "style": "IPY_MODEL_7d5f6da54e52454f99e9414c28869b5c", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007255MB/s]"}}, "564891b4834049379c565ba8c00a01ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cffb7d7829fd42a8ba8badca7ccc3c94": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2a0325ac939e4207bc4b502b0c1be46e", "IPY_MODEL_4463cf39f52d42609e89d03ddb23996b", "IPY_MODEL_851011b926814fcc855690a87f198ea9"], "layout": "IPY_MODEL_564891b4834049379c565ba8c00a01ff", "tabbable": null, "tooltip": null}}, "74d19570dd3f479a8313af92c9035cc5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4b731636f1d439cbd7c522ec9a55c01": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "032f69575e34461ab1fdf90c9f52462b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_74d19570dd3f479a8313af92c9035cc5", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e4b731636f1d439cbd7c522ec9a55c01", "tabbable": null, "tooltip": null, "value": 466062.0}}, "d65f8ea3d31948d48d2f6a560d27641c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f5e7ccf2ca24251acb7b8ff0809b16e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ae0008f14c044de59df260b8c4fe644c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d65f8ea3d31948d48d2f6a560d27641c", "placeholder": "\u200b", "style": "IPY_MODEL_8f5e7ccf2ca24251acb7b8ff0809b16e", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "65dbbd57ce5b4234a526bdcb485c3ebc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48e2f1e7018a4200ab96f9c14fbe27be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d72c13010b7c42578469196b2468e21a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_65dbbd57ce5b4234a526bdcb485c3ebc", "placeholder": "\u200b", "style": "IPY_MODEL_48e2f1e7018a4200ab96f9c14fbe27be", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200732.0MB/s]"}}, "6d0e0692de5a4200a768d0eeba6c6fcc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e7edff2df0548ecb33ff3296b2e9d2c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ae0008f14c044de59df260b8c4fe644c", "IPY_MODEL_032f69575e34461ab1fdf90c9f52462b", "IPY_MODEL_d72c13010b7c42578469196b2468e21a"], "layout": "IPY_MODEL_6d0e0692de5a4200a768d0eeba6c6fcc", "tabbable": null, "tooltip": null}}, "1adc4456d4514378ab55c96680dde6eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "801ea7b7f74f44f6af3fcc07acfe7976": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f4d9e3b6e8204736a9b4626578cd63e2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1adc4456d4514378ab55c96680dde6eb", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_801ea7b7f74f44f6af3fcc07acfe7976", "tabbable": null, "tooltip": null, "value": 48.0}}, "72423ae91ec54d489872288bc048ab1a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9446e83f31f04f518559f5c0424b72fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "73487618f67b4d87b1e69279310e2224": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72423ae91ec54d489872288bc048ab1a", "placeholder": "\u200b", "style": "IPY_MODEL_9446e83f31f04f518559f5c0424b72fa", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "f467f31677e241b49b78a0908980ba99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48d53620522b4a9b892c2a5820dc8930": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f79d6bd82cd4e86986e96099f67604c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f467f31677e241b49b78a0908980ba99", "placeholder": "\u200b", "style": "IPY_MODEL_48d53620522b4a9b892c2a5820dc8930", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.62kB/s]"}}, "0cbdcc5d20a547988e163cc5a9a1e331": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95cab22f117f4bd78956fd7f498f5135": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_73487618f67b4d87b1e69279310e2224", "IPY_MODEL_f4d9e3b6e8204736a9b4626578cd63e2", "IPY_MODEL_0f79d6bd82cd4e86986e96099f67604c"], "layout": "IPY_MODEL_0cbdcc5d20a547988e163cc5a9a1e331", "tabbable": null, "tooltip": null}}, "4afa67ec1e1a477383e8caec611378cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a03920cdb1b749c2a6913e9a0b54c3b0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f22dccc6486a443c87e9fdd395d7b94d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4afa67ec1e1a477383e8caec611378cc", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a03920cdb1b749c2a6913e9a0b54c3b0", "tabbable": null, "tooltip": null, "value": 231508.0}}, "7823580b63c04a9d997253f4051c76c2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c32d74675744e3d9e30b03b815ce977": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c2ec4d467d041febc441780d69d9968": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7823580b63c04a9d997253f4051c76c2", "placeholder": "\u200b", "style": "IPY_MODEL_2c32d74675744e3d9e30b03b815ce977", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "449d9a4fd4834ef590b2acd80aa39c1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "300c5a1910d74d3aa7419ae16a874765": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bd122a7e1f3f4dbdbb9a11a0bb8fde1f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_449d9a4fd4834ef590b2acd80aa39c1f", "placeholder": "\u200b", "style": "IPY_MODEL_300c5a1910d74d3aa7419ae16a874765", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200734.1MB/s]"}}, "73ca4b40d62240abaddcfceba6cb0968": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b6c8d10a3fa4aadb846803d1ec36dcc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3c2ec4d467d041febc441780d69d9968", "IPY_MODEL_f22dccc6486a443c87e9fdd395d7b94d", "IPY_MODEL_bd122a7e1f3f4dbdbb9a11a0bb8fde1f"], "layout": "IPY_MODEL_73ca4b40d62240abaddcfceba6cb0968", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index ac41d0fe1..205c4c8c2 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:58.735003Z", - "iopub.status.busy": "2024-06-07T11:04:58.734832Z", - "iopub.status.idle": "2024-06-07T11:05:01.961588Z", - "shell.execute_reply": "2024-06-07T11:05:01.960963Z" + "iopub.execute_input": "2024-06-10T22:06:02.060591Z", + "iopub.status.busy": "2024-06-10T22:06:02.060417Z", + "iopub.status.idle": "2024-06-10T22:06:05.368494Z", + "shell.execute_reply": "2024-06-10T22:06:05.367924Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:01.964464Z", - "iopub.status.busy": "2024-06-07T11:05:01.963900Z", - "iopub.status.idle": "2024-06-07T11:05:01.967549Z", - "shell.execute_reply": "2024-06-07T11:05:01.966956Z" + "iopub.execute_input": "2024-06-10T22:06:05.371135Z", + "iopub.status.busy": "2024-06-10T22:06:05.370787Z", + "iopub.status.idle": "2024-06-10T22:06:05.374492Z", + "shell.execute_reply": "2024-06-10T22:06:05.374017Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:01.969810Z", - "iopub.status.busy": "2024-06-07T11:05:01.969428Z", - "iopub.status.idle": "2024-06-07T11:05:01.972754Z", - "shell.execute_reply": "2024-06-07T11:05:01.972265Z" + "iopub.execute_input": "2024-06-10T22:06:05.376701Z", + "iopub.status.busy": "2024-06-10T22:06:05.376360Z", + "iopub.status.idle": "2024-06-10T22:06:05.379500Z", + "shell.execute_reply": "2024-06-10T22:06:05.379049Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:01.974983Z", - "iopub.status.busy": "2024-06-07T11:05:01.974642Z", - "iopub.status.idle": "2024-06-07T11:05:02.026240Z", - "shell.execute_reply": "2024-06-07T11:05:02.025681Z" + "iopub.execute_input": "2024-06-10T22:06:05.381571Z", + "iopub.status.busy": "2024-06-10T22:06:05.381240Z", + "iopub.status.idle": "2024-06-10T22:06:05.423304Z", + "shell.execute_reply": "2024-06-10T22:06:05.422683Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:02.028588Z", - "iopub.status.busy": "2024-06-07T11:05:02.028203Z", - "iopub.status.idle": "2024-06-07T11:05:02.032155Z", - "shell.execute_reply": "2024-06-07T11:05:02.031649Z" + "iopub.execute_input": "2024-06-10T22:06:05.425581Z", + "iopub.status.busy": "2024-06-10T22:06:05.425387Z", + "iopub.status.idle": "2024-06-10T22:06:05.429490Z", + "shell.execute_reply": "2024-06-10T22:06:05.429008Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:02.034408Z", - "iopub.status.busy": "2024-06-07T11:05:02.034086Z", - "iopub.status.idle": "2024-06-07T11:05:02.037872Z", - "shell.execute_reply": "2024-06-07T11:05:02.037351Z" + "iopub.execute_input": "2024-06-10T22:06:05.431681Z", + "iopub.status.busy": "2024-06-10T22:06:05.431245Z", + "iopub.status.idle": "2024-06-10T22:06:05.435156Z", + "shell.execute_reply": "2024-06-10T22:06:05.434565Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'getting_spare_card', 'change_pin', 'cancel_transfer'}\n" + "Classes: {'apple_pay_or_google_pay', 'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'visa_or_mastercard'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:02.040028Z", - "iopub.status.busy": "2024-06-07T11:05:02.039692Z", - "iopub.status.idle": "2024-06-07T11:05:02.043030Z", - "shell.execute_reply": "2024-06-07T11:05:02.042492Z" + "iopub.execute_input": "2024-06-10T22:06:05.437633Z", + "iopub.status.busy": "2024-06-10T22:06:05.437193Z", + "iopub.status.idle": "2024-06-10T22:06:05.440700Z", + "shell.execute_reply": "2024-06-10T22:06:05.440213Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:02.045241Z", - "iopub.status.busy": "2024-06-07T11:05:02.044891Z", - "iopub.status.idle": "2024-06-07T11:05:02.048560Z", - "shell.execute_reply": "2024-06-07T11:05:02.047936Z" + "iopub.execute_input": "2024-06-10T22:06:05.442900Z", + "iopub.status.busy": "2024-06-10T22:06:05.442470Z", + "iopub.status.idle": "2024-06-10T22:06:05.446139Z", + "shell.execute_reply": "2024-06-10T22:06:05.445565Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:02.051046Z", - "iopub.status.busy": "2024-06-07T11:05:02.050648Z", - "iopub.status.idle": "2024-06-07T11:05:07.524580Z", - "shell.execute_reply": "2024-06-07T11:05:07.524004Z" + "iopub.execute_input": "2024-06-10T22:06:05.448427Z", + "iopub.status.busy": "2024-06-10T22:06:05.448119Z", + "iopub.status.idle": "2024-06-10T22:06:11.565568Z", + "shell.execute_reply": "2024-06-10T22:06:11.564804Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "170a4da5c3a5406182fc31face9e437f", + "model_id": "9d2607738b7743f894cf58d14b522742", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6a194c400b246ef81c1d960cd145187", + "model_id": "ef98d4e341fc4856821185cc478a60ca", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "14faada7fb694a93babdc4e58e322582", + "model_id": "c86864d9213f44bdbdbef878d53a5ec8", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a05c4722905b4c0da3a207f385835c27", + "model_id": "cffb7d7829fd42a8ba8badca7ccc3c94", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "69893f44886f44efbc9ece016ed25315", + "model_id": "9e7edff2df0548ecb33ff3296b2e9d2c", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1bc9e7f46afb467bb132d454a7431402", + "model_id": "95cab22f117f4bd78956fd7f498f5135", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b4473758d6d7413fb0a7272c211dd47b", + "model_id": "5b6c8d10a3fa4aadb846803d1ec36dcc", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:07.527239Z", - "iopub.status.busy": "2024-06-07T11:05:07.527043Z", - "iopub.status.idle": "2024-06-07T11:05:07.529949Z", - "shell.execute_reply": "2024-06-07T11:05:07.529430Z" + "iopub.execute_input": "2024-06-10T22:06:11.569044Z", + "iopub.status.busy": "2024-06-10T22:06:11.568627Z", + "iopub.status.idle": "2024-06-10T22:06:11.571967Z", + "shell.execute_reply": "2024-06-10T22:06:11.571332Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:07.531988Z", - "iopub.status.busy": "2024-06-07T11:05:07.531688Z", - "iopub.status.idle": "2024-06-07T11:05:07.534445Z", - "shell.execute_reply": "2024-06-07T11:05:07.533984Z" + "iopub.execute_input": "2024-06-10T22:06:11.574571Z", + "iopub.status.busy": "2024-06-10T22:06:11.574147Z", + "iopub.status.idle": "2024-06-10T22:06:11.577492Z", + "shell.execute_reply": "2024-06-10T22:06:11.576946Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:07.536330Z", - "iopub.status.busy": "2024-06-07T11:05:07.536143Z", - "iopub.status.idle": "2024-06-07T11:05:09.917820Z", - "shell.execute_reply": "2024-06-07T11:05:09.917162Z" + "iopub.execute_input": "2024-06-10T22:06:11.579891Z", + "iopub.status.busy": "2024-06-10T22:06:11.579491Z", + "iopub.status.idle": "2024-06-10T22:06:14.029177Z", + "shell.execute_reply": "2024-06-10T22:06:14.028325Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:09.921011Z", - "iopub.status.busy": "2024-06-07T11:05:09.920233Z", - "iopub.status.idle": "2024-06-07T11:05:09.927917Z", - "shell.execute_reply": "2024-06-07T11:05:09.927406Z" + "iopub.execute_input": "2024-06-10T22:06:14.032771Z", + "iopub.status.busy": "2024-06-10T22:06:14.031924Z", + "iopub.status.idle": "2024-06-10T22:06:14.040470Z", + "shell.execute_reply": "2024-06-10T22:06:14.039898Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:09.930071Z", - "iopub.status.busy": "2024-06-07T11:05:09.929746Z", - "iopub.status.idle": "2024-06-07T11:05:09.934024Z", - "shell.execute_reply": "2024-06-07T11:05:09.933565Z" + "iopub.execute_input": "2024-06-10T22:06:14.042716Z", + "iopub.status.busy": "2024-06-10T22:06:14.042355Z", + "iopub.status.idle": "2024-06-10T22:06:14.046558Z", + "shell.execute_reply": "2024-06-10T22:06:14.046116Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:09.935986Z", - "iopub.status.busy": "2024-06-07T11:05:09.935742Z", - "iopub.status.idle": "2024-06-07T11:05:09.938950Z", - "shell.execute_reply": "2024-06-07T11:05:09.938453Z" + "iopub.execute_input": "2024-06-10T22:06:14.048604Z", + "iopub.status.busy": "2024-06-10T22:06:14.048267Z", + "iopub.status.idle": "2024-06-10T22:06:14.051731Z", + "shell.execute_reply": "2024-06-10T22:06:14.051271Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:09.940956Z", - "iopub.status.busy": "2024-06-07T11:05:09.940651Z", - "iopub.status.idle": "2024-06-07T11:05:09.943535Z", - "shell.execute_reply": "2024-06-07T11:05:09.943104Z" + "iopub.execute_input": "2024-06-10T22:06:14.053830Z", + "iopub.status.busy": "2024-06-10T22:06:14.053560Z", + "iopub.status.idle": "2024-06-10T22:06:14.056709Z", + "shell.execute_reply": "2024-06-10T22:06:14.056144Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:09.945537Z", - "iopub.status.busy": "2024-06-07T11:05:09.945125Z", - "iopub.status.idle": "2024-06-07T11:05:09.952243Z", - "shell.execute_reply": "2024-06-07T11:05:09.951714Z" + "iopub.execute_input": "2024-06-10T22:06:14.058887Z", + "iopub.status.busy": "2024-06-10T22:06:14.058550Z", + "iopub.status.idle": "2024-06-10T22:06:14.066622Z", + "shell.execute_reply": "2024-06-10T22:06:14.066137Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:09.954333Z", - "iopub.status.busy": "2024-06-07T11:05:09.954066Z", - "iopub.status.idle": "2024-06-07T11:05:10.178778Z", - "shell.execute_reply": "2024-06-07T11:05:10.178185Z" + "iopub.execute_input": "2024-06-10T22:06:14.068937Z", + "iopub.status.busy": "2024-06-10T22:06:14.068540Z", + "iopub.status.idle": "2024-06-10T22:06:14.292131Z", + "shell.execute_reply": "2024-06-10T22:06:14.291492Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:10.182213Z", - "iopub.status.busy": "2024-06-07T11:05:10.181278Z", - "iopub.status.idle": "2024-06-07T11:05:10.355858Z", - "shell.execute_reply": "2024-06-07T11:05:10.355254Z" + "iopub.execute_input": "2024-06-10T22:06:14.296072Z", + "iopub.status.busy": "2024-06-10T22:06:14.294963Z", + "iopub.status.idle": "2024-06-10T22:06:14.500659Z", + "shell.execute_reply": "2024-06-10T22:06:14.500105Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:10.359387Z", - "iopub.status.busy": "2024-06-07T11:05:10.358442Z", - "iopub.status.idle": "2024-06-07T11:05:10.363874Z", - "shell.execute_reply": "2024-06-07T11:05:10.363378Z" + "iopub.execute_input": "2024-06-10T22:06:14.504484Z", + "iopub.status.busy": "2024-06-10T22:06:14.503547Z", + "iopub.status.idle": "2024-06-10T22:06:14.508528Z", + "shell.execute_reply": "2024-06-10T22:06:14.508033Z" }, "nbsphinx": "hidden" }, @@ -1113,23 +1113,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04b3e9cc3a3e4a858dbb7c2c49c3f56f": { + "032f69575e34461ab1fdf90c9f52462b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_74d19570dd3f479a8313af92c9035cc5", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4b731636f1d439cbd7c522ec9a55c01", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "05ced002ca604901a0c052ff4f6c3cad": { + "0cbdcc5d20a547988e163cc5a9a1e331": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1182,7 +1192,30 @@ "width": null } }, - "0c427532a682482295ddf926f0043c3c": { + "0f79d6bd82cd4e86986e96099f67604c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f467f31677e241b49b78a0908980ba99", + "placeholder": "​", + "style": "IPY_MODEL_48d53620522b4a9b892c2a5820dc8930", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.62kB/s]" + } + }, + "128d29acc88a4dc18efb16c14dd5d7a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1235,7 +1268,7 @@ "width": null } }, - "0e98ec94755d4b7e8a622ca21204c867": { + "13b289dd96ec466a8ec99430cf0404e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1288,54 +1321,78 @@ "width": null } }, - "0f9ca58d4a684d27a409ef12c8413ca7": { - "model_module": "@jupyter-widgets/controls", + "1adc4456d4514378ab55c96680dde6eb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e98ec94755d4b7e8a622ca21204c867", - "placeholder": "​", - "style": "IPY_MODEL_785d545ccfad41098a9bcf1e2564d909", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 383kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "14faada7fb694a93babdc4e58e322582": { + "20e0f45c33504fdea8cc576cc2b857d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2b529ed0d7fc402da3f669043a54fdf8", - "IPY_MODEL_c54bd420cc84422ca2549a47e7eecb1f", - "IPY_MODEL_2adb0bc343fe416ca7f29bfe11e4f9de" - ], - "layout": "IPY_MODEL_8109098fd0984cbfaee9c89742211ca5", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1672b0e53b3a460d94ffb15832c01735": { + "2a0325ac939e4207bc4b502b0c1be46e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1350,132 +1407,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d2f7dabc331148ac9b0aecada7ffe438", + "layout": "IPY_MODEL_5b240a4c7cd141a8958f5d6570b1e6f9", "placeholder": "​", - "style": "IPY_MODEL_7f2d47e5f69c49d7a1489fa423c7aa76", + "style": "IPY_MODEL_5044949dd0c044b29256312644ad1e3c", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 14.9MB/s]" - } - }, - "170a4da5c3a5406182fc31face9e437f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5322a15eaaf4a87a0b2d33eaa26e07a", - "IPY_MODEL_80a5bd4f42e54692a29bd484162c5296", - "IPY_MODEL_37ec9a7661c640fd98700c6a6937c33f" - ], - "layout": "IPY_MODEL_66d3b0941a36403c9cf14fae5aa9301e", - "tabbable": null, - "tooltip": null + "value": "pytorch_model.bin: 100%" } }, - "1b4d5d65bc524d37b16f45fad7b2962f": { + "2c32d74675744e3d9e30b03b815ce977": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1bc9e7f46afb467bb132d454a7431402": { + "300c5a1910d74d3aa7419ae16a874765": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c57f613c306d48b197405793ca157b0d", - "IPY_MODEL_f580072f76264dc2961854f2d2de821f", - "IPY_MODEL_d04310785c664d95b767773c304249c2" - ], - "layout": "IPY_MODEL_92acac4042434d78a726106c16300f53", - "tabbable": null, - "tooltip": null - } - }, - "234b1f04915248bd96d272bf851b58e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "23fd177ddcae4ebb9c5d158ef5b0c588": { + "3c1abbb3f620400ba1c402d2db512840": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1528,33 +1504,7 @@ "width": null } }, - "28bfe65df988485da991e92785500a65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d495b06d72744507a3286f42869c97e3", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8e1feef8a52142748717ee3d2127353d", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "2adb0bc343fe416ca7f29bfe11e4f9de": { + "3c2ec4d467d041febc441780d69d9968": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1569,38 +1519,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2350f5245fa4d679e14106f0fff4ff4", + "layout": "IPY_MODEL_7823580b63c04a9d997253f4051c76c2", "placeholder": "​", - "style": "IPY_MODEL_7c71e64efa224700be41523eecde9bc9", + "style": "IPY_MODEL_2c32d74675744e3d9e30b03b815ce977", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 116kB/s]" + "value": "vocab.txt: 100%" } }, - "2b529ed0d7fc402da3f669043a54fdf8": { + "4463cf39f52d42609e89d03ddb23996b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dc4b6ca3f75646498a98492c6bc45504", - "placeholder": "​", - "style": "IPY_MODEL_580f49811bd04542ac1c099dff5d1924", + "layout": "IPY_MODEL_3c1abbb3f620400ba1c402d2db512840", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bbe1d5543c55400a8f804432ca7084be", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": 54245363.0 } }, - "3438be2f09f44bc0a001342224ab8967": { + "449d9a4fd4834ef590b2acd80aa39c1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1653,7 +1606,7 @@ "width": null } }, - "34d4316bd4c945b58882adde91f79c7f": { + "4715b42b27974c7abf7f523baaf85bc4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1706,66 +1659,13 @@ "width": null } }, - "352272b56a1f4d5d971e6048cc3a9386": { - "model_module": "@jupyter-widgets/base", + "47e6d3daa39d494e8907c74109c3725f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "37ec9a7661c640fd98700c6a6937c33f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, @@ -1774,15 +1674,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd0e04d543ba4ec287398f0c171e46d8", + "layout": "IPY_MODEL_e3d5a9bbf7504a7ea79d51c9c221a5ef", "placeholder": "​", - "style": "IPY_MODEL_5151a1d39cab43a7a27d5fd17e8c4595", + "style": "IPY_MODEL_f0b396a94ab04897a103f1dcd4f864f5", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 60.2kB/s]" + "value": "README.md: 100%" } }, - "4b38c2eb3c524d8790abe684808c2f26": { + "48d53620522b4a9b892c2a5820dc8930": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1800,7 +1700,7 @@ "text_color": null } }, - "4b79bc688b9441fdb47d968c18f77b4b": { + "48e2f1e7018a4200ab96f9c14fbe27be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1818,25 +1718,60 @@ "text_color": null } }, - "50f8439d9b544353804260974cc7afe5": { - "model_module": "@jupyter-widgets/controls", + "4afa67ec1e1a477383e8caec611378cc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5151a1d39cab43a7a27d5fd17e8c4595": { + "5044949dd0c044b29256312644ad1e3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1854,97 +1789,23 @@ "text_color": null } }, - "536b60a201984d7980f57d53ed744d34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_05ced002ca604901a0c052ff4f6c3cad", - "placeholder": "​", - "style": "IPY_MODEL_9b4a3074370140d8a32b114a099f37b9", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "580f49811bd04542ac1c099dff5d1924": { + "55e2fbcc5a3d457a8bad9cb36403d961": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "597f768bdd064c0fb79f6078d926db7a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d799f3df81f47f9b65cf9f226b0fcee", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c6b15557cfd14ee4999e33d4f62fc80f", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "5ae8a0a35d464d91b8be5eb4684a685f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8004a11673c94b82be13a5f0c49a0956", - "placeholder": "​", - "style": "IPY_MODEL_a8399bcdb3f841eead550ac0867ba505", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 28.6MB/s]" + "bar_color": null, + "description_width": "" } }, - "66d3b0941a36403c9cf14fae5aa9301e": { + "564891b4834049379c565ba8c00a01ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,31 +1858,60 @@ "width": null } }, - "69893f44886f44efbc9ece016ed25315": { - "model_module": "@jupyter-widgets/controls", + "59fde4da81684c3c9958f315c5963921": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e91809dbe24346a682fd6ce7f8c32e32", - "IPY_MODEL_f9a1057803734ec3b240a0572dd57426", - "IPY_MODEL_1672b0e53b3a460d94ffb15832c01735" - ], - "layout": "IPY_MODEL_6b6afcf5d022405c8572eb38ad0ac71a", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6b6afcf5d022405c8572eb38ad0ac71a": { + "5b240a4c7cd141a8958f5d6570b1e6f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2074,87 +1964,54 @@ "width": null } }, - "78438f2d01374a26bc63fb3a55625112": { + "5b6c8d10a3fa4aadb846803d1ec36dcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3a02179eaf84dc2bca6c6374dbaecde", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c8dbd8fb58d84ca7982789ec389f23c9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c2ec4d467d041febc441780d69d9968", + "IPY_MODEL_f22dccc6486a443c87e9fdd395d7b94d", + "IPY_MODEL_bd122a7e1f3f4dbdbb9a11a0bb8fde1f" + ], + "layout": "IPY_MODEL_73ca4b40d62240abaddcfceba6cb0968", "tabbable": null, - "tooltip": null, - "value": 231508.0 + "tooltip": null } }, - "785d545ccfad41098a9bcf1e2564d909": { + "5c1e28f2734548be81a7c128dc5fe68a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7c71e64efa224700be41523eecde9bc9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7f2d47e5f69c49d7a1489fa423c7aa76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ff3eff204614cf1a81f0148ca6bbfcc", + "placeholder": "​", + "style": "IPY_MODEL_981e29fffe4441a890d1824674ba1221", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 276kB/s]" } }, - "8004a11673c94b82be13a5f0c49a0956": { + "65dbbd57ce5b4234a526bdcb485c3ebc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2207,33 +2064,7 @@ "width": null } }, - "80a5bd4f42e54692a29bd484162c5296": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_34d4316bd4c945b58882adde91f79c7f", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a2b9e5edfe68481eb7b1f9feabd477eb", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "8109098fd0984cbfaee9c89742211ca5": { + "6c9b52f667364719ae65320fe05785f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2286,7 +2117,7 @@ "width": null } }, - "84a9567b4e9442909723ac516239ba49": { + "6d0e0692de5a4200a768d0eeba6c6fcc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2339,7 +2170,25 @@ "width": null } }, - "84f3710dc24f41f5ae8a3b0caa7fa9d0": { + "6e9550a891b949b3a55e1e5d93df6d93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "72423ae91ec54d489872288bc048ab1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2392,7 +2241,30 @@ "width": null } }, - "8d799f3df81f47f9b65cf9f226b0fcee": { + "73487618f67b4d87b1e69279310e2224": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72423ae91ec54d489872288bc048ab1a", + "placeholder": "​", + "style": "IPY_MODEL_9446e83f31f04f518559f5c0424b72fa", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "73ca4b40d62240abaddcfceba6cb0968": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2445,23 +2317,30 @@ "width": null } }, - "8e1feef8a52142748717ee3d2127353d": { + "74659d1dc68347658544591dd350a1ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6c9b52f667364719ae65320fe05785f9", + "placeholder": "​", + "style": "IPY_MODEL_b71bc7515f304e1699c674d83f45055e", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "92acac4042434d78a726106c16300f53": { + "74d19570dd3f479a8313af92c9035cc5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2514,25 +2393,33 @@ "width": null } }, - "9b4a3074370140d8a32b114a099f37b9": { + "771059f86db5403a82588587df8e705a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4715b42b27974c7abf7f523baaf85bc4", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bcd8676b7bbc4299a9a1eefc5e9f5a5a", + "tabbable": null, + "tooltip": null, + "value": 391.0 } }, - "9d5a977c17c242818587ce5d17d95665": { + "7823580b63c04a9d997253f4051c76c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2585,105 +2472,7 @@ "width": null } }, - "a05c4722905b4c0da3a207f385835c27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ffc60e4a8e324353b601da7760d0fbf3", - "IPY_MODEL_597f768bdd064c0fb79f6078d926db7a", - "IPY_MODEL_c5787d409dde4e4f9265880110d94f80" - ], - "layout": "IPY_MODEL_b1e63f05643e46d99f86be06530f3638", - "tabbable": null, - "tooltip": null - } - }, - "a2b9e5edfe68481eb7b1f9feabd477eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a6a194c400b246ef81c1d960cd145187": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e5faad19fd734f5e81e0f68425d9ec80", - "IPY_MODEL_28bfe65df988485da991e92785500a65", - "IPY_MODEL_0f9ca58d4a684d27a409ef12c8413ca7" - ], - "layout": "IPY_MODEL_c0725521fae64c749e1ed744520d3d0c", - "tabbable": null, - "tooltip": null - } - }, - "a8399bcdb3f841eead550ac0867ba505": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b0fe17c0d86d4b4aada9001cdc652acd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b1e63f05643e46d99f86be06530f3638": { + "7a006eed443743b887e9314a508782b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2736,31 +2525,25 @@ "width": null } }, - "b4473758d6d7413fb0a7272c211dd47b": { + "7d5f6da54e52454f99e9414c28869b5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_536b60a201984d7980f57d53ed744d34", - "IPY_MODEL_78438f2d01374a26bc63fb3a55625112", - "IPY_MODEL_5ae8a0a35d464d91b8be5eb4684a685f" - ], - "layout": "IPY_MODEL_9d5a977c17c242818587ce5d17d95665", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b525cdb25bf34a7aa67d39c34f08402a": { + "7ff3eff204614cf1a81f0148ca6bbfcc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2813,60 +2596,124 @@ "width": null } }, - "b6d8fd918c1b47bbabff0f10598fbf2c": { - "model_module": "@jupyter-widgets/base", + "801ea7b7f74f44f6af3fcc07acfe7976": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "851011b926814fcc855690a87f198ea9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7a006eed443743b887e9314a508782b0", + "placeholder": "​", + "style": "IPY_MODEL_7d5f6da54e52454f99e9414c28869b5c", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 255MB/s]" + } + }, + "8f5e7ccf2ca24251acb7b8ff0809b16e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9351614d4a2e403dae47e111a29b675f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9446e83f31f04f518559f5c0424b72fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "95cab22f117f4bd78956fd7f498f5135": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73487618f67b4d87b1e69279310e2224", + "IPY_MODEL_f4d9e3b6e8204736a9b4626578cd63e2", + "IPY_MODEL_0f79d6bd82cd4e86986e96099f67604c" + ], + "layout": "IPY_MODEL_0cbdcc5d20a547988e163cc5a9a1e331", + "tabbable": null, + "tooltip": null } }, - "b7e53c415147496b835e0d9981da8d78": { + "981e29fffe4441a890d1824674ba1221": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2884,7 +2731,7 @@ "text_color": null } }, - "bd0e04d543ba4ec287398f0c171e46d8": { + "98fbd8f4a80e46d3b14e7fcc4d6b4dd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2937,7 +2784,97 @@ "width": null } }, - "c0725521fae64c749e1ed744520d3d0c": { + "9d2607738b7743f894cf58d14b522742": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_74659d1dc68347658544591dd350a1ad", + "IPY_MODEL_771059f86db5403a82588587df8e705a", + "IPY_MODEL_cb9eae0b65594cf3af5f717c6a77f8da" + ], + "layout": "IPY_MODEL_d600f70c3c29452f8f1aaea86862ebf3", + "tabbable": null, + "tooltip": null + } + }, + "9e74f605da1d46c5bfc04c790628f88e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_128d29acc88a4dc18efb16c14dd5d7a2", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fb613555fab8489d9aef3047f50feabc", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "9e7edff2df0548ecb33ff3296b2e9d2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ae0008f14c044de59df260b8c4fe644c", + "IPY_MODEL_032f69575e34461ab1fdf90c9f52462b", + "IPY_MODEL_d72c13010b7c42578469196b2468e21a" + ], + "layout": "IPY_MODEL_6d0e0692de5a4200a768d0eeba6c6fcc", + "tabbable": null, + "tooltip": null + } + }, + "a03920cdb1b749c2a6913e9a0b54c3b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a03a6561b3c840268ec66335d952f1fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2990,7 +2927,7 @@ "width": null } }, - "c5322a15eaaf4a87a0b2d33eaa26e07a": { + "ae0008f14c044de59df260b8c4fe644c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3005,41 +2942,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3438be2f09f44bc0a001342224ab8967", + "layout": "IPY_MODEL_d65f8ea3d31948d48d2f6a560d27641c", "placeholder": "​", - "style": "IPY_MODEL_b7e53c415147496b835e0d9981da8d78", + "style": "IPY_MODEL_8f5e7ccf2ca24251acb7b8ff0809b16e", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": "tokenizer.json: 100%" } }, - "c54bd420cc84422ca2549a47e7eecb1f": { + "b71bc7515f304e1699c674d83f45055e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23fd177ddcae4ebb9c5d158ef5b0c588", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04b3e9cc3a3e4a858dbb7c2c49c3f56f", - "tabbable": null, - "tooltip": null, - "value": 665.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbe1d5543c55400a8f804432ca7084be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bcd8676b7bbc4299a9a1eefc5e9f5a5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c5787d409dde4e4f9265880110d94f80": { + "bd122a7e1f3f4dbdbb9a11a0bb8fde1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3054,106 +3015,162 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_234b1f04915248bd96d272bf851b58e4", + "layout": "IPY_MODEL_449d9a4fd4834ef590b2acd80aa39c1f", "placeholder": "​", - "style": "IPY_MODEL_50f8439d9b544353804260974cc7afe5", + "style": "IPY_MODEL_300c5a1910d74d3aa7419ae16a874765", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 51.0MB/s]" + "value": " 232k/232k [00:00<00:00, 34.1MB/s]" } }, - "c57f613c306d48b197405793ca157b0d": { + "c86864d9213f44bdbdbef878d53a5ec8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c427532a682482295ddf926f0043c3c", - "placeholder": "​", - "style": "IPY_MODEL_fd6a12ec9ebc4e38b18a2419bb256df7", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca13e661da2d45b4b1d032d1af7eac3c", + "IPY_MODEL_9e74f605da1d46c5bfc04c790628f88e", + "IPY_MODEL_d0d08e10ba8e480e9713619d84e475ba" + ], + "layout": "IPY_MODEL_59fde4da81684c3c9958f315c5963921", "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "tooltip": null } }, - "c6b15557cfd14ee4999e33d4f62fc80f": { - "model_module": "@jupyter-widgets/controls", + "c9cf376d55ca4ed0bd9a3ec4bea403b9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c8dbd8fb58d84ca7982789ec389f23c9": { + "ca13e661da2d45b4b1d032d1af7eac3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_13b289dd96ec466a8ec99430cf0404e3", + "placeholder": "​", + "style": "IPY_MODEL_6e9550a891b949b3a55e1e5d93df6d93", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" } }, - "cfaa61471e7644fb91afac399a1e496e": { + "cb9eae0b65594cf3af5f717c6a77f8da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9cf376d55ca4ed0bd9a3ec4bea403b9", + "placeholder": "​", + "style": "IPY_MODEL_20e0f45c33504fdea8cc576cc2b857d7", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 60.9kB/s]" } }, - "cfe20fe5fbc84430ae609332e540d127": { + "cffb7d7829fd42a8ba8badca7ccc3c94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2a0325ac939e4207bc4b502b0c1be46e", + "IPY_MODEL_4463cf39f52d42609e89d03ddb23996b", + "IPY_MODEL_851011b926814fcc855690a87f198ea9" + ], + "layout": "IPY_MODEL_564891b4834049379c565ba8c00a01ff", + "tabbable": null, + "tooltip": null } }, - "d04310785c664d95b767773c304249c2": { + "d0d08e10ba8e480e9713619d84e475ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3168,15 +3185,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f13d71d5b49b480fba877316acea40e0", + "layout": "IPY_MODEL_f1f3811e239a432eb5b3ab17b7083f63", "placeholder": "​", - "style": "IPY_MODEL_4b79bc688b9441fdb47d968c18f77b4b", + "style": "IPY_MODEL_9351614d4a2e403dae47e111a29b675f", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.49kB/s]" + "value": " 665/665 [00:00<00:00, 108kB/s]" } }, - "d2f7dabc331148ac9b0aecada7ffe438": { + "d600f70c3c29452f8f1aaea86862ebf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3229,7 +3246,7 @@ "width": null } }, - "d495b06d72744507a3286f42869c97e3": { + "d65f8ea3d31948d48d2f6a560d27641c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3282,7 +3299,30 @@ "width": null } }, - "dc4b6ca3f75646498a98492c6bc45504": { + "d72c13010b7c42578469196b2468e21a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_65dbbd57ce5b4234a526bdcb485c3ebc", + "placeholder": "​", + "style": "IPY_MODEL_48e2f1e7018a4200ab96f9c14fbe27be", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 32.0MB/s]" + } + }, + "e3d5a9bbf7504a7ea79d51c9c221a5ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3335,106 +3375,91 @@ "width": null } }, - "e5faad19fd734f5e81e0f68425d9ec80": { + "e4b731636f1d439cbd7c522ec9a55c01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ee126f596e9b445a853e5cc046ee9e2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_84a9567b4e9442909723ac516239ba49", - "placeholder": "​", - "style": "IPY_MODEL_cfe20fe5fbc84430ae609332e540d127", + "layout": "IPY_MODEL_98fbd8f4a80e46d3b14e7fcc4d6b4dd1", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_55e2fbcc5a3d457a8bad9cb36403d961", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": 2211.0 } }, - "e91809dbe24346a682fd6ce7f8c32e32": { + "ef98d4e341fc4856821185cc478a60ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b525cdb25bf34a7aa67d39c34f08402a", - "placeholder": "​", - "style": "IPY_MODEL_cfaa61471e7644fb91afac399a1e496e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_47e6d3daa39d494e8907c74109c3725f", + "IPY_MODEL_ee126f596e9b445a853e5cc046ee9e2f", + "IPY_MODEL_5c1e28f2734548be81a7c128dc5fe68a" + ], + "layout": "IPY_MODEL_a03a6561b3c840268ec66335d952f1fa", "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "tooltip": null } }, - "f13d71d5b49b480fba877316acea40e0": { - "model_module": "@jupyter-widgets/base", + "f0b396a94ab04897a103f1dcd4f864f5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f2350f5245fa4d679e14106f0fff4ff4": { + "f1f3811e239a432eb5b3ab17b7083f63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3487,7 +3512,33 @@ "width": null } }, - "f3a02179eaf84dc2bca6c6374dbaecde": { + "f22dccc6486a443c87e9fdd395d7b94d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4afa67ec1e1a477383e8caec611378cc", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a03920cdb1b749c2a6913e9a0b54c3b0", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "f467f31677e241b49b78a0908980ba99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3540,7 +3591,7 @@ "width": null } }, - "f580072f76264dc2961854f2d2de821f": { + "f4d9e3b6e8204736a9b4626578cd63e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3556,81 +3607,30 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b6d8fd918c1b47bbabff0f10598fbf2c", + "layout": "IPY_MODEL_1adc4456d4514378ab55c96680dde6eb", "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1b4d5d65bc524d37b16f45fad7b2962f", + "style": "IPY_MODEL_801ea7b7f74f44f6af3fcc07acfe7976", "tabbable": null, "tooltip": null, "value": 48.0 } }, - "f9a1057803734ec3b240a0572dd57426": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_84f3710dc24f41f5ae8a3b0caa7fa9d0", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b0fe17c0d86d4b4aada9001cdc652acd", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "fd6a12ec9ebc4e38b18a2419bb256df7": { + "fb613555fab8489d9aef3047f50feabc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ffc60e4a8e324353b601da7760d0fbf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_352272b56a1f4d5d971e6048cc3a9386", - "placeholder": "​", - "style": "IPY_MODEL_4b38c2eb3c524d8790abe684808c2f26", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 815ad8452..577cb20c6 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1342,7 +1342,7 @@

    5. Use cleanlab to find label issues -{"state": {"1135582dfdb74449b6a5a06beb9c9997": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "841d93bc7b80404aa57ced84dceaa864": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a295a3d1299a4001a69480dffa09c5b0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1135582dfdb74449b6a5a06beb9c9997", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_841d93bc7b80404aa57ced84dceaa864", "tabbable": null, "tooltip": null, "value": 2041.0}}, "dcf9ad0890894fffab4b6b4d914f1af5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b411ac24a7c14de3a941e40a358bf6df": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ee3aea786a2f4de3a5199e1913f7d579": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dcf9ad0890894fffab4b6b4d914f1af5", "placeholder": "\u200b", "style": "IPY_MODEL_b411ac24a7c14de3a941e40a358bf6df", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "b80baa4f8e914ef7b49249508a5d6fb8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1478606b8e364b10b7290ae23df03233": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2e4dbaf294ca486eb038d41dc69940c8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b80baa4f8e914ef7b49249508a5d6fb8", "placeholder": "\u200b", "style": "IPY_MODEL_1478606b8e364b10b7290ae23df03233", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007469kB/s]"}}, "77ba2cd9cd404635b79fd0d83defc522": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "37c6bd6148074dcfb6e7e33abf8b4027": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ee3aea786a2f4de3a5199e1913f7d579", "IPY_MODEL_a295a3d1299a4001a69480dffa09c5b0", "IPY_MODEL_2e4dbaf294ca486eb038d41dc69940c8"], "layout": "IPY_MODEL_77ba2cd9cd404635b79fd0d83defc522", "tabbable": null, "tooltip": null}}, "522e767b09e24a2a8ba221d816e3fa57": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf45ae39f3224aae8ab18fed4b0ef8f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7263e2da10604058a633fa43c9c5e32c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_522e767b09e24a2a8ba221d816e3fa57", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cf45ae39f3224aae8ab18fed4b0ef8f0", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "fbeadb7f9ec545d7b410b7e2b64cc49f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7dcee2fed174231b0448999652867f1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "95e96f3166274a0aaf1d8ccb78e8799d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fbeadb7f9ec545d7b410b7e2b64cc49f", "placeholder": "\u200b", "style": "IPY_MODEL_a7dcee2fed174231b0448999652867f1", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "3371e94553bb49d6832bc196c1706588": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d4d6a94dbe44261939d95a105caa984": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ef2e03c6324f450b8d2e0f1962bbfc1b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3371e94553bb49d6832bc196c1706588", "placeholder": "\u200b", "style": "IPY_MODEL_3d4d6a94dbe44261939d95a105caa984", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200756.2MB/s]"}}, "8082fbf9aa41475fbd6895b3636ebd76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60a76edff22149f9abe686be2ea96e6d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_95e96f3166274a0aaf1d8ccb78e8799d", "IPY_MODEL_7263e2da10604058a633fa43c9c5e32c", "IPY_MODEL_ef2e03c6324f450b8d2e0f1962bbfc1b"], "layout": "IPY_MODEL_8082fbf9aa41475fbd6895b3636ebd76", "tabbable": null, "tooltip": null}}, "51aa78a7553944d0b00b99702473ba1b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa8c5c20cbe249519e77d9887c970ae7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "23d869503bce40afbf6f2b0e29cf780a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_51aa78a7553944d0b00b99702473ba1b", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aa8c5c20cbe249519e77d9887c970ae7", "tabbable": null, "tooltip": null, "value": 3201.0}}, "8f1aa00ef6194315b6f70770add62ccf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f514c513788b440095180cbbff1728e3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fa463809def146ddb633ca87e8dfb82f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f1aa00ef6194315b6f70770add62ccf", "placeholder": "\u200b", "style": "IPY_MODEL_f514c513788b440095180cbbff1728e3", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "d22dca66f6504dafaca74856e0580846": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7049c91ebbdc4cb3a7d9b948e2269c12": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "616b869b205c4618aca08a57181f54f3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d22dca66f6504dafaca74856e0580846", "placeholder": "\u200b", "style": "IPY_MODEL_7049c91ebbdc4cb3a7d9b948e2269c12", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007773kB/s]"}}, "9b1c57aae2624203964b8052e01d9086": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ddf9748434945709af96b8c72e13158": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fa463809def146ddb633ca87e8dfb82f", "IPY_MODEL_23d869503bce40afbf6f2b0e29cf780a", "IPY_MODEL_616b869b205c4618aca08a57181f54f3"], "layout": "IPY_MODEL_9b1c57aae2624203964b8052e01d9086", "tabbable": null, "tooltip": null}}, "7eb61144561a46b38252ff1c9f93a889": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f8de29facd74ebea2890f322e94d81b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7cd628e5f64c466497ecb6dd6a13258d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7eb61144561a46b38252ff1c9f93a889", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8f8de29facd74ebea2890f322e94d81b", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "a701cb376a2f47a8962785691d290bd8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d36c866a884f41a2aae6df20e68aa532": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cef16b8c03034820b4f6e333b497f90c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a701cb376a2f47a8962785691d290bd8", "placeholder": "\u200b", "style": "IPY_MODEL_d36c866a884f41a2aae6df20e68aa532", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "a31fd3293cc740dfa83358c595786748": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba5eaba7574d4f76823e77cdab254823": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "12de1c77eb5f4c00b2ed111d619c724e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a31fd3293cc740dfa83358c595786748", "placeholder": "\u200b", "style": "IPY_MODEL_ba5eaba7574d4f76823e77cdab254823", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200768.5MB/s]"}}, "f0f0a2a181104376b8a0b654fd7e32bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b544382f40814d67b7c79c3e82c64038": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cef16b8c03034820b4f6e333b497f90c", "IPY_MODEL_7cd628e5f64c466497ecb6dd6a13258d", "IPY_MODEL_12de1c77eb5f4c00b2ed111d619c724e"], "layout": "IPY_MODEL_f0f0a2a181104376b8a0b654fd7e32bd", "tabbable": null, "tooltip": null}}, "d80a8cf84ef442ff8659602099dcc312": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac7c5e766d984a718cb0125b493e13c9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b54c47b50ec34276829022ef5e02130d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d80a8cf84ef442ff8659602099dcc312", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ac7c5e766d984a718cb0125b493e13c9", "tabbable": null, "tooltip": null, "value": 128619.0}}, "a0d2e2117aed4df18f5ca42b24574882": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d92150ee2684572b6c41c71a817af5c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6ba20700de9c4f7dabb0682263e2eb1b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a0d2e2117aed4df18f5ca42b24574882", "placeholder": "\u200b", "style": "IPY_MODEL_9d92150ee2684572b6c41c71a817af5c", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "0d656701cfee465fb435d5f865a1377b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12e2d323ec7444bba39c5adf3a143ef5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "adea3b3f70104e1ab9467a68e80b7db0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d656701cfee465fb435d5f865a1377b", "placeholder": "\u200b", "style": "IPY_MODEL_12e2d323ec7444bba39c5adf3a143ef5", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20078.46MB/s]"}}, "62c607509e3844cb9c96ae42c65c1c0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "745a10fa388546b4af30331fa79863a2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6ba20700de9c4f7dabb0682263e2eb1b", "IPY_MODEL_b54c47b50ec34276829022ef5e02130d", "IPY_MODEL_adea3b3f70104e1ab9467a68e80b7db0"], "layout": "IPY_MODEL_62c607509e3844cb9c96ae42c65c1c0a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"b987dda070f24707b0e0898ef638aefe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f827fee4eb64c88a203ca150433b62c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7fe1f8dcc2d24aff891d01d035155a67": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b987dda070f24707b0e0898ef638aefe", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4f827fee4eb64c88a203ca150433b62c", "tabbable": null, "tooltip": null, "value": 2041.0}}, "e58151cd7f7b4a418cd64d3f3f67a59e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d8774dceebe340ddada7731b4bba793e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "029d3e4c2b1a46f69f75b63c394c6405": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e58151cd7f7b4a418cd64d3f3f67a59e", "placeholder": "\u200b", "style": "IPY_MODEL_d8774dceebe340ddada7731b4bba793e", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "d0009169a2524d45bc6e0876b58849de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c9cd57d6a974827803a715dc6231952": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "107dea629f8d4ad49c2281a20584ff97": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d0009169a2524d45bc6e0876b58849de", "placeholder": "\u200b", "style": "IPY_MODEL_0c9cd57d6a974827803a715dc6231952", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007444kB/s]"}}, "c029d3a463dc48fdba97c1998bead0ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c08178bb87ff4d0c861873f07a2f900e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_029d3e4c2b1a46f69f75b63c394c6405", "IPY_MODEL_7fe1f8dcc2d24aff891d01d035155a67", "IPY_MODEL_107dea629f8d4ad49c2281a20584ff97"], "layout": "IPY_MODEL_c029d3a463dc48fdba97c1998bead0ff", "tabbable": null, "tooltip": null}}, "dfd47e13d0c54c889b5a5779a16be2cf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "097fe94b91864d78a19f40f7990cbc82": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c8993efd57d74e9a8896294a91260f1a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dfd47e13d0c54c889b5a5779a16be2cf", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_097fe94b91864d78a19f40f7990cbc82", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "9d10b21f60dd40f28600dace7af0851d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd674fcc40234708ab0651adce66d055": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "27914b20816e400185ffb8ce8886dc6f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d10b21f60dd40f28600dace7af0851d", "placeholder": "\u200b", "style": "IPY_MODEL_bd674fcc40234708ab0651adce66d055", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "8d109713d5f44732a360a455bb84f62d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "82f8cbebf3944c1eb64d7205e09d19e2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fdbeadb72c0b4afa8f0ff076d71f8261": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d109713d5f44732a360a455bb84f62d", "placeholder": "\u200b", "style": "IPY_MODEL_82f8cbebf3944c1eb64d7205e09d19e2", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007244MB/s]"}}, "d63b630030844b6f99b10bd0204c2270": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "981e1d39da39408d9545660cb8311bb3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_27914b20816e400185ffb8ce8886dc6f", "IPY_MODEL_c8993efd57d74e9a8896294a91260f1a", "IPY_MODEL_fdbeadb72c0b4afa8f0ff076d71f8261"], "layout": "IPY_MODEL_d63b630030844b6f99b10bd0204c2270", "tabbable": null, "tooltip": null}}, "1384a88ac3e947d8a84e4f7d4bf1e59a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a3b10432ed642fb93b79e1dd7ef3e10": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5760a771916145409b1c1d40e1dd064d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1384a88ac3e947d8a84e4f7d4bf1e59a", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8a3b10432ed642fb93b79e1dd7ef3e10", "tabbable": null, "tooltip": null, "value": 3201.0}}, "a8368ac416af437d829e4c6e11d8ee17": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "05194c788ee044a9ae761345c92d42a7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2c55b14ea57a434b979e107b8ec9d775": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8368ac416af437d829e4c6e11d8ee17", "placeholder": "\u200b", "style": "IPY_MODEL_05194c788ee044a9ae761345c92d42a7", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "8f6768a245374a24a7e3b3076490da9c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3119b7216188495bb9aee714fea418f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "80981bf8356f4013b2d36bdee53c2664": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f6768a245374a24a7e3b3076490da9c", "placeholder": "\u200b", "style": "IPY_MODEL_3119b7216188495bb9aee714fea418f0", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007809kB/s]"}}, "e70ca1be73584f61acc0401edff2a59d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3c16c0f6350432abeb6ab275ac9d01d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2c55b14ea57a434b979e107b8ec9d775", "IPY_MODEL_5760a771916145409b1c1d40e1dd064d", "IPY_MODEL_80981bf8356f4013b2d36bdee53c2664"], "layout": "IPY_MODEL_e70ca1be73584f61acc0401edff2a59d", "tabbable": null, "tooltip": null}}, "10541543411a4fe2a065890854c18c02": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ec456715a414f9385ee863b6090ed5f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0f93074c3f084f6b8ed250ad2395663e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_10541543411a4fe2a065890854c18c02", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8ec456715a414f9385ee863b6090ed5f", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "708d540c459b46a78c39a3ebd7a9247f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "604da3c71b894637a759ceaf775dfee6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "13d36d57fb724fc2ad578f2bb7cdacdb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_708d540c459b46a78c39a3ebd7a9247f", "placeholder": "\u200b", "style": "IPY_MODEL_604da3c71b894637a759ceaf775dfee6", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "9cfc12e557df49d39c333aa2fe5f6892": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "74c1ecfa68584ff193ccc615dd03126e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6e4d87d021964684a2254a195d0104d6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9cfc12e557df49d39c333aa2fe5f6892", "placeholder": "\u200b", "style": "IPY_MODEL_74c1ecfa68584ff193ccc615dd03126e", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007302MB/s]"}}, "382684c5f1ae4a3296607df78d75976f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b669a8ab4d54e02b0c1eb3d052c8b54": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_13d36d57fb724fc2ad578f2bb7cdacdb", "IPY_MODEL_0f93074c3f084f6b8ed250ad2395663e", "IPY_MODEL_6e4d87d021964684a2254a195d0104d6"], "layout": "IPY_MODEL_382684c5f1ae4a3296607df78d75976f", "tabbable": null, "tooltip": null}}, "f471c233ce8446f8bec30d9af93f0362": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7924d81934044aa887ce6eb8fa96363": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0e58914db69a4f7cbc119b02b1306e6c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f471c233ce8446f8bec30d9af93f0362", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c7924d81934044aa887ce6eb8fa96363", "tabbable": null, "tooltip": null, "value": 128619.0}}, "9032b6fc883a48908569ae5a5b631ebe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8ddfd1306804018ba03a3027bbcff8c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fab4573e1c7648e880f9bdddb27415f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9032b6fc883a48908569ae5a5b631ebe", "placeholder": "\u200b", "style": "IPY_MODEL_b8ddfd1306804018ba03a3027bbcff8c", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "7fe15d4b9f284051b7fe6a13b2268bfb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a15a7e7a1a264f9ea2993c6e91e4c3c8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e05a2401f31f417687ebe7dffcf80419": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7fe15d4b9f284051b7fe6a13b2268bfb", "placeholder": "\u200b", "style": "IPY_MODEL_a15a7e7a1a264f9ea2993c6e91e4c3c8", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200715.7MB/s]"}}, "93b1a64488d8453f9d33b1f88b10c716": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7871b462ad1b4b4687d4be8c83419007": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fab4573e1c7648e880f9bdddb27415f0", "IPY_MODEL_0e58914db69a4f7cbc119b02b1306e6c", "IPY_MODEL_e05a2401f31f417687ebe7dffcf80419"], "layout": "IPY_MODEL_93b1a64488d8453f9d33b1f88b10c716", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index ae3cb2c20..29938e1d9 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:13.424803Z", - "iopub.status.busy": "2024-06-07T11:05:13.424629Z", - "iopub.status.idle": "2024-06-07T11:05:18.012797Z", - "shell.execute_reply": "2024-06-07T11:05:18.012185Z" + "iopub.execute_input": "2024-06-10T22:06:18.959046Z", + "iopub.status.busy": "2024-06-10T22:06:18.958487Z", + "iopub.status.idle": "2024-06-10T22:06:24.174009Z", + "shell.execute_reply": "2024-06-10T22:06:24.173320Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:18.015563Z", - "iopub.status.busy": "2024-06-07T11:05:18.015223Z", - "iopub.status.idle": "2024-06-07T11:05:18.018345Z", - "shell.execute_reply": "2024-06-07T11:05:18.017899Z" + "iopub.execute_input": "2024-06-10T22:06:24.177185Z", + "iopub.status.busy": "2024-06-10T22:06:24.176732Z", + "iopub.status.idle": "2024-06-10T22:06:24.180116Z", + "shell.execute_reply": "2024-06-10T22:06:24.179671Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:18.020374Z", - "iopub.status.busy": "2024-06-07T11:05:18.019966Z", - "iopub.status.idle": "2024-06-07T11:05:18.024547Z", - "shell.execute_reply": "2024-06-07T11:05:18.024021Z" + "iopub.execute_input": "2024-06-10T22:06:24.182218Z", + "iopub.status.busy": "2024-06-10T22:06:24.182031Z", + "iopub.status.idle": "2024-06-10T22:06:24.186753Z", + "shell.execute_reply": "2024-06-10T22:06:24.186303Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:18.026967Z", - "iopub.status.busy": "2024-06-07T11:05:18.026548Z", - "iopub.status.idle": "2024-06-07T11:05:19.581306Z", - "shell.execute_reply": "2024-06-07T11:05:19.580672Z" + "iopub.execute_input": "2024-06-10T22:06:24.188771Z", + "iopub.status.busy": "2024-06-10T22:06:24.188578Z", + "iopub.status.idle": "2024-06-10T22:06:25.753336Z", + "shell.execute_reply": "2024-06-10T22:06:25.752574Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:19.583845Z", - "iopub.status.busy": "2024-06-07T11:05:19.583646Z", - "iopub.status.idle": "2024-06-07T11:05:19.594220Z", - "shell.execute_reply": "2024-06-07T11:05:19.593768Z" + "iopub.execute_input": "2024-06-10T22:06:25.756487Z", + "iopub.status.busy": "2024-06-10T22:06:25.756225Z", + "iopub.status.idle": "2024-06-10T22:06:25.767607Z", + "shell.execute_reply": "2024-06-10T22:06:25.767032Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:19.596419Z", - "iopub.status.busy": "2024-06-07T11:05:19.596071Z", - "iopub.status.idle": "2024-06-07T11:05:19.601591Z", - "shell.execute_reply": "2024-06-07T11:05:19.601126Z" + "iopub.execute_input": "2024-06-10T22:06:25.770234Z", + "iopub.status.busy": "2024-06-10T22:06:25.769850Z", + "iopub.status.idle": "2024-06-10T22:06:25.775993Z", + "shell.execute_reply": "2024-06-10T22:06:25.775459Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:19.603593Z", - "iopub.status.busy": "2024-06-07T11:05:19.603279Z", - "iopub.status.idle": "2024-06-07T11:05:20.044501Z", - "shell.execute_reply": "2024-06-07T11:05:20.044007Z" + "iopub.execute_input": "2024-06-10T22:06:25.778407Z", + "iopub.status.busy": "2024-06-10T22:06:25.778035Z", + "iopub.status.idle": "2024-06-10T22:06:26.259558Z", + "shell.execute_reply": "2024-06-10T22:06:26.259007Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:20.046767Z", - "iopub.status.busy": "2024-06-07T11:05:20.046391Z", - "iopub.status.idle": "2024-06-07T11:05:21.536463Z", - "shell.execute_reply": "2024-06-07T11:05:21.535930Z" + "iopub.execute_input": "2024-06-10T22:06:26.261960Z", + "iopub.status.busy": "2024-06-10T22:06:26.261594Z", + "iopub.status.idle": "2024-06-10T22:06:27.105022Z", + "shell.execute_reply": "2024-06-10T22:06:27.104333Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:21.539165Z", - "iopub.status.busy": "2024-06-07T11:05:21.538804Z", - "iopub.status.idle": "2024-06-07T11:05:21.556322Z", - "shell.execute_reply": "2024-06-07T11:05:21.555800Z" + "iopub.execute_input": "2024-06-10T22:06:27.107751Z", + "iopub.status.busy": "2024-06-10T22:06:27.107535Z", + "iopub.status.idle": "2024-06-10T22:06:27.126811Z", + "shell.execute_reply": "2024-06-10T22:06:27.126322Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:21.558381Z", - "iopub.status.busy": "2024-06-07T11:05:21.558058Z", - "iopub.status.idle": "2024-06-07T11:05:21.561230Z", - "shell.execute_reply": "2024-06-07T11:05:21.560689Z" + "iopub.execute_input": "2024-06-10T22:06:27.129007Z", + "iopub.status.busy": "2024-06-10T22:06:27.128632Z", + "iopub.status.idle": "2024-06-10T22:06:27.131909Z", + "shell.execute_reply": "2024-06-10T22:06:27.131467Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:21.563238Z", - "iopub.status.busy": "2024-06-07T11:05:21.562910Z", - "iopub.status.idle": "2024-06-07T11:05:35.939691Z", - "shell.execute_reply": "2024-06-07T11:05:35.939137Z" + "iopub.execute_input": "2024-06-10T22:06:27.134043Z", + "iopub.status.busy": "2024-06-10T22:06:27.133611Z", + "iopub.status.idle": "2024-06-10T22:06:43.295357Z", + "shell.execute_reply": "2024-06-10T22:06:43.294721Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:35.942421Z", - "iopub.status.busy": "2024-06-07T11:05:35.942029Z", - "iopub.status.idle": "2024-06-07T11:05:35.945976Z", - "shell.execute_reply": "2024-06-07T11:05:35.945488Z" + "iopub.execute_input": "2024-06-10T22:06:43.298380Z", + "iopub.status.busy": "2024-06-10T22:06:43.297966Z", + "iopub.status.idle": "2024-06-10T22:06:43.301762Z", + "shell.execute_reply": "2024-06-10T22:06:43.301274Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:35.948015Z", - "iopub.status.busy": "2024-06-07T11:05:35.947691Z", - "iopub.status.idle": "2024-06-07T11:05:36.666672Z", - "shell.execute_reply": "2024-06-07T11:05:36.666110Z" + "iopub.execute_input": "2024-06-10T22:06:43.304231Z", + "iopub.status.busy": "2024-06-10T22:06:43.303682Z", + "iopub.status.idle": "2024-06-10T22:06:44.020208Z", + "shell.execute_reply": "2024-06-10T22:06:44.019596Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:36.670433Z", - "iopub.status.busy": "2024-06-07T11:05:36.669457Z", - "iopub.status.idle": "2024-06-07T11:05:36.676159Z", - "shell.execute_reply": "2024-06-07T11:05:36.675676Z" + "iopub.execute_input": "2024-06-10T22:06:44.023205Z", + "iopub.status.busy": "2024-06-10T22:06:44.022816Z", + "iopub.status.idle": "2024-06-10T22:06:44.027663Z", + "shell.execute_reply": "2024-06-10T22:06:44.027177Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:36.679707Z", - "iopub.status.busy": "2024-06-07T11:05:36.678783Z", - "iopub.status.idle": "2024-06-07T11:05:36.792077Z", - "shell.execute_reply": "2024-06-07T11:05:36.791527Z" + "iopub.execute_input": "2024-06-10T22:06:44.030891Z", + "iopub.status.busy": "2024-06-10T22:06:44.029966Z", + "iopub.status.idle": "2024-06-10T22:06:44.140352Z", + "shell.execute_reply": "2024-06-10T22:06:44.139778Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:36.794503Z", - "iopub.status.busy": "2024-06-07T11:05:36.794135Z", - "iopub.status.idle": "2024-06-07T11:05:36.805944Z", - "shell.execute_reply": "2024-06-07T11:05:36.805487Z" + "iopub.execute_input": "2024-06-10T22:06:44.142927Z", + "iopub.status.busy": "2024-06-10T22:06:44.142544Z", + "iopub.status.idle": "2024-06-10T22:06:44.155454Z", + "shell.execute_reply": "2024-06-10T22:06:44.154985Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:36.807896Z", - "iopub.status.busy": "2024-06-07T11:05:36.807640Z", - "iopub.status.idle": "2024-06-07T11:05:36.815503Z", - "shell.execute_reply": "2024-06-07T11:05:36.814948Z" + "iopub.execute_input": "2024-06-10T22:06:44.157765Z", + "iopub.status.busy": "2024-06-10T22:06:44.157393Z", + "iopub.status.idle": "2024-06-10T22:06:44.167531Z", + "shell.execute_reply": "2024-06-10T22:06:44.167009Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:36.817661Z", - "iopub.status.busy": "2024-06-07T11:05:36.817219Z", - "iopub.status.idle": "2024-06-07T11:05:36.821347Z", - "shell.execute_reply": "2024-06-07T11:05:36.820894Z" + "iopub.execute_input": "2024-06-10T22:06:44.169912Z", + "iopub.status.busy": "2024-06-10T22:06:44.169537Z", + "iopub.status.idle": "2024-06-10T22:06:44.174806Z", + "shell.execute_reply": "2024-06-10T22:06:44.174201Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:36.823325Z", - "iopub.status.busy": "2024-06-07T11:05:36.823000Z", - "iopub.status.idle": "2024-06-07T11:05:36.828520Z", - "shell.execute_reply": "2024-06-07T11:05:36.828073Z" + "iopub.execute_input": "2024-06-10T22:06:44.177113Z", + "iopub.status.busy": "2024-06-10T22:06:44.176901Z", + "iopub.status.idle": "2024-06-10T22:06:44.183156Z", + "shell.execute_reply": "2024-06-10T22:06:44.182581Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:36.830760Z", - "iopub.status.busy": "2024-06-07T11:05:36.830364Z", - "iopub.status.idle": "2024-06-07T11:05:36.939454Z", - "shell.execute_reply": "2024-06-07T11:05:36.938856Z" + "iopub.execute_input": "2024-06-10T22:06:44.185500Z", + "iopub.status.busy": "2024-06-10T22:06:44.185152Z", + "iopub.status.idle": "2024-06-10T22:06:44.299972Z", + "shell.execute_reply": "2024-06-10T22:06:44.299334Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:36.941669Z", - "iopub.status.busy": "2024-06-07T11:05:36.941486Z", - "iopub.status.idle": "2024-06-07T11:05:37.045316Z", - "shell.execute_reply": "2024-06-07T11:05:37.044825Z" + "iopub.execute_input": "2024-06-10T22:06:44.302418Z", + "iopub.status.busy": "2024-06-10T22:06:44.302099Z", + "iopub.status.idle": "2024-06-10T22:06:44.415344Z", + "shell.execute_reply": "2024-06-10T22:06:44.414703Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-07T11:05:37.047570Z", - "iopub.status.busy": "2024-06-07T11:05:37.047145Z", - "iopub.status.idle": "2024-06-07T11:05:37.149437Z", - "shell.execute_reply": "2024-06-07T11:05:37.148845Z" + "iopub.execute_input": "2024-06-10T22:06:44.417650Z", + "iopub.status.busy": "2024-06-10T22:06:44.417350Z", + "iopub.status.idle": "2024-06-10T22:06:44.533634Z", + "shell.execute_reply": "2024-06-10T22:06:44.533135Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:37.151749Z", - "iopub.status.busy": "2024-06-07T11:05:37.151420Z", - "iopub.status.idle": "2024-06-07T11:05:37.254007Z", - "shell.execute_reply": "2024-06-07T11:05:37.253433Z" + "iopub.execute_input": "2024-06-10T22:06:44.536028Z", + "iopub.status.busy": "2024-06-10T22:06:44.535548Z", + "iopub.status.idle": "2024-06-10T22:06:44.647308Z", + "shell.execute_reply": "2024-06-10T22:06:44.646728Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:37.256101Z", - "iopub.status.busy": "2024-06-07T11:05:37.255919Z", - "iopub.status.idle": "2024-06-07T11:05:37.259187Z", - "shell.execute_reply": "2024-06-07T11:05:37.258747Z" + "iopub.execute_input": "2024-06-10T22:06:44.649590Z", + "iopub.status.busy": "2024-06-10T22:06:44.649250Z", + "iopub.status.idle": "2024-06-10T22:06:44.652391Z", + "shell.execute_reply": "2024-06-10T22:06:44.651940Z" }, "nbsphinx": "hidden" }, @@ -1397,113 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0d656701cfee465fb435d5f865a1377b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1135582dfdb74449b6a5a06beb9c9997": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "12de1c77eb5f4c00b2ed111d619c724e": { + "029d3e4c2b1a46f69f75b63c394c6405": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1518,15 +1412,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a31fd3293cc740dfa83358c595786748", + "layout": "IPY_MODEL_e58151cd7f7b4a418cd64d3f3f67a59e", "placeholder": "​", - "style": "IPY_MODEL_ba5eaba7574d4f76823e77cdab254823", + "style": "IPY_MODEL_d8774dceebe340ddada7731b4bba793e", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 68.5MB/s]" + "value": "hyperparams.yaml: 100%" } }, - "12e2d323ec7444bba39c5adf3a143ef5": { + "05194c788ee044a9ae761345c92d42a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1544,7 +1438,23 @@ "text_color": null } }, - "1478606b8e364b10b7290ae23df03233": { + "097fe94b91864d78a19f40f7990cbc82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0c9cd57d6a974827803a715dc6231952": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1562,7 +1472,7 @@ "text_color": null } }, - "23d869503bce40afbf6f2b0e29cf780a": { + "0e58914db69a4f7cbc119b02b1306e6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1578,40 +1488,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_51aa78a7553944d0b00b99702473ba1b", - "max": 3201.0, + "layout": "IPY_MODEL_f471c233ce8446f8bec30d9af93f0362", + "max": 128619.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_aa8c5c20cbe249519e77d9887c970ae7", + "style": "IPY_MODEL_c7924d81934044aa887ce6eb8fa96363", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 128619.0 } }, - "2e4dbaf294ca486eb038d41dc69940c8": { + "0f93074c3f084f6b8ed250ad2395663e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b80baa4f8e914ef7b49249508a5d6fb8", - "placeholder": "​", - "style": "IPY_MODEL_1478606b8e364b10b7290ae23df03233", + "layout": "IPY_MODEL_10541543411a4fe2a065890854c18c02", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ec456715a414f9385ee863b6090ed5f", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 469kB/s]" + "value": 15856877.0 } }, - "3371e94553bb49d6832bc196c1706588": { + "10541543411a4fe2a065890854c18c02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1664,49 +1577,30 @@ "width": null } }, - "37c6bd6148074dcfb6e7e33abf8b4027": { + "107dea629f8d4ad49c2281a20584ff97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ee3aea786a2f4de3a5199e1913f7d579", - "IPY_MODEL_a295a3d1299a4001a69480dffa09c5b0", - "IPY_MODEL_2e4dbaf294ca486eb038d41dc69940c8" - ], - "layout": "IPY_MODEL_77ba2cd9cd404635b79fd0d83defc522", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d0009169a2524d45bc6e0876b58849de", + "placeholder": "​", + "style": "IPY_MODEL_0c9cd57d6a974827803a715dc6231952", "tabbable": null, - "tooltip": null - } - }, - "3d4d6a94dbe44261939d95a105caa984": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 444kB/s]" } }, - "51aa78a7553944d0b00b99702473ba1b": { + "1384a88ac3e947d8a84e4f7d4bf1e59a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1759,7 +1653,94 @@ "width": null } }, - "522e767b09e24a2a8ba221d816e3fa57": { + "13d36d57fb724fc2ad578f2bb7cdacdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_708d540c459b46a78c39a3ebd7a9247f", + "placeholder": "​", + "style": "IPY_MODEL_604da3c71b894637a759ceaf775dfee6", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "27914b20816e400185ffb8ce8886dc6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d10b21f60dd40f28600dace7af0851d", + "placeholder": "​", + "style": "IPY_MODEL_bd674fcc40234708ab0651adce66d055", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "2c55b14ea57a434b979e107b8ec9d775": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a8368ac416af437d829e4c6e11d8ee17", + "placeholder": "​", + "style": "IPY_MODEL_05194c788ee044a9ae761345c92d42a7", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "3119b7216188495bb9aee714fea418f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "382684c5f1ae4a3296607df78d75976f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1812,7 +1793,7 @@ "width": null } }, - "5ddf9748434945709af96b8c72e13158": { + "3b669a8ab4d54e02b0c1eb3d052c8b54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1827,40 +1808,76 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fa463809def146ddb633ca87e8dfb82f", - "IPY_MODEL_23d869503bce40afbf6f2b0e29cf780a", - "IPY_MODEL_616b869b205c4618aca08a57181f54f3" + "IPY_MODEL_13d36d57fb724fc2ad578f2bb7cdacdb", + "IPY_MODEL_0f93074c3f084f6b8ed250ad2395663e", + "IPY_MODEL_6e4d87d021964684a2254a195d0104d6" ], - "layout": "IPY_MODEL_9b1c57aae2624203964b8052e01d9086", + "layout": "IPY_MODEL_382684c5f1ae4a3296607df78d75976f", "tabbable": null, "tooltip": null } }, - "60a76edff22149f9abe686be2ea96e6d": { + "4f827fee4eb64c88a203ca150433b62c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5760a771916145409b1c1d40e1dd064d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_95e96f3166274a0aaf1d8ccb78e8799d", - "IPY_MODEL_7263e2da10604058a633fa43c9c5e32c", - "IPY_MODEL_ef2e03c6324f450b8d2e0f1962bbfc1b" - ], - "layout": "IPY_MODEL_8082fbf9aa41475fbd6895b3636ebd76", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1384a88ac3e947d8a84e4f7d4bf1e59a", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8a3b10432ed642fb93b79e1dd7ef3e10", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 3201.0 + } + }, + "604da3c71b894637a759ceaf775dfee6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "616b869b205c4618aca08a57181f54f3": { + "6e4d87d021964684a2254a195d0104d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1875,15 +1892,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d22dca66f6504dafaca74856e0580846", + "layout": "IPY_MODEL_9cfc12e557df49d39c333aa2fe5f6892", "placeholder": "​", - "style": "IPY_MODEL_7049c91ebbdc4cb3a7d9b948e2269c12", + "style": "IPY_MODEL_74c1ecfa68584ff193ccc615dd03126e", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 773kB/s]" + "value": " 15.9M/15.9M [00:00<00:00, 302MB/s]" } }, - "62c607509e3844cb9c96ae42c65c1c0a": { + "708d540c459b46a78c39a3ebd7a9247f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1936,30 +1953,7 @@ "width": null } }, - "6ba20700de9c4f7dabb0682263e2eb1b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0d2e2117aed4df18f5ca42b24574882", - "placeholder": "​", - "style": "IPY_MODEL_9d92150ee2684572b6c41c71a817af5c", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "7049c91ebbdc4cb3a7d9b948e2269c12": { + "74c1ecfa68584ff193ccc615dd03126e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1977,33 +1971,7 @@ "text_color": null } }, - "7263e2da10604058a633fa43c9c5e32c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_522e767b09e24a2a8ba221d816e3fa57", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cf45ae39f3224aae8ab18fed4b0ef8f0", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "745a10fa388546b4af30331fa79863a2": { + "7871b462ad1b4b4687d4be8c83419007": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2018,16 +1986,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6ba20700de9c4f7dabb0682263e2eb1b", - "IPY_MODEL_b54c47b50ec34276829022ef5e02130d", - "IPY_MODEL_adea3b3f70104e1ab9467a68e80b7db0" + "IPY_MODEL_fab4573e1c7648e880f9bdddb27415f0", + "IPY_MODEL_0e58914db69a4f7cbc119b02b1306e6c", + "IPY_MODEL_e05a2401f31f417687ebe7dffcf80419" ], - "layout": "IPY_MODEL_62c607509e3844cb9c96ae42c65c1c0a", + "layout": "IPY_MODEL_93b1a64488d8453f9d33b1f88b10c716", "tabbable": null, "tooltip": null } }, - "77ba2cd9cd404635b79fd0d83defc522": { + "7fe15d4b9f284051b7fe6a13b2268bfb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2080,33 +2048,90 @@ "width": null } }, - "7cd628e5f64c466497ecb6dd6a13258d": { + "7fe1f8dcc2d24aff891d01d035155a67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b987dda070f24707b0e0898ef638aefe", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f827fee4eb64c88a203ca150433b62c", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "80981bf8356f4013b2d36bdee53c2664": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f6768a245374a24a7e3b3076490da9c", + "placeholder": "​", + "style": "IPY_MODEL_3119b7216188495bb9aee714fea418f0", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 809kB/s]" + } + }, + "82f8cbebf3944c1eb64d7205e09d19e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8a3b10432ed642fb93b79e1dd7ef3e10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7eb61144561a46b38252ff1c9f93a889", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8f8de29facd74ebea2890f322e94d81b", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7eb61144561a46b38252ff1c9f93a889": { + "8d109713d5f44732a360a455bb84f62d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2159,7 +2184,23 @@ "width": null } }, - "8082fbf9aa41475fbd6895b3636ebd76": { + "8ec456715a414f9385ee863b6090ed5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8f6768a245374a24a7e3b3076490da9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2212,23 +2253,7 @@ "width": null } }, - "841d93bc7b80404aa57ced84dceaa864": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8f1aa00ef6194315b6f70770add62ccf": { + "9032b6fc883a48908569ae5a5b631ebe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2281,46 +2306,7 @@ "width": null } }, - "8f8de29facd74ebea2890f322e94d81b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "95e96f3166274a0aaf1d8ccb78e8799d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fbeadb7f9ec545d7b410b7e2b64cc49f", - "placeholder": "​", - "style": "IPY_MODEL_a7dcee2fed174231b0448999652867f1", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "9b1c57aae2624203964b8052e01d9086": { + "93b1a64488d8453f9d33b1f88b10c716": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2373,25 +2359,31 @@ "width": null } }, - "9d92150ee2684572b6c41c71a817af5c": { + "981e1d39da39408d9545660cb8311bb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_27914b20816e400185ffb8ce8886dc6f", + "IPY_MODEL_c8993efd57d74e9a8896294a91260f1a", + "IPY_MODEL_fdbeadb72c0b4afa8f0ff076d71f8261" + ], + "layout": "IPY_MODEL_d63b630030844b6f99b10bd0204c2270", + "tabbable": null, + "tooltip": null } }, - "a0d2e2117aed4df18f5ca42b24574882": { + "9cfc12e557df49d39c333aa2fe5f6892": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2444,33 +2436,7 @@ "width": null } }, - "a295a3d1299a4001a69480dffa09c5b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1135582dfdb74449b6a5a06beb9c9997", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_841d93bc7b80404aa57ced84dceaa864", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "a31fd3293cc740dfa83358c595786748": { + "9d10b21f60dd40f28600dace7af0851d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2523,7 +2489,25 @@ "width": null } }, - "a701cb376a2f47a8962785691d290bd8": { + "a15a7e7a1a264f9ea2993c6e91e4c3c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a8368ac416af437d829e4c6e11d8ee17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2576,80 +2560,7 @@ "width": null } }, - "a7dcee2fed174231b0448999652867f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aa8c5c20cbe249519e77d9887c970ae7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ac7c5e766d984a718cb0125b493e13c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "adea3b3f70104e1ab9467a68e80b7db0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0d656701cfee465fb435d5f865a1377b", - "placeholder": "​", - "style": "IPY_MODEL_12e2d323ec7444bba39c5adf3a143ef5", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 8.46MB/s]" - } - }, - "b411ac24a7c14de3a941e40a358bf6df": { + "b8ddfd1306804018ba03a3027bbcff8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2660,64 +2571,14 @@ "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b544382f40814d67b7c79c3e82c64038": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cef16b8c03034820b4f6e333b497f90c", - "IPY_MODEL_7cd628e5f64c466497ecb6dd6a13258d", - "IPY_MODEL_12de1c77eb5f4c00b2ed111d619c724e" - ], - "layout": "IPY_MODEL_f0f0a2a181104376b8a0b654fd7e32bd", - "tabbable": null, - "tooltip": null - } - }, - "b54c47b50ec34276829022ef5e02130d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d80a8cf84ef442ff8659602099dcc312", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ac7c5e766d984a718cb0125b493e13c9", - "tabbable": null, - "tooltip": null, - "value": 128619.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b80baa4f8e914ef7b49249508a5d6fb8": { + "b987dda070f24707b0e0898ef638aefe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2770,7 +2631,7 @@ "width": null } }, - "ba5eaba7574d4f76823e77cdab254823": { + "bd674fcc40234708ab0651adce66d055": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2788,30 +2649,84 @@ "text_color": null } }, - "cef16b8c03034820b4f6e333b497f90c": { + "c029d3a463dc48fdba97c1998bead0ff": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c08178bb87ff4d0c861873f07a2f900e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a701cb376a2f47a8962785691d290bd8", - "placeholder": "​", - "style": "IPY_MODEL_d36c866a884f41a2aae6df20e68aa532", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_029d3e4c2b1a46f69f75b63c394c6405", + "IPY_MODEL_7fe1f8dcc2d24aff891d01d035155a67", + "IPY_MODEL_107dea629f8d4ad49c2281a20584ff97" + ], + "layout": "IPY_MODEL_c029d3a463dc48fdba97c1998bead0ff", "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "tooltip": null } }, - "cf45ae39f3224aae8ab18fed4b0ef8f0": { + "c7924d81934044aa887ce6eb8fa96363": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2827,7 +2742,33 @@ "description_width": "" } }, - "d22dca66f6504dafaca74856e0580846": { + "c8993efd57d74e9a8896294a91260f1a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dfd47e13d0c54c889b5a5779a16be2cf", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_097fe94b91864d78a19f40f7990cbc82", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "d0009169a2524d45bc6e0876b58849de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2880,25 +2821,7 @@ "width": null } }, - "d36c866a884f41a2aae6df20e68aa532": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d80a8cf84ef442ff8659602099dcc312": { + "d63b630030844b6f99b10bd0204c2270": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2951,7 +2874,25 @@ "width": null } }, - "dcf9ad0890894fffab4b6b4d914f1af5": { + "d8774dceebe340ddada7731b4bba793e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dfd47e13d0c54c889b5a5779a16be2cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3004,7 +2945,7 @@ "width": null } }, - "ee3aea786a2f4de3a5199e1913f7d579": { + "e05a2401f31f417687ebe7dffcf80419": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3019,38 +2960,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dcf9ad0890894fffab4b6b4d914f1af5", + "layout": "IPY_MODEL_7fe15d4b9f284051b7fe6a13b2268bfb", "placeholder": "​", - "style": "IPY_MODEL_b411ac24a7c14de3a941e40a358bf6df", + "style": "IPY_MODEL_a15a7e7a1a264f9ea2993c6e91e4c3c8", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 129k/129k [00:00<00:00, 15.7MB/s]" } }, - "ef2e03c6324f450b8d2e0f1962bbfc1b": { + "e3c16c0f6350432abeb6ab275ac9d01d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3371e94553bb49d6832bc196c1706588", - "placeholder": "​", - "style": "IPY_MODEL_3d4d6a94dbe44261939d95a105caa984", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2c55b14ea57a434b979e107b8ec9d775", + "IPY_MODEL_5760a771916145409b1c1d40e1dd064d", + "IPY_MODEL_80981bf8356f4013b2d36bdee53c2664" + ], + "layout": "IPY_MODEL_e70ca1be73584f61acc0401edff2a59d", "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 56.2MB/s]" + "tooltip": null } }, - "f0f0a2a181104376b8a0b654fd7e32bd": { + "e58151cd7f7b4a418cd64d3f3f67a59e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3103,48 +3045,60 @@ "width": null } }, - "f514c513788b440095180cbbff1728e3": { - "model_module": "@jupyter-widgets/controls", + "e70ca1be73584f61acc0401edff2a59d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fa463809def146ddb633ca87e8dfb82f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8f1aa00ef6194315b6f70770add62ccf", - "placeholder": "​", - "style": "IPY_MODEL_f514c513788b440095180cbbff1728e3", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fbeadb7f9ec545d7b410b7e2b64cc49f": { + "f471c233ce8446f8bec30d9af93f0362": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3196,6 +3150,52 @@ "visibility": null, "width": null } + }, + "fab4573e1c7648e880f9bdddb27415f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9032b6fc883a48908569ae5a5b631ebe", + "placeholder": "​", + "style": "IPY_MODEL_b8ddfd1306804018ba03a3027bbcff8c", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "fdbeadb72c0b4afa8f0ff076d71f8261": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8d109713d5f44732a360a455bb84f62d", + "placeholder": "​", + "style": "IPY_MODEL_82f8cbebf3944c1eb64d7205e09d19e2", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 244MB/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index 43a3649ee..b6d5ceeaa 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -695,7 +695,7 @@

    1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68 + %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442 cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1178,7 +1178,7 @@

    5. Use DataMonitor to find issues in new data

    -
    +
    @@ -1917,7 +1917,7 @@

    8. Looking for both label issues and outliers -{"state": {"e64e01f5f40a473291a11738a53a3934": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d7ece672a7df4993ad2a3ff1a19d9b4a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9794da59883e44d4a6b76a44c6baafbd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e64e01f5f40a473291a11738a53a3934", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d7ece672a7df4993ad2a3ff1a19d9b4a", "tabbable": null, "tooltip": null, "value": 50.0}}, "ffe5c402ae9a454992f02ad0a44e6cc9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2119ace2e2c44175980dc658d904561a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "daafe19c92ba4bd193945fdfc1993696": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ffe5c402ae9a454992f02ad0a44e6cc9", "placeholder": "\u200b", "style": "IPY_MODEL_2119ace2e2c44175980dc658d904561a", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "6819383cdad7493995c4692f1c2db567": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f6414378a8574865b6cfcac253bf91c9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2ad7f494b11a4cebb379c3f6a3d20e89": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6819383cdad7493995c4692f1c2db567", "placeholder": "\u200b", "style": "IPY_MODEL_f6414378a8574865b6cfcac253bf91c9", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.88it/s]"}}, "11c21b0db83743e78bc01a57c6fc5f2b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "46ca89a87cc34c5787cf91d2c0b0411c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_daafe19c92ba4bd193945fdfc1993696", "IPY_MODEL_9794da59883e44d4a6b76a44c6baafbd", "IPY_MODEL_2ad7f494b11a4cebb379c3f6a3d20e89"], "layout": "IPY_MODEL_11c21b0db83743e78bc01a57c6fc5f2b", "tabbable": null, "tooltip": null}}, "d71b53e07a8b4d83b59dec09d41dd794": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ccfd9b4b13eb4ca29a80d9d606424ad5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "35ecbe2889474a8b94cf0701da25283d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d71b53e07a8b4d83b59dec09d41dd794", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ccfd9b4b13eb4ca29a80d9d606424ad5", "tabbable": null, "tooltip": null, "value": 7.0}}, "e855d2d89613470ab39ee251ee70796a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4fe4bba599d94222a48a188cc16cd423": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24b4ba202d2e4554a1fc6cbb44d6db49": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e855d2d89613470ab39ee251ee70796a", "placeholder": "\u200b", "style": "IPY_MODEL_4fe4bba599d94222a48a188cc16cd423", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "57f9900e0f904a82a306bf6563bd2ac6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3706b6f7e944bb9ba62e9887dd22d73": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "02e7d7db76a24b31b6746d9214e73061": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57f9900e0f904a82a306bf6563bd2ac6", "placeholder": "\u200b", "style": "IPY_MODEL_e3706b6f7e944bb9ba62e9887dd22d73", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "cf9002a458d44d2ea3b16b09e64152ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03c175d69a8d4afb81b2a2e8cecd8da5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_24b4ba202d2e4554a1fc6cbb44d6db49", "IPY_MODEL_35ecbe2889474a8b94cf0701da25283d", "IPY_MODEL_02e7d7db76a24b31b6746d9214e73061"], "layout": "IPY_MODEL_cf9002a458d44d2ea3b16b09e64152ac", "tabbable": null, "tooltip": null}}, "6d5631ce2aae40eaa3466d06aa476406": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6e6abdee1714ecfb35c91e1c05840e4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "00d6a4718704402b8d59bac88a942598": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d5631ce2aae40eaa3466d06aa476406", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e6e6abdee1714ecfb35c91e1c05840e4", "tabbable": null, "tooltip": null, "value": 50.0}}, "9d5c46a19d904edf90186fc710b18089": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a35010efe094655b2476ec8ce232e4f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "03aa4d1094fb435489a4e304ac8fc739": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d5c46a19d904edf90186fc710b18089", "placeholder": "\u200b", "style": "IPY_MODEL_8a35010efe094655b2476ec8ce232e4f", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "3ae61a41bb854a4b900bb93200bb4f0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c788c555bb54a61b592b0f7508da19a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "33d84b3604fa43eb9975504022df7b2c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ae61a41bb854a4b900bb93200bb4f0c", "placeholder": "\u200b", "style": "IPY_MODEL_1c788c555bb54a61b592b0f7508da19a", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.79it/s]"}}, "f4b0dc22e56240f99cd563c24b9d0ec1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7a796fb2b00e4d7898ea59e78938859d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_03aa4d1094fb435489a4e304ac8fc739", "IPY_MODEL_00d6a4718704402b8d59bac88a942598", "IPY_MODEL_33d84b3604fa43eb9975504022df7b2c"], "layout": "IPY_MODEL_f4b0dc22e56240f99cd563c24b9d0ec1", "tabbable": null, "tooltip": null}}, "1a8f0b59829941c7bbd4135e790d7f79": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36d22346c81a47d7a20611fc6a80e8e4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "50bd02664f224d2fa9cbc3a16d30f7cc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1a8f0b59829941c7bbd4135e790d7f79", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_36d22346c81a47d7a20611fc6a80e8e4", "tabbable": null, "tooltip": null, "value": 7.0}}, "0cff15a424174d50a6543fa5dbdd1685": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d281ffb4f6a424493eeaeae44bbb5df": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "602bf4de561e4611acb3a3ee03231808": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0cff15a424174d50a6543fa5dbdd1685", "placeholder": "\u200b", "style": "IPY_MODEL_9d281ffb4f6a424493eeaeae44bbb5df", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "b96e4eea45ad4743908782f9b9ad8265": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c1d4f3b8accf4bfa932b8d5188ba0ece": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c8c724045e144e98bd39405f94879a5e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b96e4eea45ad4743908782f9b9ad8265", "placeholder": "\u200b", "style": "IPY_MODEL_c1d4f3b8accf4bfa932b8d5188ba0ece", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "93aa00c5edae4a8483b84d3fefb9101a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d48a3a8d1d5a41fc92d46309c49196a6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_602bf4de561e4611acb3a3ee03231808", "IPY_MODEL_50bd02664f224d2fa9cbc3a16d30f7cc", "IPY_MODEL_c8c724045e144e98bd39405f94879a5e"], "layout": "IPY_MODEL_93aa00c5edae4a8483b84d3fefb9101a", "tabbable": null, "tooltip": null}}, "2ee528fadaaa47af95a150cbb4749de9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "104ba11ceb15451c91290ec903709927": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "14d04c335f194a238ba7e2d3cddea43d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ee528fadaaa47af95a150cbb4749de9", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_104ba11ceb15451c91290ec903709927", "tabbable": null, "tooltip": null, "value": 50.0}}, "6a9b29e18d2942babd9eb96f50bce6c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35118917a72842aca8be1845d0ac4dab": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "41a5694d57e649e1a94b33613a38ed11": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6a9b29e18d2942babd9eb96f50bce6c7", "placeholder": "\u200b", "style": "IPY_MODEL_35118917a72842aca8be1845d0ac4dab", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "9276bfa56ada434fa65fee431cf62120": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8fc19a914a80440da57c1f136e4d63f4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bb5cc803b8c34b1590804dd0a8bb87ef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9276bfa56ada434fa65fee431cf62120", "placeholder": "\u200b", "style": "IPY_MODEL_8fc19a914a80440da57c1f136e4d63f4", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.74it/s]"}}, "e01ba39b2d83490d96c011c26a4db168": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d91c8135d0fa46cfa915f8e07be91792": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_41a5694d57e649e1a94b33613a38ed11", "IPY_MODEL_14d04c335f194a238ba7e2d3cddea43d", "IPY_MODEL_bb5cc803b8c34b1590804dd0a8bb87ef"], "layout": "IPY_MODEL_e01ba39b2d83490d96c011c26a4db168", "tabbable": null, "tooltip": null}}, "396420712ecf451cb282f16c03326fed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "59f4aa376a78447c9dbff602e614fb6f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "11babb69f24945e582c101bdc137d331": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_396420712ecf451cb282f16c03326fed", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_59f4aa376a78447c9dbff602e614fb6f", "tabbable": null, "tooltip": null, "value": 7.0}}, "3ff0d4bc824a4e6d8e1433af1b385a77": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e2b59c404d340b8b46abf08d33c58fc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "87f30470089749a1a98931ee6b01c52c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ff0d4bc824a4e6d8e1433af1b385a77", "placeholder": "\u200b", "style": "IPY_MODEL_7e2b59c404d340b8b46abf08d33c58fc", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "8785490ea06146e0944d6cf27c7b0461": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a7f97f0f07f4c5581574865d9c546e5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "317e351c50b3488cac357877af4b33b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8785490ea06146e0944d6cf27c7b0461", "placeholder": "\u200b", "style": "IPY_MODEL_2a7f97f0f07f4c5581574865d9c546e5", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "77a360d818b44b94a4a8bc243328a478": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2db04f64b74d41d9bd2f16dbed6ca9cd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_87f30470089749a1a98931ee6b01c52c", "IPY_MODEL_11babb69f24945e582c101bdc137d331", "IPY_MODEL_317e351c50b3488cac357877af4b33b0"], "layout": "IPY_MODEL_77a360d818b44b94a4a8bc243328a478", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"68843481e1c34c65b0597b6bb7968e31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df89a32a44df4544a18deedb4c620538": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1b2df773d45b4d0483021142efa538c3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68843481e1c34c65b0597b6bb7968e31", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_df89a32a44df4544a18deedb4c620538", "tabbable": null, "tooltip": null, "value": 50.0}}, "f9f17e43073a4701afddc5141a2dc03b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91e8f6cc427845c2a0db55c123033bb5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c4d0ef55fcf14aee90cb8144ed7d09f5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9f17e43073a4701afddc5141a2dc03b", "placeholder": "\u200b", "style": "IPY_MODEL_91e8f6cc427845c2a0db55c123033bb5", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "d892d98aa67042e1b4952c3121ba5341": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a884ea47c9cc41a3ba1532bb4aec40b2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "01554046acbb4af6a170f543b60ca073": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d892d98aa67042e1b4952c3121ba5341", "placeholder": "\u200b", "style": "IPY_MODEL_a884ea47c9cc41a3ba1532bb4aec40b2", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.85it/s]"}}, "94a604f9aa884e6ba3119ca705a1d12b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "acb1f4c5165540c68a662f1c74f3d765": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c4d0ef55fcf14aee90cb8144ed7d09f5", "IPY_MODEL_1b2df773d45b4d0483021142efa538c3", "IPY_MODEL_01554046acbb4af6a170f543b60ca073"], "layout": "IPY_MODEL_94a604f9aa884e6ba3119ca705a1d12b", "tabbable": null, "tooltip": null}}, "dfd9c3edccf2434e84d43bbbaa91ea4b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53ee1ef104ba47969077bb1bfffc4b93": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4d21753f926f48b6b1208a85a5bf3742": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dfd9c3edccf2434e84d43bbbaa91ea4b", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_53ee1ef104ba47969077bb1bfffc4b93", "tabbable": null, "tooltip": null, "value": 7.0}}, "a09459f82d514f3588be425c8aa1556d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14ada90762fd41b9bf89e67efcdd9e49": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1d6cddd4499d4d0e99f99ad1c9052131": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a09459f82d514f3588be425c8aa1556d", "placeholder": "\u200b", "style": "IPY_MODEL_14ada90762fd41b9bf89e67efcdd9e49", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "59777f4c992e48f6944981596f549cb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4fff1fc864c74b0f9fa8a75d9b8385cc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "388decca817e408c90bfff95e3b834d6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59777f4c992e48f6944981596f549cb3", "placeholder": "\u200b", "style": "IPY_MODEL_4fff1fc864c74b0f9fa8a75d9b8385cc", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "f84e6661ef354f5392021037fc704b84": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8371b5949228429b8f8dc1734575bef1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1d6cddd4499d4d0e99f99ad1c9052131", "IPY_MODEL_4d21753f926f48b6b1208a85a5bf3742", "IPY_MODEL_388decca817e408c90bfff95e3b834d6"], "layout": "IPY_MODEL_f84e6661ef354f5392021037fc704b84", "tabbable": null, "tooltip": null}}, "7edcf7b564b9418085c8df7442c82a26": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63314c35b01947a5bc8e8477f99d2908": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e01896d3bf3e480b961d260572a92687": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7edcf7b564b9418085c8df7442c82a26", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_63314c35b01947a5bc8e8477f99d2908", "tabbable": null, "tooltip": null, "value": 50.0}}, "9204bf8dfaee44b6b59ffd049a366a7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3fb745df13a742e89fe9e9c01fc1df76": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "90e513d1c77a4067848ad68ac3c7601d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9204bf8dfaee44b6b59ffd049a366a7b", "placeholder": "\u200b", "style": "IPY_MODEL_3fb745df13a742e89fe9e9c01fc1df76", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "0d3907d5303b45aaa3e5bf2a45377a89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "532aa28a18b24051bd581a5de509570c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8a0e32f4fa294ea09bda0478165748ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d3907d5303b45aaa3e5bf2a45377a89", "placeholder": "\u200b", "style": "IPY_MODEL_532aa28a18b24051bd581a5de509570c", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.76it/s]"}}, "62eefd5258464ee7baf3883c869b3d71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1ea6fa6083fb41669db54c2d1a19b717": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_90e513d1c77a4067848ad68ac3c7601d", "IPY_MODEL_e01896d3bf3e480b961d260572a92687", "IPY_MODEL_8a0e32f4fa294ea09bda0478165748ea"], "layout": "IPY_MODEL_62eefd5258464ee7baf3883c869b3d71", "tabbable": null, "tooltip": null}}, "31d411f7528b4371a1883935773fe790": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ba08d2263234811a338f0dcd6cdc78a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0347be9050da4b28a39445d95b5d62a8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31d411f7528b4371a1883935773fe790", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8ba08d2263234811a338f0dcd6cdc78a", "tabbable": null, "tooltip": null, "value": 7.0}}, "deee3f1e2bb9446095db9608747d9bab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7033c109c1d4c56b69314961b17cbd6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3ed7496cbfc447198378b9961c905aae": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_deee3f1e2bb9446095db9608747d9bab", "placeholder": "\u200b", "style": "IPY_MODEL_c7033c109c1d4c56b69314961b17cbd6", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "55d8af1b37e74caa9686f4861cc18522": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbd568c059034c77ba6c7b7f7668e4c3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3eada97c34ba41749a69d661fbbe48ef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_55d8af1b37e74caa9686f4861cc18522", "placeholder": "\u200b", "style": "IPY_MODEL_fbd568c059034c77ba6c7b7f7668e4c3", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "01b3fc3c7c054f87b22b390ab7c090ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0943ba2ec31d4951b34809b4ddebd70a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3ed7496cbfc447198378b9961c905aae", "IPY_MODEL_0347be9050da4b28a39445d95b5d62a8", "IPY_MODEL_3eada97c34ba41749a69d661fbbe48ef"], "layout": "IPY_MODEL_01b3fc3c7c054f87b22b390ab7c090ab", "tabbable": null, "tooltip": null}}, "76d99890457a455982192a282e5b6632": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4fa7284ce5744161922dc313d027a7e7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "27c7173ff0a54cb5a72bc40caa462fa5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_76d99890457a455982192a282e5b6632", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4fa7284ce5744161922dc313d027a7e7", "tabbable": null, "tooltip": null, "value": 50.0}}, "cad1d3fef6da45a092559b5f8771af7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcbfb90eb3aa40819885be5a2a7b0158": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b58b75b500df414bbd181405caf7d102": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cad1d3fef6da45a092559b5f8771af7d", "placeholder": "\u200b", "style": "IPY_MODEL_bcbfb90eb3aa40819885be5a2a7b0158", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "9704ad6713bc41fb95b10a91de63488a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "418722be979d4660be3b97de283e0456": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d15dbf02e2cb497cbc94be1b736ee04b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9704ad6713bc41fb95b10a91de63488a", "placeholder": "\u200b", "style": "IPY_MODEL_418722be979d4660be3b97de283e0456", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.72it/s]"}}, "a865fa83d495450d89e59987a22cce96": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d02c725cce54b8b955134180d62aa15": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b58b75b500df414bbd181405caf7d102", "IPY_MODEL_27c7173ff0a54cb5a72bc40caa462fa5", "IPY_MODEL_d15dbf02e2cb497cbc94be1b736ee04b"], "layout": "IPY_MODEL_a865fa83d495450d89e59987a22cce96", "tabbable": null, "tooltip": null}}, "933b2d50dd004af9a2f6589c3091d17e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89fb64d9d0e7465e88f923b71110c660": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "87096f41a39a4adb84ee957b01567054": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_933b2d50dd004af9a2f6589c3091d17e", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_89fb64d9d0e7465e88f923b71110c660", "tabbable": null, "tooltip": null, "value": 7.0}}, "da6fcbb921bd4f49bcfa569bf598979e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a2970b0f084e4417a2f626efc9703961": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e85cc7593caa42eb9dc9b544fac1c636": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da6fcbb921bd4f49bcfa569bf598979e", "placeholder": "\u200b", "style": "IPY_MODEL_a2970b0f084e4417a2f626efc9703961", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "63cff125c1cf4172bd8c965da39d50fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "863549e696174998bf37ff0fbecb3dee": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e30819e80b6140a7bd4a72f8828f1b09": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63cff125c1cf4172bd8c965da39d50fa", "placeholder": "\u200b", "style": "IPY_MODEL_863549e696174998bf37ff0fbecb3dee", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "ab2a77d92fc043d1a4a0405af430837b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a2496b3343a44a74ba655fe0ec49f0ff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e85cc7593caa42eb9dc9b544fac1c636", "IPY_MODEL_87096f41a39a4adb84ee957b01567054", "IPY_MODEL_e30819e80b6140a7bd4a72f8828f1b09"], "layout": "IPY_MODEL_ab2a77d92fc043d1a4a0405af430837b", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index 2dabf9ae6..4cc8b856b 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:40.446373Z", - "iopub.status.busy": "2024-06-07T11:05:40.445974Z", - "iopub.status.idle": "2024-06-07T11:05:40.456848Z", - "shell.execute_reply": "2024-06-07T11:05:40.456439Z" + "iopub.execute_input": "2024-06-10T22:06:49.383470Z", + "iopub.status.busy": "2024-06-10T22:06:49.383001Z", + "iopub.status.idle": "2024-06-10T22:06:49.394525Z", + "shell.execute_reply": "2024-06-10T22:06:49.394086Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:40.458883Z", - "iopub.status.busy": "2024-06-07T11:05:40.458626Z", - "iopub.status.idle": "2024-06-07T11:05:41.646695Z", - "shell.execute_reply": "2024-06-07T11:05:41.646074Z" + "iopub.execute_input": "2024-06-10T22:06:49.396611Z", + "iopub.status.busy": "2024-06-10T22:06:49.396439Z", + "iopub.status.idle": "2024-06-10T22:06:50.727992Z", + "shell.execute_reply": "2024-06-10T22:06:50.727325Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:41.649378Z", - "iopub.status.busy": "2024-06-07T11:05:41.648963Z", - "iopub.status.idle": "2024-06-07T11:05:41.666526Z", - "shell.execute_reply": "2024-06-07T11:05:41.666095Z" + "iopub.execute_input": "2024-06-10T22:06:50.730781Z", + "iopub.status.busy": "2024-06-10T22:06:50.730438Z", + "iopub.status.idle": "2024-06-10T22:06:50.750657Z", + "shell.execute_reply": "2024-06-10T22:06:50.750040Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:41.668771Z", - "iopub.status.busy": "2024-06-07T11:05:41.668448Z", - "iopub.status.idle": "2024-06-07T11:05:41.686813Z", - "shell.execute_reply": "2024-06-07T11:05:41.686389Z" + "iopub.execute_input": "2024-06-10T22:06:50.753249Z", + "iopub.status.busy": "2024-06-10T22:06:50.753014Z", + "iopub.status.idle": "2024-06-10T22:06:50.774459Z", + "shell.execute_reply": "2024-06-10T22:06:50.773858Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:41.688904Z", - "iopub.status.busy": "2024-06-07T11:05:41.688576Z", - "iopub.status.idle": "2024-06-07T11:05:41.703002Z", - "shell.execute_reply": "2024-06-07T11:05:41.702573Z" + "iopub.execute_input": "2024-06-10T22:06:50.776724Z", + "iopub.status.busy": "2024-06-10T22:06:50.776380Z", + "iopub.status.idle": "2024-06-10T22:06:50.795233Z", + "shell.execute_reply": "2024-06-10T22:06:50.794710Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:41.705080Z", - "iopub.status.busy": "2024-06-07T11:05:41.704758Z", - "iopub.status.idle": "2024-06-07T11:05:41.717853Z", - "shell.execute_reply": "2024-06-07T11:05:41.717425Z" + "iopub.execute_input": "2024-06-10T22:06:50.797973Z", + "iopub.status.busy": "2024-06-10T22:06:50.797469Z", + "iopub.status.idle": "2024-06-10T22:06:50.814696Z", + "shell.execute_reply": "2024-06-10T22:06:50.814045Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:41.720011Z", - "iopub.status.busy": "2024-06-07T11:05:41.719696Z", - "iopub.status.idle": "2024-06-07T11:05:41.911591Z", - "shell.execute_reply": "2024-06-07T11:05:41.911096Z" + "iopub.execute_input": "2024-06-10T22:06:50.817796Z", + "iopub.status.busy": "2024-06-10T22:06:50.817232Z", + "iopub.status.idle": "2024-06-10T22:06:51.021448Z", + "shell.execute_reply": "2024-06-10T22:06:51.020788Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:41.913997Z", - "iopub.status.busy": "2024-06-07T11:05:41.913710Z", - "iopub.status.idle": "2024-06-07T11:05:42.273945Z", - "shell.execute_reply": "2024-06-07T11:05:42.273339Z" + "iopub.execute_input": "2024-06-10T22:06:51.024011Z", + "iopub.status.busy": "2024-06-10T22:06:51.023789Z", + "iopub.status.idle": "2024-06-10T22:06:51.355212Z", + "shell.execute_reply": "2024-06-10T22:06:51.354582Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:42.276420Z", - "iopub.status.busy": "2024-06-07T11:05:42.276016Z", - "iopub.status.idle": "2024-06-07T11:05:42.312994Z", - "shell.execute_reply": "2024-06-07T11:05:42.312581Z" + "iopub.execute_input": "2024-06-10T22:06:51.357798Z", + "iopub.status.busy": "2024-06-10T22:06:51.357363Z", + "iopub.status.idle": "2024-06-10T22:06:51.397520Z", + "shell.execute_reply": "2024-06-10T22:06:51.396879Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:42.314982Z", - "iopub.status.busy": "2024-06-07T11:05:42.314803Z", - "iopub.status.idle": "2024-06-07T11:05:43.992573Z", - "shell.execute_reply": "2024-06-07T11:05:43.992034Z" + "iopub.execute_input": "2024-06-10T22:06:51.400283Z", + "iopub.status.busy": "2024-06-10T22:06:51.399802Z", + "iopub.status.idle": "2024-06-10T22:06:53.301313Z", + "shell.execute_reply": "2024-06-10T22:06:53.300630Z" } }, "outputs": [ @@ -667,10 +667,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:43.995298Z", - "iopub.status.busy": "2024-06-07T11:05:43.994821Z", - "iopub.status.idle": "2024-06-07T11:05:44.023331Z", - "shell.execute_reply": "2024-06-07T11:05:44.022768Z" + "iopub.execute_input": "2024-06-10T22:06:53.304069Z", + "iopub.status.busy": "2024-06-10T22:06:53.303380Z", + "iopub.status.idle": "2024-06-10T22:06:53.336210Z", + "shell.execute_reply": "2024-06-10T22:06:53.335466Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:44.025579Z", - "iopub.status.busy": "2024-06-07T11:05:44.025292Z", - "iopub.status.idle": "2024-06-07T11:05:44.055815Z", - "shell.execute_reply": "2024-06-07T11:05:44.055382Z" + "iopub.execute_input": "2024-06-10T22:06:53.339355Z", + "iopub.status.busy": "2024-06-10T22:06:53.338838Z", + "iopub.status.idle": "2024-06-10T22:06:53.377525Z", + "shell.execute_reply": "2024-06-10T22:06:53.376808Z" } }, "outputs": [], @@ -741,17 +741,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:44.057956Z", - "iopub.status.busy": "2024-06-07T11:05:44.057625Z", - "iopub.status.idle": "2024-06-07T11:05:49.158501Z", - "shell.execute_reply": "2024-06-07T11:05:49.157917Z" + "iopub.execute_input": "2024-06-10T22:06:53.380305Z", + "iopub.status.busy": "2024-06-10T22:06:53.379859Z", + "iopub.status.idle": "2024-06-10T22:06:58.500197Z", + "shell.execute_reply": "2024-06-10T22:06:58.499592Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "46ca89a87cc34c5787cf91d2c0b0411c", + "model_id": "acb1f4c5165540c68a662f1c74f3d765", "version_major": 2, "version_minor": 0 }, @@ -811,17 +811,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:49.160572Z", - "iopub.status.busy": "2024-06-07T11:05:49.160388Z", - "iopub.status.idle": "2024-06-07T11:05:54.488713Z", - "shell.execute_reply": "2024-06-07T11:05:54.488080Z" + "iopub.execute_input": "2024-06-10T22:06:58.502892Z", + "iopub.status.busy": "2024-06-10T22:06:58.502405Z", + "iopub.status.idle": "2024-06-10T22:07:03.832746Z", + "shell.execute_reply": "2024-06-10T22:07:03.832111Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03c175d69a8d4afb81b2a2e8cecd8da5", + "model_id": "8371b5949228429b8f8dc1734575bef1", "version_major": 2, "version_minor": 0 }, @@ -949,10 +949,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:54.491232Z", - "iopub.status.busy": "2024-06-07T11:05:54.490859Z", - "iopub.status.idle": "2024-06-07T11:05:54.526316Z", - "shell.execute_reply": "2024-06-07T11:05:54.525888Z" + "iopub.execute_input": "2024-06-10T22:07:03.835367Z", + "iopub.status.busy": "2024-06-10T22:07:03.835062Z", + "iopub.status.idle": "2024-06-10T22:07:03.873276Z", + "shell.execute_reply": "2024-06-10T22:07:03.872768Z" } }, "outputs": [ @@ -1185,10 +1185,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:54.528369Z", - "iopub.status.busy": "2024-06-07T11:05:54.528037Z", - "iopub.status.idle": "2024-06-07T11:05:54.556262Z", - "shell.execute_reply": "2024-06-07T11:05:54.555808Z" + "iopub.execute_input": "2024-06-10T22:07:03.875366Z", + "iopub.status.busy": "2024-06-10T22:07:03.875186Z", + "iopub.status.idle": "2024-06-10T22:07:03.907117Z", + "shell.execute_reply": "2024-06-10T22:07:03.906506Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:54.558331Z", - "iopub.status.busy": "2024-06-07T11:05:54.558000Z", - "iopub.status.idle": "2024-06-07T11:05:54.602788Z", - "shell.execute_reply": "2024-06-07T11:05:54.602248Z" + "iopub.execute_input": "2024-06-10T22:07:03.909458Z", + "iopub.status.busy": "2024-06-10T22:07:03.909169Z", + "iopub.status.idle": "2024-06-10T22:07:03.959172Z", + "shell.execute_reply": "2024-06-10T22:07:03.958554Z" } }, "outputs": [ @@ -1314,10 +1314,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:54.604915Z", - "iopub.status.busy": "2024-06-07T11:05:54.604599Z", - "iopub.status.idle": "2024-06-07T11:05:54.629909Z", - "shell.execute_reply": "2024-06-07T11:05:54.629479Z" + "iopub.execute_input": "2024-06-10T22:07:03.961664Z", + "iopub.status.busy": "2024-06-10T22:07:03.961234Z", + "iopub.status.idle": "2024-06-10T22:07:03.993902Z", + "shell.execute_reply": "2024-06-10T22:07:03.993218Z" } }, "outputs": [], @@ -1331,10 +1331,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:54.632238Z", - "iopub.status.busy": "2024-06-07T11:05:54.632030Z", - "iopub.status.idle": "2024-06-07T11:05:54.659627Z", - "shell.execute_reply": "2024-06-07T11:05:54.659174Z" + "iopub.execute_input": "2024-06-10T22:07:03.996699Z", + "iopub.status.busy": "2024-06-10T22:07:03.996499Z", + "iopub.status.idle": "2024-06-10T22:07:04.028094Z", + "shell.execute_reply": "2024-06-10T22:07:04.027541Z" } }, "outputs": [], @@ -1363,17 +1363,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:05:54.661703Z", - "iopub.status.busy": "2024-06-07T11:05:54.661386Z", - "iopub.status.idle": "2024-06-07T11:06:05.089777Z", - "shell.execute_reply": "2024-06-07T11:06:05.089127Z" + "iopub.execute_input": "2024-06-10T22:07:04.030614Z", + "iopub.status.busy": "2024-06-10T22:07:04.030434Z", + "iopub.status.idle": "2024-06-10T22:07:14.481743Z", + "shell.execute_reply": "2024-06-10T22:07:14.481136Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7a796fb2b00e4d7898ea59e78938859d", + "model_id": "1ea6fa6083fb41669db54c2d1a19b717", "version_major": 2, "version_minor": 0 }, @@ -1397,7 +1397,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d48a3a8d1d5a41fc92d46309c49196a6", + "model_id": "0943ba2ec31d4951b34809b4ddebd70a", "version_major": 2, "version_minor": 0 }, @@ -1463,10 +1463,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:05.092168Z", - "iopub.status.busy": "2024-06-07T11:06:05.091867Z", - "iopub.status.idle": "2024-06-07T11:06:05.181022Z", - "shell.execute_reply": "2024-06-07T11:06:05.180480Z" + "iopub.execute_input": "2024-06-10T22:07:14.484739Z", + "iopub.status.busy": "2024-06-10T22:07:14.484538Z", + "iopub.status.idle": "2024-06-10T22:07:14.577426Z", + "shell.execute_reply": "2024-06-10T22:07:14.576607Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:05.183402Z", - "iopub.status.busy": "2024-06-07T11:06:05.182959Z", - "iopub.status.idle": "2024-06-07T11:06:05.213273Z", - "shell.execute_reply": "2024-06-07T11:06:05.212848Z" + "iopub.execute_input": "2024-06-10T22:07:14.579872Z", + "iopub.status.busy": "2024-06-10T22:07:14.579489Z", + "iopub.status.idle": "2024-06-10T22:07:14.612658Z", + "shell.execute_reply": "2024-06-10T22:07:14.611995Z" } }, "outputs": [], @@ -1562,10 +1562,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:05.215419Z", - "iopub.status.busy": "2024-06-07T11:06:05.215007Z", - "iopub.status.idle": "2024-06-07T11:06:05.241203Z", - "shell.execute_reply": "2024-06-07T11:06:05.240772Z" + "iopub.execute_input": "2024-06-10T22:07:14.615314Z", + "iopub.status.busy": "2024-06-10T22:07:14.615106Z", + "iopub.status.idle": "2024-06-10T22:07:14.647659Z", + "shell.execute_reply": "2024-06-10T22:07:14.647006Z" } }, "outputs": [], @@ -1594,17 +1594,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:05.243091Z", - "iopub.status.busy": "2024-06-07T11:06:05.242920Z", - "iopub.status.idle": "2024-06-07T11:06:15.722943Z", - "shell.execute_reply": "2024-06-07T11:06:15.722394Z" + "iopub.execute_input": "2024-06-10T22:07:14.650485Z", + "iopub.status.busy": "2024-06-10T22:07:14.650095Z", + "iopub.status.idle": "2024-06-10T22:07:25.146780Z", + "shell.execute_reply": "2024-06-10T22:07:25.146146Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d91c8135d0fa46cfa915f8e07be91792", + "model_id": "3d02c725cce54b8b955134180d62aa15", "version_major": 2, "version_minor": 0 }, @@ -1658,7 +1658,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2db04f64b74d41d9bd2f16dbed6ca9cd", + "model_id": "a2496b3343a44a74ba655fe0ec49f0ff", "version_major": 2, "version_minor": 0 }, @@ -1776,10 +1776,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:15.725802Z", - "iopub.status.busy": "2024-06-07T11:06:15.725449Z", - "iopub.status.idle": "2024-06-07T11:06:15.754813Z", - "shell.execute_reply": "2024-06-07T11:06:15.754267Z" + "iopub.execute_input": "2024-06-10T22:07:25.149262Z", + "iopub.status.busy": "2024-06-10T22:07:25.148882Z", + "iopub.status.idle": "2024-06-10T22:07:25.188389Z", + "shell.execute_reply": "2024-06-10T22:07:25.187719Z" } }, "outputs": [ @@ -1863,33 +1863,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00d6a4718704402b8d59bac88a942598": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d5631ce2aae40eaa3466d06aa476406", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e6e6abdee1714ecfb35c91e1c05840e4", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "02e7d7db76a24b31b6746d9214e73061": { + "01554046acbb4af6a170f543b60ca073": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1904,62 +1878,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57f9900e0f904a82a306bf6563bd2ac6", + "layout": "IPY_MODEL_d892d98aa67042e1b4952c3121ba5341", "placeholder": "​", - "style": "IPY_MODEL_e3706b6f7e944bb9ba62e9887dd22d73", + "style": "IPY_MODEL_a884ea47c9cc41a3ba1532bb4aec40b2", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" + "value": " 50/50 [00:05<00:00,  9.85it/s]" } }, - "03aa4d1094fb435489a4e304ac8fc739": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d5c46a19d904edf90186fc710b18089", - "placeholder": "​", - "style": "IPY_MODEL_8a35010efe094655b2476ec8ce232e4f", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "03c175d69a8d4afb81b2a2e8cecd8da5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_24b4ba202d2e4554a1fc6cbb44d6db49", - "IPY_MODEL_35ecbe2889474a8b94cf0701da25283d", - "IPY_MODEL_02e7d7db76a24b31b6746d9214e73061" - ], - "layout": "IPY_MODEL_cf9002a458d44d2ea3b16b09e64152ac", - "tabbable": null, - "tooltip": null - } - }, - "0cff15a424174d50a6543fa5dbdd1685": { + "01b3fc3c7c054f87b22b390ab7c090ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2012,23 +1939,7 @@ "width": null } }, - "104ba11ceb15451c91290ec903709927": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "11babb69f24945e582c101bdc137d331": { + "0347be9050da4b28a39445d95b5d62a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2044,96 +1955,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_396420712ecf451cb282f16c03326fed", + "layout": "IPY_MODEL_31d411f7528b4371a1883935773fe790", "max": 7.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_59f4aa376a78447c9dbff602e614fb6f", + "style": "IPY_MODEL_8ba08d2263234811a338f0dcd6cdc78a", "tabbable": null, "tooltip": null, "value": 7.0 } }, - "11c21b0db83743e78bc01a57c6fc5f2b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "14d04c335f194a238ba7e2d3cddea43d": { + "0943ba2ec31d4951b34809b4ddebd70a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ee528fadaaa47af95a150cbb4749de9", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_104ba11ceb15451c91290ec903709927", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ed7496cbfc447198378b9961c905aae", + "IPY_MODEL_0347be9050da4b28a39445d95b5d62a8", + "IPY_MODEL_3eada97c34ba41749a69d661fbbe48ef" + ], + "layout": "IPY_MODEL_01b3fc3c7c054f87b22b390ab7c090ab", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "1a8f0b59829941c7bbd4135e790d7f79": { + "0d3907d5303b45aaa3e5bf2a45377a89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,25 +2042,7 @@ "width": null } }, - "1c788c555bb54a61b592b0f7508da19a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2119ace2e2c44175980dc658d904561a": { + "14ada90762fd41b9bf89e67efcdd9e49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2222,48 +2060,33 @@ "text_color": null } }, - "24b4ba202d2e4554a1fc6cbb44d6db49": { + "1b2df773d45b4d0483021142efa538c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e855d2d89613470ab39ee251ee70796a", - "placeholder": "​", - "style": "IPY_MODEL_4fe4bba599d94222a48a188cc16cd423", + "layout": "IPY_MODEL_68843481e1c34c65b0597b6bb7968e31", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_df89a32a44df4544a18deedb4c620538", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "2a7f97f0f07f4c5581574865d9c546e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 50.0 } }, - "2ad7f494b11a4cebb379c3f6a3d20e89": { + "1d6cddd4499d4d0e99f99ad1c9052131": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2278,15 +2101,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6819383cdad7493995c4692f1c2db567", + "layout": "IPY_MODEL_a09459f82d514f3588be425c8aa1556d", "placeholder": "​", - "style": "IPY_MODEL_f6414378a8574865b6cfcac253bf91c9", + "style": "IPY_MODEL_14ada90762fd41b9bf89e67efcdd9e49", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.88it/s]" + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "2db04f64b74d41d9bd2f16dbed6ca9cd": { + "1ea6fa6083fb41669db54c2d1a19b717": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2301,16 +2124,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_87f30470089749a1a98931ee6b01c52c", - "IPY_MODEL_11babb69f24945e582c101bdc137d331", - "IPY_MODEL_317e351c50b3488cac357877af4b33b0" + "IPY_MODEL_90e513d1c77a4067848ad68ac3c7601d", + "IPY_MODEL_e01896d3bf3e480b961d260572a92687", + "IPY_MODEL_8a0e32f4fa294ea09bda0478165748ea" ], - "layout": "IPY_MODEL_77a360d818b44b94a4a8bc243328a478", + "layout": "IPY_MODEL_62eefd5258464ee7baf3883c869b3d71", "tabbable": null, "tooltip": null } }, - "2ee528fadaaa47af95a150cbb4749de9": { + "27c7173ff0a54cb5a72bc40caa462fa5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76d99890457a455982192a282e5b6632", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4fa7284ce5744161922dc313d027a7e7", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "31d411f7528b4371a1883935773fe790": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2363,7 +2212,7 @@ "width": null } }, - "317e351c50b3488cac357877af4b33b0": { + "388decca817e408c90bfff95e3b834d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2378,15 +2227,62 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8785490ea06146e0944d6cf27c7b0461", + "layout": "IPY_MODEL_59777f4c992e48f6944981596f549cb3", "placeholder": "​", - "style": "IPY_MODEL_2a7f97f0f07f4c5581574865d9c546e5", + "style": "IPY_MODEL_4fff1fc864c74b0f9fa8a75d9b8385cc", "tabbable": null, "tooltip": null, "value": " 7/7 [00:05<00:00,  1.32it/s]" } }, - "33d84b3604fa43eb9975504022df7b2c": { + "3d02c725cce54b8b955134180d62aa15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b58b75b500df414bbd181405caf7d102", + "IPY_MODEL_27c7173ff0a54cb5a72bc40caa462fa5", + "IPY_MODEL_d15dbf02e2cb497cbc94be1b736ee04b" + ], + "layout": "IPY_MODEL_a865fa83d495450d89e59987a22cce96", + "tabbable": null, + "tooltip": null + } + }, + "3eada97c34ba41749a69d661fbbe48ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55d8af1b37e74caa9686f4861cc18522", + "placeholder": "​", + "style": "IPY_MODEL_fbd568c059034c77ba6c7b7f7668e4c3", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "3ed7496cbfc447198378b9961c905aae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2401,15 +2297,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3ae61a41bb854a4b900bb93200bb4f0c", + "layout": "IPY_MODEL_deee3f1e2bb9446095db9608747d9bab", "placeholder": "​", - "style": "IPY_MODEL_1c788c555bb54a61b592b0f7508da19a", + "style": "IPY_MODEL_c7033c109c1d4c56b69314961b17cbd6", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.79it/s]" + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "3fb745df13a742e89fe9e9c01fc1df76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "35118917a72842aca8be1845d0ac4dab": { + "418722be979d4660be3b97de283e0456": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2427,7 +2341,7 @@ "text_color": null } }, - "35ecbe2889474a8b94cf0701da25283d": { + "4d21753f926f48b6b1208a85a5bf3742": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2443,17 +2357,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d71b53e07a8b4d83b59dec09d41dd794", + "layout": "IPY_MODEL_dfd9c3edccf2434e84d43bbbaa91ea4b", "max": 7.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ccfd9b4b13eb4ca29a80d9d606424ad5", + "style": "IPY_MODEL_53ee1ef104ba47969077bb1bfffc4b93", "tabbable": null, "tooltip": null, "value": 7.0 } }, - "36d22346c81a47d7a20611fc6a80e8e4": { + "4fa7284ce5744161922dc313d027a7e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2469,60 +2383,59 @@ "description_width": "" } }, - "396420712ecf451cb282f16c03326fed": { - "model_module": "@jupyter-widgets/base", + "4fff1fc864c74b0f9fa8a75d9b8385cc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "532aa28a18b24051bd581a5de509570c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "53ee1ef104ba47969077bb1bfffc4b93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3ae61a41bb854a4b900bb93200bb4f0c": { + "55d8af1b37e74caa9686f4861cc18522": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2575,7 +2488,7 @@ "width": null } }, - "3ff0d4bc824a4e6d8e1433af1b385a77": { + "59777f4c992e48f6944981596f549cb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2617,109 +2530,18 @@ "max_width": null, "min_height": null, "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "41a5694d57e649e1a94b33613a38ed11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a9b29e18d2942babd9eb96f50bce6c7", - "placeholder": "​", - "style": "IPY_MODEL_35118917a72842aca8be1845d0ac4dab", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "46ca89a87cc34c5787cf91d2c0b0411c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_daafe19c92ba4bd193945fdfc1993696", - "IPY_MODEL_9794da59883e44d4a6b76a44c6baafbd", - "IPY_MODEL_2ad7f494b11a4cebb379c3f6a3d20e89" - ], - "layout": "IPY_MODEL_11c21b0db83743e78bc01a57c6fc5f2b", - "tabbable": null, - "tooltip": null - } - }, - "4fe4bba599d94222a48a188cc16cd423": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "50bd02664f224d2fa9cbc3a16d30f7cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1a8f0b59829941c7bbd4135e790d7f79", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36d22346c81a47d7a20611fc6a80e8e4", - "tabbable": null, - "tooltip": null, - "value": 7.0 + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "57f9900e0f904a82a306bf6563bd2ac6": { + "62eefd5258464ee7baf3883c869b3d71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2772,7 +2594,7 @@ "width": null } }, - "59f4aa376a78447c9dbff602e614fb6f": { + "63314c35b01947a5bc8e8477f99d2908": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2788,30 +2610,7 @@ "description_width": "" } }, - "602bf4de561e4611acb3a3ee03231808": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0cff15a424174d50a6543fa5dbdd1685", - "placeholder": "​", - "style": "IPY_MODEL_9d281ffb4f6a424493eeaeae44bbb5df", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "6819383cdad7493995c4692f1c2db567": { + "63cff125c1cf4172bd8c965da39d50fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2864,7 +2663,7 @@ "width": null } }, - "6a9b29e18d2942babd9eb96f50bce6c7": { + "68843481e1c34c65b0597b6bb7968e31": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2917,7 +2716,7 @@ "width": null } }, - "6d5631ce2aae40eaa3466d06aa476406": { + "76d99890457a455982192a282e5b6632": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2970,7 +2769,7 @@ "width": null } }, - "77a360d818b44b94a4a8bc243328a478": { + "7edcf7b564b9418085c8df7442c82a26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3023,7 +2822,7 @@ "width": null } }, - "7a796fb2b00e4d7898ea59e78938859d": { + "8371b5949228429b8f8dc1734575bef1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3038,16 +2837,138 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_03aa4d1094fb435489a4e304ac8fc739", - "IPY_MODEL_00d6a4718704402b8d59bac88a942598", - "IPY_MODEL_33d84b3604fa43eb9975504022df7b2c" + "IPY_MODEL_1d6cddd4499d4d0e99f99ad1c9052131", + "IPY_MODEL_4d21753f926f48b6b1208a85a5bf3742", + "IPY_MODEL_388decca817e408c90bfff95e3b834d6" ], - "layout": "IPY_MODEL_f4b0dc22e56240f99cd563c24b9d0ec1", + "layout": "IPY_MODEL_f84e6661ef354f5392021037fc704b84", "tabbable": null, "tooltip": null } }, - "7e2b59c404d340b8b46abf08d33c58fc": { + "863549e696174998bf37ff0fbecb3dee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "87096f41a39a4adb84ee957b01567054": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_933b2d50dd004af9a2f6589c3091d17e", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_89fb64d9d0e7465e88f923b71110c660", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "89fb64d9d0e7465e88f923b71110c660": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8a0e32f4fa294ea09bda0478165748ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0d3907d5303b45aaa3e5bf2a45377a89", + "placeholder": "​", + "style": "IPY_MODEL_532aa28a18b24051bd581a5de509570c", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.76it/s]" + } + }, + "8ba08d2263234811a338f0dcd6cdc78a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "90e513d1c77a4067848ad68ac3c7601d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9204bf8dfaee44b6b59ffd049a366a7b", + "placeholder": "​", + "style": "IPY_MODEL_3fb745df13a742e89fe9e9c01fc1df76", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "91e8f6cc427845c2a0db55c123033bb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3065,7 +2986,7 @@ "text_color": null } }, - "8785490ea06146e0944d6cf27c7b0461": { + "9204bf8dfaee44b6b59ffd049a366a7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3118,66 +3039,113 @@ "width": null } }, - "87f30470089749a1a98931ee6b01c52c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ff0d4bc824a4e6d8e1433af1b385a77", - "placeholder": "​", - "style": "IPY_MODEL_7e2b59c404d340b8b46abf08d33c58fc", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "8a35010efe094655b2476ec8ce232e4f": { - "model_module": "@jupyter-widgets/controls", + "933b2d50dd004af9a2f6589c3091d17e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8fc19a914a80440da57c1f136e4d63f4": { - "model_module": "@jupyter-widgets/controls", + "94a604f9aa884e6ba3119ca705a1d12b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9276bfa56ada434fa65fee431cf62120": { + "9704ad6713bc41fb95b10a91de63488a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3230,7 +3198,7 @@ "width": null } }, - "93aa00c5edae4a8483b84d3fefb9101a": { + "a09459f82d514f3588be425c8aa1556d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3283,33 +3251,31 @@ "width": null } }, - "9794da59883e44d4a6b76a44c6baafbd": { + "a2496b3343a44a74ba655fe0ec49f0ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e64e01f5f40a473291a11738a53a3934", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d7ece672a7df4993ad2a3ff1a19d9b4a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e85cc7593caa42eb9dc9b544fac1c636", + "IPY_MODEL_87096f41a39a4adb84ee957b01567054", + "IPY_MODEL_e30819e80b6140a7bd4a72f8828f1b09" + ], + "layout": "IPY_MODEL_ab2a77d92fc043d1a4a0405af430837b", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "9d281ffb4f6a424493eeaeae44bbb5df": { + "a2970b0f084e4417a2f626efc9703961": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3327,7 +3293,7 @@ "text_color": null } }, - "9d5c46a19d904edf90186fc710b18089": { + "a865fa83d495450d89e59987a22cce96": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3380,7 +3346,25 @@ "width": null } }, - "b96e4eea45ad4743908782f9b9ad8265": { + "a884ea47c9cc41a3ba1532bb4aec40b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ab2a77d92fc043d1a4a0405af430837b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3433,7 +3417,31 @@ "width": null } }, - "bb5cc803b8c34b1590804dd0a8bb87ef": { + "acb1f4c5165540c68a662f1c74f3d765": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4d0ef55fcf14aee90cb8144ed7d09f5", + "IPY_MODEL_1b2df773d45b4d0483021142efa538c3", + "IPY_MODEL_01554046acbb4af6a170f543b60ca073" + ], + "layout": "IPY_MODEL_94a604f9aa884e6ba3119ca705a1d12b", + "tabbable": null, + "tooltip": null + } + }, + "b58b75b500df414bbd181405caf7d102": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3448,15 +3456,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9276bfa56ada434fa65fee431cf62120", + "layout": "IPY_MODEL_cad1d3fef6da45a092559b5f8771af7d", "placeholder": "​", - "style": "IPY_MODEL_8fc19a914a80440da57c1f136e4d63f4", + "style": "IPY_MODEL_bcbfb90eb3aa40819885be5a2a7b0158", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.74it/s]" + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "c1d4f3b8accf4bfa932b8d5188ba0ece": { + "bcbfb90eb3aa40819885be5a2a7b0158": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3474,7 +3482,7 @@ "text_color": null } }, - "c8c724045e144e98bd39405f94879a5e": { + "c4d0ef55fcf14aee90cb8144ed7d09f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3489,31 +3497,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b96e4eea45ad4743908782f9b9ad8265", + "layout": "IPY_MODEL_f9f17e43073a4701afddc5141a2dc03b", "placeholder": "​", - "style": "IPY_MODEL_c1d4f3b8accf4bfa932b8d5188ba0ece", + "style": "IPY_MODEL_91e8f6cc427845c2a0db55c123033bb5", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "ccfd9b4b13eb4ca29a80d9d606424ad5": { + "c7033c109c1d4c56b69314961b17cbd6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cf9002a458d44d2ea3b16b09e64152ac": { + "cad1d3fef6da45a092559b5f8771af7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3566,31 +3576,30 @@ "width": null } }, - "d48a3a8d1d5a41fc92d46309c49196a6": { + "d15dbf02e2cb497cbc94be1b736ee04b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_602bf4de561e4611acb3a3ee03231808", - "IPY_MODEL_50bd02664f224d2fa9cbc3a16d30f7cc", - "IPY_MODEL_c8c724045e144e98bd39405f94879a5e" - ], - "layout": "IPY_MODEL_93aa00c5edae4a8483b84d3fefb9101a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9704ad6713bc41fb95b10a91de63488a", + "placeholder": "​", + "style": "IPY_MODEL_418722be979d4660be3b97de283e0456", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.72it/s]" } }, - "d71b53e07a8b4d83b59dec09d41dd794": { + "d892d98aa67042e1b4952c3121ba5341": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3643,70 +3652,7 @@ "width": null } }, - "d7ece672a7df4993ad2a3ff1a19d9b4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d91c8135d0fa46cfa915f8e07be91792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_41a5694d57e649e1a94b33613a38ed11", - "IPY_MODEL_14d04c335f194a238ba7e2d3cddea43d", - "IPY_MODEL_bb5cc803b8c34b1590804dd0a8bb87ef" - ], - "layout": "IPY_MODEL_e01ba39b2d83490d96c011c26a4db168", - "tabbable": null, - "tooltip": null - } - }, - "daafe19c92ba4bd193945fdfc1993696": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ffe5c402ae9a454992f02ad0a44e6cc9", - "placeholder": "​", - "style": "IPY_MODEL_2119ace2e2c44175980dc658d904561a", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "e01ba39b2d83490d96c011c26a4db168": { + "da6fcbb921bd4f49bcfa569bf598979e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3759,25 +3705,7 @@ "width": null } }, - "e3706b6f7e944bb9ba62e9887dd22d73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e64e01f5f40a473291a11738a53a3934": { + "deee3f1e2bb9446095db9608747d9bab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3830,7 +3758,7 @@ "width": null } }, - "e6e6abdee1714ecfb35c91e1c05840e4": { + "df89a32a44df4544a18deedb4c620538": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3846,7 +3774,7 @@ "description_width": "" } }, - "e855d2d89613470ab39ee251ee70796a": { + "dfd9c3edccf2434e84d43bbbaa91ea4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3899,7 +3827,79 @@ "width": null } }, - "f4b0dc22e56240f99cd563c24b9d0ec1": { + "e01896d3bf3e480b961d260572a92687": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7edcf7b564b9418085c8df7442c82a26", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_63314c35b01947a5bc8e8477f99d2908", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "e30819e80b6140a7bd4a72f8828f1b09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63cff125c1cf4172bd8c965da39d50fa", + "placeholder": "​", + "style": "IPY_MODEL_863549e696174998bf37ff0fbecb3dee", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "e85cc7593caa42eb9dc9b544fac1c636": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_da6fcbb921bd4f49bcfa569bf598979e", + "placeholder": "​", + "style": "IPY_MODEL_a2970b0f084e4417a2f626efc9703961", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "f84e6661ef354f5392021037fc704b84": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3952,25 +3952,7 @@ "width": null } }, - "f6414378a8574865b6cfcac253bf91c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ffe5c402ae9a454992f02ad0a44e6cc9": { + "f9f17e43073a4701afddc5141a2dc03b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4022,6 +4004,24 @@ "visibility": null, "width": null } + }, + "fbd568c059034c77ba6c7b7f7668e4c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 00529b7a5..cf69d8e2c 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1145,7 +1145,7 @@

    Functionality 2: Specifying nondefault arguments
    -
    +

    @@ -1541,7 +1541,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"46da8f86e2b342e59f8c0afe65bf3dbf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc02dfb1ca9b44e8b8beb505b6ecdb2b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ff22cd3f87c74043b31558afd68deb6d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_46da8f86e2b342e59f8c0afe65bf3dbf", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bc02dfb1ca9b44e8b8beb505b6ecdb2b", "tabbable": null, "tooltip": null, "value": 132.0}}, "e857403066004f1b9d386daf3ff7062c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98f7202a24ff41c6b79931d15762a4d3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "37c6c6989ccb494c9aa2ce0537750294": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e857403066004f1b9d386daf3ff7062c", "placeholder": "\u200b", "style": "IPY_MODEL_98f7202a24ff41c6b79931d15762a4d3", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "67f44e74c1634042b83afb37e1f67fac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b560a5e39684ee88b2c4cb0e2ac335a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ee295fdafdc84e6093ecb8af9b8454dc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_67f44e74c1634042b83afb37e1f67fac", "placeholder": "\u200b", "style": "IPY_MODEL_9b560a5e39684ee88b2c4cb0e2ac335a", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u20078470.10\u2007examples/s]"}}, "755d77276c6f4d30ad433b2a7a1582cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e866a85a274f40258b82355ce603f51c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_37c6c6989ccb494c9aa2ce0537750294", "IPY_MODEL_ff22cd3f87c74043b31558afd68deb6d", "IPY_MODEL_ee295fdafdc84e6093ecb8af9b8454dc"], "layout": "IPY_MODEL_755d77276c6f4d30ad433b2a7a1582cd", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"f89c77a3d71d40cab3f559bff2a36663": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4b498b7ab6448f3b8be10719453e20b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "18e05e45125b4499a09802118c8b8c0a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f89c77a3d71d40cab3f559bff2a36663", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b4b498b7ab6448f3b8be10719453e20b", "tabbable": null, "tooltip": null, "value": 132.0}}, "83cadf6701034e6cbdedd22f35c83c78": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53d9ada43c5d49e2a8cdb1113494e8ac": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bbbdb9ab56764b7891bbb4a98ebee56c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_83cadf6701034e6cbdedd22f35c83c78", "placeholder": "\u200b", "style": "IPY_MODEL_53d9ada43c5d49e2a8cdb1113494e8ac", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "a9a8be1a65614b6593dd2c0493002fec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a9e6e69ab8a04d48996afb46c9056e07": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ae5361e532ad4eec8a8eec3b5ef633b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9a8be1a65614b6593dd2c0493002fec", "placeholder": "\u200b", "style": "IPY_MODEL_a9e6e69ab8a04d48996afb46c9056e07", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200710008.28\u2007examples/s]"}}, "4f0a1b7fcf7b4c3087ea701b5c489f72": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26f1296bba2d44e997c52024ed622bbd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bbbdb9ab56764b7891bbb4a98ebee56c", "IPY_MODEL_18e05e45125b4499a09802118c8b8c0a", "IPY_MODEL_ae5361e532ad4eec8a8eec3b5ef633b0"], "layout": "IPY_MODEL_4f0a1b7fcf7b4c3087ea701b5c489f72", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index e06ee7d88..8e16878cd 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:18.317372Z", - "iopub.status.busy": "2024-06-07T11:06:18.317206Z", - "iopub.status.idle": "2024-06-07T11:06:19.483049Z", - "shell.execute_reply": "2024-06-07T11:06:19.482438Z" + "iopub.execute_input": "2024-06-10T22:07:29.067515Z", + "iopub.status.busy": "2024-06-10T22:07:29.067016Z", + "iopub.status.idle": "2024-06-10T22:07:30.420352Z", + "shell.execute_reply": "2024-06-10T22:07:30.419625Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:19.485636Z", - "iopub.status.busy": "2024-06-07T11:06:19.485373Z", - "iopub.status.idle": "2024-06-07T11:06:19.488413Z", - "shell.execute_reply": "2024-06-07T11:06:19.487879Z" + "iopub.execute_input": "2024-06-10T22:07:30.423702Z", + "iopub.status.busy": "2024-06-10T22:07:30.423120Z", + "iopub.status.idle": "2024-06-10T22:07:30.426412Z", + "shell.execute_reply": "2024-06-10T22:07:30.425952Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:19.490508Z", - "iopub.status.busy": "2024-06-07T11:06:19.490189Z", - "iopub.status.idle": "2024-06-07T11:06:19.498822Z", - "shell.execute_reply": "2024-06-07T11:06:19.498269Z" + "iopub.execute_input": "2024-06-10T22:07:30.428700Z", + "iopub.status.busy": "2024-06-10T22:07:30.428411Z", + "iopub.status.idle": "2024-06-10T22:07:30.437711Z", + "shell.execute_reply": "2024-06-10T22:07:30.437132Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:19.500662Z", - "iopub.status.busy": "2024-06-07T11:06:19.500489Z", - "iopub.status.idle": "2024-06-07T11:06:19.505545Z", - "shell.execute_reply": "2024-06-07T11:06:19.504971Z" + "iopub.execute_input": "2024-06-10T22:07:30.440034Z", + "iopub.status.busy": "2024-06-10T22:07:30.439685Z", + "iopub.status.idle": "2024-06-10T22:07:30.444718Z", + "shell.execute_reply": "2024-06-10T22:07:30.444283Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:19.507682Z", - "iopub.status.busy": "2024-06-07T11:06:19.507508Z", - "iopub.status.idle": "2024-06-07T11:06:19.690357Z", - "shell.execute_reply": "2024-06-07T11:06:19.689846Z" + "iopub.execute_input": "2024-06-10T22:07:30.447040Z", + "iopub.status.busy": "2024-06-10T22:07:30.446715Z", + "iopub.status.idle": "2024-06-10T22:07:30.656395Z", + "shell.execute_reply": "2024-06-10T22:07:30.655745Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:19.692641Z", - "iopub.status.busy": "2024-06-07T11:06:19.692460Z", - "iopub.status.idle": "2024-06-07T11:06:20.059519Z", - "shell.execute_reply": "2024-06-07T11:06:20.058950Z" + "iopub.execute_input": "2024-06-10T22:07:30.659938Z", + "iopub.status.busy": "2024-06-10T22:07:30.659490Z", + "iopub.status.idle": "2024-06-10T22:07:31.038405Z", + "shell.execute_reply": "2024-06-10T22:07:31.037763Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:20.061733Z", - "iopub.status.busy": "2024-06-07T11:06:20.061553Z", - "iopub.status.idle": "2024-06-07T11:06:20.084845Z", - "shell.execute_reply": "2024-06-07T11:06:20.084356Z" + "iopub.execute_input": "2024-06-10T22:07:31.041158Z", + "iopub.status.busy": "2024-06-10T22:07:31.040743Z", + "iopub.status.idle": "2024-06-10T22:07:31.066844Z", + "shell.execute_reply": "2024-06-10T22:07:31.066292Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:20.086983Z", - "iopub.status.busy": "2024-06-07T11:06:20.086759Z", - "iopub.status.idle": "2024-06-07T11:06:20.098045Z", - "shell.execute_reply": "2024-06-07T11:06:20.097597Z" + "iopub.execute_input": "2024-06-10T22:07:31.069570Z", + "iopub.status.busy": "2024-06-10T22:07:31.069238Z", + "iopub.status.idle": "2024-06-10T22:07:31.082986Z", + "shell.execute_reply": "2024-06-10T22:07:31.082286Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:20.100197Z", - "iopub.status.busy": "2024-06-07T11:06:20.099860Z", - "iopub.status.idle": "2024-06-07T11:06:21.714908Z", - "shell.execute_reply": "2024-06-07T11:06:21.714347Z" + "iopub.execute_input": "2024-06-10T22:07:31.086021Z", + "iopub.status.busy": "2024-06-10T22:07:31.085635Z", + "iopub.status.idle": "2024-06-10T22:07:33.069715Z", + "shell.execute_reply": "2024-06-10T22:07:33.068974Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:21.717395Z", - "iopub.status.busy": "2024-06-07T11:06:21.716916Z", - "iopub.status.idle": "2024-06-07T11:06:21.739120Z", - "shell.execute_reply": "2024-06-07T11:06:21.738677Z" + "iopub.execute_input": "2024-06-10T22:07:33.072877Z", + "iopub.status.busy": "2024-06-10T22:07:33.072040Z", + "iopub.status.idle": "2024-06-10T22:07:33.099001Z", + "shell.execute_reply": "2024-06-10T22:07:33.098400Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:21.741322Z", - "iopub.status.busy": "2024-06-07T11:06:21.741006Z", - "iopub.status.idle": "2024-06-07T11:06:21.767242Z", - "shell.execute_reply": "2024-06-07T11:06:21.766578Z" + "iopub.execute_input": "2024-06-10T22:07:33.101326Z", + "iopub.status.busy": "2024-06-10T22:07:33.101114Z", + "iopub.status.idle": "2024-06-10T22:07:33.123082Z", + "shell.execute_reply": "2024-06-10T22:07:33.122471Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:21.769645Z", - "iopub.status.busy": "2024-06-07T11:06:21.769136Z", - "iopub.status.idle": "2024-06-07T11:06:21.783459Z", - "shell.execute_reply": "2024-06-07T11:06:21.782874Z" + "iopub.execute_input": "2024-06-10T22:07:33.125345Z", + "iopub.status.busy": "2024-06-10T22:07:33.125121Z", + "iopub.status.idle": "2024-06-10T22:07:33.140464Z", + "shell.execute_reply": "2024-06-10T22:07:33.139918Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:21.785783Z", - "iopub.status.busy": "2024-06-07T11:06:21.785610Z", - "iopub.status.idle": "2024-06-07T11:06:21.811970Z", - "shell.execute_reply": "2024-06-07T11:06:21.811442Z" + "iopub.execute_input": "2024-06-10T22:07:33.142819Z", + "iopub.status.busy": "2024-06-10T22:07:33.142478Z", + "iopub.status.idle": "2024-06-10T22:07:33.166483Z", + "shell.execute_reply": "2024-06-10T22:07:33.165836Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e866a85a274f40258b82355ce603f51c", + "model_id": "26f1296bba2d44e997c52024ed622bbd", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:21.813973Z", - "iopub.status.busy": "2024-06-07T11:06:21.813796Z", - "iopub.status.idle": "2024-06-07T11:06:21.828979Z", - "shell.execute_reply": "2024-06-07T11:06:21.828462Z" + "iopub.execute_input": "2024-06-10T22:07:33.168984Z", + "iopub.status.busy": "2024-06-10T22:07:33.168471Z", + "iopub.status.idle": "2024-06-10T22:07:33.185571Z", + "shell.execute_reply": "2024-06-10T22:07:33.184959Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:21.830899Z", - "iopub.status.busy": "2024-06-07T11:06:21.830728Z", - "iopub.status.idle": "2024-06-07T11:06:21.836630Z", - "shell.execute_reply": "2024-06-07T11:06:21.836106Z" + "iopub.execute_input": "2024-06-10T22:07:33.188054Z", + "iopub.status.busy": "2024-06-10T22:07:33.187707Z", + "iopub.status.idle": "2024-06-10T22:07:33.193984Z", + "shell.execute_reply": "2024-06-10T22:07:33.193394Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:21.838671Z", - "iopub.status.busy": "2024-06-07T11:06:21.838360Z", - "iopub.status.idle": "2024-06-07T11:06:21.855231Z", - "shell.execute_reply": "2024-06-07T11:06:21.854782Z" + "iopub.execute_input": "2024-06-10T22:07:33.196273Z", + "iopub.status.busy": "2024-06-10T22:07:33.195897Z", + "iopub.status.idle": "2024-06-10T22:07:33.215504Z", + "shell.execute_reply": "2024-06-10T22:07:33.214964Z" } }, "outputs": [ @@ -1431,30 +1431,57 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "37c6c6989ccb494c9aa2ce0537750294": { + "18e05e45125b4499a09802118c8b8c0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e857403066004f1b9d386daf3ff7062c", - "placeholder": "​", - "style": "IPY_MODEL_98f7202a24ff41c6b79931d15762a4d3", + "layout": "IPY_MODEL_f89c77a3d71d40cab3f559bff2a36663", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b4b498b7ab6448f3b8be10719453e20b", "tabbable": null, "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "value": 132.0 } }, - "46da8f86e2b342e59f8c0afe65bf3dbf": { + "26f1296bba2d44e997c52024ed622bbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bbbdb9ab56764b7891bbb4a98ebee56c", + "IPY_MODEL_18e05e45125b4499a09802118c8b8c0a", + "IPY_MODEL_ae5361e532ad4eec8a8eec3b5ef633b0" + ], + "layout": "IPY_MODEL_4f0a1b7fcf7b4c3087ea701b5c489f72", + "tabbable": null, + "tooltip": null + } + }, + "4f0a1b7fcf7b4c3087ea701b5c489f72": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1507,7 +1534,25 @@ "width": null } }, - "67f44e74c1634042b83afb37e1f67fac": { + "53d9ada43c5d49e2a8cdb1113494e8ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "83cadf6701034e6cbdedd22f35c83c78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1560,7 +1605,7 @@ "width": null } }, - "755d77276c6f4d30ad433b2a7a1582cd": { + "a9a8be1a65614b6593dd2c0493002fec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1613,7 +1658,7 @@ "width": null } }, - "98f7202a24ff41c6b79931d15762a4d3": { + "a9e6e69ab8a04d48996afb46c9056e07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1631,25 +1676,30 @@ "text_color": null } }, - "9b560a5e39684ee88b2c4cb0e2ac335a": { + "ae5361e532ad4eec8a8eec3b5ef633b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a9a8be1a65614b6593dd2c0493002fec", + "placeholder": "​", + "style": "IPY_MODEL_a9e6e69ab8a04d48996afb46c9056e07", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 10008.28 examples/s]" } }, - "bc02dfb1ca9b44e8b8beb505b6ecdb2b": { + "b4b498b7ab6448f3b8be10719453e20b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1665,7 +1715,30 @@ "description_width": "" } }, - "e857403066004f1b9d386daf3ff7062c": { + "bbbdb9ab56764b7891bbb4a98ebee56c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83cadf6701034e6cbdedd22f35c83c78", + "placeholder": "​", + "style": "IPY_MODEL_53d9ada43c5d49e2a8cdb1113494e8ac", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "f89c77a3d71d40cab3f559bff2a36663": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1717,79 +1790,6 @@ "visibility": null, "width": null } - }, - "e866a85a274f40258b82355ce603f51c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37c6c6989ccb494c9aa2ce0537750294", - "IPY_MODEL_ff22cd3f87c74043b31558afd68deb6d", - "IPY_MODEL_ee295fdafdc84e6093ecb8af9b8454dc" - ], - "layout": "IPY_MODEL_755d77276c6f4d30ad433b2a7a1582cd", - "tabbable": null, - "tooltip": null - } - }, - "ee295fdafdc84e6093ecb8af9b8454dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67f44e74c1634042b83afb37e1f67fac", - "placeholder": "​", - "style": "IPY_MODEL_9b560a5e39684ee88b2c4cb0e2ac335a", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 8470.10 examples/s]" - } - }, - "ff22cd3f87c74043b31558afd68deb6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_46da8f86e2b342e59f8c0afe65bf3dbf", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bc02dfb1ca9b44e8b8beb505b6ecdb2b", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index e7ede25cf..30820758a 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:24.558324Z", - "iopub.status.busy": "2024-06-07T11:06:24.558146Z", - "iopub.status.idle": "2024-06-07T11:06:25.712648Z", - "shell.execute_reply": "2024-06-07T11:06:25.712081Z" + "iopub.execute_input": "2024-06-10T22:07:36.047155Z", + "iopub.status.busy": "2024-06-10T22:07:36.046970Z", + "iopub.status.idle": "2024-06-10T22:07:37.334681Z", + "shell.execute_reply": "2024-06-10T22:07:37.334089Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:25.715468Z", - "iopub.status.busy": "2024-06-07T11:06:25.714950Z", - "iopub.status.idle": "2024-06-07T11:06:25.718015Z", - "shell.execute_reply": "2024-06-07T11:06:25.717557Z" + "iopub.execute_input": "2024-06-10T22:07:37.337607Z", + "iopub.status.busy": "2024-06-10T22:07:37.337076Z", + "iopub.status.idle": "2024-06-10T22:07:37.340343Z", + "shell.execute_reply": "2024-06-10T22:07:37.339854Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:25.720100Z", - "iopub.status.busy": "2024-06-07T11:06:25.719777Z", - "iopub.status.idle": "2024-06-07T11:06:25.728731Z", - "shell.execute_reply": "2024-06-07T11:06:25.728276Z" + "iopub.execute_input": "2024-06-10T22:07:37.342544Z", + "iopub.status.busy": "2024-06-10T22:07:37.342260Z", + "iopub.status.idle": "2024-06-10T22:07:37.351622Z", + "shell.execute_reply": "2024-06-10T22:07:37.351145Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:25.730739Z", - "iopub.status.busy": "2024-06-07T11:06:25.730406Z", - "iopub.status.idle": "2024-06-07T11:06:25.735070Z", - "shell.execute_reply": "2024-06-07T11:06:25.734615Z" + "iopub.execute_input": "2024-06-10T22:07:37.353690Z", + "iopub.status.busy": "2024-06-10T22:07:37.353348Z", + "iopub.status.idle": "2024-06-10T22:07:37.358117Z", + "shell.execute_reply": "2024-06-10T22:07:37.357674Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:25.737129Z", - "iopub.status.busy": "2024-06-07T11:06:25.736801Z", - "iopub.status.idle": "2024-06-07T11:06:25.919179Z", - "shell.execute_reply": "2024-06-07T11:06:25.918672Z" + "iopub.execute_input": "2024-06-10T22:07:37.360376Z", + "iopub.status.busy": "2024-06-10T22:07:37.360037Z", + "iopub.status.idle": "2024-06-10T22:07:37.555077Z", + "shell.execute_reply": "2024-06-10T22:07:37.554494Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:25.921689Z", - "iopub.status.busy": "2024-06-07T11:06:25.921288Z", - "iopub.status.idle": "2024-06-07T11:06:26.293688Z", - "shell.execute_reply": "2024-06-07T11:06:26.293015Z" + "iopub.execute_input": "2024-06-10T22:07:37.557773Z", + "iopub.status.busy": "2024-06-10T22:07:37.557349Z", + "iopub.status.idle": "2024-06-10T22:07:37.940728Z", + "shell.execute_reply": "2024-06-10T22:07:37.940131Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:26.296038Z", - "iopub.status.busy": "2024-06-07T11:06:26.295686Z", - "iopub.status.idle": "2024-06-07T11:06:26.298426Z", - "shell.execute_reply": "2024-06-07T11:06:26.297971Z" + "iopub.execute_input": "2024-06-10T22:07:37.943106Z", + "iopub.status.busy": "2024-06-10T22:07:37.942742Z", + "iopub.status.idle": "2024-06-10T22:07:37.945571Z", + "shell.execute_reply": "2024-06-10T22:07:37.945115Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:26.300646Z", - "iopub.status.busy": "2024-06-07T11:06:26.300311Z", - "iopub.status.idle": "2024-06-07T11:06:26.335473Z", - "shell.execute_reply": "2024-06-07T11:06:26.334906Z" + "iopub.execute_input": "2024-06-10T22:07:37.947697Z", + "iopub.status.busy": "2024-06-10T22:07:37.947353Z", + "iopub.status.idle": "2024-06-10T22:07:37.984164Z", + "shell.execute_reply": "2024-06-10T22:07:37.983526Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:26.337618Z", - "iopub.status.busy": "2024-06-07T11:06:26.337271Z", - "iopub.status.idle": "2024-06-07T11:06:27.990975Z", - "shell.execute_reply": "2024-06-07T11:06:27.990304Z" + "iopub.execute_input": "2024-06-10T22:07:37.986465Z", + "iopub.status.busy": "2024-06-10T22:07:37.986107Z", + "iopub.status.idle": "2024-06-10T22:07:39.886511Z", + "shell.execute_reply": "2024-06-10T22:07:39.885822Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:27.993348Z", - "iopub.status.busy": "2024-06-07T11:06:27.992998Z", - "iopub.status.idle": "2024-06-07T11:06:28.012293Z", - "shell.execute_reply": "2024-06-07T11:06:28.011766Z" + "iopub.execute_input": "2024-06-10T22:07:39.889091Z", + "iopub.status.busy": "2024-06-10T22:07:39.888615Z", + "iopub.status.idle": "2024-06-10T22:07:39.910603Z", + "shell.execute_reply": "2024-06-10T22:07:39.909968Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:28.014459Z", - "iopub.status.busy": "2024-06-07T11:06:28.014147Z", - "iopub.status.idle": "2024-06-07T11:06:28.020596Z", - "shell.execute_reply": "2024-06-07T11:06:28.020068Z" + "iopub.execute_input": "2024-06-10T22:07:39.912859Z", + "iopub.status.busy": "2024-06-10T22:07:39.912604Z", + "iopub.status.idle": "2024-06-10T22:07:39.921454Z", + "shell.execute_reply": "2024-06-10T22:07:39.920857Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:28.022732Z", - "iopub.status.busy": "2024-06-07T11:06:28.022342Z", - "iopub.status.idle": "2024-06-07T11:06:28.028025Z", - "shell.execute_reply": "2024-06-07T11:06:28.027481Z" + "iopub.execute_input": "2024-06-10T22:07:39.923856Z", + "iopub.status.busy": "2024-06-10T22:07:39.923468Z", + "iopub.status.idle": "2024-06-10T22:07:39.930147Z", + "shell.execute_reply": "2024-06-10T22:07:39.929664Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:28.030167Z", - "iopub.status.busy": "2024-06-07T11:06:28.029724Z", - "iopub.status.idle": "2024-06-07T11:06:28.040123Z", - "shell.execute_reply": "2024-06-07T11:06:28.039611Z" + "iopub.execute_input": "2024-06-10T22:07:39.932135Z", + "iopub.status.busy": "2024-06-10T22:07:39.931957Z", + "iopub.status.idle": "2024-06-10T22:07:39.942871Z", + "shell.execute_reply": "2024-06-10T22:07:39.942373Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:28.042156Z", - "iopub.status.busy": "2024-06-07T11:06:28.041828Z", - "iopub.status.idle": "2024-06-07T11:06:28.050452Z", - "shell.execute_reply": "2024-06-07T11:06:28.049945Z" + "iopub.execute_input": "2024-06-10T22:07:39.945138Z", + "iopub.status.busy": "2024-06-10T22:07:39.944759Z", + "iopub.status.idle": "2024-06-10T22:07:39.954907Z", + "shell.execute_reply": "2024-06-10T22:07:39.954291Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:28.052446Z", - "iopub.status.busy": "2024-06-07T11:06:28.052117Z", - "iopub.status.idle": "2024-06-07T11:06:28.059035Z", - "shell.execute_reply": "2024-06-07T11:06:28.058464Z" + "iopub.execute_input": "2024-06-10T22:07:39.957381Z", + "iopub.status.busy": "2024-06-10T22:07:39.957017Z", + "iopub.status.idle": "2024-06-10T22:07:39.964750Z", + "shell.execute_reply": "2024-06-10T22:07:39.964157Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:28.060990Z", - "iopub.status.busy": "2024-06-07T11:06:28.060690Z", - "iopub.status.idle": "2024-06-07T11:06:28.070148Z", - "shell.execute_reply": "2024-06-07T11:06:28.069600Z" + "iopub.execute_input": "2024-06-10T22:07:39.967085Z", + "iopub.status.busy": "2024-06-10T22:07:39.966727Z", + "iopub.status.idle": "2024-06-10T22:07:39.977300Z", + "shell.execute_reply": "2024-06-10T22:07:39.976647Z" } }, "outputs": [ @@ -1574,10 +1574,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:28.072143Z", - "iopub.status.busy": "2024-06-07T11:06:28.071959Z", - "iopub.status.idle": "2024-06-07T11:06:28.084458Z", - "shell.execute_reply": "2024-06-07T11:06:28.084037Z" + "iopub.execute_input": "2024-06-10T22:07:39.979592Z", + "iopub.status.busy": "2024-06-10T22:07:39.979228Z", + "iopub.status.idle": "2024-06-10T22:07:39.992031Z", + "shell.execute_reply": "2024-06-10T22:07:39.991424Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index d538c6eb1..a2d9c93bf 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -728,49 +728,49 @@

    2. Fetch and normalize the Fashion-MNIST dataset

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1083,7 +1083,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1115,7 +1115,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1147,7 +1147,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1943,35 +1943,35 @@

    Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2065,35 +2065,35 @@

    Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2121,7 +2121,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 600e64acf..1809a6942 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:30.758340Z", - "iopub.status.busy": "2024-06-07T11:06:30.757860Z", - "iopub.status.idle": "2024-06-07T11:06:33.585122Z", - "shell.execute_reply": "2024-06-07T11:06:33.584581Z" + "iopub.execute_input": "2024-06-10T22:07:43.633889Z", + "iopub.status.busy": "2024-06-10T22:07:43.633463Z", + "iopub.status.idle": "2024-06-10T22:07:46.757536Z", + "shell.execute_reply": "2024-06-10T22:07:46.756845Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:33.587865Z", - "iopub.status.busy": "2024-06-07T11:06:33.587377Z", - "iopub.status.idle": "2024-06-07T11:06:33.591054Z", - "shell.execute_reply": "2024-06-07T11:06:33.590596Z" + "iopub.execute_input": "2024-06-10T22:07:46.760507Z", + "iopub.status.busy": "2024-06-10T22:07:46.759982Z", + "iopub.status.idle": "2024-06-10T22:07:46.763624Z", + "shell.execute_reply": "2024-06-10T22:07:46.763177Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:33.593249Z", - "iopub.status.busy": "2024-06-07T11:06:33.592854Z", - "iopub.status.idle": "2024-06-07T11:06:45.041397Z", - "shell.execute_reply": "2024-06-07T11:06:45.040836Z" + "iopub.execute_input": "2024-06-10T22:07:46.765769Z", + "iopub.status.busy": "2024-06-10T22:07:46.765487Z", + "iopub.status.idle": "2024-06-10T22:07:58.178753Z", + "shell.execute_reply": "2024-06-10T22:07:58.178207Z" } }, "outputs": [ @@ -172,7 +172,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fa5a141cbb7a497cb9ea5f4712fbca7d", + "model_id": "1016e065ac3a411192d4b690b6b60675", "version_major": 2, "version_minor": 0 }, @@ -186,7 +186,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d52b2edc469c42db9538fef8561e2bae", + "model_id": "d3cfdc0619ae40fe91f65a1e084132f8", "version_major": 2, "version_minor": 0 }, @@ -200,7 +200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e239c64c6b984a6a9e6f031ef10fd99f", + "model_id": "b94ccf30588e4de094111c4579b26cd1", "version_major": 2, "version_minor": 0 }, @@ -214,7 +214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9ba3c1594a041aeadc1fe1a948233c4", + "model_id": "a6d83555373447788011c674ea09f4ce", "version_major": 2, "version_minor": 0 }, @@ -228,7 +228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8f9fbf98ef344320a36155889f4c7caf", + "model_id": "51121752bffa4865a34c97a41fa78b5d", "version_major": 2, "version_minor": 0 }, @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "83e94bf816a94bcfa65afdfdbebf5c73", + "model_id": "e5c11abd1e8149f7b54dab9ba407e0af", "version_major": 2, "version_minor": 0 }, @@ -256,7 +256,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "739e13401e4749ea80073c18bc88c586", + "model_id": "9c3e112254ce4258b5a10904cc845bb9", "version_major": 2, "version_minor": 0 }, @@ -270,7 +270,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c979d1ac522b4ee79ed056924fb17ac7", + "model_id": "6185323bd5a94253802eb1811a4dd598", "version_major": 2, "version_minor": 0 }, @@ -312,10 +312,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:45.043949Z", - "iopub.status.busy": "2024-06-07T11:06:45.043510Z", - "iopub.status.idle": "2024-06-07T11:06:45.047760Z", - "shell.execute_reply": "2024-06-07T11:06:45.047317Z" + "iopub.execute_input": "2024-06-10T22:07:58.181324Z", + "iopub.status.busy": "2024-06-10T22:07:58.180997Z", + "iopub.status.idle": "2024-06-10T22:07:58.185272Z", + "shell.execute_reply": "2024-06-10T22:07:58.184775Z" } }, "outputs": [ @@ -340,17 +340,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:45.049663Z", - "iopub.status.busy": "2024-06-07T11:06:45.049478Z", - "iopub.status.idle": "2024-06-07T11:06:56.346941Z", - "shell.execute_reply": "2024-06-07T11:06:56.346419Z" + "iopub.execute_input": "2024-06-10T22:07:58.187463Z", + "iopub.status.busy": "2024-06-10T22:07:58.187167Z", + "iopub.status.idle": "2024-06-10T22:08:09.863020Z", + "shell.execute_reply": "2024-06-10T22:08:09.862295Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb109c8e518240d08b7f6615fbda4212", + "model_id": "1ef74a6e8d60441586e919d89b9b080f", "version_major": 2, "version_minor": 0 }, @@ -388,10 +388,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:06:56.349547Z", - "iopub.status.busy": "2024-06-07T11:06:56.349172Z", - "iopub.status.idle": "2024-06-07T11:07:14.581122Z", - "shell.execute_reply": "2024-06-07T11:07:14.580477Z" + "iopub.execute_input": "2024-06-10T22:08:09.865788Z", + "iopub.status.busy": "2024-06-10T22:08:09.865419Z", + "iopub.status.idle": "2024-06-10T22:08:28.165329Z", + "shell.execute_reply": "2024-06-10T22:08:28.164663Z" } }, "outputs": [], @@ -424,10 +424,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:07:14.583978Z", - "iopub.status.busy": "2024-06-07T11:07:14.583775Z", - "iopub.status.idle": "2024-06-07T11:07:14.588911Z", - "shell.execute_reply": "2024-06-07T11:07:14.588401Z" + "iopub.execute_input": "2024-06-10T22:08:28.168368Z", + "iopub.status.busy": "2024-06-10T22:08:28.167934Z", + "iopub.status.idle": "2024-06-10T22:08:28.173838Z", + "shell.execute_reply": "2024-06-10T22:08:28.173345Z" } }, "outputs": [], @@ -465,10 +465,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:07:14.590851Z", - "iopub.status.busy": "2024-06-07T11:07:14.590650Z", - "iopub.status.idle": "2024-06-07T11:07:14.594982Z", - "shell.execute_reply": "2024-06-07T11:07:14.594562Z" + "iopub.execute_input": "2024-06-10T22:08:28.176060Z", + "iopub.status.busy": "2024-06-10T22:08:28.175691Z", + "iopub.status.idle": "2024-06-10T22:08:28.180540Z", + "shell.execute_reply": "2024-06-10T22:08:28.180052Z" }, "nbsphinx": "hidden" }, @@ -605,10 +605,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:07:14.597224Z", - "iopub.status.busy": "2024-06-07T11:07:14.596891Z", - "iopub.status.idle": "2024-06-07T11:07:14.606084Z", - "shell.execute_reply": "2024-06-07T11:07:14.605510Z" + "iopub.execute_input": "2024-06-10T22:08:28.182777Z", + "iopub.status.busy": "2024-06-10T22:08:28.182587Z", + "iopub.status.idle": "2024-06-10T22:08:28.192136Z", + "shell.execute_reply": "2024-06-10T22:08:28.191612Z" }, "nbsphinx": "hidden" }, @@ -733,10 +733,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:07:14.608304Z", - "iopub.status.busy": "2024-06-07T11:07:14.607957Z", - "iopub.status.idle": "2024-06-07T11:07:14.635167Z", - "shell.execute_reply": "2024-06-07T11:07:14.634653Z" + "iopub.execute_input": "2024-06-10T22:08:28.194445Z", + "iopub.status.busy": "2024-06-10T22:08:28.194110Z", + "iopub.status.idle": "2024-06-10T22:08:28.221700Z", + "shell.execute_reply": "2024-06-10T22:08:28.221160Z" } }, "outputs": [], @@ -773,10 +773,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:07:14.637912Z", - "iopub.status.busy": "2024-06-07T11:07:14.637441Z", - "iopub.status.idle": "2024-06-07T11:07:46.946678Z", - "shell.execute_reply": "2024-06-07T11:07:46.946098Z" + "iopub.execute_input": "2024-06-10T22:08:28.224396Z", + "iopub.status.busy": "2024-06-10T22:08:28.224042Z", + "iopub.status.idle": "2024-06-10T22:09:02.838514Z", + "shell.execute_reply": "2024-06-10T22:09:02.837743Z" } }, "outputs": [ @@ -792,21 +792,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.814\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.135\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.566\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.867\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3047bf1ef4f642c0b446195b237b9bd9", + "model_id": "2c1a3f6bd502450cae1a0e177f23abec", "version_major": 2, "version_minor": 0 }, @@ -827,7 +827,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3ae69a6c0c42416f8f9afd45f926f52a", + "model_id": "6a7c1c7802034af3a31fa7c97aab7fb0", "version_major": 2, "version_minor": 0 }, @@ -850,21 +850,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.778\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.153\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.572\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.898\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f78b9fa3b1fb4c3cb04ec76372a5882f", + "model_id": "bedf8efd352249e79b143c83d4969b5c", "version_major": 2, "version_minor": 0 }, @@ -885,7 +885,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8116105672bb4676bf44bc7f44316c45", + "model_id": "8098e2606cde4b3a8bf890ad2fe989ae", "version_major": 2, "version_minor": 0 }, @@ -908,21 +908,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.810\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.049\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.455\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 5.066\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd514e64271d459cb1648731504a4790", + "model_id": "d38f99d3c855485f9137c5c82da7d017", "version_major": 2, "version_minor": 0 }, @@ -943,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fdcd4ba820d649c5b36da888c36ed6b4", + "model_id": "b771c32cb97b4d5e87f6eb83215903d1", "version_major": 2, "version_minor": 0 }, @@ -1022,10 +1022,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:07:46.949100Z", - "iopub.status.busy": "2024-06-07T11:07:46.948856Z", - "iopub.status.idle": "2024-06-07T11:07:46.962767Z", - "shell.execute_reply": "2024-06-07T11:07:46.962223Z" + "iopub.execute_input": "2024-06-10T22:09:02.841758Z", + "iopub.status.busy": "2024-06-10T22:09:02.841273Z", + "iopub.status.idle": "2024-06-10T22:09:02.857116Z", + "shell.execute_reply": "2024-06-10T22:09:02.856421Z" } }, "outputs": [], @@ -1050,10 +1050,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:07:46.964825Z", - "iopub.status.busy": "2024-06-07T11:07:46.964495Z", - "iopub.status.idle": "2024-06-07T11:07:47.431917Z", - "shell.execute_reply": "2024-06-07T11:07:47.431277Z" + "iopub.execute_input": "2024-06-10T22:09:02.860129Z", + "iopub.status.busy": "2024-06-10T22:09:02.859576Z", + "iopub.status.idle": "2024-06-10T22:09:03.430871Z", + "shell.execute_reply": "2024-06-10T22:09:03.430358Z" } }, "outputs": [], @@ -1073,10 +1073,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:07:47.434511Z", - "iopub.status.busy": "2024-06-07T11:07:47.434321Z", - "iopub.status.idle": "2024-06-07T11:11:13.014970Z", - "shell.execute_reply": "2024-06-07T11:11:13.014388Z" + "iopub.execute_input": "2024-06-10T22:09:03.433503Z", + "iopub.status.busy": "2024-06-10T22:09:03.433130Z", + "iopub.status.idle": "2024-06-10T22:12:33.030538Z", + "shell.execute_reply": "2024-06-10T22:12:33.029989Z" } }, "outputs": [ @@ -1124,7 +1124,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ec8379fd121455ea52939a0f025ead3", + "model_id": "112bb000b7c84171b464826167919406", "version_major": 2, "version_minor": 0 }, @@ -1163,10 +1163,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:13.017493Z", - "iopub.status.busy": "2024-06-07T11:11:13.017105Z", - "iopub.status.idle": "2024-06-07T11:11:13.473528Z", - "shell.execute_reply": "2024-06-07T11:11:13.472960Z" + "iopub.execute_input": "2024-06-10T22:12:33.033153Z", + "iopub.status.busy": "2024-06-10T22:12:33.032570Z", + "iopub.status.idle": "2024-06-10T22:12:33.487759Z", + "shell.execute_reply": "2024-06-10T22:12:33.487222Z" } }, "outputs": [ @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:13.476472Z", - "iopub.status.busy": "2024-06-07T11:11:13.475934Z", - "iopub.status.idle": "2024-06-07T11:11:13.538611Z", - "shell.execute_reply": "2024-06-07T11:11:13.537974Z" + "iopub.execute_input": "2024-06-10T22:12:33.490576Z", + "iopub.status.busy": "2024-06-10T22:12:33.490081Z", + "iopub.status.idle": "2024-06-10T22:12:33.552939Z", + "shell.execute_reply": "2024-06-10T22:12:33.552325Z" } }, "outputs": [ @@ -1414,10 +1414,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:13.540778Z", - "iopub.status.busy": "2024-06-07T11:11:13.540592Z", - "iopub.status.idle": "2024-06-07T11:11:13.549196Z", - "shell.execute_reply": "2024-06-07T11:11:13.548765Z" + "iopub.execute_input": "2024-06-10T22:12:33.555364Z", + "iopub.status.busy": "2024-06-10T22:12:33.555027Z", + "iopub.status.idle": "2024-06-10T22:12:33.563476Z", + "shell.execute_reply": "2024-06-10T22:12:33.563051Z" } }, "outputs": [ @@ -1547,10 +1547,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:13.551227Z", - "iopub.status.busy": "2024-06-07T11:11:13.551052Z", - "iopub.status.idle": "2024-06-07T11:11:13.555790Z", - "shell.execute_reply": "2024-06-07T11:11:13.555358Z" + "iopub.execute_input": "2024-06-10T22:12:33.565458Z", + "iopub.status.busy": "2024-06-10T22:12:33.565280Z", + "iopub.status.idle": "2024-06-10T22:12:33.569893Z", + "shell.execute_reply": "2024-06-10T22:12:33.569445Z" }, "nbsphinx": "hidden" }, @@ -1596,10 +1596,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:13.557674Z", - "iopub.status.busy": "2024-06-07T11:11:13.557501Z", - "iopub.status.idle": "2024-06-07T11:11:14.086438Z", - "shell.execute_reply": "2024-06-07T11:11:14.085874Z" + "iopub.execute_input": "2024-06-10T22:12:33.571833Z", + "iopub.status.busy": "2024-06-10T22:12:33.571510Z", + "iopub.status.idle": "2024-06-10T22:12:34.076110Z", + "shell.execute_reply": "2024-06-10T22:12:34.075548Z" } }, "outputs": [ @@ -1634,10 +1634,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:14.088623Z", - "iopub.status.busy": "2024-06-07T11:11:14.088430Z", - "iopub.status.idle": "2024-06-07T11:11:14.097118Z", - "shell.execute_reply": "2024-06-07T11:11:14.096568Z" + "iopub.execute_input": "2024-06-10T22:12:34.078418Z", + "iopub.status.busy": "2024-06-10T22:12:34.078232Z", + "iopub.status.idle": "2024-06-10T22:12:34.086784Z", + "shell.execute_reply": "2024-06-10T22:12:34.086252Z" } }, "outputs": [ @@ -1804,10 +1804,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:14.099412Z", - "iopub.status.busy": "2024-06-07T11:11:14.099093Z", - "iopub.status.idle": "2024-06-07T11:11:14.106372Z", - "shell.execute_reply": "2024-06-07T11:11:14.105946Z" + "iopub.execute_input": "2024-06-10T22:12:34.088843Z", + "iopub.status.busy": "2024-06-10T22:12:34.088663Z", + "iopub.status.idle": "2024-06-10T22:12:34.095574Z", + "shell.execute_reply": "2024-06-10T22:12:34.095152Z" }, "nbsphinx": "hidden" }, @@ -1883,10 +1883,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:14.108413Z", - "iopub.status.busy": "2024-06-07T11:11:14.108026Z", - "iopub.status.idle": "2024-06-07T11:11:14.580209Z", - "shell.execute_reply": "2024-06-07T11:11:14.579627Z" + "iopub.execute_input": "2024-06-10T22:12:34.097559Z", + "iopub.status.busy": "2024-06-10T22:12:34.097246Z", + "iopub.status.idle": "2024-06-10T22:12:34.571754Z", + "shell.execute_reply": "2024-06-10T22:12:34.571171Z" } }, "outputs": [ @@ -1923,10 +1923,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:14.582898Z", - "iopub.status.busy": "2024-06-07T11:11:14.582517Z", - "iopub.status.idle": "2024-06-07T11:11:14.598466Z", - "shell.execute_reply": "2024-06-07T11:11:14.597983Z" + "iopub.execute_input": "2024-06-10T22:12:34.574393Z", + "iopub.status.busy": "2024-06-10T22:12:34.574047Z", + "iopub.status.idle": "2024-06-10T22:12:34.590131Z", + "shell.execute_reply": "2024-06-10T22:12:34.589551Z" } }, "outputs": [ @@ -2083,10 +2083,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:14.600712Z", - "iopub.status.busy": "2024-06-07T11:11:14.600383Z", - "iopub.status.idle": "2024-06-07T11:11:14.605769Z", - "shell.execute_reply": "2024-06-07T11:11:14.605333Z" + "iopub.execute_input": "2024-06-10T22:12:34.592454Z", + "iopub.status.busy": "2024-06-10T22:12:34.592110Z", + "iopub.status.idle": "2024-06-10T22:12:34.597627Z", + "shell.execute_reply": "2024-06-10T22:12:34.597200Z" }, "nbsphinx": "hidden" }, @@ -2131,10 +2131,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:14.607755Z", - "iopub.status.busy": "2024-06-07T11:11:14.607439Z", - "iopub.status.idle": "2024-06-07T11:11:15.078349Z", - "shell.execute_reply": "2024-06-07T11:11:15.077197Z" + "iopub.execute_input": "2024-06-10T22:12:34.599613Z", + "iopub.status.busy": "2024-06-10T22:12:34.599286Z", + "iopub.status.idle": "2024-06-10T22:12:35.061566Z", + "shell.execute_reply": "2024-06-10T22:12:35.060762Z" } }, "outputs": [ @@ -2216,10 +2216,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.081106Z", - "iopub.status.busy": "2024-06-07T11:11:15.080874Z", - "iopub.status.idle": "2024-06-07T11:11:15.091134Z", - "shell.execute_reply": "2024-06-07T11:11:15.090511Z" + "iopub.execute_input": "2024-06-10T22:12:35.064247Z", + "iopub.status.busy": "2024-06-10T22:12:35.064046Z", + "iopub.status.idle": "2024-06-10T22:12:35.074196Z", + "shell.execute_reply": "2024-06-10T22:12:35.073654Z" } }, "outputs": [ @@ -2244,47 +2244,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2347,10 +2347,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.094115Z", - "iopub.status.busy": "2024-06-07T11:11:15.093604Z", - "iopub.status.idle": "2024-06-07T11:11:15.101488Z", - "shell.execute_reply": "2024-06-07T11:11:15.100867Z" + "iopub.execute_input": "2024-06-10T22:12:35.076628Z", + "iopub.status.busy": "2024-06-10T22:12:35.076434Z", + "iopub.status.idle": "2024-06-10T22:12:35.082165Z", + "shell.execute_reply": "2024-06-10T22:12:35.081601Z" }, "nbsphinx": "hidden" }, @@ -2387,10 +2387,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.103964Z", - "iopub.status.busy": "2024-06-07T11:11:15.103743Z", - "iopub.status.idle": "2024-06-07T11:11:15.616236Z", - "shell.execute_reply": "2024-06-07T11:11:15.615605Z" + "iopub.execute_input": "2024-06-10T22:12:35.084609Z", + "iopub.status.busy": "2024-06-10T22:12:35.084418Z", + "iopub.status.idle": "2024-06-10T22:12:35.587131Z", + "shell.execute_reply": "2024-06-10T22:12:35.586528Z" } }, "outputs": [ @@ -2432,10 +2432,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.618904Z", - "iopub.status.busy": "2024-06-07T11:11:15.618444Z", - "iopub.status.idle": "2024-06-07T11:11:15.627052Z", - "shell.execute_reply": "2024-06-07T11:11:15.626512Z" + "iopub.execute_input": "2024-06-10T22:12:35.589248Z", + "iopub.status.busy": "2024-06-10T22:12:35.589068Z", + "iopub.status.idle": "2024-06-10T22:12:35.596888Z", + "shell.execute_reply": "2024-06-10T22:12:35.596452Z" } }, "outputs": [ @@ -2460,47 +2460,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "
    " ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2521,10 +2521,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.629232Z", - "iopub.status.busy": "2024-06-07T11:11:15.628898Z", - "iopub.status.idle": "2024-06-07T11:11:15.839845Z", - "shell.execute_reply": "2024-06-07T11:11:15.839225Z" + "iopub.execute_input": "2024-06-10T22:12:35.598779Z", + "iopub.status.busy": "2024-06-10T22:12:35.598607Z", + "iopub.status.idle": "2024-06-10T22:12:35.794283Z", + "shell.execute_reply": "2024-06-10T22:12:35.793683Z" } }, "outputs": [ @@ -2564,10 +2564,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:15.842424Z", - "iopub.status.busy": "2024-06-07T11:11:15.842031Z", - "iopub.status.idle": "2024-06-07T11:11:15.847042Z", - "shell.execute_reply": "2024-06-07T11:11:15.846549Z" + "iopub.execute_input": "2024-06-10T22:12:35.796620Z", + "iopub.status.busy": "2024-06-10T22:12:35.796429Z", + "iopub.status.idle": "2024-06-10T22:12:35.801616Z", + "shell.execute_reply": "2024-06-10T22:12:35.801032Z" }, "nbsphinx": "hidden" }, @@ -2604,146 +2604,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "081ccbc2b32640aa9071b3cb410b2efc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "09f1561fe68d49139a432a57edc8ee30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0d1342e295364183854efa5f4e3c3100": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af9ec09323024cfdaf7f76706c86d24b", - "placeholder": "​", - "style": "IPY_MODEL_ba6bdd30d90446fd815de921b624be4b", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "0e706842735c4bd8b0b5cb56dd9d07bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0e71560598a94d948cd9827e5731bd9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0e720c4f0e2f44bbb6afccf6a95bd4a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b356d094c9e04e26b6c291b5ac206c2c", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ddf5b630d649454590eb5fe80b825456", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "0f9e499f418e4b55ba078d929558a2a0": { + "00e86caf713e4c8e85f8b10d9020485f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "1337f6bbca804a179252f35069ee5209": { + "0131d7f70c724bc6b0de8cfc0709aeed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2796,60 +2673,25 @@ "width": null } }, - "144528e76cdf49f5ab9e9a3a3e1fdeed": { - "model_module": "@jupyter-widgets/base", + "01afb1d5b03540d1a0bb38f1e4ff4302": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "162dd636570145ad9db03ff31cd8220d": { + "08eafc5235aa4e8a88bc57e468511413": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2902,60 +2744,30 @@ "width": null } }, - "16ac0e28e1fe4d649ed964b67b7deaf4": { - "model_module": "@jupyter-widgets/base", + "0a8065b4d43b446b858b0637f26295fe": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f05b6ff2a6a4f07ad9f1fe2bf2dbe8f", + "placeholder": "​", + "style": "IPY_MODEL_01afb1d5b03540d1a0bb38f1e4ff4302", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.10it/s]" } }, - "17846cd9ac244489ad70bb21d524ae9a": { + "0f05b6ff2a6a4f07ad9f1fe2bf2dbe8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3008,7 +2820,7 @@ "width": null } }, - "1a16187b882344098c1441a7b3196c3d": { + "0f53cb4005184862ac41c967880900e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3023,68 +2835,122 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29bda0bd6ccd436da8ad5a3380f43881", + "layout": "IPY_MODEL_a5c8845f43234aa3924694c20a6141ac", "placeholder": "​", - "style": "IPY_MODEL_b857d8132f4b407c829e0d1a9faf4019", + "style": "IPY_MODEL_3417d3212b0949ba8793984784680997", "tabbable": null, "tooltip": null, - "value": "Downloading builder script: 100%" + "value": "100%" } }, - "1afdfc591dbb4fe0a48e66fc01379e3d": { - "model_module": "@jupyter-widgets/base", + "1016e065ac3a411192d4b690b6b60675": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_45ff8082bb3b4731849bbfcd4b5d13ba", + "IPY_MODEL_742ab0d9c163425d859f3ad6725de409", + "IPY_MODEL_6e27a4d18cb54094a65ade28a97a3958" + ], + "layout": "IPY_MODEL_39a120c020ab4b4fac07540b1109cdad", + "tabbable": null, + "tooltip": null + } + }, + "112bb000b7c84171b464826167919406": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_882ff61647044685b7b099bc1489e174", + "IPY_MODEL_1d4a06722b4c4e66be2b3502697b5bd2", + "IPY_MODEL_f56de69942734156835abe802d7f0113" + ], + "layout": "IPY_MODEL_6fc384b103264005b0c774c71ae8f6ac", + "tabbable": null, + "tooltip": null + } + }, + "12d35bfe4c7547b39ec7f75032e9d8fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "130d2c00c2e14a208aeef3b9ef5a2a90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14912cba688f4745b2895c669682b655", + "placeholder": "​", + "style": "IPY_MODEL_ddeefeb08a334e3aafd73da3746dd191", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 786kB/s]" + } + }, + "1330caa3497d4cf3b266a73fb356d564": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1b0ee35eadb74e818ac2522f934435f8": { + "144c0b83b2964db49014d44941d99d42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3137,30 +3003,7 @@ "width": null } }, - "1cbaea221fda4ab6bb8003832a877330": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_312885f84b704adea9ce0505ae62ec25", - "placeholder": "​", - "style": "IPY_MODEL_62b7219ede41458189eed4b18b6a7ac2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "1e9ac1dfe69b4b4683ebe606f16198e8": { + "14912cba688f4745b2895c669682b655": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3213,7 +3056,7 @@ "width": null } }, - "1fc59bb26f3f420d85a2954c6f460442": { + "14f99bd1b2fd43b29e2c777395d4adbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3266,23 +3109,25 @@ "width": null } }, - "21fecef548b24fdc9378fb7fa9473372": { + "185d99ee15e7447b97124f77a75f7fcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "25568ca6ed9d4c9294ab2d66d49db036": { + "1d4a06722b4c4e66be2b3502697b5bd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3298,17 +3143,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b478aac9907246bb836a183729db1e49", + "layout": "IPY_MODEL_7d6188687ae940908f66dd1cb3848e0b", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3237a4d2e09f4b45af89d91446ad0470", + "style": "IPY_MODEL_9166e263b79a4fef94c0087261ed466d", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "279ac211a5da4a6eb800cb3840aabf60": { + "1df940a0538c4722837844d07b87d356": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3324,70 +3169,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_328b9546bc934fde9a0e014badd4d087", + "layout": "IPY_MODEL_5d8db53b8809469ba7382a57ee85b5ee", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ae2e838d2d404bf5a7b18a6c12a4bea5", + "style": "IPY_MODEL_c7dfbeae351c4acbaa2fd1fb38431e92", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "29bda0bd6ccd436da8ad5a3380f43881": { - "model_module": "@jupyter-widgets/base", + "1ef74a6e8d60441586e919d89b9b080f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_565eaead041544d09cf2bdbe886881c9", + "IPY_MODEL_b199f7fc9989426db35d3a525ec77964", + "IPY_MODEL_626b1cd4385045d7a359a06ff456f0a6" + ], + "layout": "IPY_MODEL_78d7370878c14c3b9eb043742bbc0a5f", + "tabbable": null, + "tooltip": null } }, - "2a385a90d5af458a836d1a6b7f1fe250": { + "1f0f575d555344d192d3f7f87bc46b5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3440,41 +3256,33 @@ "width": null } }, - "2a864ae7cdfd491996f68b73ddcab088": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b7ee86755e04d9785b9fc1bbb22ab86": { + "258e31748b1545eb955ce4355f95b4d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c8a4a12f5c74244a1c4d2a2d94812d1", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dae6c1b5b63b4ab2aa8c276d40a2b2f9", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "2baa91d8c929410280f9da666b599ec2": { + "25ad979948d047d1bd494a743160519d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3489,38 +3297,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae927de9c84145cc9370bcf378f1fd79", + "layout": "IPY_MODEL_cb5cea43fd014855a293b359f20fbe1c", "placeholder": "​", - "style": "IPY_MODEL_cddfe3352db04e188c79fd06e93a2c67", + "style": "IPY_MODEL_499ec560a2ac4a5f9e891f2ac01d0fde", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6257.45 examples/s]" + "value": "Downloading data: 100%" } }, - "2f4ccbea82fe4800828d02758b490dee": { + "25f35da97d504755af02397c62ea02cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_79cb8c15a4274faea6fd3afa4292ed5f", - "placeholder": "​", - "style": "IPY_MODEL_54c75f5a691f4473b1e6a2a0c3acf57f", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2f56601e334c44a58ee5736380eafa21": { + "28c1c99d5c704e00a9bcfe8912dea621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3538,7 +3339,54 @@ "text_color": null } }, - "301fd2240e664fecb89784733e5c8451": { + "2c06b7667eb543b09ac4219c83a6e2e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbc56091c4b84a1a89f1c2c6c2ffbe31", + "placeholder": "​", + "style": "IPY_MODEL_57323d1d16ac4b95b3529db7306498fb", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1197.00it/s]" + } + }, + "2c1a3f6bd502450cae1a0e177f23abec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_96fd99dbd4184afbbfb83bfa6860326d", + "IPY_MODEL_e9a1575e39f04009b43d25b01fd06d48", + "IPY_MODEL_98d540816d184dd199abef1df5492866" + ], + "layout": "IPY_MODEL_4d45f2a9daaa4722a6ed9157793afcfe", + "tabbable": null, + "tooltip": null + } + }, + "2c8a4a12f5c74244a1c4d2a2d94812d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3591,31 +3439,30 @@ "width": null } }, - "3047bf1ef4f642c0b446195b237b9bd9": { + "2e6e8fc0d4e647109e70f747ce1e566a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_953f907157844a80971a65011643552e", - "IPY_MODEL_89aec6bbef64449ebbaafd817d159a90", - "IPY_MODEL_b0f0de7f15e741c7be64c44c5053df66" - ], - "layout": "IPY_MODEL_162dd636570145ad9db03ff31cd8220d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c5417a03daa4a8e9f039c1a6cca0c1d", + "placeholder": "​", + "style": "IPY_MODEL_ae417815c1ed4318aea2e623fc6a1305", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading readme: 100%" } }, - "305729a42c7440479e3a1cb93e66149c": { + "2ed4048a35d94682a60e27c1e99ea1ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3633,30 +3480,7 @@ "text_color": null } }, - "306a732d2b23408a94b4ed133ee6fe9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1337f6bbca804a179252f35069ee5209", - "placeholder": "​", - "style": "IPY_MODEL_09f1561fe68d49139a432a57edc8ee30", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "31117915a25f4460aef9b5d8e93ba5cb": { + "2f61940a472e4f69926a7290dc73b340": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3709,7 +3533,23 @@ "width": null } }, - "312885f84b704adea9ce0505ae62ec25": { + "2fd3015c5af84a7194fc96d2e1094d6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "322c025022564d60bb82fc9860162300": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3762,23 +3602,25 @@ "width": null } }, - "3237a4d2e09f4b45af89d91446ad0470": { + "3417d3212b0949ba8793984784680997": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "328b9546bc934fde9a0e014badd4d087": { + "37676f232b724a89a4985d49ab622156": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3831,7 +3673,7 @@ "width": null } }, - "34e4bcd63f7544748a8eac6271b267d9": { + "3872cd4106aa4977bf38ed1e9c4b172c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3884,7 +3726,7 @@ "width": null } }, - "361da7548e9b401e8f93368069be91e8": { + "39498c6d7cac431daa5d657cd2b92944": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3899,15 +3741,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a58330e393734496a2dba1ef4cf94dc5", + "layout": "IPY_MODEL_9ea50138ca684556ab20a0c41dfa514e", "placeholder": "​", - "style": "IPY_MODEL_87c4e3b0f1344f12bf35885881681266", + "style": "IPY_MODEL_95e1542cee3f4092893d88ea66159b61", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/60000 [00:07<00:00, 8619.01 examples/s]" } }, - "366f54387ff54d158576384978e37ba3": { + "39a120c020ab4b4fac07540b1109cdad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3960,7 +3802,7 @@ "width": null } }, - "378a6ed9b84f4202bbc970db72a4988d": { + "3a5f5efc715b4a39ab8aca4116106e68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4013,33 +3855,23 @@ "width": null } }, - "38c3bcc0b1af44bfa6d44057aec8b9b6": { + "3c3141f8e8a84afa8287305de6569b0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eab658dbfeb74ea183663ce20b0b9daf", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de215806c1cf4cbd8825765915dbd856", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3949f08b9c364d0aa1cdeb1865b0e5ab": { + "3cd0e82ccb364e1dbe86bf277cb571e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4092,47 +3924,60 @@ "width": null } }, - "3ae69a6c0c42416f8f9afd45f926f52a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ded622138d049f1b06e565207634e8a", - "IPY_MODEL_279ac211a5da4a6eb800cb3840aabf60", - "IPY_MODEL_99579d85a7e64cfe80464358731b7546" - ], - "layout": "IPY_MODEL_31117915a25f4460aef9b5d8e93ba5cb", - "tabbable": null, - "tooltip": null - } - }, - "3bfb08851c4c4442b74576766ed5b1c5": { - "model_module": "@jupyter-widgets/controls", + "3d5db6c2e6f347ccb47db129f24f7b03": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3cba828cc9484c378da64c180946ee0f": { + "3dad1275856040619d7851b2f8a66206": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4185,30 +4030,7 @@ "width": null } }, - "3d02d81630604450adccb876dfce8fd6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_970633ef8edf47c6ae8465913784559f", - "placeholder": "​", - "style": "IPY_MODEL_e41a1a61b92f44f68597a5705d7f8108", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8745.08 examples/s]" - } - }, - "3eb89c0437944fddb5716441c7c4b069": { + "3e7d861b775f469b8558cb04a87d7036": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4223,73 +4045,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3cba828cc9484c378da64c180946ee0f", + "layout": "IPY_MODEL_4b0f654028474242926a7ec7641f2196", "placeholder": "​", - "style": "IPY_MODEL_5b8cd062b8974026a5aeda6241b8aaf7", + "style": "IPY_MODEL_b2f1d5404e7748ab8e69d04cf6b3d849", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.02it/s]" + "value": "Generating train split: 100%" } }, - "42bc2e2c0cdb4946903db4de34da7160": { - "model_module": "@jupyter-widgets/controls", + "3ea99cca5ae44f25a1c0abec4b47e02f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "49a18a62d5b84715a7d42233f120be5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8fd89e16ca33414d942c5d3078c2dd6a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f7890d347bc64340ba8a5ca6f1791cdc", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "49f9c42258fa4a82b20faf49a1ba046f": { + "418bf771c9e14e74a700f29bcc43b325": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4a0ad9e3cf224a82af25df8d8bb06fac": { + "41e709d95a73456dbd20844b2e092dc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4307,7 +4142,23 @@ "text_color": null } }, - "4dd1d221b26646c2a5203544ba7356b2": { + "44229470ecb843b4b3da52805d85cae0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "453808ec2bb844b98d1e90b4a23da1a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4323,17 +4174,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82d0b721e9da411a8344eeac3c70e42e", - "max": 60000.0, + "layout": "IPY_MODEL_322c025022564d60bb82fc9860162300", + "max": 4422102.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_49f9c42258fa4a82b20faf49a1ba046f", + "style": "IPY_MODEL_81eeb67259bd4b7382905e90e402c667", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 4422102.0 + } + }, + "45ff8082bb3b4731849bbfcd4b5d13ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8141c7c389a4284b23b53662e00f324", + "placeholder": "​", + "style": "IPY_MODEL_e559214db03240988f70fd9f03879199", + "tabbable": null, + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "4ddad7383a8b4c9bb3a2d548f4368d1e": { + "499ec560a2ac4a5f9e891f2ac01d0fde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4351,7 +4225,7 @@ "text_color": null } }, - "4fa558077cd549b58369d59fa11f84ec": { + "4b0f654028474242926a7ec7641f2196": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4404,7 +4278,7 @@ "width": null } }, - "5013335dea8a48ecaec5d4633333f9f3": { + "4b4bb18d9215426ba65edde95f3d1f38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4457,7 +4331,7 @@ "width": null } }, - "510ecab1b73540b9863e31dc8f9e62bc": { + "4d45f2a9daaa4722a6ed9157793afcfe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4510,7 +4384,54 @@ "width": null } }, - "51eb1fbbd7a9442d9fae89af465bbb0e": { + "50cb6a1cb9bd4d90be453578ef585f05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a5f5efc715b4a39ab8aca4116106e68", + "placeholder": "​", + "style": "IPY_MODEL_9cd724f444fd483c9a35c8ab3c42c9f7", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 98.9MB/s]" + } + }, + "51121752bffa4865a34c97a41fa78b5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca2d7e23ead341db97151abfdced2d28", + "IPY_MODEL_453808ec2bb844b98d1e90b4a23da1a0", + "IPY_MODEL_50cb6a1cb9bd4d90be453578ef585f05" + ], + "layout": "IPY_MODEL_b537bccb4a6043c5ba31dae9e76058ec", + "tabbable": null, + "tooltip": null + } + }, + "55131f31e0cd4b76913c6590148090e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4563,25 +4484,7 @@ "width": null } }, - "54c75f5a691f4473b1e6a2a0c3acf57f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "56623545144f421782e9850961bfbdd6": { + "55531f258179477c861b4d98e82a94a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4634,7 +4537,7 @@ "width": null } }, - "592cd55ccf6d44879639b9d08653bd9d": { + "55efe5322a2c4f729609a9383b70acae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4652,7 +4555,7 @@ "text_color": null } }, - "5aab3b1bf8944d248e86b61a67249aad": { + "565eaead041544d09cf2bdbe886881c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4667,15 +4570,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_144528e76cdf49f5ab9e9a3a3e1fdeed", + "layout": "IPY_MODEL_ae761d6e2f4a4a44b9184c74ea028e9b", "placeholder": "​", - "style": "IPY_MODEL_9c23c07cf08f45e99661325f9e5438a0", + "style": "IPY_MODEL_b2669e7e40514123acce864dc3cede00", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.33it/s]" + "value": "Map (num_proc=4): 100%" } }, - "5b8cd062b8974026a5aeda6241b8aaf7": { + "57323d1d16ac4b95b3529db7306498fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4693,69 +4596,7 @@ "text_color": null } }, - "5ca1c0c814d14be09b5ad6e1cbbd5717": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5ded622138d049f1b06e565207634e8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_34e4bcd63f7544748a8eac6271b267d9", - "placeholder": "​", - "style": "IPY_MODEL_305729a42c7440479e3a1cb93e66149c", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5e1c001eb2e04cb58cf6ffbf874b9455": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1fc59bb26f3f420d85a2954c6f460442", - "placeholder": "​", - "style": "IPY_MODEL_ddc790a8814c4c51a574edf90e4097b6", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "5ebca19b30c84c44bfa3dde11c625eb8": { + "59310f9e486f4494be349b5d7324f960": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4808,7 +4649,7 @@ "width": null } }, - "608c9566c4844ee896cd7a5567ab365e": { + "5aa964409b28401294e094d65524332f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4823,51 +4664,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e7ce547ac3a842e6b85956b5d11217f6", + "layout": "IPY_MODEL_edbef9253ccc4667a6417afcfa1a07e9", "placeholder": "​", - "style": "IPY_MODEL_0e706842735c4bd8b0b5cb56dd9d07bd", + "style": "IPY_MODEL_41e709d95a73456dbd20844b2e092dc5", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 612kB/s]" - } - }, - "62b7219ede41458189eed4b18b6a7ac2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "63e0d03dee384c5680d424fdf3e46b4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 29.5k/29.5k [00:00<00:00, 3.90MB/s]" } }, - "63ea3298ca7b4a78ad32a2b048bf8e66": { + "5c85f9aa0f8940ac91a9d72f781ac185": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4920,7 +4725,7 @@ "width": null } }, - "649c9279288044c09188b2f0758d2aad": { + "5d8db53b8809469ba7382a57ee85b5ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4973,42 +4778,16 @@ "width": null } }, - "655ce078853b4b97b47d5ba2e442723b": { - "model_module": "@jupyter-widgets/controls", + "5fa3cc2064a84439932cf351c06320aa": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa7b3fb29ef24fb2b120774a5fc8aef7", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eff875dcc30c4107b992f5a5634c8d75", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "67180d76ce044924b795e6bbbe8fa608": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -5052,60 +4831,30 @@ "width": null } }, - "67417eaea71c4f25bc897cea96a6dcc7": { - "model_module": "@jupyter-widgets/base", + "5fb0179822b44f61a78693ddb4874d11": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f0f575d555344d192d3f7f87bc46b5f", + "placeholder": "​", + "style": "IPY_MODEL_185d99ee15e7447b97124f77a75f7fcb", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "6846595e53834db69e602ddbd4cc0e67": { + "5ff408675d994ba98dd9dc472810a00b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5121,17 +4870,160 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bb917caff2424d47a94540ebe2b8cb27", + "layout": "IPY_MODEL_37676f232b724a89a4985d49ab622156", "max": 5148.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f69620da0f43491594cb2cdb11ac484d", + "style": "IPY_MODEL_2fd3015c5af84a7194fc96d2e1094d6f", "tabbable": null, "tooltip": null, "value": 5148.0 } }, - "6848eabddcaf4dfa96378e638ad748ba": { + "6021a4f2ce39498b8ad8e2caaf1b90c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6185323bd5a94253802eb1811a4dd598": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_80445c16990e4046a63fc7a770d93c47", + "IPY_MODEL_74487bb6f4cf475287746e1aae3c3ed3", + "IPY_MODEL_85f01eec0a474dbbb472b69e669e43b2" + ], + "layout": "IPY_MODEL_ce53bbdacb7a4ee8b588bbbf002a6b1e", + "tabbable": null, + "tooltip": null + } + }, + "61acef61a06247739bbfe0b51085d6a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "626b1cd4385045d7a359a06ff456f0a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc21a649e38945b1ae529d483df29a48", + "placeholder": "​", + "style": "IPY_MODEL_12d35bfe4c7547b39ec7f75032e9d8fe", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6617.78 examples/s]" + } + }, + "63596c20943f45349f0194f5dc625c3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3872cd4106aa4977bf38ed1e9c4b172c", + "placeholder": "​", + "style": "IPY_MODEL_28c1c99d5c704e00a9bcfe8912dea621", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.19it/s]" + } + }, + "63e21e8d63d742bd868cd3f0c29ada51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6504a7c596154f5e83e9a295f8e8ade5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b4701ae5a6284e89af880bf11b91242f", + "placeholder": "​", + "style": "IPY_MODEL_7156f8e9e30c4de68607004c7cbe86c2", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 109MB/s]" + } + }, + "67cfa89bb12d4b128287c8158a6befde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5184,7 +5076,31 @@ "width": null } }, - "6a819de44d624f56bd99acfefca10088": { + "6a7c1c7802034af3a31fa7c97aab7fb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a52a772c0a154af782dc78be2989970c", + "IPY_MODEL_7db81a2120d144af888494b455a9f5d7", + "IPY_MODEL_88b0bfb54b8b4c7a99a309b1dc3e82d2" + ], + "layout": "IPY_MODEL_7d9b0610df014ba2a2c1d3dc49652a58", + "tabbable": null, + "tooltip": null + } + }, + "6d71f5fbe87740d191dbf5a9a36755af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5237,7 +5153,7 @@ "width": null } }, - "6e4921c20efa43cca4297f41d21e2ffd": { + "6e27a4d18cb54094a65ade28a97a3958": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5252,39 +5168,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ecce5f933584c3dbf8cddfdb4f0a8c3", + "layout": "IPY_MODEL_ef65352a97434eb589998a22cd472c6c", "placeholder": "​", - "style": "IPY_MODEL_821a5741d9b84312857a91b6fd2706a0", + "style": "IPY_MODEL_e236939d9a8c45a4b775f92034c332d1", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8681.56 examples/s]" + "value": " 4.83k/4.83k [00:00<00:00, 543kB/s]" } }, - "6ec8379fd121455ea52939a0f025ead3": { + "6e867d7b0eca4306a4d23fa448b9467f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0d1342e295364183854efa5f4e3c3100", - "IPY_MODEL_25568ca6ed9d4c9294ab2d66d49db036", - "IPY_MODEL_a55f00be9cf645e1a4495a1aff02fdff" - ], - "layout": "IPY_MODEL_649c9279288044c09188b2f0758d2aad", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e7e02abd40c4793bc5deb62fa4c2391", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8774d617b5884bf493cc0821e66bba11", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 8845.0 } }, - "6ecce5f933584c3dbf8cddfdb4f0a8c3": { + "6fa12060da564f44b62996def69f7286": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5337,112 +5255,16 @@ "width": null } }, - "739e13401e4749ea80073c18bc88c586": { - "model_module": "@jupyter-widgets/controls", + "6fc384b103264005b0c774c71ae8f6ac": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f2cb389ac72444fb81aff74cf5f851dc", - "IPY_MODEL_4dd1d221b26646c2a5203544ba7356b2", - "IPY_MODEL_6e4921c20efa43cca4297f41d21e2ffd" - ], - "layout": "IPY_MODEL_9a4de9d35963491993207328cceac0be", - "tabbable": null, - "tooltip": null - } - }, - "7435eb1bbb3e443482b4b7bec4a7bf06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67417eaea71c4f25bc897cea96a6dcc7", - "placeholder": "​", - "style": "IPY_MODEL_c332583e65784a9b960ba2407e5623cd", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "75a6bf153584443e9e9d40f728499503": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3a6b413e2b643728146a238c6355773", - "placeholder": "​", - "style": "IPY_MODEL_ed1435b30e9e4bb2b5dd98d95524389f", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1230.27it/s]" - } - }, - "7692a6b7492844938c75c758f3a3782f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ebca19b30c84c44bfa3dde11c625eb8", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2b7ee86755e04d9785b9fc1bbb22ab86", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "79cb8c15a4274faea6fd3afa4292ed5f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -5486,7 +5308,25 @@ "width": null } }, - "7b15b3e7f2df4d23ac641326e3a16633": { + "7156f8e9e30c4de68607004c7cbe86c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "71a7ef8e4d6c45b0be37612d29034787": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5504,7 +5344,7 @@ "text_color": null } }, - "7ca74c02857a4df49264605f1d3abf59": { + "73c64730eb80480d90bdb5128448c361": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5557,118 +5397,59 @@ "width": null } }, - "7e1ac95612694f068fdac1936c361b8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d803ad2d475d4987bb80c9d0e2e59065", - "placeholder": "​", - "style": "IPY_MODEL_97a52fb4676e40ddb86059d3402e0764", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "8116105672bb4676bf44bc7f44316c45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_82788d921e614079bd14f12af34a318a", - "IPY_MODEL_49a18a62d5b84715a7d42233f120be5b", - "IPY_MODEL_5aab3b1bf8944d248e86b61a67249aad" - ], - "layout": "IPY_MODEL_1b0ee35eadb74e818ac2522f934435f8", - "tabbable": null, - "tooltip": null - } - }, - "821a5741d9b84312857a91b6fd2706a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "82788d921e614079bd14f12af34a318a": { + "742ab0d9c163425d859f3ad6725de409": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c8c8ebe30d23457bb2059b22cfb13589", - "placeholder": "​", - "style": "IPY_MODEL_e2293188342242dd8d8e4b045cd95c3e", + "layout": "IPY_MODEL_08eafc5235aa4e8a88bc57e468511413", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7cbf12a742be4e568c38eb99f08581d1", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 4833.0 } }, - "82c674807c414931809fd8b995d031a3": { + "74487bb6f4cf475287746e1aae3c3ed3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ca74c02857a4df49264605f1d3abf59", - "placeholder": "​", - "style": "IPY_MODEL_2a864ae7cdfd491996f68b73ddcab088", + "layout": "IPY_MODEL_3cd0e82ccb364e1dbe86bf277cb571e2", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44229470ecb843b4b3da52805d85cae0", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 10000.0 } }, - "82d0b721e9da411a8344eeac3c70e42e": { + "78d7370878c14c3b9eb043742bbc0a5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5721,49 +5502,23 @@ "width": null } }, - "82d2ffe36dcc4b23813d9c2fde9097b9": { + "7cbf12a742be4e568c38eb99f08581d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83e94bf816a94bcfa65afdfdbebf5c73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7e1ac95612694f068fdac1936c361b8b", - "IPY_MODEL_6846595e53834db69e602ddbd4cc0e67", - "IPY_MODEL_c192734e158a43ecaf22994464943937" - ], - "layout": "IPY_MODEL_1e9ac1dfe69b4b4683ebe606f16198e8", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "87784a22ac1144afb857916b326373bd": { + "7d4f9fb0b9c54dfd9f59153661bfd00d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5816,75 +5571,7 @@ "width": null } }, - "87c4e3b0f1344f12bf35885881681266": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "89aec6bbef64449ebbaafd817d159a90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_378a6ed9b84f4202bbc970db72a4988d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f169405d5db749aaa1cd982aa3665c2b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "8f9fbf98ef344320a36155889f4c7caf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a63a882458894eb39a6eddd04ac60d73", - "IPY_MODEL_c9cb229367e9436388fce242404742a4", - "IPY_MODEL_e7eb9ad5044f492894f64dd829acb692" - ], - "layout": "IPY_MODEL_6848eabddcaf4dfa96378e638ad748ba", - "tabbable": null, - "tooltip": null - } - }, - "8fd89e16ca33414d942c5d3078c2dd6a": { + "7d6188687ae940908f66dd1cb3848e0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5937,59 +5624,10 @@ "width": null } }, - "93d13aca9a9745a4be6f96bf79c3d912": { - "model_module": "@jupyter-widgets/controls", + "7d9b0610df014ba2a2c1d3dc49652a58": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_87784a22ac1144afb857916b326373bd", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_21fecef548b24fdc9378fb7fa9473372", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "953f907157844a80971a65011643552e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0671b253bb84cf886f1cc23ac16e3ff", - "placeholder": "​", - "style": "IPY_MODEL_4ddad7383a8b4c9bb3a2d548f4368d1e", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "970633ef8edf47c6ae8465913784559f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -6039,25 +5677,33 @@ "width": null } }, - "97a52fb4676e40ddb86059d3402e0764": { + "7db81a2120d144af888494b455a9f5d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b8ea11fd99c5407d8cc5d29ae9a9241d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_00e86caf713e4c8e85f8b10d9020485f", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "98f356175fb04b74ae1936d1a2749491": { + "7fd415d07e684c53990d241ac23b5c0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6075,60 +5721,25 @@ "text_color": null } }, - "98fc6d83638e48ceb0f70c24b4d5ad2f": { - "model_module": "@jupyter-widgets/base", + "80382e0368864ca1a2bb2f0fefe13c0c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "99579d85a7e64cfe80464358731b7546": { + "80445c16990e4046a63fc7a770d93c47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6143,15 +5754,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fdcf19ff310c4f8a9ab0eca50aa429d9", + "layout": "IPY_MODEL_3dad1275856040619d7851b2f8a66206", "placeholder": "​", - "style": "IPY_MODEL_98f356175fb04b74ae1936d1a2749491", + "style": "IPY_MODEL_f01ca56ec2be48d39f47764819685320", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.33it/s]" + "value": "Generating test split: 100%" + } + }, + "8098e2606cde4b3a8bf890ad2fe989ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_86a91a43f4c9418e832c17584cebe5b1", + "IPY_MODEL_efb0a4e83e884082ab70d6cc5eebaa8f", + "IPY_MODEL_0a8065b4d43b446b858b0637f26295fe" + ], + "layout": "IPY_MODEL_da46ae3607a34cf6ab521ca915b4db3e", + "tabbable": null, + "tooltip": null + } + }, + "81eeb67259bd4b7382905e90e402c667": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9a4de9d35963491993207328cceac0be": { + "85427a47f21d4321a483ecf1f04b5f7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6204,51 +5855,7 @@ "width": null } }, - "9c23c07cf08f45e99661325f9e5438a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9e0f969e11c2430782cb878273809fcf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dbd288eefbf74aa8aff88b174d84fda2", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3bfb08851c4c4442b74576766ed5b1c5", - "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "a23e8df951ea449f8ca1e12b42504a39": { + "856b5be7a3484ed3b9e2a2bc6f8bb99b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6301,7 +5908,7 @@ "width": null } }, - "a55f00be9cf645e1a4495a1aff02fdff": { + "85f01eec0a474dbbb472b69e669e43b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6316,15 +5923,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e49e17a3f34d4ec890262b23883c866f", + "layout": "IPY_MODEL_f0772ecea852431983168cb6f1ff12ee", "placeholder": "​", - "style": "IPY_MODEL_d9e47bd9e107403ba6e1b8bd3301235f", + "style": "IPY_MODEL_55efe5322a2c4f729609a9383b70acae", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1564.95it/s]" + "value": " 10000/10000 [00:01<00:00, 8684.27 examples/s]" } }, - "a58330e393734496a2dba1ef4cf94dc5": { + "8611e5dc2e174314b3da9acf02db2554": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6377,7 +5984,7 @@ "width": null } }, - "a63a882458894eb39a6eddd04ac60d73": { + "86a91a43f4c9418e832c17584cebe5b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6392,41 +5999,54 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_366f54387ff54d158576384978e37ba3", + "layout": "IPY_MODEL_cf8f9687f1104749b9f8354ef98457d6", "placeholder": "​", - "style": "IPY_MODEL_82d2ffe36dcc4b23813d9c2fde9097b9", + "style": "IPY_MODEL_418bf771c9e14e74a700f29bcc43b325", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "100%" } }, - "a643fa921f274fa5a1f11497aaa70ef2": { + "8774d617b5884bf493cc0821e66bba11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "882ff61647044685b7b099bc1489e174": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bec7f556418f40798296e065f6fc4c4d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ad469460c6ce496988300df35a28916a", + "layout": "IPY_MODEL_91fcaaa96daf4862885bf73dce4f64da", + "placeholder": "​", + "style": "IPY_MODEL_7fd415d07e684c53990d241ac23b5c0a", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "a6a52a5b6f8846178ca3e222cec3189d": { + "88b0bfb54b8b4c7a99a309b1dc3e82d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6441,15 +6061,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e5caa8c5dd7544e49cc4ba43ea7dda29", + "layout": "IPY_MODEL_856b5be7a3484ed3b9e2a2bc6f8bb99b", "placeholder": "​", - "style": "IPY_MODEL_b1a00117fa2347daa032645af02b6684", + "style": "IPY_MODEL_c01ad096f54c49be9aaa2368453364d5", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.18MB/s]" + "value": " 40/40 [00:00<00:00, 62.76it/s]" } }, - "a97ca8c55b6a428db18a1ad9449de343": { + "8963ec0440ba463ba0e0c4613fb599b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6502,7 +6122,7 @@ "width": null } }, - "ac1544f96e364d90b3da5b3eb3efbee2": { + "8c736ea2179d4e1eb6b19bb0400c86a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6517,47 +6137,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2a385a90d5af458a836d1a6b7f1fe250", + "layout": "IPY_MODEL_994de9b8dd8644f5b018a25d862efbf0", "placeholder": "​", - "style": "IPY_MODEL_e70162ebd8a84438814da558703a248b", + "style": "IPY_MODEL_b2f9d1014c1b4b05afb19a0863cf3bce", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 40/40 [00:00<00:00, 63.18it/s]" } }, - "ad469460c6ce496988300df35a28916a": { + "8e40e624c16d4d8aa4394a22da7fe159": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ae2e838d2d404bf5a7b18a6c12a4bea5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8963ec0440ba463ba0e0c4613fb599b4", + "placeholder": "​", + "style": "IPY_MODEL_80382e0368864ca1a2bb2f0fefe13c0c", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.39MB/s]" } }, - "ae927de9c84145cc9370bcf378f1fd79": { + "8e7e02abd40c4793bc5deb62fa4c2391": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6610,60 +6221,49 @@ "width": null } }, - "aeba0f4d6a5745f5885b0a273d80ebd4": { - "model_module": "@jupyter-widgets/base", + "9166e263b79a4fef94c0087261ed466d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "91fb3ad5bf86420bacb98c48b10e77f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1b1096b465f4d4dbb278e61131cf24b", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_25f35da97d504755af02397c62ea02cb", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "af9ec09323024cfdaf7f76706c86d24b": { + "91fcaaa96daf4862885bf73dce4f64da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6716,7 +6316,23 @@ "width": null } }, - "b0f0de7f15e741c7be64c44c5053df66": { + "92b6b481caa8470680c614ed30a7ff99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9377daff25ca4a5d9bfc82b576bce935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6731,15 +6347,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f5d34f00f93042aea8ffc3425e8937ae", + "layout": "IPY_MODEL_6d71f5fbe87740d191dbf5a9a36755af", "placeholder": "​", - "style": "IPY_MODEL_0f9e499f418e4b55ba078d929558a2a0", + "style": "IPY_MODEL_63e21e8d63d742bd868cd3f0c29ada51", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.49it/s]" + "value": "Downloading data: 100%" } }, - "b1a00117fa2347daa032645af02b6684": { + "95e1542cee3f4092893d88ea66159b61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6757,25 +6373,69 @@ "text_color": null } }, - "b2935e09ceeb41ab9f3a9f36cf5f4cc1": { + "9628e0898983418eb02c11e9fecf9d59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "96fd99dbd4184afbbfb83bfa6860326d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c2979bf18ceb4a3c884acf55c86d7390", + "placeholder": "​", + "style": "IPY_MODEL_2ed4048a35d94682a60e27c1e99ea1ff", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "98d540816d184dd199abef1df5492866": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6fa12060da564f44b62996def69f7286", + "placeholder": "​", + "style": "IPY_MODEL_f75d4db3439f40d2b73d6a0f468a1c18", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.61it/s]" } }, - "b356d094c9e04e26b6c291b5ac206c2c": { + "994de9b8dd8644f5b018a25d862efbf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6828,7 +6488,31 @@ "width": null } }, - "b478aac9907246bb836a183729db1e49": { + "9c3e112254ce4258b5a10904cc845bb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3e7d861b775f469b8558cb04a87d7036", + "IPY_MODEL_d4a482f364e545b28123af1589752e91", + "IPY_MODEL_39498c6d7cac431daa5d657cd2b92944" + ], + "layout": "IPY_MODEL_67cfa89bb12d4b128287c8158a6befde", + "tabbable": null, + "tooltip": null + } + }, + "9c5417a03daa4a8e9f039c1a6cca0c1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6881,30 +6565,7 @@ "width": null } }, - "b7ef85f256f3486f98398b87cd126e64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dcdd65154ceb4813be17ab44de9ee9ab", - "placeholder": "​", - "style": "IPY_MODEL_7b15b3e7f2df4d23ac641326e3a16633", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b857d8132f4b407c829e0d1a9faf4019": { + "9cd724f444fd483c9a35c8ab3c42c9f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6922,51 +6583,23 @@ "text_color": null } }, - "b8600d02c4664ddeb817f5df220b52f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aeba0f4d6a5745f5885b0a273d80ebd4", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ca1c0c814d14be09b5ad6e1cbbd5717", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "ba6bdd30d90446fd815de921b624be4b": { + "9e5c16b7ee3b43088e416b3224aa85d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "bb917caff2424d47a94540ebe2b8cb27": { + "9ea50138ca684556ab20a0c41dfa514e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7019,23 +6652,7 @@ "width": null } }, - "bdea5886d15943119c55eebfd4ccc5ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bec7f556418f40798296e065f6fc4c4d": { + "a33ecc61dd924973adc939055324f2ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7088,7 +6705,7 @@ "width": null } }, - "c192734e158a43ecaf22994464943937": { + "a52a772c0a154af782dc78be2989970c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7103,33 +6720,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce2e3af0a10643079c007812b264f6b5", + "layout": "IPY_MODEL_144c0b83b2964db49014d44941d99d42", "placeholder": "​", - "style": "IPY_MODEL_2f56601e334c44a58ee5736380eafa21", + "style": "IPY_MODEL_71a7ef8e4d6c45b0be37612d29034787", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 912kB/s]" - } - }, - "c332583e65784a9b960ba2407e5623cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "c569e1b543b4432499e19a95b006b193": { + "a5c8845f43234aa3924694c20a6141ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7182,19 +6781,102 @@ "width": null } }, - "c8c8ebe30d23457bb2059b22cfb13589": { - "model_module": "@jupyter-widgets/base", + "a6d83555373447788011c674ea09f4ce": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a983887621784d0ebf7dd830501eb9bd", + "IPY_MODEL_c81e73a0f18d4424a5f3341d674f21b7", + "IPY_MODEL_5aa964409b28401294e094d65524332f" + ], + "layout": "IPY_MODEL_14f99bd1b2fd43b29e2c777395d4adbf", + "tabbable": null, + "tooltip": null + } + }, + "a983887621784d0ebf7dd830501eb9bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0131d7f70c724bc6b0de8cfc0709aeed", + "placeholder": "​", + "style": "IPY_MODEL_ea8bb6bc0c334864b49fc2826dc712af", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "adb6ba728cd54f1097a5976b64f7558e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ae417815c1ed4318aea2e623fc6a1305": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ae761d6e2f4a4a44b9184c74ea028e9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, @@ -7235,31 +6917,60 @@ "width": null } }, - "c979d1ac522b4ee79ed056924fb17ac7": { - "model_module": "@jupyter-widgets/controls", + "aea9c5d15e58431da2f12df272070dda": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_306a732d2b23408a94b4ed133ee6fe9b", - "IPY_MODEL_0e720c4f0e2f44bbb6afccf6a95bd4a8", - "IPY_MODEL_3d02d81630604450adccb876dfce8fd6" - ], - "layout": "IPY_MODEL_98fc6d83638e48ceb0f70c24b4d5ad2f", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c9cb229367e9436388fce242404742a4": { + "b199f7fc9989426db35d3a525ec77964": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7275,17 +6986,95 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d096b84b70b5457da9989f8ebb8c9d06", - "max": 4422102.0, + "layout": "IPY_MODEL_3ea99cca5ae44f25a1c0abec4b47e02f", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e254dd5e025b43d19af0dc3e05d56fbf", + "style": "IPY_MODEL_9e5c16b7ee3b43088e416b3224aa85d4", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 60000.0 + } + }, + "b1dc1a81fd8f49d1a447d6a0a9e76158": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_df759f9942c7470fa465bc8cb984ab55", + "IPY_MODEL_c2d8a315738945399d3c490e60ea6002", + "IPY_MODEL_2c06b7667eb543b09ac4219c83a6e2e0" + ], + "layout": "IPY_MODEL_55131f31e0cd4b76913c6590148090e3", + "tabbable": null, + "tooltip": null + } + }, + "b2669e7e40514123acce864dc3cede00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b2f1d5404e7748ab8e69d04cf6b3d849": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b2f9d1014c1b4b05afb19a0863cf3bce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cddfe3352db04e188c79fd06e93a2c67": { + "b43a1253534a445ba7724ecb16bc2636": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7303,7 +7092,7 @@ "text_color": null } }, - "ce2e3af0a10643079c007812b264f6b5": { + "b4701ae5a6284e89af880bf11b91242f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7356,7 +7145,7 @@ "width": null } }, - "d096b84b70b5457da9989f8ebb8c9d06": { + "b537bccb4a6043c5ba31dae9e76058ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7409,57 +7198,54 @@ "width": null } }, - "d52b2edc469c42db9538fef8561e2bae": { + "b54233cf2e9c4bc586fd11586ab34aae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e1c001eb2e04cb58cf6ffbf874b9455", - "IPY_MODEL_93d13aca9a9745a4be6f96bf79c3d912", - "IPY_MODEL_ebf3b97deaec4c2794ebf97e73f8f570" - ], - "layout": "IPY_MODEL_510ecab1b73540b9863e31dc8f9e62bc", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59310f9e486f4494be349b5d7324f960", + "placeholder": "​", + "style": "IPY_MODEL_adb6ba728cd54f1097a5976b64f7558e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.76it/s]" } }, - "d53e7f97efc740b98703309b0ad77387": { + "b771c32cb97b4d5e87f6eb83215903d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a23e8df951ea449f8ca1e12b42504a39", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bdea5886d15943119c55eebfd4ccc5ba", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5fb0179822b44f61a78693ddb4874d11", + "IPY_MODEL_91fb3ad5bf86420bacb98c48b10e77f2", + "IPY_MODEL_63596c20943f45349f0194f5dc625c3e" + ], + "layout": "IPY_MODEL_bd576f9061f54d6b930bf6aa0cb57112", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "d803ad2d475d4987bb80c9d0e2e59065": { + "b8ea11fd99c5407d8cc5d29ae9a9241d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7512,25 +7298,31 @@ "width": null } }, - "d9e47bd9e107403ba6e1b8bd3301235f": { + "b94ccf30588e4de094111c4579b26cd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_25ad979948d047d1bd494a743160519d", + "IPY_MODEL_d0b6da91330d42bab0e43c0f9aa32460", + "IPY_MODEL_6504a7c596154f5e83e9a295f8e8ade5" + ], + "layout": "IPY_MODEL_5fa3cc2064a84439932cf351c06320aa", + "tabbable": null, + "tooltip": null } }, - "dbd288eefbf74aa8aff88b174d84fda2": { + "bd576f9061f54d6b930bf6aa0cb57112": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7583,7 +7375,7 @@ "width": null } }, - "dcdd65154ceb4813be17ab44de9ee9ab": { + "bdccd1406c714b65be9ef4f501f5299b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7636,7 +7428,7 @@ "width": null } }, - "dd514e64271d459cb1648731504a4790": { + "bedf8efd352249e79b143c83d4969b5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7651,16 +7443,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b7ef85f256f3486f98398b87cd126e64", - "IPY_MODEL_38c3bcc0b1af44bfa6d44057aec8b9b6", - "IPY_MODEL_f813b343a18e4b7aa78aa8d98fa199b6" + "IPY_MODEL_0f53cb4005184862ac41c967880900e8", + "IPY_MODEL_258e31748b1545eb955ce4355f95b4d1", + "IPY_MODEL_8c736ea2179d4e1eb6b19bb0400c86a5" ], - "layout": "IPY_MODEL_1afdfc591dbb4fe0a48e66fc01379e3d", + "layout": "IPY_MODEL_a33ecc61dd924973adc939055324f2ef", "tabbable": null, "tooltip": null } }, - "ddc790a8814c4c51a574edf90e4097b6": { + "c01ad096f54c49be9aaa2368453364d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7678,97 +7470,7 @@ "text_color": null } }, - "ddf5b630d649454590eb5fe80b825456": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "de215806c1cf4cbd8825765915dbd856": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e2293188342242dd8d8e4b045cd95c3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e239c64c6b984a6a9e6f031ef10fd99f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_361da7548e9b401e8f93368069be91e8", - "IPY_MODEL_b8600d02c4664ddeb817f5df220b52f2", - "IPY_MODEL_fa2fd92280bc499695ac595b6ace28f3" - ], - "layout": "IPY_MODEL_51eb1fbbd7a9442d9fae89af465bbb0e", - "tabbable": null, - "tooltip": null - } - }, - "e254dd5e025b43d19af0dc3e05d56fbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e37646c1503d4b83a8d450acd82b3840": { + "c2979bf18ceb4a3c884acf55c86d7390": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7821,25 +7523,121 @@ "width": null } }, - "e41a1a61b92f44f68597a5705d7f8108": { + "c2d8a315738945399d3c490e60ea6002": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bdccd1406c714b65be9ef4f501f5299b", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9628e0898983418eb02c11e9fecf9d59", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "c3a8d5ce177d4ad69ee3b7563cfc4078": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d5db6c2e6f347ccb47db129f24f7b03", + "placeholder": "​", + "style": "IPY_MODEL_b43a1253534a445ba7724ecb16bc2636", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "c7dfbeae351c4acbaa2fd1fb38431e92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "c81e73a0f18d4424a5f3341d674f21b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7d4f9fb0b9c54dfd9f59153661bfd00d", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_92b6b481caa8470680c614ed30a7ff99", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "ca2d7e23ead341db97151abfdced2d28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa8a8269b32749de91a9fcd8b0738fc2", + "placeholder": "​", + "style": "IPY_MODEL_d4fcff61ca554dffbbb000872114c1d5", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "e49e17a3f34d4ec890262b23883c866f": { + "cb5cea43fd014855a293b359f20fbe1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7892,7 +7690,7 @@ "width": null } }, - "e5caa8c5dd7544e49cc4ba43ea7dda29": { + "cbc56091c4b84a1a89f1c2c6c2ffbe31": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7945,25 +7743,7 @@ "width": null } }, - "e70162ebd8a84438814da558703a248b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e7ce547ac3a842e6b85956b5d11217f6": { + "ce53bbdacb7a4ee8b588bbbf002a6b1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8016,30 +7796,7 @@ "width": null } }, - "e7eb9ad5044f492894f64dd829acb692": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_301fd2240e664fecb89784733e5c8451", - "placeholder": "​", - "style": "IPY_MODEL_0e71560598a94d948cd9827e5731bd9e", - "tabbable": null, - "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 72.8MB/s]" - } - }, - "eab658dbfeb74ea183663ce20b0b9daf": { + "cf8f9687f1104749b9f8354ef98457d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8092,48 +7849,51 @@ "width": null } }, - "ebf3b97deaec4c2794ebf97e73f8f570": { + "d0717eceae004e6da59c8aa3d0ed794a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67180d76ce044924b795e6bbbe8fa608", - "placeholder": "​", - "style": "IPY_MODEL_b2935e09ceeb41ab9f3a9f36cf5f4cc1", - "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.47MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ed1435b30e9e4bb2b5dd98d95524389f": { + "d0b6da91330d42bab0e43c0f9aa32460": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2f61940a472e4f69926a7290dc73b340", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_61acef61a06247739bbfe0b51085d6a9", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "ee50d39b2a804bd787f7295897d49f54": { + "d38f99d3c855485f9137c5c82da7d017": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8148,32 +7908,84 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2f4ccbea82fe4800828d02758b490dee", - "IPY_MODEL_655ce078853b4b97b47d5ba2e442723b", - "IPY_MODEL_75a6bf153584443e9e9d40f728499503" + "IPY_MODEL_c3a8d5ce177d4ad69ee3b7563cfc4078", + "IPY_MODEL_1df940a0538c4722837844d07b87d356", + "IPY_MODEL_b54233cf2e9c4bc586fd11586ab34aae" ], - "layout": "IPY_MODEL_a97ca8c55b6a428db18a1ad9449de343", + "layout": "IPY_MODEL_8611e5dc2e174314b3da9acf02db2554", "tabbable": null, "tooltip": null } }, - "eff875dcc30c4107b992f5a5634c8d75": { + "d3cfdc0619ae40fe91f65a1e084132f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2e6e8fc0d4e647109e70f747ce1e566a", + "IPY_MODEL_6e867d7b0eca4306a4d23fa448b9467f", + "IPY_MODEL_8e40e624c16d4d8aa4394a22da7fe159" + ], + "layout": "IPY_MODEL_55531f258179477c861b4d98e82a94a9", + "tabbable": null, + "tooltip": null + } + }, + "d4a482f364e545b28123af1589752e91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_73c64730eb80480d90bdb5128448c361", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6021a4f2ce39498b8ad8e2caaf1b90c4", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "d4fcff61ca554dffbbb000872114c1d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f0671b253bb84cf886f1cc23ac16e3ff": { + "da46ae3607a34cf6ab521ca915b4db3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8226,7 +8038,7 @@ "width": null } }, - "f169405d5db749aaa1cd982aa3665c2b": { + "dae6c1b5b63b4ab2aa8c276d40a2b2f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -8242,7 +8054,25 @@ "description_width": "" } }, - "f2cb389ac72444fb81aff74cf5f851dc": { + "ddeefeb08a334e3aafd73da3746dd191": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "df759f9942c7470fa465bc8cb984ab55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8257,15 +8087,75 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4fa558077cd549b58369d59fa11f84ec", + "layout": "IPY_MODEL_85427a47f21d4321a483ecf1f04b5f7b", "placeholder": "​", - "style": "IPY_MODEL_4a0ad9e3cf224a82af25df8d8bb06fac", + "style": "IPY_MODEL_1330caa3497d4cf3b266a73fb356d564", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": "Computing checksums: 100%" } }, - "f3a6b413e2b643728146a238c6355773": { + "e236939d9a8c45a4b775f92034c332d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e559214db03240988f70fd9f03879199": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e5c11abd1e8149f7b54dab9ba407e0af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9377daff25ca4a5d9bfc82b576bce935", + "IPY_MODEL_5ff408675d994ba98dd9dc472810a00b", + "IPY_MODEL_130d2c00c2e14a208aeef3b9ef5a2a90" + ], + "layout": "IPY_MODEL_4b4bb18d9215426ba65edde95f3d1f38", + "tabbable": null, + "tooltip": null + } + }, + "e8141c7c389a4284b23b53662e00f324": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8318,7 +8208,51 @@ "width": null } }, - "f5d34f00f93042aea8ffc3425e8937ae": { + "e9a1575e39f04009b43d25b01fd06d48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c85f9aa0f8940ac91a9d72f781ac185", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3c3141f8e8a84afa8287305de6569b0a", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "ea8bb6bc0c334864b49fc2826dc712af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "edbef9253ccc4667a6417afcfa1a07e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8371,157 +8305,173 @@ "width": null } }, - "f69620da0f43491594cb2cdb11ac484d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f7890d347bc64340ba8a5ca6f1791cdc": { - "model_module": "@jupyter-widgets/controls", + "ef65352a97434eb589998a22cd472c6c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f78b9fa3b1fb4c3cb04ec76372a5882f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7435eb1bbb3e443482b4b7bec4a7bf06", - "IPY_MODEL_fa89642dc784435c99bc86a4fa6d9aca", - "IPY_MODEL_3eb89c0437944fddb5716441c7c4b069" - ], - "layout": "IPY_MODEL_6a819de44d624f56bd99acfefca10088", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f813b343a18e4b7aa78aa8d98fa199b6": { + "efb0a4e83e884082ab70d6cc5eebaa8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_17846cd9ac244489ad70bb21d524ae9a", - "placeholder": "​", - "style": "IPY_MODEL_081ccbc2b32640aa9071b3cb410b2efc", + "layout": "IPY_MODEL_aea9c5d15e58431da2f12df272070dda", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f125e48ae6fc4fd98b853d004b76e061", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.43it/s]" + "value": 40.0 } }, - "f9ba3c1594a041aeadc1fe1a948233c4": { + "f01ca56ec2be48d39f47764819685320": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_82c674807c414931809fd8b995d031a3", - "IPY_MODEL_9e0f969e11c2430782cb878273809fcf", - "IPY_MODEL_a6a52a5b6f8846178ca3e222cec3189d" - ], - "layout": "IPY_MODEL_16ac0e28e1fe4d649ed964b67b7deaf4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fa2fd92280bc499695ac595b6ace28f3": { - "model_module": "@jupyter-widgets/controls", + "f0772ecea852431983168cb6f1ff12ee": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3949f08b9c364d0aa1cdeb1865b0e5ab", - "placeholder": "​", - "style": "IPY_MODEL_592cd55ccf6d44879639b9d08653bd9d", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 113MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fa5a141cbb7a497cb9ea5f4712fbca7d": { + "f125e48ae6fc4fd98b853d004b76e061": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1a16187b882344098c1441a7b3196c3d", - "IPY_MODEL_d53e7f97efc740b98703309b0ad77387", - "IPY_MODEL_608c9566c4844ee896cd7a5567ab365e" - ], - "layout": "IPY_MODEL_5013335dea8a48ecaec5d4633333f9f3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fa7b3fb29ef24fb2b120774a5fc8aef7": { + "f1b1096b465f4d4dbb278e61131cf24b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8574,81 +8524,101 @@ "width": null } }, - "fa89642dc784435c99bc86a4fa6d9aca": { + "f56de69942734156835abe802d7f0113": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c569e1b543b4432499e19a95b006b193", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42bc2e2c0cdb4946903db4de34da7160", + "layout": "IPY_MODEL_ff78b8c10ccb41cf9fdb2fefe7d03f80", + "placeholder": "​", + "style": "IPY_MODEL_d0717eceae004e6da59c8aa3d0ed794a", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 60000/60000 [00:38<00:00, 1699.45it/s]" } }, - "fb109c8e518240d08b7f6615fbda4212": { + "f75d4db3439f40d2b73d6a0f468a1c18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac1544f96e364d90b3da5b3eb3efbee2", - "IPY_MODEL_7692a6b7492844938c75c758f3a3782f", - "IPY_MODEL_2baa91d8c929410280f9da666b599ec2" - ], - "layout": "IPY_MODEL_63ea3298ca7b4a78ad32a2b048bf8e66", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fdcd4ba820d649c5b36da888c36ed6b4": { - "model_module": "@jupyter-widgets/controls", + "fa8a8269b32749de91a9fcd8b0738fc2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1cbaea221fda4ab6bb8003832a877330", - "IPY_MODEL_a643fa921f274fa5a1f11497aaa70ef2", - "IPY_MODEL_ffde01a2d2174a65846da31df70358c9" - ], - "layout": "IPY_MODEL_e37646c1503d4b83a8d450acd82b3840", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fdcf19ff310c4f8a9ab0eca50aa429d9": { + "fc21a649e38945b1ae529d483df29a48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8701,27 +8671,57 @@ "width": null } }, - "ffde01a2d2174a65846da31df70358c9": { - "model_module": "@jupyter-widgets/controls", + "ff78b8c10ccb41cf9fdb2fefe7d03f80": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_56623545144f421782e9850961bfbdd6", - "placeholder": "​", - "style": "IPY_MODEL_63e0d03dee384c5680d424fdf3e46b4f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.94it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 8d0ccf3dd..9ac6e642d 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:19.472001Z", - "iopub.status.busy": "2024-06-07T11:11:19.471538Z", - "iopub.status.idle": "2024-06-07T11:11:20.617587Z", - "shell.execute_reply": "2024-06-07T11:11:20.616983Z" + "iopub.execute_input": "2024-06-10T22:12:39.435385Z", + "iopub.status.busy": "2024-06-10T22:12:39.435218Z", + "iopub.status.idle": "2024-06-10T22:12:40.593424Z", + "shell.execute_reply": "2024-06-10T22:12:40.592813Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.620434Z", - "iopub.status.busy": "2024-06-07T11:11:20.619960Z", - "iopub.status.idle": "2024-06-07T11:11:20.640048Z", - "shell.execute_reply": "2024-06-07T11:11:20.639548Z" + "iopub.execute_input": "2024-06-10T22:12:40.595945Z", + "iopub.status.busy": "2024-06-10T22:12:40.595629Z", + "iopub.status.idle": "2024-06-10T22:12:40.615429Z", + "shell.execute_reply": "2024-06-10T22:12:40.614808Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.642857Z", - "iopub.status.busy": "2024-06-07T11:11:20.642409Z", - "iopub.status.idle": "2024-06-07T11:11:20.680289Z", - "shell.execute_reply": "2024-06-07T11:11:20.679746Z" + "iopub.execute_input": "2024-06-10T22:12:40.618350Z", + "iopub.status.busy": "2024-06-10T22:12:40.617897Z", + "iopub.status.idle": "2024-06-10T22:12:40.644480Z", + "shell.execute_reply": "2024-06-10T22:12:40.643777Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.682408Z", - "iopub.status.busy": "2024-06-07T11:11:20.682184Z", - "iopub.status.idle": "2024-06-07T11:11:20.685961Z", - "shell.execute_reply": "2024-06-07T11:11:20.685403Z" + "iopub.execute_input": "2024-06-10T22:12:40.646715Z", + "iopub.status.busy": "2024-06-10T22:12:40.646393Z", + "iopub.status.idle": "2024-06-10T22:12:40.649716Z", + "shell.execute_reply": "2024-06-10T22:12:40.649260Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.688308Z", - "iopub.status.busy": "2024-06-07T11:11:20.687861Z", - "iopub.status.idle": "2024-06-07T11:11:20.696471Z", - "shell.execute_reply": "2024-06-07T11:11:20.695994Z" + "iopub.execute_input": "2024-06-10T22:12:40.651880Z", + "iopub.status.busy": "2024-06-10T22:12:40.651548Z", + "iopub.status.idle": "2024-06-10T22:12:40.659331Z", + "shell.execute_reply": "2024-06-10T22:12:40.658901Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.698937Z", - "iopub.status.busy": "2024-06-07T11:11:20.698511Z", - "iopub.status.idle": "2024-06-07T11:11:20.701592Z", - "shell.execute_reply": "2024-06-07T11:11:20.701048Z" + "iopub.execute_input": "2024-06-10T22:12:40.661462Z", + "iopub.status.busy": "2024-06-10T22:12:40.661133Z", + "iopub.status.idle": "2024-06-10T22:12:40.663722Z", + "shell.execute_reply": "2024-06-10T22:12:40.663281Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:20.703703Z", - "iopub.status.busy": "2024-06-07T11:11:20.703399Z", - "iopub.status.idle": "2024-06-07T11:11:23.776842Z", - "shell.execute_reply": "2024-06-07T11:11:23.776169Z" + "iopub.execute_input": "2024-06-10T22:12:40.665770Z", + "iopub.status.busy": "2024-06-10T22:12:40.665451Z", + "iopub.status.idle": "2024-06-10T22:12:43.662755Z", + "shell.execute_reply": "2024-06-10T22:12:43.662135Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:23.779794Z", - "iopub.status.busy": "2024-06-07T11:11:23.779358Z", - "iopub.status.idle": "2024-06-07T11:11:23.789381Z", - "shell.execute_reply": "2024-06-07T11:11:23.788890Z" + "iopub.execute_input": "2024-06-10T22:12:43.665489Z", + "iopub.status.busy": "2024-06-10T22:12:43.665100Z", + "iopub.status.idle": "2024-06-10T22:12:43.675135Z", + "shell.execute_reply": "2024-06-10T22:12:43.674716Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:23.791686Z", - "iopub.status.busy": "2024-06-07T11:11:23.791327Z", - "iopub.status.idle": "2024-06-07T11:11:25.678169Z", - "shell.execute_reply": "2024-06-07T11:11:25.677508Z" + "iopub.execute_input": "2024-06-10T22:12:43.677215Z", + "iopub.status.busy": "2024-06-10T22:12:43.676870Z", + "iopub.status.idle": "2024-06-10T22:12:45.480247Z", + "shell.execute_reply": "2024-06-10T22:12:45.479608Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.681229Z", - "iopub.status.busy": "2024-06-07T11:11:25.680571Z", - "iopub.status.idle": "2024-06-07T11:11:25.705861Z", - "shell.execute_reply": "2024-06-07T11:11:25.705289Z" + "iopub.execute_input": "2024-06-10T22:12:45.485095Z", + "iopub.status.busy": "2024-06-10T22:12:45.483722Z", + "iopub.status.idle": "2024-06-10T22:12:45.509704Z", + "shell.execute_reply": "2024-06-10T22:12:45.509160Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.708755Z", - "iopub.status.busy": "2024-06-07T11:11:25.708354Z", - "iopub.status.idle": "2024-06-07T11:11:25.718800Z", - "shell.execute_reply": "2024-06-07T11:11:25.718249Z" + "iopub.execute_input": "2024-06-10T22:12:45.513459Z", + "iopub.status.busy": "2024-06-10T22:12:45.512508Z", + "iopub.status.idle": "2024-06-10T22:12:45.524289Z", + "shell.execute_reply": "2024-06-10T22:12:45.523777Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.721622Z", - "iopub.status.busy": "2024-06-07T11:11:25.721184Z", - "iopub.status.idle": "2024-06-07T11:11:25.733219Z", - "shell.execute_reply": "2024-06-07T11:11:25.732659Z" + "iopub.execute_input": "2024-06-10T22:12:45.527934Z", + "iopub.status.busy": "2024-06-10T22:12:45.527011Z", + "iopub.status.idle": "2024-06-10T22:12:45.539469Z", + "shell.execute_reply": "2024-06-10T22:12:45.539012Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.735806Z", - "iopub.status.busy": "2024-06-07T11:11:25.735461Z", - "iopub.status.idle": "2024-06-07T11:11:25.743754Z", - "shell.execute_reply": "2024-06-07T11:11:25.743285Z" + "iopub.execute_input": "2024-06-10T22:12:45.541846Z", + "iopub.status.busy": "2024-06-10T22:12:45.541476Z", + "iopub.status.idle": "2024-06-10T22:12:45.549479Z", + "shell.execute_reply": "2024-06-10T22:12:45.549028Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.745905Z", - "iopub.status.busy": "2024-06-07T11:11:25.745598Z", - "iopub.status.idle": "2024-06-07T11:11:25.754844Z", - "shell.execute_reply": "2024-06-07T11:11:25.754234Z" + "iopub.execute_input": "2024-06-10T22:12:45.551354Z", + "iopub.status.busy": "2024-06-10T22:12:45.551192Z", + "iopub.status.idle": "2024-06-10T22:12:45.559765Z", + "shell.execute_reply": "2024-06-10T22:12:45.559315Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.757246Z", - "iopub.status.busy": "2024-06-07T11:11:25.756809Z", - "iopub.status.idle": "2024-06-07T11:11:25.765171Z", - "shell.execute_reply": "2024-06-07T11:11:25.764585Z" + "iopub.execute_input": "2024-06-10T22:12:45.561663Z", + "iopub.status.busy": "2024-06-10T22:12:45.561503Z", + "iopub.status.idle": "2024-06-10T22:12:45.569107Z", + "shell.execute_reply": "2024-06-10T22:12:45.568645Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.767617Z", - "iopub.status.busy": "2024-06-07T11:11:25.767145Z", - "iopub.status.idle": "2024-06-07T11:11:25.775480Z", - "shell.execute_reply": "2024-06-07T11:11:25.774885Z" + "iopub.execute_input": "2024-06-10T22:12:45.570933Z", + "iopub.status.busy": "2024-06-10T22:12:45.570768Z", + "iopub.status.idle": "2024-06-10T22:12:45.577974Z", + "shell.execute_reply": "2024-06-10T22:12:45.577513Z" } }, "outputs": [ @@ -1303,10 +1303,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:25.777838Z", - "iopub.status.busy": "2024-06-07T11:11:25.777388Z", - "iopub.status.idle": "2024-06-07T11:11:25.786837Z", - "shell.execute_reply": "2024-06-07T11:11:25.786205Z" + "iopub.execute_input": "2024-06-10T22:12:45.580083Z", + "iopub.status.busy": "2024-06-10T22:12:45.579671Z", + "iopub.status.idle": "2024-06-10T22:12:45.588135Z", + "shell.execute_reply": "2024-06-10T22:12:45.587569Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 2a8d088a7..717ab8d98 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -781,7 +781,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard'}
    +Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card'}
     

    Let’s view the i-th example in the dataset:

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 55c4cde53..377fed8fe 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:28.519114Z", - "iopub.status.busy": "2024-06-07T11:11:28.518624Z", - "iopub.status.idle": "2024-06-07T11:11:31.421325Z", - "shell.execute_reply": "2024-06-07T11:11:31.420664Z" + "iopub.execute_input": "2024-06-10T22:12:48.285365Z", + "iopub.status.busy": "2024-06-10T22:12:48.285180Z", + "iopub.status.idle": "2024-06-10T22:12:51.103707Z", + "shell.execute_reply": "2024-06-10T22:12:51.102999Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.424144Z", - "iopub.status.busy": "2024-06-07T11:11:31.423766Z", - "iopub.status.idle": "2024-06-07T11:11:31.427285Z", - "shell.execute_reply": "2024-06-07T11:11:31.426737Z" + "iopub.execute_input": "2024-06-10T22:12:51.106638Z", + "iopub.status.busy": "2024-06-10T22:12:51.106272Z", + "iopub.status.idle": "2024-06-10T22:12:51.109932Z", + "shell.execute_reply": "2024-06-10T22:12:51.109379Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.429504Z", - "iopub.status.busy": "2024-06-07T11:11:31.429211Z", - "iopub.status.idle": "2024-06-07T11:11:31.432383Z", - "shell.execute_reply": "2024-06-07T11:11:31.431945Z" + "iopub.execute_input": "2024-06-10T22:12:51.112023Z", + "iopub.status.busy": "2024-06-10T22:12:51.111682Z", + "iopub.status.idle": "2024-06-10T22:12:51.115012Z", + "shell.execute_reply": "2024-06-10T22:12:51.114462Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.434631Z", - "iopub.status.busy": "2024-06-07T11:11:31.434298Z", - "iopub.status.idle": "2024-06-07T11:11:31.474990Z", - "shell.execute_reply": "2024-06-07T11:11:31.474392Z" + "iopub.execute_input": "2024-06-10T22:12:51.117329Z", + "iopub.status.busy": "2024-06-10T22:12:51.117045Z", + "iopub.status.idle": "2024-06-10T22:12:51.144614Z", + "shell.execute_reply": "2024-06-10T22:12:51.144043Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.477334Z", - "iopub.status.busy": "2024-06-07T11:11:31.476961Z", - "iopub.status.idle": "2024-06-07T11:11:31.480919Z", - "shell.execute_reply": "2024-06-07T11:11:31.480424Z" + "iopub.execute_input": "2024-06-10T22:12:51.146862Z", + "iopub.status.busy": "2024-06-10T22:12:51.146545Z", + "iopub.status.idle": "2024-06-10T22:12:51.150392Z", + "shell.execute_reply": "2024-06-10T22:12:51.149852Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'supported_cards_and_currencies', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" + "Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.483237Z", - "iopub.status.busy": "2024-06-07T11:11:31.482879Z", - "iopub.status.idle": "2024-06-07T11:11:31.486114Z", - "shell.execute_reply": "2024-06-07T11:11:31.485546Z" + "iopub.execute_input": "2024-06-10T22:12:51.152509Z", + "iopub.status.busy": "2024-06-10T22:12:51.152174Z", + "iopub.status.idle": "2024-06-10T22:12:51.155442Z", + "shell.execute_reply": "2024-06-10T22:12:51.154895Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:31.488317Z", - "iopub.status.busy": "2024-06-07T11:11:31.487982Z", - "iopub.status.idle": "2024-06-07T11:11:35.347916Z", - "shell.execute_reply": "2024-06-07T11:11:35.347347Z" + "iopub.execute_input": "2024-06-10T22:12:51.157702Z", + "iopub.status.busy": "2024-06-10T22:12:51.157351Z", + "iopub.status.idle": "2024-06-10T22:12:54.868526Z", + "shell.execute_reply": "2024-06-10T22:12:54.867863Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:35.350841Z", - "iopub.status.busy": "2024-06-07T11:11:35.350400Z", - "iopub.status.idle": "2024-06-07T11:11:36.243697Z", - "shell.execute_reply": "2024-06-07T11:11:36.243102Z" + "iopub.execute_input": "2024-06-10T22:12:54.871522Z", + "iopub.status.busy": "2024-06-10T22:12:54.871061Z", + "iopub.status.idle": "2024-06-10T22:12:55.787403Z", + "shell.execute_reply": "2024-06-10T22:12:55.786811Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:36.247681Z", - "iopub.status.busy": "2024-06-07T11:11:36.246509Z", - "iopub.status.idle": "2024-06-07T11:11:36.250908Z", - "shell.execute_reply": "2024-06-07T11:11:36.250393Z" + "iopub.execute_input": "2024-06-10T22:12:55.790386Z", + "iopub.status.busy": "2024-06-10T22:12:55.789990Z", + "iopub.status.idle": "2024-06-10T22:12:55.793114Z", + "shell.execute_reply": "2024-06-10T22:12:55.792594Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:36.254757Z", - "iopub.status.busy": "2024-06-07T11:11:36.253758Z", - "iopub.status.idle": "2024-06-07T11:11:37.926073Z", - "shell.execute_reply": "2024-06-07T11:11:37.925382Z" + "iopub.execute_input": "2024-06-10T22:12:55.795547Z", + "iopub.status.busy": "2024-06-10T22:12:55.795130Z", + "iopub.status.idle": "2024-06-10T22:12:57.484724Z", + "shell.execute_reply": "2024-06-10T22:12:57.484098Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.929993Z", - "iopub.status.busy": "2024-06-07T11:11:37.928824Z", - "iopub.status.idle": "2024-06-07T11:11:37.954806Z", - "shell.execute_reply": "2024-06-07T11:11:37.954307Z" + "iopub.execute_input": "2024-06-10T22:12:57.487890Z", + "iopub.status.busy": "2024-06-10T22:12:57.487297Z", + "iopub.status.idle": "2024-06-10T22:12:57.511884Z", + "shell.execute_reply": "2024-06-10T22:12:57.511347Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.958378Z", - "iopub.status.busy": "2024-06-07T11:11:37.957425Z", - "iopub.status.idle": "2024-06-07T11:11:37.968446Z", - "shell.execute_reply": "2024-06-07T11:11:37.968047Z" + "iopub.execute_input": "2024-06-10T22:12:57.524137Z", + "iopub.status.busy": "2024-06-10T22:12:57.523544Z", + "iopub.status.idle": "2024-06-10T22:12:57.534521Z", + "shell.execute_reply": "2024-06-10T22:12:57.533980Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.970650Z", - "iopub.status.busy": "2024-06-07T11:11:37.970473Z", - "iopub.status.idle": "2024-06-07T11:11:37.975334Z", - "shell.execute_reply": "2024-06-07T11:11:37.974870Z" + "iopub.execute_input": "2024-06-10T22:12:57.536886Z", + "iopub.status.busy": "2024-06-10T22:12:57.536531Z", + "iopub.status.idle": "2024-06-10T22:12:57.541460Z", + "shell.execute_reply": "2024-06-10T22:12:57.540867Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.977483Z", - "iopub.status.busy": "2024-06-07T11:11:37.977051Z", - "iopub.status.idle": "2024-06-07T11:11:37.983603Z", - "shell.execute_reply": "2024-06-07T11:11:37.983035Z" + "iopub.execute_input": "2024-06-10T22:12:57.543826Z", + "iopub.status.busy": "2024-06-10T22:12:57.543463Z", + "iopub.status.idle": "2024-06-10T22:12:57.550139Z", + "shell.execute_reply": "2024-06-10T22:12:57.549654Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.985585Z", - "iopub.status.busy": "2024-06-07T11:11:37.985396Z", - "iopub.status.idle": "2024-06-07T11:11:37.991837Z", - "shell.execute_reply": "2024-06-07T11:11:37.991381Z" + "iopub.execute_input": "2024-06-10T22:12:57.552314Z", + "iopub.status.busy": "2024-06-10T22:12:57.551877Z", + "iopub.status.idle": "2024-06-10T22:12:57.558732Z", + "shell.execute_reply": "2024-06-10T22:12:57.558165Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:37.993692Z", - "iopub.status.busy": "2024-06-07T11:11:37.993520Z", - "iopub.status.idle": "2024-06-07T11:11:37.999349Z", - "shell.execute_reply": "2024-06-07T11:11:37.998902Z" + "iopub.execute_input": "2024-06-10T22:12:57.560832Z", + "iopub.status.busy": "2024-06-10T22:12:57.560436Z", + "iopub.status.idle": "2024-06-10T22:12:57.566295Z", + "shell.execute_reply": "2024-06-10T22:12:57.565863Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.001230Z", - "iopub.status.busy": "2024-06-07T11:11:38.001058Z", - "iopub.status.idle": "2024-06-07T11:11:38.009522Z", - "shell.execute_reply": "2024-06-07T11:11:38.009010Z" + "iopub.execute_input": "2024-06-10T22:12:57.568521Z", + "iopub.status.busy": "2024-06-10T22:12:57.568038Z", + "iopub.status.idle": "2024-06-10T22:12:57.576771Z", + "shell.execute_reply": "2024-06-10T22:12:57.576209Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.011527Z", - "iopub.status.busy": "2024-06-07T11:11:38.011215Z", - "iopub.status.idle": "2024-06-07T11:11:38.016568Z", - "shell.execute_reply": "2024-06-07T11:11:38.016098Z" + "iopub.execute_input": "2024-06-10T22:12:57.579088Z", + "iopub.status.busy": "2024-06-10T22:12:57.578623Z", + "iopub.status.idle": "2024-06-10T22:12:57.584540Z", + "shell.execute_reply": "2024-06-10T22:12:57.583958Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.018530Z", - "iopub.status.busy": "2024-06-07T11:11:38.018203Z", - "iopub.status.idle": "2024-06-07T11:11:38.023643Z", - "shell.execute_reply": "2024-06-07T11:11:38.023196Z" + "iopub.execute_input": "2024-06-10T22:12:57.586645Z", + "iopub.status.busy": "2024-06-10T22:12:57.586341Z", + "iopub.status.idle": "2024-06-10T22:12:57.591767Z", + "shell.execute_reply": "2024-06-10T22:12:57.591220Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.025642Z", - "iopub.status.busy": "2024-06-07T11:11:38.025328Z", - "iopub.status.idle": "2024-06-07T11:11:38.028922Z", - "shell.execute_reply": "2024-06-07T11:11:38.028378Z" + "iopub.execute_input": "2024-06-10T22:12:57.593780Z", + "iopub.status.busy": "2024-06-10T22:12:57.593461Z", + "iopub.status.idle": "2024-06-10T22:12:57.596988Z", + "shell.execute_reply": "2024-06-10T22:12:57.596548Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:38.031122Z", - "iopub.status.busy": "2024-06-07T11:11:38.030794Z", - "iopub.status.idle": "2024-06-07T11:11:38.035846Z", - "shell.execute_reply": "2024-06-07T11:11:38.035398Z" + "iopub.execute_input": "2024-06-10T22:12:57.599061Z", + "iopub.status.busy": "2024-06-10T22:12:57.598746Z", + "iopub.status.idle": "2024-06-10T22:12:57.604436Z", + "shell.execute_reply": "2024-06-10T22:12:57.603858Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index aadacae1d..773265528 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:41.095725Z", - "iopub.status.busy": "2024-06-07T11:11:41.095550Z", - "iopub.status.idle": "2024-06-07T11:11:42.215839Z", - "shell.execute_reply": "2024-06-07T11:11:42.215282Z" + "iopub.execute_input": "2024-06-10T22:13:01.151861Z", + "iopub.status.busy": "2024-06-10T22:13:01.151682Z", + "iopub.status.idle": "2024-06-10T22:13:02.354261Z", + "shell.execute_reply": "2024-06-10T22:13:02.353674Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:42.218406Z", - "iopub.status.busy": "2024-06-07T11:11:42.217970Z", - "iopub.status.idle": "2024-06-07T11:11:42.220662Z", - "shell.execute_reply": "2024-06-07T11:11:42.220228Z" + "iopub.execute_input": "2024-06-10T22:13:02.356837Z", + "iopub.status.busy": "2024-06-10T22:13:02.356530Z", + "iopub.status.idle": "2024-06-10T22:13:02.359500Z", + "shell.execute_reply": "2024-06-10T22:13:02.359044Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:42.222759Z", - "iopub.status.busy": "2024-06-07T11:11:42.222435Z", - "iopub.status.idle": "2024-06-07T11:11:42.234462Z", - "shell.execute_reply": "2024-06-07T11:11:42.234038Z" + "iopub.execute_input": "2024-06-10T22:13:02.361679Z", + "iopub.status.busy": "2024-06-10T22:13:02.361425Z", + "iopub.status.idle": "2024-06-10T22:13:02.373800Z", + "shell.execute_reply": "2024-06-10T22:13:02.373240Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:42.236585Z", - "iopub.status.busy": "2024-06-07T11:11:42.236210Z", - "iopub.status.idle": "2024-06-07T11:11:47.718449Z", - "shell.execute_reply": "2024-06-07T11:11:47.717939Z" + "iopub.execute_input": "2024-06-10T22:13:02.375879Z", + "iopub.status.busy": "2024-06-10T22:13:02.375564Z", + "iopub.status.idle": "2024-06-10T22:13:06.692592Z", + "shell.execute_reply": "2024-06-10T22:13:06.692021Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 330476184..f1f9d54cd 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -821,13 +821,13 @@

    How can I find label issues in big datasets with limited memory?
    -
    +
    -
    +
    @@ -1772,7 +1772,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index c356addca..3c397a524 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:49.764003Z", - "iopub.status.busy": "2024-06-07T11:11:49.763525Z", - "iopub.status.idle": "2024-06-07T11:11:50.865094Z", - "shell.execute_reply": "2024-06-07T11:11:50.864492Z" + "iopub.execute_input": "2024-06-10T22:13:09.138291Z", + "iopub.status.busy": "2024-06-10T22:13:09.138131Z", + "iopub.status.idle": "2024-06-10T22:13:10.351981Z", + "shell.execute_reply": "2024-06-10T22:13:10.351362Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:50.867926Z", - "iopub.status.busy": "2024-06-07T11:11:50.867598Z", - "iopub.status.idle": "2024-06-07T11:11:50.871072Z", - "shell.execute_reply": "2024-06-07T11:11:50.870551Z" + "iopub.execute_input": "2024-06-10T22:13:10.354939Z", + "iopub.status.busy": "2024-06-10T22:13:10.354467Z", + "iopub.status.idle": "2024-06-10T22:13:10.357832Z", + "shell.execute_reply": "2024-06-10T22:13:10.357376Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:50.872917Z", - "iopub.status.busy": "2024-06-07T11:11:50.872716Z", - "iopub.status.idle": "2024-06-07T11:11:53.803704Z", - "shell.execute_reply": "2024-06-07T11:11:53.803110Z" + "iopub.execute_input": "2024-06-10T22:13:10.359924Z", + "iopub.status.busy": "2024-06-10T22:13:10.359641Z", + "iopub.status.idle": "2024-06-10T22:13:13.745240Z", + "shell.execute_reply": "2024-06-10T22:13:13.744386Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.806613Z", - "iopub.status.busy": "2024-06-07T11:11:53.806037Z", - "iopub.status.idle": "2024-06-07T11:11:53.840267Z", - "shell.execute_reply": "2024-06-07T11:11:53.839582Z" + "iopub.execute_input": "2024-06-10T22:13:13.748843Z", + "iopub.status.busy": "2024-06-10T22:13:13.748130Z", + "iopub.status.idle": "2024-06-10T22:13:13.790444Z", + "shell.execute_reply": "2024-06-10T22:13:13.789683Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.843161Z", - "iopub.status.busy": "2024-06-07T11:11:53.842667Z", - "iopub.status.idle": "2024-06-07T11:11:53.874119Z", - "shell.execute_reply": "2024-06-07T11:11:53.873390Z" + "iopub.execute_input": "2024-06-10T22:13:13.793453Z", + "iopub.status.busy": "2024-06-10T22:13:13.793128Z", + "iopub.status.idle": "2024-06-10T22:13:13.832088Z", + "shell.execute_reply": "2024-06-10T22:13:13.831318Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.876908Z", - "iopub.status.busy": "2024-06-07T11:11:53.876418Z", - "iopub.status.idle": "2024-06-07T11:11:53.879606Z", - "shell.execute_reply": "2024-06-07T11:11:53.879053Z" + "iopub.execute_input": "2024-06-10T22:13:13.835067Z", + "iopub.status.busy": "2024-06-10T22:13:13.834788Z", + "iopub.status.idle": "2024-06-10T22:13:13.838274Z", + "shell.execute_reply": "2024-06-10T22:13:13.837783Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.881777Z", - "iopub.status.busy": "2024-06-07T11:11:53.881370Z", - "iopub.status.idle": "2024-06-07T11:11:53.884083Z", - "shell.execute_reply": "2024-06-07T11:11:53.883625Z" + "iopub.execute_input": "2024-06-10T22:13:13.840559Z", + "iopub.status.busy": "2024-06-10T22:13:13.840128Z", + "iopub.status.idle": "2024-06-10T22:13:13.843040Z", + "shell.execute_reply": "2024-06-10T22:13:13.842562Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.886433Z", - "iopub.status.busy": "2024-06-07T11:11:53.885948Z", - "iopub.status.idle": "2024-06-07T11:11:53.908982Z", - "shell.execute_reply": "2024-06-07T11:11:53.908435Z" + "iopub.execute_input": "2024-06-10T22:13:13.845046Z", + "iopub.status.busy": "2024-06-10T22:13:13.844835Z", + "iopub.status.idle": "2024-06-10T22:13:13.870164Z", + "shell.execute_reply": "2024-06-10T22:13:13.869544Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e216dbf6dcc542f091e0ddd88c45fa10", + "model_id": "9a2e17d2440c4aea8ee83d96cf0f8946", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f0f6229cdc74dcc85b4d7f65bd6e5b1", + "model_id": "326634eea24f4a5dbc6c28d00e6aad15", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.915399Z", - "iopub.status.busy": "2024-06-07T11:11:53.915078Z", - "iopub.status.idle": "2024-06-07T11:11:53.921714Z", - "shell.execute_reply": "2024-06-07T11:11:53.921172Z" + "iopub.execute_input": "2024-06-10T22:13:13.876826Z", + "iopub.status.busy": "2024-06-10T22:13:13.876615Z", + "iopub.status.idle": "2024-06-10T22:13:13.883805Z", + "shell.execute_reply": "2024-06-10T22:13:13.883373Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.923794Z", - "iopub.status.busy": "2024-06-07T11:11:53.923488Z", - "iopub.status.idle": "2024-06-07T11:11:53.926809Z", - "shell.execute_reply": "2024-06-07T11:11:53.926380Z" + "iopub.execute_input": "2024-06-10T22:13:13.886086Z", + "iopub.status.busy": "2024-06-10T22:13:13.885749Z", + "iopub.status.idle": "2024-06-10T22:13:13.889164Z", + "shell.execute_reply": "2024-06-10T22:13:13.888703Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.928725Z", - "iopub.status.busy": "2024-06-07T11:11:53.928474Z", - "iopub.status.idle": "2024-06-07T11:11:53.934913Z", - "shell.execute_reply": "2024-06-07T11:11:53.934451Z" + "iopub.execute_input": "2024-06-10T22:13:13.891241Z", + "iopub.status.busy": "2024-06-10T22:13:13.890909Z", + "iopub.status.idle": "2024-06-10T22:13:13.897223Z", + "shell.execute_reply": "2024-06-10T22:13:13.896755Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.937020Z", - "iopub.status.busy": "2024-06-07T11:11:53.936697Z", - "iopub.status.idle": "2024-06-07T11:11:53.979676Z", - "shell.execute_reply": "2024-06-07T11:11:53.979118Z" + "iopub.execute_input": "2024-06-10T22:13:13.899099Z", + "iopub.status.busy": "2024-06-10T22:13:13.898920Z", + "iopub.status.idle": "2024-06-10T22:13:13.937483Z", + "shell.execute_reply": "2024-06-10T22:13:13.936843Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:53.982451Z", - "iopub.status.busy": "2024-06-07T11:11:53.982072Z", - "iopub.status.idle": "2024-06-07T11:11:54.017192Z", - "shell.execute_reply": "2024-06-07T11:11:54.016623Z" + "iopub.execute_input": "2024-06-10T22:13:13.940491Z", + "iopub.status.busy": "2024-06-10T22:13:13.940049Z", + "iopub.status.idle": "2024-06-10T22:13:13.980352Z", + "shell.execute_reply": "2024-06-10T22:13:13.979609Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:54.019943Z", - "iopub.status.busy": "2024-06-07T11:11:54.019623Z", - "iopub.status.idle": "2024-06-07T11:11:54.148580Z", - "shell.execute_reply": "2024-06-07T11:11:54.148013Z" + "iopub.execute_input": "2024-06-10T22:13:13.983589Z", + "iopub.status.busy": "2024-06-10T22:13:13.983064Z", + "iopub.status.idle": "2024-06-10T22:13:14.111424Z", + "shell.execute_reply": "2024-06-10T22:13:14.110837Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:54.151418Z", - "iopub.status.busy": "2024-06-07T11:11:54.150792Z", - "iopub.status.idle": "2024-06-07T11:11:57.242252Z", - "shell.execute_reply": "2024-06-07T11:11:57.241531Z" + "iopub.execute_input": "2024-06-10T22:13:14.114376Z", + "iopub.status.busy": "2024-06-10T22:13:14.113594Z", + "iopub.status.idle": "2024-06-10T22:13:17.174442Z", + "shell.execute_reply": "2024-06-10T22:13:17.173664Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.245069Z", - "iopub.status.busy": "2024-06-07T11:11:57.244719Z", - "iopub.status.idle": "2024-06-07T11:11:57.312758Z", - "shell.execute_reply": "2024-06-07T11:11:57.312156Z" + "iopub.execute_input": "2024-06-10T22:13:17.177726Z", + "iopub.status.busy": "2024-06-10T22:13:17.177349Z", + "iopub.status.idle": "2024-06-10T22:13:17.240653Z", + "shell.execute_reply": "2024-06-10T22:13:17.240050Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.315197Z", - "iopub.status.busy": "2024-06-07T11:11:57.314734Z", - "iopub.status.idle": "2024-06-07T11:11:57.355434Z", - "shell.execute_reply": "2024-06-07T11:11:57.354872Z" + "iopub.execute_input": "2024-06-10T22:13:17.242731Z", + "iopub.status.busy": "2024-06-10T22:13:17.242544Z", + "iopub.status.idle": "2024-06-10T22:13:17.284095Z", + "shell.execute_reply": "2024-06-10T22:13:17.283597Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "78a3c6b0", + "id": "5a716e70", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "3c063402", + "id": "eb8b7b98", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "1db2e93e", + "id": "67eef22b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.357864Z", - "iopub.status.busy": "2024-06-07T11:11:57.357356Z", - "iopub.status.idle": "2024-06-07T11:11:57.422844Z", - "shell.execute_reply": "2024-06-07T11:11:57.422266Z" + "iopub.execute_input": "2024-06-10T22:13:17.286304Z", + "iopub.status.busy": "2024-06-10T22:13:17.285958Z", + "iopub.status.idle": "2024-06-10T22:13:17.381482Z", + "shell.execute_reply": "2024-06-10T22:13:17.380937Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "77321d8a", + "id": "1652744c", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "7a2a0271", + "id": "a15a1fe0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.425538Z", - "iopub.status.busy": "2024-06-07T11:11:57.424974Z", - "iopub.status.idle": "2024-06-07T11:11:57.491621Z", - "shell.execute_reply": "2024-06-07T11:11:57.491062Z" + "iopub.execute_input": "2024-06-10T22:13:17.384014Z", + "iopub.status.busy": "2024-06-10T22:13:17.383654Z", + "iopub.status.idle": "2024-06-10T22:13:17.453517Z", + "shell.execute_reply": "2024-06-10T22:13:17.453013Z" } }, "outputs": [ @@ -1438,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "0a3d18c8", + "id": "d1959d1c", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1449,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "47e2cffc", + "id": "90d86358", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.494020Z", - "iopub.status.busy": "2024-06-07T11:11:57.493759Z", - "iopub.status.idle": "2024-06-07T11:11:57.510914Z", - "shell.execute_reply": "2024-06-07T11:11:57.510363Z" + "iopub.execute_input": "2024-06-10T22:13:17.456208Z", + "iopub.status.busy": "2024-06-10T22:13:17.455842Z", + "iopub.status.idle": "2024-06-10T22:13:17.463835Z", + "shell.execute_reply": "2024-06-10T22:13:17.463382Z" } }, "outputs": [], @@ -1557,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "bef6bc21", + "id": "c69042ee", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1572,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "89642cd2", + "id": "5b3d8c23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.512969Z", - "iopub.status.busy": "2024-06-07T11:11:57.512799Z", - "iopub.status.idle": "2024-06-07T11:11:57.533219Z", - "shell.execute_reply": "2024-06-07T11:11:57.532731Z" + "iopub.execute_input": "2024-06-10T22:13:17.465787Z", + "iopub.status.busy": "2024-06-10T22:13:17.465626Z", + "iopub.status.idle": "2024-06-10T22:13:17.484697Z", + "shell.execute_reply": "2024-06-10T22:13:17.484089Z" } }, "outputs": [ @@ -1595,7 +1595,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7818/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7681/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1629,13 +1629,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "f8485875", + "id": "f88e2cd1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:11:57.535170Z", - "iopub.status.busy": "2024-06-07T11:11:57.534993Z", - "iopub.status.idle": "2024-06-07T11:11:57.538144Z", - "shell.execute_reply": "2024-06-07T11:11:57.537628Z" + "iopub.execute_input": "2024-06-10T22:13:17.487043Z", + "iopub.status.busy": "2024-06-10T22:13:17.486706Z", + "iopub.status.idle": "2024-06-10T22:13:17.490150Z", + "shell.execute_reply": "2024-06-10T22:13:17.489680Z" } }, "outputs": [ @@ -1730,7 +1730,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "23cdd6f3532f4256ae002a97ae9d69ab": { + "2862feb7de2643f2b3a5f341a36f3d5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,7 +1783,54 @@ "width": null } }, - "30eb5e2532fc4267b002ccfe8816dc46": { + "326634eea24f4a5dbc6c28d00e6aad15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c711dd911ad486ebdb708899f4b7ce4", + "IPY_MODEL_60fe96f8c0234456b230e8a5567ff8c7", + "IPY_MODEL_c000026cc1004d77ba5547f3c9c51193" + ], + "layout": "IPY_MODEL_5743604cd10b489b87434f6b65c23e52", + "tabbable": null, + "tooltip": null + } + }, + "3c711dd911ad486ebdb708899f4b7ce4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8bbf8ea9b522498190dbb03aaec62562", + "placeholder": "​", + "style": "IPY_MODEL_8eb9bf77367b47abb03c9de0a32a8197", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "48733238350d40fcb9f3c812b056dfc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1801,7 +1848,33 @@ "text_color": null } }, - "33db0a3ac78f4666944d4db6bd4b7226": { + "56b20d2738b448e6ad46bdf7ad20e0d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_73868979086341b89a20e3c29dd136ca", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_96f865db6c224abb8f6ec3e86a5705c8", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "5743604cd10b489b87434f6b65c23e52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1854,54 +1927,7 @@ "width": null } }, - "4f0f6229cdc74dcc85b4d7f65bd6e5b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fd5b30fdfee64a2da200f49d406cb153", - "IPY_MODEL_5c97e414ca4648bdbd6ca255319cd43d", - "IPY_MODEL_d2dcf39f4f854d308b32019d689bfac2" - ], - "layout": "IPY_MODEL_dacf95c60381417e895b6eeb41fc8dfd", - "tabbable": null, - "tooltip": null - } - }, - "545b620faabd40aa9d049bbb1a3c70a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23cdd6f3532f4256ae002a97ae9d69ab", - "placeholder": "​", - "style": "IPY_MODEL_851d149fe31f4882a6c2e5dd4c4a9946", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1082736.33it/s]" - } - }, - "5c97e414ca4648bdbd6ca255319cd43d": { + "60fe96f8c0234456b230e8a5567ff8c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1917,35 +1943,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a36ea6e5dae64a398e8ba2fc0fc302b8", + "layout": "IPY_MODEL_eb3def0fc36e43e6b8f90536fcfe911a", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d2e4ec0816cd44dcaa048081c82c00cb", + "style": "IPY_MODEL_c55ecd1ac61a42c0895840cc4d080ac2", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "708c9e939f964de89a6f4155559367a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "851d149fe31f4882a6c2e5dd4c4a9946": { + "6c1535cce8934a06b5a60137e560091a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1963,23 +1971,7 @@ "text_color": null } }, - "8aea491da66c4b2f94d04317b87c4abc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9df7dd45c09e4b0a8cc5dc03d53698eb": { + "73868979086341b89a20e3c29dd136ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2032,33 +2024,7 @@ "width": null } }, - "a23ace6146ca4b94a1ed832b985c08b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f18b237ed2c04950a4ab829aaf756488", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8aea491da66c4b2f94d04317b87c4abc", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "a36ea6e5dae64a398e8ba2fc0fc302b8": { + "8bbf8ea9b522498190dbb03aaec62562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2111,30 +2077,65 @@ "width": null } }, - "ad2d645766404fbba5fe5fa820134193": { + "8eb9bf77367b47abb03c9de0a32a8197": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "96f865db6c224abb8f6ec3e86a5705c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9a2e17d2440c4aea8ee83d96cf0f8946": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6cf2db315d6456d8afc73fea330f14a", - "placeholder": "​", - "style": "IPY_MODEL_b26ecdf7095546839fbca9078effe12c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c852f14386a84ad7ae7a05bac012b0cb", + "IPY_MODEL_56b20d2738b448e6ad46bdf7ad20e0d6", + "IPY_MODEL_bfd0af23b74a40a39f0b973d77dd4089" + ], + "layout": "IPY_MODEL_aa9ae8e089e243f297c42921ba5bcbb0", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "tooltip": null } }, - "b26ecdf7095546839fbca9078effe12c": { + "a6b35b72d72d41b889c9dae7ac1d13e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2152,7 +2153,7 @@ "text_color": null } }, - "c503cc5dede54cd89c172958cce4a886": { + "aa9ae8e089e243f297c42921ba5bcbb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2205,7 +2206,30 @@ "width": null } }, - "d2dcf39f4f854d308b32019d689bfac2": { + "bfd0af23b74a40a39f0b973d77dd4089": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e409c019c2d74cf5a7cb8e8152db7a0c", + "placeholder": "​", + "style": "IPY_MODEL_6c1535cce8934a06b5a60137e560091a", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1043411.11it/s]" + } + }, + "c000026cc1004d77ba5547f3c9c51193": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2220,15 +2244,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_33db0a3ac78f4666944d4db6bd4b7226", + "layout": "IPY_MODEL_2862feb7de2643f2b3a5f341a36f3d5d", "placeholder": "​", - "style": "IPY_MODEL_30eb5e2532fc4267b002ccfe8816dc46", + "style": "IPY_MODEL_a6b35b72d72d41b889c9dae7ac1d13e2", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1560845.49it/s]" + "value": " 10000/? [00:00<00:00, 1495455.49it/s]" } }, - "d2e4ec0816cd44dcaa048081c82c00cb": { + "c55ecd1ac61a42c0895840cc4d080ac2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2244,7 +2268,30 @@ "description_width": "" } }, - "dacf95c60381417e895b6eeb41fc8dfd": { + "c852f14386a84ad7ae7a05bac012b0cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d65ce6ca74ad4126926369ef0df86d04", + "placeholder": "​", + "style": "IPY_MODEL_48733238350d40fcb9f3c812b056dfc9", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "d65ce6ca74ad4126926369ef0df86d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2297,31 +2344,7 @@ "width": null } }, - "e216dbf6dcc542f091e0ddd88c45fa10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ad2d645766404fbba5fe5fa820134193", - "IPY_MODEL_a23ace6146ca4b94a1ed832b985c08b0", - "IPY_MODEL_545b620faabd40aa9d049bbb1a3c70a7" - ], - "layout": "IPY_MODEL_c503cc5dede54cd89c172958cce4a886", - "tabbable": null, - "tooltip": null - } - }, - "e6cf2db315d6456d8afc73fea330f14a": { + "e409c019c2d74cf5a7cb8e8152db7a0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2374,7 +2397,7 @@ "width": null } }, - "f18b237ed2c04950a4ab829aaf756488": { + "eb3def0fc36e43e6b8f90536fcfe911a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2426,29 +2449,6 @@ "visibility": null, "width": null } - }, - "fd5b30fdfee64a2da200f49d406cb153": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9df7dd45c09e4b0a8cc5dc03d53698eb", - "placeholder": "​", - "style": "IPY_MODEL_708c9e939f964de89a6f4155559367a9", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } } }, "version_major": 2, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index d1327d983..410815f44 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:00.785925Z", - "iopub.status.busy": "2024-06-07T11:12:00.785757Z", - "iopub.status.idle": "2024-06-07T11:12:01.948284Z", - "shell.execute_reply": "2024-06-07T11:12:01.947729Z" + "iopub.execute_input": "2024-06-10T22:13:21.116526Z", + "iopub.status.busy": "2024-06-10T22:13:21.116353Z", + "iopub.status.idle": "2024-06-10T22:13:22.373966Z", + "shell.execute_reply": "2024-06-10T22:13:22.373296Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:01.950690Z", - "iopub.status.busy": "2024-06-07T11:12:01.950421Z", - "iopub.status.idle": "2024-06-07T11:12:02.133413Z", - "shell.execute_reply": "2024-06-07T11:12:02.132855Z" + "iopub.execute_input": "2024-06-10T22:13:22.376686Z", + "iopub.status.busy": "2024-06-10T22:13:22.376375Z", + "iopub.status.idle": "2024-06-10T22:13:22.563735Z", + "shell.execute_reply": "2024-06-10T22:13:22.562694Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:02.136113Z", - "iopub.status.busy": "2024-06-07T11:12:02.135651Z", - "iopub.status.idle": "2024-06-07T11:12:02.147310Z", - "shell.execute_reply": "2024-06-07T11:12:02.146845Z" + "iopub.execute_input": "2024-06-10T22:13:22.567287Z", + "iopub.status.busy": "2024-06-10T22:13:22.566952Z", + "iopub.status.idle": "2024-06-10T22:13:22.581124Z", + "shell.execute_reply": "2024-06-10T22:13:22.580404Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:02.149568Z", - "iopub.status.busy": "2024-06-07T11:12:02.149130Z", - "iopub.status.idle": "2024-06-07T11:12:02.384744Z", - "shell.execute_reply": "2024-06-07T11:12:02.384182Z" + "iopub.execute_input": "2024-06-10T22:13:22.583845Z", + "iopub.status.busy": "2024-06-10T22:13:22.583330Z", + "iopub.status.idle": "2024-06-10T22:13:22.823795Z", + "shell.execute_reply": "2024-06-10T22:13:22.823212Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:02.387038Z", - "iopub.status.busy": "2024-06-07T11:12:02.386806Z", - "iopub.status.idle": "2024-06-07T11:12:02.412944Z", - "shell.execute_reply": "2024-06-07T11:12:02.412363Z" + "iopub.execute_input": "2024-06-10T22:13:22.826316Z", + "iopub.status.busy": "2024-06-10T22:13:22.825957Z", + "iopub.status.idle": "2024-06-10T22:13:22.852233Z", + "shell.execute_reply": "2024-06-10T22:13:22.851739Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:02.415430Z", - "iopub.status.busy": "2024-06-07T11:12:02.415001Z", - "iopub.status.idle": "2024-06-07T11:12:04.091259Z", - "shell.execute_reply": "2024-06-07T11:12:04.090627Z" + "iopub.execute_input": "2024-06-10T22:13:22.854941Z", + "iopub.status.busy": "2024-06-10T22:13:22.854550Z", + "iopub.status.idle": "2024-06-10T22:13:24.650495Z", + "shell.execute_reply": "2024-06-10T22:13:24.649809Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:04.093697Z", - "iopub.status.busy": "2024-06-07T11:12:04.093163Z", - "iopub.status.idle": "2024-06-07T11:12:04.110931Z", - "shell.execute_reply": "2024-06-07T11:12:04.110451Z" + "iopub.execute_input": "2024-06-10T22:13:24.653117Z", + "iopub.status.busy": "2024-06-10T22:13:24.652550Z", + "iopub.status.idle": "2024-06-10T22:13:24.671277Z", + "shell.execute_reply": "2024-06-10T22:13:24.670734Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:04.112875Z", - "iopub.status.busy": "2024-06-07T11:12:04.112691Z", - "iopub.status.idle": "2024-06-07T11:12:05.552835Z", - "shell.execute_reply": "2024-06-07T11:12:05.552204Z" + "iopub.execute_input": "2024-06-10T22:13:24.673640Z", + "iopub.status.busy": "2024-06-10T22:13:24.673268Z", + "iopub.status.idle": "2024-06-10T22:13:26.136282Z", + "shell.execute_reply": "2024-06-10T22:13:26.135602Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.555667Z", - "iopub.status.busy": "2024-06-07T11:12:05.555065Z", - "iopub.status.idle": "2024-06-07T11:12:05.568626Z", - "shell.execute_reply": "2024-06-07T11:12:05.568180Z" + "iopub.execute_input": "2024-06-10T22:13:26.139370Z", + "iopub.status.busy": "2024-06-10T22:13:26.138676Z", + "iopub.status.idle": "2024-06-10T22:13:26.153040Z", + "shell.execute_reply": "2024-06-10T22:13:26.152496Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.570812Z", - "iopub.status.busy": "2024-06-07T11:12:05.570483Z", - "iopub.status.idle": "2024-06-07T11:12:05.652054Z", - "shell.execute_reply": "2024-06-07T11:12:05.651442Z" + "iopub.execute_input": "2024-06-10T22:13:26.155252Z", + "iopub.status.busy": "2024-06-10T22:13:26.155054Z", + "iopub.status.idle": "2024-06-10T22:13:26.234314Z", + "shell.execute_reply": "2024-06-10T22:13:26.233635Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.654595Z", - "iopub.status.busy": "2024-06-07T11:12:05.654249Z", - "iopub.status.idle": "2024-06-07T11:12:05.867946Z", - "shell.execute_reply": "2024-06-07T11:12:05.867340Z" + "iopub.execute_input": "2024-06-10T22:13:26.236848Z", + "iopub.status.busy": "2024-06-10T22:13:26.236551Z", + "iopub.status.idle": "2024-06-10T22:13:26.450037Z", + "shell.execute_reply": "2024-06-10T22:13:26.449440Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.870241Z", - "iopub.status.busy": "2024-06-07T11:12:05.869891Z", - "iopub.status.idle": "2024-06-07T11:12:05.887009Z", - "shell.execute_reply": "2024-06-07T11:12:05.886545Z" + "iopub.execute_input": "2024-06-10T22:13:26.452570Z", + "iopub.status.busy": "2024-06-10T22:13:26.452183Z", + "iopub.status.idle": "2024-06-10T22:13:26.469654Z", + "shell.execute_reply": "2024-06-10T22:13:26.469125Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.889023Z", - "iopub.status.busy": "2024-06-07T11:12:05.888759Z", - "iopub.status.idle": "2024-06-07T11:12:05.898383Z", - "shell.execute_reply": "2024-06-07T11:12:05.897921Z" + "iopub.execute_input": "2024-06-10T22:13:26.471952Z", + "iopub.status.busy": "2024-06-10T22:13:26.471594Z", + "iopub.status.idle": "2024-06-10T22:13:26.481788Z", + "shell.execute_reply": "2024-06-10T22:13:26.481312Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.900476Z", - "iopub.status.busy": "2024-06-07T11:12:05.900148Z", - "iopub.status.idle": "2024-06-07T11:12:05.990684Z", - "shell.execute_reply": "2024-06-07T11:12:05.990078Z" + "iopub.execute_input": "2024-06-10T22:13:26.484023Z", + "iopub.status.busy": "2024-06-10T22:13:26.483657Z", + "iopub.status.idle": "2024-06-10T22:13:26.570570Z", + "shell.execute_reply": "2024-06-10T22:13:26.569959Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:05.993310Z", - "iopub.status.busy": "2024-06-07T11:12:05.992922Z", - "iopub.status.idle": "2024-06-07T11:12:06.136187Z", - "shell.execute_reply": "2024-06-07T11:12:06.135525Z" + "iopub.execute_input": "2024-06-10T22:13:26.573233Z", + "iopub.status.busy": "2024-06-10T22:13:26.572836Z", + "iopub.status.idle": "2024-06-10T22:13:26.705964Z", + "shell.execute_reply": "2024-06-10T22:13:26.705307Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.138799Z", - "iopub.status.busy": "2024-06-07T11:12:06.138401Z", - "iopub.status.idle": "2024-06-07T11:12:06.142217Z", - "shell.execute_reply": "2024-06-07T11:12:06.141657Z" + "iopub.execute_input": "2024-06-10T22:13:26.708783Z", + "iopub.status.busy": "2024-06-10T22:13:26.708376Z", + "iopub.status.idle": "2024-06-10T22:13:26.712266Z", + "shell.execute_reply": "2024-06-10T22:13:26.711709Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.144400Z", - "iopub.status.busy": "2024-06-07T11:12:06.144066Z", - "iopub.status.idle": "2024-06-07T11:12:06.147821Z", - "shell.execute_reply": "2024-06-07T11:12:06.147261Z" + "iopub.execute_input": "2024-06-10T22:13:26.714486Z", + "iopub.status.busy": "2024-06-10T22:13:26.714156Z", + "iopub.status.idle": "2024-06-10T22:13:26.718223Z", + "shell.execute_reply": "2024-06-10T22:13:26.717744Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.149756Z", - "iopub.status.busy": "2024-06-07T11:12:06.149574Z", - "iopub.status.idle": "2024-06-07T11:12:06.187063Z", - "shell.execute_reply": "2024-06-07T11:12:06.186515Z" + "iopub.execute_input": "2024-06-10T22:13:26.720323Z", + "iopub.status.busy": "2024-06-10T22:13:26.720006Z", + "iopub.status.idle": "2024-06-10T22:13:26.758255Z", + "shell.execute_reply": "2024-06-10T22:13:26.757660Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.189429Z", - "iopub.status.busy": "2024-06-07T11:12:06.188989Z", - "iopub.status.idle": "2024-06-07T11:12:06.231903Z", - "shell.execute_reply": "2024-06-07T11:12:06.231290Z" + "iopub.execute_input": "2024-06-10T22:13:26.760724Z", + "iopub.status.busy": "2024-06-10T22:13:26.760347Z", + "iopub.status.idle": "2024-06-10T22:13:26.803178Z", + "shell.execute_reply": "2024-06-10T22:13:26.802650Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.234232Z", - "iopub.status.busy": "2024-06-07T11:12:06.233809Z", - "iopub.status.idle": "2024-06-07T11:12:06.330748Z", - "shell.execute_reply": "2024-06-07T11:12:06.330155Z" + "iopub.execute_input": "2024-06-10T22:13:26.805612Z", + "iopub.status.busy": "2024-06-10T22:13:26.805231Z", + "iopub.status.idle": "2024-06-10T22:13:26.901205Z", + "shell.execute_reply": "2024-06-10T22:13:26.900416Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.333380Z", - "iopub.status.busy": "2024-06-07T11:12:06.333081Z", - "iopub.status.idle": "2024-06-07T11:12:06.438344Z", - "shell.execute_reply": "2024-06-07T11:12:06.437711Z" + "iopub.execute_input": "2024-06-10T22:13:26.904204Z", + "iopub.status.busy": "2024-06-10T22:13:26.903773Z", + "iopub.status.idle": "2024-06-10T22:13:26.998338Z", + "shell.execute_reply": "2024-06-10T22:13:26.997739Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.441005Z", - "iopub.status.busy": "2024-06-07T11:12:06.440558Z", - "iopub.status.idle": "2024-06-07T11:12:06.651472Z", - "shell.execute_reply": "2024-06-07T11:12:06.650868Z" + "iopub.execute_input": "2024-06-10T22:13:27.000851Z", + "iopub.status.busy": "2024-06-10T22:13:27.000511Z", + "iopub.status.idle": "2024-06-10T22:13:27.214305Z", + "shell.execute_reply": "2024-06-10T22:13:27.213678Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.653696Z", - "iopub.status.busy": "2024-06-07T11:12:06.653486Z", - "iopub.status.idle": "2024-06-07T11:12:06.870281Z", - "shell.execute_reply": "2024-06-07T11:12:06.869692Z" + "iopub.execute_input": "2024-06-10T22:13:27.216680Z", + "iopub.status.busy": "2024-06-10T22:13:27.216332Z", + "iopub.status.idle": "2024-06-10T22:13:27.411213Z", + "shell.execute_reply": "2024-06-10T22:13:27.410625Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.872557Z", - "iopub.status.busy": "2024-06-07T11:12:06.872317Z", - "iopub.status.idle": "2024-06-07T11:12:06.878707Z", - "shell.execute_reply": "2024-06-07T11:12:06.878150Z" + "iopub.execute_input": "2024-06-10T22:13:27.413709Z", + "iopub.status.busy": "2024-06-10T22:13:27.413352Z", + "iopub.status.idle": "2024-06-10T22:13:27.419627Z", + "shell.execute_reply": "2024-06-10T22:13:27.419173Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:06.880645Z", - "iopub.status.busy": "2024-06-07T11:12:06.880468Z", - "iopub.status.idle": "2024-06-07T11:12:07.096022Z", - "shell.execute_reply": "2024-06-07T11:12:07.095450Z" + "iopub.execute_input": "2024-06-10T22:13:27.421693Z", + "iopub.status.busy": "2024-06-10T22:13:27.421395Z", + "iopub.status.idle": "2024-06-10T22:13:27.641360Z", + "shell.execute_reply": "2024-06-10T22:13:27.640765Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:07.098213Z", - "iopub.status.busy": "2024-06-07T11:12:07.098024Z", - "iopub.status.idle": "2024-06-07T11:12:08.170572Z", - "shell.execute_reply": "2024-06-07T11:12:08.170020Z" + "iopub.execute_input": "2024-06-10T22:13:27.643744Z", + "iopub.status.busy": "2024-06-10T22:13:27.643453Z", + "iopub.status.idle": "2024-06-10T22:13:28.719263Z", + "shell.execute_reply": "2024-06-10T22:13:28.718631Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index adffa6169..3423f2892 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:11.800813Z", - "iopub.status.busy": "2024-06-07T11:12:11.800352Z", - "iopub.status.idle": "2024-06-07T11:12:12.939320Z", - "shell.execute_reply": "2024-06-07T11:12:12.938767Z" + "iopub.execute_input": "2024-06-10T22:13:32.353426Z", + "iopub.status.busy": "2024-06-10T22:13:32.353252Z", + "iopub.status.idle": "2024-06-10T22:13:33.525039Z", + "shell.execute_reply": "2024-06-10T22:13:33.524438Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:12.941914Z", - "iopub.status.busy": "2024-06-07T11:12:12.941627Z", - "iopub.status.idle": "2024-06-07T11:12:12.944625Z", - "shell.execute_reply": "2024-06-07T11:12:12.944208Z" + "iopub.execute_input": "2024-06-10T22:13:33.527758Z", + "iopub.status.busy": "2024-06-10T22:13:33.527265Z", + "iopub.status.idle": "2024-06-10T22:13:33.530537Z", + "shell.execute_reply": "2024-06-10T22:13:33.530058Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:12.946791Z", - "iopub.status.busy": "2024-06-07T11:12:12.946466Z", - "iopub.status.idle": "2024-06-07T11:12:12.954865Z", - "shell.execute_reply": "2024-06-07T11:12:12.954437Z" + "iopub.execute_input": "2024-06-10T22:13:33.532787Z", + "iopub.status.busy": "2024-06-10T22:13:33.532401Z", + "iopub.status.idle": "2024-06-10T22:13:33.541457Z", + "shell.execute_reply": "2024-06-10T22:13:33.540873Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:12.956805Z", - "iopub.status.busy": "2024-06-07T11:12:12.956628Z", - "iopub.status.idle": "2024-06-07T11:12:13.003505Z", - "shell.execute_reply": "2024-06-07T11:12:13.002955Z" + "iopub.execute_input": "2024-06-10T22:13:33.543652Z", + "iopub.status.busy": "2024-06-10T22:13:33.543324Z", + "iopub.status.idle": "2024-06-10T22:13:33.592523Z", + "shell.execute_reply": "2024-06-10T22:13:33.591960Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.005802Z", - "iopub.status.busy": "2024-06-07T11:12:13.005620Z", - "iopub.status.idle": "2024-06-07T11:12:13.022415Z", - "shell.execute_reply": "2024-06-07T11:12:13.021946Z" + "iopub.execute_input": "2024-06-10T22:13:33.595206Z", + "iopub.status.busy": "2024-06-10T22:13:33.594821Z", + "iopub.status.idle": "2024-06-10T22:13:33.612446Z", + "shell.execute_reply": "2024-06-10T22:13:33.611965Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.024328Z", - "iopub.status.busy": "2024-06-07T11:12:13.024156Z", - "iopub.status.idle": "2024-06-07T11:12:13.028096Z", - "shell.execute_reply": "2024-06-07T11:12:13.027540Z" + "iopub.execute_input": "2024-06-10T22:13:33.614719Z", + "iopub.status.busy": "2024-06-10T22:13:33.614385Z", + "iopub.status.idle": "2024-06-10T22:13:33.618306Z", + "shell.execute_reply": "2024-06-10T22:13:33.617830Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.030331Z", - "iopub.status.busy": "2024-06-07T11:12:13.030020Z", - "iopub.status.idle": "2024-06-07T11:12:13.045131Z", - "shell.execute_reply": "2024-06-07T11:12:13.044605Z" + "iopub.execute_input": "2024-06-10T22:13:33.620467Z", + "iopub.status.busy": "2024-06-10T22:13:33.620148Z", + "iopub.status.idle": "2024-06-10T22:13:33.635160Z", + "shell.execute_reply": "2024-06-10T22:13:33.634673Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.047221Z", - "iopub.status.busy": "2024-06-07T11:12:13.047040Z", - "iopub.status.idle": "2024-06-07T11:12:13.073082Z", - "shell.execute_reply": "2024-06-07T11:12:13.072615Z" + "iopub.execute_input": "2024-06-10T22:13:33.637458Z", + "iopub.status.busy": "2024-06-10T22:13:33.637015Z", + "iopub.status.idle": "2024-06-10T22:13:33.663269Z", + "shell.execute_reply": "2024-06-10T22:13:33.662781Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:13.075298Z", - "iopub.status.busy": "2024-06-07T11:12:13.075124Z", - "iopub.status.idle": "2024-06-07T11:12:14.816171Z", - "shell.execute_reply": "2024-06-07T11:12:14.815603Z" + "iopub.execute_input": "2024-06-10T22:13:33.665700Z", + "iopub.status.busy": "2024-06-10T22:13:33.665352Z", + "iopub.status.idle": "2024-06-10T22:13:35.490934Z", + "shell.execute_reply": "2024-06-10T22:13:35.490245Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.818915Z", - "iopub.status.busy": "2024-06-07T11:12:14.818447Z", - "iopub.status.idle": "2024-06-07T11:12:14.825339Z", - "shell.execute_reply": "2024-06-07T11:12:14.824850Z" + "iopub.execute_input": "2024-06-10T22:13:35.493935Z", + "iopub.status.busy": "2024-06-10T22:13:35.493387Z", + "iopub.status.idle": "2024-06-10T22:13:35.500517Z", + "shell.execute_reply": "2024-06-10T22:13:35.499965Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.827311Z", - "iopub.status.busy": "2024-06-07T11:12:14.827141Z", - "iopub.status.idle": "2024-06-07T11:12:14.839621Z", - "shell.execute_reply": "2024-06-07T11:12:14.839146Z" + "iopub.execute_input": "2024-06-10T22:13:35.502708Z", + "iopub.status.busy": "2024-06-10T22:13:35.502358Z", + "iopub.status.idle": "2024-06-10T22:13:35.515167Z", + "shell.execute_reply": "2024-06-10T22:13:35.514619Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.841705Z", - "iopub.status.busy": "2024-06-07T11:12:14.841376Z", - "iopub.status.idle": "2024-06-07T11:12:14.847611Z", - "shell.execute_reply": "2024-06-07T11:12:14.847197Z" + "iopub.execute_input": "2024-06-10T22:13:35.517265Z", + "iopub.status.busy": "2024-06-10T22:13:35.516951Z", + "iopub.status.idle": "2024-06-10T22:13:35.523368Z", + "shell.execute_reply": "2024-06-10T22:13:35.522830Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.849498Z", - "iopub.status.busy": "2024-06-07T11:12:14.849308Z", - "iopub.status.idle": "2024-06-07T11:12:14.851879Z", - "shell.execute_reply": "2024-06-07T11:12:14.851457Z" + "iopub.execute_input": "2024-06-10T22:13:35.525374Z", + "iopub.status.busy": "2024-06-10T22:13:35.525199Z", + "iopub.status.idle": "2024-06-10T22:13:35.527760Z", + "shell.execute_reply": "2024-06-10T22:13:35.527322Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.853782Z", - "iopub.status.busy": "2024-06-07T11:12:14.853611Z", - "iopub.status.idle": "2024-06-07T11:12:14.856992Z", - "shell.execute_reply": "2024-06-07T11:12:14.856477Z" + "iopub.execute_input": "2024-06-10T22:13:35.529587Z", + "iopub.status.busy": "2024-06-10T22:13:35.529421Z", + "iopub.status.idle": "2024-06-10T22:13:35.532807Z", + "shell.execute_reply": "2024-06-10T22:13:35.532280Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.858896Z", - "iopub.status.busy": "2024-06-07T11:12:14.858715Z", - "iopub.status.idle": "2024-06-07T11:12:14.861370Z", - "shell.execute_reply": "2024-06-07T11:12:14.860927Z" + "iopub.execute_input": "2024-06-10T22:13:35.534897Z", + "iopub.status.busy": "2024-06-10T22:13:35.534578Z", + "iopub.status.idle": "2024-06-10T22:13:35.537133Z", + "shell.execute_reply": "2024-06-10T22:13:35.536686Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.863301Z", - "iopub.status.busy": "2024-06-07T11:12:14.863133Z", - "iopub.status.idle": "2024-06-07T11:12:14.867404Z", - "shell.execute_reply": "2024-06-07T11:12:14.866953Z" + "iopub.execute_input": "2024-06-10T22:13:35.539156Z", + "iopub.status.busy": "2024-06-10T22:13:35.538851Z", + "iopub.status.idle": "2024-06-10T22:13:35.542955Z", + "shell.execute_reply": "2024-06-10T22:13:35.542415Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.869364Z", - "iopub.status.busy": "2024-06-07T11:12:14.869194Z", - "iopub.status.idle": "2024-06-07T11:12:14.899467Z", - "shell.execute_reply": "2024-06-07T11:12:14.898881Z" + "iopub.execute_input": "2024-06-10T22:13:35.544887Z", + "iopub.status.busy": "2024-06-10T22:13:35.544717Z", + "iopub.status.idle": "2024-06-10T22:13:35.573890Z", + "shell.execute_reply": "2024-06-10T22:13:35.573394Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:14.901941Z", - "iopub.status.busy": "2024-06-07T11:12:14.901598Z", - "iopub.status.idle": "2024-06-07T11:12:14.906631Z", - "shell.execute_reply": "2024-06-07T11:12:14.906069Z" + "iopub.execute_input": "2024-06-10T22:13:35.576276Z", + "iopub.status.busy": "2024-06-10T22:13:35.575923Z", + "iopub.status.idle": "2024-06-10T22:13:35.580824Z", + "shell.execute_reply": "2024-06-10T22:13:35.580377Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index abfc2ae80..0f06645fb 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:17.722932Z", - "iopub.status.busy": "2024-06-07T11:12:17.722752Z", - "iopub.status.idle": "2024-06-07T11:12:18.921268Z", - "shell.execute_reply": "2024-06-07T11:12:18.920641Z" + "iopub.execute_input": "2024-06-10T22:13:38.358099Z", + "iopub.status.busy": "2024-06-10T22:13:38.357682Z", + "iopub.status.idle": "2024-06-10T22:13:39.596119Z", + "shell.execute_reply": "2024-06-10T22:13:39.595537Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:18.923669Z", - "iopub.status.busy": "2024-06-07T11:12:18.923407Z", - "iopub.status.idle": "2024-06-07T11:12:19.122358Z", - "shell.execute_reply": "2024-06-07T11:12:19.121752Z" + "iopub.execute_input": "2024-06-10T22:13:39.598936Z", + "iopub.status.busy": "2024-06-10T22:13:39.598448Z", + "iopub.status.idle": "2024-06-10T22:13:39.800034Z", + "shell.execute_reply": "2024-06-10T22:13:39.799480Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:19.125267Z", - "iopub.status.busy": "2024-06-07T11:12:19.124771Z", - "iopub.status.idle": "2024-06-07T11:12:19.138331Z", - "shell.execute_reply": "2024-06-07T11:12:19.137780Z" + "iopub.execute_input": "2024-06-10T22:13:39.802805Z", + "iopub.status.busy": "2024-06-10T22:13:39.802331Z", + "iopub.status.idle": "2024-06-10T22:13:39.815885Z", + "shell.execute_reply": "2024-06-10T22:13:39.815417Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:19.140444Z", - "iopub.status.busy": "2024-06-07T11:12:19.140267Z", - "iopub.status.idle": "2024-06-07T11:12:21.835278Z", - "shell.execute_reply": "2024-06-07T11:12:21.834708Z" + "iopub.execute_input": "2024-06-10T22:13:39.818005Z", + "iopub.status.busy": "2024-06-10T22:13:39.817666Z", + "iopub.status.idle": "2024-06-10T22:13:42.560542Z", + "shell.execute_reply": "2024-06-10T22:13:42.559998Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:21.837557Z", - "iopub.status.busy": "2024-06-07T11:12:21.837120Z", - "iopub.status.idle": "2024-06-07T11:12:23.188088Z", - "shell.execute_reply": "2024-06-07T11:12:23.187470Z" + "iopub.execute_input": "2024-06-10T22:13:42.562940Z", + "iopub.status.busy": "2024-06-10T22:13:42.562592Z", + "iopub.status.idle": "2024-06-10T22:13:43.929330Z", + "shell.execute_reply": "2024-06-10T22:13:43.928743Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:23.190827Z", - "iopub.status.busy": "2024-06-07T11:12:23.190412Z", - "iopub.status.idle": "2024-06-07T11:12:23.194420Z", - "shell.execute_reply": "2024-06-07T11:12:23.193866Z" + "iopub.execute_input": "2024-06-10T22:13:43.931736Z", + "iopub.status.busy": "2024-06-10T22:13:43.931542Z", + "iopub.status.idle": "2024-06-10T22:13:43.935740Z", + "shell.execute_reply": "2024-06-10T22:13:43.935158Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:23.196488Z", - "iopub.status.busy": "2024-06-07T11:12:23.196100Z", - "iopub.status.idle": "2024-06-07T11:12:25.021821Z", - "shell.execute_reply": "2024-06-07T11:12:25.021145Z" + "iopub.execute_input": "2024-06-10T22:13:43.937673Z", + "iopub.status.busy": "2024-06-10T22:13:43.937493Z", + "iopub.status.idle": "2024-06-10T22:13:45.858600Z", + "shell.execute_reply": "2024-06-10T22:13:45.857995Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:25.024659Z", - "iopub.status.busy": "2024-06-07T11:12:25.024002Z", - "iopub.status.idle": "2024-06-07T11:12:25.034268Z", - "shell.execute_reply": "2024-06-07T11:12:25.033688Z" + "iopub.execute_input": "2024-06-10T22:13:45.861469Z", + "iopub.status.busy": "2024-06-10T22:13:45.860889Z", + "iopub.status.idle": "2024-06-10T22:13:45.869307Z", + "shell.execute_reply": "2024-06-10T22:13:45.868691Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:25.036616Z", - "iopub.status.busy": "2024-06-07T11:12:25.036206Z", - "iopub.status.idle": "2024-06-07T11:12:27.632751Z", - "shell.execute_reply": "2024-06-07T11:12:27.632229Z" + "iopub.execute_input": "2024-06-10T22:13:45.871595Z", + "iopub.status.busy": "2024-06-10T22:13:45.871247Z", + "iopub.status.idle": "2024-06-10T22:13:48.486923Z", + "shell.execute_reply": "2024-06-10T22:13:48.486314Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:27.635014Z", - "iopub.status.busy": "2024-06-07T11:12:27.634689Z", - "iopub.status.idle": "2024-06-07T11:12:27.638390Z", - "shell.execute_reply": "2024-06-07T11:12:27.637915Z" + "iopub.execute_input": "2024-06-10T22:13:48.489198Z", + "iopub.status.busy": "2024-06-10T22:13:48.488828Z", + "iopub.status.idle": "2024-06-10T22:13:48.492398Z", + "shell.execute_reply": "2024-06-10T22:13:48.491870Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:27.640339Z", - "iopub.status.busy": "2024-06-07T11:12:27.640072Z", - "iopub.status.idle": "2024-06-07T11:12:27.643581Z", - "shell.execute_reply": "2024-06-07T11:12:27.643140Z" + "iopub.execute_input": "2024-06-10T22:13:48.494537Z", + "iopub.status.busy": "2024-06-10T22:13:48.494139Z", + "iopub.status.idle": "2024-06-10T22:13:48.497849Z", + "shell.execute_reply": "2024-06-10T22:13:48.497303Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:27.645545Z", - "iopub.status.busy": "2024-06-07T11:12:27.645208Z", - "iopub.status.idle": "2024-06-07T11:12:27.648166Z", - "shell.execute_reply": "2024-06-07T11:12:27.647736Z" + "iopub.execute_input": "2024-06-10T22:13:48.499790Z", + "iopub.status.busy": "2024-06-10T22:13:48.499492Z", + "iopub.status.idle": "2024-06-10T22:13:48.502700Z", + "shell.execute_reply": "2024-06-10T22:13:48.502161Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index d8be7a52e..17cf93827 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:30.164683Z", - "iopub.status.busy": "2024-06-07T11:12:30.164505Z", - "iopub.status.idle": "2024-06-07T11:12:31.362427Z", - "shell.execute_reply": "2024-06-07T11:12:31.361853Z" + "iopub.execute_input": "2024-06-10T22:13:51.153996Z", + "iopub.status.busy": "2024-06-10T22:13:51.153825Z", + "iopub.status.idle": "2024-06-10T22:13:52.425688Z", + "shell.execute_reply": "2024-06-10T22:13:52.425062Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:31.365301Z", - "iopub.status.busy": "2024-06-07T11:12:31.364679Z", - "iopub.status.idle": "2024-06-07T11:12:32.384644Z", - "shell.execute_reply": "2024-06-07T11:12:32.384014Z" + "iopub.execute_input": "2024-06-10T22:13:52.428403Z", + "iopub.status.busy": "2024-06-10T22:13:52.428094Z", + "iopub.status.idle": "2024-06-10T22:13:53.659713Z", + "shell.execute_reply": "2024-06-10T22:13:53.659070Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.387174Z", - "iopub.status.busy": "2024-06-07T11:12:32.386974Z", - "iopub.status.idle": "2024-06-07T11:12:32.390253Z", - "shell.execute_reply": "2024-06-07T11:12:32.389802Z" + "iopub.execute_input": "2024-06-10T22:13:53.662472Z", + "iopub.status.busy": "2024-06-10T22:13:53.662087Z", + "iopub.status.idle": "2024-06-10T22:13:53.665900Z", + "shell.execute_reply": "2024-06-10T22:13:53.665464Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.392419Z", - "iopub.status.busy": "2024-06-07T11:12:32.392093Z", - "iopub.status.idle": "2024-06-07T11:12:32.398177Z", - "shell.execute_reply": "2024-06-07T11:12:32.397736Z" + "iopub.execute_input": "2024-06-10T22:13:53.668046Z", + "iopub.status.busy": "2024-06-10T22:13:53.667716Z", + "iopub.status.idle": "2024-06-10T22:13:53.673725Z", + "shell.execute_reply": "2024-06-10T22:13:53.673224Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.400259Z", - "iopub.status.busy": "2024-06-07T11:12:32.399930Z", - "iopub.status.idle": "2024-06-07T11:12:32.898253Z", - "shell.execute_reply": "2024-06-07T11:12:32.897712Z" + "iopub.execute_input": "2024-06-10T22:13:53.676723Z", + "iopub.status.busy": "2024-06-10T22:13:53.676269Z", + "iopub.status.idle": "2024-06-10T22:13:54.179912Z", + "shell.execute_reply": "2024-06-10T22:13:54.179278Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.900478Z", - "iopub.status.busy": "2024-06-07T11:12:32.900127Z", - "iopub.status.idle": "2024-06-07T11:12:32.905718Z", - "shell.execute_reply": "2024-06-07T11:12:32.905243Z" + "iopub.execute_input": "2024-06-10T22:13:54.182848Z", + "iopub.status.busy": "2024-06-10T22:13:54.182419Z", + "iopub.status.idle": "2024-06-10T22:13:54.187962Z", + "shell.execute_reply": "2024-06-10T22:13:54.187500Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.907751Z", - "iopub.status.busy": "2024-06-07T11:12:32.907425Z", - "iopub.status.idle": "2024-06-07T11:12:32.911322Z", - "shell.execute_reply": "2024-06-07T11:12:32.910894Z" + "iopub.execute_input": "2024-06-10T22:13:54.190161Z", + "iopub.status.busy": "2024-06-10T22:13:54.189786Z", + "iopub.status.idle": "2024-06-10T22:13:54.193826Z", + "shell.execute_reply": "2024-06-10T22:13:54.193382Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:32.913331Z", - "iopub.status.busy": "2024-06-07T11:12:32.913001Z", - "iopub.status.idle": "2024-06-07T11:12:33.818323Z", - "shell.execute_reply": "2024-06-07T11:12:33.817693Z" + "iopub.execute_input": "2024-06-10T22:13:54.196023Z", + "iopub.status.busy": "2024-06-10T22:13:54.195692Z", + "iopub.status.idle": "2024-06-10T22:13:55.143874Z", + "shell.execute_reply": "2024-06-10T22:13:55.143227Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:33.820627Z", - "iopub.status.busy": "2024-06-07T11:12:33.820419Z", - "iopub.status.idle": "2024-06-07T11:12:34.082854Z", - "shell.execute_reply": "2024-06-07T11:12:34.082234Z" + "iopub.execute_input": "2024-06-10T22:13:55.146153Z", + "iopub.status.busy": "2024-06-10T22:13:55.145958Z", + "iopub.status.idle": "2024-06-10T22:13:55.365011Z", + "shell.execute_reply": "2024-06-10T22:13:55.364428Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:34.084959Z", - "iopub.status.busy": "2024-06-07T11:12:34.084764Z", - "iopub.status.idle": "2024-06-07T11:12:34.089320Z", - "shell.execute_reply": "2024-06-07T11:12:34.088754Z" + "iopub.execute_input": "2024-06-10T22:13:55.367101Z", + "iopub.status.busy": "2024-06-10T22:13:55.366914Z", + "iopub.status.idle": "2024-06-10T22:13:55.371562Z", + "shell.execute_reply": "2024-06-10T22:13:55.371028Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:34.091486Z", - "iopub.status.busy": "2024-06-07T11:12:34.091085Z", - "iopub.status.idle": "2024-06-07T11:12:34.553409Z", - "shell.execute_reply": "2024-06-07T11:12:34.552806Z" + "iopub.execute_input": "2024-06-10T22:13:55.373932Z", + "iopub.status.busy": "2024-06-10T22:13:55.373506Z", + "iopub.status.idle": "2024-06-10T22:13:55.836940Z", + "shell.execute_reply": "2024-06-10T22:13:55.836389Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:34.556453Z", - "iopub.status.busy": "2024-06-07T11:12:34.556265Z", - "iopub.status.idle": "2024-06-07T11:12:34.889795Z", - "shell.execute_reply": "2024-06-07T11:12:34.889215Z" + "iopub.execute_input": "2024-06-10T22:13:55.840201Z", + "iopub.status.busy": "2024-06-10T22:13:55.839823Z", + "iopub.status.idle": "2024-06-10T22:13:56.177397Z", + "shell.execute_reply": "2024-06-10T22:13:56.176929Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:34.892515Z", - "iopub.status.busy": "2024-06-07T11:12:34.892302Z", - "iopub.status.idle": "2024-06-07T11:12:35.260696Z", - "shell.execute_reply": "2024-06-07T11:12:35.260077Z" + "iopub.execute_input": "2024-06-10T22:13:56.179791Z", + "iopub.status.busy": "2024-06-10T22:13:56.179440Z", + "iopub.status.idle": "2024-06-10T22:13:56.547802Z", + "shell.execute_reply": "2024-06-10T22:13:56.547195Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:35.263547Z", - "iopub.status.busy": "2024-06-07T11:12:35.263167Z", - "iopub.status.idle": "2024-06-07T11:12:35.708715Z", - "shell.execute_reply": "2024-06-07T11:12:35.708092Z" + "iopub.execute_input": "2024-06-10T22:13:56.550918Z", + "iopub.status.busy": "2024-06-10T22:13:56.550559Z", + "iopub.status.idle": "2024-06-10T22:13:56.994603Z", + "shell.execute_reply": "2024-06-10T22:13:56.994035Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:35.712958Z", - "iopub.status.busy": "2024-06-07T11:12:35.712623Z", - "iopub.status.idle": "2024-06-07T11:12:36.142395Z", - "shell.execute_reply": "2024-06-07T11:12:36.141774Z" + "iopub.execute_input": "2024-06-10T22:13:56.999023Z", + "iopub.status.busy": "2024-06-10T22:13:56.998628Z", + "iopub.status.idle": "2024-06-10T22:13:57.465860Z", + "shell.execute_reply": "2024-06-10T22:13:57.465234Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:36.145581Z", - "iopub.status.busy": "2024-06-07T11:12:36.145217Z", - "iopub.status.idle": "2024-06-07T11:12:36.363296Z", - "shell.execute_reply": "2024-06-07T11:12:36.362718Z" + "iopub.execute_input": "2024-06-10T22:13:57.469228Z", + "iopub.status.busy": "2024-06-10T22:13:57.468692Z", + "iopub.status.idle": "2024-06-10T22:13:57.685124Z", + "shell.execute_reply": "2024-06-10T22:13:57.684481Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:36.365581Z", - "iopub.status.busy": "2024-06-07T11:12:36.365231Z", - "iopub.status.idle": "2024-06-07T11:12:36.546399Z", - "shell.execute_reply": "2024-06-07T11:12:36.545780Z" + "iopub.execute_input": "2024-06-10T22:13:57.687466Z", + "iopub.status.busy": "2024-06-10T22:13:57.687120Z", + "iopub.status.idle": "2024-06-10T22:13:57.889185Z", + "shell.execute_reply": "2024-06-10T22:13:57.888564Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:36.548733Z", - "iopub.status.busy": "2024-06-07T11:12:36.548397Z", - "iopub.status.idle": "2024-06-07T11:12:36.551261Z", - "shell.execute_reply": "2024-06-07T11:12:36.550819Z" + "iopub.execute_input": "2024-06-10T22:13:57.891380Z", + "iopub.status.busy": "2024-06-10T22:13:57.891188Z", + "iopub.status.idle": "2024-06-10T22:13:57.894107Z", + "shell.execute_reply": "2024-06-10T22:13:57.893679Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:36.553289Z", - "iopub.status.busy": "2024-06-07T11:12:36.552955Z", - "iopub.status.idle": "2024-06-07T11:12:37.534118Z", - "shell.execute_reply": "2024-06-07T11:12:37.533554Z" + "iopub.execute_input": "2024-06-10T22:13:57.896255Z", + "iopub.status.busy": "2024-06-10T22:13:57.895864Z", + "iopub.status.idle": "2024-06-10T22:13:58.911819Z", + "shell.execute_reply": "2024-06-10T22:13:58.911226Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:37.536768Z", - "iopub.status.busy": "2024-06-07T11:12:37.536581Z", - "iopub.status.idle": "2024-06-07T11:12:37.681635Z", - "shell.execute_reply": "2024-06-07T11:12:37.680971Z" + "iopub.execute_input": "2024-06-10T22:13:58.914197Z", + "iopub.status.busy": "2024-06-10T22:13:58.913997Z", + "iopub.status.idle": "2024-06-10T22:13:59.040721Z", + "shell.execute_reply": "2024-06-10T22:13:59.040162Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:37.683933Z", - "iopub.status.busy": "2024-06-07T11:12:37.683482Z", - "iopub.status.idle": "2024-06-07T11:12:37.840531Z", - "shell.execute_reply": "2024-06-07T11:12:37.840028Z" + "iopub.execute_input": "2024-06-10T22:13:59.043034Z", + "iopub.status.busy": "2024-06-10T22:13:59.042832Z", + "iopub.status.idle": "2024-06-10T22:13:59.172902Z", + "shell.execute_reply": "2024-06-10T22:13:59.172393Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:37.843119Z", - "iopub.status.busy": "2024-06-07T11:12:37.842752Z", - "iopub.status.idle": "2024-06-07T11:12:38.590870Z", - "shell.execute_reply": "2024-06-07T11:12:38.590250Z" + "iopub.execute_input": "2024-06-10T22:13:59.175407Z", + "iopub.status.busy": "2024-06-10T22:13:59.175049Z", + "iopub.status.idle": "2024-06-10T22:13:59.979373Z", + "shell.execute_reply": "2024-06-10T22:13:59.978774Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:38.593406Z", - "iopub.status.busy": "2024-06-07T11:12:38.592984Z", - "iopub.status.idle": "2024-06-07T11:12:38.596804Z", - "shell.execute_reply": "2024-06-07T11:12:38.596262Z" + "iopub.execute_input": "2024-06-10T22:13:59.981602Z", + "iopub.status.busy": "2024-06-10T22:13:59.981275Z", + "iopub.status.idle": "2024-06-10T22:13:59.985031Z", + "shell.execute_reply": "2024-06-10T22:13:59.984557Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 565af525b..0c2139406 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -770,7 +770,7 @@

    2. Pre-process the Cifar10 dataset
    -100%|██████████| 170498071/170498071 [00:01<00:00, 103700713.31it/s]
    +100%|██████████| 170498071/170498071 [00:02<00:00, 79243594.26it/s]
     
    -
    +
    @@ -1114,7 +1114,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 74827d403..9f7d52bb8 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:40.974327Z", - "iopub.status.busy": "2024-06-07T11:12:40.973973Z", - "iopub.status.idle": "2024-06-07T11:12:43.789452Z", - "shell.execute_reply": "2024-06-07T11:12:43.788887Z" + "iopub.execute_input": "2024-06-10T22:14:02.407045Z", + "iopub.status.busy": "2024-06-10T22:14:02.406569Z", + "iopub.status.idle": "2024-06-10T22:14:05.327680Z", + "shell.execute_reply": "2024-06-10T22:14:05.327021Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:43.792154Z", - "iopub.status.busy": "2024-06-07T11:12:43.791682Z", - "iopub.status.idle": "2024-06-07T11:12:44.130961Z", - "shell.execute_reply": "2024-06-07T11:12:44.130412Z" + "iopub.execute_input": "2024-06-10T22:14:05.330654Z", + "iopub.status.busy": "2024-06-10T22:14:05.330282Z", + "iopub.status.idle": "2024-06-10T22:14:05.703850Z", + "shell.execute_reply": "2024-06-10T22:14:05.703278Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:44.133565Z", - "iopub.status.busy": "2024-06-07T11:12:44.133144Z", - "iopub.status.idle": "2024-06-07T11:12:44.137167Z", - "shell.execute_reply": "2024-06-07T11:12:44.136751Z" + "iopub.execute_input": "2024-06-10T22:14:05.706660Z", + "iopub.status.busy": "2024-06-10T22:14:05.706124Z", + "iopub.status.idle": "2024-06-10T22:14:05.710216Z", + "shell.execute_reply": "2024-06-10T22:14:05.709775Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:44.139219Z", - "iopub.status.busy": "2024-06-07T11:12:44.139020Z", - "iopub.status.idle": "2024-06-07T11:12:48.575707Z", - "shell.execute_reply": "2024-06-07T11:12:48.575125Z" + "iopub.execute_input": "2024-06-10T22:14:05.712155Z", + "iopub.status.busy": "2024-06-10T22:14:05.711968Z", + "iopub.status.idle": "2024-06-10T22:14:10.701297Z", + "shell.execute_reply": "2024-06-10T22:14:10.700636Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 917504/170498071 [00:00<00:21, 8017522.83it/s]" + " 1%| | 1671168/170498071 [00:00<00:10, 15939118.22it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 10354688/170498071 [00:00<00:02, 55921409.49it/s]" + " 6%|▌ | 10256384/170498071 [00:00<00:02, 56199009.47it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 21528576/170498071 [00:00<00:01, 80572078.96it/s]" + " 11%|█ | 18743296/170498071 [00:00<00:02, 69054369.52it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32899072/170498071 [00:00<00:01, 93394960.78it/s]" + " 16%|█▋ | 27787264/170498071 [00:00<00:01, 77405919.77it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44040192/170498071 [00:00<00:01, 99775690.25it/s]" + " 21%|██ | 35913728/170498071 [00:00<00:01, 78734204.27it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 55246848/170498071 [00:00<00:01, 103857715.48it/s]" + " 27%|██▋ | 45776896/170498071 [00:00<00:01, 85419438.40it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 66322432/170498071 [00:00<00:00, 106080753.75it/s]" + " 32%|███▏ | 54657024/170498071 [00:00<00:01, 86468107.88it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 77299712/170498071 [00:00<00:00, 107214741.51it/s]" + " 37%|███▋ | 63340544/170498071 [00:00<00:01, 86211997.48it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88768512/170498071 [00:00<00:00, 109465492.84it/s]" + " 42%|████▏ | 71991296/170498071 [00:00<00:01, 85344466.89it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 99909632/170498071 [00:01<00:00, 109973267.69it/s]" + " 47%|████▋ | 80969728/170498071 [00:01<00:01, 86699364.75it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 111247360/170498071 [00:01<00:00, 110973517.39it/s]" + " 53%|█████▎ | 89653248/170498071 [00:01<00:00, 84860829.31it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 122421248/170498071 [00:01<00:00, 111172366.19it/s]" + " 58%|█████▊ | 98304000/170498071 [00:01<00:00, 85301918.18it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 133824512/170498071 [00:01<00:00, 111988569.25it/s]" + " 63%|██████▎ | 106954752/170498071 [00:01<00:00, 85587291.52it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 145031168/170498071 [00:01<00:00, 111882507.96it/s]" + " 68%|██████▊ | 115539968/170498071 [00:01<00:00, 85339001.59it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 156237824/170498071 [00:01<00:00, 111864010.32it/s]" + " 74%|███████▎ | 125337600/170498071 [00:01<00:00, 88789295.60it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 167510016/170498071 [00:01<00:00, 112049745.19it/s]" + " 79%|███████▊ | 134250496/170498071 [00:01<00:00, 82082255.41it/s]" ] }, { @@ -380,7 +380,39 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 103700713.31it/s]" + " 84%|████████▎ | 142573568/170498071 [00:01<00:00, 75946240.77it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 88%|████████▊ | 150437888/170498071 [00:01<00:00, 76586272.25it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 93%|█████████▎| 158203904/170498071 [00:01<00:00, 76443928.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 166133760/170498071 [00:02<00:00, 77191098.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 79243594.26it/s]" ] }, { @@ -498,10 +530,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:48.577991Z", - "iopub.status.busy": "2024-06-07T11:12:48.577687Z", - "iopub.status.idle": "2024-06-07T11:12:48.582384Z", - "shell.execute_reply": "2024-06-07T11:12:48.581911Z" + "iopub.execute_input": "2024-06-10T22:14:10.703733Z", + "iopub.status.busy": "2024-06-10T22:14:10.703295Z", + "iopub.status.idle": "2024-06-10T22:14:10.708165Z", + "shell.execute_reply": "2024-06-10T22:14:10.707585Z" }, "nbsphinx": "hidden" }, @@ -552,10 +584,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:48.584555Z", - "iopub.status.busy": "2024-06-07T11:12:48.584101Z", - "iopub.status.idle": "2024-06-07T11:12:49.110902Z", - "shell.execute_reply": "2024-06-07T11:12:49.110312Z" + "iopub.execute_input": "2024-06-10T22:14:10.710337Z", + "iopub.status.busy": "2024-06-10T22:14:10.709906Z", + "iopub.status.idle": "2024-06-10T22:14:11.262562Z", + "shell.execute_reply": "2024-06-10T22:14:11.262049Z" } }, "outputs": [ @@ -588,10 +620,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:49.113356Z", - "iopub.status.busy": "2024-06-07T11:12:49.112909Z", - "iopub.status.idle": "2024-06-07T11:12:49.612743Z", - "shell.execute_reply": "2024-06-07T11:12:49.612176Z" + "iopub.execute_input": "2024-06-10T22:14:11.264854Z", + "iopub.status.busy": "2024-06-10T22:14:11.264519Z", + "iopub.status.idle": "2024-06-10T22:14:11.795123Z", + "shell.execute_reply": "2024-06-10T22:14:11.794522Z" } }, "outputs": [ @@ -629,10 +661,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:49.615077Z", - "iopub.status.busy": "2024-06-07T11:12:49.614623Z", - "iopub.status.idle": "2024-06-07T11:12:49.618081Z", - "shell.execute_reply": "2024-06-07T11:12:49.617653Z" + "iopub.execute_input": "2024-06-10T22:14:11.797295Z", + "iopub.status.busy": "2024-06-10T22:14:11.797105Z", + "iopub.status.idle": "2024-06-10T22:14:11.800597Z", + "shell.execute_reply": "2024-06-10T22:14:11.800164Z" } }, "outputs": [], @@ -655,17 +687,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:12:49.620083Z", - "iopub.status.busy": "2024-06-07T11:12:49.619780Z", - "iopub.status.idle": "2024-06-07T11:13:02.207904Z", - "shell.execute_reply": "2024-06-07T11:13:02.207162Z" + "iopub.execute_input": "2024-06-10T22:14:11.802529Z", + "iopub.status.busy": "2024-06-10T22:14:11.802356Z", + "iopub.status.idle": "2024-06-10T22:14:24.532392Z", + "shell.execute_reply": "2024-06-10T22:14:24.531682Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4556e004258844e684efe169f5dd57aa", + "model_id": "8817a38d84da4ec4a061736044c0a959", "version_major": 2, "version_minor": 0 }, @@ -724,10 +756,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:02.210092Z", - "iopub.status.busy": "2024-06-07T11:13:02.209913Z", - "iopub.status.idle": "2024-06-07T11:13:04.328905Z", - "shell.execute_reply": "2024-06-07T11:13:04.328330Z" + "iopub.execute_input": "2024-06-10T22:14:24.534939Z", + "iopub.status.busy": "2024-06-10T22:14:24.534583Z", + "iopub.status.idle": "2024-06-10T22:14:26.797024Z", + "shell.execute_reply": "2024-06-10T22:14:26.796423Z" } }, "outputs": [ @@ -771,10 +803,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:04.330953Z", - "iopub.status.busy": "2024-06-07T11:13:04.330776Z", - "iopub.status.idle": "2024-06-07T11:13:04.572249Z", - "shell.execute_reply": "2024-06-07T11:13:04.571658Z" + "iopub.execute_input": "2024-06-10T22:14:26.799299Z", + "iopub.status.busy": "2024-06-10T22:14:26.798951Z", + "iopub.status.idle": "2024-06-10T22:14:27.051943Z", + "shell.execute_reply": "2024-06-10T22:14:27.051174Z" } }, "outputs": [ @@ -810,10 +842,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:04.575204Z", - "iopub.status.busy": "2024-06-07T11:13:04.574737Z", - "iopub.status.idle": "2024-06-07T11:13:05.240146Z", - "shell.execute_reply": "2024-06-07T11:13:05.239580Z" + "iopub.execute_input": "2024-06-10T22:14:27.055424Z", + "iopub.status.busy": "2024-06-10T22:14:27.054877Z", + "iopub.status.idle": "2024-06-10T22:14:27.742419Z", + "shell.execute_reply": "2024-06-10T22:14:27.741724Z" } }, "outputs": [ @@ -863,10 +895,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:05.243050Z", - "iopub.status.busy": "2024-06-07T11:13:05.242590Z", - "iopub.status.idle": "2024-06-07T11:13:05.579051Z", - "shell.execute_reply": "2024-06-07T11:13:05.578511Z" + "iopub.execute_input": "2024-06-10T22:14:27.745438Z", + "iopub.status.busy": "2024-06-10T22:14:27.745063Z", + "iopub.status.idle": "2024-06-10T22:14:28.073038Z", + "shell.execute_reply": "2024-06-10T22:14:28.072085Z" } }, "outputs": [ @@ -914,10 +946,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:05.581255Z", - "iopub.status.busy": "2024-06-07T11:13:05.580929Z", - "iopub.status.idle": "2024-06-07T11:13:05.810984Z", - "shell.execute_reply": "2024-06-07T11:13:05.810368Z" + "iopub.execute_input": "2024-06-10T22:14:28.075657Z", + "iopub.status.busy": "2024-06-10T22:14:28.075394Z", + "iopub.status.idle": "2024-06-10T22:14:28.319614Z", + "shell.execute_reply": "2024-06-10T22:14:28.318962Z" } }, "outputs": [ @@ -973,10 +1005,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:05.813638Z", - "iopub.status.busy": "2024-06-07T11:13:05.813179Z", - "iopub.status.idle": "2024-06-07T11:13:05.912851Z", - "shell.execute_reply": "2024-06-07T11:13:05.912358Z" + "iopub.execute_input": "2024-06-10T22:14:28.322267Z", + "iopub.status.busy": "2024-06-10T22:14:28.321823Z", + "iopub.status.idle": "2024-06-10T22:14:28.412619Z", + "shell.execute_reply": "2024-06-10T22:14:28.412100Z" } }, "outputs": [], @@ -997,10 +1029,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:05.915301Z", - "iopub.status.busy": "2024-06-07T11:13:05.914958Z", - "iopub.status.idle": "2024-06-07T11:13:16.169722Z", - "shell.execute_reply": "2024-06-07T11:13:16.169066Z" + "iopub.execute_input": "2024-06-10T22:14:28.415273Z", + "iopub.status.busy": "2024-06-10T22:14:28.414920Z", + "iopub.status.idle": "2024-06-10T22:14:40.039152Z", + "shell.execute_reply": "2024-06-10T22:14:40.038378Z" } }, "outputs": [ @@ -1037,10 +1069,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:16.172106Z", - "iopub.status.busy": "2024-06-07T11:13:16.171872Z", - "iopub.status.idle": "2024-06-07T11:13:17.914050Z", - "shell.execute_reply": "2024-06-07T11:13:17.913495Z" + "iopub.execute_input": "2024-06-10T22:14:40.042204Z", + "iopub.status.busy": "2024-06-10T22:14:40.041749Z", + "iopub.status.idle": "2024-06-10T22:14:42.057955Z", + "shell.execute_reply": "2024-06-10T22:14:42.057316Z" } }, "outputs": [ @@ -1071,10 +1103,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:17.916646Z", - "iopub.status.busy": "2024-06-07T11:13:17.916275Z", - "iopub.status.idle": "2024-06-07T11:13:18.116478Z", - "shell.execute_reply": "2024-06-07T11:13:18.115870Z" + "iopub.execute_input": "2024-06-10T22:14:42.060883Z", + "iopub.status.busy": "2024-06-10T22:14:42.060429Z", + "iopub.status.idle": "2024-06-10T22:14:42.264416Z", + "shell.execute_reply": "2024-06-10T22:14:42.263782Z" } }, "outputs": [], @@ -1088,10 +1120,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:18.119043Z", - "iopub.status.busy": "2024-06-07T11:13:18.118714Z", - "iopub.status.idle": "2024-06-07T11:13:18.121927Z", - "shell.execute_reply": "2024-06-07T11:13:18.121397Z" + "iopub.execute_input": "2024-06-10T22:14:42.266980Z", + "iopub.status.busy": "2024-06-10T22:14:42.266670Z", + "iopub.status.idle": "2024-06-10T22:14:42.269869Z", + "shell.execute_reply": "2024-06-10T22:14:42.269345Z" } }, "outputs": [], @@ -1113,10 +1145,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:18.123924Z", - "iopub.status.busy": "2024-06-07T11:13:18.123597Z", - "iopub.status.idle": "2024-06-07T11:13:18.131571Z", - "shell.execute_reply": "2024-06-07T11:13:18.131158Z" + "iopub.execute_input": "2024-06-10T22:14:42.272049Z", + "iopub.status.busy": "2024-06-10T22:14:42.271744Z", + "iopub.status.idle": "2024-06-10T22:14:42.279990Z", + "shell.execute_reply": "2024-06-10T22:14:42.279438Z" }, "nbsphinx": "hidden" }, @@ -1161,7 +1193,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08e602a9d40f4e29b6b7ebbde2fc1609": { + "08ec7890b2584a8f90fc0a92b955700c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1177,17 +1209,81 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8644869e961249f9b2534074fd66420c", + "layout": "IPY_MODEL_e4c11893781f4d85b1712b4a80b6a436", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5f41be52301c47c6adc9fef245cb6857", + "style": "IPY_MODEL_f92c25becce042d3a94a8626cca30cef", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "4556e004258844e684efe169f5dd57aa": { + "185e2626a91940b6892f4a7cfa6465e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "20a99185053c4dcda7050674956dc7d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a5beebf8b44c4b6393b74e7d7f47dc1f", + "placeholder": "​", + "style": "IPY_MODEL_185e2626a91940b6892f4a7cfa6465e2", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "7700961ad6f745da89779f000f437934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7fecfa805e943688ea2224b597e20e8", + "placeholder": "​", + "style": "IPY_MODEL_c23aeb8c3a7146a89967d5a00a1e6e80", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 272MB/s]" + } + }, + "8817a38d84da4ec4a061736044c0a959": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1202,16 +1298,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8e202cf98eb94b9d97ed83ec90e74300", - "IPY_MODEL_08e602a9d40f4e29b6b7ebbde2fc1609", - "IPY_MODEL_6cc99a7b73744b56ab37e515ceb783ab" + "IPY_MODEL_20a99185053c4dcda7050674956dc7d8", + "IPY_MODEL_08ec7890b2584a8f90fc0a92b955700c", + "IPY_MODEL_7700961ad6f745da89779f000f437934" ], - "layout": "IPY_MODEL_ee0dd83ecb8a4693b6b2d41796e233f1", + "layout": "IPY_MODEL_eafcb138fe5245fa89f293d52c113dc9", "tabbable": null, "tooltip": null } }, - "5763629ee5c041fdaf46dcc49c1d735e": { + "a5beebf8b44c4b6393b74e7d7f47dc1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1264,46 +1360,7 @@ "width": null } }, - "5f41be52301c47c6adc9fef245cb6857": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6cc99a7b73744b56ab37e515ceb783ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5763629ee5c041fdaf46dcc49c1d735e", - "placeholder": "​", - "style": "IPY_MODEL_8ef4650d3c7141ca8edcf87a49dea4cf", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 240MB/s]" - } - }, - "8644869e961249f9b2534074fd66420c": { + "a7fecfa805e943688ea2224b597e20e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1356,30 +1413,7 @@ "width": null } }, - "8e202cf98eb94b9d97ed83ec90e74300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a35b4dacf24f47189a3bcc4880b291f2", - "placeholder": "​", - "style": "IPY_MODEL_a53b263df44840a0a93d04b4fafa89ab", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "8ef4650d3c7141ca8edcf87a49dea4cf": { + "c23aeb8c3a7146a89967d5a00a1e6e80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1397,7 +1431,7 @@ "text_color": null } }, - "a35b4dacf24f47189a3bcc4880b291f2": { + "e4c11893781f4d85b1712b4a80b6a436": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1450,25 +1484,7 @@ "width": null } }, - "a53b263df44840a0a93d04b4fafa89ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee0dd83ecb8a4693b6b2d41796e233f1": { + "eafcb138fe5245fa89f293d52c113dc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1520,6 +1536,22 @@ "visibility": null, "width": null } + }, + "f92c25becce042d3a94a8626cca30cef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 75d048fa1..8f499904f 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:22.457057Z", - "iopub.status.busy": "2024-06-07T11:13:22.456885Z", - "iopub.status.idle": "2024-06-07T11:13:23.623481Z", - "shell.execute_reply": "2024-06-07T11:13:23.622936Z" + "iopub.execute_input": "2024-06-10T22:14:46.601589Z", + "iopub.status.busy": "2024-06-10T22:14:46.601405Z", + "iopub.status.idle": "2024-06-10T22:14:47.963397Z", + "shell.execute_reply": "2024-06-10T22:14:47.962724Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.626101Z", - "iopub.status.busy": "2024-06-07T11:13:23.625582Z", - "iopub.status.idle": "2024-06-07T11:13:23.642717Z", - "shell.execute_reply": "2024-06-07T11:13:23.642163Z" + "iopub.execute_input": "2024-06-10T22:14:47.966480Z", + "iopub.status.busy": "2024-06-10T22:14:47.966119Z", + "iopub.status.idle": "2024-06-10T22:14:47.986617Z", + "shell.execute_reply": "2024-06-10T22:14:47.985940Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.644833Z", - "iopub.status.busy": "2024-06-07T11:13:23.644452Z", - "iopub.status.idle": "2024-06-07T11:13:23.647494Z", - "shell.execute_reply": "2024-06-07T11:13:23.647031Z" + "iopub.execute_input": "2024-06-10T22:14:47.989571Z", + "iopub.status.busy": "2024-06-10T22:14:47.989187Z", + "iopub.status.idle": "2024-06-10T22:14:47.992579Z", + "shell.execute_reply": "2024-06-10T22:14:47.992025Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.649293Z", - "iopub.status.busy": "2024-06-07T11:13:23.649120Z", - "iopub.status.idle": "2024-06-07T11:13:23.758486Z", - "shell.execute_reply": "2024-06-07T11:13:23.757935Z" + "iopub.execute_input": "2024-06-10T22:14:47.994802Z", + "iopub.status.busy": "2024-06-10T22:14:47.994344Z", + "iopub.status.idle": "2024-06-10T22:14:48.073110Z", + "shell.execute_reply": "2024-06-10T22:14:48.072479Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.760645Z", - "iopub.status.busy": "2024-06-07T11:13:23.760459Z", - "iopub.status.idle": "2024-06-07T11:13:23.945647Z", - "shell.execute_reply": "2024-06-07T11:13:23.945005Z" + "iopub.execute_input": "2024-06-10T22:14:48.075336Z", + "iopub.status.busy": "2024-06-10T22:14:48.075150Z", + "iopub.status.idle": "2024-06-10T22:14:48.262148Z", + "shell.execute_reply": "2024-06-10T22:14:48.261574Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:23.948147Z", - "iopub.status.busy": "2024-06-07T11:13:23.947790Z", - "iopub.status.idle": "2024-06-07T11:13:24.158064Z", - "shell.execute_reply": "2024-06-07T11:13:24.157488Z" + "iopub.execute_input": "2024-06-10T22:14:48.265011Z", + "iopub.status.busy": "2024-06-10T22:14:48.264530Z", + "iopub.status.idle": "2024-06-10T22:14:48.516385Z", + "shell.execute_reply": "2024-06-10T22:14:48.515693Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:24.160309Z", - "iopub.status.busy": "2024-06-07T11:13:24.159973Z", - "iopub.status.idle": "2024-06-07T11:13:24.164463Z", - "shell.execute_reply": "2024-06-07T11:13:24.164038Z" + "iopub.execute_input": "2024-06-10T22:14:48.518922Z", + "iopub.status.busy": "2024-06-10T22:14:48.518556Z", + "iopub.status.idle": "2024-06-10T22:14:48.523753Z", + "shell.execute_reply": "2024-06-10T22:14:48.523278Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:24.166459Z", - "iopub.status.busy": "2024-06-07T11:13:24.166135Z", - "iopub.status.idle": "2024-06-07T11:13:24.171904Z", - "shell.execute_reply": "2024-06-07T11:13:24.171392Z" + "iopub.execute_input": "2024-06-10T22:14:48.525961Z", + "iopub.status.busy": "2024-06-10T22:14:48.525642Z", + "iopub.status.idle": "2024-06-10T22:14:48.532430Z", + "shell.execute_reply": "2024-06-10T22:14:48.531915Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:24.174043Z", - "iopub.status.busy": "2024-06-07T11:13:24.173661Z", - "iopub.status.idle": "2024-06-07T11:13:24.176350Z", - "shell.execute_reply": "2024-06-07T11:13:24.175828Z" + "iopub.execute_input": "2024-06-10T22:14:48.535036Z", + "iopub.status.busy": "2024-06-10T22:14:48.534633Z", + "iopub.status.idle": "2024-06-10T22:14:48.538085Z", + "shell.execute_reply": "2024-06-10T22:14:48.537632Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:24.178338Z", - "iopub.status.busy": "2024-06-07T11:13:24.178048Z", - "iopub.status.idle": "2024-06-07T11:13:32.368966Z", - "shell.execute_reply": "2024-06-07T11:13:32.368335Z" + "iopub.execute_input": "2024-06-10T22:14:48.540321Z", + "iopub.status.busy": "2024-06-10T22:14:48.539950Z", + "iopub.status.idle": "2024-06-10T22:14:57.363053Z", + "shell.execute_reply": "2024-06-10T22:14:57.362452Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.372203Z", - "iopub.status.busy": "2024-06-07T11:13:32.371560Z", - "iopub.status.idle": "2024-06-07T11:13:32.378708Z", - "shell.execute_reply": "2024-06-07T11:13:32.378235Z" + "iopub.execute_input": "2024-06-10T22:14:57.365901Z", + "iopub.status.busy": "2024-06-10T22:14:57.365505Z", + "iopub.status.idle": "2024-06-10T22:14:57.373214Z", + "shell.execute_reply": "2024-06-10T22:14:57.372648Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.380773Z", - "iopub.status.busy": "2024-06-07T11:13:32.380443Z", - "iopub.status.idle": "2024-06-07T11:13:32.384052Z", - "shell.execute_reply": "2024-06-07T11:13:32.383621Z" + "iopub.execute_input": "2024-06-10T22:14:57.375312Z", + "iopub.status.busy": "2024-06-10T22:14:57.374997Z", + "iopub.status.idle": "2024-06-10T22:14:57.378596Z", + "shell.execute_reply": "2024-06-10T22:14:57.378153Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.386009Z", - "iopub.status.busy": "2024-06-07T11:13:32.385699Z", - "iopub.status.idle": "2024-06-07T11:13:32.389012Z", - "shell.execute_reply": "2024-06-07T11:13:32.388462Z" + "iopub.execute_input": "2024-06-10T22:14:57.380585Z", + "iopub.status.busy": "2024-06-10T22:14:57.380272Z", + "iopub.status.idle": "2024-06-10T22:14:57.383616Z", + "shell.execute_reply": "2024-06-10T22:14:57.383070Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.390975Z", - "iopub.status.busy": "2024-06-07T11:13:32.390672Z", - "iopub.status.idle": "2024-06-07T11:13:32.393766Z", - "shell.execute_reply": "2024-06-07T11:13:32.393272Z" + "iopub.execute_input": "2024-06-10T22:14:57.385690Z", + "iopub.status.busy": "2024-06-10T22:14:57.385387Z", + "iopub.status.idle": "2024-06-10T22:14:57.388436Z", + "shell.execute_reply": "2024-06-10T22:14:57.387971Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.395742Z", - "iopub.status.busy": "2024-06-07T11:13:32.395438Z", - "iopub.status.idle": "2024-06-07T11:13:32.403538Z", - "shell.execute_reply": "2024-06-07T11:13:32.403081Z" + "iopub.execute_input": "2024-06-10T22:14:57.390349Z", + "iopub.status.busy": "2024-06-10T22:14:57.390034Z", + "iopub.status.idle": "2024-06-10T22:14:57.398191Z", + "shell.execute_reply": "2024-06-10T22:14:57.397748Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.405599Z", - "iopub.status.busy": "2024-06-07T11:13:32.405271Z", - "iopub.status.idle": "2024-06-07T11:13:32.407745Z", - "shell.execute_reply": "2024-06-07T11:13:32.407324Z" + "iopub.execute_input": "2024-06-10T22:14:57.400118Z", + "iopub.status.busy": "2024-06-10T22:14:57.399797Z", + "iopub.status.idle": "2024-06-10T22:14:57.402422Z", + "shell.execute_reply": "2024-06-10T22:14:57.401972Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.409824Z", - "iopub.status.busy": "2024-06-07T11:13:32.409516Z", - "iopub.status.idle": "2024-06-07T11:13:32.529589Z", - "shell.execute_reply": "2024-06-07T11:13:32.528990Z" + "iopub.execute_input": "2024-06-10T22:14:57.404524Z", + "iopub.status.busy": "2024-06-10T22:14:57.404088Z", + "iopub.status.idle": "2024-06-10T22:14:57.523103Z", + "shell.execute_reply": "2024-06-10T22:14:57.522531Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.531987Z", - "iopub.status.busy": "2024-06-07T11:13:32.531643Z", - "iopub.status.idle": "2024-06-07T11:13:32.636728Z", - "shell.execute_reply": "2024-06-07T11:13:32.636152Z" + "iopub.execute_input": "2024-06-10T22:14:57.525307Z", + "iopub.status.busy": "2024-06-10T22:14:57.525127Z", + "iopub.status.idle": "2024-06-10T22:14:57.628992Z", + "shell.execute_reply": "2024-06-10T22:14:57.628473Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:32.639460Z", - "iopub.status.busy": "2024-06-07T11:13:32.638946Z", - "iopub.status.idle": "2024-06-07T11:13:33.136914Z", - "shell.execute_reply": "2024-06-07T11:13:33.136382Z" + "iopub.execute_input": "2024-06-10T22:14:57.631148Z", + "iopub.status.busy": "2024-06-10T22:14:57.630973Z", + "iopub.status.idle": "2024-06-10T22:14:58.114361Z", + "shell.execute_reply": "2024-06-10T22:14:58.113818Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:33.139616Z", - "iopub.status.busy": "2024-06-07T11:13:33.139195Z", - "iopub.status.idle": "2024-06-07T11:13:33.216578Z", - "shell.execute_reply": "2024-06-07T11:13:33.216024Z" + "iopub.execute_input": "2024-06-10T22:14:58.116950Z", + "iopub.status.busy": "2024-06-10T22:14:58.116740Z", + "iopub.status.idle": "2024-06-10T22:14:58.197289Z", + "shell.execute_reply": "2024-06-10T22:14:58.196702Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:33.218834Z", - "iopub.status.busy": "2024-06-07T11:13:33.218479Z", - "iopub.status.idle": "2024-06-07T11:13:33.227587Z", - "shell.execute_reply": "2024-06-07T11:13:33.226994Z" + "iopub.execute_input": "2024-06-10T22:14:58.199614Z", + "iopub.status.busy": "2024-06-10T22:14:58.199233Z", + "iopub.status.idle": "2024-06-10T22:14:58.207769Z", + "shell.execute_reply": "2024-06-10T22:14:58.207304Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:33.230097Z", - "iopub.status.busy": "2024-06-07T11:13:33.229550Z", - "iopub.status.idle": "2024-06-07T11:13:33.232597Z", - "shell.execute_reply": "2024-06-07T11:13:33.232041Z" + "iopub.execute_input": "2024-06-10T22:14:58.209778Z", + "iopub.status.busy": "2024-06-10T22:14:58.209453Z", + "iopub.status.idle": "2024-06-10T22:14:58.212027Z", + "shell.execute_reply": "2024-06-10T22:14:58.211588Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:33.234586Z", - "iopub.status.busy": "2024-06-07T11:13:33.234261Z", - "iopub.status.idle": "2024-06-07T11:13:38.735861Z", - "shell.execute_reply": "2024-06-07T11:13:38.735056Z" + "iopub.execute_input": "2024-06-10T22:14:58.214137Z", + "iopub.status.busy": "2024-06-10T22:14:58.213819Z", + "iopub.status.idle": "2024-06-10T22:15:03.627726Z", + "shell.execute_reply": "2024-06-10T22:15:03.627107Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:38.738627Z", - "iopub.status.busy": "2024-06-07T11:13:38.738109Z", - "iopub.status.idle": "2024-06-07T11:13:38.747199Z", - "shell.execute_reply": "2024-06-07T11:13:38.746710Z" + "iopub.execute_input": "2024-06-10T22:15:03.630081Z", + "iopub.status.busy": "2024-06-10T22:15:03.629882Z", + "iopub.status.idle": "2024-06-10T22:15:03.638937Z", + "shell.execute_reply": "2024-06-10T22:15:03.638474Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:38.749375Z", - "iopub.status.busy": "2024-06-07T11:13:38.749182Z", - "iopub.status.idle": "2024-06-07T11:13:38.815000Z", - "shell.execute_reply": "2024-06-07T11:13:38.814490Z" + "iopub.execute_input": "2024-06-10T22:15:03.640866Z", + "iopub.status.busy": "2024-06-10T22:15:03.640688Z", + "iopub.status.idle": "2024-06-10T22:15:03.705548Z", + "shell.execute_reply": "2024-06-10T22:15:03.705035Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 3eed7963c..c52da03cd 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -790,13 +790,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1186,7 +1186,7 @@

    Get label quality scores -{"state": {"462c25bcc88a47fe9dba86800f768f23": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "888b89fd991d4378a4b03dadb10e903d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e331785f7a474f2097437322e2f4976a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_462c25bcc88a47fe9dba86800f768f23", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_888b89fd991d4378a4b03dadb10e903d", "tabbable": null, "tooltip": null, "value": 30.0}}, "681176fb1b484bf0b12e9ab472bca24f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58d70aea073e46b09dc8fdf2b9ce62d7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "63674e4e58e1469e9d2b7545eaf4762d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_681176fb1b484bf0b12e9ab472bca24f", "placeholder": "\u200b", "style": "IPY_MODEL_58d70aea073e46b09dc8fdf2b9ce62d7", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "02024670245944c6a43046d8345e39e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d9b409c09e445a3bf903bf568e96d4f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "31ddefea64414b7bb43e4b175ddbb50f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_02024670245944c6a43046d8345e39e0", "placeholder": "\u200b", "style": "IPY_MODEL_4d9b409c09e445a3bf903bf568e96d4f", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007823.96it/s]"}}, "456992924b764a79921db8b27877b920": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e8266628fc941b4bf18dcadf020b8af": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_63674e4e58e1469e9d2b7545eaf4762d", "IPY_MODEL_e331785f7a474f2097437322e2f4976a", "IPY_MODEL_31ddefea64414b7bb43e4b175ddbb50f"], "layout": "IPY_MODEL_456992924b764a79921db8b27877b920", "tabbable": null, "tooltip": null}}, "33a30e9c3e17483f9a9a75324aafc628": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "770596981e85421283336c080f17fa13": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "834d78931762498fbb2fd0a765af2160": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_33a30e9c3e17483f9a9a75324aafc628", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_770596981e85421283336c080f17fa13", "tabbable": null, "tooltip": null, "value": 30.0}}, "69d9ddbe65194fb690cb729f9c5b3aaf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "988b7f917302422cbde432537a86e20d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eb9cb67782fe469f9deed2869d57a350": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_69d9ddbe65194fb690cb729f9c5b3aaf", "placeholder": "\u200b", "style": "IPY_MODEL_988b7f917302422cbde432537a86e20d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "c00f14f1fa3946bcb4cad835ac1fe6af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a3a1e24187ee4365acbdf73d8a3d758c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d7f021c3712d4633a1752faf1688871e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c00f14f1fa3946bcb4cad835ac1fe6af", "placeholder": "\u200b", "style": "IPY_MODEL_a3a1e24187ee4365acbdf73d8a3d758c", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.38it/s]"}}, "8f6baf6102bf4300bd06bdba8f67a178": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5ebcf671a614d49a4e7047730a75dfd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_eb9cb67782fe469f9deed2869d57a350", "IPY_MODEL_834d78931762498fbb2fd0a765af2160", "IPY_MODEL_d7f021c3712d4633a1752faf1688871e"], "layout": "IPY_MODEL_8f6baf6102bf4300bd06bdba8f67a178", "tabbable": null, "tooltip": null}}, "f2b6b88c865b4e9fa7be8cd3efa1cffe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "842cdb624f454adaac6a2c4eafadc8a0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "84b203c550b5494c83706d88a040daea": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f2b6b88c865b4e9fa7be8cd3efa1cffe", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_842cdb624f454adaac6a2c4eafadc8a0", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "272658dba82b4ee288b4282b63236002": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fece2a1ada064790b82512be2393555c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "01dc7c7f1b4d4d82a529531a58042f4f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_272658dba82b4ee288b4282b63236002", "placeholder": "\u200b", "style": "IPY_MODEL_fece2a1ada064790b82512be2393555c", "tabbable": null, "tooltip": null, "value": "100%"}}, "48f3ccb6d08d491496bc7c0c78b428c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b583ea6a0a6d4c94843955f81bfa00e1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cfc0195d1c7b4151ad84de4df3f0d0bd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_48f3ccb6d08d491496bc7c0c78b428c8", "placeholder": "\u200b", "style": "IPY_MODEL_b583ea6a0a6d4c94843955f81bfa00e1", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007155073.56it/s]"}}, "8f74a8bedb9a474b869c5e7be44fb83f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd17687ea1d4456d87e7bf7b8208cb6a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_01dc7c7f1b4d4d82a529531a58042f4f", "IPY_MODEL_84b203c550b5494c83706d88a040daea", "IPY_MODEL_cfc0195d1c7b4151ad84de4df3f0d0bd"], "layout": "IPY_MODEL_8f74a8bedb9a474b869c5e7be44fb83f", "tabbable": null, "tooltip": null}}, "8ad5d84d1aa0455d8f06c37279560d81": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba653dd5644a4623930b9ed0bd812034": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "424d9949f33f4c5ea40ccba9e73f9353": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ad5d84d1aa0455d8f06c37279560d81", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ba653dd5644a4623930b9ed0bd812034", "tabbable": null, "tooltip": null, "value": 30.0}}, "985ffda7f52e4b0c9bcb49093dd321d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89404e1c0bf44ed0adb94b2e37d47739": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cdf1bc0368124525865e4dfbe50d3b2e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_985ffda7f52e4b0c9bcb49093dd321d4", "placeholder": "\u200b", "style": "IPY_MODEL_89404e1c0bf44ed0adb94b2e37d47739", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "36e3a2d2d10c46c0890250bfa03f67fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b5bff299b4449cd8018b9db86dad4b1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4422d539a8c64824be05445c9dea005a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_36e3a2d2d10c46c0890250bfa03f67fc", "placeholder": "\u200b", "style": "IPY_MODEL_0b5bff299b4449cd8018b9db86dad4b1", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.12it/s]"}}, "159a9a4a44c7488f94db4a71a93a64f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0039b1e3b5d24ed394bec67181313e41": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cdf1bc0368124525865e4dfbe50d3b2e", "IPY_MODEL_424d9949f33f4c5ea40ccba9e73f9353", "IPY_MODEL_4422d539a8c64824be05445c9dea005a"], "layout": "IPY_MODEL_159a9a4a44c7488f94db4a71a93a64f8", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"6fdb7dc35e1f47be9408239402e45cb6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce51fc175c474cb7b9aa5c4fa47251a7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cc3aaf56c4b042d6b507309870b96219": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6fdb7dc35e1f47be9408239402e45cb6", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ce51fc175c474cb7b9aa5c4fa47251a7", "tabbable": null, "tooltip": null, "value": 30.0}}, "5701332c04ad41f0b0c7f8a7326034fe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c4459535166c4876ac7d9cac2c0b3f0a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "485b2b12f61e4e2a8916f1fe8c3eeea0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5701332c04ad41f0b0c7f8a7326034fe", "placeholder": "\u200b", "style": "IPY_MODEL_c4459535166c4876ac7d9cac2c0b3f0a", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "c53a2f4d9c904261abfe681398d916a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40837cc385eb4cde9c4bf1b66d76b555": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ff056a8323944276a4e555272ee3eee2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c53a2f4d9c904261abfe681398d916a8", "placeholder": "\u200b", "style": "IPY_MODEL_40837cc385eb4cde9c4bf1b66d76b555", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007792.16it/s]"}}, "3115edca25944b31b49c0b77915d1923": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a405bd76ea4240168ab84903143b1d22": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_485b2b12f61e4e2a8916f1fe8c3eeea0", "IPY_MODEL_cc3aaf56c4b042d6b507309870b96219", "IPY_MODEL_ff056a8323944276a4e555272ee3eee2"], "layout": "IPY_MODEL_3115edca25944b31b49c0b77915d1923", "tabbable": null, "tooltip": null}}, "824dc0b2d89e47859d9bff3855022113": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d219e313cbc45e88d0d4a5c874f5fa2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3d5ff5392adb41edb8df3dd86ed79af8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_824dc0b2d89e47859d9bff3855022113", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9d219e313cbc45e88d0d4a5c874f5fa2", "tabbable": null, "tooltip": null, "value": 30.0}}, "3e4a07bde3a74e148864b7700e692af4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27f5f2ba8cb14d0a91eeba394a7bebd4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "155ee60034db48c4b4e0677986370ff3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3e4a07bde3a74e148864b7700e692af4", "placeholder": "\u200b", "style": "IPY_MODEL_27f5f2ba8cb14d0a91eeba394a7bebd4", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "7b307e15575e4a55bbbe94c8568b4c07": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c60457c6b5948ee880fde3aa728a52d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1bae0c62e31b4d2998c8e0b6cf2e1dfe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b307e15575e4a55bbbe94c8568b4c07", "placeholder": "\u200b", "style": "IPY_MODEL_5c60457c6b5948ee880fde3aa728a52d", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.43it/s]"}}, "cbd1df140b6242378240f5e67e015809": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1cab7337a5134728b238afb1207c2e16": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_155ee60034db48c4b4e0677986370ff3", "IPY_MODEL_3d5ff5392adb41edb8df3dd86ed79af8", "IPY_MODEL_1bae0c62e31b4d2998c8e0b6cf2e1dfe"], "layout": "IPY_MODEL_cbd1df140b6242378240f5e67e015809", "tabbable": null, "tooltip": null}}, "4766bf08a55649edb0eb6997c4e0d119": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6921b7a91ca46a4bd8fc7d9b8ec11a0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d126189cb59048e2a6d57e0f2c37197e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4766bf08a55649edb0eb6997c4e0d119", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b6921b7a91ca46a4bd8fc7d9b8ec11a0", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "c6c8cf3ccdd748f189e7453d84f3fe23": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a25099387deb4c41b6d4d1905acdbe48": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "765118cd2e4849028cb54f74b1247222": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c6c8cf3ccdd748f189e7453d84f3fe23", "placeholder": "\u200b", "style": "IPY_MODEL_a25099387deb4c41b6d4d1905acdbe48", "tabbable": null, "tooltip": null, "value": "100%"}}, "587fb49afe7e452e8b9054c47150e310": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e22ba88411b4c98937ad9abf1c321da": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fe4a4d952cf345d1aace991841711b49": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_587fb49afe7e452e8b9054c47150e310", "placeholder": "\u200b", "style": "IPY_MODEL_9e22ba88411b4c98937ad9abf1c321da", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007155918.42it/s]"}}, "d2d9fe79e86c4c8ab2cef10fb6edd54b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b2590e4ee6240cbadf69b0e406f1f6f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_765118cd2e4849028cb54f74b1247222", "IPY_MODEL_d126189cb59048e2a6d57e0f2c37197e", "IPY_MODEL_fe4a4d952cf345d1aace991841711b49"], "layout": "IPY_MODEL_d2d9fe79e86c4c8ab2cef10fb6edd54b", "tabbable": null, "tooltip": null}}, "e08166db00cc43f29a6259cd777919d5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "370ab1674b4c417cb166f3bc0ead6e2a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d84a9735aa484dacaae11b9b76aacd45": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e08166db00cc43f29a6259cd777919d5", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_370ab1674b4c417cb166f3bc0ead6e2a", "tabbable": null, "tooltip": null, "value": 30.0}}, "fcf52af6f4b141acb106085939d775d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b342f6da1895419abbcf4e29ab2dfdf2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a5136e1bd0c046028b22a7771061e8a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fcf52af6f4b141acb106085939d775d0", "placeholder": "\u200b", "style": "IPY_MODEL_b342f6da1895419abbcf4e29ab2dfdf2", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "0c93bb2cd1224bdc84079017e43429f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9701d0b6cfbc45aa9cb35a4e68515c1e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d0a6884d253342ffa218b5ea3681e8bd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c93bb2cd1224bdc84079017e43429f8", "placeholder": "\u200b", "style": "IPY_MODEL_9701d0b6cfbc45aa9cb35a4e68515c1e", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.27it/s]"}}, "069d62f313a34fce922923af720802d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e81d95d8b6bc4962b97a4ca2f9cea7f2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a5136e1bd0c046028b22a7771061e8a5", "IPY_MODEL_d84a9735aa484dacaae11b9b76aacd45", "IPY_MODEL_d0a6884d253342ffa218b5ea3681e8bd"], "layout": "IPY_MODEL_069d62f313a34fce922923af720802d3", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 7a520dbe7..be9a9cddb 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:41.633265Z", - "iopub.status.busy": "2024-06-07T11:13:41.633077Z", - "iopub.status.idle": "2024-06-07T11:13:42.863467Z", - "shell.execute_reply": "2024-06-07T11:13:42.862721Z" + "iopub.execute_input": "2024-06-10T22:15:06.746803Z", + "iopub.status.busy": "2024-06-10T22:15:06.746396Z", + "iopub.status.idle": "2024-06-10T22:15:08.025245Z", + "shell.execute_reply": "2024-06-10T22:15:08.024547Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:13:42.866359Z", - "iopub.status.busy": "2024-06-07T11:13:42.866088Z", - "iopub.status.idle": "2024-06-07T11:14:22.567596Z", - "shell.execute_reply": "2024-06-07T11:14:22.566969Z" + "iopub.execute_input": "2024-06-10T22:15:08.028045Z", + "iopub.status.busy": "2024-06-10T22:15:08.027654Z", + "iopub.status.idle": "2024-06-10T22:16:04.871816Z", + "shell.execute_reply": "2024-06-10T22:16:04.871065Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:22.570203Z", - "iopub.status.busy": "2024-06-07T11:14:22.569833Z", - "iopub.status.idle": "2024-06-07T11:14:23.673853Z", - "shell.execute_reply": "2024-06-07T11:14:23.673205Z" + "iopub.execute_input": "2024-06-10T22:16:04.874476Z", + "iopub.status.busy": "2024-06-10T22:16:04.874287Z", + "iopub.status.idle": "2024-06-10T22:16:06.049701Z", + "shell.execute_reply": "2024-06-10T22:16:06.049069Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.676484Z", - "iopub.status.busy": "2024-06-07T11:14:23.676049Z", - "iopub.status.idle": "2024-06-07T11:14:23.679724Z", - "shell.execute_reply": "2024-06-07T11:14:23.679291Z" + "iopub.execute_input": "2024-06-10T22:16:06.052325Z", + "iopub.status.busy": "2024-06-10T22:16:06.052013Z", + "iopub.status.idle": "2024-06-10T22:16:06.055512Z", + "shell.execute_reply": "2024-06-10T22:16:06.055042Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.681764Z", - "iopub.status.busy": "2024-06-07T11:14:23.681498Z", - "iopub.status.idle": "2024-06-07T11:14:23.685370Z", - "shell.execute_reply": "2024-06-07T11:14:23.684909Z" + "iopub.execute_input": "2024-06-10T22:16:06.057752Z", + "iopub.status.busy": "2024-06-10T22:16:06.057325Z", + "iopub.status.idle": "2024-06-10T22:16:06.061364Z", + "shell.execute_reply": "2024-06-10T22:16:06.060833Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.687492Z", - "iopub.status.busy": "2024-06-07T11:14:23.687183Z", - "iopub.status.idle": "2024-06-07T11:14:23.690708Z", - "shell.execute_reply": "2024-06-07T11:14:23.690269Z" + "iopub.execute_input": "2024-06-10T22:16:06.063574Z", + "iopub.status.busy": "2024-06-10T22:16:06.063187Z", + "iopub.status.idle": "2024-06-10T22:16:06.066929Z", + "shell.execute_reply": "2024-06-10T22:16:06.066359Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.692723Z", - "iopub.status.busy": "2024-06-07T11:14:23.692310Z", - "iopub.status.idle": "2024-06-07T11:14:23.695215Z", - "shell.execute_reply": "2024-06-07T11:14:23.694706Z" + "iopub.execute_input": "2024-06-10T22:16:06.069120Z", + "iopub.status.busy": "2024-06-10T22:16:06.068613Z", + "iopub.status.idle": "2024-06-10T22:16:06.071626Z", + "shell.execute_reply": "2024-06-10T22:16:06.071208Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:23.697324Z", - "iopub.status.busy": "2024-06-07T11:14:23.697012Z", - "iopub.status.idle": "2024-06-07T11:14:57.715964Z", - "shell.execute_reply": "2024-06-07T11:14:57.715352Z" + "iopub.execute_input": "2024-06-10T22:16:06.073640Z", + "iopub.status.busy": "2024-06-10T22:16:06.073320Z", + "iopub.status.idle": "2024-06-10T22:16:39.784120Z", + "shell.execute_reply": "2024-06-10T22:16:39.783483Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e8266628fc941b4bf18dcadf020b8af", + "model_id": "a405bd76ea4240168ab84903143b1d22", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b5ebcf671a614d49a4e7047730a75dfd", + "model_id": "1cab7337a5134728b238afb1207c2e16", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:57.718673Z", - "iopub.status.busy": "2024-06-07T11:14:57.718432Z", - "iopub.status.idle": "2024-06-07T11:14:58.391302Z", - "shell.execute_reply": "2024-06-07T11:14:58.390709Z" + "iopub.execute_input": "2024-06-10T22:16:39.786849Z", + "iopub.status.busy": "2024-06-10T22:16:39.786440Z", + "iopub.status.idle": "2024-06-10T22:16:40.465480Z", + "shell.execute_reply": "2024-06-10T22:16:40.464938Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:14:58.393567Z", - "iopub.status.busy": "2024-06-07T11:14:58.393135Z", - "iopub.status.idle": "2024-06-07T11:15:01.140035Z", - "shell.execute_reply": "2024-06-07T11:15:01.139443Z" + "iopub.execute_input": "2024-06-10T22:16:40.467844Z", + "iopub.status.busy": "2024-06-10T22:16:40.467455Z", + "iopub.status.idle": "2024-06-10T22:16:43.243537Z", + "shell.execute_reply": "2024-06-10T22:16:43.242992Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:01.142296Z", - "iopub.status.busy": "2024-06-07T11:15:01.141947Z", - "iopub.status.idle": "2024-06-07T11:15:33.667226Z", - "shell.execute_reply": "2024-06-07T11:15:33.666734Z" + "iopub.execute_input": "2024-06-10T22:16:43.245814Z", + "iopub.status.busy": "2024-06-10T22:16:43.245483Z", + "iopub.status.idle": "2024-06-10T22:17:15.426143Z", + "shell.execute_reply": "2024-06-10T22:17:15.425688Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cd17687ea1d4456d87e7bf7b8208cb6a", + "model_id": "8b2590e4ee6240cbadf69b0e406f1f6f", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:33.669239Z", - "iopub.status.busy": "2024-06-07T11:15:33.669060Z", - "iopub.status.idle": "2024-06-07T11:15:48.152215Z", - "shell.execute_reply": "2024-06-07T11:15:48.151663Z" + "iopub.execute_input": "2024-06-10T22:17:15.428232Z", + "iopub.status.busy": "2024-06-10T22:17:15.428052Z", + "iopub.status.idle": "2024-06-10T22:17:30.036465Z", + "shell.execute_reply": "2024-06-10T22:17:30.035891Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:48.154624Z", - "iopub.status.busy": "2024-06-07T11:15:48.154425Z", - "iopub.status.idle": "2024-06-07T11:15:51.994662Z", - "shell.execute_reply": "2024-06-07T11:15:51.994164Z" + "iopub.execute_input": "2024-06-10T22:17:30.039015Z", + "iopub.status.busy": "2024-06-10T22:17:30.038809Z", + "iopub.status.idle": "2024-06-10T22:17:33.812633Z", + "shell.execute_reply": "2024-06-10T22:17:33.812110Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:51.996696Z", - "iopub.status.busy": "2024-06-07T11:15:51.996516Z", - "iopub.status.idle": "2024-06-07T11:15:53.447714Z", - "shell.execute_reply": "2024-06-07T11:15:53.447083Z" + "iopub.execute_input": "2024-06-10T22:17:33.814712Z", + "iopub.status.busy": "2024-06-10T22:17:33.814528Z", + "iopub.status.idle": "2024-06-10T22:17:35.239992Z", + "shell.execute_reply": "2024-06-10T22:17:35.239415Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0039b1e3b5d24ed394bec67181313e41", + "model_id": "e81d95d8b6bc4962b97a4ca2f9cea7f2", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:53.450302Z", - "iopub.status.busy": "2024-06-07T11:15:53.450118Z", - "iopub.status.idle": "2024-06-07T11:15:53.482950Z", - "shell.execute_reply": "2024-06-07T11:15:53.481844Z" + "iopub.execute_input": "2024-06-10T22:17:35.242610Z", + "iopub.status.busy": "2024-06-10T22:17:35.242225Z", + "iopub.status.idle": "2024-06-10T22:17:35.272786Z", + "shell.execute_reply": "2024-06-10T22:17:35.272221Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:53.486646Z", - "iopub.status.busy": "2024-06-07T11:15:53.486386Z", - "iopub.status.idle": "2024-06-07T11:15:59.636100Z", - "shell.execute_reply": "2024-06-07T11:15:59.635590Z" + "iopub.execute_input": "2024-06-10T22:17:35.275346Z", + "iopub.status.busy": "2024-06-10T22:17:35.274958Z", + "iopub.status.idle": "2024-06-10T22:17:41.270747Z", + "shell.execute_reply": "2024-06-10T22:17:41.270164Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:15:59.638473Z", - "iopub.status.busy": "2024-06-07T11:15:59.638126Z", - "iopub.status.idle": "2024-06-07T11:15:59.694204Z", - "shell.execute_reply": "2024-06-07T11:15:59.693681Z" + "iopub.execute_input": "2024-06-10T22:17:41.272989Z", + "iopub.status.busy": "2024-06-10T22:17:41.272627Z", + "iopub.status.idle": "2024-06-10T22:17:41.329124Z", + "shell.execute_reply": "2024-06-10T22:17:41.328511Z" }, "nbsphinx": "hidden" }, @@ -1038,54 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0039b1e3b5d24ed394bec67181313e41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cdf1bc0368124525865e4dfbe50d3b2e", - "IPY_MODEL_424d9949f33f4c5ea40ccba9e73f9353", - "IPY_MODEL_4422d539a8c64824be05445c9dea005a" - ], - "layout": "IPY_MODEL_159a9a4a44c7488f94db4a71a93a64f8", - "tabbable": null, - "tooltip": null - } - }, - "01dc7c7f1b4d4d82a529531a58042f4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_272658dba82b4ee288b4282b63236002", - "placeholder": "​", - "style": "IPY_MODEL_fece2a1ada064790b82512be2393555c", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "02024670245944c6a43046d8345e39e0": { + "069d62f313a34fce922923af720802d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1138,25 +1091,7 @@ "width": null } }, - "0b5bff299b4449cd8018b9db86dad4b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "159a9a4a44c7488f94db4a71a93a64f8": { + "0c93bb2cd1224bdc84079017e43429f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1209,7 +1144,95 @@ "width": null } }, - "272658dba82b4ee288b4282b63236002": { + "155ee60034db48c4b4e0677986370ff3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e4a07bde3a74e148864b7700e692af4", + "placeholder": "​", + "style": "IPY_MODEL_27f5f2ba8cb14d0a91eeba394a7bebd4", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "1bae0c62e31b4d2998c8e0b6cf2e1dfe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b307e15575e4a55bbbe94c8568b4c07", + "placeholder": "​", + "style": "IPY_MODEL_5c60457c6b5948ee880fde3aa728a52d", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.43it/s]" + } + }, + "1cab7337a5134728b238afb1207c2e16": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_155ee60034db48c4b4e0677986370ff3", + "IPY_MODEL_3d5ff5392adb41edb8df3dd86ed79af8", + "IPY_MODEL_1bae0c62e31b4d2998c8e0b6cf2e1dfe" + ], + "layout": "IPY_MODEL_cbd1df140b6242378240f5e67e015809", + "tabbable": null, + "tooltip": null + } + }, + "27f5f2ba8cb14d0a91eeba394a7bebd4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3115edca25944b31b49c0b77915d1923": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1262,30 +1285,49 @@ "width": null } }, - "31ddefea64414b7bb43e4b175ddbb50f": { + "370ab1674b4c417cb166f3bc0ead6e2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d5ff5392adb41edb8df3dd86ed79af8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_02024670245944c6a43046d8345e39e0", - "placeholder": "​", - "style": "IPY_MODEL_4d9b409c09e445a3bf903bf568e96d4f", + "layout": "IPY_MODEL_824dc0b2d89e47859d9bff3855022113", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9d219e313cbc45e88d0d4a5c874f5fa2", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 823.96it/s]" + "value": 30.0 } }, - "33a30e9c3e17483f9a9a75324aafc628": { + "3e4a07bde3a74e148864b7700e692af4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1338,7 +1380,25 @@ "width": null } }, - "36e3a2d2d10c46c0890250bfa03f67fc": { + "40837cc385eb4cde9c4bf1b66d76b555": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4766bf08a55649edb0eb6997c4e0d119": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1391,33 +1451,7 @@ "width": null } }, - "424d9949f33f4c5ea40ccba9e73f9353": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ad5d84d1aa0455d8f06c37279560d81", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ba653dd5644a4623930b9ed0bd812034", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "4422d539a8c64824be05445c9dea005a": { + "485b2b12f61e4e2a8916f1fe8c3eeea0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1432,15 +1466,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_36e3a2d2d10c46c0890250bfa03f67fc", + "layout": "IPY_MODEL_5701332c04ad41f0b0c7f8a7326034fe", "placeholder": "​", - "style": "IPY_MODEL_0b5bff299b4449cd8018b9db86dad4b1", + "style": "IPY_MODEL_c4459535166c4876ac7d9cac2c0b3f0a", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.12it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "456992924b764a79921db8b27877b920": { + "5701332c04ad41f0b0c7f8a7326034fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1493,7 +1527,7 @@ "width": null } }, - "462c25bcc88a47fe9dba86800f768f23": { + "587fb49afe7e452e8b9054c47150e310": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1546,7 +1580,25 @@ "width": null } }, - "48f3ccb6d08d491496bc7c0c78b428c8": { + "5c60457c6b5948ee880fde3aa728a52d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6fdb7dc35e1f47be9408239402e45cb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1599,43 +1651,7 @@ "width": null } }, - "4d9b409c09e445a3bf903bf568e96d4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "58d70aea073e46b09dc8fdf2b9ce62d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "63674e4e58e1469e9d2b7545eaf4762d": { + "765118cd2e4849028cb54f74b1247222": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1650,15 +1666,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_681176fb1b484bf0b12e9ab472bca24f", + "layout": "IPY_MODEL_c6c8cf3ccdd748f189e7453d84f3fe23", "placeholder": "​", - "style": "IPY_MODEL_58d70aea073e46b09dc8fdf2b9ce62d7", + "style": "IPY_MODEL_a25099387deb4c41b6d4d1905acdbe48", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "100%" } }, - "681176fb1b484bf0b12e9ab472bca24f": { + "7b307e15575e4a55bbbe94c8568b4c07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1711,7 +1727,7 @@ "width": null } }, - "69d9ddbe65194fb690cb729f9c5b3aaf": { + "824dc0b2d89e47859d9bff3855022113": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1764,14 +1780,56 @@ "width": null } }, - "770596981e85421283336c080f17fa13": { + "8b2590e4ee6240cbadf69b0e406f1f6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_765118cd2e4849028cb54f74b1247222", + "IPY_MODEL_d126189cb59048e2a6d57e0f2c37197e", + "IPY_MODEL_fe4a4d952cf345d1aace991841711b49" + ], + "layout": "IPY_MODEL_d2d9fe79e86c4c8ab2cef10fb6edd54b", + "tabbable": null, + "tooltip": null + } + }, + "9701d0b6cfbc45aa9cb35a4e68515c1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d219e313cbc45e88d0d4a5c874f5fa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1780,7 +1838,43 @@ "description_width": "" } }, - "7e8266628fc941b4bf18dcadf020b8af": { + "9e22ba88411b4c98937ad9abf1c321da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a25099387deb4c41b6d4d1905acdbe48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a405bd76ea4240168ab84903143b1d22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1795,84 +1889,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_63674e4e58e1469e9d2b7545eaf4762d", - "IPY_MODEL_e331785f7a474f2097437322e2f4976a", - "IPY_MODEL_31ddefea64414b7bb43e4b175ddbb50f" + "IPY_MODEL_485b2b12f61e4e2a8916f1fe8c3eeea0", + "IPY_MODEL_cc3aaf56c4b042d6b507309870b96219", + "IPY_MODEL_ff056a8323944276a4e555272ee3eee2" ], - "layout": "IPY_MODEL_456992924b764a79921db8b27877b920", + "layout": "IPY_MODEL_3115edca25944b31b49c0b77915d1923", "tabbable": null, "tooltip": null } }, - "834d78931762498fbb2fd0a765af2160": { + "a5136e1bd0c046028b22a7771061e8a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_33a30e9c3e17483f9a9a75324aafc628", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_770596981e85421283336c080f17fa13", + "layout": "IPY_MODEL_fcf52af6f4b141acb106085939d775d0", + "placeholder": "​", + "style": "IPY_MODEL_b342f6da1895419abbcf4e29ab2dfdf2", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "842cdb624f454adaac6a2c4eafadc8a0": { + "b342f6da1895419abbcf4e29ab2dfdf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "84b203c550b5494c83706d88a040daea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f2b6b88c865b4e9fa7be8cd3efa1cffe", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_842cdb624f454adaac6a2c4eafadc8a0", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "888b89fd991d4378a4b03dadb10e903d": { + "b6921b7a91ca46a4bd8fc7d9b8ec11a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1888,7 +1955,7 @@ "description_width": "" } }, - "89404e1c0bf44ed0adb94b2e37d47739": { + "c4459535166c4876ac7d9cac2c0b3f0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1906,7 +1973,7 @@ "text_color": null } }, - "8ad5d84d1aa0455d8f06c37279560d81": { + "c53a2f4d9c904261abfe681398d916a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1959,7 +2026,7 @@ "width": null } }, - "8f6baf6102bf4300bd06bdba8f67a178": { + "c6c8cf3ccdd748f189e7453d84f3fe23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2012,7 +2079,7 @@ "width": null } }, - "8f74a8bedb9a474b869c5e7be44fb83f": { + "cbd1df140b6242378240f5e67e015809": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2065,7 +2132,98 @@ "width": null } }, - "985ffda7f52e4b0c9bcb49093dd321d4": { + "cc3aaf56c4b042d6b507309870b96219": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6fdb7dc35e1f47be9408239402e45cb6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ce51fc175c474cb7b9aa5c4fa47251a7", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ce51fc175c474cb7b9aa5c4fa47251a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d0a6884d253342ffa218b5ea3681e8bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0c93bb2cd1224bdc84079017e43429f8", + "placeholder": "​", + "style": "IPY_MODEL_9701d0b6cfbc45aa9cb35a4e68515c1e", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.27it/s]" + } + }, + "d126189cb59048e2a6d57e0f2c37197e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4766bf08a55649edb0eb6997c4e0d119", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b6921b7a91ca46a4bd8fc7d9b8ec11a0", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "d2d9fe79e86c4c8ab2cef10fb6edd54b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2118,101 +2276,33 @@ "width": null } }, - "988b7f917302422cbde432537a86e20d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a3a1e24187ee4365acbdf73d8a3d758c": { + "d84a9735aa484dacaae11b9b76aacd45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b583ea6a0a6d4c94843955f81bfa00e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b5ebcf671a614d49a4e7047730a75dfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eb9cb67782fe469f9deed2869d57a350", - "IPY_MODEL_834d78931762498fbb2fd0a765af2160", - "IPY_MODEL_d7f021c3712d4633a1752faf1688871e" - ], - "layout": "IPY_MODEL_8f6baf6102bf4300bd06bdba8f67a178", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e08166db00cc43f29a6259cd777919d5", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_370ab1674b4c417cb166f3bc0ead6e2a", "tabbable": null, - "tooltip": null - } - }, - "ba653dd5644a4623930b9ed0bd812034": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 30.0 } }, - "c00f14f1fa3946bcb4cad835ac1fe6af": { + "e08166db00cc43f29a6259cd777919d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2265,7 +2355,7 @@ "width": null } }, - "cd17687ea1d4456d87e7bf7b8208cb6a": { + "e81d95d8b6bc4962b97a4ca2f9cea7f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2280,134 +2370,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_01dc7c7f1b4d4d82a529531a58042f4f", - "IPY_MODEL_84b203c550b5494c83706d88a040daea", - "IPY_MODEL_cfc0195d1c7b4151ad84de4df3f0d0bd" + "IPY_MODEL_a5136e1bd0c046028b22a7771061e8a5", + "IPY_MODEL_d84a9735aa484dacaae11b9b76aacd45", + "IPY_MODEL_d0a6884d253342ffa218b5ea3681e8bd" ], - "layout": "IPY_MODEL_8f74a8bedb9a474b869c5e7be44fb83f", + "layout": "IPY_MODEL_069d62f313a34fce922923af720802d3", "tabbable": null, "tooltip": null } }, - "cdf1bc0368124525865e4dfbe50d3b2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_985ffda7f52e4b0c9bcb49093dd321d4", - "placeholder": "​", - "style": "IPY_MODEL_89404e1c0bf44ed0adb94b2e37d47739", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "cfc0195d1c7b4151ad84de4df3f0d0bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_48f3ccb6d08d491496bc7c0c78b428c8", - "placeholder": "​", - "style": "IPY_MODEL_b583ea6a0a6d4c94843955f81bfa00e1", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 155073.56it/s]" - } - }, - "d7f021c3712d4633a1752faf1688871e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c00f14f1fa3946bcb4cad835ac1fe6af", - "placeholder": "​", - "style": "IPY_MODEL_a3a1e24187ee4365acbdf73d8a3d758c", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.38it/s]" - } - }, - "e331785f7a474f2097437322e2f4976a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_462c25bcc88a47fe9dba86800f768f23", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_888b89fd991d4378a4b03dadb10e903d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "eb9cb67782fe469f9deed2869d57a350": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_69d9ddbe65194fb690cb729f9c5b3aaf", - "placeholder": "​", - "style": "IPY_MODEL_988b7f917302422cbde432537a86e20d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "f2b6b88c865b4e9fa7be8cd3efa1cffe": { + "fcf52af6f4b141acb106085939d775d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2460,22 +2432,50 @@ "width": null } }, - "fece2a1ada064790b82512be2393555c": { + "fe4a4d952cf345d1aace991841711b49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_587fb49afe7e452e8b9054c47150e310", + "placeholder": "​", + "style": "IPY_MODEL_9e22ba88411b4c98937ad9abf1c321da", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 155918.42it/s]" + } + }, + "ff056a8323944276a4e555272ee3eee2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c53a2f4d9c904261abfe681398d916a8", + "placeholder": "​", + "style": "IPY_MODEL_40837cc385eb4cde9c4bf1b66d76b555", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 792.16it/s]" } } }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 7d0c36380..53b3342f3 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -700,16 +700,16 @@

    1. Install required dependencies and download data

    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index f187c5383..5afe74539 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:02.017270Z", - "iopub.status.busy": "2024-06-07T11:16:02.017087Z", - "iopub.status.idle": "2024-06-07T11:16:03.143424Z", - "shell.execute_reply": "2024-06-07T11:16:03.142797Z" + "iopub.execute_input": "2024-06-10T22:17:43.757812Z", + "iopub.status.busy": "2024-06-10T22:17:43.757642Z", + "iopub.status.idle": "2024-06-10T22:17:45.086145Z", + "shell.execute_reply": "2024-06-10T22:17:45.085477Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-07 11:16:02-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-10 22:17:43-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,22 +94,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.244, 2400:52e0:1a00::1067:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... " + "169.150.236.99, 2400:52e0:1a00::1068:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n" + "connected.\r\n", + "HTTP request sent, awaiting response... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... 200 OK\r\n", + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -122,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 6.24MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K 4.77MB/s in 0.2s \r\n", "\r\n", - "2024-06-07 11:16:02 (6.24 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-10 22:17:44 (4.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-07 11:16:02-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.104.249, 3.5.29.117, 3.5.9.169, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.104.249|:443... connected.\r\n", + "--2024-06-10 22:17:44-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.199.41, 52.216.162.251, 52.217.172.185, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.199.41|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -167,9 +168,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", + "pred_probs.npz 96%[==================> ] 15.71M 74.3MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 75.9MB/s in 0.2s \r\n", "\r\n", - "2024-06-07 11:16:03 (198 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-10 22:17:44 (75.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:03.146319Z", - "iopub.status.busy": "2024-06-07T11:16:03.145812Z", - "iopub.status.idle": "2024-06-07T11:16:04.343982Z", - "shell.execute_reply": "2024-06-07T11:16:04.343440Z" + "iopub.execute_input": "2024-06-10T22:17:45.088919Z", + "iopub.status.busy": "2024-06-10T22:17:45.088557Z", + "iopub.status.idle": "2024-06-10T22:17:46.456159Z", + "shell.execute_reply": "2024-06-10T22:17:46.455605Z" }, "nbsphinx": "hidden" }, @@ -200,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:04.346364Z", - "iopub.status.busy": "2024-06-07T11:16:04.346088Z", - "iopub.status.idle": "2024-06-07T11:16:04.349331Z", - "shell.execute_reply": "2024-06-07T11:16:04.348909Z" + "iopub.execute_input": "2024-06-10T22:17:46.458688Z", + "iopub.status.busy": "2024-06-10T22:17:46.458251Z", + "iopub.status.idle": "2024-06-10T22:17:46.461670Z", + "shell.execute_reply": "2024-06-10T22:17:46.461213Z" } }, "outputs": [], @@ -279,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:04.351409Z", - "iopub.status.busy": "2024-06-07T11:16:04.351081Z", - "iopub.status.idle": "2024-06-07T11:16:04.353976Z", - "shell.execute_reply": "2024-06-07T11:16:04.353543Z" + "iopub.execute_input": "2024-06-10T22:17:46.463664Z", + "iopub.status.busy": "2024-06-10T22:17:46.463336Z", + "iopub.status.idle": "2024-06-10T22:17:46.466395Z", + "shell.execute_reply": "2024-06-10T22:17:46.465851Z" }, "nbsphinx": "hidden" }, @@ -300,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:04.356009Z", - "iopub.status.busy": "2024-06-07T11:16:04.355685Z", - "iopub.status.idle": "2024-06-07T11:16:13.223272Z", - "shell.execute_reply": "2024-06-07T11:16:13.222636Z" + "iopub.execute_input": "2024-06-10T22:17:46.468363Z", + "iopub.status.busy": "2024-06-10T22:17:46.468044Z", + "iopub.status.idle": "2024-06-10T22:17:55.391261Z", + "shell.execute_reply": "2024-06-10T22:17:55.390662Z" } }, "outputs": [], @@ -377,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:13.225823Z", - "iopub.status.busy": "2024-06-07T11:16:13.225615Z", - "iopub.status.idle": "2024-06-07T11:16:13.232134Z", - "shell.execute_reply": "2024-06-07T11:16:13.231560Z" + "iopub.execute_input": "2024-06-10T22:17:55.394120Z", + "iopub.status.busy": "2024-06-10T22:17:55.393483Z", + "iopub.status.idle": "2024-06-10T22:17:55.399256Z", + "shell.execute_reply": "2024-06-10T22:17:55.398799Z" }, "nbsphinx": "hidden" }, @@ -420,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:13.234135Z", - "iopub.status.busy": "2024-06-07T11:16:13.233929Z", - "iopub.status.idle": "2024-06-07T11:16:13.573950Z", - "shell.execute_reply": "2024-06-07T11:16:13.573388Z" + "iopub.execute_input": "2024-06-10T22:17:55.401418Z", + "iopub.status.busy": "2024-06-10T22:17:55.400971Z", + "iopub.status.idle": "2024-06-10T22:17:55.735092Z", + "shell.execute_reply": "2024-06-10T22:17:55.734457Z" } }, "outputs": [], @@ -460,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:13.576250Z", - "iopub.status.busy": "2024-06-07T11:16:13.576061Z", - "iopub.status.idle": "2024-06-07T11:16:13.580667Z", - "shell.execute_reply": "2024-06-07T11:16:13.580204Z" + "iopub.execute_input": "2024-06-10T22:17:55.737821Z", + "iopub.status.busy": "2024-06-10T22:17:55.737387Z", + "iopub.status.idle": "2024-06-10T22:17:55.741991Z", + "shell.execute_reply": "2024-06-10T22:17:55.741503Z" } }, "outputs": [ @@ -535,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:13.582699Z", - "iopub.status.busy": "2024-06-07T11:16:13.582371Z", - "iopub.status.idle": "2024-06-07T11:16:15.893335Z", - "shell.execute_reply": "2024-06-07T11:16:15.892539Z" + "iopub.execute_input": "2024-06-10T22:17:55.743913Z", + "iopub.status.busy": "2024-06-10T22:17:55.743624Z", + "iopub.status.idle": "2024-06-10T22:17:58.038181Z", + "shell.execute_reply": "2024-06-10T22:17:58.037528Z" } }, "outputs": [], @@ -560,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.896646Z", - "iopub.status.busy": "2024-06-07T11:16:15.896089Z", - "iopub.status.idle": "2024-06-07T11:16:15.900170Z", - "shell.execute_reply": "2024-06-07T11:16:15.899651Z" + "iopub.execute_input": "2024-06-10T22:17:58.041144Z", + "iopub.status.busy": "2024-06-10T22:17:58.040559Z", + "iopub.status.idle": "2024-06-10T22:17:58.044593Z", + "shell.execute_reply": "2024-06-10T22:17:58.044062Z" } }, "outputs": [ @@ -599,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.902245Z", - "iopub.status.busy": "2024-06-07T11:16:15.901828Z", - "iopub.status.idle": "2024-06-07T11:16:15.907433Z", - "shell.execute_reply": "2024-06-07T11:16:15.906893Z" + "iopub.execute_input": "2024-06-10T22:17:58.046722Z", + "iopub.status.busy": "2024-06-10T22:17:58.046402Z", + "iopub.status.idle": "2024-06-10T22:17:58.051713Z", + "shell.execute_reply": "2024-06-10T22:17:58.051255Z" } }, "outputs": [ @@ -780,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.909394Z", - "iopub.status.busy": "2024-06-07T11:16:15.909083Z", - "iopub.status.idle": "2024-06-07T11:16:15.934676Z", - "shell.execute_reply": "2024-06-07T11:16:15.934241Z" + "iopub.execute_input": "2024-06-10T22:17:58.053724Z", + "iopub.status.busy": "2024-06-10T22:17:58.053419Z", + "iopub.status.idle": "2024-06-10T22:17:58.079125Z", + "shell.execute_reply": "2024-06-10T22:17:58.078681Z" } }, "outputs": [ @@ -885,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.936677Z", - "iopub.status.busy": "2024-06-07T11:16:15.936504Z", - "iopub.status.idle": "2024-06-07T11:16:15.940793Z", - "shell.execute_reply": "2024-06-07T11:16:15.940262Z" + "iopub.execute_input": "2024-06-10T22:17:58.081051Z", + "iopub.status.busy": "2024-06-10T22:17:58.080862Z", + "iopub.status.idle": "2024-06-10T22:17:58.084952Z", + "shell.execute_reply": "2024-06-10T22:17:58.084427Z" } }, "outputs": [ @@ -962,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:15.942947Z", - "iopub.status.busy": "2024-06-07T11:16:15.942646Z", - "iopub.status.idle": "2024-06-07T11:16:17.325864Z", - "shell.execute_reply": "2024-06-07T11:16:17.325245Z" + "iopub.execute_input": "2024-06-10T22:17:58.086923Z", + "iopub.status.busy": "2024-06-10T22:17:58.086619Z", + "iopub.status.idle": "2024-06-10T22:17:59.497667Z", + "shell.execute_reply": "2024-06-10T22:17:59.497133Z" } }, "outputs": [ @@ -1137,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:16:17.328017Z", - "iopub.status.busy": "2024-06-07T11:16:17.327822Z", - "iopub.status.idle": "2024-06-07T11:16:17.331825Z", - "shell.execute_reply": "2024-06-07T11:16:17.331395Z" + "iopub.execute_input": "2024-06-10T22:17:59.499844Z", + "iopub.status.busy": "2024-06-10T22:17:59.499502Z", + "iopub.status.idle": "2024-06-10T22:17:59.503676Z", + "shell.execute_reply": "2024-06-10T22:17:59.503201Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 984e3be2f..589ef9726 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.5", - commit_hash: "d9f589ee262b28be23bc180eb6e1e81421d2cb68", + commit_hash: "17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442", }; \ No newline at end of file

    ... ["An", "sentence", "with", "a", "typo"], ... ] >>> display_issues(issues, tokens) - Sentence 2, token 0: + Sentence index: 2, Token index: 0 + Token: An ---- An sentence with a typo - ... - ... - Sentence 0, token 1: + <BLANKLINE> + <BLANKLINE> + Sentence index: 0, Token index: 1 + Token: ?weird ---- A ?weird sentence """ - if not class_names: + if not class_names and (labels or pred_probs): print( - "Classes will be printed in terms of their integer index since `class_names` was not provided. " + "Classes will be printed in terms of their integer index since `class_names` was not provided.\n" + "Specify this argument to see the string names of each class.\n" ) - print("Specify this argument to see the string names of each class. \n") top = min(top, len(issues)) shown = 0 @@ -827,6 +829,10 @@

    Source code for cleanlab.token_classification.summary

    ... ["An", "sentence", "with", "a", "typo"], ... ] >>> df = common_label_issues(issues, tokens) + Token '?weird' is potentially mislabeled 1 times throughout the dataset + <BLANKLINE> + Token 'An' is potentially mislabeled 1 times throughout the dataset + <BLANKLINE> >>> df token num_label_issues 0 An 1 diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index c9fdde666..f19089bdb 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 7af399d86..df6c6345d 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 58b4f2599..928f4db45 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb index 28aa9dd4b..e62d4ef5d 100644 --- a/master/_sources/tutorials/datalab/data_monitor.ipynb +++ b/master/_sources/tutorials/datalab/data_monitor.ipynb @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 1a80fc4ba..92d340502 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 744a7358a..d0b2c8dc5 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index c6e858239..46e51fff4 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 9e8cebd5e..d96e7e26a 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index d7d52bcc7..216baa885 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index ebec9c39a..2d4bc4579 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index a1a8b82cc..f2b93c6d4 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 15931411b..6c9c8b121 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index fe2a95626..32e416295 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 1367ccbcd..b6d426ec7 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 29e3be148..1633a620c 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index f6eb1a4da..adaeb5852 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index c5a678358..0bbdfef0c 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/token_classification/summary.html b/master/cleanlab/token_classification/summary.html index 3d1c4e3ad..3d5f213fa 100644 --- a/master/cleanlab/token_classification/summary.html +++ b/master/cleanlab/token_classification/summary.html @@ -674,12 +674,14 @@ ... ["An", "sentence", "with", "a", "typo"], ... ] >>> display_issues(issues, tokens) -Sentence 2, token 0: +Sentence index: 2, Token index: 0 +Token: An ---- An sentence with a typo -... -... -Sentence 0, token 1: + + +Sentence index: 0, Token index: 1 +Token: ?weird ---- A ?weird sentence
    @@ -736,6 +738,10 @@ ... ["An", "sentence", "with", "a", "typo"], ... ] >>> df = common_label_issues(issues, tokens) +Token '?weird' is potentially mislabeled 1 times throughout the dataset + +Token 'An' is potentially mislabeled 1 times throughout the dataset + >>> df token num_label_issues 0 An 1 diff --git a/master/searchindex.js b/master/searchindex.js index 48b9dfcf9..af87882ff 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 92, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 92, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 92, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 93, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 91, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 92, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 92, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 91, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 91, 95, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 93, 95, 96, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 93, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 91, 93, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 90, 92, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 92, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 95, 103, 104], "trace": [1, 90, 91, 92, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 91, 93, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 92, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 91, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 92, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 92, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 92, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 93, 95, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 91, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 92, 93, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 92, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 93, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 95, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 93, 95, 96, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 93, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 92, 93, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 91, 92, 93, 95, 96, 99], "yield": [1, 38, 42, 90], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 93, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 91, 95, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 93, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 91, 92, 93, 95, 96, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 93, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10], "python": [1, 2, 42, 61, 74, 88, 89, 91, 92, 93, 95, 96, 97, 99, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 90, 96, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 90, 93, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 90, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 92, 95, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 91, 93, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 90, 93, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 97, 98], "choic": [1, 8, 44, 53, 55, 93, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 93, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91, 92], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 95, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 92, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 93, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 92, 95, 97, 99, 101, 102], "max_it": [1, 88, 89, 96, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 93, 95, 96, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 92, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 95, 96, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 91, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 91, 93, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 91], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 90, 92, 96, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 90, 92, 93, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 92, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 93, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 92, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 91, 93, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 91, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 93, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 91, 92, 93, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 92, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 91, 92, 93, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 93, 96, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 92, 93, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 90, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 91, 92, 93, 95, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 92, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 92, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 93, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 92, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 91, 92, 93, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 93, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 90, 92, 93, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 90, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 92, 95, 96, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 95, 96, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 91, 92, 95, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 95, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 92, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 93, 94, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 92, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 91, 93, 95, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 91, 92, 93, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 90, 93, 95, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 91, 95, 96, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 92, 96], "loss": [2, 39, 61, 72, 74, 93], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 93, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 93, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 90, 93, 95, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 91, 92, 93, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 93, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 91, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 91, 92, 93, 95, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 93, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 92, 96, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 93], "independ": [2, 3, 10, 63, 74, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 93, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 93, 96, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 92, 93, 95, 96, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 96, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 91, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 93, 95, 96, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 91, 93, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 91, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 92, 93, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 92, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 92, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 92, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 92, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 94, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 92, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 91, 92, 93, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 91, 92, 93, 95, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 91, 92, 95, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 91, 92, 93, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 91, 92, 96, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 93, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 91, 92, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 93, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 91, 93, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 91, 92, 93, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 91, 93, 95, 96, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 90, 93, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 91, 92, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 91, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 91, 92, 93, 96, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 92, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 96], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 91, 92, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 10, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 91, 92, 93, 95, 96, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 91, 93, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 92, 96, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 91, 95, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 90, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 91, 96, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 92, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 92, 97, 98], "robust": [2, 47, 52, 74, 92, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 92, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 91, 92, 96, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 90, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 92, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 90, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 93, 98, 104], "dimens": [2, 57, 76, 79, 93, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 93, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 95, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 91, 98, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 91, 92, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 91, 92, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 93, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 92, 96], "close": [2, 3, 10, 41, 47, 71, 89, 91, 92, 93, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 90, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 92, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 93, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 91], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 93, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 92, 98, 99], "impact": [2, 4, 10, 91, 92, 93], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 91, 92, 93, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 93, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 91, 98, 101, 105], "caus": [2, 44, 49, 91, 92, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 91, 92, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 91, 92, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 90, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 91, 93, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 93, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 90, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 91, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 91, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 93, 96, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 93, 95, 96, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 95, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 93, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 91, 92, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 92, 93, 95, 96, 99], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52], "torch": [2, 38, 39, 42, 88, 89, 93, 96, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 91, 92, 93, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 92, 93, 95, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 93, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 93, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 91, 92, 93, 95, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 93, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 90, 93, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 96, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 91, 92, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 93, 95, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 92, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 91, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 93, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 93, 95, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 92, 94, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 90, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 92, 93, 96, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 93, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 92, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 93, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 92, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 84, 87, 88, 89, 93, 95, 96, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 90, 92, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 92, 93, 96, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 93, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 98], "time": [2, 10, 38, 41, 42, 57, 62, 85, 87, 88, 90, 91, 93, 95, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 90, 93, 95, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 90, 93, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 91, 95, 96, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 91, 93, 95, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 92, 95, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 89, 93, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 93, 96, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 92, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 93, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 91, 95, 102, 103], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 91, 93, 95, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 90, 93, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 88, 92, 93, 96, 97, 102], "hyperparamet": [2, 66, 71, 93], "purpos": [2, 52, 91, 92, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 91, 93, 96, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74, 98], "yourself": [2, 5, 41, 92], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 93, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 93, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 91, 92, 96, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 91, 93, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 91], "label_issues_df": [2, 74, 93], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 91, 92], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 95, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 93, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 92, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 91, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 93, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 96, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 93, 95, 96, 97, 98, 99, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 91, 92, 93, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 93, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 91, 94, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 91, 92, 93, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 91, 92, 95, 96, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 92, 93, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 85, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 96], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 91, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 91, 93, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 90, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 96, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 96, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 92, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 91, 93, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 93, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 92, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 92, 93, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 92, 93, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 91, 95, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 90, 92, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 95], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 92, 93, 95, 96, 97, 99], "clear": [2, 38, 42, 54, 74, 88, 96, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 93, 95, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 93, 95, 96, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 93, 95, 96, 98], "care": [2, 10, 38, 42, 52, 74, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 90, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 91, 92, 95, 96, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 91, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 93, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 91, 92, 98], "metadata": [2, 10, 42, 74, 93, 95, 96, 108], "through": [2, 5, 7, 42, 74, 88, 89, 90, 92, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 92, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 93, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 93, 94], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 91, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 93, 95], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 91, 96, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 96, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 91, 93], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 93, 95, 96, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 91, 92, 93, 95, 96, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 90, 95, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 93, 95, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 92, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 92, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 92, 93, 95, 96, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 93, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 92, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 93, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 92, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 92, 93, 95, 97, 98, 99, 104, 106], "As": [3, 7, 84, 91, 92, 96, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 93, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 90, 95, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 92, 93, 96, 99, 106], "know": [3, 10, 91, 92, 93, 95, 96, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 92, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 93, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 90, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 92, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 93, 95, 96, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 95, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 91, 92, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 91, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 93, 95, 96, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 91, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 90, 93, 98, 107], "practic": [3, 87, 88, 92, 93, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 92, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 91, 92, 93, 95, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 93, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 93, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 91, 95, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 93, 95], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 91, 92, 93, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 91, 93, 95, 96, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 91, 93, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 96, 98, 99, 101, 103], "littl": [3, 41, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 90, 93, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 93, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 91, 95, 96, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 93, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 91, 93, 95, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 103], "contribut": [4, 10, 19, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 95], "metric": [4, 5, 10, 19, 20, 27, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 93, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 92, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 91, 92, 93, 95, 96, 98, 99, 104], "knn": [4, 10, 14, 19, 27, 32, 51, 52, 53, 54, 55, 71, 95, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 93, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 92, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 92, 93, 95, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 91, 92, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 91, 92, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 91, 92, 93, 96, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 93, 95, 96, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 95, 104], "cosin": [4, 10, 52, 53, 55, 71, 104], "dim": [4, 71, 93, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 95], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 92, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85], "exce": [4, 52, 90, 93], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 92, 93, 96, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 91, 92, 93, 95, 96, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 99], "closer": [4, 10, 69, 103], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 91, 92, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 90, 93, 96, 97, 98], "55": [4, 56, 97, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 89, 90, 91, 93, 95, 96, 97, 99], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 91, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 93], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 91, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 91, 97, 98, 99], "intermedi": [5, 9, 92], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 92, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 93, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 93], "face": [5, 10, 13, 17, 93, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 93, 96, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 91, 92, 95, 96, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 91, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 93, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 91, 92, 94, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 95, 96, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 92, 96, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 91, 92, 94, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 106], "pil": [5, 93], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 92, 93, 98, 100, 102, 107], "load_dataset": [5, 13, 93], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 90], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 92, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 92, 94, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 91, 92, 98, 99, 101, 106, 107], "world": [5, 17, 84, 91, 92, 98, 99, 101, 106, 107], "interact": [5, 17, 96, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 91, 92, 93, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 93, 95, 96, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 93, 95, 96, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52], "evenli": 5, "omit": [5, 69, 70, 93, 103], "itself": [5, 33, 38, 42, 52, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 92, 95, 97, 99, 101, 105, 106, 107, 108], "indptr": 5, "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 96, 102, 103, 108], "ascend": [5, 37, 63, 93, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 95, 96, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 95], "illustr": 5, "todens": 5, "second": [5, 49, 57, 70, 72, 91, 95, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 91, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 93, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 93, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78], "toarrai": [5, 52], "NOT": [5, 41, 96], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 92], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 91, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 92, 95, 96, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 90, 92, 93, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 91, 98, 99, 102, 103], "familiar": 5, "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 91, 92, 95, 99, 103], "issue_summari": [5, 7, 10, 14, 90, 91], "With": [5, 9, 10, 41, 88, 96, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 93, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 92, 93, 95, 96, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80], "wherea": [5, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 91, 92, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 92, 93, 95, 96, 99], "hypothesi": 5, "iid": [5, 7, 9, 27, 95, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91, 92], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 92, 93, 95, 96, 98, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91, 92], "focu": [5, 10, 14, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 90, 93, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 91, 92, 93, 95, 96, 99], "get_issue_summari": [5, 10, 14, 90, 92], "get_info": [5, 14, 92, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 91], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 91, 93], "load": [5, 13, 41, 70, 93, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 91, 93, 96, 98], "overwrit": [5, 91], "separ": [5, 37, 49, 66, 91, 92, 93, 98, 103, 105], "static": 5, "rememb": [5, 96, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 91, 97, 107, 108], "ident": [5, 10, 23, 57, 90, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 98, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 91, 98], "pre": [7, 8, 10, 38, 42, 91, 92, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 93, 98], "issue_manager_factori": [7, 15, 91], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 99, 106], "next": [7, 62, 84, 87, 88, 89, 90, 93, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 92, 98], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 92, 99], "rand": [7, 49, 52, 90, 91, 92], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "whole": [7, 10, 27, 38, 42, 92], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "popul": [7, 92, 96], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 90, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 91, 98, 104], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 38, 42, 53, 76, 82, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 90, 92, 95, 96, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 90, 92, 93, 95, 96, 98, 99, 107], "won": [7, 38, 42, 91, 92, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 91], "instanti": [7, 17, 41, 61, 71, 88, 89, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 93, 95, 96, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32, 98], "hdbscan": [8, 98], "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 91, 92, 95, 96, 98, 99, 102, 106], "sensit": [8, 10, 55], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 98], "your_data": 8, "get_pred_prob": [8, 90], "n_cluster": [8, 32, 98], "cluster_id": [8, 10, 11, 32, 98], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 92, 93, 95, 96, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 92], "null": [9, 11, 15, 22, 92, 93, 96, 99], "togeth": [9, 10, 47, 88, 91, 92, 93, 95, 96, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 92, 93, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 93, 95, 96, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 95, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 93, 95, 96, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 90, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 93, 96, 98, 106], "power": [9, 10, 93, 95, 96, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 90, 93, 95, 96, 107], "foundat": [9, 10, 84], "improv": [9, 10, 62, 87, 88, 92, 93, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 96, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 90, 92, 97, 98, 106], "free": [9, 10, 84, 89, 92, 93, 95, 96, 98, 99], "page": [10, 92, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 91, 92, 95, 96, 97, 98, 99, 101, 103], "why": [10, 90, 96], "matter": [10, 37, 63, 88, 96], "didn": 10, "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 93, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 92, 93, 95, 96, 99], "data_valu": [10, 11, 15, 22], "No": [10, 11, 87, 88, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 91, 92, 93, 95, 96, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 91, 92, 95, 96, 98, 105, 106], "is_issu": [10, 23], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 93, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 93, 95, 96, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 92, 93, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 90, 92, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 93, 97], "analyt": [10, 84, 98, 101], "lead": [10, 69, 72, 93, 103], "draw": [10, 90, 91, 92], "conclus": [10, 96], "let": [10, 38, 42, 71, 72, 87, 88, 89, 90, 92, 93, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 92, 93, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 92, 97, 99, 103], "680894": 10, "41": [10, 97, 103, 106], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 90, 93, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 93, 95, 96, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 93, 95, 96, 98, 99], "anomal": [10, 72, 90, 91, 92, 93, 95, 96, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 96], "consequ": 10, "inspect": [10, 88, 89, 90, 92, 93, 99, 103, 106], "011562": 10, "62": [10, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 91, 93, 97, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 90, 102, 103], "extrem": [10, 91, 92, 93, 95, 96, 98, 99], "record": [10, 38, 42, 89, 95, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 91, 92, 94, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 92, 93, 95, 96], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 97, 108], "066009": 10, "80": [10, 39, 87, 95, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 90, 95, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 97, 99, 102, 106], "signific": [10, 95, 96, 99], "violat": [10, 95, 96, 99], "assumpt": [10, 95, 96, 99], "changepoint": [10, 95, 96, 99], "shift": [10, 52, 54, 95, 96, 99], "drift": [10, 92, 95, 99], "autocorrel": [10, 95, 96, 99], "almost": [10, 95, 96, 99], "adjac": [10, 52, 95, 96, 99], "tend": [10, 37, 47, 95, 96, 99, 107, 108], "sequenti": [10, 38, 42, 61, 93], "primarili": 10, "pai": [10, 96], "attent": 10, "realli": [10, 88, 96, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 92, 95, 107], "necessarili": [10, 62, 70, 96, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 92, 96, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 95, 99, 105, 106], "similarli": [10, 38, 42, 91, 93, 95, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 93, 96, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91, 92], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 91], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 90, 93, 95, 96], "problem": [10, 33, 41, 49, 79, 84, 91, 92, 93, 96, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 95, 96, 99, 105, 108], "diagnos": [10, 92, 98], "24": [10, 89, 90, 97, 99, 101, 103, 106, 108], "681458": 10, "37": [10, 91, 97], "804582": 10, "64": [10, 42, 87, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 95, 97, 99, 103, 106], "834293": 10, "interpret": [10, 97, 98, 99, 102, 106], "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 90, 98], "rarest": [10, 92], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 93, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 92, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 93], "dark": [10, 107], "bright": [10, 108], "blurri": [10, 93], "lack": [10, 61], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 92, 93, 95, 96, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 92, 106, 107], "tabular": [10, 84, 86, 91, 92, 94, 98, 101], "categor": [10, 71, 86, 87, 91, 92, 94, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 95, 96, 98, 106, 107], "71": [10, 97, 99, 103, 106], "70": [10, 82, 95], "69": [10, 99, 106], "subgroup": 10, "wors": [10, 101], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 90, 98, 103, 106], "pattern": 10, "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 91, 93, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 91, 97, 101, 103], "valuabl": [10, 19], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29, 91], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 93, 95, 96, 101, 105, 107], "mandatori": [10, 93], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 93, 97, 103, 107], "29": [10, 90, 93, 97, 101, 102, 103, 107, 108], "low_inform": [10, 93], "odd_aspect_ratio": [10, 93], "35": [10, 90, 91, 97, 101, 102, 103], "odd_siz": [10, 93], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 93, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 93, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 91, 92, 93, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 91, 92, 93, 95, 96, 98, 99], "is_non_iid_issu": [11, 92, 95, 96, 99], "non_iid_scor": [11, 27, 92, 95, 96, 99], "is_class_imbalance_issu": [11, 92], "class_imbalance_scor": [11, 21, 92], "is_underperforming_group_issu": [11, 92], "underperforming_group_scor": [11, 32, 92], "is_null_issu": [11, 92], "null_scor": [11, 28, 92], "is_data_valuation_issu": 11, "data_valuation_scor": [11, 19], "studio": [12, 84, 92, 93, 95, 96, 98], "data_issu": [12, 16, 17, 34, 91], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 93, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 93], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": [14, 93], "strategi": [14, 49, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 93, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 91], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 99, 103, 107, 108], "creation": [17, 42], "execut": [17, 38, 42, 91, 93, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 93, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 92, 93, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 93, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 96, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 87, 89, 91, 93, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 90, 91, 92, 93, 96, 99, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "set_knn_graph": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 93, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 91, 104, 106], "prompt": 28, "address": [28, 88, 91, 92, 96, 98], "enabl": [28, 42, 54], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 90, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "find_issues_kwarg": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 91, 93, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 92, 98], "datset": 34, "exclud": [34, 43, 79, 83, 91, 98, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91, 92], "continu": [35, 61, 87, 88, 93, 96, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 91, 92], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 93, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 92, 93, 95, 96, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 98, 99], "rank_classes_by_label_qu": [37, 92], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 92, 95, 99, 101], "df": [37, 57, 83, 89, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 93, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63, 90], "car": [37, 97, 103, 107], "frequent": [37, 62, 98, 106], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39, 93], "noisy_label": [37, 90, 91, 92, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 92], "cnn": [38, 40, 42, 93], "cifar": [38, 39, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": 38, "master": [38, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 90, 91, 98, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 93, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 95], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "former": [38, 42], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 93], "init": [38, 42, 99], "no_grad": [38, 42, 93, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 93, 96], "fill_": [38, 42], "net": [38, 42, 89, 93, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 93], "tensor": [38, 39, 42, 88, 89, 93, 96, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 93], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 93], "devic": [38, 42, 89, 93], "gpu": [38, 42, 88, 89, 96], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 92, 95, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 93, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 91, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 96], "resolv": [38, 42, 90, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 93, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 93], "break": [38, 42, 93, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 93], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 90, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 92, 93, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 92, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 91, 93, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 96, 98], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 95], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 91, 92], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 93, 95, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 96], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 93, 98], "design": [38, 42, 52, 90], "ordereddict": [38, 42], "detach": [38, 42, 93], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 96, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 96], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 93], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 93], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 93, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 98], "250": [39, 91, 92, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 93, 96, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 93, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 90, 93, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 93], "loader": [40, 42, 93], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 96], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 92, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 93, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 91, 98, 103, 104], "store_result": 41, "becom": [41, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 96, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 90, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 93], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 92, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 96], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 96, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 92, 93, 98, 103], "thread": [44, 64], "window": [44, 89, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88, 90], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 91, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 95, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 92, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 95, 96, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 93, 95, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 93, 99, 103], "underflow": 49, "nan": [49, 62, 87, 95, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": 49, "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 93], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 92, 93, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 95, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 92, 96, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 101, 106], "701": 52, "900": [52, 87, 95, 106], "436": 52, "000": [52, 88, 93, 96, 97, 108], "idea": [52, 72, 90, 103], "dens": [52, 61], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 92], "exact_duplicate_set": 52, "main": [52, 62, 90], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 92, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 95], "slower": 53, "decid": [53, 62, 88, 96, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91, 92], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "scaling_factor": 55, "exp": [55, 71, 72, 91], "dt": 55, "right": [55, 67, 70, 88, 96, 102, 103, 104], "strength": [55, 70], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 91, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 93, 95, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 92, 95, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 92, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 95, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 90, 93, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 96, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 92, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 90, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 95, 96, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 90, 93, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 90, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 93, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 90, 92, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 96, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 90, 97, 101], "chosen": [62, 72, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 93, 95, 96, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 95, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 91, 93, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": [62, 91, 92, 93, 95, 96, 98, 99], "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 91, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 95], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 93, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 93, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 92], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 95, 96, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 92, 108], "abnorm": [70, 93, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 92, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 90, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 93, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 93, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 93, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 93, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 93], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": 70, "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 95, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 93], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 96, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 91, 92, 95, 96, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 93, 96, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 96], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 96], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 91, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 96, 104], "grain": 74, "grid": 74, "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 92, 93, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 93, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 90, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 91], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 93, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 92, 102, 103, 106, 107], "colormap": 79, "background": 79, "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 96, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 93], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": 82, "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 91, 92, 99, 103, 108], "03": [82, 95, 97, 99, 103, 108], "04": [82, 95, 103], "08": [82, 99, 103, 106, 108], "commonli": [83, 85, 91, 92, 102, 108], "But": [83, 96, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 93, 95, 96, 100], "minut": [84, 87, 88, 89, 95, 96, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 93, 98], "your_dataset": [84, 89, 91, 92, 93, 95, 96, 98], "column_name_of_label": [84, 89, 91, 92, 93, 95, 96], "plagu": [84, 92], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 92], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 90, 99, 102, 104, 106], "deal": [84, 92], "tutori": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 92, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 93, 95, 96, 98], "edit": [84, 98], "easier": [84, 99], "unreli": [84, 87, 89, 95, 96], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 95], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 95, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 95], "databas": [87, 95], "excel": [87, 95], "parquet": [87, 95], "student": [87, 95, 106, 108], "grade": [87, 95, 106], "exam": [87, 95, 106], "letter": [87, 95, 108], "hundr": [87, 95], "mistak": [87, 88, 93, 95, 96], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 92, 95, 104, 106], "standardscal": [87, 95, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 92, 104], "accuracy_scor": [87, 88, 89, 96, 99], "grades_data": [87, 95], "read_csv": [87, 88, 95, 96, 106], "demo": [87, 92, 95, 102], "stud_id": [87, 95], "exam_1": [87, 95, 106], "exam_2": [87, 95, 106], "exam_3": [87, 95, 106], "letter_grad": [87, 95], "f48f73": [87, 95], "53": [87, 90, 91, 92, 95, 97, 102, 103], "00": [87, 91, 92, 95, 97, 104], "77": [87, 91, 92, 95, 103], "0bd4e7": [87, 95], "81": [87, 95, 96, 103, 106, 108], "great": [87, 90, 95, 97], "particip": [87, 95], "cb9d7a": [87, 95], "61": [87, 95, 99, 103, 106], "94": [87, 95, 97, 99, 103, 106], "9acca4": [87, 95], "48": [87, 95, 97, 99, 103], "x_raw": [87, 95], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 95], "get_dummi": [87, 95, 106], "drop_first": [87, 95], "numeric_featur": [87, 95], "scaler": [87, 95, 104], "x_process": [87, 95], "fit_transform": [87, 95], "bring": [87, 88, 93, 95, 96, 101, 106], "byod": [87, 88, 93, 95, 96, 101, 106], "tress": 87, "held": [87, 89, 95, 96, 97, 103, 104, 105], "straightforward": [87, 89, 95], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 95, 101], "tabl": [87, 95, 97, 101], "212": [87, 99], "review": [87, 88, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 95, 96, 106], "92": [87, 91, 99, 103], "93": [87, 97, 103, 106, 108], "827": 87, "99": [87, 97, 99], "86": [87, 92, 93, 95, 99, 103, 106], "74": [87, 103, 106], "637": [87, 95], "79": [87, 97, 103], "65": [87, 91, 103], "cheat": 87, "0pt": 87, "120": [87, 91, 92], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 90, 99, 102, 103, 106], "suspici": [87, 95], "carefulli": [87, 93, 95, 96], "examin": [87, 90, 91, 92, 95, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91, 92], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 96], "servic": [88, 96, 98], "onlin": [88, 96], "bank": [88, 96, 97], "banking77": [88, 96], "oo": [88, 96], "categori": [88, 93, 96], "shortlist": [88, 96, 106], "scope": [88, 96], "logist": [88, 90, 91, 92, 96, 101, 104], "probabilit": [88, 89], "drop": [88, 95, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 96], "sentencetransform": [88, 96], "payment": [88, 96], "cancel_transf": [88, 96], "transfer": [88, 96], "fund": [88, 96], "cancel": [88, 96], "transact": [88, 96], "my": [88, 96], "revert": [88, 96], "morn": [88, 96], "realis": [88, 96], "yesterdai": [88, 96], "rent": [88, 96], "tomorrow": [88, 96], "raw_text": [88, 96], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "lost_or_stolen_phon": [88, 96], "apple_pay_or_google_pai": [88, 96], "card_about_to_expir": [88, 96], "supported_cards_and_curr": [88, 96], "visa_or_mastercard": [88, 96], "beneficiary_not_allow": [88, 96], "card_payment_fee_charg": [88, 96], "getting_spare_card": [88, 96], "change_pin": [88, 96], "card": [88, 96, 97], "utter": [88, 96], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 96, 97, 98], "electra": [88, 96], "discrimin": [88, 96], "googl": [88, 90, 96], "train_text": 88, "test_text": 88, "home": [88, 91, 92, 96, 97], "runner": [88, 91, 92, 96], "google_electra": [88, 96], "pool": [88, 96, 98, 104], "opt": [88, 89, 92, 93, 95, 96, 99], "hostedtoolcach": [88, 89, 92, 93, 95, 96, 99], "x64": [88, 89, 92, 93, 95, 96, 99], "lib": [88, 89, 92, 93, 95, 96, 99], "python3": [88, 89, 92, 93, 95, 96, 99], "site": [88, 89, 92, 93, 95, 96, 99], "_util": [88, 96], "831": [88, 96], "userwarn": [88, 89, 91, 92, 96], "typedstorag": [88, 96], "untypedstorag": [88, 96], "untyped_storag": [88, 96], "fget": [88, 96], "__get__": [88, 96], "owner": [88, 96], "leverag": [88, 89, 96, 98, 99, 101], "computation": [88, 89, 96], "intens": [88, 89, 96], "400": [88, 90, 96], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 96, 99, 106], "to_numpi": [88, 96, 98, 106], "44": [88, 97, 102, 103], "646": 88, "390": 88, "628": 88, "121": [88, 90, 99], "702": 88, "863": [88, 89], "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 96], "cash": [88, 96], "holidai": [88, 96], "sent": [88, 96, 108], "mine": [88, 96], "expir": [88, 96], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 96], "whoever": [88, 96], "consum": [88, 106], "18": [88, 89, 90, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 92, 93, 103, 106], "acceler": [88, 106], "19": [88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 106, 107], "89": [88, 90, 91, 95, 103, 106], "spoken": 89, "500": [89, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 91, 92, 93, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 92, 95, 96], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 95, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 104], "gz": [89, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 90, 93, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 93, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": 89, "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 93], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 93], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 93], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 91, 97, 98, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 90, 93, 97, 99, 103, 106], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 98], "cv_accuraci": 89, "9708": 89, "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "investig": [89, 90], "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 96], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "load_ext": 90, "autoreload": 90, "ve": [90, 97, 98, 99, 101, 103], "prove": 90, "monitor": [90, 97], "ran": 90, "data_monitor": 90, "your_datalab": 90, "new_data_batch": 90, "your_label": 90, "get_your_label": 90, "your_featur": [90, 96], "get_featur": 90, "websit": [90, 97], "todo": 90, "get_ipython": 90, "d9f589ee262b28be23bc180eb6e1e81421d2cb68": 90, "cmd": 90, "dep": 90, "dependencies_test": 90, "missing_depend": 90, "__import__": 90, "importerror": 90, "sep": [90, 108], "npleas": 90, "toi": [90, 91, 92, 93, 97, 99, 101], "mid": [90, 91, 92], "workflow": [90, 100, 106], "unseen": 90, "inf": [90, 91, 92], "bins_map": [90, 91, 92], "create_data": [90, 91, 92], "800": 90, "y_bin": [90, 91, 92], "y_i": [90, 91, 92], "y_bin_idx": [90, 91, 92], "y_train": [90, 91, 92, 99, 106], "y_test": [90, 91, 92, 99, 106], "y_train_idx": [90, 91, 92], "y_test_idx": [90, 91, 92], "slide": [90, 91, 92, 97], "frame": [90, 91, 92], "x_out": [90, 91, 92], "tini": [90, 91, 92], "concaten": [90, 91, 92, 98, 105], "y_out": [90, 91, 92], "y_out_bin": [90, 91, 92], "y_out_bin_idx": [90, 91, 92], "exact_duplicate_idx": [90, 91, 92], "x_duplic": [90, 91, 92], "y_duplic": [90, 91, 92], "y_duplicate_idx": [90, 91, 92], "noisy_labels_idx": [90, 91, 92, 102], "train_x": 90, "test_x": 90, "train_y_tru": 90, "test_y_tru": 90, "train_i": 90, "test_i": 90, "train_y_idx": 90, "test_y_idx": 90, "scatter": [90, 91, 92, 99, 102, 106], "black": [90, 91, 92, 97, 106], "cyan": [90, 91, 92], "plot_data": [90, 91, 92, 99, 102, 106], "fig": [90, 91, 92, 93, 97, 104, 106], "ax": [90, 91, 92, 93, 104, 106], "subplot": [90, 91, 92, 93, 104], "set_titl": [90, 91, 92, 93, 104], "set_xlabel": [90, 91, 92], "x_1": [90, 91, 92], "fontsiz": [90, 91, 92, 93, 99, 102], "set_ylabel": [90, 91, 92], "x_2": [90, 91, 92], "set_xlim": [90, 91, 92], "set_ylim": [90, 91, 92], "linestyl": [90, 91, 92], "circl": [90, 91, 92, 99, 102], "misclassifi": [90, 91, 92], "zip": [90, 91, 92, 93, 103, 108], "label_err": [90, 91, 92], "180": [90, 91, 92, 103], "marker": [90, 91, 92], "facecolor": [90, 91, 92], "edgecolor": [90, 91, 92], "linewidth": [90, 91, 92, 104], "title_fontproperti": [90, 91, 92], "semibold": [90, 91, 92], "first_legend": [90, 91, 92], "align": [90, 91, 92], "markerscal": 90, "second_legend": [90, 91, 92], "46": [90, 95, 97, 99, 103], "gca": [90, 91, 92], "add_artist": [90, 91, 92], "tight_layout": [90, 91, 92], "ideal": [90, 91, 92], "simplic": [90, 102], "327": [90, 103], "9297": 90, "000124": 90, "259": 90, "000725": 90, "269": 90, "000794": 90, "002061": 90, "125": [90, 91], "002908": 90, "fly": [90, 97], "feed": [90, 98], "simul": 90, "tqdm": [90, 93], "sleep": [90, 97], "generate_stream": 90, "sleep_tim": 90, "desc": 90, "singleton_stream": 90, "seamless": [90, 98], "singleton": 90, "batched_stream": 90, "processed_singleton": 90, "suggested_label": [90, 96], "250997": 90, "285757": 90, "43": [90, 91, 97, 99, 103], "120906": 90, "principl": 90, "processed_batch": 90, "51": [90, 91, 92, 95, 97, 99, 103], "002748": 90, "189996": 90, "093505": 90, "037250": 90, "149": [90, 103], "076397": 90, "154": 90, "294010": 90, "160": [90, 96, 106], "073622": 90, "166": [90, 93], "140832": 90, "167": [90, 97, 99, 103], "041743": 90, "181": 90, "169429": 90, "127304": 90, "235": [90, 103], "090310": 90, "254": [90, 97, 103], "183343": 90, "256": [90, 97, 98, 103], "048720": 90, "263": [90, 102, 103], "138820": 90, "292": 90, "239609": 90, "295": [90, 103], "022075": 90, "306": 90, "103040": 90, "343": 90, "234755": 90, "354": 90, "001612": 90, "359": 90, "068359": 90, "367": [90, 106], "015793": 90, "368": 90, "029022": 90, "391": 90, "106761": 90, "troublesom": 90, "623844": 90, "812647": 90, "816854": 90, "661968": 90, "632244": 90, "395": 90, "474599": 90, "396": 90, "653901": 90, "397": 90, "584554": 90, "398": 90, "817287": 90, "399": 90, "881545": 90, "183": 90, "937927": 90, "309": 90, "939505": 90, "133": 90, "947290": 90, "177": 90, "952187": 90, "314": [90, 103], "997293": 90, "655501": 90, "3603": 90, "173": [90, 103], "000330": 90, "000626": 90, "296": 90, "002004": 90, "304": 90, "165496": 90, "275": [90, 102], "179811": 90, "001317": 90, "005943": 90, "001426": 90, "320": [90, 103], "186355": 90, "349": 90, "187305": 90, "393": 90, "169838": 90, "185770": 90, "369889": 90, "285297": 90, "406162": 90, "516543": 90, "440142": 90, "476283": 90, "382757": 90, "466786": 90, "522078": 90, "276298": 90, "328181": 90, "409633": 90, "281425": 90, "518102": 90, "360596": 90, "underneath": 91, "hood": [91, 98], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "dup": [91, 92], "45": [91, 92, 97, 99, 103], "remaind": 91, "modal": [91, 92, 98, 101], "132": [91, 92, 99, 103], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97], "014828": 91, "107": [91, 92, 99, 102], "021241": 91, "026407": 91, "notic": [91, 99, 101, 103], "3558": [91, 92], "126": [91, 92, 99, 103], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 107], "000000e": [91, 92], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 99, 103, 106, 108], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 102, 107, 108], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "348": 91, "378": 91, "357": 91, "34": [91, 97, 99, 101, 103, 108], "54": [91, 97, 99, 103], "039122": 91, "044598": 91, "105": [91, 103], "105196": 91, "133654": 91, "168033": 91, "101107": 91, "183382": 91, "109": [91, 97, 103], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 103], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 103], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 99, 103], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 99, 101, 103], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 99], "_split": 92, "776": 92, "thoroughli": 92, "904": 92, "_base": [92, 93, 95, 96, 99], "246": [92, 93, 95, 96, 99, 103], "efficiencywarn": [92, 93, 95, 96, 99], "sort_graph_by_row_valu": [92, 93, 95, 96, 99], "warn_when_not_sort": [92, 93, 95, 96, 99], "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "901562": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 98], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 108], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 97], "952381": 92, "666667": 92, "portion": 92, "huge": [92, 99], "worri": [92, 96], "critic": 92, "60": [93, 99, 106], "torchvis": [93, 104], "tensordataset": 93, "stratifiedkfold": [93, 102], "autonotebook": 93, "math": 93, "fashion_mnist": 93, "1486": 93, "futurewarn": 93, "hf": 93, "messag": 93, "trust_remote_cod": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 97], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 102, 104], "super": [93, 95, 96], "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 104], "energi": 93, "trainload": [93, 104], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 106], "acc": [93, 99], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 108], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "814": 93, "329": [93, 103], "88": [93, 97, 98, 99, 102, 103, 106], "195": 93, "566": 93, "493": 93, "060": 93, "778": 93, "330": [93, 103], "505": 93, "572": 93, "476": 93, "340": 93, "810": 93, "328": [93, 103], "310": 93, "455": 93, "reorder": 93, "hstack": [93, 98, 99, 101], "vision": 93, "grayscal": 93, "max_preval": 93, "7714": 93, "3772": 93, "3585": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 99, 103, 108], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 97], "shirt": [93, 97], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 97, 104, 105], "21282": 93, "000016": 93, "53564": 93, "000018": 93, "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 108], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 97], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "ncol": [93, 104], "nrow": [93, 104], "ceil": 93, "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 104], "cmap": [93, 106], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": 93, "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 98], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 103, 107], "dark_scor": 93, "dark_issues_df": 93, "is_dark_issu": 93, "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": 93, "lowinfo_issu": 93, "low_information_scor": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 98, 101, 106], "xgboost": [95, 98, 106], "think": [95, 96, 98, 102, 107, 108], "nonzero": 95, "358": 95, "294": [95, 103], "941": 95, "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": 95, "000104": 95, "723": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": 95, "185": [95, 97, 103, 108], "187": [95, 97], "898": 95, "0014": [95, 97], "595": 95, "702427": 95, "147": [95, 99, 103], "711186": 95, "157": [95, 99], "721394": 95, "771": 95, "731979": 95, "740335": 95, "0014153602099278074": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 102, 103, 106], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 106], "96": [95, 97, 99, 102, 103, 106], "lt": [95, 96, 97, 101, 104], "style": [95, 107], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "unintend": [95, 96], "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 98], "indices_to_displai": 95, "tolist": [95, 98, 102], "perhap": [95, 99, 101], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 98], "dive": 96, "text_embed": 96, "data_dict": [96, 99, 101], "85": [96, 103], "38": [96, 97, 103], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 97], "000224": 96, "971": 96, "000507": 96, "980": [96, 97], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "095724": 96, "148": 96, "006237": 96, "546": 96, "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "0000": [96, 97, 99], "313": [96, 103], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 99, 101, 103], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 97], "gone": 96, "gt": [96, 101, 108], "samp": 96, "br": 96, "press": [96, 108], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 99], "strongli": 96, "p_valu": 96, "benign": 96, "curat": 96, "refin": 97, "instruct": 97, "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "yellow": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "flat": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "center": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "school": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "orang": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "babi": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "alt": 97, "atheism": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "sci": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "bytesio": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "capit": 97, "29780": 97, "780": 97, "medic": [97, 108], "doctor": 97, "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "670000": 97, "251": [97, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "66": 97, "002216": 97, "000974": 97, "59": [97, 103], "000873": 97, "000739": 97, "32635": 97, "32636": 97, "47": [97, 103], "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "67": [97, 103, 106], "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103, 108], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "57": [97, 99], "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "82": [97, 99, 103, 106], "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "from_dict": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "meaning": [98, 104], "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103, 108], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "nbsp": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "n_init": 98, "fit_predict": 98, "continuous_column": 98, "categorical_column": 98, "data_df": 98, "feature_a": 98, "feature_b": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "tmp": 98, "ipykernel_7818": 98, "1995098996": 98, "deprecationwarn": 98, "dataframegroupbi": 98, "include_group": 98, "silenc": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "alter": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "focus": [99, 101, 102, 106], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "val": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103, 108], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "enhanc": [99, 101, 103], "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "randomli": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "knowledg": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103, 108], "191": [99, 103], "63": [99, 103, 106], "117": [99, 106, 108], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "dropna": 101, "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103], "216": [102, 103], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "float32": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": 103, "293": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": 103, "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "140": 103, "124": 103, "268": 103, "273": 103, "108": 103, "284": 103, "110": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "explor": [103, 104], "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "anomali": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "sorted_indic": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "root": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "103700713": 104, "31it": 104, "5000": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "img": [104, 106], "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "ylabel": 104, "axvlin": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "ag": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "hue": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "colorbar": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "concat": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2024": 108, "2400": 108, "52e0": 108, "1a00": 108, "1067": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "24mb": 108, "mb": 108, "directori": 108, "inflat": 108, "182": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "kb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "parti": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 3, 1, "", "set_knn_graph"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 93, 95, 96, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 99, 102], "creat": [7, 90, 91, 92, 99, 101], "your": [7, 84, 91, 92, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 91], "us": [7, 87, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": 8, "cluster": [8, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 91], "cleanlab": [9, 10, 84, 87, 88, 89, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 93, 95, 96], "mode": [9, 10, 84, 93, 95, 96], "can": [10, 90, 92, 97, 98, 99, 101], "detect": [10, 89, 92, 93, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 90, 93, 95, 96, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 20, 92, 93, 95, 96, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96], "iid": [10, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 99, 107], "imbal": [10, 21], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 104], "specif": [10, 22, 107], "underperform": [10, 98], "group": [10, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": 10, "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": 10, "paramet": [10, 99], "get": [12, 90, 91, 92, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 93], "dataset": [37, 63, 84, 88, 89, 90, 92, 93, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 91], "token_classification_util": 56, "util": 57, "valid": [58, 93, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 90, 92, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 93, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 90, 92, 93, 95, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 92, 99, 106], "pre": [85, 89, 98, 104], "function": [85, 91], "name": 85, "chang": 85, "modul": [85, 99], "new": [85, 90], "remov": 85, "argument": [85, 91], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 94, 97, 100], "structur": 87, "tabular": [87, 95], "requir": [87, 88, 90, 91, 92, 93, 95, 96, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 92, 95, 96, 106], "process": [87, 95, 104, 106], "select": [87, 95], "comput": [87, 89, 93, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 93, 95, 96, 101, 105], "sampl": [87, 89, 90, 91, 92, 93, 95, 96, 101, 105], "predict": [87, 89, 90, 91, 92, 93, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 93, 95, 96, 101, 105], "more": [87, 88, 90, 92, 99, 106], "text": [88, 96, 108], "format": [88, 96, 98, 102, 103], "defin": [88, 93, 96, 106], "potenti": [88, 101, 106], "an": [89, 93, 98], "audio": 89, "import": [89, 90, 91, 92, 93, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 93, 104], "fit": 89, "linear": 89, "datamonitor": 90, "leverag": 90, "statist": [90, 101], "audit": [90, 91, 92], "skip": [90, 92, 97, 99, 101], "detail": [90, 92, 97, 99, 101], "classifi": [90, 91, 92], "6": [90, 99], "about": [90, 92], "addit": [90, 92], "7": [90, 93, 99], "8": [90, 97, 99], "look": 90, "both": 90, "workflow": [91, 99], "instanti": 91, "object": [91, 103], "increment": 91, "specifi": [91, 98], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "all": [92, 99], "kind": [92, 103], "inform": [92, 93], "fetch": [93, 97], "normal": 93, "fashion": 93, "mnist": 93, "prepar": 93, "k": [93, 95, 105], "fold": [93, 105], "cross": [93, 105], "embed": [93, 104], "view": 93, "most": [93, 108], "like": 93, "exampl": [93, 98, 99, 104], "sever": 93, "set": [93, 99], "dark": 93, "top": [93, 107], "low": 93, "numer": 95, "categor": 95, "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": 95, "drift": [96, 102], "understand": 97, "evalu": 97, "health": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "i": [98, 99, 105], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "slice": 98, "when": [98, 99], "identifi": [98, 103], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "visual": [99, 103, 104, 107], "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "score": [99, 101, 102, 103, 107, 108], "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "initi": 101, "major": 101, "vote": 101, "better": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [93, "Easy-Mode"], [95, "Easy-Mode"], [96, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[90, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"], [92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[90, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[90, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[90, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[90, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[98, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 92, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 92, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 92, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 93, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 91, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 92, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 92, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 91, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 91, 95, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 93, 95, 96, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 93, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 91, 93, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 90, 92, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 92, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 95, 103, 104], "trace": [1, 90, 91, 92, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 91, 93, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 92, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 91, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 92, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 92, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 92, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 93, 95, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 91, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 92, 93, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 92, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 93, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 95, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 93, 95, 96, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 93, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 92, 93, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 91, 92, 93, 95, 96, 99], "yield": [1, 38, 42, 90], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 93, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 91, 95, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 93, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 91, 92, 93, 95, 96, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 93, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10], "python": [1, 2, 42, 61, 74, 88, 89, 91, 92, 93, 95, 96, 97, 99, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 90, 96, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 90, 93, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 90, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 92, 95, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 91, 93, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 90, 93, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 97, 98], "choic": [1, 8, 44, 53, 55, 93, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 93, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91, 92], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 95, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 92, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 93, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 92, 95, 97, 99, 101, 102], "max_it": [1, 88, 89, 96, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 93, 95, 96, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 92, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 95, 96, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 91, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 91, 93, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 91], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 90, 92, 96, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 90, 92, 93, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 92, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 93, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 92, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 91, 93, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 91, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 93, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 91, 92, 93, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 92, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 91, 92, 93, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 93, 96, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 92, 93, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 90, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 91, 92, 93, 95, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 92, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 92, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 93, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 92, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 91, 92, 93, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 93, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 90, 92, 93, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 90, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 92, 95, 96, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 95, 96, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 91, 92, 95, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 95, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 92, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 93, 94, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 92, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 91, 93, 95, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 91, 92, 93, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 90, 93, 95, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 91, 95, 96, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 92, 96], "loss": [2, 39, 61, 72, 74, 93], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 93, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 93, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 90, 93, 95, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 91, 92, 93, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 93, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 91, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 91, 92, 93, 95, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 93, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 92, 96, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 93], "independ": [2, 3, 10, 63, 74, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 93, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 93, 96, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 92, 93, 95, 96, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 96, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 91, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 93, 95, 96, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 91, 93, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 91, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 92, 93, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 92, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 92, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 92, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 92, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 94, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 92, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 91, 92, 93, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 91, 92, 93, 95, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 91, 92, 95, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 91, 92, 93, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 91, 92, 96, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 93, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 91, 92, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 93, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 91, 93, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 91, 92, 93, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 91, 93, 95, 96, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 90, 93, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 91, 92, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 91, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 91, 92, 93, 96, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 92, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 96], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 91, 92, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 10, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 91, 92, 93, 95, 96, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 91, 93, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 92, 96, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 91, 95, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 90, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 91, 96, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 92, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 92, 97, 98], "robust": [2, 47, 52, 74, 92, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 92, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 91, 92, 96, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 90, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 92, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 90, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 93, 98, 104], "dimens": [2, 57, 76, 79, 93, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 93, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 95, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 91, 98, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 91, 92, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 91, 92, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 93, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 92, 96], "close": [2, 3, 10, 41, 47, 71, 89, 91, 92, 93, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 90, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 92, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 93, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 91], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 93, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 92, 98, 99], "impact": [2, 4, 10, 91, 92, 93], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 91, 92, 93, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 93, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 91, 98, 101, 105], "caus": [2, 44, 49, 91, 92, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 91, 92, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 91, 92, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 90, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 91, 93, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 93, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 90, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 91, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 91, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 93, 96, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 93, 95, 96, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 95, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 93, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 91, 92, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 92, 93, 95, 96, 99], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52], "torch": [2, 38, 39, 42, 88, 89, 93, 96, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 91, 92, 93, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 92, 93, 95, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 93, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 93, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 91, 92, 93, 95, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 93, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 90, 93, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 96, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 91, 92, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 93, 95, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 92, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 91, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 93, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 93, 95, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 92, 94, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 90, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 92, 93, 96, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 93, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 92, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 93, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 92, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 93, 95, 96, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 90, 92, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 92, 93, 96, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 93, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 91, 93, 95, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 90, 93, 95, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 90, 93, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 91, 95, 96, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 91, 93, 95, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 92, 95, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 89, 93, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 93, 96, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 92, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 93, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 91, 95, 102, 103], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 91, 93, 95, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 90, 93, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 88, 92, 93, 96, 97, 102], "hyperparamet": [2, 66, 71, 93], "purpos": [2, 52, 91, 92, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 91, 93, 96, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74, 98], "yourself": [2, 5, 41, 92], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 93, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 93, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 91, 92, 96, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 91, 93, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 91], "label_issues_df": [2, 74, 93], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 91, 92], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 95, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 93, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 92, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 91, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 93, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 96, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 93, 95, 96, 97, 98, 99, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 91, 92, 93, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 93, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 91, 94, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 91, 92, 93, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 91, 92, 95, 96, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 92, 93, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 96], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 91, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 91, 93, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 90, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 96, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 96, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 92, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 91, 93, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 93, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 92, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 92, 93, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 92, 93, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 91, 95, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 90, 92, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 95], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 92, 93, 95, 96, 97, 99], "clear": [2, 38, 42, 54, 74, 88, 96, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 93, 95, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 93, 95, 96, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 93, 95, 96, 98], "care": [2, 10, 38, 42, 52, 74, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 90, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 91, 92, 95, 96, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 91, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 93, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 91, 92, 98], "metadata": [2, 10, 42, 74, 93, 95, 96, 108], "through": [2, 5, 7, 42, 74, 88, 89, 90, 92, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 92, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 93, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 93, 94], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 91, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 93, 95], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 91, 96, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 96, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 91, 93], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 93, 95, 96, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 91, 92, 93, 95, 96, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 90, 95, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 93, 95, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 92, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 92, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 92, 93, 95, 96, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 93, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 92, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 93, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 92, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 92, 93, 95, 97, 98, 99, 104, 106], "As": [3, 7, 84, 91, 92, 96, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 93, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 90, 95, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 92, 93, 96, 99, 106], "know": [3, 10, 91, 92, 93, 95, 96, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 92, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 93, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 90, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 92, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 93, 95, 96, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 95, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 91, 92, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 91, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 93, 95, 96, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 91, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 90, 93, 98, 107], "practic": [3, 87, 88, 92, 93, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 92, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 91, 92, 93, 95, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 93, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 93, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 91, 95, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 93, 95], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 91, 92, 93, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 91, 93, 95, 96, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 91, 93, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 96, 98, 99, 101, 103], "littl": [3, 41, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 90, 93, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 93, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 91, 95, 96, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 93, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 91, 93, 95, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 103], "contribut": [4, 10, 19, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 95], "metric": [4, 5, 10, 19, 20, 27, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 93, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 92, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 91, 92, 93, 95, 96, 98, 99, 104], "knn": [4, 10, 14, 19, 27, 32, 51, 52, 53, 54, 55, 71, 95, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 93, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 92, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 92, 93, 95, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 91, 92, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 91, 92, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 91, 92, 93, 96, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 93, 95, 96, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 95, 104], "cosin": [4, 10, 52, 53, 55, 71, 104], "dim": [4, 71, 93, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 95], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 92, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85], "exce": [4, 52, 90, 93], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 92, 93, 96, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 91, 92, 93, 95, 96, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 99], "closer": [4, 10, 69, 103], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 91, 92, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 90, 93, 96, 97, 98], "55": [4, 56, 97, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 89, 90, 91, 93, 95, 96, 97, 99], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 91, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 93], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 91, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 91, 97, 98, 99], "intermedi": [5, 9, 92], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 92, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 93, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 93], "face": [5, 10, 13, 17, 93, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 93, 96, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 91, 92, 95, 96, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 91, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 93, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 91, 92, 94, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 95, 96, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 92, 96, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 91, 92, 94, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 106], "pil": [5, 93], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 92, 93, 98, 100, 102, 107], "load_dataset": [5, 13, 93], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 90], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 92, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 92, 94, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 91, 92, 98, 99, 101, 106, 107], "world": [5, 17, 84, 91, 92, 98, 99, 101, 106, 107], "interact": [5, 17, 96, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 91, 92, 93, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 93, 95, 96, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 93, 95, 96, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52], "evenli": 5, "omit": [5, 69, 70, 93, 103], "itself": [5, 33, 38, 42, 52, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 92, 95, 97, 99, 101, 105, 106, 107, 108], "indptr": 5, "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 96, 102, 103, 108], "ascend": [5, 37, 63, 93, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 95, 96, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 95], "illustr": 5, "todens": 5, "second": [5, 49, 57, 70, 72, 91, 95, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 91, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 93, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 93, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78], "toarrai": [5, 52], "NOT": [5, 41, 96], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 92], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 91, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 92, 95, 96, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 90, 92, 93, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 91, 98, 99, 102, 103], "familiar": 5, "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 91, 92, 95, 99, 103], "issue_summari": [5, 7, 10, 14, 90, 91], "With": [5, 9, 10, 41, 88, 96, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 93, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 92, 93, 95, 96, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80], "wherea": [5, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 91, 92, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 92, 93, 95, 96, 99], "hypothesi": 5, "iid": [5, 7, 9, 27, 95, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91, 92], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 92, 93, 95, 96, 98, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91, 92], "focu": [5, 10, 14, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 90, 93, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 91, 92, 93, 95, 96, 99], "get_issue_summari": [5, 10, 14, 90, 92], "get_info": [5, 14, 92, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 91], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 91, 93], "load": [5, 13, 41, 70, 93, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 91, 93, 96, 98], "overwrit": [5, 91], "separ": [5, 37, 49, 66, 91, 92, 93, 98, 103, 105], "static": 5, "rememb": [5, 96, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 91, 97, 107, 108], "ident": [5, 10, 23, 57, 90, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 98, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 91, 98], "pre": [7, 8, 10, 38, 42, 91, 92, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 93, 98], "issue_manager_factori": [7, 15, 91], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 99, 106], "next": [7, 62, 84, 87, 88, 89, 90, 93, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 92, 98], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 92, 99], "rand": [7, 49, 52, 90, 91, 92], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "whole": [7, 10, 27, 38, 42, 92], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "popul": [7, 92, 96], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 90, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 91, 98, 104], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 38, 42, 53, 76, 82, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 90, 92, 95, 96, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 90, 92, 93, 95, 96, 98, 99, 107], "won": [7, 38, 42, 91, 92, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 91], "instanti": [7, 17, 41, 61, 71, 88, 89, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 93, 95, 96, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32, 98], "hdbscan": [8, 98], "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 91, 92, 95, 96, 98, 99, 102, 106], "sensit": [8, 10, 55], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 98], "your_data": 8, "get_pred_prob": [8, 90], "n_cluster": [8, 32, 98], "cluster_id": [8, 10, 11, 32, 98], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 92, 93, 95, 96, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 92], "null": [9, 11, 15, 22, 92, 93, 96, 99], "togeth": [9, 10, 47, 88, 91, 92, 93, 95, 96, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 92, 93, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 93, 95, 96, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 95, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 93, 95, 96, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 90, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 93, 96, 98, 106], "power": [9, 10, 93, 95, 96, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 90, 93, 95, 96, 107], "foundat": [9, 10, 84], "improv": [9, 10, 62, 87, 88, 92, 93, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 96, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 90, 92, 97, 98, 106], "free": [9, 10, 84, 89, 92, 93, 95, 96, 98, 99], "page": [10, 92, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 91, 92, 95, 96, 97, 98, 99, 101, 103], "why": [10, 90, 96], "matter": [10, 37, 63, 88, 96], "didn": 10, "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 93, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 92, 93, 95, 96, 99], "data_valu": [10, 11, 15, 22], "No": [10, 11, 87, 88, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 91, 92, 93, 95, 96, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 91, 92, 95, 96, 98, 105, 106], "is_issu": [10, 23], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 93, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 93, 95, 96, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 92, 93, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 90, 92, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 93, 97], "analyt": [10, 84, 98, 101], "lead": [10, 69, 72, 93, 103], "draw": [10, 90, 91, 92], "conclus": [10, 96], "let": [10, 38, 42, 71, 72, 87, 88, 89, 90, 92, 93, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 92, 93, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 92, 97, 99, 103], "680894": 10, "41": [10, 97, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 90, 93, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 93, 95, 96, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 93, 95, 96, 98, 99], "anomal": [10, 72, 90, 91, 92, 93, 95, 96, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 96], "consequ": 10, "inspect": [10, 88, 89, 90, 92, 93, 99, 103, 106], "011562": 10, "62": [10, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 91, 93, 97, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 90, 102, 103], "extrem": [10, 91, 92, 93, 95, 96, 98, 99], "record": [10, 38, 42, 89, 95, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 91, 92, 94, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 92, 93, 95, 96], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 97, 108], "066009": 10, "80": [10, 39, 87, 95, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 90, 95, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 97, 99, 102, 106], "signific": [10, 95, 96, 99], "violat": [10, 95, 96, 99], "assumpt": [10, 95, 96, 99], "changepoint": [10, 95, 96, 99], "shift": [10, 52, 54, 95, 96, 99], "drift": [10, 92, 95, 99], "autocorrel": [10, 95, 96, 99], "almost": [10, 95, 96, 99], "adjac": [10, 52, 95, 96, 99], "tend": [10, 37, 47, 95, 96, 99, 107, 108], "sequenti": [10, 38, 42, 61, 93], "primarili": 10, "pai": [10, 96], "attent": 10, "realli": [10, 88, 96, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 92, 95, 107], "necessarili": [10, 62, 70, 96, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 92, 96, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 95, 99, 105, 106], "similarli": [10, 38, 42, 91, 93, 95, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 93, 96, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91, 92], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 91], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 90, 93, 95, 96], "problem": [10, 33, 41, 49, 79, 84, 91, 92, 93, 96, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 95, 96, 99, 105, 108], "diagnos": [10, 92, 98], "24": [10, 89, 90, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 91, 97], "804582": 10, "64": [10, 42, 87, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 95, 97, 99, 103, 106], "834293": 10, "interpret": [10, 97, 98, 99, 102, 106], "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 90, 98], "rarest": [10, 92], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 93, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 92, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 93], "dark": [10, 107], "bright": [10, 108], "blurri": [10, 93], "lack": [10, 61], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 92, 93, 95, 96, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 92, 106, 107], "tabular": [10, 84, 86, 91, 92, 94, 98, 101], "categor": [10, 71, 86, 87, 91, 92, 94, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 95, 96, 98, 106, 107], "71": [10, 97, 99, 103, 106], "70": [10, 82, 95], "69": [10, 99, 106], "subgroup": 10, "wors": [10, 101], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 90, 98, 103, 106], "pattern": 10, "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 91, 93, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 91, 97, 101, 103], "valuabl": [10, 19], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29, 91], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 93, 95, 96, 101, 105, 107], "mandatori": [10, 93], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 93, 97, 103, 107], "29": [10, 90, 93, 97, 101, 102, 103, 107, 108], "low_inform": [10, 93], "odd_aspect_ratio": [10, 93], "35": [10, 90, 91, 97, 101, 102, 103], "odd_siz": [10, 93], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 93, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 93, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 91, 92, 93, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 91, 92, 93, 95, 96, 98, 99], "is_non_iid_issu": [11, 92, 95, 96, 99], "non_iid_scor": [11, 27, 92, 95, 96, 99], "is_class_imbalance_issu": [11, 92], "class_imbalance_scor": [11, 21, 92], "is_underperforming_group_issu": [11, 92], "underperforming_group_scor": [11, 32, 92], "is_null_issu": [11, 92], "null_scor": [11, 28, 92], "is_data_valuation_issu": 11, "data_valuation_scor": [11, 19], "studio": [12, 84, 92, 93, 95, 96, 98], "data_issu": [12, 16, 17, 34, 91], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 93, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 93], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": [14, 93], "strategi": [14, 49, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 93, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 91], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 99, 103, 107, 108], "creation": [17, 42], "execut": [17, 38, 42, 91, 93, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 93, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 92, 93, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 93, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 96, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 87, 89, 91, 93, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 90, 91, 92, 93, 96, 99, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "set_knn_graph": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 93, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 91, 104, 106], "prompt": 28, "address": [28, 88, 91, 92, 96, 98], "enabl": [28, 42, 54], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 90, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "find_issues_kwarg": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 91, 93, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 92, 98], "datset": 34, "exclud": [34, 43, 79, 83, 91, 98, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91, 92], "continu": [35, 61, 87, 88, 93, 96, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 91, 92], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 93, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 92, 93, 95, 96, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 98, 99], "rank_classes_by_label_qu": [37, 92], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 92, 95, 99, 101], "df": [37, 57, 83, 89, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 93, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63, 90], "car": [37, 97, 103, 107], "frequent": [37, 62, 98, 106], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39, 93], "noisy_label": [37, 90, 91, 92, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 92], "cnn": [38, 40, 42, 93], "cifar": [38, 39, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": 38, "master": [38, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 90, 91, 98, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 93, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 95], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "former": [38, 42], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 93], "init": [38, 42, 99], "no_grad": [38, 42, 93, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 93, 96], "fill_": [38, 42], "net": [38, 42, 89, 93, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 93], "tensor": [38, 39, 42, 88, 89, 93, 96, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 93], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 93], "devic": [38, 42, 89, 93], "gpu": [38, 42, 88, 89, 96], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 92, 95, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 93, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 91, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 96], "resolv": [38, 42, 90, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 93, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 93], "break": [38, 42, 93, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 93], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 90, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 92, 93, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 92, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 91, 93, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 96, 98], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 95], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 91, 92], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 93, 95, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 96], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 93, 98], "design": [38, 42, 52, 90], "ordereddict": [38, 42], "detach": [38, 42, 93], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 96, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 96], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 93], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 93], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 93, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 98], "250": [39, 91, 92, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 93, 96, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 93, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 90, 93, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 93], "loader": [40, 42, 93], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 96], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 92, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 93, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 91, 98, 103, 104], "store_result": 41, "becom": [41, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 96, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 90, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 93], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 92, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 96], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 96, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 92, 93, 98, 103], "thread": [44, 64], "window": [44, 89, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88, 90], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 91, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 95, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 92, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 95, 96, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 93, 95, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 93, 99, 103], "underflow": 49, "nan": [49, 62, 87, 95, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": 49, "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 93], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 92, 93, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 95, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 92, 96, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 101, 106], "701": 52, "900": [52, 87, 95, 106], "436": 52, "000": [52, 88, 93, 96, 97, 108], "idea": [52, 72, 90, 103], "dens": [52, 61], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 92], "exact_duplicate_set": 52, "main": [52, 62, 90], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 92, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 95], "slower": 53, "decid": [53, 62, 88, 96, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91, 92], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "scaling_factor": 55, "exp": [55, 71, 72, 91], "dt": 55, "right": [55, 67, 70, 88, 96, 102, 103, 104], "strength": [55, 70], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 91, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 93, 95, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 92, 95, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 92, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 95, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 90, 93, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 96, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 92, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 90, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 95, 96, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 90, 93, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 90, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 93, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 90, 92, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 96, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 90, 97, 101], "chosen": [62, 72, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 93, 95, 96, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 95, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 91, 93, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": [62, 91, 92, 93, 95, 96, 98, 99], "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 91, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 95], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 93, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 93, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 92], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 95, 96, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 92, 108], "abnorm": [70, 93, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 92, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 90, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 93, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 93, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 93, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 93, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 93], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": 70, "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 95, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 93], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 96, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 91, 92, 95, 96, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 93, 96, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 96], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 96], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 91, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 96, 104], "grain": 74, "grid": 74, "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 92, 93, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 93, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 90, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 91], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 93, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 92, 102, 103, 106, 107], "colormap": 79, "background": 79, "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 96, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 93], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": 82, "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 91, 92, 99, 103, 104], "03": [82, 95, 97, 99, 103, 108], "04": [82, 95, 103], "08": [82, 99, 103, 106, 108], "commonli": [83, 85, 91, 92, 102, 108], "But": [83, 96, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 93, 95, 96, 100], "minut": [84, 87, 88, 89, 95, 96, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 93, 98], "your_dataset": [84, 89, 91, 92, 93, 95, 96, 98], "column_name_of_label": [84, 89, 91, 92, 93, 95, 96], "plagu": [84, 92], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 92], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 90, 99, 102, 104, 106], "deal": [84, 92], "tutori": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 92, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 93, 95, 96, 98], "edit": [84, 98], "easier": [84, 99], "unreli": [84, 87, 89, 95, 96], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 95], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 95, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 95], "databas": [87, 95], "excel": [87, 95], "parquet": [87, 95], "student": [87, 95, 106, 108], "grade": [87, 95, 106], "exam": [87, 95, 106], "letter": [87, 95, 108], "hundr": [87, 95], "mistak": [87, 88, 93, 95, 96], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 92, 95, 104, 106], "standardscal": [87, 95, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 92, 104], "accuracy_scor": [87, 88, 89, 96, 99], "grades_data": [87, 95], "read_csv": [87, 88, 95, 96, 106], "demo": [87, 92, 95, 102], "stud_id": [87, 95], "exam_1": [87, 95, 106], "exam_2": [87, 95, 106], "exam_3": [87, 95, 106], "letter_grad": [87, 95], "f48f73": [87, 95], "53": [87, 90, 91, 92, 95, 97, 102, 103], "00": [87, 91, 92, 95, 97, 104], "77": [87, 91, 92, 95, 103, 108], "0bd4e7": [87, 95], "81": [87, 95, 96, 103, 106, 108], "great": [87, 90, 95, 97], "particip": [87, 95], "cb9d7a": [87, 95], "61": [87, 95, 99, 103, 106], "94": [87, 95, 97, 99, 103, 106], "9acca4": [87, 95], "48": [87, 95, 97, 99, 103], "x_raw": [87, 95], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 95], "get_dummi": [87, 95, 106], "drop_first": [87, 95], "numeric_featur": [87, 95], "scaler": [87, 95, 104], "x_process": [87, 95], "fit_transform": [87, 95], "bring": [87, 88, 93, 95, 96, 101, 106], "byod": [87, 88, 93, 95, 96, 101, 106], "tress": 87, "held": [87, 89, 95, 96, 97, 103, 104, 105], "straightforward": [87, 89, 95], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 95, 101], "tabl": [87, 95, 97, 101], "212": [87, 99], "review": [87, 88, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 95, 96, 106], "92": [87, 91, 99, 103], "93": [87, 97, 103, 106], "827": 87, "99": [87, 97, 99, 108], "86": [87, 92, 93, 95, 99, 103, 106], "74": [87, 103, 106], "637": [87, 95], "79": [87, 97, 103], "65": [87, 91, 103], "cheat": 87, "0pt": 87, "120": [87, 91, 92], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 90, 99, 102, 103, 106], "suspici": [87, 95], "carefulli": [87, 93, 95, 96], "examin": [87, 90, 91, 92, 95, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91, 92], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 96], "servic": [88, 96, 98], "onlin": [88, 96], "bank": [88, 96, 97], "banking77": [88, 96], "oo": [88, 96], "categori": [88, 93, 96], "shortlist": [88, 96, 106], "scope": [88, 96], "logist": [88, 90, 91, 92, 96, 101, 104], "probabilit": [88, 89], "drop": [88, 95, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 96], "sentencetransform": [88, 96], "payment": [88, 96], "cancel_transf": [88, 96], "transfer": [88, 96], "fund": [88, 96], "cancel": [88, 96], "transact": [88, 96], "my": [88, 96], "revert": [88, 96], "morn": [88, 96], "realis": [88, 96], "yesterdai": [88, 96], "rent": [88, 96], "tomorrow": [88, 96], "raw_text": [88, 96], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "apple_pay_or_google_pai": [88, 96], "change_pin": [88, 96], "lost_or_stolen_phon": [88, 96], "beneficiary_not_allow": [88, 96], "card_about_to_expir": [88, 96], "getting_spare_card": [88, 96], "card_payment_fee_charg": [88, 96], "supported_cards_and_curr": [88, 96], "visa_or_mastercard": [88, 96], "card": [88, 96, 97], "utter": [88, 96], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 96, 97, 98], "electra": [88, 96], "discrimin": [88, 96], "googl": [88, 90, 96], "train_text": 88, "test_text": 88, "home": [88, 91, 92, 96, 97], "runner": [88, 91, 92, 96], "google_electra": [88, 96], "pool": [88, 96, 98, 104], "opt": [88, 89, 92, 93, 95, 96, 99], "hostedtoolcach": [88, 89, 92, 93, 95, 96, 99], "x64": [88, 89, 92, 93, 95, 96, 99], "lib": [88, 89, 92, 93, 95, 96, 99], "python3": [88, 89, 92, 93, 95, 96, 99], "site": [88, 89, 92, 93, 95, 96, 99], "_util": [88, 96], "831": [88, 96], "userwarn": [88, 89, 91, 92, 96], "typedstorag": [88, 96], "untypedstorag": [88, 96], "untyped_storag": [88, 96], "fget": [88, 96], "__get__": [88, 96], "owner": [88, 96], "leverag": [88, 89, 96, 98, 99, 101], "computation": [88, 89, 96], "intens": [88, 89, 96], "400": [88, 90, 96], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 96, 99, 106], "to_numpi": [88, 96, 98, 106], "44": [88, 97, 102, 103, 108], "646": 88, "390": 88, "628": 88, "121": [88, 90, 99], "702": 88, "863": [88, 89], "135": [88, 93], "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 96], "cash": [88, 96], "holidai": [88, 96], "sent": [88, 96, 108], "mine": [88, 96], "expir": [88, 96], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 96], "whoever": [88, 96], "consum": [88, 106], "18": [88, 89, 90, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 92, 93, 103, 106], "acceler": [88, 106], "19": [88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 106, 107], "89": [88, 90, 91, 95, 103, 106], "spoken": 89, "500": [89, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 91, 92, 93, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 92, 95, 96], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 95, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 104], "gz": [89, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 90, 93, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 93, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 93, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": 89, "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 93], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 93], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 93], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 91, 97, 98, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 90, 93, 97, 99, 103, 106], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 98], "cv_accuraci": 89, "9708": 89, "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "investig": [89, 90], "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 96], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "load_ext": 90, "autoreload": 90, "ve": [90, 97, 98, 99, 101, 103], "prove": 90, "monitor": [90, 97], "ran": 90, "data_monitor": 90, "your_datalab": 90, "new_data_batch": 90, "your_label": 90, "get_your_label": 90, "your_featur": [90, 96], "get_featur": 90, "websit": [90, 97], "todo": 90, "get_ipython": 90, "17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442": 90, "cmd": 90, "dep": 90, "dependencies_test": 90, "missing_depend": 90, "__import__": 90, "importerror": 90, "sep": [90, 108], "npleas": 90, "toi": [90, 91, 92, 93, 97, 99, 101], "mid": [90, 91, 92], "workflow": [90, 100, 106], "unseen": 90, "inf": [90, 91, 92], "bins_map": [90, 91, 92], "create_data": [90, 91, 92], "800": 90, "y_bin": [90, 91, 92], "y_i": [90, 91, 92], "y_bin_idx": [90, 91, 92], "y_train": [90, 91, 92, 99, 106], "y_test": [90, 91, 92, 99, 106], "y_train_idx": [90, 91, 92], "y_test_idx": [90, 91, 92], "slide": [90, 91, 92, 97], "frame": [90, 91, 92], "x_out": [90, 91, 92], "tini": [90, 91, 92], "concaten": [90, 91, 92, 98, 105], "y_out": [90, 91, 92], "y_out_bin": [90, 91, 92], "y_out_bin_idx": [90, 91, 92], "exact_duplicate_idx": [90, 91, 92], "x_duplic": [90, 91, 92], "y_duplic": [90, 91, 92], "y_duplicate_idx": [90, 91, 92], "noisy_labels_idx": [90, 91, 92, 102], "train_x": 90, "test_x": 90, "train_y_tru": 90, "test_y_tru": 90, "train_i": 90, "test_i": 90, "train_y_idx": 90, "test_y_idx": 90, "scatter": [90, 91, 92, 99, 102, 106], "black": [90, 91, 92, 97, 106], "cyan": [90, 91, 92], "plot_data": [90, 91, 92, 99, 102, 106], "fig": [90, 91, 92, 93, 97, 104, 106], "ax": [90, 91, 92, 93, 104, 106], "subplot": [90, 91, 92, 93, 104], "set_titl": [90, 91, 92, 93, 104], "set_xlabel": [90, 91, 92], "x_1": [90, 91, 92], "fontsiz": [90, 91, 92, 93, 99, 102], "set_ylabel": [90, 91, 92], "x_2": [90, 91, 92], "set_xlim": [90, 91, 92], "set_ylim": [90, 91, 92], "linestyl": [90, 91, 92], "circl": [90, 91, 92, 99, 102], "misclassifi": [90, 91, 92], "zip": [90, 91, 92, 93, 103, 108], "label_err": [90, 91, 92], "180": [90, 91, 92, 103], "marker": [90, 91, 92], "facecolor": [90, 91, 92], "edgecolor": [90, 91, 92], "linewidth": [90, 91, 92, 104], "title_fontproperti": [90, 91, 92], "semibold": [90, 91, 92], "first_legend": [90, 91, 92], "align": [90, 91, 92], "markerscal": 90, "second_legend": [90, 91, 92], "46": [90, 95, 97, 99, 103], "gca": [90, 91, 92], "add_artist": [90, 91, 92], "tight_layout": [90, 91, 92], "ideal": [90, 91, 92], "simplic": [90, 102], "327": [90, 103], "9297": 90, "000124": 90, "259": 90, "000725": 90, "269": 90, "000794": 90, "002061": 90, "125": [90, 91], "002908": 90, "fly": [90, 97], "feed": [90, 98], "simul": 90, "tqdm": [90, 93], "sleep": [90, 97], "generate_stream": 90, "sleep_tim": 90, "desc": 90, "singleton_stream": 90, "seamless": [90, 98], "singleton": 90, "batched_stream": 90, "processed_singleton": 90, "suggested_label": [90, 96], "250997": 90, "285757": 90, "43": [90, 91, 97, 99, 103, 108], "120906": 90, "principl": 90, "processed_batch": 90, "51": [90, 91, 92, 95, 97, 99, 103], "002748": 90, "189996": 90, "093505": 90, "037250": 90, "149": [90, 103], "076397": 90, "154": 90, "294010": 90, "160": [90, 96, 106], "073622": 90, "166": [90, 93], "140832": 90, "167": [90, 97, 99, 103], "041743": 90, "181": 90, "169429": 90, "127304": 90, "235": [90, 103], "090310": 90, "254": [90, 97, 103], "183343": 90, "256": [90, 97, 98, 103], "048720": 90, "263": [90, 102, 103], "138820": 90, "292": 90, "239609": 90, "295": [90, 103], "022075": 90, "306": 90, "103040": 90, "343": 90, "234755": 90, "354": 90, "001612": 90, "359": 90, "068359": 90, "367": [90, 106], "015793": 90, "368": 90, "029022": 90, "391": 90, "106761": 90, "troublesom": 90, "623844": 90, "812647": 90, "816854": 90, "661968": 90, "632244": 90, "395": 90, "474599": 90, "396": 90, "653901": 90, "397": 90, "584554": 90, "398": 90, "817287": 90, "399": 90, "881545": 90, "183": 90, "937927": 90, "309": 90, "939505": 90, "133": 90, "947290": 90, "177": 90, "952187": 90, "314": [90, 103], "997293": 90, "655501": 90, "3603": 90, "173": [90, 103], "000330": 90, "000626": 90, "296": 90, "002004": 90, "304": 90, "165496": 90, "275": [90, 102], "179811": 90, "001317": 90, "005943": 90, "001426": 90, "320": [90, 103], "186355": 90, "349": 90, "187305": 90, "393": 90, "169838": 90, "185770": 90, "369889": 90, "285297": 90, "406162": 90, "516543": 90, "440142": 90, "476283": 90, "382757": 90, "466786": 90, "522078": 90, "276298": 90, "328181": 90, "409633": 90, "281425": 90, "518102": 90, "360596": 90, "underneath": 91, "hood": [91, 98], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "dup": [91, 92], "45": [91, 92, 97, 99, 103], "remaind": 91, "modal": [91, 92, 98, 101], "132": [91, 92, 99, 103], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97], "014828": 91, "107": [91, 92, 99, 102], "021241": 91, "026407": 91, "notic": [91, 99, 101, 103], "3558": [91, 92], "126": [91, 92, 99, 103], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 107], "000000e": [91, 92], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 99, 103, 106], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 102, 107, 108], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "348": 91, "378": 91, "357": 91, "34": [91, 97, 99, 101, 103, 108], "54": [91, 97, 99, 103, 108], "039122": 91, "044598": 91, "105": [91, 103], "105196": 91, "133654": 91, "168033": 91, "101107": 91, "183382": 91, "109": [91, 97, 103], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 103, 108], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 103], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 99, 103], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 99, 101, 103], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 99], "_split": 92, "776": 92, "thoroughli": 92, "904": 92, "_base": [92, 93, 95, 96, 99], "246": [92, 93, 95, 96, 99, 103], "efficiencywarn": [92, 93, 95, 96, 99], "sort_graph_by_row_valu": [92, 93, 95, 96, 99], "warn_when_not_sort": [92, 93, 95, 96, 99], "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "901562": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 98], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 108], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 97], "952381": 92, "666667": 92, "portion": 92, "huge": [92, 99], "worri": [92, 96], "critic": 92, "60": [93, 99, 106], "torchvis": [93, 104], "tensordataset": 93, "stratifiedkfold": [93, 102], "autonotebook": 93, "math": 93, "fashion_mnist": 93, "1486": 93, "futurewarn": 93, "hf": 93, "messag": 93, "trust_remote_cod": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 97], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 102, 104], "super": [93, 95, 96], "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 104], "energi": 93, "trainload": [93, 104], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 106], "acc": [93, 99], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 108], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "329": [93, 103], "88": [93, 97, 98, 99, 102, 103, 106], "195": 93, "867": 93, "493": 93, "060": 93, "153": [93, 103], "330": [93, 103], "505": 93, "898": [93, 95], "476": 93, "340": 93, "049": 93, "328": [93, 103], "310": 93, "066": 93, "reorder": 93, "hstack": [93, 98, 99, 101], "vision": 93, "grayscal": 93, "max_preval": 93, "7714": 93, "3772": 93, "3585": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 99, 103, 108], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 97], "shirt": [93, 97], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 97, 104, 105], "21282": 93, "000016": 93, "53564": 93, "000018": 93, "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 108], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 97], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "ncol": [93, 104], "nrow": [93, 104], "ceil": 93, "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 104], "cmap": [93, 106], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": 93, "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 98], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 103, 107], "dark_scor": 93, "dark_issues_df": 93, "is_dark_issu": 93, "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": 93, "lowinfo_issu": 93, "low_information_scor": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 98, 101, 106], "xgboost": [95, 98, 106], "think": [95, 96, 98, 102, 107, 108], "nonzero": 95, "358": 95, "294": [95, 103], "941": 95, "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": 95, "000104": 95, "723": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": 95, "185": [95, 97, 103, 108], "187": [95, 97], "0014": [95, 97], "595": 95, "702427": 95, "147": [95, 99, 103], "711186": 95, "157": [95, 99], "721394": 95, "771": 95, "731979": 95, "740335": 95, "0014153602099278074": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 102, 103, 106], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 106], "96": [95, 97, 99, 102, 103, 106], "lt": [95, 96, 97, 101, 104], "style": [95, 107], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "unintend": [95, 96], "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 98], "indices_to_displai": 95, "tolist": [95, 98, 102], "perhap": [95, 99, 101], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 98], "dive": 96, "text_embed": 96, "data_dict": [96, 99, 101], "85": [96, 103], "38": [96, 97, 103], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 97], "000224": 96, "971": 96, "000507": 96, "980": [96, 97], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "095724": 96, "148": 96, "006237": 96, "546": 96, "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "0000": [96, 97, 99], "313": [96, 103], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 99, 101, 103], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 97], "gone": 96, "gt": [96, 101, 108], "samp": 96, "br": 96, "press": [96, 108], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 99], "strongli": 96, "p_valu": 96, "benign": 96, "curat": 96, "refin": 97, "instruct": 97, "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "yellow": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "flat": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "center": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "school": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "orang": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "babi": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "alt": 97, "atheism": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "sci": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "bytesio": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "capit": 97, "29780": 97, "780": 97, "medic": [97, 108], "doctor": 97, "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "670000": 97, "251": [97, 103, 108], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "66": 97, "002216": 97, "000974": 97, "59": [97, 103], "000873": 97, "000739": 97, "32635": 97, "32636": 97, "47": [97, 103], "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "67": [97, 103, 106], "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "57": [97, 99], "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "82": [97, 99, 103, 106], "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "from_dict": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "meaning": [98, 104], "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "nbsp": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "n_init": 98, "fit_predict": 98, "continuous_column": 98, "categorical_column": 98, "data_df": 98, "feature_a": 98, "feature_b": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "tmp": 98, "ipykernel_7681": 98, "1995098996": 98, "deprecationwarn": 98, "dataframegroupbi": 98, "include_group": 98, "silenc": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "alter": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "focus": [99, 101, 102, 106], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "val": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "enhanc": [99, 101, 103], "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "randomli": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "knowledg": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "63": [99, 103, 106], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102, 108], "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "dropna": 101, "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103], "216": [102, 103, 108], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "float32": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": [103, 108], "293": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "140": 103, "124": 103, "268": 103, "273": 103, "108": 103, "284": 103, "110": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "199": [103, 108], "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "explor": [103, 104], "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "anomali": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "sorted_indic": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "root": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "79243594": 104, "26it": 104, "5000": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "img": [104, 106], "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "ylabel": 104, "axvlin": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "ag": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "hue": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "colorbar": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "concat": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2024": 108, "2400": 108, "52e0": 108, "1a00": 108, "1068": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "77mb": 108, "mb": 108, "directori": 108, "inflat": 108, "162": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "9mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "parti": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 3, 1, "", "set_knn_graph"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 93, 95, 96, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 99, 102], "creat": [7, 90, 91, 92, 99, 101], "your": [7, 84, 91, 92, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 91], "us": [7, 87, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": 8, "cluster": [8, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 91], "cleanlab": [9, 10, 84, 87, 88, 89, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 93, 95, 96], "mode": [9, 10, 84, 93, 95, 96], "can": [10, 90, 92, 97, 98, 99, 101], "detect": [10, 89, 92, 93, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 90, 93, 95, 96, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 20, 92, 93, 95, 96, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96], "iid": [10, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 99, 107], "imbal": [10, 21], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 104], "specif": [10, 22, 107], "underperform": [10, 98], "group": [10, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": 10, "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": 10, "paramet": [10, 99], "get": [12, 90, 91, 92, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 93], "dataset": [37, 63, 84, 88, 89, 90, 92, 93, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 91], "token_classification_util": 56, "util": 57, "valid": [58, 93, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 93, 95, 96, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 90, 92, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 93, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 90, 92, 93, 95, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 92, 99, 106], "pre": [85, 89, 98, 104], "function": [85, 91], "name": 85, "chang": 85, "modul": [85, 99], "new": [85, 90], "remov": 85, "argument": [85, 91], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 94, 97, 100], "structur": 87, "tabular": [87, 95], "requir": [87, 88, 90, 91, 92, 93, 95, 96, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 92, 95, 96, 106], "process": [87, 95, 104, 106], "select": [87, 95], "comput": [87, 89, 93, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 93, 95, 96, 101, 105], "sampl": [87, 89, 90, 91, 92, 93, 95, 96, 101, 105], "predict": [87, 89, 90, 91, 92, 93, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 93, 95, 96, 101, 105], "more": [87, 88, 90, 92, 99, 106], "text": [88, 96, 108], "format": [88, 96, 98, 102, 103], "defin": [88, 93, 96, 106], "potenti": [88, 101, 106], "an": [89, 93, 98], "audio": 89, "import": [89, 90, 91, 92, 93, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 93, 104], "fit": 89, "linear": 89, "datamonitor": 90, "leverag": 90, "statist": [90, 101], "audit": [90, 91, 92], "skip": [90, 92, 97, 99, 101], "detail": [90, 92, 97, 99, 101], "classifi": [90, 91, 92], "6": [90, 99], "about": [90, 92], "addit": [90, 92], "7": [90, 93, 99], "8": [90, 97, 99], "look": 90, "both": 90, "workflow": [91, 99], "instanti": 91, "object": [91, 103], "increment": 91, "specifi": [91, 98], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "all": [92, 99], "kind": [92, 103], "inform": [92, 93], "fetch": [93, 97], "normal": 93, "fashion": 93, "mnist": 93, "prepar": 93, "k": [93, 95, 105], "fold": [93, 105], "cross": [93, 105], "embed": [93, 104], "view": 93, "most": [93, 108], "like": 93, "exampl": [93, 98, 99, 104], "sever": 93, "set": [93, 99], "dark": 93, "top": [93, 107], "low": 93, "numer": 95, "categor": 95, "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": 95, "drift": [96, 102], "understand": 97, "evalu": 97, "health": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "i": [98, 99, 105], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "slice": 98, "when": [98, 99], "identifi": [98, 103], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "visual": [99, 103, 104, 107], "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "score": [99, 101, 102, 103, 107, 108], "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "initi": 101, "major": 101, "vote": 101, "better": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [93, "Easy-Mode"], [95, "Easy-Mode"], [96, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[90, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"], [92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[90, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[90, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[90, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[90, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[98, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 444ad8edb..1fc4f2c0c 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:48.197215Z", - "iopub.status.busy": "2024-06-07T11:04:48.197042Z", - "iopub.status.idle": "2024-06-07T11:04:49.403129Z", - "shell.execute_reply": "2024-06-07T11:04:49.402500Z" + "iopub.execute_input": "2024-06-10T22:05:52.726746Z", + "iopub.status.busy": "2024-06-10T22:05:52.726282Z", + "iopub.status.idle": "2024-06-10T22:05:54.021525Z", + "shell.execute_reply": "2024-06-10T22:05:54.020942Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@d9f589ee262b28be23bc180eb6e1e81421d2cb68\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@17ed6fea3c4a3cc0eaa90235fa4a53f5a5816442\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:49.406166Z", - "iopub.status.busy": "2024-06-07T11:04:49.405702Z", - "iopub.status.idle": "2024-06-07T11:04:49.441823Z", - "shell.execute_reply": "2024-06-07T11:04:49.441313Z" + "iopub.execute_input": "2024-06-10T22:05:54.024204Z", + "iopub.status.busy": "2024-06-10T22:05:54.023764Z", + "iopub.status.idle": "2024-06-10T22:05:54.043326Z", + "shell.execute_reply": "2024-06-10T22:05:54.042726Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:49.444258Z", - "iopub.status.busy": "2024-06-07T11:04:49.443854Z", - "iopub.status.idle": "2024-06-07T11:04:49.599950Z", - "shell.execute_reply": "2024-06-07T11:04:49.599356Z" + "iopub.execute_input": "2024-06-10T22:05:54.046275Z", + "iopub.status.busy": "2024-06-10T22:05:54.045742Z", + "iopub.status.idle": "2024-06-10T22:05:54.193290Z", + "shell.execute_reply": "2024-06-10T22:05:54.192693Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:49.630746Z", - "iopub.status.busy": "2024-06-07T11:04:49.630349Z", - "iopub.status.idle": "2024-06-07T11:04:49.635605Z", - "shell.execute_reply": "2024-06-07T11:04:49.635065Z" + "iopub.execute_input": "2024-06-10T22:05:54.224551Z", + "iopub.status.busy": "2024-06-10T22:05:54.223956Z", + "iopub.status.idle": "2024-06-10T22:05:54.228067Z", + "shell.execute_reply": "2024-06-10T22:05:54.227516Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:49.637650Z", - "iopub.status.busy": "2024-06-07T11:04:49.637324Z", - "iopub.status.idle": "2024-06-07T11:04:49.645985Z", - "shell.execute_reply": "2024-06-07T11:04:49.645410Z" + "iopub.execute_input": "2024-06-10T22:05:54.230290Z", + "iopub.status.busy": "2024-06-10T22:05:54.229987Z", + "iopub.status.idle": "2024-06-10T22:05:54.238576Z", + "shell.execute_reply": "2024-06-10T22:05:54.238137Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:49.648175Z", - "iopub.status.busy": "2024-06-07T11:04:49.647801Z", - "iopub.status.idle": "2024-06-07T11:04:49.650485Z", - "shell.execute_reply": "2024-06-07T11:04:49.649947Z" + "iopub.execute_input": "2024-06-10T22:05:54.240837Z", + "iopub.status.busy": "2024-06-10T22:05:54.240406Z", + "iopub.status.idle": "2024-06-10T22:05:54.243021Z", + "shell.execute_reply": "2024-06-10T22:05:54.242587Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:49.652505Z", - "iopub.status.busy": "2024-06-07T11:04:49.652178Z", - "iopub.status.idle": "2024-06-07T11:04:50.183138Z", - "shell.execute_reply": "2024-06-07T11:04:50.182536Z" + "iopub.execute_input": "2024-06-10T22:05:54.244989Z", + "iopub.status.busy": "2024-06-10T22:05:54.244798Z", + "iopub.status.idle": "2024-06-10T22:05:54.774716Z", + "shell.execute_reply": "2024-06-10T22:05:54.774086Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:50.185966Z", - "iopub.status.busy": "2024-06-07T11:04:50.185573Z", - "iopub.status.idle": "2024-06-07T11:04:51.865909Z", - "shell.execute_reply": "2024-06-07T11:04:51.865214Z" + "iopub.execute_input": "2024-06-10T22:05:54.777295Z", + "iopub.status.busy": "2024-06-10T22:05:54.777108Z", + "iopub.status.idle": "2024-06-10T22:05:56.565037Z", + "shell.execute_reply": "2024-06-10T22:05:56.564372Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:51.868992Z", - "iopub.status.busy": "2024-06-07T11:04:51.868040Z", - "iopub.status.idle": "2024-06-07T11:04:51.878235Z", - "shell.execute_reply": "2024-06-07T11:04:51.877708Z" + "iopub.execute_input": "2024-06-10T22:05:56.568139Z", + "iopub.status.busy": "2024-06-10T22:05:56.567547Z", + "iopub.status.idle": "2024-06-10T22:05:56.577959Z", + "shell.execute_reply": "2024-06-10T22:05:56.577498Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:51.880389Z", - "iopub.status.busy": "2024-06-07T11:04:51.880011Z", - "iopub.status.idle": "2024-06-07T11:04:51.884257Z", - "shell.execute_reply": "2024-06-07T11:04:51.883724Z" + "iopub.execute_input": "2024-06-10T22:05:56.580073Z", + "iopub.status.busy": "2024-06-10T22:05:56.579792Z", + "iopub.status.idle": "2024-06-10T22:05:56.584041Z", + "shell.execute_reply": "2024-06-10T22:05:56.583595Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:51.886525Z", - "iopub.status.busy": "2024-06-07T11:04:51.886351Z", - "iopub.status.idle": "2024-06-07T11:04:51.894119Z", - "shell.execute_reply": "2024-06-07T11:04:51.893674Z" + "iopub.execute_input": "2024-06-10T22:05:56.586055Z", + "iopub.status.busy": "2024-06-10T22:05:56.585739Z", + "iopub.status.idle": "2024-06-10T22:05:56.593028Z", + "shell.execute_reply": "2024-06-10T22:05:56.592501Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:51.896211Z", - "iopub.status.busy": "2024-06-07T11:04:51.895887Z", - "iopub.status.idle": "2024-06-07T11:04:52.017045Z", - "shell.execute_reply": "2024-06-07T11:04:52.016506Z" + "iopub.execute_input": "2024-06-10T22:05:56.594910Z", + "iopub.status.busy": "2024-06-10T22:05:56.594730Z", + "iopub.status.idle": "2024-06-10T22:05:56.707585Z", + "shell.execute_reply": "2024-06-10T22:05:56.707100Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:52.019344Z", - "iopub.status.busy": "2024-06-07T11:04:52.019014Z", - "iopub.status.idle": "2024-06-07T11:04:52.021798Z", - "shell.execute_reply": "2024-06-07T11:04:52.021325Z" + "iopub.execute_input": "2024-06-10T22:05:56.709580Z", + "iopub.status.busy": "2024-06-10T22:05:56.709399Z", + "iopub.status.idle": "2024-06-10T22:05:56.712197Z", + "shell.execute_reply": "2024-06-10T22:05:56.711748Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:52.023975Z", - "iopub.status.busy": "2024-06-07T11:04:52.023656Z", - "iopub.status.idle": "2024-06-07T11:04:54.133548Z", - "shell.execute_reply": "2024-06-07T11:04:54.132872Z" + "iopub.execute_input": "2024-06-10T22:05:56.714237Z", + "iopub.status.busy": "2024-06-10T22:05:56.714060Z", + "iopub.status.idle": "2024-06-10T22:05:58.802639Z", + "shell.execute_reply": "2024-06-10T22:05:58.801967Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:54.136870Z", - "iopub.status.busy": "2024-06-07T11:04:54.135991Z", - "iopub.status.idle": "2024-06-07T11:04:54.148639Z", - "shell.execute_reply": "2024-06-07T11:04:54.148053Z" + "iopub.execute_input": "2024-06-10T22:05:58.805930Z", + "iopub.status.busy": "2024-06-10T22:05:58.805126Z", + "iopub.status.idle": "2024-06-10T22:05:58.817626Z", + "shell.execute_reply": "2024-06-10T22:05:58.817104Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-07T11:04:54.151023Z", - "iopub.status.busy": "2024-06-07T11:04:54.150657Z", - "iopub.status.idle": "2024-06-07T11:04:54.209272Z", - "shell.execute_reply": "2024-06-07T11:04:54.208674Z" + "iopub.execute_input": "2024-06-10T22:05:58.820058Z", + "iopub.status.busy": "2024-06-10T22:05:58.819586Z", + "iopub.status.idle": "2024-06-10T22:05:58.861125Z", + "shell.execute_reply": "2024-06-10T22:05:58.860498Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 44d347233..1f8ff63fc 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -807,7 +807,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'getting_spare_card', 'change_pin', 'cancel_transfer'}
    +Classes: {'apple_pay_or_google_pay', 'change_pin', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'visa_or_mastercard'}
     

  • ZZCdzglxNKxLX zf?X8&3ibh&@*WzGCa4KCqEZX0L?Yb`L8So2!pW=xVL^z3eZd1-Ou{#{3R4s&)&jW- z{2ZoMglmZd9Uw+T5vkbu^-y9?uSy4(lH2JntI%rRZRcXcCxj#=jqI;zeWLe5911}g zBH8GIbZ5(Q3Rg)N?Sy`0J)7RUm&Cs_hGVZ-h?RZ6c0oT%IaifVE)w!0))>^Pa_O81 z{**~_5E6dEZH;V;m;`aE3ZM?; zQb3wBwnz~n43i=NF={17;nW~lV$|WDA@v3}No+)JK$`hXjYDEOMCsWOfgK~M0Lg)g z#1D`}s$x-AAb&kRUUSfrwS`h<#~=U;uea*OoQ@MZqQnOS14ZIPHhoDN;5|eHIRaE@ zNre#rsmldwF774Uya2kz@)ln)U?U=w0j_yB`3fS7Fhfz;mgv2*Ib z&pfMz6j}C@v3tQeat3AZ4KMpLd( zr3*wFn-Iep?kiks=&xK8KrqI*4`N5RQ%Tq~AB{PK02ix2LLibdLi-VXKS5-kDoUg& zRye2AD76ydgUakRscso`*~&phQbJ6G1SVDyv1fqk8ooOQJ%TYPQ%br#HL5VDNC<+T zBj!wu5ddGcN>w^s8${-@Vhg9ogx>JRFgNkL0DDwe2n0f+5fC9eN}&$>-0`CGBblg- zZY}lrG3)eVc87`@0$u&}s+EJAY;06fgTju3Rs+~4f?XCMGJ6 z8SX5$HduWyI}BdTSd!SXD0XMUYHWJQu##*5kV<5RIUBM6qOV7~(hcjDA=r_OUL!lb zhMZn^rJ$3@hSlutCR>Cc59V|q2jarbOTS1wm|033Rw9yss3a)tBL#&jCW(Av zMQIE_g;Ztr%LGm{jD^_n81-~gM<4*nl@QR+SyQBVaz zhY5-7YK7D+LO*P59lHG3_ z|18p3W|zYdj!qyR#OTL`q2!6Q8F+#YX8Sc;M{XxJK#b zyVZ*(>83{MW}|eoQM%bE-Q2Bcv{AZQuXAmbZZ=9c8>O4ORo6C3Ha|FeS86uQ(X-6SrOUFevCts149jnd6V>E^rDiZ)6&lTy@1>1LyJ zvr)QPuPAPmZoX^HXrpwqQM$Q%S#6_qGoi3*ly3fKHKUEv%|_{Fqja-Ty7`|Jj5bO) zd)K2jN;ey&n~l=VcPTRd?=9VouPLtn@Idw8*B@?DXKp*@U^RBy>J7Sc`6b?L=Mw$U z5I!onYmxIq%+aS*-iNR}bPxuDx(N;mI15eRs@iJJbMZdv?LOBHP|Ie%I#3;c&Ajsq z_r^CJxcaPqg`3pXzuRwuD*yYJM#cwftM?oD5B>g{gI4!fYn;{n)OEMa8+Pq|-fCW7 zjPLW-Trje5dylS;IcCk6f2^xH|NQEp_!}p!IruDf^^pt4sgs@gQ&qb)zo-U2vgTm* zn@87_lxNNVpt{?hKSm9GY|Ugf*`6Q%JqMT7eUGjAvpV7SFYTxP>8VimNl&bKFg?#V z-amgI^~#fLMybLP^AAuretXS0b;)phKvqZh6H@}jl3FIxMri`L$;XzkkdYwxT~ zE&Qs-U>G#*&OYzChrgcu>cIGP{mzzemSLZ z{ulC(TK?Nx#>M~kn>#;0xD2&s4ZcAygyyZn&%zU2f%zFlH&g*pD@%Vd_bB|2bzue@f~;nu%O=h)!hTsXSbt$JnZ$m_uc)A*W|6@xHsaTym9xe!mhVt zw%>hM@>YK34?9~wD#X|Q@$R$USE@nZ0hvKHg29d&eCS)?G=^c3rGm=%ZU!XxeLXF>^VLYx4h0JPT7oTHTqRjrA*VWrNi1CwMGhAT&d z$5iA~5F|qJ6wWb}I}j&M*&~M^-F{DD0#up&5K42fOd`|=#{zWw5WzufQ;A{!gP%L6 z&y-Xrr^|#l^4{9I!&JFt-Biddgl-6O7?BZ%oXD?gnt@&e)Ibr6PAScis0%;~0}V2o zAn-N8EoS!@jbZLalqFW5L0!zHeF(A;C@CXSLCd7TZFES2(59ONdjz#D&k!;NF z8S=qn*L}(m(LH;2E-u($5fl*qN2tPJFY!V>k;s7BAO2gnPKBH^Cxu_En+iGW@j#Wh zJCkJ2nC!*Cz~-2B(^BP{F$Z>xEoEO+oe3E(W7J)EJ}~M);)YI-3$Y^nNO14Mi(E&3 zLtp~61`JG)L&0i=ARaW)Ldb-UAq=c3d)@X$?J%@Lq$~tHOfTkV081A$4b}+6qeY%N zzHRnGxFmCWP3KlIyI0Am=xXDoO9z%bCJh6ODJ%*u2=U6p3?Zd~heVWz5*E<1BO1pL zgCffTX}AblBI2uC{3oh$z86nCd?DhyH7NR+mGF4W9Wf9Vgp(K|mI|yW5NXwEx(2UC zelxq2UhK?=h?Lg;Q<5J;xMUT#8Z9}dCGDq9>;E}IWjF+?f zL}4|VS2>*~^Xik(w`xcZ>`r}*pcWeIsMeu$CrqENsF)_@=?Ei1qyhyM^sG6XPW*t^ z4n1qmbLlmyU@^@ahrPwJv+tJhi>rkn?bxT3eLV?H$*0sYhuk?-sms?L-Ppbw+tpwqWh*^J8kkkyzY&sP5#R2 zS5;y1JyYX12HyA2pHxo`yl-m!sp!6cbqY!q+V6YgJ$A0_Rrg(1Q1QL1?)&*(g_m}Q z14@13O?TWkq~Ck}+3&Z!I$DkEd)=^WKX~tbyzY-bc<%%MaiR*2IHrF0&MSQN(Dxh> zxc;iS<5w(yb$~j&`N1LA4j=s0c=+H4=Z-J@rANqt$J6wlJNVwz2gk-<^MkcB)Tuvv zXzI03-SA-i)C~_EIZPSL*H4X`+aFprQC)j7&EGxp(5O-Bp5tg9^6W#}D7DwK4^531 z{OqAG6jlFrnns`XQx8ys`8S?7ZT$%o)G5c*BEJ;~yO-&Gvug)32Po zexa+*T1oSi_zZdJG%w87`Wjhvs`|hf&UgC?zrsiWo{=!LiAO5gVR%99RNX5M$%e5UZ+&sOdQs zb@gay^&wloyHN5o`>v@YzuTgh{LFs+lu&cljD}-qGVh#WAPfBms)J+(0$!+!$JD?buxf?+7vwP32}HxBwNg z$q+$&2HJkRDx~~%q4S)1QP&O0d`_?_?;h>R9-NxD`_b7q%n!sd{o|6QW6L=gq^qkh zitC=~*5l)&8v3M+;`IctCwYCF*HgT{!|UI8eV5nMyuQcl z`@EjvwTagccx~qOEUzE(`Vp@m$1|S%$r05u@kNxIZ3E>{WEGM9A$vruI)b$shi)p-Sd_gGjI2NuulaDw$j-WaaXIH8WMCu<_ci;u zwxarZ^xV|=vnM@wMIUwWc{C@S^4xa^s|9;+nHmqN%BPp^OY^=@OY>tValpsUd+y@> z%IH2gwu@4dPWWB&M^2TzIQcDu=ra8F>6PUkm7K`Ge&M+nuTf8bh<@(gdkg&xKaS?H zqonzTPt)c0v0E1PQGYy{X8XQd-WXYiAm2mT-9%W+K-AX68bR$4BS$yUR^Sw^vGlg%L(Wh95Rn@m>~{lbLiU-M8FCiOr2d&knj`17jORzDg_f!$8nAtC?Ry)ux=uZ4iROkO`%b+5&2(EjFe=Kqn7~d6y z8bzX)lQ2Eyf3uzRS0cHNux3R=yNYa#Ksf@`B>4x9du;q@Hz@;D3nF|Cxctc(f%OO~ z+=l?+IrOdq3&!|CBFB*3Gum2`rl4LiyW3rWxX)j*WuoR9X0vDaU{+^hd2sK;X^#Ma z@6bjxg!Homyb#gkRL!82vwXsi7(2qd@*GIJnv3e9mdT2Ce_v$8du9VZO0s^h6@*7(QmTY_^ z#tkBIx<^(Vt-FxS86IUwMh`ERN0W$!oQl4oi}tXmvyh{9Wgsk6MMTd+HNnLJU_3<~ zhCNC>8nns1%7s8$9ifWDt&cKWi21s4# zWF0Ai`OpjZxFdQ)bvs_;sSq0W3~%a}b4 zR< zDD8E0&P}VzZ0mapvn}VUQvEBIcRK*e;{v{^RJ|GwaTP&8w5t&dt<`q(t##9JDf>f}WxF5^Dv0=?LafEh3yE$>W~ZoL9@?g3 zRA%;9uc}@4@Rof)XzU7Dc8i8s*b~iG&&|!PAr<5X)hNJ-br9>ZSrsuN*`aHw*Q9G> zDz%wyYu1AvTK3cGrQeMilr=(o?QPk2G1$d`ly_0=_y;6%sU_6SQH8BUx*%69ny6Q^ z2BM<^Y$0;fc#jC(pb8yFeWyJxeK8kV5c(0=k!^#YF*Xb5<-CwS=hpw5G_5|3E4 zWp>{(qJ~jG zZjtYt9xHX=RZfrT#`e|^w;WLdZX}xHMkM;fVmu(%!@9*JGFkZR+HvWWV>JtEH3OMA z(NqVPrGd!98$g-}{ji`eLR?}02Iu1e`T=kxf9juYFd&Dk!@9PNK1A=SmnvfKOfTeuz*xGj;1B~WNu3xk7H+quV~(R# zhr0j-%z8e(guZjeV=r(_&OP&YZf7|cB-`0kwfgw@1L}!awjAAX-5Rc2!*%=H5JRu+ zEyw3=xNZ&Ct>L=$bh3LnV-44>m&4d_-5Rc2!*y%8ZVlHh%U^7`Zasa`y6g7)7H`j6 zhQ@0z=$PNX5cfzZpL|)z0q-H9oEGRF{P3&$#xKq7`0)ozmA&@Z<9%~3sva?D`gF-3 zP1o${np4*G!*u&F%}^t@b$oKLi>|cUtT!V%uVy^gF{a?C6S_JoyM4ax>5ixR+8m-b zKHD*VM33JnPfI_3x#KT`dwi_6|FGjIReq-9)B|+8S$BC>C1e-sc=ng7ndpsY1(?!|)!{q1F$ zpNow9^KK-wZhTm-N z*z|XghPD62fpFgQ9j6W3Z6J86`Ntj4{k_lsg%>)GS6lxuZ|MJH7rkwKnOXmj&-Yl} z|7^#Qzxy%&AD#4vt2Hll4EcMXJTu=_zuMX{^#Aoc5pyRV{eqf#bpLT``}xlgQJoh& zfAGLtuIgXdL;h2xInUc_^Ryv*srTK}G5y*LWCf>r^gFp=|1WMbNFJ!RlI#}=)@6f!yNu>{v6(x zF6{i2a?VRz`>C&8$Z>y`^IJW6)KGQ7rJem$^F@62W4YAvH~n;+x=Y>`+IBmnbTOZO zRQi4W!Jm#+E97m*0^Yv)`)NbeUYF3@-SQU~T+(@xGOnd{|6=a$+m~?MaSM6d-P?!M z$j|Y1%cY&6y7zKgr(M<=sr%b$ZCdu?X!YmI_=_9l;T>124pC=a&MyyW;VqYcvTFT2 zt?dhWjAwp^# z5nntb&+(;2ooA^va@)$+caBt_zlJYfy`lTK-^ttIxAJzvC$=$%uI23;tGW+X5hY#H&^m4Bk5%I%|*1j&c0-v`ll8y zVV=zAds;eAQv+qjCMP-bI{w0!K{@W;&yH5*r97lZ?RwsX24Q~Q3FR?_+1*Ym|< z88yk@PP~D)UzTb1r>#kN!rO5dqj zQWwd=iep$P=`*qzn_|MGsnFq2c*19JfY> z;kln!z5rg~@AEB(|tZG5(PHlIDy);U)#miat;W#@J3L$dHT zwRhg6J|}(r@u*j9HE$}owIdd+}_0m-G;eSZ$c4^%utp}vlC9OxLb&s^ZC#@aQ>X6n3Y5iPU-;~zxr1d*# zy(6u5X$|pdJtnR3(t1!@Q>671T651arTKz-7l?AO6wQWI!jvjN$V16 zeMwqZORG&i?r^P*0a)DFRjhe`j)i*D6Jnz>(_Io*(J@b()y*eI;8a{ zX+0#ZJ^`&Kq%~Yx-;h?5w7w#(gQT@uT8^~7EUgbp>ket1Ag!mRb-J`3k=D7=S}Cp1 z1Ow;pan84;xkx_znY3<{*1t*Xi_*GTTK7onO=&$Wt%s%cl(e3g){mrhqqMe4>vd_p zA*~0b^`^9bDy{w@txjo;mex9H&7COC$EDdUt?xkrZzC#~D0b%3;(mG9A zvD)^f&e38=KHTM~>0j==PYp9)9-)S>?Hsk@_RjkYFUAkt-uc;rI{Kil*@<=ez#W~( zso^JejfgpBSwWg3)y8wT4vrtWvvbcqcfD75=hY?&)lkGr}L+S;~O66{CYu!_KUN{gq@&%_+aOU)r>PAiINr3r^U?HuygKfDv;Ng1&rx0Xy>GC0c8$MufVy}8ZG+-pJ>2<3{m6~q zkh4vGtOd>tOZ9=FX-S11=k(&iwYak+HL}^Qro`8}IK*ez!?& z|L$eul=jX~2gRp+t8-)h>p5#*9IQ5P;?jqm&~KnBA4T8C+}k-Qp8aI!cY1da&v~lz zjr7BK_P=!wtDjK!Z#1cy_N9H*Z(r#%Oue&--}uqfo!_qi#@^qmpT>&#^5N>ZuWcI< z|Ni^CoyA(tqW*(&MKM=&;GXKrWm{*9J1|P!`Xlb@^wzEQyW021ou4Vl`;qaIpLG5q zZK~1^?#&msbpE3LzPOaTy6=Mn$HZTIzH@W^!{)bgJk&G|nZHd5X2+pUA*^?$-QOMheDpJiCd&ncRd z!I|AVos2uog69W8qXZj^-e(zjb1FOt!u{XYUYET{nd3J;|cT~-F2DzmlL<`AFm$W zwNF8sBjTsVbj_(Z|9PLTqwCEtjqAFw-rRrRu1o68yY}n)UA=ivlN@mA@Rx11?89B= zil6k`EA?IPDs>&F%46$mo7%73^^`hnzn5o=D;ud{rTQ0f$HcCE3-W%X>N}Zh-yU~N z?&1+9pZxrQu1-FAd`j2b^-to;bB$qyaeHJ!n? z{^gPJqC>h)t2h5JT`n;B^s+;{zEp1>q<4L<-t2F7{ad}ct6>-Bo`8*bMf z_2$Kgb^YM~qwBi^qCB3zb67y>peP+1iWR%DVv8M7qp^#|dN!;{Y@kWhiwzrN?=?1z z;$mzV?6F|f#B%+4tg%NEH5%W~&hs3I-{1Ss?at2Z?C$LB>}+}Vv?w99sOa0!j1eoD zlUFl*${p42P9ZU}v3ZS7A0B76=uzNdoVgzVG&jQzbM!$=^FLaY=C%XFcdg8;bkvSE zuCfGBPxaLK9n1&xXt$1Lo1Pb`0d#Rv@xr2CC#j&!yHXePZ9Q7Ls~JXz>p8Wjxg_~* zQVWZ7-OQVGd`fropL!JdzjRXHM6Xk2D%_XGz ziz|c7Np2dd>ritCoofFu^8`KGV7U1kJ$h=+^Bi9d6rHvVT^f(9xXD?JXw#X zjW`4QsebXVPP|w|8Oyy0!C9O zfl*>s$>QX9x}-1VEP-5u=b9V2>4lNGf=Hcj-lykT*Ak{YF;!NWix~YLb`wQ}Q|j%K zMa8;BvWFP+vo3ll8BI9}r^VhO`fBa-Y0?7}H|wYlihtl%P)nu;0>TW&t|Q3=tM zQY5&r7`f7X{i711>4ImlpH}tltIgH*sz>=~6$l}(B_%y*#C&T}QD&Wao}L@EC`aLQ zgT1KtHgr^>4dx6NCRf0z6kL?jQ-h0&w;RnZbiVzbV7BYCCAWf@=EErEMsN_>c7xHV zZRSj!k?(N`7$OKFzn8&*V#JT;);bTEXT0I+9pXz%yKf5+1$LPiyYl>Ej-s3rAzl>g z9Rh!5w;ZKXpaLGt^pCO^rKC+I3yEp_%$q;VzV1t8ztlCvON`7gWA@RMA>AC! z*d9{TdRhD_$s@ETefu1q!IH~n_>qiGse-P`t83Nsq5fjm6?5kgDkmq&aLV~Tw3z7d zyPULM+;$}8?smpg)*VcJd#{^E8D!L7#NL!`kx@dlCM8CN`O&1^o<+qRvz);h<1^Y) zky6Wrm8M8fD9<6Q8LkjxE}hjdK54s^V)S3Iue-q9JkmfxS8k2g_UFE;RG|00A_`IBv+_kKs~=3yPemu$e;3*^J-^e{_2U3w7dsR_stXn}wj z6Sd7!F|A-!S$h9lWKoK&gEo~9vcTJCZ2iB?m1y0oNbItgz^F)lgYNsLqy=uG#x}%S zkz(Vb>WQoni&aY$DC<)<4L`M}&b(u0DQ`+2Rmz=G4Ol}BiL}6AF^h)lT_j&c`B7pM z2wRkrGG%NogK9IQyrJ^I7AR|ht0b`kL%5<|QjUdhvqO?1Ow~2Ar||;S+^{)sQ=Eo*5%&$Fv_yc?qZ>tQx1yoZ`yzkw_yO$xdS$bXrA1F_qFXBZ>-$^nWww ziSt-f3;ZdWPe1~d^_ulLiDJMan%3QqD)@ms8+|4P#>IfVBl)$=C(o&^W#=$DE(p58 zjf*_4cxXaB)>aBtt!f!9&t*cXMh8o4TGtSo#p|&(9V}(h8x1W1bT!^$F{~0lb+i;l z56hHuoh%Acc6YYCH;~sPI8@A{Zdb6lJ_!!h#;%sJ1{w9I)%RczQg->5)(pkeFDy%S zOjI^7sad6~(z?IQFd;oGM|4cJ9yTul+h5X6<6$lb%EXJMYf#)PP(JNr!89Pbrwy}v ziJX3xK%MZ-&Rbpw23U&dAdK~AB5|Mv4?%NX)--l_iH?JF$z3%FrH(iK1GUxK??WxH z^-OLZVfifWUTNLDcnx22<*U%0(%v4wQb-*RuOKCk9k)ja)$IYUnw^q#31* zj@Hd$OtJ-Q6-iHWEJ}7I>HWL1f%N{c)nAO9E(af@;W(xeF^pvvElygaOr>D(P68@SQ2KV02+xR}>8> zxXXeq3C2iMrqwOZue?6GTkgqUq+j{+wLdWWi}uRFU*!n~KMqlQ)5^bGS&kO7D*|Q6`&kaqRW4l!G_m;M;6Dh$KRwHL$3;G!%Ece6X;cw%Bxh&RI*a3on)1epQJPapx^pb;iKA zpq%ImAG!!LF3JJHJbk5K$kl?65G?lQNC8jvz%~mXOBcU_DJ!#gwIW`&=$V;x!8v+DxM{9~x6ia~X#IAuSPOP%C&_!()n5Y_*sGYWz25bh;s> zA<+Wcy3uYQ@W^T&6GX9*4|SVS$ST#38Rgj_rdhiO52HyZLB!f+_b?5Q>bP2{Wx_?w z+C1pLbjt2wbYAzw{u2|ess1YU|5rjzfr{P&UIdI5R~2gnSn-d_L8CsDcj%wejxhP3 z4=v5y=>|v4B^$sP>AjI;gv~|^RxzCDvS*B- z6suBDJbEj~G-J8!sDCO}&^+7v@1?dfM*2|jg@9o_{@P$gCoqP6BNS6Q&%XRzz?v@~ zx5oN?8Qn{JRml2_o;k0VnI@tv%*m7H7#$TotdJ}h0F~l)gp=(aYEFRkitVR3+I#`7+`Sg53E}RFS>QXr3RqZh5xcE!NuB)#@5nI1Wt7 zw$jg0$)B=jRS6MKYFV+uy&q>AEibg-{JIW=IKQQhXToA)Kwazi1_=j<*Y&KSZdx?D zfwiL^oz=+txgLGg#G0r_`!%zU)T7oG)`41-kgY%c7iI|;zqPVr^MKj@+{W5V$1jfu zKJLK7K)PV8>Q09j6)!4wwzpyri7A2Zr!y_u$=XAYPUvFosz=RTtzYQTmffw`g_79_ zeT$X%Q>C$Hcp`dPF()y@e|uZ8T+Aa%39QsSMTJ%@1gwPThQ(^Hk$q9Bg-pmVoy3UqO>b)F=Mx@m^$ z^p6dpq%pCD#I~W<3o?2AHdnr=8L^&Z`!d!~TrgTsN?fU-wlGQ<4W7US(xA_rI5rvq z4c2i2IEy5_+}s{U5pyvcCuGG|qJvZ5y3rWxiT}ZsrY5IRvE4nZdqB!quAUrc&E}%& zS@K#H+pT&<%AA5qy_)rLtAHy_aigjip*=mTyKAkA{vm&>YGS7!Ew)cUp`GW# zW}&`l7Ib80OH2j0x7C{-w0F${@e8e^3=$3y*uaCj$f&kI=J%v}kgzO4*J+8oFZySz z8W=B6s{2vLH;QN48`L5)2C^+k(uy@mhLg`%!GnWd%~ozu4eOyoRalzcn>Hv<<5H8?A7?nFc#_VU#tehBx{BQv=(T`$zhV&6}+U zHMGFy;9D1Wl9YZmgGBoF+#>UesP+@Md+o2`A&%~llLK?-LoT!;TpZYC#lC@7q}(=@ zO%q4s`fZ_kLI_A0L-MLo%eb0-U#b zUQlEmu;L(s6VaKz)b~;?9Mq1kiT}fzh{Hd(gL0N*G*|M+aWzZRr3p1XXrvt*RK*Wj z59nwdvwG5lkwFpUI~(qj-x2GVI2-uSnI!M;1<~uHs7t_mXIU}mn02(l@Q_Ny*lNFkLycb|`K6&E_wPWm|uc$zv)a`Pgsh<5cgu9>RJ;s`x|7dTy&A zem!Ls5^!9!hl#aktdAwI@HY(B#${}w)Mrm^4{_lf<_RQ6McV38LixI$;`({C3Mozh z1m{P0z&YtiZEs<_C{_Q%{NJ3c?MD}qpmR@htotNRRz{#Qk0h|R5IA0(Ro9Q+jz@(H zU9;}bpTF_t+8z}073K%eKl1WxjY)S?J?P2x+V1pg6-QCwd&9a%W`MUryf;H3kvuO8^*(e0_4d70*Im4^N=t-#w{-@Ry}GRgCG4r~O%>nP z@uG>-QFsZ5H9a3Y@!n}YFH=}1YhKmH#@HKFmG@;MZ(H|DoRp4$bndwb(<;~VquP|u4V&4DBu{fVIg7P4Ci-4e?9$$@o>kR`eq#@GSm@9^mV zBDxd;qROeLb)P36)tZKtspBO&J=3zWpql*!2LuIiPh5(vQ$o8MG5qDn(r#GoQxDPi zAGjJHR!bzlw%(8_PfMZ=jq4Pq%vH7!vGCuIYDRW<)kmbhlXKET(f7U8*A1Cicu#Xa z^%Us_+ZD;C@0nX+VqF2-f07J!3YKIJ2Rd=h-!^ZGy<8t>?)B??QRr?+sf34(dl~Zu zy0eh2Eal9t?@zWJz%?mq<32q!4x9Xpi%qHHLs8f37ozn3=z`tbA;RHawqIqrrR4N9 zV!O>-B>LFAWucgE^n9ta>I74QsSeh#KOxHvKN}A=)DCw8CpEy7upi|;3b3*6U!G`- zp(qmsS#?1J{OR5!Oe*fhZ9IT5C14;PKtm*f@GD`n$#z0^0kTN$gPa=;{4^ct6>7_r zb^AywZC3%g^ zYr0humn*u)+P*T#s6UO~YQ_0exXlM%_wAxot$m{sn%h;nh7HpU)8I_Qi;_k_CJ7xI zdD5BiZUFPyq?Qdc2ow7J0>WKmrSJydjuI{F*su%AnDp1!Zi}sF!+a!R zQKi1^PaS1HZ^wwbWA&lLA-4lXw}v*jqcy(8)*voG51^D;*b01F3zwbIom7ph=9t ziDUscjfk&9Wwo+lo02nOz3NGvDWzJIU=h(4imGAw4h1Xvx*Bn1M2+@P01X4T8gp4^ zTWxw;H?EjSh__)vV{TX%>6lnkoG1O)02jIW7ShrL8{Bu$6r-fWmLdYVv9-o|c*Vrr z-gk^ErjfgMwP8P!(S2*6fCv>Hh)uLPWQwf@bhqjN z+dmSJiib6Y%{#4xT2c%dXj`vmYD%#l&2hkUu&D=49--`FxFKbPtDrqmEMOf;A*?NPQg zlvwhIsKKJ;R2!^eHo+RkP^@Q*V4C}`skg>tM6ySbhLIechPK-mL*Rx zOz^lNN{L_caSbdHsvo8N3Ny!d^`@lRFd^y^?~~BdLnJS=Vdm0nuqL6Iw^*}+n<&Pt zvPH?>;kp4+n4Ts!^Q8_&;cz`)V}s|SsTx7mLdl-k45vz0TYA!nQ8>FQxjs)@G=avC zZWfT1gbn^08@0yqxxp8n6!!LCA!hy_2v+~qH7 zO)ISI_S>#8HD(%tnTAW5-xwn)H!CG)Gz-=0``JNTmZXNjn$m)-WP zB?u66kH{Gg`kJegITxFi#ns4W9s*O*DT&Kd!~55p1!!G&;S4n1DS&^P? zyDn3B$jw*b&y3rFeH8Vi4Zf(Zv^me41yjxgsA0GIDE!4~InC+A2e`5nS`}U5cJAZB z#ya)xO*2mlUT5|czUOT}b5S`MNb{ZO@01fwi&Dc1ZHm$~Lvwc#c2QFZSr-wNV{6Nr z6N5pTGoW1nT^iBUUF`bJwluf!tO9KV#I&n6xPNGGBnUZW=I@w~kiw&xQ&O+PWFm!~ zO^82~qKdRFDAI0fqLShe5XWDVX775~rWC83s39ob{q`2AcFizeM(qV^|I9^;Jv&>Z zIHbbFBST&-vhHYF=5qPH(^A?7QGAKE?&9J-wvt>FXQ!x_Z9K%K2U;!J8v8}G^(4PD zZQUt-cL8^LcL@6nFCKm%`K-#gh7lHqYYA>oK1fa(+%`PTAKCa`s^2rrrBG-rFmB1} zAuKNTzR-rNbmj!+I5(;C>tAUWn<*~8(IhAvE4wN(?Q&cFF6-O3($T}f`Vt? z?xdlZKb}6d6`@g0(7tL0J3Ny4L$PUx@0Etp#jjjjbyW)5F{uMach0kw6gh?LIPzi` z(=;yac4=Rla(;sbhI-hstH>B^{Ng6ZP%HzUUT$B7vc7B&uYEmSlIBJ2nBN|)u;bE( z{17U}%Z~e6t6hu4rCzcyzySiQ?iX5AyD?hH$6kb1$Kncff}b6;sU#x5KkT0LuVY6^ z?P_uV09gaZ@MYV^#q1t#8jO=Voib%ye56Q8a80H1J$(ep@T?DxWTyP$8BeWpRe0VFGz))$%MW_Bz|>4Q5$>*f@6Pdf{V zwJB}S*2&-t6_X^D^01@I$`(r|0{#!~{xUxnf4gXV6eX;>9YVfMJGxWFW*G5DE7*V1 znaKsUm{-w$SBJ4l;7Kx%*jw5DwSl%I;Ft~{oRy}ZtD@ei-CS2NqpR6}z$sNX+=s*& zhNrlIt1UR>>gFs)=kJ?~(EBg!J`{T=A)KC+=;TT2_t@5HR?`mOj`Lva9vxA`9zhAu z2ZV_}we4`m7{jjJqvpu%7vHI>m{-@1dk~D_11fvGhQa3O{e)8D$ftIAevF1(f+_C# z0DqCyz^;6lh-&!Jg7vq9#EV9EjAMlX_GrrL)!C13 z4}c2RY-V4rV`SX~>Q>xMqs*F*u1E~*j8EBWe(o=Ne`Z&8O6>CEW?E}IPCA(r*(E0XWQE0E`EeYx&Bm*Iu{X-+S{=M%V^nhAzQ9-JJ2b&2Ko7l#4dL1 zigF%^BU+%av3d<~k0_Xuj&&+8YIV0`PoIf+KLy=igwpqR!iDO{E*_$GPdm0-v}(!g zcb=V4Yx|!=1GJTSyWaL?I$A31fxdP)=}e95XYiB1>VhrQwouu`L_4l7N{oO+?Jkx$ z6cZ2xMkHtAYCV0>B_gff=SAt#vo7w!XNVn#ER4mGh^O!xX5XMQLZfiIhf#c^@7+aL z)%||FT~xS_vfpu)BQKf#Ivn3eCR#dGp+CRJW?y2G9E!#IL8bAjBvfxKR61**OQjEw zl^PEipI^x9nv9If zi4J#Vtt3sg7F`3x?yv1wfaOPv)Jb;iA9`;@UGTMLU+TEobqel36{hE;_+_dzJr(!k z!WO>YEJ4SUQQ5TzaLEh#Y73<(OQY&`4-z#O%c07Nykm-b1W+7y zHAL)E+2M>~@!BhNFE9F%l(|e4;IZ34!wNuFt}j*#Q_@PvBe5Vh^UN#dphgtu%Bl@F zEmzxdXnp(-bCUK&>)f@VjJ)Zp+^e;AY(WAJ5DV7Zara(EwOe?T58kdwU$;~I#q*6) zRa)(X)y8MA73kq+@W{z=S?%syWRZZ;0;v#L#d}sD-^V@NDdi`qex+@8p`+Pa1070l zU-T%UpR_}4|maVr~ROg#=t2?35Rc&p^Qbv{l$RY z_I)~ruj{5Bg`xqC^^JSaqJ&NP05LAzj_pupEGYD%UueA8e@}M;>GGL`@cGB&k2;oW+?7;?+|hQ z7pa%bB;k%M?&xh_>X_Usgf{+-DX!p2*+NE#`(i^w)`k-5^zo%pvwFFUe@{vK#pvA1 z($Ti6KViD}7e&w759w&sAVfSpXSZqaR_t`RX&HTv<2n(H%L|lb zar2%_03w8T@92dAx2uoil#Y===lbS7I;roXjJ1UIo`@|lScCwc{U98*} z%ib)+_$!wdH)QuR2}?Be4|{PDbIXq7O-|&(+9vc36m>1RvOji6?+{Aw0LL=oD!3&& zpoD{L_Dnrvt{l?hRe#aLVaK))b4-5a%4~P`Do){7dwFP?zfq)%z%;0M2&J65?MYoW zW0P*|Z99$(7<2e{ND0Oco*=`r$%H2RP}S47{b*04uKEuC%=`HT*0(_K5N&UN!Jqjt zYdWfdH0@9H)3Qf$kVw7)@_MBg!8!@K_)>a}ekH{6XLcO(aN&76lpfwYSZw~wJ^?q6 zeBj#QWA&1>{v`(RZeL4T;r+KXPHVz&4~9PrH zbGN<4gV$1SjAjGo%80Lh{Y9R%Q#5Th1~Pwo?KY$5vBrO=*-$VRR!hyqUNhzKN=Vp=@-NmC&2W|s06A2UGvUGIqGfzTo z{6&`t2h0GYwQde}lo4H{98Nt^v%E;8^ouAcxwONoVZ`XN4mes|=7MMkzF~ON7&8yv zE*MCuZC%cSh;htDyV}B8kfvDl#?1uyzkmh2wGvuXn^opiao}uk+<*ve@$;mblr-mL z1MSz+QHWBjID9DX+U+Q`V1Rxa6I#Q89bP7sQX=NFd((hG5njsy*N`!&tQXCdxf2Ht z3KtFQNR|0<5!9ZK-)hx!w5D$sL+#hqbEFt#6xXx2!!$Lj@4!NVVZM}^)X)*G!2*{l zqx9&dI0t-}963?&69zub!7nM%wJe;}T&fpfO!V?gL$pPHDIj5Nkd`CAZ9^)E$*p9a z((8f;9(E{C-?ssesQNk&de+8~ZunJfXe(K%Q$fX#KCEgFs`P2N$nViX)*MlPvIoJ! z^a|Y9Mm&ypz(wIiR5zMZpA4-)D9K+`=;XlEz1x;sddWj7peDvwK-q-c6F>V z(9KimVmv1?m@eLPIbvJBK*jzNUv!rh>(Ceb*<7(sJ;ASCKc%cV(oD|fQQIvI0RU6B|5N`&9Ky-t?2_CIw%d#)(Zn&AW!qa z1|1mUm~Ws1-?+Af`F)9iVUE@Yr?w?LZI~n3AOU&O^XFF>y@|6&MN-4=mr3iH<6`yFU^h?HC94Nt`54e#Gu^4tJS>Iq$fA z8++Q(Bi(7*NSqiJo9Mva5VFc6NtB8$2`3J_abCn#NEo1&7i}jwu1XrYr6*9}b^~RP z!3vCTcMY8;r8&{H47)nbfn^wA9KEGDF!9N#{Ls@=w4LF2uA}0=llFp9a)nP7XOD@b zL3WJ2r86D(v9qwunxsAO@qRYg_ucC9nunWYj{(-dd=0SliF4qTY~17_4Lqo{W~s{nh10_wH>5Zpu{m_-D!3AZTLWWu>)7g zIHRF=(E=_~AFIkd}xT~cKI+0pRh&$zGbah%RqBHH)kYyl_tytYPWIzT5-PK2cAow8ns9k_pc?Gz-2$6UfG;27k(O!-`HwQI0u5mi(HE6I42bmu(s9|)6P5o)?q9m+rDhDMhFP4){q7tvJ73*3m4{q*OvI;U)iIUxNZIw9sG8%&E+&b}!TA8Y|mal&wDG<+(_ zG)d2ckdkGG7Nq12tk-p$I0O51}CM>j1Qm2*FYY(jl=fXgXAIl{ zx%+yokQ1H4(YEf+L3;GKhqJ#PtyR>CYB0e`Pp8R1W{MDEr(22_&X~aWYnM5eCw<&iUvA6YOpXCa~{x9Z)Q4&h-E>} zFEsc-Nhd~+%p`UMI~N$J`D1iI`a)|5%K8!R?T?|(N!0JTt7)ynWEp_rP<-pGB{IXE z-82}d^-gGzM2Uw{PE4;%b!@q_kT_FXwrpE_ctLo&XckSvCof`nIcIf)jN)^`Xek7a zHmV>i!BI<$6YecXf2!o%t4GIIabmk*PBRDr&n0!BjB03q7#t1#b%R)EZG(gZD6)&Q ziP&1*IYfg+R88kWJ^E)Y$xl*=-F2Mn^k`x|Cu|O zx}mKTR*_R}?VT0$XmCeaqE9W%L3s~Bjp&3X`_+cWbG?&nEu#J+qKgv>FQXJ$)7eHu zc6E-?;Rm&xUBruS&VD+)tB$j&*xcPYK+jsTr<4(MN$uste9v66<~u8jW__Gkg6%Hg z&^O%wua~EO>4)k}DhLg%nkcJ-C?28c;*1mf`#WJUBrGa?>0G8qFAtPb;nXREomgve zG=8Xaw;uI2I$P_}!NZ-2T9hiRbe0mYMmTHfs79ll*tF!rR<3fE5#J;^OY5keW1R2w zT-*wEoU@XSikjer{oxYpeC2GTr>1`G#8-=)x_Ocm21moEIAOQDCP4UkZ)z=_=8VT> zP>7i?S$HHn_ZW7G%w#zi^i#|RymDY6z-}sMl@aHjMq`?*E)ym(TMd<_;Uddv7v`I$EH)tW7l3@sZGwR z1_=jH>$A>!V)11Qsz%z?m&Yg$HJ~$+98J`qW&Ua zmvf^YJ+<3;Opm6eOS{4Z!+&yS>CuM!rAgq_|1zAX^yoF=#8WMt`tqQxu@*h#wCT~? zN1Tcty>ZNG)}yD6J1^d|`7| znj4NjIwws6M=M@%Hq)ciE;+IC;M9oA&I@|#yDQH9dTRDH=L0?U*mY;7o@%=3e6FX? zvp7fVQ6Iak9Wy)ZaAxSK->S~0di3`@&R05t{hqUI0gX23q4Re=^}k2X6ME{^XU@KQ zw8cy3e>%bE|2VNH#6{G6?d+u!tb6O+WT116;6mXoxe|2lKlIxtJf zN+})g*juSAx>r(Eoix6Rf|-|d*{Ui__2|r41@@Cum)20=z|1@f!-mKE+R>R>s723X zuxYhwD;TGU`ipUO6inJ24Xmdm>Cq*hD$pWMz0*J$tVjDamLdpk4~BRHunQfE1H;+z zuKBxsQzh0QVH|BVQ|9VX_ZG66yFSOr!E=GrD7h;JI(??Vs3NNSJMOKOjylYiby*vk zN#aF?b_#q%COx{`S(xCEG!l(FC?j5OBNm&Di zL)TeWUq*37!C8os1}HVerq5+(b0Q1;vu;XRoqoy}3Pvku4eOyS(xX{Dm8p6ZJ%Vl? zcpKe}2M=3Ofqp3Z++9~UkM1Xn28@HvXr+ZH&|fMOV6A+C@_*1_F1p1)DL;u9GY2WK zejIHuL}~;_?+jJoyK>ZfxU#{(FD$k*@bil83iI2F?R@!R#dco&s$x4gep0cWKfkBg zPJ2wTojbpzhgyW+9wlz`B_Bdmro)hQND+W4CxvqUqS@Q9vK+; z4Mafl0mOEJ{Q66BFhn9= zFHDvh<=cg5sC>8(`Q@vH?V|X}LO}ApLS&SW6(W!?6{1b@nL^;?8--va-zP+N`8Xj+ z{?;J*EFoC`r6tM-36Vj*M%b<>KShXq@*Tot)JDESh>Y?H!ghZA{va~mk&qidJP4e8 zbr40Q$)F&=Hwc`3Y!Ep4(jaj1nL*&>8-wkN@B@PokbGSbB=TuNK=NHdlq=s91oXQM zl8f+jg2*A?5=3Qwl0g8!B8ZHOB~+B(4@B^rgbMP@fe?axHV^`qZw7)=J{SlR`B)&B z$(I5V$Y%mkl6)f&HIxqo0+O!-q9DNmZ6B>P{?v+ipC!ho?w@?ppH;fgk_yH`B@B33 z5I=)hp=FZ)SR^%-Kh5zo$Y`dhBn-G!)G0}65_(PJ(y@^nxJV@g%Q-6~aGiD}!3eLx zhXYD&x03~Fx4mmnaoMMm>+y4i@PsCQ2B8n>>7=1Sm1Va{l(~1|PmEUiW5>@R?kdjm z7D?Io8DzXoW5y^Yf@Nn&OoL?iPmGP^PZRtMGM=LKW0Y;hWk*PK@x#EB#Lpmzm^xKj z0~<=Fu}WVy1gYHU1)!7TnmZwtMc_(GWf4e-Ur3dmoyr1nC4n50$%97!tU+d`9Fq?k z_aT&QobVxN{3;*xO+ILHK4@w_XnYYjE?z#anrfVw5BfSEG$|jHJS87EEgzJU51Nq= z`Ys=|KOb};A0!n+N=E8QDr<&>q@tu6_ayHxz({FzQjL4_LHqJS8TlZQAA(j(rqVE_ z8V}}!4&{T6@!Y3xv7K4@xZ_fL`~@-`!r z0p>x|^FeZWNt_&RsXWf|AUWXjpz%LxkTyoX$_GvQ0Ad4{YD}K`ziBD|oAmAfCe8fc zB-8&U&Hdk`1s^8C4A>_sLCLbZdX<)bh$n9Fvj0um`$1BwabG?tBOfI4K?n0ehjfU` zPc8&Ig^$2c6Cboy`aRnh(0*f}}r^YP{qE8M>Sgx{?o)_Eh${w6Cdb zSo0vi{vM2zFXE;e1M@*a`JmujC{&V$<$@B5bU|YN*KlzS%gFkT@+pFnlMrN6XDyhk z1*c@NEp4*=rTUYVriP7T%4Fq|!AGCus`4avfqG0;qQN9(s?x=2?UyC_Y}pK>32#_sLwRY19V?zKTP#f5Im<@ zDM}j;Y0<&u7+nWs*hi(OD_uPFIrk<_osL9>PESXMbPAdQ=q@GB0Es>mZ=gef3@ga@ zTV)8omHp~lWkkeM=2^kG@tGSQ41bQF*jMcV=RdQX6y|)4>Ini6SI`)QqqPa|8`i|{_J8(snv$;jqdOi2N}1J=WL~t z;T+YS4IktP4V|q_HmoFdwo=MR8emyAY;J#}N`WR&oS_ybrBr1&oj_GEUhfRAV`UfV zbx8kHCjHbCNtRytDc4V?AEbpQlyHNNn3QdXMKt&arBZR}kb<@5ycqYvj`ufOXv+_f z?Jar(3d0VHo}-kCmTsx!dY}?~6-Q4#MOt+*xC%qw-}pC;oTHQ|^@mP-qcg~M zbdhA53uL?qE8gFDnl{e?XD3~rqtrK?Ag{S_r;bw9xk{{$wCLcs4<^08aT|@8t8{NK zAJLX&FK7XG=YC7+?%dInuD3zb#kMj@ntS9N-Ps*E(G#5I2_WNu&+)Uiw&DbRtp4GoUe3Xm(avZLldtIXY<0)#Op#6FAGh)Dm3v6 z`zBr!n%H$T@ruyI3qlk7iY8tTns_y6;>Dne*McTC2qqr+CSC`cco}FiK9{!G#H&CP zF9J=x1~jq%Wa1T|i5Gw-UjLc+A$$}2Qzl;gnRxAI;-#O7SAHg5_?h^zdlRqvOuXnb z@tV)XOFk2?_)J*vVQpyQ1)qu6dnWd(Ogt1#yx24GTF=Bwz1h6dGx0*t#Opj0FY`?N zM!kv0*lb?nnRta~;su_G*LNl!O(tI5nRsz$l54wU6fXyniHD4dS9T_TZ{EbC!^H2* zn|M`c;zgZ_*K{U!a!kCSGx2)P#M*CSg*UOLn|Li};-#F4HQB@qITNqrOsuNOCRSAw zPi`hw)Y+`3vsq1NvzE?gC7sR7x7nK%2}+mL=dzDW_TGTF2Pi~jMA4Vtq{Cg0_(Mm+Amc)BUrms zX^-IHQcjFZ!JUTU5|jKvC}=DFO-cgi3{0gNxAitI1`43fFskDgt2TEX! z#C&Z0(gt-HzhwFn<03o2%|1mxsen0p@k(qHU8S6r$a*9DK=uJ6Efe7?KZb7ag}Gmw&r8sNq#wu?8Z%O7=C7 z$W^Ml7LB+{^VUMVSLu=#_^(qc8_rVWb*Oy?^;w5vGHBa6h$(~Ku7k`osQr4S2ZAl@ zm39c8uU9@t&}xH{fMD4MrKeYhtk8?EQK81);7){6O}>F!q=>6J8PsGW=UK9m^W5I3 z^hDOUO-d64DVvz>`AuAMiOotJ61#6kcV*D#&DgNbpuaYw85#8H7Ib9>&DnxZ&mij- zPAt2X6DMxv#Isw`jMsE;E3&_)+S|~K*JRp;@?Mj=4V15`&UQ%QHO<|Qu0*01H2e`8 z(ywXdkI>lH^zV<*%GYGvp$tQCb%)Z&>$Pm6&lWT>XA3pmjwa^(9$MU8>(AFTdnd}> zPFr`Po!jZH7IfOB3<4x}DFYFN?N(|>Nyo|<54Xx#!P})6)1+UeG1^IEcBA8VQr2!% zc_)SLQHEBQJ8#Cm@V1Qa@uMkIuQR!M4oEa!@@JN`@U#*upCGMBdrm2Z4F||CUHKY; zDP8#rfnl#Q1;Mnv*v~vbZ}%$G5KR7wNnZSft>XhUY99yp_9^24_1>?HL2z-uGR})j zYGgr4`z*Bnh*F*3ANBb|@dbs*fCLWH?-}sb4pZX;$~f=CvSuq)(096x3*{CiHt!A3 zxCe>{=*kHceVEn=ctVFMBok#Grumu5cmxFwqRNM9@rUrhY$T6ZkNl|Cyl% zhm_HPb{s<4&*|JDWhjE0hmqkqZ95ER&nfH(n)95}j&P#qQDp+4=|@rQb9$peNyotD zIoXdXBN4=BF?2Kw8{^NZ+HtTxM)Aj?AIE6daoDM2RPq;PnAb7cy6ypRJ_`j><9kYV z`3_?x>T^?Z2g$Qvz~vbA&xV;hMklkO3CF0?31u*XMJJfcyA#TAK*LUQaP1_MG&qIw z_EFDMN-qQlPC=UcDB?8o?W6BcqwV|X`DwIa9}PXjxSTVP#6D_r7H!{0+s-P(z4pnP zS!znRxEA?cLCq4*VUX{msppgd2<+!@^stYb{>sp%Us1(<g}sqSU;z)k#NAWBu}(q)KVp+>(c`0kxn{)TaSKV9VvQP&una}6U*p{LiB0fBOZ*?4#qDi$=_O&cxrtV&qS(x?id+ADRt ze^-itI`el3T%m|RP=j=8^apHQI?*3UOs98$fMGffxDNK|bm6)($SYm){cIBW?wCwT zH9X2iW?AVI{kYCl}x8WH_>0|bp9rkCY>tXV%*$YN`F9)Z=t-q5cgfWVMalBsf7iSx=R@rNa`+Cu%ct`(p)Q(yt1P6@6sR}^y)5MvneCI_O+W76Vb#{!eyR_YohTJ6|hcZ|rFSi`z$;;{ZDUkDPWbc1vN{a*a z+CXm|sKN#s=|qojpa)Kj%MCPG!3o<2x~FjBAQi@A11YMK;$}j04Rri2%*_U>c~2P? z#rc~aKz_?Xy(f*ahX87}as?f~r%b}~u;G0i`mLbs`&h=Vpf(S1Ft~!QJx~@R81kpG z%&;QuAydqHsLV#1-y>xnf;C!D`7utdR?xx6$}9v;pWt|A1)YDQ%<@_x+ot}80+X*& z|7Xfj8ojTY2VHs!ySjpYe~Qzp71Zq+M6-gfKT~EP==B^zTuqanW8Pd%=bmFWSWS_C z!SPv5U;l*(XEo($L4_Akiq&M&f(I|44Xdf`OE?>=Y3obq;%YMdjq$mf25Q0Szo9;> zDdr#O)M}dj4>Pm>!(5ua;$Xuo=Hm96x%7LDx-6w>uQ5$7r4z3)BQ7QXH%da3TtgeD zV#RDM_peK^ect8@_A*U>gPHj<9e;zl=rZ~Ji<$W{_0obZ|H4VROi%vBWO|vJz6IOM zH2*E;@XK`btI zto|#=WycqiRi#y0@SqSETCFfwVO(J*$u7+G@^oj)9`0&9GHlbJzunaYK&?E~wpxLk zMx($l#}uH%P}Gaxd^!L4Qw%^4)dPh0J(%UEMbxf<78Fr?$iyOQF9a=%s{IgbE~*Yd z;Ni)X-96RLfOdGQy=9^o7ygA8C zzUt=)9{Z}D5XAYRl6G3`r#3_IyC0a@Da>E3Zn#eI{>ZnVM*6FR5nT00zWo#vpms+v zBS1~`-Y>he_s^)@FXszTTos5-zH~ydfsojK`ZQ1-g9)z~wqxcePCvSNUX}tCh1!n(OfYw)4 zD{J5XSE<$9SN9*Y>0AjkDVxGes-J5ap1ntg&kO}AxiD%dUla)LpOiG>8<$VbT)P>t zw-i!<7DlUeDGKj~kXJBTkxj*exi&+B(c#&2JXr1Q#TjN7Mur9M6cvmN{Afs@5Y8|- zMD3uF*gQazS%lVCR;y?gO?cU~U~cDSQ-M&lJDWZaRl6bB5egN_rZ=GwbT)MigQnp1 zgfNC)gmLll;p!Ji+@b~lg>!}u5m4`JS{cD4FC)0VtsWu@%*JfTmPbTWdA?bqH$I zb|_sg5Bba28fcf(=I1h;*%VxfGYqQ4Jku+|SU^-r)U%I6_POI_4_6`ATM8bupt4#R zbZM2J{srAGeB3+g1JG%2BM{z3$Tk1j^r$LE%^~uth7LbO1FJ#G zhv;B6wJ(B_vB2%7y0K~#1YgBMlDp|ptl9{{>sXkK-PE``OxSK(QC+QqGukuNkzpg< ztq!%>NO3g)ZJ~ZOK(d7n)j;AFDpnJ%*+RyeC}9hotqG}ZA^%!1HCw1>Eo3-H-_(No zoFiK;sM|TJUmL1*j#ku$zMZ3gYpZ<_^r!=2oRi~uy#tMWoxh|L-A#+_=+9TAY9u)Hk?W_mIJVJ#(6mW!&ehM``LZS6J zaYB96{RmyGj~X4JmuBx<4eT!S$(CH%-5md@mvX_YE9G{-kh{L93*a$g(#|~ z8uG!%-+P*1sI8>TCNP#O$t{k9_Hk;RD7hPMoR7Wm50=UE%jXuP(uO!lL8V7=Xtzp@ zo1(K+TGJFVQRz)n3_+DTG*iDr@LMx=K(xHYVf?K*7`$%fs`#L$pl!*uFQA@R}Hx2;skCKB>@*DIZo|#nX$Qj0I!NHD_7rp7o&25>$ZJCz<87!im39y}u=yd`* zdJ(nnga$66m0Iwi6G~V_H9IqIW@oihlsx$`uEV*<2inx*SAd!`YN5-WQ8^10?*i*6 zFYFk*UjtUXMp0d09oKb%Yh$5(T~GxJ{o4gom4!Ndj()e$axJ+1ISRE<)voA%3(e4i z-@Brg7An&XeQKde-O#5N`c(_UzCc56QG+kgVYevt3yl6-^!N)j6oUsML2_q(nZ$+x&cj|!$;ED^Qe)I`Y|=N8!By%bgR?YQ z1{t(m2CqpVXvF^){cM}z13uZlMO~%j?&9W^!kf5S9d?rcSa3Q()nss(I>_KT4VS?& zT-`#jkG3Lc#G7avaLFi-&xEd6hiiOzC(9jh9=6z+Tx>cS#(~paij=_yY9s^fK*(S< zeItXVLl_F2cje`N_VJlb6#Xh8Gl9Qc$$0N8-Rb;TA+Q}fB zhRNU%%|g&fUa&OQ!+f8|=byk_iOHjJV;T;|^RRp6!MIk3jpUG=w$OVSoTKmw2;h3i zU?ugC!AbfGK_i~Xqu>eT@!@$~bXdlEYza31z^9Kq|@JCyJ>%DGLWWU!Ft${>w?l))uB zgP@T-Yd41Aq&<&8kCa>n@(QYPXFjaQ!d&cnD*cW69&T0XN$PYA{P&aKHy)j&mWhy8 zVusc;2A3%M$*d)Fy#@>#_2tl!{l^X;HfqQcBNI-CaCxda4?(|aY8eE`5JBswVbWMe_GxMZ1YyarVasTAGUk2QxUa-M3g6mw27&MQm_)Wxm+#>^ZKaLhW8T_I_r8Y(-b!_5!b{pp zQ)Yt4R#Inz<5p@p3rmZwv~3nDyOrE#GiAbT%okf}?QD2>TPbt4+R2^IB|BWF^;f(D zsf`j-bE-i0~?nS^yv5DxK7Vuv9e!CcADb932O(PgVPSVkstd zVk>lltScbQxW#I)U((n?V+W0yFl^kg@q=(M>Y&aGIm_XN>PY0QxJVuDE^`_)0_n+O zc(;caVWM+T|D|eaD!&*achHE%&<x5ErQ>-HitWajNB@`-?HLb2X~^ zd;d>~W0$D)fJKQF=*kkc7~&{4lH8Z7q4~>hvs5hsEXuBp0L6yW{-tUMkNdKMb%W#= z$N?c#CJp@VQ|~l2`XkJyG_{W5Dcwqg&-|3aNNtLsFF_lg($QsVIkFIR8<=HkeFUHj zqjAgN)-qK%ZCnPaGHG)UnB`B56t_8N0=*>*3zY1&aOnSBpjXJOjik(T3yVX!Cz8Xu8 zOzOQ_?T_H-YUcd&ZnZ46UIYCF=iR9Ip*8SmGO6(%^h$-bkai|b-lLYH#cMGwoeWwOe`buPPw?W0R1Hz z_p8w~X&aUcnKW%bbf?fZw4?lXHAE}2!RH2=zBnk1zS@ROt5w_8FfDy8(#NdFh4mjB0vX+(TrWtpG-n82h(mX4slgO61uty0`zhX1nA%hO4<$e=Uxt_b-TF$ zbagW%p_d^m*})AFpl@3sK)2RMfF6|`(3vto7uH08-YP?x>1rh6=(1?~FC7~dknCRA zZSE$iis+#j`em5)_1&k2B92}wO{?~Cspz`$IPc^Zq5sNK#D1nhCrV96|LG$tx7Tj(SED}auu2)Q z{@h`;Xl@2~40^2$oymZO=B|??1$|YPx*b5p&(gdDki}U#egJJgOM3*yR)|2$&QhF! zJkQc}fj(eNw3b+m9thP>!-P^$CWdteeVGZ1l0mC7p_>`>J`;Q288qr3>~03#IH-I4MthZ#5OFypL;8Q1m*dOi1{Kf3{FXrzv#@8D zK}r^EcLsGjt|n@CPSWRrXZk#vo~6c<=Pzm?u#vwo(Y#+^QgMUi7vy|Rm(D^iHUH@~G!)YH&iGf*|t*hTvuor56r399|EhkA;K{G* zj4)nhL}a23@&^u$`{4dxjvqZ1yZqZ}-g!*)X1a17TP0@lzW}vZL-GHwtg{ZxB6s>Y zMO)mZSc?^kySuw{I20(dxD+k2CbVAGHcGuLn_UA+|l>Sc`{n z{s6st7_|su#v_jTJ&szMgG~>357X)g?djDcXi&dC-2;XNh8YLw$>XT$co6IN1g^cM zgHNJDA(}sh(YN&eDGJ1AB2lQsTdHC*d~8OoMr^W$3cjU6(Hy%R9kmp(0nefqLnM99 zu?^3omgRV>uAFT>@rb5=RPlZKcMIqjFrYh%e@i`H;EY&8hhL!hC6qb_cRov~Yb?f( zuo&EeEuj}NIMjzJe=MGMIi)^CL@YcyOfBMYTXmQ=#o@N~FqMCaN*|^hFX6*s8uBV? zMGF2LB||zCjvrK`DBitCwbIRcn0CL8nh(u}Z=y(lxbijwG~Z^R=Go1n*w`nkH7)xd z77*S18%5y(y0$PEq2mx zAEUw{UVe;P4l(-^r}=!2T7cNz&*%(0snM6H`M-RlavwVv#8z6{(fUxwynWQ~TjJf)ck8neDd1w(j$kDBGppS!fI1V#0OW>3^Fpj%+SFk=-R z{f>JNyvF+x)i&F8939*yHuC02hot?3`VH%2E3!sr+WZ6O`5h|!6E`+@XyQ+_z@7Oy z&CU2dZ*Bq_>0xe%@Q<$;-HdNWLQG3wZh_JCf<4`|Z<(Gu2B{l0%@ODX1T`YT^L{2lVOFBg}Y8k5ZY9 z@hMA@)Mg!spwy;Ie;(6^Ur!9C?P<;7^ADLRkT@xgIZG!d7ztYmM$$?gYjqFhwBa!NkcN2Q=#-F1M5!8XwE<^ zRVFhNgkL6e0$z)3$YeHx_$Lz@Gn&R{HVGnQ7Bd`TOBQnpL<4Vg8N_pM6dX;Xva(8= zY-qV?ipXXzhNzRBV-K^#8~)rTC=}iVh3Y12mc?wYdt@{v$Z5_)hVYy?T+!t3V|wFh zyta?o)ngm2^D)~({8Vr)#l@JJse~`Q}y{$BS4Z|<|>GYTkdP1jaelr5% zMSk?#RYV2Q^;S`Be{&r~tiQP$BBY?%7q5@L6*PN81QtR`izriJ^9aPP!scO!1x3u0 z5S@#f=OFxxnO7mc7h{z}#m!@gO)O!ahNxeXMVeCPDa3A-GLJ$mDs7&C=u(DbzGcn* zh}|!1?uDRo9BWzLJb+m03TA!?_>!ACRxs7~F8eFs3|UHvE1H8KMpQIMLcFeslV>UQ zuVjvac&<7`SzS#@nQhl>0M41Mhwy1&G4YBVHa4fG-&xR~6HN@F*g`yjp zHSjf!e&9k1uw{+WSvS$%#xNO6&3l-cs8kcv58;kY zO!aZd-X>-T{i(;Xf_Pte3{Qb=&89T4sp*B(QBBQ?5WAbA3bB;4nb||@hS!2_crAL< z9=Z>jnaPnF)65KjXx!XU3aSUCpnBS1@)m3`V+(Z9So*z%*#jcF1-sR-C0ZJvtF**v z7E8%nq294HuoWsCOSf7vEZ-VU6H6;vn*rJb{zm6qEA2tYHta#4Hf;QQ8}_#9Z!9+c z#s-qM%pr&!>A=PcbucHHfie70nsFx9r0#51q*t9x-ZCmN6oWgVcjB|0 z&gOWCsh!QfI$OjvWWx`2o#SNNzo1Og_(m*s>w;4ymhN^j4Tw5jx!fIHxrMR@uus1S z;1t6aR{`9zb-MAv*wBqD@70|v-={nJUMyYeZuZE*U-z6}g%Z_|y36U_r)R*BF5L$V z2t$GBDZTK%cyAB08pM|#DB=+X1e$|WJW}UC>P^UqAMNUd9%d>k5@=$hkunc6#5W#M zjh^N}WZ2OY>ZnIgPxmGlY1FuQBzKrTQ<5>+EEGZ~@sx;eF7& zyC|(;x*+BmxW?=v@4gshb`kZ(m2?*s?q|+~*xL`6j9pZ}KQ5@d=w^RhBzDoD0cHq< z$3Sxg#HfKdS-6;ycvIdl)XYky2jL{g$18)(0T7o5nWG^Z4n{XQPP+%AD;y`kA;^pm zXojGh9H+EH&0!EzhoVi6)5oCuuTxdGeHb14mbM)ZXC{5d`DokJWlgQ zn8P8wMsl$uN3zYhk!-WmD2`nn#l{+qHb>Z>k)*@R`E%*WW4zgk3XL&S!9b-kY+%zE zE+flWbCmv6>3LS@;)jk7HapVSv8I={G0O*hmXEU0J!!X~o;?GH;11|GjT?t9d7M6s zV@3z?J&TQ{oQ+fHI1QhT^ZU3u zX=WP8hac6#EmX#INNzR99H7new>-TEQkOaAZz+Zb4(l=~U`RlJZtD^uW>x48(PBr4 z8H8B=x!gP}=W^QPxm>%}^UQJD9Dl$w=67}6Y%fcPni-IAsi>`R$3EoD)>I!tPfFz%w`aC z$n2Gs|BqA)Gv^HTqpp-a`}7+YI3&!tL}?b_`pOT%r6DFQKr^kT*ac=2h>8o*omSJ% zg(#GvFMVAIv+JnQBC{66+(oGTI!dyb#kj>dnCs~EVx02psNWKdee3AT5)5Di;aS?a3^x;J$!|Gs9L`e2a`e%&RAdGE?^)Wm z0%p%r!Ido5uf$NmHb&yVT2;1~IjPqwvtUy7ISrmjYG+SMhc@ECK3Z+2#@KX_JXXWX zLHd0)Odq5~Ys_H%kxoi1@?hYHibg>F^%^rPl9R7RFF#0A*20~GlyDtRgo8A39mB8d zaHJ2?u=O}R2kF&%G}uA2^dmD?b+sxemlPhkUSqlH<%N1!>fe45+GeeAy#7P!KM|YW-!nd1+5G=eM z2BHYD!4RH1&`?n{eFrKXMTvK!Dp53gr@0owXP5a$j(MnnA5Z$?8(vlBK-6~Q+z+G8ZrBRL%QlWR--A1=FSKTlSq9?n9>6bDV=sE!7h1m; z&AJzBx}t~erE&XkIQG)#eda`nG5ay{?WM2#aX9u;&;cAtyCZR&oM^X)szD(R2mq2)I9KZYBD+jLRK{Ejo6aNKMSc;h%uu-oK!!fXjK<^-2_ z;RLJXJBgdI+cf9zu3>8 zf8pl!Hf1`4*gP6?29=&i+s>ebd6f1n`q?}he-`zdN0t^%&Y@!SDDoVqWjk-GfALm0 zZ&vqsL1WLGWxUm-Xq)bc*G35$w(va^8y8nG@aurp- zPun59`JdIbUZ6zvgD#$^Z{Uys_;;TQU&9f(ORj6U7r#sUufft?^8FjV_AZ6~4HI|i z!{2D3yVUJE?zisJvFqrWcggPt20+f2jRJ1~ZKAU`%(|)6w?t^Pak?RfQuXD5g{aX@ zjNzLo{3h;xHj&>g+!Ae~-M4V_w23O;#wdG~B5#|uAwJy3sB)AB-@%ppDE+vDYM!IJ zcTGQY0v28J2RI~ zsfW**+P}w9vMBUDP92NhzsHjW-W>m9dQ;PX%-lKDq5$ZXm2>KE0)__m>K`~@SirD8 z1Mxt@ikYJEh*hLh_f3J<4;A2E`IQ{7L{ z45v+>&@1@XBR%E+jBC&(YW*3<{Suw}jKORL&G>?gL-{YbyIDbjUvN=mG#uYJd3;5K zzo#l+(OBtcvsJTjf1Y&A()| z0m$cJ6^Cf+VO4^F#o{UOKk@E;hYkx+Z!AvHH4m!Z zt3=NeSgAlhC$RE)tRbI-R(Fph^dhlUjZP%AvLXC9p;aHEaT2RAwM}FdLwIfy%ahewmp+;n?REndrnVX)rFa@^ zBgEY_)-H&Uv=-jx#mgMJ+W(cLG-qs?I8`Rmy zYD{Ib;z-}XY$Pkd^M*3t@lz5kz-*PEuUV~5NNJbN+Ne`jeM7;KGiy+z>{eTiE`3iz zgNj)t>0x%OjYcKndt&b0%;Gd4hZTVQmvi7?-Jp=%=wj1zqLw%4QBG?d1j-+i zDZf!jMJkZT>fmvWmKQ+dAI*b)e2re_vARJt&ufi=xRBSH4ROfds!wb4S#=SP%ZJnG z8jUZAp1ax)ZE%e|@>>fb0t&&*&HPq-gi92_DZrL{LBLuWs_buNMHnXYk;@-lp6&L8 zfXV#SxFF6iwmSd?=T+-$&81ssOA(yE z+&bGJ&@k&E&?XgVbuqYko;-?k&Z)(%ex95&8+MnU+h%?iN?*ci3I&+{4HGQTAz8T+ z6)0(CN4RcDtC}Ys-r^bku^$rW*iaIOY6tx+X?2C@S_+lkLHkSLSni-EmEim2(pC+G zBP&@&=tF6%6~Yb6;Plu*%PU*0sX- z9NfV2rm!kjk^gb{a}_H+l2caY!s}MG8o>~}E0!u*4}9F_)2DwxFZB@<`-&m7Dh4KY zSk(f)=Ap6Ga1^#+k4h^iU8rW|L^!UR<*U&goTSUE<0J{C>@}?B5Cdyi10WvMuvS1| zOxpxeuokP}bS^=6YoT|AVp;=S38i+mt=16RYFo`bLc{A=fr!9hdpc4FLtH4u)WHzB zhRWB)g<}nEsf%V^L&@q{O(5FWvxY!m3@c7Q>aoJUMi@iCB(sv!gZdcj*HELzI1@TI zunHrLHmVPSw!mJW4XiQ<7ieg8ftcP9!yR9DGST~nxNLDzm8nM~c(;aNbuI*KwTFN* zw$E)07p_vyCOE)XX-pGztE+Umi8U6YaZ@V{;z?6$Bm`8-Q&=;MXAuj z_qyT4G}~hsh@m_ktO^iaI^d$t9+aW09nezjMs;e?5xtvzX+cpPF`%(S(;?tX6Z+H% z0~b3~mO6H3AK_JZ%G|{Y0*7mRAmG&oh}T_lxnPIZLco_kw7DBbPj;v~M78edLJ`<` z#To(8t_MzYZb27Bu|OP=2zozURj{Yk17V{lnjwNx^@7<5I?&5H3o*5~bq1n&AL~3s z4#WBjBHFO7Kn?SKdwYn7ul{j81%d-S(1c|^Fc^tV!aKt38^C4i)0m(`mZ4Z@`| zg02j*Vvuxju$4z8mHORUN7IH{{gXwgQK{M$&v?Q0C}0A*ShitSC^RC6S-T;62H{eM z5{6^Uj-Uy{aRk`^c@S{D5nUUBc4q&pQ^S!seq4!G6gLumi)+$_R*u3+!_{d?)kk9> ziJ-ZotzEk8@h4GsLwaLa{!}y<#^NPo(77Y%+Zgr(^&E~Es#u#Ejl(qob?I;Qr99)& z%_0bOokadF3_)C9)p)3Ce>yRNTNm~1h5Z(-)!?Y}oBvh%&|(*f|)q=x$Mr=AQbdKeX6j*Ku0i%mN)#_SC`!}BWU-Q#SbSnfSUL1MNwfaJI4#zcV z=Umh=j#ACDWA%V z?KrBk5ZCVw^R0^iQ=VTqdJ-2jz~d`j2*+)Nn~D+Y%w_b1fcY>8SXKqVXcGw78;cD4 z7vci+m2xh!dU$?S70K})SHFF?%Fxk87!KKDMQX7a_P)}R#c=m4C0~Lw{40%Lj&o_> z5}Zq4>CJLs?McUr3K4yTj8dQ%YeR-|8i83jSPW6 z{w@&6S{(wp{Ak|_48Y52&Kj#BbzO<)g5_9F8?G;>^DEK$mQ(w+cy<}E3MbEUI$Y2m~^gpi*n`bi%p2Lm=ZM2;^x_Ve4@3z!`UY zgwU+@)+mT18*r--LIE2vu!hjY2&-@sV|i{be9l0rH(HCeVoUnD5x3Z^R*E`B;JV7X zL7tyfo3R^= zYZt2SrbfGPaM(>Q?oy<-nvUvqtAb$QP@mz z8sSFexf_?Dk8TWoZo04!=kJ(3=q7Hw|Fotj8Z_ZwHQ#XCykC7wCKC3dqFkY8d z?_;l!tv^u3{pjYLqn%dnhj*(z4_G;PsXL=E<^fF!GqU2-Z$nQFKrFixbCP`&kaPhe5b#f01_d*@9FsoTm=qS3Y(5N%3Q&`kP)rF07N{ew z<|hG^b^v=()`=Ns3UG3H0UygVs3@RR6D&0c3zdbmY{n{81%$U?P+dS=YX&t1JnzV$ zwt&8!8PpXJr9piG&APHiLjaeqN}m8GjYZ{WHwH}wlo-XJxq#E78MG8&H%A)<)~ogj z$BZr1uAKw8eL6TXqtG-YyTXi4Lb}c23|#~?n$I9Wz^+9Mx(oQRnn9p|`WqSa5^yn+ zK_3C%_cG|qz@;30ew;~vQ5k!d!9W2YuQC`cz^>ac1?<@vtTDm?T-i}hj2DqZTZ~cQ zPgQ2)2Og?%T;mntSs44V#2m;(2e5@doR|^)h?6G^ND;?is(@yg#sLG<1*mx)05b*L zdc|OtfWodXOy&sL`h&q-0cyerjD!kME7k$b7x2)70STy>kikL$O%gL$EMU4PgQa}_ zaqTyGFT&Y z(|hpww_S)UEvxJjup1LZP=;GTLtVx`0p~Ti1);r&OT}6KfGG{u=yLU36Xp0=UCMFT zaQ(;gQ)1Qj^^5@csvJ2lz;^YL0Nd580&G{W3vgUjz@C!gVykx@!Yy{+iK!_os?bLY z;D44_+CDRbrw(9!(}@{ruxLN@p9yHHL5zU1+Q3T(xEzyj9O4*xFTghPQ2}RGiz?=e zfJwh`x!)bYZvAv(MyKYS96z&TAh(VOOgmOVE6dN0_+~YOn|TM z@GEVA^Uv<_YedEF@#_WHJw8H!-Q%|iuzP%@0K3QU6kzxGKLzLx?=toZv3vXh0d|i+ zEWqyZ#{}3N{Gz1)gZY5J4-47b{1D!A$Fb&3hY)FyG`0i zW(Tkr-cHPT62ygO6R>_bgB$`pMlkRZP+fyu0yerd$s?rwNY0Z_z%C8)3wW=AzkrUT zI7=Y`^F}i$A|O_SVgd?{VT}@5)cDVp4b!BQsHiDk7-Y%_Xg-NSIRObLGpHaSbQ*(7 z0)|g#P(?t284RikaCrwasUhUM2DJpJ$zgD$j)0YO7}OImDTF}-0rrt=tiWe=D0k0g zjb;wuL)ii`mrjoi<@8ogy0L6NgEj&xhBIg@;FbpM1-x3!8XX1XUCN-dfO5+ibQKV` zLf?ON6EbxbtMm|XVKsxE0t&2U&|837%^2-t2zaSMKLK{_2P(jG)zpd@$TB30y8lsx z+hdrd582G=!v)OP$zY^_+kY|`EkMnDgUPW1>@r*m@Io8Yv0O4Ves=(u>6)aXysX4E zcS4muRe{awprt#_8D=R~f8Rz{PGX)?|aIl>VDl zA_R=S&S0~Eyf+za70~w{gGd2tg=f@$hk)Z6>{5WI*xh`fpMTsA;o9$YV#cC}Y+=6u zwFop!9uyE@GB_-tjm6-ofHlz!jtdz6jKN6_)b%gsIg`_(QY?nS83B1?8JrVvIgY^v z0U6&hxFq1223G{Asf6(TngGM{yB zQ6o4Prxy{hsvv`60`e4MP(r|U4N3_ZT9`G;2)M67IRR^mvql9C)cH4|1d~dlqShQo zb5s#9yA*?J0@Qp?Xw(qks>q<0fae<25uhe@B1=65cuD97*r89o|7)nob#)jzUT2x#7bK~DkS8ZziDKusY<7DGV#77Y4%tLraUWsxQWM8&5is|-?r=WwbO zq+n#I1Gut5PRtnBhLcAKxZRGyC;>ydF&HD@J%9@)#|c^6omE@{)a+DfOcW3o$lwnF z-n|%17I033sRD-gVU6hm)T-_>tBmwSZ@18LSncX1OBE zdI94nFxV)d!0!w;X`s%(ubONTm5G0_$~FOZWp^mR(^m)R+V6G%*WT^KjN+5oz+M5F zW-{0>V4(&F`B1aT2EnXySX7>Aa8$s|S*&qfz&{$C6tH{_Yn&F4WiEp=0@O11XrFTq z!0wZwOfERY*uQ|mB>`%!d*rzyV2%dY6gZ(e!_LErmBtMPwkberYzZ@NJAm8gu8Q$u zT9>f$ACe#N`Sm0mcerYM>U8M&}AKK#0ki` zL7#uGgs2tx;ny1hYT12&cLFwSV(^cEmyrxU3TV5X!Dj)-H25l@!VcE>u7HbcuU6+r zF+UYqq}ngjT?X;9+JKuQp%XJE@8{&i0(PBX;3=TYNd`#;L~D>-z~oa(!)2rtQsy-0 zNi85+gR}xRo?(sj0%o6OkWoO}^9(WzXm^o;w}AGS8D!Hyoqr{-GRYw-YO??|hmU|c ze>2D>;QDO_c?49w!yuo4jT+<^U^i(&1(vEd4!Vadxc(J!2sd&uCuX#Gz$QxwX#SW% zDFHV%C?lZ#6V@mvAVz}<0uGw2QON-=qqN1OibISg8dMXIAeuF52p|n=3Fz~JHR=d> ztU)~i^X>76Bg!COx6Dxl~m2HgaxncwIgJp|Y$dnv$+G=?Tmpfn5z@PX~;#Ec!^ z*uVejsWunEWkF80AUL7LbwC5Xf6OLz!RB+3b4i^2XLWFoS0D*Q`@1xOn{o} z4zR){B%%nDRRY@7WUxj+4$OH+o^=A$BzS-g0xH#J5Fub?9R`~Ps44Ntvef}DV^Do2 zkq$A6H)OCwz%>na33$BQFK)p3dO)zhEYVw*o?g8N3&8 zU^asf0@P+7F#1Wrg%AK-f4&G&dwoFVn}Ga_82k`WWeJ0L*_`vP(=rC}1#Dl=AfbRV zD;Xpfpq3jzDV_}Y{l9(kCR2o035Z$4Dk&YnXLD*NX6#tc$!P_s)d*lRy#U|M3^EFM zr$J@`C%3SM%Ug(Al>kPv39!A$slY8YvK`;W8o3<6Zsl=ePO_f@yOe&O-K_8L0M;+$ z#Egu467cg^5h05};6gD0xArn9AwcbT0*z7vuAXO5MnLl$49W?3dy_#00V{7asHA|4 z9esX>Nfl9fb&o+c0lOYBs3G9?V+OSZ*p;oT0MB;!iDHcg4&d51a$?3XOC`IECPKDF zbB1ODUOZ#aLV((S1+{M_;MxxcZ3Hy@$)K$OwE+vVv=^W@TLI{(fja;E6ENv4DtQw! z=qkWU#GspiY1n`TMtTTXo`gY90c!shX!I8Fmlp#=K;vWpIRE+ysh6Bp1_*ee!5{(q zQ?kYo0TWU&7$#s$Y6imvEJ({>q=0i+69S%%X29p)hYU={ib|g>48{xS;mu%z0JT^I zjQlP@tr7t+Nq|Q#22%tK%EMrqfSA14Y882A2sz@%D!~HU`7@X;Ab%kSAp-UmW-w2{ z&0-9~1UxLwAY8z;@(dOz;Nq@2rZSU7qT;T`V2OY(H5n`uVANu;;$KjQ!72f2Pa4#2 zjex=R8LSg9zX7(og~|pYzc*x+2mxww3utT>aK9CUtpeV)VGt=GZ94`#1oUjrV3&ZH z4h;STaOrb(VkahhMCG#v`veT`!5Rky#0z9_NWdHojtI!nlQoVB*rLG+0hM~8|Dk%P zgs5$E0R9rtzBhxj0(|-~I4@wS1{Ve7H(2Ac0JZK0j9wM+QiH#v#+0hx%wdj(u{P&6mSQ2)%c%Sh*~HFc{~-kq$)Na+Y$gIQ{dNs z5vFtidy!hjRxABd_>u|w=^Vhx8Jw7rcrPbs5&(TZ|GX7hr!4e2$ST<#z!q{kF(dI& zPWBbB8J!0u<`$6c6ob41ikxBKC*a0;1_d-w*Pqtcm=qKh+lwL!oKa=YL}%KQWmVg*FwS)=B|rE+G3G1}y~y;D2|} zXf5FP_Y8g$kOR-9&}b*%kOm#HtMi{dFZF>{I*H024Y~-p_JuV91f2QKpu2!39*I;j zfdW>yO6Qh-`<241WdV7s+W0bXCGIkupJ#zqIQpPQVRvA6*z zZxNu@qk;Z50GGBfvk{Z+qOz$egPj8GGX7K`Of}BU7Ob(?0bJ;QCuS_dh8Za1paST* z@r>>5860r{>mTDI%<1 z89Zfx@dtMR)0vo}l3^BuXaW607(5pcGnYY(fI*=Q;sgwt&)}5+wO<$7=Z$~?ixTnu z?>ix{m$1q|0v4}e@KJ!;$O}e33&^sH!B+vdH25yy=4#gXDPZ3^1|C@c#c**GZrQ*j zfg%jDMKDMtAnPUuNdz?B!oW+w{A~=93FsHeAccUM+Zm)1P-90TzW$~WGHxfUq!Zw? zn?VKvmHuRqNkCgSgDe7u?PZWvzz+?w3$S~P4}i;Sfb-;5DhhBP%In08M~6At zPr&n|3 zfaA{?bQhr3SyIoRfkM)oKxT_kdQw)Q?4&e6b@5Bt_6(Qug2zXGA!8`@dDFbh@T@p0r zJAe(46SI?D#v(;B3dTq@n?%7?^K3ZogvZzoMDF(bCP!}a9Zg%?!*P`aRBS@b7IEJ zE}VQoz~`O}4he9L?!)AWko`j$924+u9D@@AK2KwCN`WWJivs%J-)9`aUYv7cM&A(D zzaZdwID<<7E^XnrB}}e}O4XGNt_j$*n!$Ae>((*2DZpzZgWCd1?qqORz{0%@?kliT zIX*K4TSwuDJyPU^BKCjspE`i6VmdKn_Yt-bEujBd2G0egzRVy-KW`uR;T{7!2A7aH;(tVWF)ezrJ+o-~cw+ z$%z?+4I-i6MS&H{g@*bR?&bj2@8QIpU1K2>26EjlH>!1i;o0Nb-=0&LG# z3a~v}Bf$1-Jp;b~vR#W16?QGm*doC8EK-3rs=>NW^HkknrvgV5IKQ8L|I-27f_t2p zk9>ifL+XG0d^_ZY=HYOyO