From b2487d518f89be8926e244f674626e55a29df209 Mon Sep 17 00:00:00 2001 From: elisno Date: Fri, 14 Jun 2024 00:29:42 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@c749e9575af0de223ec1ca267e44104056818e4c --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26580 -> 26580 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 250944 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75599 -> 75599 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120431 -> 120431 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16663860 -> 16663862 bytes master/.doctrees/index.doctree | Bin 42320 -> 42320 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1598 +++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1160 ++--- .../tutorials/datalab/data_monitor.ipynb | 1458 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 386 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3994 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 668 +-- .../nbsphinx/tutorials/dataset_health.ipynb | 42 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 675 +-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 460 +- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 922 ++-- .../tutorials/token_classification.ipynb | 159 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 232719 -> 232721 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 337871 -> 337873 bytes .../tutorials/datalab/data_monitor.doctree | Bin 291417 -> 291417 bytes .../datalab/datalab_advanced.doctree | Bin 208977 -> 208977 bytes .../datalab/datalab_quickstart.doctree | Bin 150869 -> 150869 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 521758 -> 521756 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 123667 -> 123667 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 155823 -> 155823 bytes .../tutorials/datalab/workflows.doctree | Bin 323091 -> 323091 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 210672 -> 210672 bytes .../tutorials/indepth_overview.doctree | Bin 223669 -> 223669 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104195 -> 104195 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176673 -> 176673 bytes .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/data_monitor.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1598 +++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1160 ++--- master/tutorials/datalab/data_monitor.html | 16 +- master/tutorials/datalab/data_monitor.ipynb | 1458 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 386 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 58 +- master/tutorials/datalab/image.ipynb | 3994 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 408 +- master/tutorials/datalab/workflows.ipynb | 668 +-- master/tutorials/dataset_health.ipynb | 42 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 675 +-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 460 +- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 922 ++-- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 159 +- versioning.js | 2 +- 182 files changed, 13216 insertions(+), 13260 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index dac803395..d608a4c69 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 328f0c61d80eac0a73f74e30858cf845 +config: 1ffbd729907b082f683974ede3180c32 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 10af390ee3076e07fccb855d169df2b443bd90a5..68d92ec7674bd170388851967b6c0933ab329e73 100644 GIT binary patch delta 117 zcmdlWxj}M6IHRGNSyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Yfw_U9p^0Jg<_^XHPBOG{axZ5D052*ckpKVy delta 117 zcmdlWxj}M6IHO@wuBC-VZeg*$fn}1pVGOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OBrh*6F%7jQo=YI10(q-oDwA^Di4&TDv!Y z5^!W9Q|o(SR#vjK_H5oL*+HJIJ)6JD)N_z&tC3nKc@fmJxk9^ynM_+(>a&sS*BqlI zWH@-Uqxp4qvK(8od9VFKPBOJJdp(pQOKbe(^?F>J>r(T`i&wDr$#tm$o2TUk$Wq{f zhMs#87Fd(KU3BABblF8gxh;aFP`DHbl6cXXlInJ!{R5uo_df5u=RIep<2lpu zoSAl}RaNQ1@=&m*%o`4tcZI^0ddR4#tT4jWnjX~kO1(T7GQ8Tsu(#T)X%$+?8fEVR znYr`h5i!xKy3HE*7HdTr_a~43=fMKkAbF#;8b~OZ)LaeZnv+WoYoJ|8gDhH}>v0dH z3|PiMC)V{&D{yPUkvvt*IaSRZ9En)!P#u8&t2f;vZV+z`j`W>PUMuHhHhGos7c#?& z%=f2b+HULS;scIqrY*bgJ5f^P+|AbqNy&8Ibiaqbk+rvV_EDDOx|#^hcLM;n|*-E(QRxJCdczwElhrq z&msVscZmCe$B#W}e+-`1^Osxk z3S45Ql{;w7$4kL$+AhOI(&aevDzS6WjZ6Gn2AF{sukilunAk67^0`~|Eb~0txX&p! zC7a#^&!AI}_}DSbrb!GsSPn&&`Biix{y1Dt@Zl`9hWT~w61RWy7-&G!pfeK?Zyv}3 z5%(y$^hQ<2)Kp!Bbn(zergG7lf)&Yv4kMfK|3sxUSD-W^Uq!k!h$nj#w=go*Y>E~u zl!6Nx+)c$r Y>NyuyyGAno$pguY?Vog#Kl)>yU&J%{YybcN delta 4197 zcmbuCO-NKx7=}6L-tn)Qt|pEtLKI4Wk~4{plL-k%(T~n(4VoFw=(W(%Gz+p8i5f)+ z23I&OgoHs_SYX}cYthD4v}{pOPJ>`66b=P~BrZBPrP|Iri@SW^=X=ln&Uen4j%7{9 zvSyl@JJjv1sOawNFL8N89(PE76{Y2_wvKY$(-91MLcx$bSXQRHU8U`1ZRL9KusO;; z05W6ur(R-LYw;mRwNpz)KwnxlcbfV)AI$ZwL}BflA9lFro>dd(zFxZoYiHL-k8=Tz1XlcO2zE==CAvqvzwB$IuF$&npw5+=uTSS3t; znajcenPihZfuTkLivZ9+(}UjaVqajgZx8E%$xTJGa_(v{2hB&?&zX1yh0aXA1 diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 82b51798fd8da3ff4561762759b718b0b9316f73..84822e0cf12516c7cbd94ae967d552abd93e3e63 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_hGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28M4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0b3qFhh delta 3571 zcmX@QLh$Gc!3~~_hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6w7H6LCmGtNA2ejK-Mo-_wJ_;cg7r?`C0;_h*2#>nL7O*9?BgO!Yxw5x z$`i@(EYQ~Q%>rs2Ok~=spvlcbrq<26!Q|T7XAnxR)@q({zXM%ORoI=0qhH@S{I;M+!qW5Mb7T;LpXZT%E>o?Kf!qqmT&wKe_= zxhaV;se#DEq)>~O^z;i%684+d)y)ecORN55KXu9J zu~Ceon{Qpb%}Kr)oAvHk*^{n)df;P5i|GbZjO^QQNHg9d!vRPpD5)_XF(%y&z!21* zyy2C^_P8j<fW{7X+-pD9wM7sX%z;I;dCtV*X^qjY!_{3PL zOP*$n$?KdnrgO$Hi*A3ez;v3A0#mj-8!$PFl5PMf{-!TrWRckZ$CWACgmeR@FYITE zo6h}`Nnrc8DyAwC(oNV7G~ovsO&O5Qk=vDLGaZm5-BJ{PPh{HuW;;`#0qMqoGtlG@ zA&SY^rv(Bv4~H%u4GQ${zr&8pPK^nKaMV+}h6~B&CqrhFTjLB>KK{Z#Hp^)MO?7K$4IQ z*~@q#7%sykRuMbI3BqoQYGmfxm9(z9(HrT$h|ZgT!M^?hpXc*@pZ7UuXIjy$70oXL z#O`*>k|Qh~YqTknqc^O$Y~A_rp$4GE+o2`YB6tuP?_1RUL$}?J#B1d=aDK1J;zcFACQKno-Vd} zsMP~mX8}qKS8X4wW;0SB(r+Olv$WEQ?30e(>x)pRX_?*be}Gya4fLbd>9`lQMz01? z>)ByHYCSwM0$5og@fS79qs@R()z`s&>#hM<2a@Y$?PJTx%|von*t?0JNLC#^Ie8t) zs-wXv1+@l~3DkNyl|`-3w8yA*^`QYp$I}BSI+w3aS1qdjO0d9W9_RDidMWn4KypJ+rhrP>A=>ZgJtITTcCT%$C~opnAN8?<*V3% z&kM-oh2(rJR*+D0tWeD^7JpZQnU_i*%^0dKm8`5`rNl8@YkN*Cd^|$}Td)FL6bLnd zY<+=T04J^q*2MpOBRTME>jjLO^}C3Fe3^tc(1wwVD)Tkq49={P^PrsX{zdZJFt4`v zAT@D?(rM%oD^AOLfr-uZP95ICE}q^;E5I+vMTAc~aJf;dZ>E(zeu6e`Uo<^6wC+dp0qmty7CD|c4oe_t9s5O{Lqt;8=JZgQWK1Qvp4-F_fIvGdN@mwofYhwC6YMq}!KFW%|5^VM@ zYPICQqUgYji@>2{q%e#cYhQ&>)b#okkgVu#fPHxrz}6waa&!AF(7n{gnv30-wM}U* zR|9DG`u2q&_I+q6M1n~G&1sCMk iZqU57e5vZq2>8i;8Uyx?3wRLOwe>&pTe)YJcGG{gi6dnI diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 975ae5c5c2754fb3afcf456ede6aabcba59093c9..f2c0286c4cab89a2fc76980e9346f703b3afc3a5 100644 GIT binary patch delta 62 zcmZotYEs(Z#$sq@mXv6moM@?Ukd|nilALCml$>f}YLc2}ZkUvqlw_J@oS2+yU}%(P RU~XV&XkwVWxtyh&2LMm|5`h2! delta 62 zcmZotYEs(Z#$uS1YiVJTTUe}bV3}lYm;}TY#%2b|X=bVBX^DyENr_2@iKeEhh6ctd PrpachiAI~tS-N=uO1=`G diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index ecdad2c73dbb2bc615779ff3ae704f06fc40e593..0cc59d0e918ca51b2f6c3f85ba2d5e00b12523f3 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 TMrj7-28MV!Z delta 62 zcmZ2yxXy4xHltxuuBC-VZeg*$fn}1pVGi_@% diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 665b42ad8eb59a30ade67e50ac00948d5d7a498e..6c5fed4eb11a211c3dc5ab226c38bbc55fdcd7a9 100644 GIT binary patch delta 62 zcmdlUw>@q{G^3%JSyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Rfw_U9p^0Jg<{rk?x&Vp}6UYDn delta 62 zcmdlUw>@q{G^1fsuBC-VZeg*$fn}1pVG= delta 81 zcmX@Gg8#q@{tc;&MoGDr78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j hV4Px_Y?hj6q(3=UK)HDrWBV>f5N6uGi;=nQ5&%T-8i4=+ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index fbf51af3bb06c419ec3ae3d5d6fb8bd679d6a360..53a379eb5ba74afbfb6c4699dbf84982bfc3287f 100644 GIT binary patch delta 64 zcmV~$!41G52mru`ah^f}O~(O*`Aj-Smv98rcOSi5yR2R2Q?WHua=i{nrQs>&!NQRp TP0hqeJpj*y4v36?e|5Y+1jiPt delta 64 zcmaFxf%(A)<_)J=4U=*$Ei7^ii}ejGlgtg1fY`#=%pf_WG9c+UQHpH%DqcHYI_T5|=eg0jzufIR% zoZq?kaOXaA&FNJM$%$}<^fcB{cirLXciIFP^T&a1tk!Y9ymmjTIvYHI zs$QvU1=_^r^_Q?bC%84d$_33dAdl z>prk=qP?w{Z?#WggHDK8mrs11s1=VozQAhWSl4X>g7ypV9*?+|9cF*eEg)^8yuLue zFT{M<>}|Na?^UdO7JLCNy_(;T=dh_;!lnrAGx(E%N!)v>IF&TTSBZyk4K~AI*DjtN zI)kR*2cL(pWz$aJAC45E39!_+j&5|IE~dv&z!zj3@Xo@Hu(3qm!W~saFPGc zi78>T`|5mSn25NIu z6%%&b6yWNu5*jld$ZLFslvUL2fTMQ}1!TU1eo-&^X#h*6-3-kXREJhk92@8olF`+) z-+>dQojifsAZ48tq48yMvX8c@b#-*tK}gl95DhzVqVZmpi%cmJv-7RQVlvz^!I#l4&&C|C^ZaA#zxW zNB$k8_3CPjn$dtgw&PL9`e;LmgXz@tkSWiFs7@sZXtNVL1*Q`b+OCcqpl&?0hHA@D zrvtpy_?6OkkbZ;vV%Qw#M+v(*dPTn0ke?r+a+Nzo89XmGiFLgcE(SGo)X54gVN=s% z^fJB-OPH*SNPRTnWGf16KKV~j$8coQ$yV4*YRgGlk8eeR#HHrX&R`xm)S~vEMHL4?D!S`2YX_ delta 5702 zcmbtYUuaWj6z5cLT1|SJrj$0!nJTGu>$W6H+Egp8Yl{^-8(IuvHEq%*)UBQ6xRm6pM|FjfcWb>BdM}{bE}i!h_j{Ok*~cYD}lnkyJFAiG;U4 zA02GSq_&7DS_Dw#^?Ui(qIpD6L9LtbP?_)(Xi%Ud7$+{h)cJUd1~~ z_ZPwH)%=vVA6KvDjlLH^b#_;ZRgm#9ZuK(;o#cy;k6`sq@+W~#tky~XVBM>)*%noaE;4Iu|t4q&OEV;iU#I)+QT%4-}3!xi7rDNi=V}f)j{~iQSyv zegN#7Xl*Ix8?95=ppzor;S=8^YsJI1FR>ap-tnygL3@RFpGREF4za)M29P#UUSFW# z!*L%rdk60Bc?Ij94PSywujcm>Ic(~-uqi?Z4F0rl8uwl*PNhuob@DD;gTv6@v4`ge z&Y&r{<@4~h?4S<(qv0Yn0k-<~(I++3#q8u7@o@Y{u#3t-f#Kc69=<*iMH8WDE}U@j z>&J6wAZ#On8T)ncw0JP%7wg;GMfhYtUKR&t7Qw#q-02^RLFKvA2LJKaDl`xZF7iK{ ze0KISI19f1c2@{9&u72-%#T5ZV>|((y>~p;=WVoszyIYgG(nFzD#V9%1|Pd!3cu7H zFAmQ$zYTzM5Z*f`*W7&-yDNHyxomRu&wXH!*j%2$BHS$oY7FbOCK}@7|5mSo2I_EB z6%%&b6yWmB5}GhI$_*ESA%0=HwC0hc@G*3+lV3w%KR=o;C3?=$t;@f|4l4*5ouQ9 zvHlLyW_dYIjcC9g+40C@J@iD0#&l}B$h6Lds7|K(D5hhlz;q%)JLSx-jQE^|jHgXhH|v9FiH#USU#byi>no1C4X zm+)m+!DL@V^5ZF;tthbhtbc+khQrf3Tj4OtZ6|3nz7+)$ms~tU!}vltB$gs6v(&#p Ui`?=C1wBwA_e%9W_NUeV0dXI~D*ylh diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index f39c9892155fe208dfbb4e84060f2fdf7fbafd42..82f949dc9f62461e09f8d05657b9500c9f57995c 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28MHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEq delta 2705 zcmex*o8{|mmJOkdhDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6w7HFui41L%9Tj6Xi!%3fk!~YM>tsW|1~PTd7Z%RZuCb5&{;GE44nx5oEZO&#j?LGzaY@Mv8%{MvT z$Ac{0;6R@2E5W-t-uE~w*+xigz80KJp4UMx5Sc7jDY*GtXe$Q=F3^r&O}+~xHn%12 zW1_(JFDcBFXkVUwm=f($*-@1ET_snR%uEK1Jc-R83r!x TFn$vvBM5*kyX}HHj87N=n{+^p diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index efda2d4d48e8a50938208ed84ff7c9d1ba38df97..6825143e5621735ad3f8bdccb8c61146f7a01b0e 100644 GIT binary patch delta 1137 zcmZ4agL&l-<_*4#hGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28MB1t0WnKKsm2m<+9u9M8Xb-LGm!0At8&(EtDd diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 2c2bce77d58dc4e3683ed033853a99a95da87d13..1c6b5459c6f25f8905a6c81f76a78969f59891dc 100644 GIT binary patch delta 122 zcmcbsd{=pcKck_USyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F ffw_U9p^0Jg<_5;O%tj<@)1Ul+U21bCYY7hkBzh$* delta 122 zcmcbsd{=pcKcit%uBC-VZeg*$fn}1pVG`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0pYg&N- delta 1125 zcmeBu&(!;#X+t=pVN$N8g+*>*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W z7^j#fo24ciZSG){WG7wQxacKi}k;?gEp$^td*EGUO5^-xWY(Qpwcq z5TLzzhetTM5#SJDu=$+tV=_`XFuBHUb_kGXCfnf#o8>|_lNt4!6QX6wOYL!!fm%0f grnA|S?Qq`Brk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0LM8x0{{R3 delta 2628 zcmccdp5?}SmJQL2hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6G`WZIE*ZKMjp{Z_Fz1nDAyDgN31*?m?yPxaS-g7lL^gI-vb3(>T){J& zJgqY(@7HGC{7~pLFIhH&v~z5(RSY06#6a4GH?LIoWhdMAXtH#!-uzAH7YpfHH!B($ zFp;ipvZB$3%|@nI$kqDXqKCWy-mp2u`V+afs@r#vYwHBZALQDa>AHekTR*w~Bg59s zirziUWW;G>&XURX(ZZ9z>F{k{?7xPL)HE4lgv4f>&`xsv4AZ_ToUG6WYTsNRT}O${ zuVP=35#n%vA57Gv#P&PMk0`Nyb^1~=B5iYH&N(i!lFQ7=4Rzd`RVq}t$<)5UjBWCS zF0Sdt>Wm_jt#TbES5&BOp51boT;~Wl3v9NSP{B{Sb2dMmAIwI&Hekfh-287@83&nK z?KUux;n&TDyF|&UU=Tmb-n&p!lB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1ORpaI)4BF delta 2632 zcmaERn&s_jmJNZ7wn@2`78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6q@R+XT&!Q5Us{x$I(eeK@#ce!a~TauHU_A*WICq`BmZO}mO`?$_f1}{ zEVem<^&kt`+Jz?zgs^OW&t<_%rV#>)team8EaoL!JICZu`9EaqK18-o;mH#A_Ey*R zOL7Z9n4IYA+q_!&C1qjHx;b03fxN^6ihWS@v2H%3eUypJaDW*Rr{6=VD-IgIq|_CS zrYk6P#U_i#lsaOU^)hDCLv!;)`%v=o&{}XDo^;J7&+8EF;vV10^EX8MNADs^YG14xde4{++eiFjkO@^kf1o^!q3Kr}1v)&k*4zQ~QP*!OdTa ztN6*&zFDs&nv*=OlM{M)H;47HvQeO2V`>Vywtw*A-5fc8D!I0UwC`SKMy~DtX>5}} ztmBz%5*svqx;UfiW~+^d$V&j(ljF}zPuB70*}Q+x1Tu;mU>brOF?s(U*3IGv*N|8L zW^ax^zlevd*aW#iZS&zfpEStQ-akE_hmm!A6&vGQ4)P2D<|5YZIs%MgWTuDdy;6)E T+r7jYrN|3_lI_5@+Y?3rz9BzN diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 639275d220ecf1fe1a67ea29345a0e36118d7788..ea16d19dd109e65215d82aae93359ce2b7fe9325 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wq|BYiN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28MHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0q0l55z>Ofn66Dw8kFW81tidkP1+ zMiiNC<|sW(wsxQkHq`KLo>}KYei%TESlz6|NvSWZSN%viZV1 zGJ~*f@`5#jo1<6skymWAZC)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NTJdKUNq delta 2506 zcmbRCjb++5mJN}NhDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6w7HA%1sU2VJFcjiEYH$Fx`jZUos-u(iEYkjtzsctyYOUz6qe1qxI|dV zGh%axzy@|QwSJP&Auq%_H{XzAQzOsT$uk_I$q3V^X1x{+{!_&_T7{DH=Ff~kf*(CvR}BsX3?3y`AB#CX2%uo zkbHP&N{A5p1->` z2V4{-uXgO(tZ>toOj{@G5cB Q%WhChihuiJW5!~30GD1Hr~m)} diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 494d962fd83ac0e82cea386374bf3a0bf67f02eb..74f0cba8afe18f985f0c14c8049ae2263070322a 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28Mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>j8e!htS delta 3034 zcmZ3sg>~5$)(xJFhDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6w7H7$0vXyS8@A+3w}@cmpZtxvkaSyt+Uq7aqzG@;WQ}7XTf6vXUoIh5 z^0aT}6JX&ZPwV7^a!<(AxzbK}bGpK0S+cc9lc^IF*2nD6lONU+n`2xX$V(`on3mYQ z*nJ@r*^Zak%y1yPl@gK!#XIjT`#hh65ESnJeetoxTXYu zGPQ4RNclpZ!{<&uX3w`dAmccB>3z}WSGlg_h4`Y)Oa%|gbM&Ik+lr&fwe?BqIdW}n zt;{3W)??M%$+b10UXNT`0~^)FSzny5tL8f+v znZlc&%{oS=_RTR%qR8`e{p9`G+?xwmHIVCXkoGm3bmhtP_x>W`&2uiDBCq5CIv%K9 z^ZGS1{l0nq-B@z{z5cG?=Ce=5Imz_5{yV|VOW&uG7vJfVH^@j$e*Z^k^SK}Sq*W&3eQ#;fF20icY_x;@aH d@iv+Ir}ujU1L3I;<2Ej`+@G@@*t&kl2mk|6#76)C diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 61fd250408854846e0411baaf323b48b7092ccdb..876a79cda6dcb8cf2fbfd31cf6286190d0432bec 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%TFSyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Rfw_U9p^0Jg<`%|>JOF=f6QuwE delta 62 zcmaDV^HgR-Fr#5ouBC-VZeg*$fn}1pVGbfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+@)F0r}O;yoq)jpow7oXhJ=zA;(IqA2zySRgZFNp8l^|B zts7(RlVR)TgYi~mXag4CdpEyKVkR$M_inzGHjRvk*}O1&2Nzj+c-G|iI$WFe%K5p; z)V{VsXtPvv4nLXNv!`<}j+snefj?_9Q1@n|nezq7wEVpe+vHeluFY#!>yzjGqRn;N zw~`mtMU(5c>uhG)vyhi8$Ah#>PhNkWdvngIRvz+=*u4HalO|c(XKk-xWc)#1Lt)l- zdv3-=Hq!0geo>IojGc6Sz-&2ddcO*z;AGbw0^2`JGG62)&yejvL+bd*(%ZBh*eblm F2msoLV5I;6 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index a3d4a162e36f364121e9ac572c4dbd54a7807e0a..058af968704a9f4632f7e4be7a7db3e28c803063 100644 GIT binary patch delta 3021 zcmdmUn03!#)(zf_hGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28M3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~xymzWM+F delta 3021 zcmdmUn03!#)(zf_hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6w7G`yIvLs~3(m`%ej}cde=;LWA?db)v`=2ZCA?XM^)3r}+BYxYn#D|( z*8Ir<>`I&e@U5Xh`{X}-!jm6NW8K^&tj$WMD;|icY%Y{^W~V@Vg`%YjS=t*nC%YvH zkg2sioQu39(>VEfiO}SXeZrd~BKJy>XFJe{Xfk!yHw#bZ=jYx0rSt@OiLP;SeY3>o zw(16Qy${lUp>{bF*&dMC?AX{trtO>Sn;%nRvrhX8GHnJ2+q}-Bl-RD@+d+x#_5ID1 z*nVb`KY67EB*{FT7D|bBmf3g6aQtS$c?RT_O$)$9oA{D)@PKfZA*CAJ4`Z6L3J>fJnH7dLqoO4DS8dalh8hg>+wDx8`o zJG2RIPB^`pTJ5amvTOLj_gHEBI zZSsV#+?$!d7n0|JjOl(Xj2c@_85_teW-_(|^{?e6%lTltrMIsaV$A2Ez<}vM1Gu-} zm1o?hL6#{^)Bn3OvTgVAWV}sY-f5bAVG7&!2Y!r?$kabQKa7!Mdu<5g9xk$ckhdM! Ipnk##095(Jng9R* diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 35fedeb0fcc61258b8dd316c11bf1a55fea3b0bb..9a684063af5b6eef9e4e385568e8f2d2a87a14f2 100644 GIT binary patch delta 2688 zcmbuA%_~Gv7{(jsjysbvB3Tf((Aa3^x^riu45FA)Y>?#R-fM1Qql~DTd?aO|(Kuv5 zJ~k)|GhT_6l#PuQib&RMgq3{V`~{x*1AhIU=e*}V=W5Y>wP=nvn999gRgpBM!sXT# zsZY~oRSSA#Pf+)Xs-mj0Dk)mfEtczUpIa0?qUK_?sUEiBmT&XgDXpLuLc#X{ewWJFPI)2;X?{Y$h~Uvnr<* z${r=I^c+3#g|bPkGNWtPN(vO1ku1%j)*1N(wel4^fR!FAn^M7^FaBA;_`AJ~s%l5k zo@4cOXyA#)0E*5v-64Tb6A|WbEg-3-8@a>3IQd(n$SMDsi)gj|7!O`VC7nt#_O>o) zi;UiDz4OVKKh;Dsy~lMYI54)>Z>OHYUF5klh9-pUbT)Em1D4XjAH135n{qio+_98S zg|TPkwKwbrezyFMd{YL#v7SMp&1uwb;QQMLX;AkW%8!SD8%L*!^E}8HVew%Li(cBO w;o=FIckF(F-fsqhH;rQV7CRVPc;P7Ult5?P`^wYaTdoDP$G>OZATKv4 z7dAhMD=9Z_T%pL4Yi`7@ zW-gs(G^${H1|q|Br_EABD5G6{5mqI9Db`EDLED>zT1#bwxO1*uN>!Gq^9p{179 z7&4*kVd5&T&;wttoWUwHx-+h)L4g^GmPOP$FP@`T-mwo@>DlQ?2YbG`764;%dl}W# zPoO;~8ynET)6H%aUGzL6fiGeq=4vY@OKT5uhm$zD+QP^w|Cvi^qvH$@UP|R%QY!ZL zZfJ{?-kW_(shGdySSr1zd4FETeE@D@OkTJxfehmxX xXsPM?1(|mwzD$YxVc<=pNL-@>Lkn*lxnE-FjQiesI{YZmfcEG&Pr=WJ>|ZH*Wd#5L diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index b9b5fed50855567175448969d83dc1d256facd3d..e1a558fb9c3872b3841541699a6d589388eb6e7f 100644 GIT binary patch delta 2944 zcmX?qj^+G0mJPm)hGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28M6WJ{v0dM` zgA&_Y>^mv3{gzWGGkHk{9C3f#qAAg?;(dn<$8R?D^Cu&hZQd9xPmXPjVLjydabxg` z&1q33*kolWH@#*NUMK>9=W!LCG95H)>o;m2bLbi7C%`>@VSjp6G zAj`TrU%-=#Z0#JIOQqS!2sW_a4P+0IZL#p=U2+~|>IQ}RDS0V!11&*YV)I7T26BB3 z(*93Ru$%W?)j4*qm>;f)d-G7~iGD_C9kPN^GBQd72X2^=&&S zvAxBr+IfXKlmt?>Z_s1=o674G9cgS%3Wh5ysc# X>bLXa*#2LV@gN!P!R^3ya2yi=F8Gz~ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 8e69834ceb73e2b903c0c8c54c674ffa7d7b4be7..dfd43d9db470cc7b7f5f7c5c670a25fe81a11561 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%TFSyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Rfw_U9p^0Jg<`%|>JOF=f6QuwE delta 62 zcmaDV^HgR-Fr#5ouBC-VZeg*$fn}1pVGilwHOsH+(m^AT_B|v z9>y-Jv08;tu+@WmAtEn|t|WIO-7FeG7v020P#4AMyx!#PzWW0{&-eL$pXYfGr@C&g zuA6fMO!0VBzftU>zl?)^UH2l1Z!OU?{kuLh4r-qnucHeZirbJ$Y&GGV zJ5omn#zY)6dHYAbISemm!GTgirv~6j6d4r4W*U2tX$0}}89RM`T19c$YbBnI>;TmT zF1=o`fcUZ?^|I$JcoWIW7#qQHzUK`4xC`TxU#3_mU%AAhU?Sq#irUI_u|*6nJ+(NqdWfrY79Y} delta 3483 zcmbuCPe{{Y7{_^QziG`)Y^4)RkRT!|e^d6yL*Z$lP!1EZBx;*mi?L!8cc`$T3#8P- zm$5@NR;v&Swt8?cNaUgDB)Lm;Su}zUU1B4sLoxcjUh?X9hu`t@e4p?4dEWQsSKH9n zHuU)cX7z^qoX&7$vRm!*I;>vpbN1R*U%>8n1Uw#x*Wnb{_KF7 zE|Ai3PXSP-X6bU*CDZm%V(JUTCsUvC(13yN_9(5}SJf6n;%5L-8!cr9O-M>|Hc59J zu`AKP!)0`=Z%5}*Rr^^Tb^;32b$%ID&0naYUX#8#R8<#v4X9EzcoIG3tydP&bniq< zK(pHBr+NSBCO(ufYgd$se6bAD{Qoi*`gPrfB)+vo_w?`j%vh*>X1tCrXeePqCb89o zd+vB09cUA=P~`THdUF_F%z*=?BBuu6N|YHCLwXu}kZlCV835%Mg^__PvKSsy_SXzBC*k48H5NnjC1DPDeu?SGWV%SXxl zEpLS4lXyq6#0)h5bEye0u~K4{!w{Yp_m8k+=;Vr_29Z{Ae(h?bcx-2<^ic1!JlC>c ztes$Av4gwGr!-y>F&BH@f;W+>jnfguR3z!PkJXQg<1 b%AG*XZ}K8?i%qpb?&Yshvsiw}MtA=M3o1w} diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index aeeaa596a5d14f6aedda474c66718433545b135c..1dbb60ef9c6743cacfe077c3abc9614ccaf987a2 100644 GIT binary patch delta 3969 zcmbuB?MqW(7{}<(J03g z9W^Bn!7x%WZ|WeCGiYDLKp}_(33~lt_|o^R9j!lLSAW27zx%q*{XEa+`mA$(*1;;0 za&r|qTa|b3aC+tJa@Ffn)QTKePKDPkDYBxtlx$h8a7sJ9PPbE%awJuB(hNZPJw8!m zad1hrib$97CP+NWUt_meAoLAWf`*~}qS$HS`jkh>klDm-Lm76gER#+Vc^P)LY^}D! z1C&DKD0fNUu+l<&ZC4W(ImEMj7NeknL;NYvhg!?`Z;l47*9&@4Yg$nuU}e9@jaD>r zLW6&9vBy0QX)rH zcgF%|Juu07O$*YniEgWP12qW~RqO9y*0=nlL7-W0G&f_`Nw&4-qgfC8u3+DGl3(A0 zt(Na|e?N#u*jJax;|o1#f%7*VeEL@b@<^EdhjBwhQC3pqAHWDVI1g;B*?h=& zzm9^A$fZk56KqR1Ze#!fduqjOdYW;*l16}QD*VT7nV&sJGYLQe|M-XX^aLsJFRz99c*AjI!Egd*td&w`8l8G`Tm~Y%fgUpVaPOE z%LK`v@A3HS>i0PECAT1HpC`}d@Kw92+|{D!mPAPqoz5!3kyq*TxvIpyyqC=ZRL~pX z4MrQ4CHN5OD&7W(C+Ta_4kLuVA!d~^beNYqjMSX*C>=8ExOptwf`z5i8N49dLdKnb z6I?(!L{3tl@C^$sLf1TPSj!Qb-?wal3XagHf&gl*Jh(jpv|cY7M6FpR#ekK9UN;)i z#IehOkq5mIvY$MU_Stl5GinW-?nJGYGc#yRGv`7;!Su{mmk3VL#@dfau}Wx~_X(+F z@b@PHW+fCOrJ(~!SVwm?x`CLuj{2JKVAi+vqlKfr-e_;ftT8fo7NWf#4b)?68>83v zV5{+d4chCa2M)AXrS}SIUEjX}weD5~)G9t+3s^}B^&pp{5*jD_@Mq*QS3)B^x_=Fq zrq;>f3U-J}UUZw|-}96nF1N&wX`6P0Z#j}l;#5vDi2pvZl{(&407c77Ha5yzzgQ?b z`{93h9-U33?(c`u77jF}()7{*8sOqh8=d`Cgj^DO{u-`w1ItZ|e*si2!9`$V_2eV! z`%Nrti(k4jG~upv^;Rw;?93kFI-lcY9B6vQ-`ZnU2aDNQ3Ru6+7niZC;K;}W5=&E` zRxpPAAn0x6^Y$$DVhx)Bjw$Wow#v_6U~^U=fPehMX7&UL@GmcGe2Qwj%`$U@V@HHFx5V21TEkV{`O)5_V|6=sF1JkFNET`1pu#gf&QF#DPL2L*Eh&;S4c diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index aa033bf4b6d19b9d203a414f495f3f0053a480f3..efd266e7c6b867d2dd1b98b3a240e5ac68329121 100644 GIT binary patch delta 4920 zcmb_gTS!v@80O@rbE~ad=E5$72zGO4sauUM1c9MciuBM@Xj@xU8p`ZKMr)>&CawIX zb*0{VsiytZKr%Io5PO+HSe9W4rHP0cgj9C6GlCxd*25mZ%m1J6|IT4kLyD;(Mayo% zWHvkO*-raoBR!c-;Gsr*X+8dQ$LOBY^` zNB!=int0SdrupMh&sbKBKCqMwOCq*)9$qzy&a5!&$+%k0{;WPwofPIhnD1!Bb(XjB zEc~YRJqE93hsgxxMLVqT_DanqqbWB?id6!xyC z4<|NT+l^J_6_MYJUzHU0oF$z_OPcT1Jiqb+kXa6U+L645J&jy&{2ibunXaOW#$=lI zN{zPZH9t8?anSIzcPIMnWETcrP;)L02ht!0cGMXZU=Au8)x4s?fx<=q7f@LA&*tun zCFtR31FFEzG$E@ga33@vG4P%%Wyt$X3K5sxnv(=5`-0Wc&bW5x3^KYec#2=%s|7O0 zzTi3lM!sM@^*`Qh?ZAt|7d%SFHvQkS`2C<6NxV#B;G#zsq%?(6?A9;DNVmkd}~KFb}GcmI!;?R5+z=8dviE;Ynl#F@^`@ z1IW?;)mPE^i8f$={}5>C*SBpr36D&!L=HaYfkr0vRG6pa@DJ1fpy~Jtet5V8Ey+UW zLz_?q+KAwdp=N~uRfx0>ncz~Q0Df_}Lz06$qz+=@sg&8UJv5;e7J?+wRpLAW)Q2kuF*aZnlZFg);jgqqR~>lV-ls z`lar=saCzzK*~Rg5WAUyn3iD)Wr;``gj9Csk)TVTb#X4ApZ7b@`+SEpGp3jsQ{3Mx zm~5^sSy`?cx52o@CYo&0la*mMRyfRd(P6cUHml8K&CIl$j2ZhgE6jH5W^NLc0E`~& zDCguw2No?{F$|?Ov8N!UlRO$7?^d=&V{rCpDzI^#>{)s%3R9I#C-5uX0H{0%FI#yn z67@T)PDi5tKG7G6ddk`o^o6ZR5o54Z=kc@&bY_KFM~00m_N5Pk>ZCC5!+g(0Tq_Pm za^N?z-(v83HslloTg?x4bYX|x$Z0#PF|&=lCwBrcD^*Ype<;YtGU=kO5;bl0rSO+x z5u4e?T_ydXIvXu^P?d}p6>lq5DS=>y+_j`V6it=mhuLBGAm(KXCAS_NLCPURULj7d{t7&eU`MMhScBdczMkQAhR5DKSlByayN6qu{VICWV)8Bo8xHK zBQ;vi0C$|A2xxfLQ;5Dh*@d3tPoImxfi#GoZ4G(_n1kwO6|Zlyp>U(`6DVx-E#}^q zQgm@Nex<)KQAls~-vbRu47~5M6S>c%5V7;-l2}058>pM>jH|cLAftN&C;8>wdLVP` z4P*f@@&+1d_{sL{PP{0*fg@yS*ZnPv-w)f6#LF~#E`BT`r6IxD&_0bQclUWHzdf;o;N> zvh;uTm301VJ8*vg5UA+GLKTmH!7Jl9XeV*1)QEoJcewh9TP3KSW!^7dfA197gh-I_-<)0#R*D(QKB%6dkIre>E--ja+0tP=@>cVy5MB8FsufA$UmR7 K!78J$Eb0%2@;_$) diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 6c0f53edd836f58a962c88b55e38f4d4dad3b285..0d6ef713058f395489e8705c390ff9da42738445 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-Xl9m_Xq=pAsc(>$Xq=LqW}1|oYGP`Vnr3d8l$excnq-`qoN8cb zlxARVU}$J!n7p}$@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeFvyrZC@rnPn`?t>$qS*X%}c{fS;+Ed(&pUgIx_qTOovIE>*Cos$+9(Oa$gqjWVy`8 La!?8>`>-Xr-3yx;zS&-pw*zUQ3%ihIA}{yN~& z5(z^_P1)NcEE%0Nt+-+4V)0ncN@|8QjJOe%W=?1kOC*J+#Wa%(u0ywTjP&pj?KT!M zlFvLrT)2 zv5(+Ki(i1Em7SNCXRs+}Xlc2H7hhZpfPLRe`#JG$0<|mr`f48g?*vuXu5!o69AekQ zf~#x0$i8jVHn(!91Wo+{_pF;pRQ};qDmPQ-Mi&L2d)W6~fHOF6q*VTm-0zD@>OY#e ub7S;>DzJ|Lvrm@?eY{eE?CRnwe13BPNua{TPOI7i7q-E7F2iEybK74kO251S delta 3077 zcmbuA-%C?r7{{5@p%bT0b|W+hj13GrXKOoWMrANEjg%8(n2Pb9xk;G9P;m%}AYEhx z;&U0nh)ASh%7eHYyBR?@idRAiwsm0;#IC$E@Vugb!1;P{EH1`L`j!$iHPy5}Jsee1nP^(e2%(w6R7E6`R+aErBo$4I5a%4foc1v?g8g(* zm&Zsxartqnmp-|t0I|?Byx#Z`5et2S|1{Uu0ahb8$TPmKRtO!YuE4Q<4T@ow1q_rV-${U5)L z_PYDd(R+6)n4|({_(?G5LL~$iq1$t%2vm<1>mE=4xk8A=) zlIZd12x|Q&+5nW*u{LZe^IRPdqkZna=mv^CA5rn;BP0fD)^yoVk7Z0yIp!wH`dG^m z^3YgE@W8@XplE65#ic21$_ZLrYUG92*L`5$_u^iTz8^*H67T$w#ojxG%4^rS{c{?z z8$pH3YX``_Ez~l%aG(H9{StR=rjV#y;8Z9!P{+;<^1pJiXIlYhaNbCvc#7Qb%Sx)> w>bYZQ=qeRhM}XOv!D+ydwJ!2eu=mHjWRXABa>wg3PC diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 85a68509525b1f409d611ae287d2766081b4c4f0..d6bc1ee949509820399efc5ddd594e01c9c873cb 100644 GIT binary patch delta 62 zcmew@^;>E~3zMOlSyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Rfw_U9p^0Jg=B-S}xB!%?6chje delta 62 zcmew@^;>E~3zK0|uBC-VZeg*$fn}1pVGAg*W3#8}h6-0u~hf+c$SGwlV?$VyATV delta 1253 zcmdlng>A3;BiVSeP>dW?6cxn;l3l9Y;Cin{1y zj+UC~C^?c_9TBgiLpB!a7?|S?>EhieQWG8Q+1+O3SHAlPe7~P_&U2pgyzlewRy4G) zXlP%SK!c*9($gX{(guW?v(h4`Wn@{>Gcx;H`etVJ3r|l=Pq(B;re$QB!y~fH{mkLv zeZw=trsZVJ3!9fSe{M#mwXn~t)`N69yu~h3ImXtYxapWwTn}fNh$Bx7s+TFA6w}I>1Ww^LOhZ)rOdMJ zO3Fl9%r4zMxi>(yQOYHhI6rk1K(yL}oti!rr4G*Ahf0@EAB#%o&3u98YML_Q`fAScm25g&#QoDa|j8&PS8(`Qg=K_z_B z%{sdVrCQHjM%UF)1^0003s+ET$;C}*u9Y>> zN2!Uo;FB)$&Q_F~eLot_HSXatl)B@uu_(2;;T%eR@)&+b{Qch=l$!J$?xrD4Pe3YH z6O9K;%#|wrjdBxPkq@fX+-Wtc?Pa7;RQr#K9-!K#z7&PlIl-T*Q0~$8l#1LQ$(MF6 z??S6k?)6t_9h$G9I~Ahbpq{h^)g}kiTI8b6UaOU%G#=$HFwP;GlYQGvm8&K_yQG~t{ zaP??HpQrfBSjq+VpBVBs<*>ZO4Ftq2#mI*OJM>-NFa?4-#go&?2t@1@8?)$jP@K#) zGbkDs@0v|&>z3b?+rv)ekbHU#IF3Z&dUcFQT1@`pc>!Gk=yn5^1|@EwSmYFuNf@td zSzPxac_8I;#2{_*+n_OIS?Nbm%U_q!&UT@T1O*hG1 zd{Ilk02Od_t~7`@f?{EQM6H`OP^Wq-L3@CuR|wpFR~zX7x_N~Z8`$>+ormjC;H$LZ z9HX)ZPCz=0K*aVg7N%74;0YZR544r}*KW!MxPdJJ$`0Twt8@HU^;1mETBy{b?1BT4 zUU%UV42V|NAuHh6MZ@1v;!v?TKV8v8m(j9?y1u0pz-?@|VQKR*G7TNWL^}A1+MfFV z=fU!6$~iO|mR{H36VXwT_=Som$IMq&qcJ!N%hG0{KRVzXH62;32$y0I(!rDSt;(q$ zXdow#D~4vl?ywzs+)bYbZd1N;oe`H(QChuQ(1i$aRMxG_*Y&>4)~?%*c+#Hx2(G2l;!sfWE> za=4bLdbv^tHz6I|dFe#8wyi6Hh>vnrqj<~|DB9(y4_vWgX*H=U=8)nHK@_XyEjM5} z^9im(w_}=tJ@%?sf%^#O$!~WM(!qz9?^my*V?j7uhN@wd;pq3lw=<7$I;xsCijC}hQa^`2{_)fcdJ#MYq}ZMFs`bt20N_=(^eVK2zSv)pT|%a&LLJ+W(=#@^2>By#E6s C&Z~(4 delta 13101 zcmbuGYfzMB6vyYh7jS`Pxq4R$MF(%JFpFp@AV!WMii%Fc>NKJIGXLp;Cul)A|AOHW~Ip;agdEWPV*^0*Y z6^-r7l4x+|?152Hv-9SMnFnSL=$|S7q9P*AQ?nzp24rVs49LvL?4Mz=Wc4>kOtVal z%*qH4o0dCue%Son1@oq6Squ8TYCS}!`?uOfDo5KI6*nD|it9byOx87R@-Vq=iQ#~X zNv%r^{?@tan(espiUL_AS;IQITN?uW#l7+5ZHx2mj)mgzu{8u#YFHSyu#TJDA?ZY0 zVzA=Xda13TUm>+#CVOSFb@EV8+jeufFDxGmC@J+F`yv@_&F>uBJH?P^y|2 zk5d1b2j^O|AQ`28w`dBQ>*@TtsPz1@B2@a%iX=4G`VWSo)YB^`qSW%Dc$B(r?NgK* zzHSgoHEf7Lsh3OAQ0mX6u_*QM<`|S({K;dK8oX^9O6~TU36=h|b15ply?X|l>%%<@ zQ7Y{ZM5VSbVQSSOnEKvfc;}4zrV*|14IYA)>F7~-HkBRQj#BTQ*oaCyoIZm}^Q+*K zZr0hgDAjuIGPOGVibYlie4XIB+souZs zN2$rT;FB)m&Q_F~b3Yo*HU42GO5O3-7?fJvcn+mLc?>@z{{C+*N=-@%B&wmGXbXk5{d5)rq5AsuNWGRa!qk$LAf`FQ5?!W^(Ku)wO@^(5>$I*B%!Ya zTr-N$=PAB2hUNnMPsF}WxhyYnLjW;LG4i3n4teN7`Xb-UT>J4|_)h0TKZeAh92KIkJ=ixf!`zxND zYgE?42}p+#h}ho6!jw*4JideCg|;&P8l+r+8`u)8>;S&9I>&$Y0L9dzg$`JhU2q`M z>n>b^fzir(WCa|%X!sjSJSrCFrz@K1GD@~k*SC~>xQ*>LENwnUrlDh)NQVGX*F*pR zJSd!|oI|5w>2(c05giptT&#F=%mQT%8iS*-ENvDCq65xR(}ZG0xDvw+R-qciqjI&m^<{V&3`>`s9gS}Lzf(ah*;gQHX|4WEU%8j`n&DUlr+7OVxZjBBS$Aqg3h(~!fh+N@A8 zIF{Xg8$E9Awdu)+PHEqF0`cO{dRYv4J(7VIgQde`^kKufxVd+<<*t;#Af$sguY902 z!*40}A;U(}d&7s1V@yeh0IpT^69#ZWxUEqSg4g0(Uwsq&a?spc#x7qDw!?VoPzsO4 zJyE)EiwEEwi(Y}AJS@HLpgqYx(Yhbp1yXF}vKT$T57+?Wz-+x5)N<1teZvS;?0Hnr zM~fz;*vS4T^>gUsA5XcU7r|3Niaj{5M&FDM0A77t4}}{){DJ-u*zuh7M1P9pEOjY- z@tNKXUugC9ar5SM54Qw##aTLZ1b%AZ_@E#Xv*e9jZD+S4kJfjq{TC`Me`a#c_di2R B#3cX# diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 2c43cf8b8481c38ad2edf6f281c7a849c8a45d2a..eb7eca2366b533d35db44e91efe1b13f5c7f5e6a 100644 GIT binary patch delta 1676 zcmeDE&D8swX+toht(jR;qH%JfrM^L0qH#)cnrTvUs)?ydYMQxWQesk)X_9eba;kx$ zQJR6dfuW&^VX}ToesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90M6PP4*&oF delta 1676 zcmeDE&D8swX+tohZBnkKg+*>*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W z7^j#fo24ci>8Io;7wZ@2mlh?bPCnSEGRz;@mn?FdLro`qn87DGr z2Kzf$ZXG4IuTku!#P%o3;gs0^OwExJ+b?M(Q)2rAZA%t1lgtD`{>^I)R&r3F{e>m7 zB$?VBLZvo$1{;$ZbekPQow&%f`Fx`IX4wQia&11JXijdB&6gM5JU`2XOq(ZzwCChh qagycl*v%znGTfwV-F&cdyAJ8vfW>(5=0EESc*xQkwE6w+d5i!h*Bv9YcP3cG6L_;z4Ga|wEAl=O-DG>@SiXeJuQBf!;yW8D>C@qLN1f*#o zf*{el=%@unf);E+?FcV|Y3oN&5S3nv*B%7HlR~0`2WOi@&im#Mc%I*HXXc&R{8~qT zt>al5)MV1oHB(RZE4HqUn|8u5t#~4C*#oMf8%Dy=bkkDQn5_&bsv1{Keg`%aFlV@8 z^P!eqUEUKn(5hT$p`p$~B;@o)WgZKSw2~EJu7-i$Ak5dd$BF5DA+ktIPCFBQG2R<} zO2qj@-!&g;$=u}Ke6gRk(Qv+=jQWY_{ez!rsX4y$XtIZtn&Yk3iPI!>+UZ=nOe9mw zuV^HnTRA|R;%V-@Nzu@}Gxcu9dtW|WIYJE_e1F$_ptx}I{OX76!$S zRQSap{3Z-tJ$dvH$V0?r<}1LMcNWDbYwg}Sx9~$}IpV|FB4h|RR73FnCUjE;_~kZS zq{18ZduCy8Q-aU~xYCqhvIJY35}cWX*G&m(^N=DuZ;dT%dk$s7kT(SPIQ*5GIfdsC z(!{wd;*BzVB0M^7{UQ^v5BF4{o$zzy8nR6J3IR4>gCKiU1_Mv7f4<_P3ceEq=sVZZ$v`dgLF4Bo2*c1Q3TOLi;4w7*=;ugF|<<5As|fy z5d?|WK}Rhp60~3oYDX9Z)7GD$AS%5SuRREYCxt`>56(7+ocG(q9-rrZcV@qt&9ArR z*V~?@KsD2PB9Xp0)vxGgTs6g$h-%7MQnTVo!-$)PsT#4Er7F?!*qCM+5q1YU5f~Y& zB-voo?hfaPn`l)oG~rOP7z&Wyu*@QX;bycV$kZU<8wAGo*d_GLqC+ zUg1bKzj_ci#WRe&(Q#;=Ouw6T-j@wkj$#7`-rsc|C=Q%FyZYh!xO0@w7T^+J-Veh* zEc{{sej|pio;-3G3}13!IK29uv!0|nV8%Z2MB;_9sz znfw6({_-1mkt>W?HD!FkrF-Jd3ov|5psNfw!@OBI42|&BXqa?HjuJg z>EocJ-+Q4}XQx8y)y{$0_sx*B)VX&_D$>~T`K8XvtTjkeyQHUbC!kb^eH}n`#^;|$ ziO%KF=5^(HeC0tPScglhmgJ(+kktcduJvp3QEE%+ER=fgbvW0SvNV+1vauM=_3j&R zz>l~55~a@AHW$rx`Y&Easc}1?!N}Fa2|H~lb=Iy&Xs-X{b5QEF%E>6Te(x%j`bAYd zO8raqJd}F&H(#OD+}hVr>gKvYR2p}v0+s&kXg-?j_Tz7&)cO-4sI=^Tn0ovqOf5ML z@0|QI56}v0=TguzN$26SNo_cSQkOQBqtdsVFQHO%3w+a=Ki`W|(_62g>-yyva1Wc> z+feH6j#@O=Ti5@CQY&s8MyWTux&bPWSjyHq*WWHhvHR}M0kHaLTG?|7rLtc5s=M>m z?@;Q@zBn}3XZo8_>Vbg_kV=Oc`x3-bjKa_{ktS*E7Rvpzk)a(`duk9vUT4INNy|)Z zK3ZnGnHf-SNGLO-rTR3C?LoC+BUl8g?F?rFsJ3Dhi$UvLG=_Dc+`e&aDfXIEO3Kr$ z66GdaSOuEzrb*0!a?e=Vc2xWI6jp`y^NeXM5#?H+V;`g1x&&4O)R{Iu&n}?MM~Tb^ zFkP1)^(Qmr0ZP}7d5P^qxg{xVA)4=+RAxoF3({B`%3WY%FQD3_47Lx|^2H4KTtH%` z>P4Ana@Zh5Agfz#66`$FtbyKl29WasHE z_=jG03rPNn*2qtAX6DnkC~5T0Lw0`<>b1cr`OpwW>O>oXgv0Z23nrVSv*_h`tG*C|TjQZM8}_fnmtK;b%^f-T=O8b@%+$7o|X2 zG+TNM*7q<4_I>pMn>jkGC4dKqz;TPoQoJ4@PwG^#Ex&yy;FqmG1l6S6Ob z?iDI5lP)9on;!9nZPFn$T`t4{GG^UiEqvl*?lQDA&cq-jq|rfpqn)`N{#=pAXbP#nul7VbFjaYC8Ss zRD&Kv6MUkNax#yoOh>;72Q0o7wp>(1*fw*k^ zx#^U_hlcGpGN;ax3+iy!qHlpgrAfPRdu4O7N@cZ>*!P(E_M!OROkGrUMO z!;}j2B%lw*C{}oRggA)GBbD{Ql&t;5UlyaKxrmPVjtd?mDKX@#f7+3nr!UTa?;lOv?*el|fuQ+nT8OQ{`2l zfUe+4xLg6|H$Cz0JBqJ6g1>hun}8gTfRo_FF?9#f@dBAnjf(mZ-svxxRQ%)7 zwqVr{ot|j;Xf+pDXZQPw5C@PsQVjs!>S(T2-GDrueA25fqQ%duQ$js&a;}Rf8? zuZvsft34|~G8f_?p8uhmh#8bR24)9P!CAEtSuzoR8U3R{jYV!aUEI{Du0SSzU3}}W zY647dyQm_+Tz0K@8C`Et>tXV|OX?yx=fzjlWSDGgQ+LAT%67E{CXc+PB0tk`S9@8f zihQ^27SFk%Zh&)sy-O_tZVWg1*LT$GaKWPPsmO01+~mU#)cXLLL~oCW(>?e|-49%K ze6Fmmpzg;iGMJJOuLiCPSD7+*_o&M53#vkkP1;9b+TWU-4%RNAk5+qq$lHzx$jPN$gn-{GY1Zg@nsaAph@# z5yYEPw4v^=i%Vb9-Uk-ryM846W*R-OEQ!kc0#l!hPNJym#(BwWz5MN$wPH+euksIYbb2iX=|Vol(e3*q zq*~6rtNhPOaNr>hIiOH>U+$<5?gC`?>fm*D(`v;rb$ASxuS*_2avqkmOK$l=E4Ek# zj(uadqSB9l*yrVbrA5gy9LZDKF=~cAdCG9d<(NMrAlXK&ke;bpX{7mwz55 zI+j73*O}+>6$gP}?M|s$l7mWvRu7=L*00G&sV${5QR=zZ;apqFY$&y5V=}bmsN2n z^)J;>e2r3bYF|UCo9p~hY3!j2RQmIy`Dm`&kH3jh>rVus(y|X=>hY5>wd6Fs zbMntTKr5`BOGe8iorljRwc!X#UD8yJO5bk2gi6gV@J(m_VlPTfYrTT5>sMdGJ#1=k zL#ewvYSCP8UH=bCt+;U*rQYo72BAd`?KZzj^P`Y-^%WNOYElFkz(0tdVFe}QPZ(}x;J3p1Zh-wql**;Xu7cu1j0unP- zFUmZV%~k??kN0d~1^iGE3!tk@S(GOZA=I#pC87=_V)!X4b|w%)M^>??JagE%hHVBN zil}BS8>YDb3{GMN)&d_lI9D$F{jF>dvqQK-ahyK-g@C zm;c)f%*cP;#M;0lNEo~p2#B4H%l}j;RxtQFONJY$yNeA4PD@ws3$ZWlzRjwTou{|p zA9~p>Ao(X+BR|2JnNQoI*yx>y?EWCsYlBhpq9KaZi8cZWhZo=$OfpGl(QQmS1EqFf z_Y)^k#0Ox+i)l=_l!l1)wrwvFeG@uSvchfKYL#vR!;ovk&xn@Z06uDU_59VBB!5~s zOL`3Bg~K;+;tOrkJ4oI29V5g>+LSK6f;h}6l~O4yQ`&Q*tapKIx*JVmJDzA}#3 zO(~QI0eO?idj&GR>h&rpm&XE7u8W7gDW`-2>FQha)dR9GAE<$ftse}+paD75bo$X4 zgE!TmmhZ!3r|uB@k=%i9aIQNX`c(Es7U2I`aN*$1mt{(3%5IUPo<`S0L^GHyeX`Np zBZrH!A>9f(kceTv28x~K45hj_gY6j)9E?;^WN1L{`6mlv| zN(Fin(1&9bE4(~H96;sa%6ec*ca2?dO;b*ycxs4O-b2SOx;I-H0r!It52p8$l@7Qs z)A}VJGS64=8%1|GlB!fraDQv=I;Prq^Jb+5lhXJtN^KIR-|KC{m2}y`T=isG{>rLK%P!M?Nt}jqUY4;VE3Dx>*CQVDs;;0 z;?{X;&vKB=g*brcf21a02Br3aS$ z50l$2s>nB&o$Fmj*IU$jm^}BAx)9EJ(G@ibCa1QkJ7IEVyV?SiM_yBruW7idy|hzB zKHGMQXWvjaz&XF(rIr9UhKu~}9rZd~u!wsq^4$j)`S1hvK0qeX+vDMM4?a@&16LiN zBWug4`>~1)rX<9xfvdtAA4bpf@ th}SO4yQn1q4}jl=k#R$ditr!|5@CGkQ3NNS^~#HcB1k3i)9r7~{{=0OduIRu diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 326db6b7ad21d083ca589e9b69d2f7a247bae2e3..e47074fa50b901950e145dfd9bf2c545034c2139 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28M#f$7u)rVXi#hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6w0RmM9~s&v?^jCMY{`6snRFXLS|^`s*TW> z!kcCJ>&f$S8CZLm;A|!eY+o%BMqa2vY~L+mK#BIHGB3#py3PBQZjcvbm75(^(+$ZA yuGGzT;rasPX`O5rF1%SR!-kDa?FY(bH?!uea*(He^MUeGKC-l?Y(CZ2zz6^{QZao1 diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index a5f40487f286cef38492bb40c79f6d2037b2f23d..92787545fe807f4b825e8d34ce41990483617521 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%Qsfp_y4yqH%JfrM^L0qH#)cnrTvUs)?ydYMQxWQesk)X_9eba;kx$ zQJR6dfuW&^Ve;e}#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3D>7eW delta 1139 zcmeBrz}oeIb%QsfVN$N8g+*>*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W z7^j#fo24ciO|D@)K!&c3>IR$VGIev1skM{4fSD|qz^Es(LGPQzjekm(LW{`okcPV}&BiJ@?RA0bJmVb>W+Zl*&K4Una zJne?lFN8A+ZoX&DC`p#}Q2jxnDci``&pNq5LU_9Y52FWp=^X3`up!fdhOln`F2Z;~ pntbO7PJeI1sJz|RkWrtT0#mjFO;Ix>%K(GPo!tD}Tk{xO83AbgVSfMs diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index c6eb0b86a5224263504e3779db754bc43b73072d..a36aa5f36cb005093dcf1d238df4071377d92063 100644 GIT binary patch delta 117 zcmdm@yhV9~Kck_USyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Yfw_U9p^0Jg<_5-YW-_$duvYK@079rD+W-In delta 117 zcmdm@yhV9~Kcit%uBC-VZeg*$fn}1pVG%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi7Y?GFtA delta 1690 zcmaDdi}lGY)(z2&hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6G`WZIGa0%batCc@VqVQop4Q0*+zq7b-29Ncha3w(%6D#77jb7I-Nwlv zts3ID$OyV*2!`W9Gky5e-kH5d(7lJlERz2V&0JxTo1Xy z+9%65uy2-6iV!8s1<{lF8bl}e#RzQHsE8sj_@X!SHDt(>Y5N3Ksm(GAxH%}$es)E+ z8d=(7CiCBA+kE=`b{_JyZ|1+7WkH_S?QCL<_2hXvX1kC)qoEF2_67mVcmC~Hy&3x% E0o-8{RR910 diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 1b08a6857eecff1f8533753cfe011055712d62e1..a3bc1b174e4b50780d4eb469c7aba690408dd37a 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28Mdx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$2} delta 1932 zcmbRDmTBHwrVZ(ghDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6w0Q<2D;e4*e`HDAtj|1=JgxUgcjx4Vx>Gh!VH4sYOY4ly`TQ2-xOJiK zjLijt>zT;1b>`-mB9q9ob>?PQ@x$cWdP(Xtxmx?>j*+WXUg-w8em$tNgB|u zs*cP!kDn}{CbgNdwVS+%gJ?JF)*#pM>-)twvrbasA~Wbf+AqvGL9XMwj6^rvE^eVj Ud)i7ya#Gz#mfX#(TW2x?0Lc7ZWB>pF diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 7a0ffd9a7b5da7cce1e59b846e227d4275bd0ebb..c34ae3a23dd7763a31753c8cd4657516ce38fc6b 100644 GIT binary patch delta 5860 zcmb`L+e=hY7{%FJ$0kQ-8Y>+$FiVMwa!xZEKBN&y4_!b@GrJ6DrV$(~HPJ3(mt$pj zV%X7P2&IS~x`5RNw_%aiOBX64BBDf;3ZkqYs)s0RpD~nrn>GCbzqQu)?QdV$FT$1= zVapYjEX>dMsxF^ekn5~cT^oH>d0wC2o#*yfEl|9w*PG{csXo6`nP25x;8Ya1;>+Dw z>ubnusBPTp^RtjAhut9$l&DoCS;5odz7P!6Pv56DcFt6f;k+&3vI#?3pFNGgOKJpz zNAO{5ImO(0pM3~-cJP`>CqQQz+`&($&54JCH#29Mjkioah;?1#-P5;Yb!+@hb_G_m z#y`zmhPn>T>H=NQt)2^#e7ti5il)0xp{1&MNpa9rXgsr^9Gi%0ZY!#>L$1}#R%GJo zCFxkb5uD9kWo7-P9e4n#P!7?}+*x)A+l3krRJLGMYrK8kZD6)|$YTL8c|B-+g?AW5 zhy6E@kyL}n z4P8P8+Ns?|>s+*d2O2nd(1p6z9d1Bf&mUU~Y;&F!+Lr_zENU>oi`u7wD9iLu<*Anx z3+Bvrby?U@=U0s8ySk=Nz))8A$jlettHYKz5W&kHyibkZo!1ZEL0szxOSyO*KQ4Ml zRzFzGl@B{H*J7Uau?;yC4OjOUsKW+2<=YZq7es1({(TEtYxj>|fUDjcN1F84I?WNS zlq3S?LMj|_0&5%ctYPgrAI=G9P)2jFuqX$3g_gqefd^?Mq z_sBJ1GX9owh}n-xJTUA3%Dj6*F8l|X<+$Fe{0Qaz^vDNF$IIJwQ`4dklAM0>@0JL3@lnu9dxs z;Y61~l0sVa0ILHY!y>Is4=N%eqC}JmqO2CyBFZ{<45fDSO^dtyec$*0pZ|GqUj|Jt zgQlwrS>mcI$j`6y`ZDbWt~`fJe)-wC_UbLU?z}CElIK!f4kahY?XYKW&Z*9ID_NPF z>#Kd4zWT=P)ovDWX0W^Dp(AV+NmlaYs1bspTH6C^VI2l9hV!#AR}2`+`mM?QeS9Mr zJcN&$D=6m9`>n&cvyInIJq0?;;5OctydWA1-puUf7Tz-BFxGXI_srUf)vfZkb1Jc# zRsMPIO4N0DUN`94v34Oy@>u&O6ivxKgO;k~#799>q4KnX3Tz^3xTUDp3c1!WOOb)6 zl%!zwhH$p9%*+N#JMjQgp#q|txxM@dwhLA6scONhR(bn|JHTx5fYStE@_JDDYS$== zj=FCmBdPdL$b-tv4|$T2u~hs4zNw)f>9CIe+`bQ~S4Rt*f~ae7rv|uk#lH-|m>$-> z7rKOWv`f8**17cHE;O+Ja5n1NaMXvoUO2G=*ycPva3CHySQNj97q!m>QI_VO!ILgK zOqes<(`{nIU0*Sp@9Ca38ADmaVaL4NpbqQk^l!_7T@b4E#rJJ!tvx?}0j^qK6lv1lXf#8# zQW6K43#o9-4yiQ1gY*GAM84}nYm+K^n~A}Ux7DOM8;MbC9VFAlj^iW-Ihp=s8Iuyz17tT4NV~R( z)`&&thy}PhL$KC=IlFvb-UMOr6$YYV@l;|jo#>#Rq+Js?-2|Am|k`F0k! z?vv}lWc)2<6Z4;tXkga=m3jY^T>K9*tDY0&zsp1#A^VdKY`qBuy~8$f;}xkzWrSR) zIpBH0 zX9K2vWz-cHKBq~pNjz}Ul$qhf`Z+7=_R}Pw+7O%2Ler;(@2iL2$d=}2h(V1O0Ok_{ RkAk!qdkIwv`FFUG{s!2RH;MoN diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 8e82dc800b792a275c59824522975bd59ff65a18..3c072d284e2e7ee6f135ad9b2b6c72bca47a17e0 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tp_y4yqH%JfrM^L0qH#)cnrTvUs)?ydYMQxWQesk)X_9eba;kx$ zQJR6dfuW&^Ve;e&j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGnPv}|Mm delta 1199 zcmey>$@Hs}X+u1tVN$N8g+*>*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W z7^j#fo24ciO`gE`lMG#jJYky!nAeeGAyDh&f@c27A*_XDSzNWbfb9Y+=~_1z^1LR` zz4e=U_~$c`ZsX*MQuUjog__B+6{NLK#GhPSd&Mu4p>^{_sY_&N1N&20&V-CenOw+| zzWKg#069Sf(t2D~REUg-DdY*C++`-QxyFKtjRNg*_Dea))V@ZPYjdba4m$ hlc#-iUczPaA}f4yUIPE-8)WXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~ycaRw@7h delta 1928 zcmbRJif#5Qwhe)dwn@2`78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6q@R+XT&!Q5Us{x$I{Blk+U6~cwTy-&8w1oDHF*zn19>_(A7@EoAy4b% z<1E6Pk8`?`r#*VIf(7T~1a;xfTln^|k>vuI5fYo_#deSvatI?@BrY>i=n58@%M`mp z?kJ_M_@+3UQdiii^itr8%?aw4D0RVo&E?D##)h%p8%kYq#^4zR;Q&nB5}V^qB3a4y z2=``xt1eEmwC8Rvckv{{|C>L$O6rns<8((}#@NZ{isUwLD>fs;T7>=?rAB(>*&j1m zPEl&|)?)R|GnV*~=?1VFn|qhVJCo;z^vN4uuy5{ur9?)ggTer!-{->-8Pe_F4%GjX wopgO5dlzr#6Ju15BTsY9_D3a*p=5@5&Gsi{j4U>!+YGJu__sH0W}L|g0JpGNt^fc4 diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 57e3d0d83518339e6356e47d8bb92cd26b0414b6..e9f847ed4fd982bda9915aba8f7c84ddea62c179 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTp_y4yqH%JfrM^L0qH#)cnrTvUs)?ydYMQxWQesk)X_9eba;kx$ zQJR6dfuW&^Ve;l0#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0Hy3bp8x;= delta 1023 zcmZo!!_=~dX@fVTVN$N8g+*>*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W z7^j#fo24ciZLVQlMuxV@7eqoPS54ucyp6e#bW1_HH?Lv&$wHpi$!l1IH`{VmGEt!2 zk5_`30`30<7LuWT^97M=^88%8`KRP6^5Us>bD+!=@`9>%^JIAzR&f59|szuXC|hCf&x#5A0$l+vf^z?#$36CvJh-H{0iK PQzOG>P%f&P(!~e>3-3Rj diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 535a8df35211812fc4a11f206fd312ec3f9ca7da..271521fd1f4d81b3b8e9f16ace6b5fb32f3973cf 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28M0u kYW*hWCr*~u)%*mT?RlQ>d0D}gf^Z)<= delta 527 zcmX@{m+{13#tq(#hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6w7G_H0~y*T$1-0b-LlEHoTZzuvzW4wu6465r!*_++JH7DZGO#H!A_>u iZ(@GpWNA&_d_!+G6Pa4sjqE+h&>G8}y!lquJ7xe)jG+Pm diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index b636dc03b9e0fb298442b474a9b79b383f086402..9d0706486e36e8b143e5dc098ef06f6d8e0320b0 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28Mg=ATrGcg+Q&7?-cP*{>V~Dmc>bvcXJDG=3rA`B~Sb2 z-Q1_ib2rFliOq(56PU=e8K_-+bGG1NX4189ju+iWo}*JYZx&yoMY@fX<3(L3=krT! Ye(Ds?NrCoLK66#c((bbPPEi>n0H~|szW@LL diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 6e46c48fcc14f4636ee24fc0392dae88c450f2f2..91da47ced6cdd897e96cea5b1e4cc0d508e0e001 100644 GIT binary patch delta 1705 zcmdlyhh_5|mJP*>wq|BYiN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28MW4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5df6r3!(r3 delta 1705 zcmdlyhh_5|mJP*>wn@2`78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6q@R+XT&!Q5Us{x$Iyq2EZ}L6HyM`p20@RtcIgEJ$BY9eQJIJ;5qJ%#gwr&oT zdQXOpn+s(>kzpG!CG~GsRwyOIMzGch%k8^1nYR0h@ou&%HX+w`kaqFXIC(N{pD)e6Sz@XZ zxweC}-<_r_OQ!7w+xRwb*`h$E?VAg>Jux89=FK0To0Dnl*yC3B)= zOBOQtiZ^?~nQbg&FKq6zoMA8;C(B#{K^>alRKUdeg9wRpmPCl(mbpLR;SYG8&vVYb z=X`J4@g?Kxd)?zurbsUq5P=UszxU?;hyk5F>B^F59ByGuCkuJ?xn`Bz*R;=Ej z)MxyJQG>E$?G}_8$f`uCudd$#Q00tu7?3G5)}SoP9zmraJl%szM{RAW^k>I;RQg1r zAC*3}u>(ER(oF)ON{cfJkVVe)#`A7edS=T$w9cUyx1-dvrR@M!mb+(B;h%ifTM?eqlRJ=G6bbyz&TT-gvb<^bSQXr7qX)LaB?p zJ5g$8LoPs-hZ^sq#QQ-PK#UyBcP-^8_2#|}D7E{|{V4TZYduQ6^wuCsU2N|{sn$cE z0#s?~7($74ox1^|dL0^M;BcuHdJ6_+S=UP_)qd>W8jyOaw-=)Z<+SKTJFGpqh*JCd zs!{6kk8hyVg)UBfj9wY;iX z7LS~Wf`+bA){efb$D~T_s8%+OCB{Q?r}El#tklldW7}dyzVO?m8Km3R8Kf(udkmK= zu8@{)F;<<3d5F_)W~9@}>{smUoDl<|8fZzA#lBd(ni$T_tZ!8@RD)F7>t+c$FvhW4 ze2tRnFq7eBmW%BRr}*DQ?3v>6G+DvSCMb?eeC}Zh^tz8_VBgS(1~K*QZS01+#I{zJ zPDyQS2%C_H20IV39PB3{r^xt_#gV?7oyQV5Ni~Q`f)2o`jFp(_;$_x?^?yZwO0ofT zI_LjpIx+tPixn~R%uM(0us$PJiU?bgYNbzDg@N)*xsh7umr*cDQ*cIG@Y zV2j@wt|wiz%`vO^@d5h>uPL2sLacHXDRkGf`TEuLqc@vBE^gmp@j~r~p8jAw4%~v& z9L=8u@2XI>Nt9;hXF&tyir+-fCGs+G`9}278N3x8);IR+MYDrzX*rKSix%<7zkkZc^K&?0| zxk+?Jb2G&baveBKq`F)HwMy}cBpM#(_rc8^(dT{1uYvsVE6yV7r+6H--R4c;`A1x6 z&t2XQ#1NiYUP+Bp{41abq>3j1sQRnT$_rNfxxnLuO1IG0zw=Lk2#>5twQ2;jD1C$K z$FYOsU+%##xcLu5YkHG9=DMOR8GK!vLO%B*bQeBQF OLrbif)c=FO*Z&8KMy%fe delta 7878 zcmbuE`%jxy7{_x?*A{7|E%*BtoHZfn3LUp)(z?tcX~u?RWa0o@C>uzN9gATonG+>j zvXH?mp6r4%+gQjhZ0@i;!(cQ{mbnCiIyAwlfQj)35fbMti4fnGxj*2`5B>4`{XCcR zJm=)?_>ysa$#|`pWqW*u1qHr9%LZGaCqLVx{tE1Qw%YnUZ+^Yoo$qmbvfa74-fWw_ zF1I$%>&{VH*(9Kvu@=b@uH%?g1oJc|#iCg5HsPw6P zFDiXzQwQ49lFb63N{b@`kcE4C^92_wJ-f99&2wnmPLz7Cq#dBjGS@6h{I=8%5X03y zzjHrIy-^O`6`?sjwF@~#;efx{y#vTqmQ_xpc}`T-0K{;x<27!SI_~L4smpbHQ0n5| zPL!J7m;+Gd;ih{i@qyn75W|i6E>MP2Z?$YdsoifLK&j_j8&K-yw+2z_VtW@#wI2Qy zph`=}5K64;+zSxZ}gbjphpe0QP`(o{C!f7}9sM3s?jWQVpUKpawXUv0^h_y21ij{a5s-B^yAe zbN+9p6Z1c?Xc0Bf%yj=Q>oa1hh>#VjR{FSA7%0D#8L4%Snb6q?MG-O)dxGlGPM>E6 zZ1Fon`J{@rIc60NU~x@w^mVzF~c28gE61^^F61(QM~hTHeSD&?Fw4T;Ie` zL}ABD37LFW$_+GD!ViLbD`Y~dNlGLfgn`Om;m2^kfhwzc52~Ly7)}0K9s!Pq64D3j z_|arA|Exo);<YNb2W}pjI4_ z+$1_9xtXE|xegpAQe7^BTBYb@0u2xI2jFH7>o&1E6ySsrg#js-Qhm4|6v!} zcaOINVF>puub`$W{uNLIQpFPhRQ+nR@`4qAF7Ozk(k=A$@B9-WgvVB-S~Y>OD1C$K zJ7 Op(R#C>i@yt>;D64uDihi diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 6ad02a88d39499002e1dc9c70eaf4371e1611f40..c8cf09d83ef301770459903e8368decd6acb34c8 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wq|BYiN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28MRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V3u@0Pu{lmll9lX~=D3;7ppcIe?e=EmW|I$o zKAW$(p5Y+R_RSys&XVtM)6EW{JDAC{8JN~hCp&}+Z|;knMTrYm$D8m_;DXih!kbHT z^2v9B-sXfNc^0x=pf@?8NMtjA`E~M>kKSa3Zn@13Z7LMFVzWZGiYVEh(A~U$!8}F) D83H16 diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 33cc9c60985b98b0234df32ae3defbbbc4653d95..de7ba731808c76385ab5e7678b07184b4fef14a2 100644 GIT binary patch delta 62 zcmZ1|yij<9AETj}SyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Rfw_U9p^0Jg=6XgY4ggph507MSyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Yfw_U9p^0Jg<{HMuY-DH);Be#y04c^Ij{pDw delta 117 zcmbQJK2d#xH=|)vuBC-VZeg*$fn}1pVGM{WQmz9P#2 diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 14057b7964aa7ded8348e4de347914273f61242f..ceb67462a92ce80f2b11d2e61bd876e01d914122 100644 GIT binary patch delta 4131 zcmbuC-%FEG7{__a>3(JAFBX+fYBWsqeVv;c6THycK(}BKT@HaOt9lCly43#^E|kU=*K?V>>!7AbU`t9zgG2YkQh^E~G~&zG|`pT9Mq zpY($2a%n+FDA-)5M1qd)P{gT)!VS)baHLVyf|};k9KldnQR^d0qoS$}YKX<)mTvbl zvfy#Eu7dSyoRs<>!+x?@A4SQ1B;H!WmK=}r&~gj=(=@nOLSEeReGg8~;;p6n-Ambm z=ci%!GI3D>))Xki)f!+Q&d(jjok~nm4W;yv> z))uQ^wQg>~LJBTL~L^2$w1z2llJ#dXqw z8_Mn1SxEhEu#rCc1~+0XIdLi# zeWf^HqAV2Ax*oX6uD)(X?CxkP;xIlTLDIr+0?P6AIrG*|M$?d&C&qyT{Nq8G!94^o6(+U3q7rPlU6?aix56-P6Xpy`j{!27at0|ITtE_V(Sr!G zd_Gr*V=Zx+H=l+TEQqMYMC$^e=TjYE#wBWYshPNNxrPfz zFD+7`m=5-XiEO;O!Do8FkKNJRPFy(k;zBZqGCc%3E~1iRw__GVxQyV!GW$Zz^vHcM cklM73u8hG8{4+6gVYFyQ8MwLlYtQEW1rIeC$N&HU delta 4131 zcmbuCUr5tY6vsK`bZ*PcO<7brsnIaa-yHiF6MWFxK(}BKJruH^Zdo=$oDpk~Vm^o! z!VRv4s07keHn`Azl3FDM7FZGaAVMz-?V&*r7AbU{t9Q?R_&t8V_jAs@=Y08X%@=RY z7pDVYSL0rfC*IfJsCZSkT@|0l;ZnL{uBbZ}iMZ8>YL7UbQM=;kc6PaoD`!d7SMkpOJ;Ne&lTLH6ru z+=K%rN~WAP_P`Bx^>qtkf9KbV@L=9|=X6K}%gR2QO2I`o@TDHP7@1{d7#AZ!GPPDp zPGr9#;f0z#_%>I9k_YJ7YS59~riLy4Si-gczlW9`|J{b0y&Vsh+iX1~SBI9qG(#uS zBW(j4(G48n9}mJT?jZ!IFlpe`HDJZ9>kF4 z^YJ?Pggker_qvmSOv3=TDDYV7@GA~LhG3!X2`BVP5#05FU1A8UXonAS$N>_|q>8_9 zh7DYfh!)gBC26BJdaD)QA|dh~YcrR*_cSbHK}02b+872cpK1pKE>ZJKP0xkPHC#9b zXt^CK=wKh{$;PXGKHCE!?2g`c;=-vH7m@{(=^@Z?5tS6X9rGB%Wds+N`4?iKNA5u> bX~n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y&``2-N@p delta 1709 zcmX@x#dWreYeO`nVN$N8g+*>*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W z7^j#fo24ciP3~d5L540zWrxjIncU^c(>i^9GZX*hIZ7p@Yv1gs{DYlzZIcbHDmOpY zzE4gFfwbo6ePANfRyLzYwwAgrBG=Y~o{z~%gpSIIprp^b**a*R7#YC~)z7}UDD%fo^7K!3FyNZr{gzQ= zyOav!4MFk^+1_Wy=#)gd{_Tu28M(Pg*Eb!gFJb%K#f%Z2WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgWCoZa@G4 delta 1200 zcmX@z%W}GxWrHuHVN$N8g+*>*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W z7^j#fo24ciZLVV!BtzR|L%FogYRpTRNw*QCb#fwm16evJZC=6=#736ZX`A=*Pbbf- z(>6;B{a_-?*6EvXi|!)N*6EvLC0>(jtANZ0GHl&!C>KXwluq9quB5_BRuI*1*4B8y zL7vvdyA7Sl(wRPa!gr<3r6o*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W z7^j#fo24ciZLVSDBSYJCgFwdg%}UJknMt=2q_=o-DtjS$T2m$m@TqQ|z@g1brvA+V zd`HOiGRSVN&6fq9Fp+6DP`~EpQV~fua`hWr72a$nZ74;Fett8r8glgq@UczKJFl== YWb=M$3e4D?cYb0c>H4<=lg=$h0J6N{wg3PC diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 1922c76cf28f22d2eab9f3d9a2ea1dc099945183..cb014793cc42b9685f2830d8b9bd2348436090b9 100644 GIT binary patch delta 139 zcmdm@wnc42A)}p{SyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F ufw_U9p^0I#eoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6LTKPt@t delta 139 zcmdm@wnc42A){SVuBC-VZeg*$fn}1pVGMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v&vNGa delta 760 zcmaF+p6Ts-rVZ|lhDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6w7G(jgB)!enSL>oZrkLIOv#h&*=xztnJ`&^M{@Fe0pZP+99gUs86mNG zDc=GzybW|e*cF@K3ow!AeV8Z2H*XS=Wg*WKn-e7ek?Z&bNtw;uGQHvC*$j?>cuua( eJ|(&2x&Rc3AR}_iD(%T~1t@qq-&e(z>~5$Q7DF&Oszo*b|nB_D2~1W diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 2a32ecdb1a9254b772f26374a457be237e6ed915..069693de2a0f2fc734ba15e95faa8ae281b9bee9 100644 GIT binary patch delta 117 zcmeB?>yg_K&uD07mXv6moM@?Ukd|nilALCml$>f}YLc2}ZkUvqlw_J@oS2+yU}%(P XU~XV&XkwVWc>-fEIokY~_i+ONC21n| delta 117 zcmeB?>yg_K&uEyGYiVJTTUe}bV3}lYm;}TY#%2b|X=bVBX^DyENr_2@iKeEhh6ctd VrpachiAI|zF!qw8&5wB>Hvl1FBQgL0 diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 48fb37961cb2465c32b58d648b47afbdaab96f67..a9db4590b55288a8c31bfcb15e56a1227c03103d 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28MHk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0AvaWfdBvi delta 1704 zcmdlyiF5NL&JFI2hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6G`WKDEg8BN3i@q+!eqxpp4RD8-I@3&Z(uDXOMBJkGi)E($a-ea}W(7wBPtvt+ZtR*!PHt)JO5410Qllv8 zHUg8q|KtEUj>!pLl-A12r zCYg?yUZB7vz8x4C)dJ)>0AfJhN=BbN@(kGSCBdY{O`hKAK)rI?g;bbWl*ux{Z#%HW HpT`IQm)Hu) diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 3e2b2c607b7f6a363ddb9dff6cfc92359374955e..a3b68145c2b2a829d2a6246e899376c6e7ee13bb 100644 GIT binary patch delta 2429 zcmbW&%PT}-7zXgZ<35O(#l$hWMKN*C++3z143oqHM_K8dVvfr<%9$oG0mZGX> zQIGmGJ>vCwBhemNQ#H+}c~m_j$?mAsBgwK?){PBDfXW4Cjcjp^aVP9!nw|>Q1dLk6 zTaetOs?zT=h{oxvW)E3!E)b_5`z?0V1jQWhSZjjB`V+7<9dm+`TuqlKHCvz2qjt65 zqphbM>u77%bquzqdnHiPn>&Ki5`PIwZ+hPVO1VI&0D5i-dK|n48jV~aK@%erMNsPs zdB$TlkcMXury;7)QYKxAQDZ67LgyDV-595x*OzjP8auBIWdGdl#JD*nGLeUzYyrC} zZ!@z@C^E-_*6xSD*$24$za(xY@gZyyE{23JaP6jL L8~MegFf;HA&+qzO delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQA}pWG&7e8VVEQqxXMcRj+v&Ig{0Z|Dzi{Ry6P$m zi;-C=_2QK5q-1AnVH&YiJ{DHWk-uP`#a;fM=RNP~bTHmU!v4(dPa}h z-g1w&p0=)_t!eu)*qT(Fprp5sFiH!&1t`5y-T+D&e;@~XZV7tqy#^YMj6Xpm10#7* z>pZ!K;}(zxClALVs!}wSEXAl1O*PW_#e@UnwEg;0j8S9zwU(@(J8c*@$7Ck+fQ`*y zSEc?33^uXpDsY0MAZsv#HdfB3y4el(TTr=3$*l$_=$&J-v6U+4s?KH$u@EjoG;8*j zKdiA-W%kY#F2qar*^-_;7SB^P>|M=fnn`))P`B89|2O*pcmJ2fMH27BCgE~G`U2N( M3R}l7Mx}|KUnB4T4FCWD diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 0b73eeb3799216608690ba745be0376dc18567b5..bacb8b37b2573e300595a2cf8839f4e3f68a15e4 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+Xl9m_Xq=pAsc(>$Xq=LqW}1|oYGP`Vnr3d8l$excnq-`qoN8cb zlxARVU}$J!m^`_T@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WP+u+M+n3QX2VUb%{tZ!hMWNw%Q#1_V82FYn=spe^kiRMX(Nrs80rm2Po z#wn)BW~qrrlj|4{lcDQ_n$hMZOsiPP(>i@cEhGQr1MG!lX?NYcoP(7-n_VX_=MdU# z!pqA_md!4c9i&({?-mkZCr|rk2dM~h;^>1K$YzesqB5(vNVj?O2elLA+3L1gUvqaq z={8P=I(TyW&R{ZiFE}Z?*=JW9dC}}LdBI7g&6)delILxR_L~QjnaFm$(&o!YQYo?h z{IM7^ZQs1$qzD_C4xg}>YqRl%17svJaFm0z7u{|*B+vF~VvMZYi+LGM$+RAP|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DbaZ8m delta 2066 zcmZ4ggKhl}whiu#hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6G`WIt7wNjD2kv6j-#m$Fy9jxDttW34FCjx~Av2@yWCK<0&6_0Nvyrdg zV6(nL78!vx9csV9W_6|2Ok~=>*+BIKMRvET2a;o0W@WmECtS({MS)?`i4qI7D%w%n$D;|LGEIK8OOf8Z!Y5`8PXlL9auHrV*~)( C0%=SD diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index c5bfab550b2f903976e14c17042b7ab6711cb7f4..ce971b7abb08f95e0b8795e1bdaccd5c7758c4c3 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr%TFSyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F cfw_U9p^0Jg<`%|wGPF&ez$m&oklB+P0JXm(xc~qF delta 121 zcmbOwJ4<#$Fr#5ouBC-VZeg*$fn}1pVGkt867KetWl%rK@oc} z1Fa+NVqz-j0$Fs~>4LzbP$VIVdFf^_y%k~fUO{^Xy1bsxKj8O$YpuQZT6@n=XU|V( zKWI{nva+CA95S~Q>0z_DITS7phFVHWOIpG{BWMPLrNLq|)S?@k!@5s5j1nUxhLvvs zW_jWjyrxlgTT9luM3!TJfqmM&Mrzjd+4 zYYkPo#Gaj6rhRvQJivDGr$uVMaQPQ+v@al!D-}a4L>>{m*S82lBcgp^lz}Ln>p;<| zArm{Ph?qJbMqOt{2t`+28b{IYSQ~%}Py8o<$wrEZyVqSPT6g0EfC}?A?C84l8gNYK zdFtK)w2PwmkD{)pADsbQh4DBGo2C&lNACc~bct%8+(PrbJh2sZ?R*wRUHe~@qppF; z5!BV1PN1%inJ(0I#j8rx^~Wqcwks34*lw;Db8p7I(6Xo(+Sk^0`zSr!rzDVtEV(9H z8c?D+_D#7`&uV#ZyOK${9m)w{v;L>xIjJPq*pES8-a1~BujKN$lP#lIO!2!HqH@U1 zoOE_n={X3g?6vfp4!+yXJbW-FgGx5AGWzUfN#JZ`YH2x=a_h3-a5O$x&X!X_9(#)i zq0yCm=GVX=j*V(u-_9~53g!}a)BAqb zm<`zf`ChE2j~7^VtINsADBF=BQD$P{bBy zp!K9%OiTrpkVPLiJrGzFiXOr?&Qqt;n6}OZ$ds_AFVnq1{ zV1^@J&Z`?$yRl-UO=MXP7MQpGr}3q*8^Zk}x#gD%q5*dz14JjhP6voqRUXBT+izUz zbsEE!HnD$?mTBIdcLvyA{y(}xl%E-LF6&P`@G8_G$O)-;|xUUdB4Xx32z8wsB@|tEc@jl?V(kDb9Pyt3CL1Xt?%uGWXx+^Z04nq`*wJ?9HQ<=e z^Ypz#XctBAA4gr!JUR=w3isnIY??;I0=)wq(??YMN@bkhq?x) zM^RT}Hi5cY=DJbWHLogA*B|rn*se(AV!OFsEWDX?Ld&9FXkXjH=23chKuI7AS#nLZ zGN43r%$sthp4IZcu#!o+9m+{yv;L>xIHe>vn2$kT-a1~LujKN$m93&!O!3>7qH@H} ztaNT%={*do)EKT?7QWBU9DFDygGx3q4}G?>Bv2cfT3U{z+@>rz9E}h8*lH@sV{h>w zG`gD4{2Caw&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7$%S`TJHkcgA#y@!zQxBO&Z0=$9XChNC)cRWTwd+pK oR~DMQgGYFC8T(ci3eDNPgXbO_WoC$P)(|jdq#FcIHRGNSyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F ffw_U9p^0Jg<_^YMMkA87=}(@(BDUF=xt<#U2`D6i delta 122 zcmX>jdq#FcIHO@wuBC-VZeg*$fn}1pVG!f%(t`<_+$QhGu3-iN?u^mih*1iN-0(X{JfZsV1f-scGhhNr_2Grb)($$*Bg0 zMrj7-28M9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A`Q6!) delta 707 zcmX>!f%(t`<_+$QhDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6G`WKDAsM>lSv@yjW|C$iOY1Q*bnO=?+T6kRkA*C)Wt(+*yvYfi{Q_m1 z<@xf-@aE?I0_!-*a%}wOzfv>#$keK))gDZiR`<#Eo#LBq>P~Z!r+ssM=QSHLw92!F KZoYjioe=ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20ihf@{{R30 delta 1026 zcmbO`n`Q27mJPm)hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6G`WuP73sRBU*u-=-~58fk%>IL(UZ5b7LupcXR<#R|KtyX!kdq>DY8;# zhWO@Ao=s!~8p!)FcZhGk$Ja(?Fo4b2{6TO&g>I18Y%Eeii5r07DY4mK{3#2$;aM*w zxcQLGZhlJibL;-}B3Hkipy=jl6~Vle=&x?8^Cnk+zNon?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5da$cmZ<;$ delta 483 zcmX?gh4IuC#tq(#hDo`W78bdM#rg)8N#=%0Kx|=bW{{j_mTI1sm}s7qm}Hn}YMN?j zV4Px_Y?hj6G`WWHKN-62vd3=bWM0fdmeyNj>57`1z^A%7oimR-OQSX?@a*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W z7^j#fo24ciO|D@4NrtYA?2(&)Gc9EyOY1c5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc@{j2(d#%tEz{ E0Ml|iJ^%m! diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index a9d9bb8774494d112ed68bcc11d498a4e0016fe6..14fe5ba72d002014d599ba27112b6d4268748fbd 100644 GIT binary patch delta 389833 zcmb@vcYGAL)<68r_Vs$#TfE-p?Q5{XxKKkkgoF+zK3APRS`{%au(@tq|WSsZ*zNoysI7r^LmVPK~P&7aw0XK6%FF z&I*5_Ew#8Mc152qoy(N&*P-i{$By2jAIrMp;wr_LuM}U#RWc6!H!DltDXD)-=WhLG zWmSw#@0EuC`~d&IYvnh(O<&F{U*zt}P%7IK&Y3`sJ7N=mE5;kDP41bJ)VpU=r`XO( z>8L5`v$7(^@0)Dp`(AK}vTXdBc3~iK=3^4pBU-oOGlOBTp+%4RhNBM zR!E?l)NVb~Q;_bY-Fg!S+`zr9w-+qk6A=YEUM{Huv3pBOXL{}YFHr`5dp9%4exD)3 z4O)674D4I+NXj2-^3DrkqAV}ilw8BhZ-^{8r;}UB?<-b{ zKi46YH^pi}rQY34Go!5h-)+pC57h8J@$oOBVll^M`Hdare1&dNoQq$YW8+mRwGn4$ z;^T_*&h{>@95^u4Qx0(w4n_^{5RMqlEy@TNWmV@#wTtAJl(2BoV3aE=hSx>d!R=?w zy}GQB^a1I8`gKd{**})>&7W!)!^MF3OT}aOKRQMr3$cN;Xp0Of{!GLZ55o3>8M~Tz z`S8eazI;SQUf$Wv&+tVfd(&-sWa3AqhJx&yP8U*5Jijou1Xp&;;aEvYUZ0YHYvr3J z8Ns)&GQxRTXA6J7wV5;$X{~oRm&k8>#^e|*3%Q^#!BjaxZHE8Wt6(MEEI#dmlV8@Q zI9T~IBaG*~;XL2j&g-Lne00|czF%iI_nAuf#zd$-YdXKaz2}o2sg1{#L{0fwC*v2S z7US1PnK&D84}D@oA|S#S>?zP-By4P-+AQ@aiKZs?odq(-<=OZpSEBf{9c)|}NJ@Va z#-Hh61lhC4Np-Wb{=@xHD=fqUjamO6ZY!8KUot5e{9cq{6J-g`f^{*eZ4}ThDy2tW zgRPKqhqOr)jSR6BaGi`$VFRL$t?>H<9~TwNQMEQ{6B=+Y)T9@c?LO^)`7HMEFwmq3 zwFDU^FYXk{_bnDqZ57GK3=Z5{ZRQ)d_hOF*$zvA#u*;PA^Sm@rTV2A88j_=pr#ovi>Q_lgS{U`?A zZDRnLzKC#?n}%5&uKwHmaG2mnry4+EACLQUHx!&7$rlHSE&p^YFV0vg`M>|0EN?C! zF#eQP)_p6XYRw%;sMmy=*n9+`juWc%_0fbXAXMnuF@#z}s7>3Z5o#TwxC;XHhEOK$ zbn{AmVfmRW36)Ez{TZtX^`1~Y>aHc! zZ9?_!AW%hwYT0ZZdG?A>&Qlu+^$VdI-4dvGgc_*ZOrBkr{9gvD{@nhpg#42{9C{uS z3J^-tdMBYS5^7gZf!aqX&B#6ESvH}*6&)bdeL__$bCgi$302vBj8N+d74hl>p{^n- zW3qgi^dup7l82(vrwFx(P_`yl3AKw*6~|s9)J;OIUL{bc2o-tsCVBROP%z>Zp$-tL zc*tu)EhNVBG?{)(DD|y)Zpg^r6R9^RYB`9>{!M%aAy*LcZHdx^I!&kp7s?RoH$t`et}LOh5vs`~fqF)$`wIo?A)!Xj z%O^Pt2{pIouM@HEA)&xHFd0+l2zCDLwX6(GULa(oFJUUCZV~GHP0I1*&B)#nf3s!9{-&YBQm3^GlYU%0Lg75weZ0 z+H#zAHKA0I0=0!uaS^k~vn7P;{Ic!}oRcTi{KiiRHIqWI>7_vB5UO$A zVXN`8lZ2WY8@KtCRW0lO6CsQKskr47U#@>$ZY6(awh5H9b82IU4&8cpOYhJjCT+;9 zY|=SQpB2gHZ1TvnVq;>^|G;hMN=VSN*L+BN8h;^u4qp@e$ffWva$EC3gB$b4ffj!J zKo9?@zlR^NwY)gH`*E5xn*U*C%%_|v<=)T`eEh(h`K@yzl(>IEm7y`ujG+dwq(~ja zmmE@-Pnp(6mE9e8H~66&Jv4!|QJNrr_xM`;cs`0B$9q8jGP9h2JS3KjN6%gSh@l34 z;8rc4GgQY<9ukUpc*E}=T8`U+|5f5Xhg1ZX&Y5N6^SenEG5z|dqc%N3&&%)=h80)h z-UjDs2jWZ5X~xs6tmPAiDEYX-A*gOQsTcLlNkXnm!@~$iI=+S+cTfm` z?>psN{@{qdO58ADh7U&#Xv_<&BI3E|DvkPtS(J`Q4K?xNG!(I4iVAOv zsiNS1DKnowrWS?_9cU#So}ZC~xNME=`942m<^d({>v4%FtU0hh?XjF6&BrQnr;l$} z)v9W~=j_hhO%yLm%ke0{k6G;}3m-Po%5R(F#!ip4f=31D>C6E= z_?dH)_!^)Ee}2Yye$X)9w@6DswMS}b`PjLg_zr8We4jkKD62GKBjT zsK=I!$0fK9zo3%G#E=_= zKW(n!FD@>_{f*k$jL)B-;wRX+5;CSps?{Xzb{t`=~LZ;s>pZ}#%qC8bbxoA`N~Q@Ja65W%NyQS;kYX_R(xz zkI~`~06JbvRpMdCZvMvBN=iI@6yW2BSomk_f{FXDLouaKo>Pg3llbYsts41!$2=d7 zCD?WGfDq>y#V76V3A%TF8irbOfzRKT&E4XY;7mCl24Y6~?nvja>>A0p+clj3W5;{` z@%9n?&7C8_w3MexK4n)r-y7XX+(Xi!QS*69zQgVj2x|l1cF#z@&E8RbyM3eh-}j6H z?Yf{6sr$xo%lP0!J;4b57ArsVP%2L7fVLZYs6R}pK3$(G_&)nH5zZ3CQ%{hexZT5N z9-PAQ{G)w6LE_+DI&eCDhl1DtI+&k)C=*;Ow~G)UwmT|1^OvEhr&9m+kyjlV38J^} zM9+RH;wK)>1erZiMKcc#=9Nb?=0xwp=}ctmcrc0OF#sGGy)y-bfZYm^SZTMCe{`Y` z$RCW#1RYP~Cm$Qk|9QL+Z0w0EIhMwi<=dRhQsVI?E<6Op$6xOY9DPvsi}~r`X>XLR zb^buU!I{^5(y0tSKYs|n=j?Dk{(J_=NP8;d@0}XR=bk55Fs;gU8Gqw+f4&CFQSsb3 ze%pDwoDTf>CLImvb*5SVhN{I+@Ax;(J?Fb$C@#mZ4zTiQE+y^A1MerzeDK9E8J@{? zU(H8etj4X}(&b`*?#thRgBc_AVPxox-{7ji^|IBJTWVfzz#+uxSEkAt5YYhJw59W{ zg&bJ%bhaH7+T11iI(N1*Ao+Q7fZCVToq?*MUC$r?!@7|VjG zqeV`B_TwD3@{_j|KDi;|w(_T6-ep6Wxnf3&-2>ssGM+jT?{&ic7fR=vD zV+4X0j(d)ffKtK@WW)fcg1BJVNXj+jxUF!ZjC+i)6BXQHd`%1zuI6Cw72*}BwH#!u z2u{#(N2Lg(iHRG)iZRK|t-yT5gmVYK90MZjli=dTTwLETFOFxeGhu5t_X8HqdJl)h zz7@b?++J3!Zz8$fNPqBk2@Vp>Xl|F34J;k1%W!QJh#|K^6$(dG=4RlQhE(Sm%`_b# zKn09R;F@3-Gi!2f@by|PZYRT>!}qV$5nW;sJiOIN^eDh_ zK`YT&7LF0fG}yPjs4mvot|ZYhd>x-6DvmkZ&`new>+o4`(NlcAmM$v5_xB7D)le{q z2Y0Qwd%VEC=D9ny!P+sRTm~4SzhC=E52712NCH1!QtQEA1Em^RcARK5)8J-}I04*z z)<6S>JrU_Z&OZ_@{BeTlkqC7BF;fSdOcveI2+8l}iFR;8GGu{BL^F66iI&m37Z!_( z=-ul}0~rdJi*6PdiWM9e&7oiueitd_!ri5}M88pl!FNO_XtMbqB8^zckp4h4kww2V zK5tqUi?G*-8-XgD)5F02Io42^`&6_^U3+ezCvpAELT~wI@x-8;DjMhciRRDw_ zgK0K#U8>Y$4)HV=rS^>wF9NPeMHsB&6&GjW2_q!*=+iH`t0#te3l2mmT_u8jK8g~b zrDlEd8}TWvaCco@aU0rJb3^e+ns-$bae112)?93(?qY2zZcFb@Xe(Yv9ivuf@o=dC zcBY%SB?YV0OZ<`gNWDHtD?$cGU-31XRP`6%r%CYuaea#0VTia3MYuFv{D@{aJ5qd# zCO2h@_tOlc$BIW$&O#@MCs7_YWCiXfOc$S_c|E*%K8qgxhAdbHK$f8cSx-dm!H^bG z12_)EL2L%w6(qD*7~z!nFQL+*yzpIK5gt z|4jq$l>*3BZYaID+XWA2tbUa!HCUbeBMs0>OD2-Vz^VRzvO`@c_z0`FkvC5P0ZuU;GO*5BU$pt0)f>pNQwN z%HiNs@fK!XguM_CqC6~q$u5U;uf!*q<&aPmki*+|>^52UFL48gp&;BOl3aJt!5%p8 zk{Ce2pCT*FcT0BBShX-h!qR0S;MQ~Ki5L`MfI3(822 z(hLL2Nq(l|h4{*nR%&5%vY?LSmO@BQZQ^GSwrVapOz+0Gmz1Vp=_!)46s$!TNj+NI z=5CTwG+Ed~vWI5a+eup@!(%2l_+P2j!Kj?dHtkBNsATbOU}?% zT)8N*(7WQ_C7UVOZ`UN}>D`|TB=0E?+ipv$DuuR5o=DzM1l6Ase|LEJrDPB-*0@Nr zK1j%`7D;bWgpXorp^)4rlWwG0_ba6b>2qEsO{46FYNcM9p^ic7pJ3{Z(hD^2+c4>D zns>2HI+|gu37a^jm#N+=6_-{G7Wkc5M%pr5NWN$+{hNy9;}6oE3~wZGSZxfdXWdtT zf|3KRAYqWSJN&hkl#}?UV^`ZrUotTNZ(uoW*Gbxg%Iivs)bDm%x=2S*A=T(9l~I+o z>?=)RZp-NwQaQ*OhW@cPOtM1MpuT~&{5DK#{NDh}VcMubgPx2HH0ZbSfd)03B307{ z^~;vpS^OO<2ZjLYcBx+**A_}ku_A$t<^v6I;d1F*s)+Aa1^9NZkyfXQ=(Ap$O!>aE zSvrdv;KZHM0-9mSKIxx~QfvYW$`8_7y(v9?P%cs(lG+>thAg!$uoN1a|mPuXA87g~5?>bzv?l!ie zLSv9{Y5-ab^*0tIHkUO4W2?vx`y1S`s%!(ZHZeFv4ZchpII*_uDvdqqb!Dxo3U4-& z*;tmvgt*W`76ivOl`*}q2q1t5!w2;QgMO45!0&Bk8W6ouIviB{QRefD0X<@xHlyya z9@xKlkO9POt!Dw(!pa!H(FubRV0w~lBa4Op3(yJkyU3Ix#N^Uj`cU|+n=CB|5eZ?2 zP#{T{>EPIOSxc74=&yx`j|R)iuo%1_Ar@$k)RV!J!(?};<`0aJO{G@eVYEy_O(T7* ztP+bnW*n5)0`Kz%=|P9SgAE|ZnA8jAO_sG{GAN2=h6|?4M$iZp#mh1%k2_||+Ebg2 zTp;_NVPpwzJ(Ujt?Qhr9!(z*2cSbOHEkYOuRwc;MKC1F^1N>;NujJrOkGuwDGCo57 zkV?8_ae0wRh#Y0A%hM?9TWiTT&*m(Qii@H+BMG6o0 z@0sTE^EB_awt>6@+6VGFItKCZr4&=QvCXn~1aq?W6H#IAeH)2{K@2Tm5yxB7Xa%eR-kk>pv zkoUlXK;AKn?WeO{Rsn0!99AWy#BO_R+o$fq!H74QQC2%kK75_DgaPuG39 zGeG1F_o$ymMH!Z* zDAb{Rw&VlTiz)PG?l@VMI#o@<^j-t)kbzsOE8eoqrMa<+7~pEBaKfmX3N&rVsoPZt zOVmjo}3vF54WU*UKA%2xs79S49RJ3+-TV zcZHdy%R)S~gPVIQazp|T$$bov2^~V zaNY>TJjz3dOvQLsIrJZ;Xvd%nhK7|m-WL+Yic1u+ zw0%RCD^gh*>$O7BfiiaeC&dHG*u^ypme=}(v5#vNX!4E27MQw`U1B406|X5bW40=0 zvbJw|o?;k-G2`IY9c7@_+VJ-@su5Lt9{DpS)hiV0tifZNj! zM*pfP%`!1Wg{#9;#}!4vV6v`@5&nKz5y=>(s)NO~WEz-xP4QgNF3c=YKx%C|fi30jD0-P4pW z&1@DF3-)h(q=nAa%CbR1+q!O6>KQFT00Rh21`G3)cFLY(Z=hB8_61sX&EeT^ zN;JMDDn5Kv`H0>Q*P{J++MVWHxLW6{}S5scbf`S81tq^Yc_Ena#y!xo zmbQ0ceDDqCo)t?TAcu+txxc5IK~=A~Gzi}tTpg}0AH0p~q3<`rC#jYj*9boJztD1t zy1{-e->Mhvcj0rbf|b;TpLPwl()O9tg8iyZ8WikTt$cWJF{-(0qk{d8Z5R{mckG8_ zgZ+-ZdVC<+Wnv&%Y;tftiZE(=aM!QVeGo|e<)IA}tPhq65qAOz9z@B%8}noomIv-Y(@m$vwqhgvwfD0nN4pRe8o)A*UGQ8!{9V36*TVAnRP^C-7! zoB9InxL&%|{r~sQHK&-`?_BL7)qdxy9IyVLI9FIjwcoi;R#N+&YhPXUF50LmiE95W zr>MEw?_3G()PCo>m!$T`&3UP6zjO8Os`fiqt?ueDDy$xT)EZ{rDM(jaK<0ylAaK1! zDJ^K6+Fc4B4Nj;FTMtqE|QV*O`Y7{;K4#L8iJamBftkYX7jg)kL*_ z*j#yv+COYgny&T_Tq?~}`(L6OfO;J5F4xRcFQ>t=-7>YF3MF%udLpAx=sVr<8`b@b zaRub<@`@-&B{1xwn&mVcI{08EUkm{`AJG)(LNLqq5Xe5W5 z4qvD>Xd+IM<;|Ka^sdXQ8LSZQuJLHlmUxn3gin(x5|WzYn(DMz`*_VC6t`IgO?{fo zt)gjf_!^l8tY|&Bvt^WUq!%n%R6H8wG|@2HJNkHB-Xj%E`$3~*d7-zdOh`@8u${&U z8i#AO(AHeDkHwY!Ff0ousBAqDcUD6W&}6mOWQn;oz|u*xl0n#hGzV;%thvL|RT6{` z!!!!Gx4Y)B8nHr-EzTdT=`KQqbeLv1BVQ1q#*L+4qb0g)NI99Fj=z>Uu$Iv*B4VYCBqPHU!i%dLRV$3roRkbM{LuaWmu>L|G`Vo zb|{2Be4#Ob>+Liw$1(g03&UqJLZR}QX08N@dD$rq%e!_zngd=ut+~k(crXG)<~STH zd;NLM5=LcXlXk#AE@+I5eo36d0r|_CWXwv@?;4innok0WyQbO4DiEPD6K`nhVOGu+ ze5G#Ww>9U!j+Op*HN7w^x9(|{eU*a3A85Q^r=ZJ^Gzpj$%To=@vehRA)qke>kuf@S z5uB&tE6p3^+o0B8thUkzj{Sh*9Ggh{z-b>fgRm@Qq7X*!?F7q;L&VGsT#|-FQkt28Ho+mYF#|6&A&lKuA8sy~tPF{S9kn4z%zPvnLb_r;ju}H(#(~Hx z`#`xV2<*9Y2$AzHA1lO+Zu{%)4S_w_>NGcr;iBCH*Z!{YiNr$vYkIHRpGaBTCC z9A+L6jFRQOHxWi+J$o>C)+o{n>vs-$j)sB4n6`0R2-7xze__hO{*N{p?9e}CUI-dj zz8f8K6^}nJj1AG7(DlKBkcKJfTAtIsKm$7%DbrrEaBH@?wBJM^vf_8zb1eJQ2n(5_ z5ILOQNPAsFTLiYY)fzxYsC!hc6|MFob~`Nw{^01Fv~jwLC%LCDq!w3?MYVC z0f`6!AOs1hT5`A%XhVyafVF056Io3fYUgS1Fmr_R{yre~6e_8_<-qvoCqidr_+I}qV}44I5|k0@0Ed+4_Y1QGh7n_N4?kniQFbHT}QmAhDe7#=(7f9 zDs+3XH&xf@j76oe0Y--lF@+U=$ExqHiUwf#Gg} z*M}ZmaZKwXbw{!MuSV&9!`Edcb#<_(KaSOnW$Y{)fR9HWTEWdQyApwXZpAJ|Ob{+|}Q2P`X3IK;wE z?Q}UvdxElwGT_bep^HJ17v}1IvQ>F$GVP@eFV$asSW_*Doyh4O47U;4$ZXJ4!Z=cgEND5ml z(nX3v;Z*d>DmzEVu)`03Rndoj4aEw3EY+be{S@5O=;4$Vx^q(Q4d8-zIKYUtx?dO~ zHO2*fc0Dq~4L|F&67CJ$w^27xgs$Z`>wXDB*S~h_bT)KVU)Ghy_iO&Hi^tdWYr15d z|8jxuni^g6p6O` zz6H)-%B+88<7ShkkL0rY{fv!4ziJZ(rIl3r0DvfsvZTY*>H1peOVQ_ z03+&v>1$U=L7DpcpV{h(00jpgDPWZb`mI6S4*23neYyl)Q`_j@y3i*#@i(hh4%hGe za&U+=@+1s&{HCQ2PMf7KjgCU#62)3 z%L;uiIs%0ArmxgPdbi3N{Zb0{Y@NOmy<2gkzBf&7-xMe|WQ%?tMeye7Ptgpb?fMfG z;pQ%VXL`5UUVU4dJg{FsktSOo(s!fD^S=ggXCDr*)9#o)hk|KN1=wkoA7JP5*+8** z=L76~dr^Oy;(D*>^C^Ply1qNTn{iX`7IDuZI!HI2-l}m||B7b({(*iPz5B-_{XLqz z_Ee8glwg4^c&^_{lO10KY7Kg+Urg`rc%@%NlU?5EYoYH~3TO8A7wPLzILmweG+N*G zzx9#y?u(C~bR{z26YRJ?yVQWT_>tsCg~2b=bd>>rLjY&UR~yjoR+4lZ40~zSg`tMV zsA`B#2qw~uOU(v+9vqjMU^Rqd#?Vs-+-Wn|(1Ck=|DM<2H?64R2ES>YDq--Omb#R| zZ(4O@4Sv&_7jN*ZwRBlSO@EWY`pO11oKwzFg;sl~ykR3vF8{`WKN)~4ZC%Mw&0hqf zB0o@mwbcxMdpuaf;I~J0EkkRXVet0`zZqAoWAGcHxxT?~gs&R~1lGNY!EgQ7ng)t3 zYHsjbe@aV(-`v9525L)ck85)^X{m=NI|i7a+R3ni^3Wi~;8*42t_HsQ2v5Nz8ex4I3mb)w<=jlHM zJV*l?T5`NkH5Z?^oR=E|( zJO7ShFqOaevB4j*7Ckk*L+7(G?yC2OrW9B8x8aIGxcgcg>bK2p`p|u}it(YL$7nJs zEEH{`BM4>8p}o*YJ}}s(h|s_2-95!a@h8ae-MpyKT{JnWWGLEqLGHFF6^akE;S848 zP&ehFethT|^ciq`w^Z%WE9kotIBEJJ)bIO$Hx2cK2zTR>L-8lIaE6~!L!;35Dsb{< zpHRP-F6kSZN2^HbAKIMC_xO-N+p>m*_NEA`jL>To;qAmwFHJ_z40X`p(q?{WD$RR# zQRs5?i8ox^_zeND+PR@`s9GB3h2rmA;0$gUXy%>mp=gH&x%>0Z&_s$Gd?+-7>SE#P zP_((4WQe>ODE6oz^bcCB;CARtTE&?Ap}iwK09ok9AkaxlO6dl3G z+?)$G-k_2`7-HPa39(_k&WJXdk_`G#<84}*G|Y(4KjUJ{twxS!$O|{(1Jd~J8iz3) z9bd%Bi{*^hsICqr81ZL$@ZI{~8qr}sl5Fsu5r3Qx->q2Nc#P%^{lVCRYGrs!qhGu) z+ZfSaNRoGOvN4W=?MN}=kB?x40bPt&Y1@-}7)MY+KJRb5OPhH&!}yLCdp6n_NyS@y zy3w!gl{1Zdsfq_IG+w8;$%~BxbwU-7He%_J+SYF}exP7Gw;KJuXT~<;Rw|uZyNugu zUiBVhRq6|Ejv4W%OfbI@CyYmE82)(5D5qeiGe&=>``cM#5zTw*ywTq^mbhd*PxFTS zZp0r}!C>4qBif}-l4q|Q(RmS)EOXm9lQ#b1Q)3n_*1yo0NJV}Ay)m82tkpk8wELYD zt0fOR$$<^g2-l+wTSKLOO&ivON~fhYY&*^C_J$=>gxSTyR?rOf;=*=Qc1)$izM&O& zEE|?dWZK?M^Uw&0{_aBFaDm%cRAR5BqmAy31qn9%TrBvY%I z(Aa<^FDIB#*e1z&HBD%2K$1z{nb1gtBn@>6BSjptT~YvdXL5j@(Wxdh zR3RD4bPupIvS)yuzk3IY?M(}?)3u)ojf_dLIs;5-WK5D#LriF7Op+^xnVceSu`pb{ zJi>%R8oA#&(}ae{B-w4OX&Sw&m|#M~V{-T7Boi7QljPnhCgk8GIc930>Qd89$WzJP zYuP3=JSNG>GfilCOzXSDo9a-wDsxO|OhvL>oo9-qcS9Ej6xMmM2@Q`)hJ>Z2BQ&q& zr+{Fmtumn)Kr%d9V~Rt+u7b^^3j6j-z%tif z517L1nT%SR|>Sv zU`FF)(yZcPW;9OzJl}GYS%lu=V?A$kn*HJ6oyY7C2aAiDV`%B?k!HVMEF}YMbSq`{ zhk>iHW`7u17;pB6fzD;k{xA^sjoBXtk}8?~!ah+YP;6>7v)}i7)-d~hzwUQtzwhs@ z9jGm?UZB{E`hnVZG&1|Wy!#J<+VYwOYIC&+6uZ^Z?3Z>dcL+#(a8jU|N0QCy za_$Lv89_GJ<@PYMY_2=A-su9*3m%~p4n582$AO-}2LsG&Md->8HaBJn?fkT1b{IF( ztmU`|phkxI&X>O?0f?#MAnm~;1(|P(OnNheu>b5xKU;)P>(XVWdLn5*4zv} z8)atN^?(XLV5_qc*gMrscm3TSXAY4dvHUs7%<%RIASMW!1J<2le#7vhpCCZQ&jJzR zqII^JW%tM@F6PWIKVjtpOT_`5v&@q*D{JR`B`f!UxhaFOf>ByaQ;>7UtO7mPAT8m| zd7!YcwFJIdWPUG3oV{3T<{1?KFI)$VUv7TSBB}p?x%`tk4U4PpYBR%UXFoL-qQ=Tu z7F+&hhXjC1*9=SyUb{3X0fP_}1Z7|^@7F=P>Z4ZJ9|v|wyr2Z%UKLM%b2$}*5q%DqAK19N%MJ;ZYF%gqNOHC1NW zZGp-qftx0a6x1&?TVPL?3QmC z4W}tIL|BH%Y4`!}A}j__m}OS-*&lT9RJ7$=Y&ZH?3(G+e#AQ>ckF)e(G?}L0_8f~7 zx=LH(7@Ql9s$kiK2HLPp70W{uU!lF41 zaOYl2fs(o?+<3&&7dxf4ujri}CfzHOmM_oBmV>qhU7&xv!Bng6CRFz@M904IJ2e*MdG9e%I0w3vur~%L-N@ z`hmkhTqOGKLEQrj(@s&M>;J%7{>Vb+c%e@%KYcZOu;VjJFJ}28&P-%aH>eioLuZ0t zTIRCa3q)9#S@vD|-9ZmB#8w$}aaN`s!T}hFV4_$Ual5RoU}=rDuFUU^*`ZdnN$&xu zX0ozaCRHf}xu+aj!Mzr1chFhYx4`> z8f1#CQh+Qw21Zx1u3+E+xBe4WBHUiZdWEI$S=t8KxUIHeiYGGJ zI03BR#5$a%QMfQbg*Bih0x(?^8rJ=Dun~8sd z=~l(s7%m-Poy@`wdVAdq9?i67OSt)D@ub(D__E-_I4k4gNpU{6qzYs{Lm%QGYZdGE zj-YE5*%fWUpymW?GD9?*5o&7-OHZ_hin#f(_GIgL#4S8E%^Jxvhs9uE`$wA-nE$Z0 zpEJj5XXFS>TVM@?=m$V^#N2$4G~b%T2m}$(A%=M!KusAT^jd~x)&ZD{Nk1`pGy)n2 zAFQ-CXB21`P`KTyfY;Ysqojxn5-Y>ESkdO{`GC)}vP_u~O9WK|^R`)+v$!cnfQYXm zBpCQ$xAhyu8gw7DqTfcI4~zX`)dZnyxl`7XN_0)SBwVK!SkJS(((toOtZEpWA&d|X zbT_|ey^p0>^@)|`3@g!P&QmMfFZzYrM#B1qRZ9gjm z?}BW%7|nSc%vReZ*w1HcZNITHpwrtLGe`g;38dk=MP}Op*1CsSY%dubKN8x)ZA-Bo z?y=i0qaFav@!0ZM8R2|3rY{jAA)v6d3GK=~6=Smq!M8#Q8~Ua2`CwEj8>3$ckPt!M zWb6khLj7_!bmC+_-tEXv9{2mkfR7%_ z;q}e7B!4a7?j{@h^4=7y6=vqy#xRQ=vG0Ybp6{?cC3|h>vAnMww9Wn+xuSzn8w%yn zd(<{7U>qk-*p^_c?3r(?#f+_W+jL-ezf=`)0;yIww)yKt+gZQp*IlxG&nyZ*xB@Q! z-L?|*TJMI9by(RBd|Yldz=S_+)_@55Jh0th3_SuIKyV89=8^3OtgX6*wxw8Gk6+n- z#on>$jqM=5roXj8#=&q~h-McN9N5~hL|ssf3t!66N8v4B&?ySv%%TWgY5m$5rR z^|#?6Fh?3bQUnSHmC(UhMR;GD+!Pd^DHHD2)P^3*D$0x)x67B|y~!IK6!MWfp%Tg<~s*qdm*mMu4hH z_-Zy?0645_xSpEY;)HOfAM!-(41p=N!=E|@lTGdtUR+QPT+kyN{rn9vWNTV@6`Jgl z9zK{R3kQcEr^yo|!U0XDj}D(flVKCWho}UEoSEV1>%Ro-?>XW9Xfks_0QcmQ@X_>c z#}(lXXt6yT!)w#K#;t*3bGHYI{jobxZ192bT$VL#B!a%6afCw&&m9d%-zA=>E@^~g zPKV!TR4)ZHo()IeiX|ISWS0Ana2wOPQ&#ya`zY`X!z4YM0)8(dcVw?YLV z-EL<&NbeU9!B@l84m;XxL6|?|3A6+F>?7pD-H2#=3zj|))kFH5(W2m!oB&Z|!@~7Y+ti)4{d1?WILR@@ZYWmBr-xrr6tq$%%FiNbF!ory?8J zR|trpdt>_y21YR;M1a#J0%Ikb+gnf`XST49r+1^;+L>O1{EJkb-?K)p4kzt;QqoVJmD;tV=GI& zsJ|%3FDYRHiP9)NyyS7b;Xvb2X*zhr=NKvBekXkq`tCi8JtFM#vlAZc@W<{qv)Jq zwkYpt&J+(3H=t@nlmf(Mc?>YSnxl*wM2TaJ;9WiRWvh;J99Af8;JAvy2xj(0BL~Y| z2MLYTg0{FMI@YroRR96B8}HD8g6>ZALtF>7G4R`_jx}G?a190=1KP(rSZ3&iEu@7g zSfiaohJpqbQp-*bmNgPT7TrtsG1;MJiiud(#4yN~w3n%ly;OMzyE*oKjitekJsj?@ zVhMKa?YK#~N$l(R zI5F2zjcHzU#IXbv%!uM))Xo5Iqul{q%U(xuhQ$skY}|DR`ZNwnHoO_A*L*8*x8Sxz%*=u& z3%wEF`_$2vvE!Tv+UL28f$4cs6XDD^j_VRKVt`}+aul-07FdmQrcp`nlQ_Q<;tDh> zos*cR8d%c*q(&Bp(?gs?!~%bIgL5XWVt<%Z!s=3Rn%Rjyl_BWK<~&XHlwx=GW|U_d zaLw`#hEF1#Eg9vP20H#+tQ@qKbf(Z2X2&@9P$9N2%$|}oNKgfQG~+ed^l*fb3oJnZbh8?YJJLi2gDZ|O=6es#-5J|pCb>fK@ zzPqQZ(@QhF=;K7+zae+~raRZuWb6>9Ll}#}_9LB_Y1?a$b~a(OrTJiELyrR#DvD2n zL6e*ss{N=bPQRDF$O^ExeVTI#V?B#O+uEhVLH;)-dclpeonBhc9pIeEh&T^qFLNqk zwZ+ag6zpw|bEgXQ9g|lV{I$;c)0b-zqDfdHOJ6->lQSJ`u)3Y#Vve;vxV+nGsGM~v zHoaFG{wrU;Q&O4aq>8a|sYzuzC#RO{l$=twT-lV=3h|wiI&~`7sZ3IGN?d&D)VK<9 z@$qHjlOe)eA>ndC`EAZeU)~JBJ$9~xe?#X>28V#|ea;px6(;75ysr#?F0 zvgqOy!bXwnE|$tHsp|xTR4@=k4U1$^%O@`4gIs4Y7h*Lt7g)SeaJ$CEG$HuJN?V=l zH_VDR)WtHX`~-B?=xV|cKY<_N^C`gyy9@1e&xJFcu45d!wsX76u}lWsGWRTy4biV* z=In4xf{#lO*lnc*)Z;NOrgLAI<2m2B^dPfCF^MpCUtCFGcuN%*It82yCsuQzZNs@R zF+r%xR#TwweCuNRu{a_mwd77H{I!v58y3y*CN6Y7ITto+Dj1(=rWTEQ{}_yj|y0Dm8Fp>x7Wa=*FyD$upyl&eUNu9q*m(DvP2xa_hEZQsp> z-F|nK!S@&4a%JHB_Is{9_~SUAW~!YXM_CB?_C>prpQKUzh8hopDdog!i^zLOWHj8wS4$(jyZPnvW zHmU<`;qH|T-6CG-nbXM~1ZEy7*%{8ZyP4kX$KPXzCurZm-5wk(;WmKN4csj5 zgP^8^UPnDqu)Ev+TntWMYNP|*BivUR8b`3M_j5R)x48Q@i^C9v>J8j-BQ85 z7ea2s3T`pwFR7B7Wl6=4u7Q^-yW23uLo6-CpA&2_ddvX*!fHD>zM6ZGz!%iibfYy) zEJA3k?e5MJjQl*ZoJ%HUkuD#DKK)Dd2Zc?29l`#pkxJOHu^YXTBdXo~gM0T^srJWa zZl-AlVU8Hb+aKNAL;^SaTDe)?tbW33*~ZN@=LjHdYwt!MNG78Bqoe!4SBYk9CpXgq zMt~UzQrzeRwS=2NUEM4zVxO>#-Q8?ck{c+j=QeSxK*D2B30N)7{j*@x;C(u)?NGqn zk4^{78R%yE{vvAG=P;Q=+*hcmx(|2nVN=}afVz?HSBx>?bC~Cu?qig%V`KgoeDxjY zW}CVETV7!k-A5>2&nLU#*UKwA%iWAI#%F`Hxv0z9SgV);?5hy@1GLX_?_-&^Ae)#2 zaw;m6eGwzzO>&vuVI&T~%` z`8%_T+ud!M<_}n@essEfXYVfeJsAlaFz=vyD8pb2VBdm;N8IRe@_RVrgnK#d(7wxe zGrjXCzKZZdL2gE@4EoNxPYAXLxeIRe_Mdc-w=TM!3_~%9z(a%C?6)T<3@tGTwtDRT zk+E|o2r=aM>R@J}8!a7>w!C@iMoR}I`O8~3S~?)fO&{ES7+s_%NRyX}1UFtsSA`yl zCzoa3fCNQgV&Ed92dx?qo*Y&WS~VcaY>x-68j$3~5+1Z_K$1U1d(f%@Nm^n&Xw`ru z842;-iiwDiRco@HrP!7g*^$e16x8dsE z9+MPZ_xJallyXI6JJ_ch)I*tT0CCpGI{1F5hiNB)TjU)M_Kfhb3|3LuNnrm)4?U<; zIm3evfE9t;qdk8x__iO-0hf&RoMzBIAPCQAdlV4u>UxBPEX+D$XL?Z7E&|(Ud00Lh zhEX9xoz60{@Ux@=&(N<*f|ykvE$lMa^EQT6K!_27H3l>q>0vQ-znJOQp5I?|9)K;6 zc?=RHp`NEa2U!_IcHn@rd=Jyi!q1cgE<5X4hL!c*1rN(eo+t~k@_<=cq#c=8Jm^RE zia?cXp5MMoAirPt9Qis{h8B4CV^%8P@f`j-R_=OO-r``d`dK&t*Zr{vtvnWikU~~7 z*#h%kc>ZP-$QC%~mFE{Mi#A1`Lu|6x0!8mUFPIs)^p^*{kS+q#{$XYyubh`pDWT$9U23Tqu;`cJueqfle}Zcg>>Mdz4=EvF*NXPGVaD#=p;#D1 z(~JjL2(2o3(JDw0jH&2Fs~|=2O(mg*162fiQZ?^1#yCA0Y-osH5R&~DL+g6ctJxwr zslEW)q@fqRAufXE#$KlHTKHuz{cP{WiRNDPg0%=1w(vG%8T?^P__3XLGX~k*(HqU! ziBAUFW_I*dsm?A1C>YfZeb>3Qt1Nuk#ajyX>CoNF+mdD8MOy3!*1(2oUbJ{q1j`Qc zrm!{^G;VfB4fa_htRP{Kv^)G`gctpUJRNq}M|%e$hlR7pd6^b&2*0F)o4q5|aO4Cp zTDd8L^(TAL%1se0ndN2K`VKeo-jg_vkYy(MY_9>tjrLmMe&A*LN)3Wr4AD=2_rOiP zw#bVXU5en^WnQ%CQUt+DZ#!liAX~29ulK4#{1Ub9@m6BiJXv?~?)Rc~mm)ap7cW|O zDT1<-UbOB~1phhjMe8m_@W@5MtEOM}qIH)dc<81Vt-BP#Z|{21x=Rt{9(vKbOA(BF z=0)o+MbPr6cN}9FA){_5?Ec={Q^CC=(*cLrx0s<@!wV81C*rXZmX!EpECOoM!PgU< zlKEIB0jTUO;e1~Wg%7=SNKERd1Fu!SV+<`pSPNm6+IN!0Xi(viAdQPwK&{a?Mhynd z?Pr9mJ-&}3fv4>eK9&^+Kdc7Yi~B0Fj2r?8phXj(4&>kR(Pf8uQNHg5fx*IP-&G0W z6JCq=L8*{jQNf1}Utx*DVHJJo@D)kMRQ93SJxRW<;(IAH55BAJ+eQ)g*9sH^-v^4- zs}m@utLJ-8i|HErCb67X{8yt`4g?{9S;DZgV|-L25e#bXTjbYN3m?mOl@Q`WShkgq zX$C?H|Jug4kn+&4y>G*pTQEd0Odld5)sOAu+exc$oZ{R1<<$cMlb`BiTEifP&vx_W zQ6A>@^lf3~!Q9)&H18oitWWcy515cZQl&qu(=LRY(tU?$JQ_FHx0bajABOnQkMj|3 zE{yOo{H8kGG}2dzWr(56@#P3El0Vk>LU3+yb`q0wAgtA}^%UP(mIy`)OQ-qJG8>V@ zqii3`_xK3RkeNQF$vG)pX}0e$410<&PA?=NOK^jYZ3r98wfVc`KH9+FwQ zX~KKMjExS4+U>qySyp8*!kh!B z1NEOGF+#M;^OO||#Qyov22S3ps01fI#3sY@r+q&%2n3LZ<*tlI=k{MatlKX6PRfO$ z$L$+FrZak<029)@YPj!~FPIJouHEyY)7)6~aQg$_TAJ+t$cKJ|o80~Gi4XsnvnpK= zmCt-@1v7!a6#61$LWcKm0tgr11`uYv4zD3?M(jXN7Sg5hg~r_=K&2CVd3@x)o`{jL?X_%-p7# zBarm15olaShLRhd5$H$_!L8_xU|Lfns>Qf~OzGqi5ok?~Al@w=f!5SW@|UQH=gfu} zx1^X3?9Gbp0dK}f>|*f^)B|@BHsh_W8c~5|iH#tT&3GGXMxfO-(kkEg5omRdB>$`z zfmYW@@@Aum1}tqQReai&7xiPrM3&XHPcUS5IJip$T4E!Nz3UNyme@$LM|uQWVk61q z;Sp$wjU-ErjPMV_Uu8s~B{p(5azX@JVk61bQzFn38%d^SN1!D(lAJv|0xhwTwf7EaDv8>MUyv$_R0}F#fsgQUFa_O82Y7kk%LbX|M-&CH#Ib>Hv%!^8X69WJ@g zede4qXXZ>fx7b@ozsHsl-WmQ_8T0~A>BA#eLQmY#B&lygEbw4`P)*E!0ICxniw3}< zZ9()ast3u73|%Ji-yXCI(cSadIPg@E+sutE9U);y(02|Laq4fO(L{AM$P=#a4r=8< z{ya30zM)L*5VG#KAnZyXp|9~IU*u05VbOsgRBj;8*x*s5%i$nQ98RC5r=Cs)iN&~g zM}jWWPf9l%08{v-bcf{ILGvUw@aSI9&zP9lMu$)^Pcrdv5IycS zGuVernH`K8Guc$iKFkVIoNRa&w3~hbnklxziy%y91FNO@!?u?}s9?DSq4hsOy9Aqv zw?TW5X2$H+AI`rELTv;rVKeSy&=tX^*O#D!NH*K-g6pEjAwpgLkl+w}Uht^l9E@42 zDyh>+mta&RZAI{e9&W)~1e+-LV9ZfHE0#a}St0n2XtPJXgLfh&Ea|(mZ}3Bb)uu`? zW)o=%FQ=-(s00rb;a4aO45ouT-lT>E1tXi(0f>+V-$weN1K_9#rnw3@hx=i{m~Er9 zDhFV`G8nVENch89>fqCYLr4@>xd-4vbTB3vBTx<-g*}{0z>DB}T`+1)NniitzZN;Q zX~8s815*ez$q1&I8h9}{D>xD}s-fWXrSMl(CwQsAy08e=Qwjt!>KD!*G{d@zkxdGW-=;6KG_W~Mb%@?B1oy;5SPcDNsSosfgO_07kxgM23MTks-j>TT=C-Kd%-lg z;>Au6f@yHYi>gP#G`Ql$w#C6TxZ=gTuYzfC#f!_{1=HY)7tehTrok02?zETXq7`oq zu9m|kPln2B2pxQmkXcoCRBe;Zv`AS3vOk2P>hOj(&|Wt%aAwn74hJcjaS3_&0Hq&AdqBcodsilm*P z&pXIsQGuQf?nxI}9|{L83uLG4=vCQEx_;~}+s*#o*;h8tkzVT!mhRUaDqV|*N&nw4 zLe`Z1-)*ey36&7MnIKC?`Po;pk+d(81$&9Qtx~L)F_DLElA%WY6pv6m7b!!>^35__ zc>NU&*?UpuN%l<+5$oTXTV!;HOcCq@nVl28{%|BDS~;hGva`PafVDY`0ih9OsF^X;j)D_xiE$65GdSbal= zi^gBc7DM7~*%C&e=&lSEJTQ!I_hq;MoIULPNVbO&IQ&F*7%PFMf5}iQ*Hk5op;fVr zeygj9RQ+3a=-UYZ#prjjcgQq_lb8hR7}kH*Z&|p!dh(gFEY&WP9}q`YeG&k zh<*+sm_4FgjAficP?7Y=fRN>^S$M;Ew~#H&#p*mlFl~VXt%WO|Ar2UA@P~K$gm6pf zQz_)PZ?^=(F}$jTJi!cJ_`{d0hR{?zMP#Z!h5%3u)Fu-C?gKSL=>AJ;13@7eGvXNT zvJfq%o23s=VIg!k=%EZ5fN{|jVH6or9O7upWa10-c;QY=h{dtYtM2@3#aKEQxHBcB zFB&i~FGOrj<=-OP>liu@mYPDe&Q#_+ugKE|Az4V%9Yw6@?qp2!5KrRrv&@48?vYQX zgQ<{kvSe4yFmP@Xa+CFf4_k(`!Hnp+SSnNw5gS*}bdT^Rjgx{r2rupJ9-)T?9YU_t zj#sMB)J`EoSTF6?Ed;fX)%HH1i=LOMX~K@4A#@9C5zOly;)K~fSz;tK14)o{{PgtT zkRuqKQlHmRio;iq3rRr5;S7NAY!RHD8`28XoH)0V zRZi8CkjcogVMiXyL&4^dF^t$hTSMsf*COb!CxmW)ErJ$@L-@c;el&z`DldZKVvi;oEx~@GK*zUkVyg6zU0`oaMC< zo@3_H$tp6fi##4e%F2root6!NP=EkZK_zcaRORK>zr8kAq#UAeBp1P7Eq6JcGGG-X zH$CM?N(t%@J-y|a7_fv|afHbGPNo_gmnF}3)ea!4Y4jUF5mn`L9Lced^fO9V0_C6W zCDM;-$yb+#G<}^r4WQ;$n&%@j-|G;MGl&W5TBYpw!8fZx*b4a^#44n*ZQU%avmmF8_m4!z3RhSgo_j zSC(3X)#}Rk3UBnZL8%%xP>Z-Npdy>f*OZ#t%4Tv*>Xo$abC{07` z3))U{Oa@9u2xxyK7s5H#U5?mFZ>?5edQwaNtQ5YpFL?Hr({25{z3u5+8lCrr#QySk zrQ+f?NWM;RIXa|ta>*SgFG7r%tb%R$uf@)S@8xu{lMg~>kCW5IPF`#|L4FD`KDWLg zcTTq43Fy(zRRVhMEDr4(<^^r%$af-^8@Xu>Un0*I9pIJaw3m>`Zv0VB*Jn8I{;O+vLX`_&|X;@05F!5ovNisP(HHlYzk|EeW45 ze16$2r|DpLU0xrQV-~VXP|ZE$BGOAdA+HEwC*wn(D zH?>~=T~3#4IO?|Za=Ki@i*qi@>y*M)b4iaCwVgZl3hUwXNu&QeGVmrt#~d{ zewI-;<+a4nZ|6OEva`gx>|gR1LPF(U$hV7O`uTt4baj$i7ux+jE+ulz>H}>*+U#qU5 z%g(&`Q%!|cFeF&vQ!0J8SQx}NxGvuouAqtMIetKd!rH_is1$Swmfzi=QD9ChTWiF; zlynFhXaf2|@v5E)3LTO^R4^z+>;V3$iaD-!grDyGn5S6w?PCPOcd%|UKA|7CG$}Cq zYRKjSMFCm-YiIz`tyMH9jhiaGNww%u%xnpT8bgW)D@14)Syyqe3{lk>OlPVZD$XKm zX9e_!wT%=PF(Eufm@I8F^*>rIgzTHAa3wD96z-%r&HAV7@?Gw5wx!~_Gr9KrU|-U% z1(iU-IE5b+cU1goFIC`t7X>2BW5S&Q`fiFgh*1H1csa>`tMDKNH>=3WrXCm>0!8sh zzFjDjMQ~(9YFP(ptCp+m$ff4~p73{X#a}|XFZwGmCjluj{sMpKKTv^*=9qxS0JXQ@ zgpv*nQy{`64#UjWA2LTMFag}Z5blk#vDyB;0<*SSB9@eK3QXYkFE%+76|}eIEihz? z0<-p1!e;AK#j(=Zkv~|bE9l;2&L&`%0+XPygw2}S3QYL;FWIEdRg4vEuFh8=g8zSE zHU2?yLNo^L5(Ofh`4<)}Rh$)AbAMD|PCA!J$#0bc6EhOaUB&m%eVyW+gQTtjn^7&C z!H^9fXzJmzzbH@(b|naZZB@{0pxk&aZdagAKik-J-l?!d%%pO$NcG9yt=KNuc<(DE zo0a<&n8E75*ys-`=!_AUjq?$d`IX3d)=>p22@ppZ_LFh|d^)2TgPAbj{8Q+}l65_4 z-DbmOMK8oi1Sp&5m`}*_T2#1m#~WNfj@17P$PSJK5(KR0Z7qL+?3C%v@@R z4wsx3%$0>=f%I9FZvA(rF(OE(Q9NV-QdZK*G7fX$cq=3j|ruFb9wRN zq)@symlqorhSI&cyy!bSlljfF5*Q{Q*zM1pHhtLc|t;nYXL29z3MYt!#9t$0a z88X`a9y*FZip-r1x)?e-{sey0D@B?sr60O_GW2~JqQ76?liWWW`uN*DJ5Ve~j8X8~ zv`h%oNJPF|3LWVn5t&{Ty7k+M5G!CjMBWH>!*mEG2%)z_|FM_YsPBbhqNft9v-d-d zh&e8)J_W&H)xJIwS_qS$hw94P?ImhMb6>deG1OHk@ZFbCOfb%wviATz6xtJQm>gkK znXoGo8(82R*42@V5Gt1sqZyf)k->BKFq)Bx7nga2QJ=_*oxH*-iN~h8Wgrqm`Qj@*uhd6?R9w= zD%!WQi-&1pVTT2q_7P#21C%9L71d#=kiP`sRAks)!R9w@*s)T{WOM3OiaVBFXwNRD4|`mRH8G)j}-m)50(tPD`*FW`xnnCholJ=Y(O7V3uIn<%PWz zSPqsj%x>rstj%@8Q1LZKpba-f`T|G2Mqyh;m*Ce7-?}&;{{qLw=3#%7#=nIS4zs*f z*j1szX>G#}VGXK;S6=(Dho#~L9-YG83QASF{$EhK*ewhdeV3?^i)vCq7>!w|g?f>` zy~8jk-Twm^);Fvjx=#ok8K(Nz$2Tqy344SYf?6q6=Vwz1P0iE=T*rm|hKZkSSYMq- z6`$ge&kWmNDo}pLl&4sNn~TEkJJUe}-)(z!Wmrei-`4vn%)T_XS6zAsUx7_t7dFZr z+Z;UFg(;-0upT~i|1RHL%S-u=HRGY?uCNz&R{9}(!sZJ4=k|x8!fGye{z|_7y7xdB zoe}0^ksl6+(b$?7ha3%yEzQWSy6rSLq#)&sC2yHK`1T!)n7C_?)N8rsqnLqJmuZNS37zWi__ z+QXUaKM8<88-^=wZlh9*@VDr=ioucC9o@^pU#-JwZb&Zm!|lWS2({#N3BMT!x1KDtyDA!^3C$mIBO+w7eVY3NdrS?QBBL zTNu8#G(r`aSC)jI7ed{)B7CTjWd53Pt&rsGO{J40e~%04zNJ*+lu%&W)^M6MgPTD2 z?ct*X>>chwu4^JnO&4$i+ai<|nUS8-C?8=7{2ZnHg0#;Qus%i^#|S)# zR~BOl{E?{q3qb&=1op6ZZ!#)xW8XbBRf(D-;nJ^@q1?sPUm;t05li59j?#|$KXTWk zyo|-zVNp6UjD7W$SFjj!8Y-7!M(k7&>&d2e%9_%AV@@;Wk4}`zi#EzzI4bLbq9tJl z8CEI^c->K1o>_)NS8TiFbyC3dZc5bTyp>9=RUZnJ)I{K8FJ)`yD_aauK19leNm&7= zK}xUE38&Lgr8g7K&=IAi(ruK|h#Br$g`)r%tMp-1PEJrhD3w%xouvE+;X>FrL}+^Z zRHZYcvTr)pnXHEqGnMkv>1OjB>bVHm8-_(Fo?7%0Q@cRrw4v^~NjJ{4NzUOKcA19w>cXsoKwF_VI<7 zVr6f%EptpZ%SM9UilHk%;|``*$~f9Rz=Ze81DFX6&iI)_LIsUj3^|*WzjsGaIZ$gbO)MNFuG6gdQRkLcxW<+!qML_D*)TLYyxtQ{Od&(;@0ub~k+=+20~ zfqwO1c*O6F`{+>-G>t+bv>6l81s&f~w?|VliSOk3N_+C;Qz9B5eNKOA2i4+v5q*&3 z#r{$*h2ljKG?zjlG*}ivb14);?Nt#pmqH@@oSE1%)fpCb+-O;dsa^T7z3 zOQ8_XAB~{76bd2ZTm;RfPzcGFC4IYImGph~S_I9dPzVlpBWNy#LKyQfg62{v1mj;3 zG?zjl^n4jXb14);m(B7#qQ|U-7*(PIb4U-2;B~rAaLnX3I34#*z_L`zM}c_R-K*ll^alT?Tt0;B{eUaxX59hEXE zl2lfvp``*;-98xC%&+0Yyl5w0i)B%~i)RLkVj&1IW}i>gFV?o63jyhpI4Rc&p~c$+U)TRjy1} ztvaYM2S2Q6{&2LT3bg@*B6K64da3-RiR@_}YCAiK?4cUWw6?LQY7cm( zs3t7$E7^|!02Su&iM3`mVah<&GEA4n5uOiKIg&pgss=*N2$eUL3bYudazHxe!BAnG z>KsBWK)DQMD&eha`6N{hbcKp$s>(x;>8i5`8q9HZ1By`2#^p0z+{H}hQ>4};FjnPF zp08ColL{H?k?`GO)iRsw@K~;*^WqQ4lOI)Ua7I{yUmh}6sZbNtU(xgj{ZA^?0?$`4 z^GZ=2FY<>+js!k(YxWo*o_%4(Np(=45r-~xu&a3{$nk%hSRnly@x+|G=QFWdQ zh&!)gmsAEcF^_=9)u8)zRZXPxYE3vo@=aBe9VImVWDQ^P(@m8Z(Pyaq=r`mq)v!7Je`KSs$yj1zH5jc|`x%4+}8l0@Wbt`klKY*t4vGG^D}2y z$k+w?psV^du0O2yRioChnb=COfO6!4(J?6S~@_t#H(Y~h~t?5g-W`q>O!uMSN}=X$vx!i zaaOXgCaCe_ORkcs)6`Bt2bnAgf;ltQBapLpe0Deh4lhs}?MTpZb0#q_R3knv12q<@ z>GwMqzcG7)>oPU{E)Xy3R;Vi=X6t4ehE*l|3Z6KVmK8KAa%QFa(ziRt{|({}$ zzpGOmC7aB+q+TS<^Ys-q{ahBeRR1FN9XqM$bwmB!TD+ysc98CNyQeNE1Um7dx{0{^ z`l)(_z+L-N9e|h#{#wkOEou8vJ-L+i){|-W8WAO||D^s&*j7h7&8*TQ14YJsKI*HQ za(@1h>!=welzqclGq<$VSf%|T#8q>zGzJgU>nybAwhmri8qd;tj7-?$qY# z6vk7zy5<>T8R9EB#*?N_nzFF4hDM19ME<{^TG!IF5|zIcq}d~^dsV1rv7p^hrJ*O5 zc&kZ`(%g0<-nCSjY=BY}OMxIkxvrkOoy*+JzAmr^vJ5LF^CCTQ}> z(;Q6zsUKgx0XeJaELLI7=^7{UGF=n)`1gcji)J$>oT41+lCwiKE)f2mrm;8quuSC(KXldflQczY_0aUdapJJbp}2!OJ^G)B}G5K%R(YNUO_m4|C8IY|1^kJik=$)YC=7^7K?6hlwgF;>%7=tDU{ zGvnJi09CUK!qqYJ?glCbdvQ&>|Q*Lo-f@z<0I=v%12oVxFVfkLK{p zTupDmA!dPQ_P47+l0)|&G&|57jxDlr$Xkl%FlL#iHliCP=Z0kRDmdyHZ7hp%kX3=|4!`wM39!|F2v)@;$Bw(;|a=Ypn};81m^W+qk+ zEq>MX6)^X9YdT_KKJU@o6ELs#?4`~_;4xUFf)4shbKw(h3vFUTI z;r1ELR!qc9AFc=0E@@U_A0`X0YdoOQO-&Z2BWABBH`mgRSouJ69VvVXflve|So}!i zRfhZ!t@ee(Pc`&oGJNFK?WN|h)NCR3jfUnq;dhN6G~F@#vN>sw;K$x%k15v$%ubP~ z(9AhZkEixd@T*ItPSACAkNgMYr>L`65%ceLJfMe9Bx*~V4S`Su54ch>atdY(gcT-$ z447O;3BG}mYcLYB!gPdjH6zbq?8}PaL9(yZi6^JnkE%zSWk-60TPD7J0YwNGOct0TWp3nxeeLQbu#Kk|XuK|iu?}a#iwBX>zH0$Lo1q^F};g<tsA+lfr9&Afa<)rk4e)yv*`=aXoB3sQbAsIgIPUBzS5qE?B=HqMEn-z(<`4;DpD^}(Wtf2$(^A;2zYg1^pbKCSmD@c+TC%P zr%s3-gR5X`XfiSSd&FQGsLVlE4w6n#kaNKsrlKYEd)#QM7>(MK@- zkYz>mGei}aUX1Q6O-McaF}e(Oi_AprcSIwm9SFth1yMVruOh@HJ^b^oXgV3hIYjS` z#!QNF4juPJqh<*C!v}whrjz%aL(ZXS#ALBll@W)dub}1d>1cEv!J*}e=qWh8_JYEb z(T6d%#O3hrY;+63q0=9DUHtH8^q+{)B2W$&#p@?r!JFf+SEEr8C>MeHx=jR2Z{kJp z=dEbe7JAO%ySvfdgd8s3$IHR>Ve~EmbK!AxFRVp9c@j-CQu4-e^jS0}gy5BW{X7~q zMaLiR|1!G1;864`8nGEbYM|v_N23m3aSpTJ+Bkf8AB~76B@SU9qfa9mhxG8mFVQ(d z4)5%=XgP$G(W2(6xf~`rYUzfQz_JQ2;^d;8jy0=zSM6!Evs~+@{Z7ci*IkQtmT48V zClI;-gO~P}czvX=7TsTTtf;+5Z4}(1KBZ`_v6pv-7Co>{%hcj~@#ERr z8A2=F^6-ZFW4^XM!YCvsvB9DpDmWz8(_(gFaB=pnukDEDFrtx`?jGaTsceFmL;I%M z@n{ayTWFUG4k@j*h<$aEIES^-4nT95*IwI4aPaSh=``S0C+cRfj{Zzn?Hcj=2|cun zurS99O3`g6^wusB9G>>YJBi@_+LP!$YxY3xZo#3=5beTmmjkGWYAt9r1dY%h5wHI= zO1t#iUoTmrVT=|(n*MF9_N?Hre1dj4mcyfoT2yXf?o!%Kp<^G(D>N?DA~twSa#%54 zi#nvqIfTs8(w!gNGx-zkPgps0nX7$(wugTfXr~Ddvlro;#F@p~Ap)l9GJL<;eYv)l zG(Sa_t<+*BLAhXWtkNDpH_)`7Y%QevdM#$&lyhjiL0ca)Kgl0%y49wYkAUwtqjzYl zA}j+&{;GW^v^i-H-Y5?3)!r5`+keyc!P@tk16ulJHr`CG9MK~7%S%nw^O$y~V6*jv z7PAb|4);?ytfSKnMgP7?63RBBLlE`eg7>ozwME)!nvq%sb?Gb}%avWxlXUrAM ziWhyjDFjuD3Ag9VMyonhiNSa<21DM(q_~59wV1P#Sl~`z3~Cn|1*<=ML`-?;92|qn zf4F~8j2U`_#l&J90DG9whbx0#8FK=&*N`Iw)JrLZYOyhuFj}!9c){Vsm>H6JKqq~S z3UmH~gKf%-aU+jArYK3>+!#!bW`+V3<*F06dHA7T%t}G5Zljntj?&#G&12S=NBB94 zZXr`9r1XYQU1PQg`}wVBOeKslTEQwn=RPsPi18Xwg#Jj|X+|zLit{D<`6<3oJS3)@ zvm}`AV`7fmNyV(OG3lNN8L?(DC+x8&1ka7>jj>D5OH|0u_NP<;#nPCe7|B`@d?9H? z%qgiqfNHB^u8FF-u8Fb7Y}@9z0cTUn!Msf|)iIK{B20n2EfVl0Td0OjB= zs-e0TGt3=fj?5vDC7!A7pnDQiPPG5V#WQ|v3zT2{Em?h~!0uUo90 zFwb%BvGgmhYfwSfhAC z@u6@iG1d=TU7#>_!tM0Ri0$Z$ZBZ1*0a`SR?I_8KTxu1I39_wKb08GU8}7D_EhBoO zx1C~}A&g2=Dq~0fnvpscI`)p0V}(VmFrFYA5bG<%mNzW6bw#AuKs7t|S2P{^urG|9 zAG@fkWSgpOv59B}7CcQYfMzFSe-MUV_FO3por0Bv4S&RjV7duz15@qN+(`A0spH}C z)!2Nrh$xIF9KRX6&g!u4#@;~p8r8qVR)Wue$NHD$@+RS*V==38tbRbT#!LQm>$W(W zbb>pVc4gwqiQ*{7xORf`TbDTc1#$j^Gj4IN<)q@HN^xI=Lw;8!u5xwhZq1mu)8ejO zT-={%xeacSmO!Q_#oa_2HlYCJ;Y)IyMf9+((&DV6t^ABQ-wIe<|D9=0Z1q8 zC?Tj}Tp(uL#chmX0mT|vUJ_n|_Hjpq@RS|nmWkr6PI0?MabuUbD9m1L+uO*O#c7FT z@4-YzvUXTpajAqrq1-_=B2Fv(Q2((u_NMVR_VyFw=!bK;@!Xyi=ZHC_XJzjVgXhGd zKKNio*bZOj#_gzvt#;C-v{V?nEl!TsI7O%ky6tiEg~lHqvdL`U5u408bIZZ#$b;|kammtK}6)JUHI z`Y&+`%*M#CV0_5uuq%f@6GD(R*xljlUsU{*M*ni_oJS$~gtnE5-Yw zRZbCn$)jGezGQbo`VbgZCH|_LM7MiTd}ZNcNk}~Xsxhxbjqvyj!o|A8$4?eN_)!-> zO#C3q7(Wm_5V<)hy*e?~NcV>3Iq@IS(;^h67JP0PPxBIS(l5V@Un9mz>srOHmHH>> z*foBayYz$T!SUxrRVodSe=ZbOX;i$)OZq|oS@CVrwOX<&z6M#cFMR=2UKH<)$aKU< zX{#uVAhvl;{9VC(<@WgDqP1!d$6pqe2s|GDMf_HEDt@id=+jH_jnI_{bj(-{-EPM( zz)bY=mO&9}@kT*9e2fo-jB**T?BMX@_^P5MynG&S?O%?+h+ixCk9`$yZQgxe$7{r0 zcpJY-D0jg7crn)8x+oz~h~M^-O}Hms22~RZN+XL(#G__{3o)BA zT$pNUYL{E_y`WxD!p73brv%lVw2es!gkh$PigxfIEWuMWFIRPf*mn&BBNLto8T5@# zu#UGEBqS(>5Uyk;Topn%oR?5u6z`f79tj~_Z%_&$P;+!8Ro~sMLRw6qLKwO*-kW#? zCAgD<8tL_*d&`7Q=;75@(C#q4UBXQ1>;Z%gOz;FxMS%2papThWTEl#W`tgVtm;v1~B!8F&z#%M#M z4||Z0f79uJX>N%t6jGO-s!e=`iFI$SOsqrVyJSX@M`?+e0FVJdZbqU*s6?byuf&JK z+#2^utSA&XvR~p$ad*ss#8;v?VNhai;s5rGPW(sMme(n2~s&72II4kv0b7Q+x$wLOt246pC$ zMC;^i`q{)i;;!$Xi8DPAPKMKa_BhdvY;w!`9(LYKjFQwqzC23A>;_jB^ZIHJ+X zeeHfFFEVt`zulsM9%1&w_%=gdT^-nvt)rRWwc6ILBHOfzi%_+171_2;`{>qf+C@c2 zwQC=vZr!SN>*&^zt=hCxsWt6YF)Fn>O5KLAhY5YyiL{)eb0ID2>M&=7D2m8fwz{6q z?IBxTk0@-w>iw)Ryt?QLJNO*Q(N6S z!J%6R-E6EJe(9(?gS3ee5ZOhyRd9IMO^4ab&#R*Eq4Pt_!L66ByWlXfk8bR@%K<2d zeDv$}19bhx>yHl7VKS<45!esW6=HlUeYiCQjne%_zc~_Z_JxlVbtjPOY)#f`lH8%= z6kXRc+_vFfq3*3HKAUALzL~3Q?I8W2^FrNTQH)=vJ7y={^;w~#T?}iX@cc*JN>N<7 zO1D82+pW>P!*sW_vUSOaO}gsvWrJ=2vYK^)BJ_9V;vx?>>%7U5^EyA+vQt+U&B@eW z=K~G)>IPyt5suJdziyn9L@eevD>2nkohzDHi|)FLgMQHGdbsB&+!!shTuMJXR+#sUK!ime*K0Smz4$Wl3p{lK3`; zB@IMs?{c!~gtG=XB@)`JZO9Lh>go$kHZB3h11i)XItcvv!Ffy6|FWXX2Nhv=z&C zL}rrjs@RMqOk3&ME2%x4$xOOzZ+9Bj{=(Km!W8x?UFDjjsJr-t$osc#;sqM zq!p#-cBX4mPedyKN{W6>`!spcFKG>q#SfBjdJIT9jA_%9z*u-XJm~@^Jf;tKAcb?D zI6{l@Nlh@}CP(lmNnWJm_#{6VHZN%sropOXlSgp#UA1pnQZ?ER_U}n*%j6n-0A(vS zJfO|N$(sW9yO?C}L9YWJBz1G8*9XN(UT*aI{zFnoS$eJIlzhO6-7lBimtC8ACx<)I z>!ixby{XZ{m#WF>ln|r`Cf8$sFQ}Egj{QGVo?P99UfZjayC4jRP^P2En3&`t-)=oX zpGAF}kG&IW#3#pL+!cSgd}1HI5UH$4U?bP(QD>+$*0)0Vw2=A{Msy8%l@C&GPwft>&;px zzhd|6v`xOuu3_zycd`4AIwl`r*Y#bJe`VKB-IGtVYi!SC9W%FneUp1KoQDIF-P!fc z;N=2+yX)^TH*>g(egga39H3v#+|0WmeSapPo^pLQ)8DReeIxd_uUdZx(`{QBU<{o; zyFyB*RU=kEgIYV;lB_?BXl)c|9W*rPH_)08r!@T!Sd8K6`Z$KMBTK&vi%};>;$dgf z&%$E#GV4+^w>+AP24Davs3$PfI8cXsx)J(qzi_x-${tM&LvW*^T;_Kj# zw)z>=T1op(`eRrg<+|uo5%VWNjcYoWV^95l?7KJj(z|2EOZ44S$?%8zs$}mVy)SGS zq@Tv9a354>n7#s&N$XKqd*{$DaA>sNlcK`KvHD=8mro4{zzu zBl-3tW$){&!H9>F1>40{^(BfYdN0W`EKl``jQ-SOtSw9UgyK8Hs~7r6W(6Uy^(R>8 z|LTpt8KYn4lYS#|5YUfQ==REYj+eoSujar72SXXwVeyvu%+0Wqv0vk1KzdpUew&v; z!+1wlG<0En7gsfuW!Ikq4M}V)_(*1mWq;QUH%!6QgU3$E2{cl_a;%y+bcr&!Gupfk zQ)3NP5Z;k6OrV$t*=Wll$?zu=_~m57DI~#vO)3DLRM=ad)D5cSPezQkSCIM{_bQN9 z^$m#cR)M;Kp%y0kF#K$21Vs%EsNDYSVe(Tm17>i$;R#*iORMBbjH1$_)taFXJH5wNYV;V@E40wH>UVW1Gu-a&?ONH##LHxAQ|tg`VWOU4^q z;Qc6rPZ_(9yrGkZ-y6JV>y3V39&6ZInp%1S1<#aZ4(}!zf*YrJ6q4Ee#ZMbZ)&7TfsuUuIZ|64X7iN{NV=Y3=;*17k?Nq5i5sDI&VN_PUa6EyJ%=HIOwk!5cwephZ%p>fXbZA zAO3Q~K)-Xx?P2t7ye>}PF<>$$OBJa5z~-)t9^q|L_QZfnpUma3_Ai?pB8u^H81%w` zO1#K9lz(LyX-`IMtK>zNyf$DqjBuDoZwxGbGHc@7-Wz)1+{FmE{K0Tjz#RWM$ClPZoz%=86^Y3XD{tzj3i~=;>xeD`jUn<3&st$~hQ4 zjC7lQ;0bCNzjzt3s(^RiMpX7>&Y^QfBg@Fibn&*b5$!P3{EVpV$(+N%YR0yLLtKCn z;V^;1Up`pyc+Qv_?$!WT+8m^b)Z~Y9jvivvjD}OWY$2tVMDWEKb3Dru(TzOyXpT zLyJsXYxpx8?-l%VQQi^M`NkNbhJhBmC7!5byd@;LyS@=~?1kH8Q3E4OZozEQxv>#3 zu7z`rjjhoh`ffAhN>PgiE%7$_q?HksGntFPzMXNp;IN{DaS7Hn{L|5h%9+eLxOX*f z797rY$IBtGz=+D3%sG75+er7Da#INCXIzGrL$CfuRL*41VZk6;0mi|LL=QD0rX|5{ znDINbIl7HBvRuKeHC!HTT#Xfh=6h6U4eD{mDA5@EO~ku~qmzuNbje%;X;Y2oga~BQ zjjOOC7(T;z10CpAm~Ff&ID8<+wO9@f=apg%eSZNRZAhkYb&+vBmP6bU<7KoQ4lFai z6&z0fXxxnDpj>4{X25-T) zi&I;TtprT+c6^uFVu!5*U$x7K*;L0X^>Mcml{1+?T(Hm9LYf{hV$NxBm|qVXF*%dL zaKgyaMl*%y*TVPGAoq};}3=3#&&j^?$@)S%{ETQzbBBd5`sf&x~&1^#JfNF~uECa8udh#n`?nEYC74>IbJBDUXyoOrDUE zByg@yO+jVhe@wv+^fbpoyA8%&F*&$We5`&0gqIx)C)Foh-k zV>LQ`IHe+H3nGQAPgsg&LQ^a&$>KUGZe-)>l*c%s*9Qu9M40HC3n?tkGGk|VHHD^G z=Ed_xDG7*135MG#6NHbudLL(<6ru%;dX$oZ6%?3Wq`XIvXHJ0T9)4}@&S2sDl)0D; z2^6OuPp(X8a^G=Ak)<84|?jqsW znyEdJZK58b50@h}o3ay`9hzDL$ce<|b|f@3wHg^Q(AAUl7+<|CS>h5KNUqCL|B&qP zw~$np(}P*(Ohu}g>wq7^Q^lM#99E^Wgv;y)8=_NhVJk*d##ArzQv%KKWv=gJfr-hf zHL&#rid9c=nw_4CN`}Kth$UeLnuNKU@b@{EQdkcK>xQu&&V;7?^@1l&Qr9D!RXvt8 zxH3eyN@Y38n6e@|q>l2%xi1dJQzQ2$vxcO4!@;4cuf)*t*vM2&gl?^*NVt4?R4Plj z%y|AaA+S~+&}b!-|-xXg-9327|hGAl+jN@EF^ zS<$_5+C#MPXujkc=)pHjwoGWU<@PYERhpeJs+H~2tb?za9n<6(b=-oq#{WvTJZeB% zFovTQW(PbSl*W>)GHLxWE{!F_WW}`;(pa)(R%|{gjU`)V#jq)9nO=yt&fW$zIdTk| zD$A@)XlCX1q{`AXZ^&Gh_J@#Z*lHVTho5YuVQm`AvCK%5^=VZQhwp)s-j3wkfhb$0 z`H~)U;|k%z&a^w#kTN65+v1X7)TOitB$37p!GqBB%Io0ml{A`MgNvm6Lz~R*J+jGc z?vpf@W0}cp;9qIEJ_yphZI{0pmn206Ylj-kl7;r^_e%lA*-Kx+A@nOaZDFNDdLm6c z$7udtF8#h>{MbGHH%xfO8M8FZK+`ZE!)zL|A+SWwA_MdKpmedN4P+tdECVy6TQ@BI zg0R|nP5KLLtP7NGbBsY)nM%o*fhJ$>CR%<%W;)Be%t*G)NvC<2J?>WWg6F36^Wq2R zo2Ik8%j^feTBftS%dBYEE`26?JYvhcOlaQa1#q`}dVlO>2~aF2(Pz9FlFsrjGkTlH zq_e!stk`W@I?KDvit&rmS>9zBG>qqWMK@08P%j9g}jI zD~KY<$o-4yo+R+^3=d-ZWwRssYgPONGT~IZ2u^OENdF{peReXPWo2fx?_5o1S(#a} z_oH-{m6;Wr{gwVjRIyueI?Kw;?#e%=_rg{YXinwtu(nHV37J7wE+bYbs=zzL+VN!i zX0R;GjHE;543>qN6<=1#U|E=1F}hj?&B9!8irVL!>KQ&_6k4rzMkOJKR80m;!_0mg zqRn7wm|0O9m%-97vtn3s#zbu88UK=m$^TBn{2(*q5M~yY>)eJ4G`Vwq!E;-^46*wR zf*WSgw99PIFx2|aR_V+Z87%EGtJAn{87%EGEB5Z0!O||X;`BZl)(~gXpi)$tC(Zr; zO}iX7CSy2ukR>HDX3#)0Ixm&ZEP&_243=@3RYAWpBM7Z5&YNaQo(#h`W{Bx-(tS$? zde~|ObccakGpw#-;Pwn7R`WoUCLcfxk7rz7b|8agTxP;bIg-ILF0-QDpBXIUGAk~< znDGJq3SMKHFFAwsc#=^bh81O0Lw7w^tpAmJdHaowgP5$XyzQ{u%Y^1$UID-UmGKL@ zq7PB17aYn_l&j6CZwdPU;voXtRUHrJ4ba^yu))?jSBNKq?+i$3eUXinZKSuAHW z(`vo!EGNvURa&svajz_)Ih)%+V@uZ0h{i%J5!p?NhiA6Se^0OaHO|`NXFWGOp>dXU zZrG!5mi27&{Qg-Z5c06T&>gl8$Qp`qpjLzcvdJ#Z1D*}a+AW;Wt}$6dgb`$o&zdTV z4<}{y6U83WvL=dR*_l~mL~-$)tp1`Xo1gWgC>AZu8Ya}$bxGD0Pf1-3f6iJWH0QE2 z>!2tW?a!Jlii3_(MM%HZoy+=36yILTnk|ZpZf3m|#Z?b&uh2fp+UaBW5ng=Bdf{l@ zPVvSuJJQMeM{>FBRLm&CDlW`!5&G;AyMRWM2W_B;ZK^v4k4c7p^hrz+wxtOIhF2td7D~CB@*)y>e zvcj`3BE$fcf_2yG_nPd5*w9-+WN$}EQsU4%JKK6tp?+TWk63MP%FjN6 z<`7;d`xhb37xl6coAzLT{cP0tL#g~akd19<@7JQ|0Gegnw^cWAZJzCB%RM1)mHiCS zNSJIp00o{TI+L6ZR@VhrJ7qT)Gb!0UvMV7%4~E{16y{_*k_rtUJCnje*-lag;`?U% zg1m1wO~@lMex&xvmU`}p0og~8HTl=OfWGUrq$}t#G<&|Nh~Mb!8lspxK6@8tx|-Li z$JA_BSUfq~h-C^C;e@NT%QVf+HetqAoJ;ivk6j^pakdQ0g)jt?qiOudlZA4V_D zZfon>Kd#LF2cvpA?29Ig7xj-K$}QPd$hC@*-sIT0{(5+`K6_!Q0D%I!+LHrAEBQk1 zw(Rf9k{^KgVCpz=oW}Ml#SXZVnr~6`_b%2BGzy@o;^jxnJZ6cJ8)C7)^CKb4AfHIcKvd9?|D) z5|h;9Gi<-j$g=&mINSEypL26II7xHcz3S$y7YM5Qw%=ZEVEgTYMmawV+~zH8xYb+P zetWpJ?YHCG=3Ep*;exI?2QeCCA_6L8S36kVJ14$+sijPgtjQ6P`j^TKcJGWFgYbBs zvu#p$BRLV3CHdxT%t;qgU$(_o<5t^jH7>i|R^yX9a@GmyOxS1pZRT&b-@Z6t`|U4> za&8FeEI*ZlO-sb36X0JOxd64kp2G0#U)x0R@lB445P`2pu3m_sy>G77@PaDkS`F`X zfx!+>~TxuXZ4O;;8)8=MXwA(+^ z?oI}A&dc425DEWSz>*WWK4jAv`?h3Cel8}eVjm136eW+`c$Vu#=3XlA0~buW*D=xE zS6Bh0WBpvrB!v|vpLFk=OLH?N43xt!4RTL9*zG4Hn&keD5tXQ938cs$SE*TUMa)p~ ze{&RoFI(hpvZq9sx6WPte?yd~%kylTJH8Bso!=q%$Nw8xDSw_rr`#?Kx1ek8&;OUW z54z_RFBkQxiLVsqMb4aX@q=jta>JQX-O6h0 z3%?J^UG78~_Zywt$dO*pjL&s*rq`>}a--PQgHBGPoMXYjdAs zma(mb+LD_iJ9)$Pt+{GX%7vxCB;&T_dXtuIbN#?_B)1jQ&o9T(dI#FL+b~@?oXMSq z>D3rhxcO&pcUo;JMQ59kOLw&Ufvj@Q!<_&6 z3eq1gx#VFITC)n4F!P6vZh1@WDJipi9wxceS7>x|x?6BX7*ioH4HGcfuz<>}Y8gtZ zamBoi->&myAnS@-&T2As&!b`Ca*meG0$^VYw%#h{3VfQDh@-3*9EoRIuH#<0y z{M1=6o)iUUl-Pv#L5Y%HP4Rdz$5YuqvNv zn?H#Co!vRV2y1ezDqf_Z%|C%;_@W+F;E!JU!^&Fg(|%~a1KJgR1?)tU`ZjX{*HQTe z4wUhrvH9MN`P51Iubk+0^o;zq^sNxFFnvc8&Q>t7(;Vz>8DG;O z@q^11O(#&@jZkKNVyYu=B5dP!-1Bj$yg2*TAONO0-DWzOasZjUisee ztg9*AfgEg@=L=aqO)&@q2MX5Jf!j7H2b!KbOU2NUriY?fdxGg8-49HSAKp!5u8kMZ zOg7OeL0+6X)ifU|%BDnbFnN>p2Tb(yFRVhhXPH!@Lb7=#R0<@jp%U2g@O*&@%1A_E zv1zxc)c31QyF{_hMqB-4n{D;`^s@=K^m4$|TdIm>hiQznq?^b4Ou>jo2ZjSCjnK`Q zBPQA{ae3D{W_l^^)<12^7S-5v-jw1Z{lMY6sV64Q0+n17QrPTqRjBsVbVlO7?Um^@ zf;wyH0&C$L(?OwtULQZ`8FngVCsiKa`Q4b zE_>23%1p-#znJ`>d9-;b)=r^gg88lB+tX;iEsAZk%ryk{ITkbB-^UfyzOH$rCH8^Wl<9NHQ*0+e_wamkc3G*GHGVW- z6LNCjU@mZ%?oQifj>5#!^hG73i_3Pq`S7UQaq}*OBc_2y0BL#6>`SJeFk>>pOuuPv zPR^b&J3-Y`W=tz5Rs_tl1AUfAL!|U`<~q(qwU~YkXw4<_DTF8})?!G%V!nV`9On-| zy=FdSFLC(oh8Zy<1{7uw%H1&T0e8)3#OuG@H!sJEpw~mQ2O{=ldRz>3{xYAVfx@;N znx?fF&tdfob33dY>~CKto89sZ5crRo?ych{vFVL@DOMge-kH;|TtNHL{F~t5`o)YI zI#aQ3?Q1!Rrr_#e*)Ayj?qtDIfFu{oHcS*t&0-|1tY9JKiK1M#FS+P$@g^g#nEhaQ zb<25VTN_D=@3wXapFm3+scJC3rlkzhYP*s}$DWiUD?ilJKzo^`J(81vx$>!A6__fw z(4+gTzMzb>{Ep~$K^Of4zcXfPWscZ9T3(=315@umUt49j6V zQhbHx)3VF5EO(ObZZ%mtJ4i)UJ<=#8FcX^)i|xzX}*B`BP2Ns$Ccs?4(* zrtf^qWDG}cBn*~NSSQF|XrUhw;&Obn*fI&}Z}@;DfYe-NIc|59kB*{NTeczmKOY_K zJO9L&nATXHBLHf+)oBDre!|IyJxs2xw_pZF{Ka23So|GH!RtnzbZ4DqE0RB=n`}JpTBhSHh^yWozPo3sRXR3N4=rwG zBu$y0Sk{+{&DN(D7tAPtO1CGpcx4&sP1fFTajJihXlt zW)C-gzW2RfCcS^Z-uurmbDiriBWKRYQ0lpnwy`;1&kiE&`z(VsRIV5VwvR>opVo|U z2D#Tf+kp=bu`J(?Oi)ZIATFEa5zDgn3o%NAsO<=7SnO={ zjNMDUGrDQ)PYuw_7vA!TWjg(kQ-x~=ec=}W*cX(|&n;qEzFU6AYS}8bhGhhFy-Vyg zGS@J*L+mix9zPC>WqGkgSO6x5#HO=22^XFi9y^{|q*)X@he^?~ER!}6aR{MJOUoXy zD;UB9YcV4xwmY*4z&Ek8sR_FFja~lr9H2|TSRaOu1^{z^H86H0ef)$W>>hYFG?wWO zIn1GSM678fC5(?{**S(`vPH21mT?LyTnatqvFB`YlLbHOW4E)so+6xdupu2a$ny=c z)-W?O_BKV-7RNqjM!eQ6)*D(?#P+u%^i&gKa~R#74u(vPb%Z6~#&%}uaX1AbLI|-W zz2KZFre1LGtXNyL4*`wQVf}ZpOo!!Q>s_;ZWeshX#olG52RH=q-Mx?j@Q)R-7tJtH zcyv`PI{gjPTemJ29j=GPy3Mh6q?dyAFt(oM8$W7~!@=;gvCbgJJ+wQxG7s%Zujvun z1T5$nYYh&$hZ>>df!IbY+I#`+41YQpdy(Z^feFSBAg>3)@YAtO*GqFS5Ggu_ar8v2 z1PA`k=30{$&Hy3UgV#k49`HzgY!*uo$Ya4Zf5tN1vA`n$gkT5!!$Nz)_*=0(SQ;OM zB>@W0S6(pkVQd*=pil(S`l4ukfSBwgT8^EjO~iTPjb;&##SpXm~} z6P=62)mf!m+%%fulXqMTnjy4V+L z1D)gMQ)ceQw)9r6}$YY4KneS)76PmV1-p zGQYmF=0?f{79dzFctjD$bUE>tFknzoTw^#)9altM_nSTrodJS%aONI1lT~wnW1K&^6~s>vYzY?^$MvEEuoq=y&7J)<1* z$HuX2_QuXYFu`OW$?0)%#mr5CsywbKd^9BvofU?C_Go$>r0%Po$$N6#?6`e2RZuD5ll0dp(`pk9o~2!w}H03%Rj{} z{rbmq7MKpL1o34o(TofCvWS02ISjRmhpZe9TE|~vX|E86eAvq|KAABP^WgyJcyz`M zp2M2x6i?@{MmLE^OSf>y-SCV5gT~pJmhtGk9Gp74WBhI!liI*|l?_Qf7a4Cw^FHhn z|CFU?K?LSr@CyK8}G)lDrdx|_)<{)rbG=-uZaKNhR~^6 zAHRgb4G@71qOr1eM|>(}*?MpMcFO(PzIaIeuB@iK`(Ee}jpYiB~C2Z_tcjM7vdRRR3C_a^n1E0sQWa)R2eUf0+ zyZ9d%2m-D!K!rQND<9$$Nu7oREk%EzsbFqQAJs^7lg=0fG#ABF35MQ@a`^RS<#MAD##S7xQ8eZ8Md^_1%Td6_CQ!;xAqm;F={gw?(HwyfqEp4!jwTG zmKEh31z0~=#B@I#F1&P@D35Yz87rE?=GCz?l(h(E~5QxrsCNqGv&+?g*6BpAZ#nxZJuZ=>WDZK zTPzZ7ro;~~7NOgoaH?^s$btIc`yWKdsaU*P)S3C|%55T7IB27&*?$JW*3Bl()@>0n z9UQ<}4I=EGl;g%-ydz5Xh`6^#PRsDUq9HWAW*rov<s|=-WJt!zrOcH8<`^fqo^rt`bd-_5UdA}<`^5pd5=Y2Lcs@2_EdJKAQ14Eh+%gm zK#beYQZ2HD!dD`uH_N<_A}Ofx6#IdN776*Cmvt)4%H{rxh|s7*wd&|jL3(v)vQ{6i z(dxp&!*u${V2xU%3D<H`m{ze+z&5b0W5Q4t-dgq7 zM(znr^He;WOpgRr!`M_cNjOW{XuJ~`j^zWNHQUlOp>4z1O!G@vM%jGRJfY_6>+XNB z`L;zuKUOvn1dOxJND{&MiB{(&EuJ~qJu%-@|52BCAtA%z>jMfReL@+7x_s;2gf$MBHHfTB za0911B%qP$$%I7e#)R`c>A(xT8&B8sZv5^F=f>&)Z&z4$GhqvLSdZJh8}0A%ZrpJ% zVIg&S`jdoB4#WZh9}<2e#a6n1N+5L$wh|g=%z>#?Ws~@ zl!?8lctMwl-UYBGYf=*5YKXY?Xrdd-B&bQL*3ft=5wO-ph`ij>n)tTeC6jMk{GKSG zq^Dd<+)K@`yp_0zik)*dX9R@qL62CShfMIRL zsbAlYa>He!EJVtpOCT`0Jsrg?UqyK=&Tzxv%K&j9(`%%O60!fZXmLj}pbrQWhf?$9 zMTwc_hrWP@2wKn5{C%NlFhDS2a9vmNa_S0g4>4$nE3n?MDn`7SWuWxG$u$Dk`iOj}Ytr1^-O1yzL4D62%d=1h!BuPW~5o*ZuaY2{fdN1I@vd-4YM@ zbB1{Mzu+qlmaEc^;MD~5f2m8wrLc33_!V&-?3pjVPC^WZ7K_mUjjIpvZHX8S(6D&0 zOpLxuV9~Eij5euZ(feERWSR=6i`7(YH%DCgZ&;$6xDgn##w& z_%Eiu;u!r#u2cYdCOClLtfBdR@n)nbgpb6n5jMQ?Tzo)) zewV)#ALoAaUWpyJf3JEgUSorPJDN-Ov5c@xkL?LZSxe?IRS!fQA{VDxAR3pPB!9I> zzo$A&>{~X#K_L*u%NcXQBRuu?en|U{V1-t~GStCep{j2@umktxxoWVwvkyJ~>zYAg z1>Po0nD#&zCA~q=V~G$R*GU3dtk#So_<^aZ5|%oF05o7-k%Vl+0FT=>wT36tBx5XU z>a$#cHe0fe!TcsrU$`$v63eI;rsWF{ zEs%6ga+>Jf{kEinr5{6jtX*!tR8=Y&04i0gL-p?hzET%TW_<;mpu>uTuCUNgv$3CBr;4*-J?tOdU z>@B5xvSMCI@+}4X!RB|8U)dD>4CxC8e~>V3hWdh;Z*4p2S~JAyf|+zp!#NGGkTQM4 z{*n{)vyv|0NbRzbvTPXp2U>ugw4P;<^beR*4$^Xt)F5Xm!`CtJ542hr>C=CKREE2B z4o6DRSh}j=?#pQ+ecK>X5C!{Aj?W1n>FS2?f&P9{3Cmla$;^(x#!D6gMXjVE4bjLE zv}`K#gag}1-*al=p`@(6^aQHLuw9T8js5n+C&AK97U*|rg!G9y`kmQXdXZ)1im3dc>EO~Pw`n@%ba9uq@8p);KNRVFSxbGB8k8r=^q|!ay zZ(q6eG57D`8tEzSZ_8xqI_`IiPKu8B-4Bf^(hb~iK$_Hx%hx|!dYaSOGhf=6VX+%T zI=^I8vJzapjRpapBc&4%6YLrgRV{S`*QQ9l;Ei$8T#jJ;x6(lFck~RRP~0q{kl7sR zPEL_MHPQi`fov8?T{tItFOjNPMh4hqzb*HWzmL^P)to8;hsfVA4oh2bDm6YKWjf=GQwe@LFD+u$ z1{HPzrR_#|z{rbIYfh0F$D4To$pxt^@zTh8={t^c#SQ5R&KrYnkzda{Bpff@mG0%z z=iQgCL-h|1d?dZgEKV5g0s9Y@?R5r=ZJW9PuO!*huU7&ftU{<($R4mb9v6P5 zl9ibe4o0nPJS&G)$ug$>-k1YSk)f4>*bdR@vQexYR2i}x%yzh&B||%&F^95T*=SY{ zOY>wGS)vNt!OtN3m2xmIklszOfm&uq8Bfx$QZ|N_L;We)6=n{~vobm5aQqzm$l=9#nSi-@`tG7^8s!ju znLQ>`>SbM+IrO_KL#Mmpm^AxS#&X9v4y(>LWK0V!apBgtW!aR&io5Jx#hH7uJB;y= z1qMC!a);>;Wpf1B7|{8#3~edKb~*7}_AP6SetgkDP5^Nl4)45@^`XSNy^)ntVu#+d zSKvn)D39><8%Mb6x{PjQt;GTR}|Lv9-4xHVzt(9=`SblVuVgLhMTGPT2WUpaGozRge0 zbi_91klj)~lX7rrBWF216T|dwD`&12(5{1g6y>lmK+gR3aWYUolx0E(DUbm4$IHFp z?r6Ej0@!)^c!1K*ayRgFV3HTqbeDh6_+o`%e=B!{GkVFFTnHCdag%IKdb7Ja#ljUfK8TN&4n%tj?HM8WtR6GFWx2U*d zzWf3emo1U^VNnRhVGp1zk=cWFo8{=-vX%0C)omgZ zw#zTj)KztIbW#o0HGiKx)`p1ZkI6UM5fNOFGadD8(yBSAeku2YKmH+KV@0*PC9h(v zSXe8JXhn8BPPiwpqULY%Sbm!YcH|4iHz4<=+yhKBN&;c+b9q0OQ4t3N5zIV0tYxi# zl91)nFJ!hD;5=UD2BtbES%bGl4sP&(O_CX{v-S2#fh*N6tJpi3bh1GEgNkV5FVDVyTlBv0!8=i!gIpS2?&PlG+3IRQm4%58Co=L4( zYVb3aA_n9X-gknl`zHC2o&^3eFiFUw&}T61kfbeCp|&HEj!=?jaY^M=i>ZlxYN{k@ zjU&;mRcew8ix#LE>AvZVnM5 zL{kq@`ePD0wFF1fl(k8&RNSyJ$(D-8YLkMg=&(Hr-9Lr%4&R-0(t_dD2rHCzAPHSQ zekv&tIMydw!OQ!Tnlh_`u+WxvZomTrjwSuc(xMxUG;pKl?(`ea7ea zfhR8~X&Igmut8B_SFk&Os0TdxN75K#4zTJ^Q-d`7Mv^^4^g$HxKhq{);iDv$b8!KJ zkiel&lh7>&IBxDePYPh5!cD>T0F?qoW4Pc=61qnck8t0bp%{VL>2ow;n;fg`NiUs{RnltC}0mt2!uB5!WzP7k#5}BwcYtH^twy zD;^hP(l@`SVr#?nMGt69^*z*Afez5a5iza50&PjaqI@8)S?j?H){#XI&boHMC{|d* z$0HPfQB9&nCQVu;C|GCU2{uI7^lK$_lqs&Uv{a}=PXvbsIt9YzN(D=s4H3db+FVc5 zD zS#g}kLDDqE2kQKc849$K6vsjAECo7t3X4*p7|dc`{7A*0vZgR(9`CDP7AStDk65)x z(UWl`-UCd#BXfpnKPu1xH`qekR+}ueVvV9LWqxJ7q7ie2?DkCN0oIREc*EJXihJ}i z7q*xlv*%|;0Da7d9f~(BqX*QR#DMCO`*z?(k%K3kv{!MCR+Ni%rpGKkpkUf>&ttE}VWBG$u-)QbDO#}5xo)YHY<;g7Pn(GO z0;M~Hi6Dacg)-S{tz=??-=(KEQ8q%>afii@$^y#ilbh0;ffK-Q)dO;Yo|OxjkmC)5^c9e9(9F7*EL9a zlfKskM<|nM8@{Ns@&hx4;W5f4KbI{U_2@CH2V*R4M|U94Qm(9Pmyb3r9`px*_DWbih;lx}yZGb-(Xyi_S= zz&tZWIS|ae=->qhl_@P)I%te=)Tm_H9*)Wul1<@0mCC)Avlf4H0Z&FNe_~U_2>Xsz zidY&2#KQ>tPf~6)!xU_%C>c(@fe2+gOJw4wN6l2uB2TZMtz=oVgi*X}l{ zDNiug1qx<$ml_OCysu<>r9>8s1q%eKM#N%ePnGDZd(3X|8|6usBW5{7h!CrY#R4o; zUW^tS1Qt7~8pGdhRA}Enjgu6dVS%OR zo~qx8^oOsidqcR}g2nAsjX`~Y&J7-GsY36Z*s>SesJ>z4&Y8p(B3LO=z%Ed=k&rzR zqS`}LSrDdLNTk6LDtp{%!L%-_LY7TB$eRNJ>OB2GaW7S!;3u>lG8|-mqhh%fb4G=`Oiv0N3&YX?;C(6*SiQWd)OXZLy+7tmSBq}YfW)j&8*rCK1sFz|y~g>J6k z5aDp0YKmyPVl(cjhJpc0QF{@iuy%*1fhx;_XgPGgie-hr3D6hj zFHqGH{lGU%n6V%tH=M%!v_i$wMSrIB>kq0hq8@CrT4l>pfe=^%*uLA-4es2i%Cr_7 zC!3qPZC9n35yRE)RAsVxLJrsMQlS%Eag<%FQ?aZkLHy+K&0f`?LK0684y*2vxP>=P zs{XJhsb?;zdQ-9WHC1Ppw+!^4y9{df^ivN5A6?N+KD$5Ar~^UA##sPOoq8@ja!-Yh z+{5}md!%9*6N4}CePO33DyBu$|A1NjOoc9v#=Ih5{u{guf2o)b68HzN2d`C$lvmu} zs%Z`NhcBG;PW2PZ7>4Hskz2PBN^>TtSx$@Mp|}X~g+~PH7A(E%KVW8CsL^%l*n=Kc zYL->6{{S3rt!COu^$(aEw(3mEOXcuy@S5kSUdl3J$GjAeU)zI$57Z$m-?_1T7A4gW zqs;eHd&0#Y>XGKAHZsCf?Ze1S35GsU2ZAYjH5xDap~fT7SN-SLM>|AHcH{ZXYOZe0 zG92VA1*6-lBZY$FFfUNebk!gRxfG=SlMVrnhpG3|fx+Sk^(HE6qtsrsA)ne^jn+?a z0Sr@P)Myns7OlTgk7xNbfW2KkNbLZET4`p%^+VM4NE_0ZEsj_J#qw_T1tz+FW2B`J z21(SJRKvA$Uc-?JUc=rhbuX6g$Mi5O=#Z+ufqV*|WvDwcHx$SeRsbPc!!_CJe9E{} zKF`>^kY{|*p!Q=KIUvTv!4o^R5M~g+68>Pqf&qgd(=K( z-`;>3C)ISmQBkKpOh-162h=Q^m=Tr{RvlEYVF?{v_~KzT+Kq%QpM8v-!`9uR5btCwvVC7%xNJcIM0nGDLkAw$bt5f)PdG0Gy%bD}H+LdLbfov5IPFrix2U>Fr zH;~v?omM+VQ;TLcNKc(8)G!@C!r?-MYZ`p)x7U~kAHY##8hl8dHKxJG*hZSOrol%O z4L|ts*3_^JKCoKTT4)>~8hjL5nY7u~QS*sq+`+?fV;MT`5C>~aDQqWH3Ubsk9JWBquWJH4GPq z06bN<`h2nzC`gthgVh%tT!HMwa3?T6RU=~1b;t#jgZG0 z8LqBy;a{2q0-RR(T9astrFwz(tp%2D3$=d|eJZovq-@Mh@6Z5D(YF`qy zb!N%b$nPwYHx_NM1zJ;=D~|@A)K;Bx&U>O!=HzCm$kd zcRD2ZBD6Y(CKJ}7^-edzF zengv0wq+!vh2qyWUNEmHnd!b<4i?TUO-}Z}?3|}1n`}EhxtTpqYqB7@mPF5$CCPxq z*0@#4*GO9N+GO<2&_6=y3J-2h-cLg6`&tuBE==A)s!Q;`J)VB*>7QF0Ao_uH%F6yn>V?~{8H-!3-SjU#iHk{i`e7?4@f*D)XbJIy-`A(_Gh{r1fs8lM?f-Z>yWn7!G~r z1U>YCzXj;JSrenQjnFZj&xMRauzaF*I|!|N-ApR&>7o097@?@2ZZa{O>u}u)l6E*z zH-JdZl{$?bTiekSRQsXEH~mM27YxYI$;^p53$k_VSY9iTIs_5^p0DdmVmP=;*O>5> zjMJ49cift+b6^NVfbe7ZL7@v6HAhzmYF~=_gGCG4Sb}Lax&;hoz(Zl5-}GMKn%P4; zFc;`PFrX|suIm7$(33zz1RclJ!%!7JGxUWUe$;(3BjoDV=+-uv9H+N0?6OYB zbm+?ewxKT^zESs-G90l*$FcNDGJI94TM6F~pbyfUCJ-VSDoBzaAeO1F^?9_IhCpi6+-WoVRXyyi+)ab9e z5W4oO^h}3=eXgw>HbmGWJHj?%t9~2NVe2maw~ZQLT-;&!fnMkIYXoz-J7V&H>b$;) z0TC|)LminP!>sJAp7R1gb!BQda4DkH4c@K>~!LI1i z_|kUJ_KLpH0t|?9bpg}<)bIOxyZmp^Mj)uIz#2BXsgGu;c>hN{_dEJ0W`wExeLX|( z@P9-e{Xjp7VYcuy-ZhJd?%?z>YfpIUg?@(*3N(DK`68E;4-DhHf8Z|eEwqOt8l_ZQ zV&&nV-YFh-M6_;`l59`JiqMq3Rzw`uCB@I2h*jNFyoq<=>Ru^7&{R#|lruIYL+{}! zDw?4-J_Vf|#6<$^pO|7#^XjB2dYYkLk%Df2#ThQCQ_vA1SWMHW7-{OO)D#<9%sDf~ zK}a$L=BHHI5^=XN<%u;F$ENsD@!^z|3W`uRJ>>*N5YJ8-LLaepZpt?_ukDhQbM6fc zQX!}dy3-UqzMNtOoc+?=;QFm8mw2ZwIG6H0Lqqx5X{c_ICqVRs?No(r*HXq(lMlO} z;z;e0{W9e$&7gRj(v*smKcuXrM)*dMx|bI7uuC<0YMfK5$y1)LsU}ZFc%+V`2!}mW zKT?ZcXqqafsWHt`O`bZ@BK1$2p{{jm5zWxALuxI3nnQT%6O-5@6>YsjzIKH-Vp7qG zOW5t3d!??TVrK7DbWL5OE>mjLEsT~@LQ|()` zd-bv47M`p}U6MT*Dtzb+p8Vh_1XBl83Bi@BRHhHB+)85Zt!36?nI#AmJ`{rK*@d1^ zFf#QfL(hz&qa~=CZA8cH)ayOL)yIP!L7P#jE%FjQB8X7j%n6~<%Tw99D*{Cb{k0;sk~Q+Mtv;=b5rWQz z@quu}8dOUgVxg*ArD?F$`qU~1kiI_N18&=yI^PEC3iSt5(c1y%2YBE}DtbHEkQ9d| zF;Avi67N9C+0<)}B*Vb#sc2pS=N)xB6)gn8Vv~ER=sgvSZ6Bt7=Rm}>Z&QD>CgL`; zv|R!sjM2l4dg2$l+-wW6g+5 z8&8Y16Q{kVss=04W-{CwZK`5j0ji>Ypdd4CuAqhtpDVJ`SlXZ9rde&kw2^66;J2r! z^;2c1v77;&*DT$eLx}{Za?^ysv2&?4XkVB{8`66@Y1*%kYrum-1bURgxt|ffq{Z@K z)kJ0hH$HC<4TiKjb7cC6(zLn;sD{z#!2HLuG?oz#RuXa^v_pLG0C)AbX+8{X5^t^% zWO5;6X4*biK@ALCk%sQbsevDVNJDqz)WEf?()Mw`xj&^%XpVm09#1>R{eALe+P6aV zD?6Xo!w3D&d!BZbOV__l+hB=)8~>d)%MAUlexJ62`+J00`Y3Dkd(JlfH21s0Eq#Km zpbm{0`hz0h^vw)*#nCLcd1wQsW*2(H6@KaS7+O?_oLwz&sQaSVAJMiM^lOoBFBIG+ z9sYOi(wQsV;tuJSAhUfs%f^T$Pcnyc{k#`^)FFK*OSQlVr~z>VksZ<2X%znuDVYxEsmjyw8BRs~-`a{(@0E$_vB%-8Frw8R50IM>0bW=CBH%GdnlzRL(-X+iA%2BB27mJh+tlUNewd<;bl~$`!h^-puXQ! z3-Rc0fj)hqJ=pu&!2=F2NEa|nbNmM)8k$-IrE`W5zAj1^psTD<<%TvB)6vT&7B5Xo zUr5CX-=?G0fH-x~)bx**M3l}>KVw0}uHU7j*HxUsWnTJgArU>7rk^z@;`MnXnfBMbo3g|5dTevfoAx90H3;YP{t%1lA)J~$Ms0eSVxPU z6K7d#E?%|0dw8Rl?d6T$Za;7IhrjSfe}9xWdXv*U!hX~~PXr>K&CFKQ=+xaiv=x<+T6j7sBx63pcUDP47j2it~r_8MlF}gMM zjm}iN;z$RjQJHR_PLYldt{9ZrwIN2g1_-t>uE*ezB+~`dZOm|j`-WxSaU|+)S7e%^ ze~K#86#acQnWpIfOPgtm{-1T3rszMMk!gzlo4Gs!%+EAMzo9VG6#bRunWpF;Tb*f& z{@78Ors%&oflpmADf2H{t5#3XG&Q+BW@W}u_e`J9KTW$Z(^My#FU~a8iN$Am_ZZG) zrcw7ixtPgx`yy(Wa$)`T%yqO~U353I1qmPU>*Gv@r40}v4xl~ByJwmCRIGfNd4+~$ z);nH-ULP`5WYh{bTV$CmS1ruiO>H#HKC2Pcu*f;97sK=fSL=sz@9T899p{y`Uoa2P zj85NO))7qd&SHFzIQ8|zAsFnF6~ORH1W-9Cyyu(c$Wm8O;Q}zPc^1RRF)*TE)+n-= z`HvP^BhW|bW3603kASS7zg~F`YZBZPm=(a%$>GA^2WMSED-AdfW5Ti)vvRl^p2f8I z0dr^^owb8-Zm6?{Ff=Prt;-VA#~)42V(2P}_RZ6?cCow`Aopd0kCj>0 z0Cit(5aea$*aGq8RvysXnAMjdtT{TF5Fv(k#IX%~t@naO@YIy$>C>_0l&&w`lDI6iwUv&lGE zxO7sso+{xvgEyI|CVLW1eLA0a|G|aXC#h;H7W1j)OS8jRs*>PxwhG3q&i1k+y5wxl zZpoqxhXXhq*nL~}RLc5~J-jZS2eP5Z*Ehis;Xbe?)jIMENfyGsce2M& zewQEd{2IT=UdVE{H*Si01Z}g0eavzk8WW~-1v!-IY|orCEKEPc{?#;RK3ez4RhFgA za%!pPQ(NSq!|QQsSgRcL4HJtmTjz{HD<`?U6FcRY8VPxD4tklxsdk|`=w%LzC&O}9 zH6r5pK{=*+qa2dcwFyaGqsuWhRHZ37VrsHKvvOY0Ch2wo|A=jd98>$2U7Uk19>9-? zEY0z>BBHvQPi;Rc$DXG4o5&-0P3B1+`8H<_MHn|Vr-lrwVZhv+zoH*fT=bvc35kmUz+ zxTUR}uMEd>(2N2W2cF1jLya@)T+T-_et*tqooM% z@AGtyKji6@KjzIF^)v^aip)KD>vR6!*T2a5jO+IjHlDm>>a>z5+6!??8b4@-t z(k$2HgZ-^@O+J|0HrM2X)17inKDZj1dyt0W)^7YG#`VZG)vfTJxu&pv-Yb{d6>jg% zXGrUtYci}`|J+|G-`7KPx7rJCkd4Db+IIxaOCidG4=Y-^haNrMV&Cpibfi zJ1KIHu+%b)AWP0=dEY~2dxN0#+(xikm-{_hxo|<{0y?DSPG{4kH$+&MSh{&cWH6Xm z-^2}km>y~im*wSpT7t>(Y7fw^00pe`n>;W0u_!kjtqtKQ_Abq3I6VfUr+i|Vv0LX93o!^3ZaQ9(i;pO+-XqEn3XN`R0A+Jl62}651EG>zc>3wH${vPZJ`V zvuWUL?wL2~U(wqa{@yF^Ijb}Osc2fCye!J_PQN^sWhh^&%z4HaIuFR}$TBef0?QHX z9#G^4e;bkas~yOcXguKVq`YF5ffWx6QShvHBB7j}o9Bm?qH$5Zur%*HS~A9oV@Bl# zQgQ#JJah>=PL)l`J3^~r_^dp%z8a?1_Bdy+5@gypT~4j zIj0~*VRr;g@IO+y!UuJEXtN9^+30BA547^0IG<;QJ_c}V-nz}}R&g({p0!;8i)&D2 z+&ZAh8$NlO_f|;U^x<_L({?-TCJu4s_wV!23O0`DYMcDK)E~=T^MzEY9p3pv(0(H> zgJ+BU$xdue2mz?`@`J5I^Cy{u(Y<{7gQf>dTLa(7e3rf#Z(qC|na{GBZ)043M=(6I zPzc`7NOgxk(fRkx!PB=sF0gU8{FeeEHtms*CRuUn-Jbb}(4ARahPnay%`J%dVo3f7 znn5%?Ka8cOn27iR%eZ`oxp9a9LJ2eQmo$GIgJXgf`C8~C&ws|y#6eUT?P%Z(1Jvq# zhNB{2Gfn;|7RzDUk-Gds;sLNTCBK4I`xB}8&Qy!X8TndPm|L0oA{sk`vh#0I#Gd*2 z)vSo3f_#>PLt&mFza@SA4<-35oisM@(b9Z7X5XY4^N&&A^r^~cIbQ{H$f(X|+QNnl zyN=F(NjWqgm(TKz0>kthpFe=1$%cEUc*~ zx`K1mDihKR(9z8})jg{K9Se!Y+xZ113r3X`{7C8*d|qDAoneOsR96?&3Q0_K7+;Xc zGHOE*y~+CA57P?HP(xg;DVRkGkDg!9l!_ac6m+1P0%DeC*qZ8=^b`C1E2St8`{_xXZ1h~m}j*1d2E zt9me|cj0vEnOpq}2e5huP9Ib#rS0jvIG*rQ2~YTUB~Q4cuJ90JP~mar3lO%z#TQhM zHfs+iXBDnu7!Tm#uHtfu-K=X;OE@XJa65zlW(808nB}+L4ybmQHm=!TXbZRI76u3$ zZho=OUC_cC+T|A>vJ{-gEAhQc3Rza-^NgW?X<>5~KlMCa*c&umQ|JerW)wQZ+vSCm z&A|o_TNgO0s<2f@1}mBnS*FlX*;vqZQ(+@eSL5XlwQCD^6E+}ZW8ruxlK2Yp&%PWOf1Vns!wGhn|;#9+n!ogNVJo|TH z2O$w11qM$lMp+r&QL(q90evaQ#oU|?vsoG-PCjz$KSC1D%Y zhD@@k$8+R=tv&Sc!P zezxH-%Sehtgb48n+7i!=EiW!H9H!%hjmr#|h`4gz3In>+Pip51*RD5gr~h8E(NIUl z0h`&=H-9mVq(haWV}^dj z#_;3`!#8#Wq4_1lF`D<|?}j-v@AB*Xu%_UK!HW);7Tz`truw|Q&u2LL&>*G5rSO-0 zs>LgVn>~3%TeG5NG(){jQF|wn+Ss!QU5JFWnCo4nr=pW@Q6Gj4?BGmTkp>v;y1K!? zI}~MG66aL}7qwvMF(Cr`m8x7DRfKN6!7QhBE*ed>Z_%UZCKa3XF7jX*^`QWX15Utl zD(o?^s3Rp@J*=pl6%1C1ilQi~!;&IXv@MYp(P)E{lZt+}B)Y_Fi_j`0td_s7$P{kR z^hGG#aO$4aBD7Wwiwo0>Bs46n^NLKtax=fE7j+ht)(;EJGRKr1v?Tnswr{<*IuD1l;)s_br3`!u&B4t0lxjds3-OCpoK+!Xz(pr zTy&78mMkwar%HeO6K_o28s3=0))fhCiGkEV^TrI=&KdLcKvZEr?I=R4u&@P>@8XTQ zdQZ_bYPLa#c-)ppicD`2FOC+WwI;aOg5yPKy%iR>|61fsO?>%6(QYdKR9}P^qu>lv zZxsDa^M3cBXg}2=>q(Kf4axA`n<6bO=J25?f?-7;H+YEyF((Z!pPdATi-aRUYu92o zklIP{H7i!oz<%4h zm~9q_({1=Ma|@6=^FEsJRTZPx-+*E?Z-`%i9YTwnFtjAZWM9DA!_yJPZ>WDRbuLCH zcVGuzk0}lpg5lE~Tw&XO#Yd@T<^zfs(+pdN7JE?f_qgIJ##%;|JZVxAZFwnngD%qI zKITNzjHKe*j6;e4z=p_x7Bt)}b;a&9O50}?_oiZ1Ua^p>Q&Uvz#4zhkjN2noXbZ-~ z3Fm>6<;5&ZA8>?mDDbYaxRZcbp<`w7b(UFlJm0WrVR0A;+%nJ;)He!sgGa^}KV$LM z7g&BUZEEp-f#5V)a^2M(rcN)G*rGpT8o9ZHl<$ktdhG9uym$)Q-*(d06`ojCY)%{4>pvAUU4V?AbG5cO04VcH+yJ`OFAKKa zSS(|S8mutF+Cb~z;%&uMlwQzIz8zV#w^+|IlEh5Wgp&g9Ib0mri{TyDgfJLXKOZE7 z^Xy78DAUGHCHJU#U0h1;HYN>+ZMzb53Nda&RtJ`#eU(^D4=R~UMYoU=bUqSJJs(BJ@~wP`|^3K`}29*4dnAa7*z5L#jT6w^H#<4dD|xNdG9Bd z?4)_2g3nu|;`91x_`KJ(C6{Qgb}XaBj=2^gcYDJjc_qDB0|syi03o=7g@>$!(7&i; z9}SupB_-ce`!B34X-371)8l zuP@7ewSd#>OCDL&91d}TQ?Hk#m|;nHv*agpEbYBhlF862a>xK7hk`vdsn%fK{St<5 z3Dc{7P!fgdfg?{!80Ic9$l|9ZB8EuBS|9>_!RM3YYG0MGTvGNK3ZEr%{Y^=N6&Rlx z;;~|IsU5a-l3i)85KC8FO09@TUU`(-*y1#2|59^HEVXP^ddHs4*I#4N0eHD?66XnIUJYf4;ym;(cB4Vp5&Csx8bGAuh$fC zP!K^qVhCJZnCHQAD~?H#P~hxR<_gh~Wa4%3(%iOCX{Abq2I{q`0uSVOM45^pMB<*<~yO^pI4R|EYWY^+R~d2f=jra zlJ1GK*Wtww=UnV>QtDO%l#J- zp;3ow)zO`T^y<)Ltv+0%)rEzJ>GYAo8ns3ft_f9ZbwR-)`k=_5;NY-eEvaG%SwTM2 z-8){24$Z6s=sa%ynbOq_&{z-moGrb_>`+AMy&0I^#LX3ayim%}Vey*jVbrBk^hupl z3ZAPkMQ0adG39FM1crWy$L$YM?{Ux>1sATS(pRM~S+xa7+x}d?MvtL-_@=bIJyssJ zwJaM-90JGNlvPmC!?6s#&0;m$yOwF~iMY_WYz10H&gmK7vJCB=!=g{?GIaC@7N-XA zsfnG+QqVckT;5aRW$iqPXfvz~?OnpDSB96NZNgaG5?eN%<`qfGWc0y%lgfIt%tV{2 zL=YHWQSJ(->B{`AsS&~5WYi8m?NsIkpJkQ3BM$-}^2=Dh7k~L2fSyCG+p@51CR*~% zseY)UY$LVU#L;DksgjyWWou{#zu9GILnF@ndQRD|Xwf)V?DE1g^vZz6RV&IOsCA#L zDdV=)a2dL9DywH%#BbuiLg?7r3ECN2n}isEwZ++H6;&H5k_Bp(PlyyFv-t z&oR1!LC4D6L6f>NIRi4H>Ibf#D+>U}_EdO5yS-)m7+W?9V{D$~2*kgXG1hgA5=&aK z?+=tsw-CGl9gdd42B;>5-ySO)-Vm*%aNNnVAI%VzpfhDl8bqc1Y#GbJzg%K~%U#bL;c65e+eKSAft^o#d{FdGNCA zlBM7UJn(l}6KnK)#jIS0REC``%QtfA4{ggY2+;2@_T?A3zZbZc*K@yRO-OpISNRno z`a8H;`4~I&yR~EaSuX#?z;bjN>y^2pK*U%%q-8gMZX2}iQat|621RgRDQ+=r62l{ zq<_Dfqz_nIp2?Npx{27WYD@V$4ySxuc{FG5+CAl$xWA|UQa+HeJ2Bbow=yTFKVDvh zU`e0+>}>hn2HFc_{#O38Iil$IdwB+@%H*rWWXtbhlWo0U?!YBGJ|Py%eo;P!)9C%{ za(C|6<$d`|^jo{l_!E~cS!mp6*MO!V0GL`z7qHLOxD;qco8gy6mQ$K=|Ilrw(F3UJ z^;TfLyYVFhwY|-aQn0ul9Xx^VmvM*v8yOFyz(@o zuN4s|=Ni!#cbqEAH=_OLShOuPqW$MsJY+DU^@dn9HyRJ1Lp8alT^eJ&&N96Dhl7)+ z8>b3(;^9r_8OEIqfyad}MB&S{a}}}igXmU_EP-Grd^E>6LMT{HUKH2NH!@GY;L2pW z<3dd?*Vw(g0=c1mnk8^sXjC!i8Qkh&OAxfe7`1hg@iI$PngEWoK79BVqnZq^4*p<# zXaTBZgI&P>)y5qS08E2j*BaNdG|*TbL@5of++bX1M%d^#8|N^xfe6csC;XHRHKJ=TFwu*bjek(_ z;4NbxXOi0Vl@YDs!5QwnHr{JR#Opp4Xn6-t^=(n{kroRGs6cOiIMu9E1$uYH;<2EL zt3o2~h^$ahv3>W7DNc-*2FTK(KsCIg3Aqep?9ht1hL|N3BCLKk#3DN-6}eQkZpw=7 zR5k0gisj}+iCvi$=Qf{LH4N$SuaDzaG?Gni`V2%yYhjlqk%j6BR$B-ENA>W#j9-kJR? z_oBsQ99VK(r3h__OdEEoXSH7pZcb-<6K|Qf`2JeZPH9Uf5E|1{yedS?V?EVto z=(Wo#YwU<|s=HXAFC6aPSq-Mo1(?BT)2?X7%9%{$?EWdYiJ$eGvvEdSv8U-`U~ z&-2v#U#JYH9Hw5W>_@$F`(~vzP5tzsvY!iE1DXW) z6j)Tbf!vR1(kG=@l&W|$(_aAn6##Ees|xrs2`o5J)frBiS!GG#md&kt zY(e0bE~s*$slP0%O0YFy!A|R{(AEP?@5Y9z{#5L`89k4rE~%|rV@^cHwyGA^e94-< zRR_%Zzj6;$jkDqZvO85}XeKxaM?S5J6`--N%b9&qWs-dC-% z2funZ>kkTSs>6WZruvt!k9R1ut&VU6!#g)a2Mji;zHLv$?^;#gwIJfm_SMI%u(&ci zq}q;1Ro&3hH@MLBUezeTu$VZodW$&`n+~l;%M)>GtJvx;6e=&F8hz`)scq!dmuUt! zRrPZ!HcGC3Xi813MysQ7UhAytyEIjhS8azDIC5-#imTDmO_HIsy0w?!F&=#t&8pt_ z^=1GYHg0STs%KY^6+DK*In}}k5B1*q>csy(RaGpZH% z*n5;WkoFnX0(ko@@dcioG}(7aBhZEWhpv4_H3p#fs3BipOi%%u{W;bhg!CQt2vqwc zY;Ch8&4JH=Q7ysb=1V-lP5&i6VAg<99>A~pl3)7Kq%>6^l{-dhCxk15Y7U+a9OVOqnWLS6s?`!d(5fZUsa2~b?LezRqugAJ(hAhdoP1@Lx}Z>( zuT|$KgA*;6i2omoI(}Ic&KNvua-_d5I5<=vo*Wz;oE#Ar7M2_x6&x9@RtH6gMd?Dq zBh;X0uPGD$doK0#QBC0cF{2jP`m42J$x+Esp}Np0ZCH3@vN}Q&8XXxPg+BYD5DpF^ zi2p4YM2O35{q&JxQPI&MVF*AU78V?#)<*;*y5SMw;hOM>5U_E4%|!qIk|`Nrb~opZ znvB>*M(fm(A<<##XfZ-v{oO2*hGbdB1582@zEj3 z0O8tjeQ0oyCJH=m-l3>JOvc;nUgQPZsz^ha?AwYNJDS+R)Ij$k4E8by%o2G%7qoqebr5!x^3% z9}4{c%Tt5Eu#KaK`i1|O$BuBF76cw{9Bu0t8WN7Uhaxwka0?9!jS2~h3J#9aX%Oeg zs353rG%3fzFIb-(5*8dBo*WU3xP_z4QJQ3Ra%4o1E;=$I8O{()+9U7_3klU}bUO6! zL7`z$;Ze~+C?!Or57&o>Mnp!!kvr$@7Wn^{Cq{xZ^`nFS+Y`Z=G4q4L)$ODGd~{)G zb%j16LYs^%stXH_(rbdk^kL!Ax@dhQX!de+Bj`M9jLgDM6QYj_OAbY*jS31=2dg!q z!4biz#v?IO8yp4&!>1x8bZSksIw(9iJUAje?Eho$P2lV(%d~G>!k&dC31R7TPQns_ zEVZ24Si`bIpX> zxO&|)Lxxt&NUPV4D5%#%C$U3EkC+sKbmaq!q>mNOXzA*smoD#^S<*PhII25l>RIQV zaMIyN9DiO(XEX<%UGmPXapz7@@xLz^T`hSYHT&U3`&1*-t4ERV2A=EJ?U*5<*`{MK zW$CeLhk2K*fT*E)e2cde)V} zTMG@pp2!@@7_>urv7seisJPb1bk_At@8Kzmt5vIaTB?`TsyfCj)z!)C=k8LCL)|oD z&(lK|5QD{15A7td^cZlHXXxs^Ib9|6^yzONwuMx{0A1Vl4{k-%UAEIR_#A;TlL}}Siut4v_g8L&4f_5T+?GZ#FmShIz8Kq zQr(wlVc7Ud>{-60bDu227L$h`#2%f%OX9`~<^;BfG2-a49oPNDWE~83k7sj2k1MCN zHY-?3jrqi1R%5<`J@xmwyHyR_wQVX3>ULO9g4m6%M0f4L^}?8iHhu4krI!w=U}PCd zWLlV6QQb;nSJRm6ELTskFBl7xRx{z9)OBx1)kr)V(bNMs;VGiX^+Vh6nbMs)&+V&Q zj_ewf-h5%#S37DYReSjwR#Nq9YxQ1gs@}DO`u*W4-uo^y#)cOco-?E~0u|~eAuGFs1xa&jVO=I$lVvSR*N&XG zqNA#dVdwGX5Oh)y|C6$9z;_I?mTZq z)pJ5KalOPgy?|wwk!{;1tF!4kz7|_~)hiBKbncMdf_mbIp&2Jh-82o)u4`7Tg|Q#m zVWL*XcZ^EkowE48j!wghxc^Y6qX(AB)+@I4n0gVNC|I{BX#I`D~I#BxI^t5_W zwRWJ!uAi$ZYuvnX6^9LmsWBfI8uK1Ii-^%5v5;ZST9I1u@-oy+ucS>XW{9cb(R7wy zXZ!`aRW})U4hyeaH`MG$=8j2MY<@>iM<*sC(*i3yAEufhk_~}wSsqi2pPoE!(Ni6@ z;(CKXtxV?WrFA|?*UHA%k^9aYt-4R_-F}j(Px4OKXefqWYzDk}ou_04^L*QjV}mJ} z!!Ffepf?ujO7T`t%~;hny0M`7dSP=7TB1riYA|rzC53O#)MeZ~yzipX)v_mJBan}~ zYNFY$&IZ7V3=Q*6_al#o$07_}%SqgH-DB&ScTAmipa01WS!YQ3fo15}`UWF4^pkYm z$aySkHp??RJDUx>#a1Q?e8<*9O^X6Av5Z79B{xT1akakMb^m!MmsOjOy2tmQH>~0@ zcbb@4p>67QhZRb8u(s#2b@VZ}^ndRj)xV)(wn$9hWuwK?m(T|jJF;TSG8k35*03BS zlY^L>y5+IdN1ktly6nY2;W(JyRT5dktwAbd|-BGDK5!Z8E z8~+N=;kf||Gov(iJ&^V3j9)BcxRun}SeZ*}mGQP=-(KW9PnfsIB*UCkZy9R3=gG6V z7!fABvcQi+JHTd$qr}w0q_JZzae(CZ`t;|Q-Ow?!xP6>~VRgGmx5LEU$(R6h-8K}E-bVAg{;i5X>H z%qH1ltK~2q;f%2q6C z+w#;G`&W(IuU2ORvHhY$YQ;B!y~NruSxx@rysfJ&M>;F3R}T!jx9z)lFpSWNbl-Ov ze_}3;%om5-9}A8_Yb+#%85K@STrCbA=KnhOhoA6bZM=v< z6b81MeGad^wo;ZjZr<^DUiQzJ8?lQo!H~|&v?$XC76pC~(}`Rya1zT6WnJ?<#-5qT zpZa=I_tSM(;>?jdE2uP7vvJeZ;^GPewQj|FM>*5yjo;U3*`VPM4A@3kAzm7`A2ADA zj8lw-II`Kpr_Y?d5a&m+Ur^~COqcootfWz*fkUUHZ|VcjE_qwoa`uM_-J`1|4<(zM z@p5UMoeC2umR5oRqPw_TJ+`qhwV+^v8k)mF<7P^ ze&G(BAPHMqdNlrnko8O!06nlnFG{f3jD{(<-S-#b1SziAQQOR#cS^OmUN0YA_sn8B zi`aRvonbTPuo#dD6+{M380HR7?5Vzw&Ff#zeEOpmvcft^gx^QUeHexoJBWI0<2A|G z+!Y5e{dz|yiB(qY*sO|p7Gm8`Sk%LSC&4qVsj-(YADynM_2LUDth`=VV{cr98Ch6w z_Ar`Sv0&aVoj#jnEG_0em;Ey9sLz5GV0I*Wzzx2FuMvBgA?Aw<%h9oeje6+U@w4L% z5jUCc*6n(_^0@_1byV;|;Sk1db8I}wywb!;xO$@dIKNHx?iEW%e*YxKkCbg^G4_N(8r zYGJ?SNb?jlkT+AKp7&eVD8+{Ig|n{T^r+bmOO{*dnL_*~CtembQ4i&q`q@n(9> zhA(dRPb41AzJI|nRe1cpbDgbVY#)7B=N?Zrob7MPQHE-eD9kr4Q9d$^$;H0WiTwxAJ z`B}PPXvOeDALxjy5xOQ!mr{s;e2xK~TSYV(+;_I>Cx-+@2W|#REAB z_$Q75k?V$OYXJBJ`?K9y#33s_=sggxq`=s9N0(Tw?fMR=H{zWk$rFDCT2or_y4M!y zHJ5yaf=azSc=yH?UE?P>tte(Kw0vqNHZS;F#{R^S)Nv{0Ui;6IQ< z-Ec$N)QKEPT&ino#h zD8M$7I{0`8Sc*x)6L~*0Tb95PrDIQBKOHbLaYKz1012rBHPSrEuc7!THPiG+yKnuasG6RrW#Bf^4MLy>j1{ASE+^H&1o;m<#nI|EXfKVtselLeK$%1&+FW_ZmeIC@E?I`nLL;4>UE|Ky8&Sfu{V)|MV0#t|qXU3kSrSuQ7!j^IC zgQDKWeKH<|YA$(UP9sLXQ?>Y+m=q*iz%_Ula7-cSe{jAQO<|JbrIQK(;NQ(>&PI+E zixOFTF(3lK<|GQZUhFski#$@|d@nuO5p<;i>W|bA!veHlcY&*d_yCCF``}SnM)F>s zrwo+TZK;F4)oTC`AL> z3jPPUVZ9E7$cq5yx#Tg{JzfI%IY2ZUzBd<~WpN`V1DC0iE;{IJo457BZ_SoPt){*+ zV%{jSXGB>UOMgyH4;c4(y=?&$taN42=(L_P5Wi<(wk zX#)cG$roAFu(~uXBYf`7 zB&UH04#*_|n#=2w3=_Uu`Gl4`X^LyN)PBF|I=M#nYEjLN;rGgKx`tK3+XFvlXn;os zj2s5+5bAm$xo~0VHgZF9*rG`~AgemSOQQ}5QSv9)n9{`9aY)AHeC>aD1S>Y?+0;-sA;V@H31M*nr0nU<1 z3^LkeXJAIyBwl~cdP$xAIqOAr>R8)4nN``i``M{o00CVYPbtkWL`=nBUL(Ij?lRH zr5O$La&)!inFQ^8&PQ*XuKMB|N47mCZI4OYW5T-7_L#IiCT)*N+hfx9m}C?MZI4O6 zm!|D8*`zC|?J;S4Oxhlk5BBP{Jtl3BN!w%ce~!oG{PgOrZkW4;8oTKHPNfaGYlrlQ z=k^ZUOl^4gwyo6KUo9G<9ysQ$;i-Cj_5`%Pm(LoOP7XHxyW64O-sy(q!xHU+g&CUF zrG9nitP$zA$K0^n*pK0j#|;R(9{%nqh7OJ(4n%P9V}Lmza0)^KL`*$QPdMm?w?3Nw z?tmNgj{njhz4UGkW-f?#APt2q3%(cpj>H%tDkFax{>KoEi*UG>o|RFCZl>M%%ds`c z*x+Y^PEaS3<_5rYj3mJeAK9*9;k8w_Z2hGL)v}ZHTW{Yveg2diZ~JKt{yPG^FnU3o zR~Nc8e2}61nw=9yIx;pYKqEsW!l|tPzaFKWPybG6-}8hEHe&P9Haa z=+d*YD|Q@q)0fV#lExm1kC!BL{M>;{9K!|n0v{$#W_xP-Nvf+_e2$*;q+a&*n@+9N zAZ-bSWD(LsutE}50yhKOYyfXu0*oTR!_u>|JN)VkH=TZQC5m851#JZ58ceW6Fkv1| zoIr>iA#}>QaIz?11%g$ACj!YamDZ(Z?-ecO;PWYk2FJOyAC z2!7!CF(7a3cyqz1G!H1mS_~syNW{w~gsc@jHF1VB4g>^~KwHuQ<|-r8sub34D*#AFrL5ux2i4Hqk6UAFT(WR)^|L(|4Xc9kfuWA)fEyZAgdP}? z7DVv-0!aYimF8rfC3A|jPe0vAN&5_fMU`~TK^%942Z~-;leMl^@>C5vNWncYBobN> zcz~f1N;L`jL5~Pl4)|eC0t~+;s6{yJh}6{Sl5k#wY$5Ik{=f^goDQ-x5wsj(OyLz~ zCIACSR1D5S<`&CT?_9BTbOSq8QmLaJ_|3xOt0k4TkU{?aYYVrkLj5Zkxxcg_wIuWPp=Yx6jCYJvWQx- zV8A46Fi%Eky!1i@$IAb4XAD|ni*z4kO?`b zPb^f(e&9}t!bYgPq{jXjS8c*T#aEDE{evnjZjeEPs<1C|V*{gFC9lbssMc+N=^kAxekdN?aW0d)QYQywlQPKlI5%FGdUXp4?FYV5CbND2!{rgSFG!?ps*py!YpJu2z1CG zL8A;n*AyG24W{st))^EzF6ozp&MtXp&4mkwr-G+aeYdY3pOLLr-2{#{z|YugBzSV*_lkC zTLjAo&VZ#$kLbJ^1Aj@4e!gy%)F_Rqscgw&&W7)f78JBB@F;LqA`k#p1CXBXbh5<0&m?>i@#LXlWl6UEB zI`)?V%O~~kLN+yDDX=BYUN!RwG-wD#f*` zLv~%HXZtSn1`I?jFh3<@MvEPoRavoEonmk^COu7Hqz&XUFq_y6WjTe6O(^!+WSar@ z5nS6CT-nN1VHMPIGQgtE-d>Z`5G*Y~=?){+LXY8SBqVAjwbnDxVU4{;QH3pwmJX;2 zOdZy@YqHpYJhx)F^q^kUNcw2-gOlK3Vv%EVn;@TfzaH3h@XIh4M{KElks2Wf=ZH05 z>*&-lG05Ms*(ip*ya`1o9Q8B3Kwj)_Sv`IvUFt} z=D2b~DDvt8!48q+kc0)c6xau;znj=d#U6-O>#(?W>_OIHafb{Ctz2-u7QHpMImAjH zN>E^Xs&~`wEh=WrrrxKAisyo46SzlB;9q=WS<0=djCT)?OAG^{m=+X1lcC0Hz|O#r zjf63o&*=Fe1N0q$g@u$9%0%*-JeiB(yTuO&Ku*p6EYneLB*INvRJ)!nV>PluimGm; zu4L;Nz+FsP3^_&^PB{bh4sf^;G>+`V;<&MaMsI->w!mimut)*TRgb%j0!Zg zwk@c^5OR99i>@vL5qzaR*sQGUV6)OmE)ZS}(x(zuXr@I-W0C!VsT4|cQquOjW2bcO zHp}kCr$MF!>Q4r<9aNFh(1P5950}OW^c?9_E3Puir;2J}ojxq98I*qAq9dzV)RDx( z!1|L}Ax0F&1RSpcYcq-m`7WU`;T3!9T9+<{;an9kzXkoA6q; zeTQw|;id!HZQo&`zozXw+?3a{?K><0bhK{3+P=fK?=bUNwta{F(zqpVwzltZWZQSx z_8lUmUF5H9`wla==tke6rKWFn!_f4mmlxf!Wyindd~s*?Et>e>;fvc&{p^&thR=WV z%|(1}PTzd6mOt99nCUqqu(-2)7nkVTHZl2^CM|K?R7>xNpGpe0vy zRB&_KL_Kv4G9R!}gig`Mg%bg&C~`p(PwJOIEU7wBXB&%81kzMktH34qtAZy)@D$ly z;DETVEf=+O!vSRiPaEKd99dX}WWq-<+U50uW-OXW=Q>L#*rPEGe z^np$TTqw^bZ{3G;fe<-yXtcc42+cX>GJYbrL>xGDB!-|Kv9-6SQM~JkXL)6*NA0`Wjqul0N zNV~y*Wl508mM9(^SapIFC|T!-N<#Z6WEEDN6ZDkU+jy8ARrQF)yKia2GdRg|)b=~x zu~U^u8}LXIZC{x0(C!v}b>ENabD$*6^Z~m%CVHJ1uCSnqnkiw=421OY}RIH$T zW|Dv#_3VpZT)dGbq*n4|K{L#7TYJQ{M_h(sZjU%w5dOa(agD|KyT>n{x@AXSzBnIw z+G72~F3$5wVBvFX`qa6%{c@3tcD%ZgPXj~jsLj;RKKa(R>G8k6tv`!q!f$VTa>#!p zS7s}@;xP5KTOS&##(#eKaP{o14|S#g_Wo_}9#aFnr<)-CNnVKRMD~#a)Dv)ru_Jno zuzh72Ev08==D_2J-u~t`Rd_uK{JP}fKnx>vv!vr_z=%P&vkXRR%Aq$csFj>#=Gh(B zop}3W+tlEWMA99pUNGgbI-#nPt~RC(Zhh4cqS6qL!ToJIm(8U7W zfCvgHX#pG6fu900@@+DC@++2}m0j^OU%dVOZEAqJgAjdq07#&M5P?T+7b3tq2qoSt z2+$cPsRclx3QtPOUHaa*8t5*B(G$rpAbhOB@(8mWdg$Z?V28PlCMi2BeI~sYmN27J%_OC=_xr*xXo{h7nxJfV;q$ zfuL6JU8fe*N=`EJ*+-wM4&JVY9JmJuo$QdvEd&3A4J?{tbf{$jf52c3Ad z8g(gex8>)Jcae3|54;O$fyT?;dWO7g(ZLWpPY6eau-XQv$_6Q7>tXrGz2`5xFFW(gpZK);_mvcX z_w<)wdf|?L@@KpJ!;<=F_4mh@RByd)YxN5MRWH6fYmz$ti6x`dTaPT+K|MD7A4jU%)k}6( zE9BVoPYgJA;iF4Ns@>MK9NR@bCCA=)bilFhH5}XjF^*M+-L{2#diXyMmy2$tYS%2; zEB(S_OU~)|-+31scAmRuy4jOUzPOp%?p~hqy>BhqMU8uw(y-^b$sG^6ZIoK^yDx37 z-g|~)Cw`Y>hn;xuX!Y*p|G2rj7R)Y+NPHO^FMzhuUxleM|I4%mwaEX z`wn-w{c}q?|EJ!;=jJaNr>^hhH^3sUSCLa4ybxY6OqboSjk_2jbq>-T%#(2Z##cZ`K z(AN>}0Fe#Yu*G6z1B6XpgGrHeAjteZ4Idk)`6NPFPF!|1mtx=1Gnw1p`0`G{l1)ux{9GH02#ODbJ*G&M;-zqs=kdoscr7dB2tw#=927IXK zpOYBmphcgO5srdGS*@brz@-W+%v)o_zP&rD7yq_ouYF-rZ{fT4LV(QpJu!*Ay5>Nj z;F7fpWhms@(Hv9lI}`+hR5!Y4XTZ&8y?t4r{2vNyD{kAsS=XU zL6VD4a!!D?&jBRpui3E6Ld68K_q9+PBWc7O}Q8&&I#aI2UisBLr$>x^&fuWjvG5FQDO%n3F>sKI;7VD9MdKlj7-a9YS?+!X+y%H zxaL?@^`)oQN@@=BbmVQW?j9lh^rZL`*W@Yi8!?uM48?$1ned@v&*zJr76h6NR$|9x zAw%*3Is&r!NSkKNv2373@-kT@6$ToN6!1KdVn~j)N0>`WJPC`nsa6grB_&Jpua(ps zsE)U~$wn@$G*Bns-F-%t+A3|XQ|-R>H+FO)b>oxG#as&| z3RA2>mMrWVtSER>)XkF?_os7})aXk^OcF^>A`LD}iVS%WM4Uphi49Ti z%JZS}OkUiZOlBq|G&m|mjE05Gv|v8a2z^^AvjBE4D;#kXrkT~AT1j=JdS?o&I9E1liBMpwh0=^kDo zi&w_6q*>E{P#6kDODbZqCEqX;&={5GL3D-}Nyy*=m`DwVkwZ=*a)Cnr&*GIs1aih2 z<_WAs0T8g~k;f;gH`0h%uwvBpd=;n`S4=`7x$>QMQKf1{??O{G2O11cLYh_&anQ!F zaIteCd)@Td0Sl9w8oT%M{tjsXdErGv>;we|`URd3dz-_K*8=uYSD6%1p8U_6O(r8o zFuXBnE1?kx-htFh{y;apdjE=6SToEh*+46)HP4`w&DkzL>fURT=S^x|*g`h?M5l;_ z;IV{y4BbVtrD2DI$VF_Yl@BbEX}vhE)Qab2iYaQPK|`&iYYwsu+Ho~q&HxZ8EE1Pvg zjeQReng%KYeAHa;IwhsWniJQ>DHm3%c~|@M7{G`_er(lno&Z`=xlEK zdH1$egN-5VA`m~ZyM}T?(&SkpNR+iB9NdjeWnvW`>HVy{2{;EckQu?ZNr%=6R@R+7 z>pB-hNl0`?1V;#@faPF@0jq+VgG^t%=n<>nm3QDpD5*9}R<4!QYUaixBpA@s1TgAA z6JbDZf}cMD(&R#Rh5eDf_bif!o!l>YDE3&wyGTet)W{IeBHD^>&%;v}N&+<-JeD^i zG>kn$hOFEyD?GU2JBHz;v!CG3YbDh|V29aDmU=;Tn8st4vX=e6d(s45Z}EJ9c&j6& z1b+*6fOE=|AucvCa3ekGA6q36))c?ba%6^z+hLFaSlk1(L8?S0Zz|I~iGJC&Q)l7x zY#db;C&c2%%f^}nT^d_!izNz;AmXfe;L^2^iE1T%)G>T~YZ1b2=wJ~NFtKK`rP+w87FW$y>+z*0Kpj_Db%P&j z&Erd9UBd)~VT}o$2sGYJJXz3sps5q!uF>_}?5#vGrcx5H3NwqsTqrDvUnGtZxVdOY!?5#*j<@QxcosDU~uu3p}Vqe|=?WKEH z8B4$%aU(%0O6U^Fzlis4v5?ZKwK(5X)>g{q1vx{+eBo`ttE)4UFuWi(fyDugBo?Lk zW%6l(J0>oN+lh@Byc}>Husz^`bj(T~u)(`lQge{Y+!j{qv^W>H8?&s6SH_%Vn=MQm zQN{^?CLsE^AQ7R)#1U-kDDFa!scZRev*I&-;T&Lk!$Cl-n+mH5Sc{hJQ=xe*7@?TpF*jIea8a?FfdndM=Ij?R zHsJRnIFGf*;K3)1I}74HX;z7;HYWRg;RUyWuki9%rf!HWjBoQCTgZ;RgW7Qp-EAj9V4 zlVR5;kW=`65<#rs@)F_I=N7QflC6(HEEoPI8e6vM81jUW;jqx@I4K;K;*Tq?F_)SH zw^UeTwxQJ2u+x@puMT))DbjgRl9_Cs@Ik?_g~*r(>RBF!B5O}hYgi%ZV4|6gJQ*s5 zu)+9|$x;UaBAkJ?t=_!?O~+}sExfOzlL?XKjh4k745grlKL}Y%ni95MC!g~2>7t}! zJSn1CSy(TY4(w32I$-+pQEJ+|OLyGD(d|j7yk&@3UbyHrLc7K~is+aK!2##BB54a7Y)mLUB@I@{*wV9iH`S`*s3pW^2 z+Gyuu86<>yP!!kkdIg@%ig#dl=JQ~D6;~YJrrm+Zqp)5r_jug)!#jq8Qzk@&G$lgb zSm*Rd=y@Z+co2TYu+@STZ_t-j17s<2BVu>q+~<$zbr`wz2*40NW=OAuX=%mgqNeJ3 zP?0i5*ph>y3*C=wu%<2?lTJCl7p=dNsxzr`peaR_`nd%2#B-O8-=fX{BXuDgU~uxlYKJ-P zv!5rXhg%IDd4v~X6T*qspmr?=!==w`e#2L=6APQg8Z=yrJESqlsw{a~k+|;bSE6rT z@;qw$v%AL2xMj^EhD9(CS~WT)%A63G;lv2BL15!-BoW}bz=FhiKwLNT)uD)M;*Li- z*YG1fPwD7{gA-RktS7Kb!>r^bLYhc#_F@(Z#mnh;CzeziWos9YP*`bBfW7MCWkcm* z#rFr^let2Kdf99R@bbd8gwM@y%#Ij?B(3=DPB59+3&0|WPI=4%E^_VZis5&#Wg%#U zPme(ZX)iu6Nt>_|Ayp+P9|m5FyS}W}oF1yU(mcX<_JljeSK%MWJBZUyxEY0ukTe}A zuHiDqVMY7)aF1yYS%kARR9D>7Rzc4|2JS;k<2&nJk?$58kB&QI? zAkr6Nl|jwc%;>m>1-ZETdbSB8@1vk*HFXELt}-sRY!Un6%w;=lN!E`u2_KRSGW1Lt z;Amz-8D@hKz-t=7^b9ZoTY($T_`@=f6dZB|Kv6aJKCIxir^rH9++2hFggA@}dZ;$& z?BbW#lGTCgd(m@|F!b=EeOOQMP3w@7#dw!YBG7n^;kzbIhWF638o5Uvj$U@$SYtxb z2pbzNWxSB`FUZL(g^|_2CBxKbGYxMa%N%;D1ouN+i=oC2@f1wDMEaNDuchIR!)FOo8_O9^Afv%!R#GAHV04yi#TCM2 zm+@Z@|ML26usm3NVXcOU9fo-~ba`_mL~(~MUDM2;pbFC*@d*u>1UYZG6v2D5MhPqz z8eFTMt{y9ag*q(P21qjk4j768vS(+R#9?9(Rk8Y=93?f{c>-8*h2oypZeO{6D>d`m z%f?Q^Y2V7!%N>9wmPt*L=-2>L5V}LcEW(SOyAdnJpyE6Nz1>f`MbNykWd`MAl=Q_x z;p&oCCf<$)!lUG&@{t9S#Ud|^#Rl&r6B~Qsgs>(QmXHJ1BU!`nR|PCfo{$@|QjqV5 zx&;NgFRb(ijxQSnEO&K4$%%V822Tuzp2Rc!{w$0*Ka7z4j7C%^cXgE1td=iYc48HP zcR|gLs;!@^_j|~r`ikevYI%W`rppaQ77*Fi2#m5U1b|wuC1vJ}8B2Czmz{s)q zkO()hv^)T{T8hy`*972#Umj=zK0}E0(OMRh8#o2dLY&0;=&F|0D(-rmI)xSH{h2@?Prj5>Z66Qw`#_00dx~T2|G1>3ScalkMZpj4T#`g&g`9h^(v{` zR9{)N?1V~j-Rfo?2XVH1fe9A?J7a*^owo#qH7;(AZ48v5A}?}U7x5N|K-uRr8so4AM>CpHL_ zqZjU+PG2Nr4c9I^VLQ6>?N;o*V`w%8!8y_!Q4v-Qe>5~uae5M4;f$_>H z!&m}TL@18QpP(*lZ-iZ(d)RQrq2Z&!I>3wq6oPODS{1l;i2veCU@i(WP}Z16rhRes z{S-IFHD~cWO=atugoTMVYY~7NXnO(nvF0*iV8${hm<{Ks21J<{reKo*(1<7(qEGC9 z@m2>|gso}z0aiU0B_0n9V@(<<^FhW$3VK5}EfMllm;@OAx^QO0bOF9m+Poq7RV}X6YmBkNN?XQQr?5lQgg!$6 z`ez!@VF1OX;YxTIbmYR(>C`JFn#AZ3O%e@YbK(*Lo z(0B`yMKJ0vQb+iA1ielOR-AAdO0iN{ccgCl=We5>71kSN#NLhJh2M`H0F+!n771az zkIEZ+Up;V$QzF-pslVh-fe5D@>mBUm5Q$)nh=mM@#=_9|8_taFvsjrPDqcf>)w+=Jn-grilOk;CPT*4>r z02@64FFa8p;XzO<`9xTfKBowj_v5I{;+7hWr7!NHgB<;4;fsTbo8|1T#fwJQ(8wrw zGB1mb?G1{X`GpuIWF$=51Sr{U<0laJEJPk|?kdi3WV^AeW*sB?g!?YWdrjU2>zC*h zMV{Jz<{hIOdouvT4v{q6{CEoBwDI9RVQU5eOO!kOboIQ2B)F7RY~{lZZ{P=4iY^@1 zNxr02U?IV2#x4b0UH8cgK*WnRPc$J= zdduB%If@F82fInu4{?i=ph##PCS`CPWO=X`MF6ND5?ow!7)vkJi5VBvtX5yK(8!mv zh^dK*OmYkmZ^$DdqG+bL z3crHUh(m;oE0A!cJK^bITV%R1NlpT5_w4*t=0+prKt;7OW{Ez-<5O5|GlgthmAUcR z`eWDOHV}zF2o;dUVo?PY$iyP*TU4Fx(0lHVV!zrXH|=<%d!U=%NfRBmI#K}7JDu9 zQt^!fu*N0DgY<7}^GP4*2Vs4H_TV3|F~GE=d`8%T^aH>yENG&}`Sh`}FJn4ky>gf@ z@PH8C1{^Fhp14VI?eJo*KnEw^W|q`n&-{$wU!Q!@ zuW9>f+Jtj1XWzk!t67ukTFXiYhy(FG88ggz+#L)fKv=~4C?1X^ede z!B%K-9&9_Kvz^h|l4@3xp4b59w=+7&Z6qKpd1XyhemkR6wkqw6&bcs>mSiaQ=f4yu zlD0EC`!itM8J+En&UQv;OWy6EG_!U_=O*$<+ZmnhjLr|D6K##JwKF;^#rbsYjLuEx zk+w5B39-EY-e<~Gde#gjkKN7+0N)}XLPnRI-#^_XLORAUy}UT&gd-4t88a_esorR=97H3tqGde#wkF=f9Ik{g=y(IgwozYp8TiMR&Y-e;f(n#AG zodfbz+ZmnhjLvpO=fI@nL8&qAjLv2nX*;8{ozeNhNw@8c&UQxU#st!KM(6+48J+15 zuUvlg)*VY0cl`V)b>8gd55xNwKuqC#lOa77x*EjLNjQfs38D&e-!0T?;PFMB5-MIe zCiGCPTD^KF_0+kGw^El}_|~>+`kdt#b}UI>owNLrE!2;bah*yVa@P*&vkR8*y7hnS z>a#9+YuNn#7cb}Ym305bD;^u8{`tz!HZFhGKRh*TGqv`{Y5|w9Iifb#GKvL0Y}WK zs9if(R@Bb&^@a*!y{{fIXCJly;d4fIT%)#s@zzmlcxC1O|J6Sn``UFQ)#B>P->UTJ zIipnVm^u5YU({B1sukl_j!}z`;aGLtN?nCxSB_Kq*p(wcdJeUnf7|Zrp0O*>`>*`b z*t=$rQxkVz`H0%$qPZi~+sDpv)l0|nlusW!XSCXL51wexJy-6n{Nv}0Q+pmaXFK&z zd#s%Dzk2fg_xD`M=O5Dd_q=nQ({aD*82ad>^yqW%tbW)Ykv@>zsjlsC)1!WQ=VL?i z|GrIoKQMo2`saVU^R>-5)cekzw{>*5ivO-v5B%WPq3P7$-g#N$$gb(n{{7BxHorXZ z`#XnzG(Y!yYTh63e7aGdKkQF;ro;a9kN-MRCEw~9pKklHyY5|}elh;8@$=WOzAIh7 z`m66c>fzOV{oSv>n*Q$BckefGCMk}Iecop-y;3_by!0Y%LT&fc&Kr14-^4Lv6UWR= z9IJ2QnALi0=A~Eao2WQDHsHiduQWDsUUqEIdFCe0%Z?2?uP*0p+w#Q98PhXq^X%c( z1!HaQD-c5FJ(23c74>qC z2A!838+4w%iSx2!GY6gMY~sZ1*r4;=O`Mk<8+4wxiSx2!jq_&qcTGL(n}Z%DKRD=; zde(6UpP3yTeCDRwMIX>G7d1wP{-2wM=HFD)=$mSr{NUi~2e*!@?%H!iqx0$8%^9h# z*|q1O#`mXp?K!$p9JX7}agE}+yY-yVC_b=T&uNX~R-HX(H;U(X_MF)$PCK>d$VPEQ zrRS7JF{$)i*(hFnTJwa7)t&nLusak@~4?A|k4O|A88u2ik3 zv-Ow0efeej89mk3gX{GE)5nbMskHtwfnJx6Y=&``6_q{0n*QQ>#?=;_?L`8w3>L#QwNVXHk`AJ53|G5h7XJ$tH+ z>t4EN&k?QHy~X3Y)6ec1pZ|XQUd>zVJ-c~}v-fJ=qJK{F7OUfXj@o!BahL^QIO} zZtZn2G)a?=(7BaAP43yfQQ?zu&%qm?6lx&3tL&ufwbuKEY4V8vU%s#P?AiG9o0HbJ zY3FY<`}4E)=G(kUZ{F#Pdh<@VGn#jLfzceMC!gPQSmWA%HJWWY#cZv{$?s*Y!K2)5 zHt%KKpp&wxB|FKj_e|XQkWStgvtPREt$h)B7nxtCUC^^f;~w6wH*fMNt9g@?F6=pM z9VhxY8* z^0=%NGG$CXtY-^#)uGMC{mP-un_F~M^XArGHQ*TyX~@Q9yANyL-Ajk{9Miaur$5)c zyGsslzN(Wy-*ZUggg+nNb5zUSnEBmIIh?!s^byUwx%r6Z-OTzz^KPE`Lh~{g9@#WR zzI$Y|_SIK6Yd`O(olU|#I^JK)9| z^Zd_dH4Tj!$2D)vpWSmnYY)05q8d)!LVfJ`=6xN1e9yImb{{SKl;&=&y)(;qt%Ggr zP3$W+wFTJJ4q(6rpke?2XY;?kGwa_PwRdLiompb5_Rg%a1hsc&?VVYBXO?@E+dH%N z&P=s;W-O2Go!S3EJF`>L{pR#syxEqhWVsf6(Dz@5jM=;z(lH|F;|(7fuWzu2>1|CjWhFZMj)sUQ6MtK-v~ zzSVR8D7F33(;A`V3x3kG^M{Q~&VQk=htJpe+{5QyK3`8?=)3Re@f{E5QO`rSzJIe1 zd-e3D9qwQJL=ELW#Gj$bwxP*(67+#%Gcf{mWsrtL@L3&l=uKZNKg+*)&X|YS-v5Pd zYaTMg2w)&OgV2tPQnv{9I-=}{L}=n8+kKK+P%S%2t~dYeSMN{He)WNlw>z}de__=t z9ct$nZylx%e__>b`H?3++JSKA3#;BvxBcO&Q#$&;9Jg-Oy?l|s`R5Mx{Et`d(f=iV z`lVH$I-ugCE1{!Xf;xB|a(fixtjI9xhL_k@;^(^Z{aQQ7g#!txKv5VWOOz=c&p?L(6AAl_Y4eW3Ki z=jqkLnq5z=K5F#^>L;hHAG_zcYb3h}X$7>KLPXw8WP>cEWVI-8HT2FL4^n#J<-c@D z1-T0pr{IitBBX$Hgj@tff>s8Suc56@t|LdCKak7;qHHbN)+Eux^l$TY2uSlX5IIjf z4(ml%y`_Fe{>qh&0r7Q}kV3%gl+Q8l4nH z6j7^1^M$TyBOqh}lR^?2u_eUTQzQ-Oq$O1cnbvT%xYlgI-B3js4V7qwrcK^860CuZ z@-w3DNbsR@nKTqlm=JYj!O?+0QO@=aFV-R?XPM;^$9J@bS|&m==yIT(k@!qQB2~`R zfy@}9J!pAZ4K3P|8XH+(B{k+cejA4vayO=9PO@8vSUqOGvSTDLP~|a_IudTCg(zWy zyt~Nzim=JU=XB9N#Y>RrNc4*bp$AvgK7+vHC0%ros#nSD6TwOK+=zLjne&PsOg(eN z9jH%C?6%dKkFP$fy~4Fuxb_OyVuZC!#C3RclhR%UbS|IZ;Ver`QA5=`h;@c`{wxc z#p52j%jxLJknoSredwzn0x^E`yoYY;=t(QrJ@m`X)uFe?8yyNf=D`ae8oI@YxM&8i ze|6nkBh|0&oHcy@L$^M}=i&6BThsqIwc{(fQ(^tD(#apzsi0o{*SD(bo>7kupFjJz zX*&D2kIdY;V{r;Z`?wE%$pc0_Iy&W&$$9FkxsQ#X?_B<9>RkTVA;Z;ke|>Cx`jxql zEgP#2o$&bhG`#DvZFW?{ZlZYWBadl2s!p5YzrFC-E4upQ!4%*6>tns!tL-j-bbR{W zh{sRfP5opJM?XE`@o#RezCVKE;kFbneuV2*r#wE-Ro{Mr;`gt5eE2r%&Z{`#?{lPh zz+D`z-}LzITXlRXe`(j>_V}<5{e)lt^;^T!UoU_Bqzkse|6=pcB)zU?m^bdCe)F^Y zw^VO!^~CY5zs&mKO*^Omy!8`XceEb8<@0LS+qZpU-k@XS)kE7pv9|SK#}%*csQzK- z6UVk3O#d+SiLZ@QU)t}9@#%LaKk?!=YKtz4kM8%xySvr!=EQpFx#)x970}}#))PCn zJvXrs1;fXd`H0HSN@slhiQ9B_mg2e-yPlXZOnqfC#aZf!G1pXG*_qphiE=EGtEi!w zNI|myL8Oqx5v#EyagoHdb;M;gL>65PV$;W6<=e=g$91IXPIl%Y$Vc|3_+Aj=j@aF> zpR{q3u;oVJkKGm6qF2%QZtM|@tF_gL&NZj8Aup^}G|l!@tEQ~kwQ6{5J4A+CLzI*K zy&Jl00Ugs|&x%sIkdu#0-#xMSTzoPbg3MHp1f#eoV)kBj+d@>`b8Nez7K!klkFNv$ zXM6m?wD>Ns^LEGu|3kBsM>|!rTf#y>6(wcds?$s;2FSPTfb9 zGsI2gB2bAyJ94BvgpSVP0DZ_9J!SUaNFqjclmd}yG;j`Ci5u#^9;fWMP!+^`6o&}Z zk>`Wvu4b?W#$!cya*^S*QQsAj^zDAsg~Up6)wxJ|%_y!lQLD!;cGQ~5YxbOA8z&sP zkyHbfJ-mI~orm|pGuW5oFf&E&*YG1Py=7`Q{4FJYIbAnxJuaA%<{6~OT+%HEon7+2 zni}aP%R%=lL`~P6HWk%|GpIEbCWXF4ABUIEi z_iVqN+Ue3Y%Ri*ymj3n9HM>o^eWy=spYF4K%{Qta@-phDzkO>5_4QGY4xNA4lWWq$ zo_z9+pQ~>s!N%mrQ6JipIs1Jsotb|x-TT!1m+pO<&og|!#phW*-{$iipYQPbE}!r5 zd7jVr`MkjAMLs{^^G|$!$Y(8|b$tGr&yV>0n9slPd5O=z^7#p$m-)PszI5+TD{+l@ z29m1C%DbUKn8WrgjDsjj>UdpQTa(;UDLqS~Pw9`he^tU+cs9|Aw$Z4L>sV(v=R=li z{_n*G!s`;w>Z+8SlU;9e<<+GX^$UId`1IWaUcGuV_4kur9iJ|q^6K;3s((0@;@soq z=pmChVXvuD{L>#e`uwS{Ubbs3wnU=W$FItAB|6QPVMq1E!xZ96qBS0@?5ylYcANfc z@Ac}O73%^}5Z}^9OKr$B(XmdxskGyKxjbHqK9MnGkbK_rm~D zgODHkaot}=ImDdYq(g1Ie<@X{BoSTQmRa;~*?B9C=jbBu^ zcxH(UU9^7dY8+{nZM(Yf*jgQf5W_UUunKX_5R7tDYMwr%)2Jg9Y!Tg{e`!cD<4?9C z-LRa%Hw?Az;(0r#D>fH-V^gz?#56F0alB)xiEgy7AuX;GJOEz)&cc!D+VfWv)+?@; z(AABL^lD+f(17%Z>h`Vb4zUiyK@~kD)Tzf_h;0~pCcA-<#Vd=3!w2nFAwqCEd~(cy`I#YO0}EOP)#1et6M7RX8u{jSl^dU{+v7 zh&`GKFM<~EOjFM##PfhSfqb7m4VxTW=Tyhl9CjvVVljF|vzmaoY{A%`F<%n;(wHQ5 zg8+LRTEt+IfS8%rI>t)s*0V8IE2&mj`bF#Asu$TwsOe0WmR9#99-Ocn;Xz;;hzVcM zSk92xu*G7wUvW|=BpigUg!L0Qa2@(GdL;yhLqBDoCQ9guWkj<30uDh4FZ2yZM>O4$ zxUFq#xz=N8rR!c>pjWw@q6*czdEL5Nd(-OE_trJ75es+gX5{(-A#{m|5(_m0J&7X2 zWlnZoL#7L%nnW&L8cGLhfmT}NN4m!RVkN}qVe8NLM;~;i$BMI|*Zhc_^rd_zyJQ18-7i(Pa*`HQXfm0Lqk7szh6v zX@GLz0jY;J7!XVXc7@;yh{Ra@sn%Zg6`r%b^ z&4k2QqnMY~u&KPd z&0Vv0I=pMcjhTpjI~(oly|mdN3BVb=QTSSX!u_u6g0>Otf#qsZJ$4%o8&~ta(5!1w z9B|p#3uv*#Hkm*81h`E)y2hj%KC!H)qqC@D7TcYc>eZ4ubDzzIeS4>9mSYSIgIgT& znKW>V>2*VMyeJB7T_6@lkOYmHu(om`aqwcBv2~z@#Z5F=qM^874vLzWyg66m;Por# zjjonG88DnZ)s$zuHm@d3F`;D#f#YEj1wp_(?|UvzD&NKS%89^5+ZkFK)AJLWRAZ<) zfVjXt0lY}+j+P@j@{wlJQ$pRcP16C)#iC(pm~VI$A)0h?EcTDIpLEnp>JIZ&t)y-+ zRIF;9w#KUI#rQjYS5{~b2n=^=d%CB)>5TW+&lpm*vHt=e#@N8YXBgGlwgBg-GyZ)& zV3(2!g+F~PW@9J#ng|yqlP))o@d;Ef4kDl4E!OY!cj)r7u3vf&ez>A~11syJwUUZ6 zz?!DcJEHfXs%~hB7dlC3I1WR^0E7h=C;+wQGZ&Z*jVR3wfRnIsOL)0v=+cHUpsB#a z`{-g^`hT4}Ce>aOEoMe*7}+7y1Wr=jWJIx+SdKUsJq+p`Vv{{ft)%WaU)f5kK6!^l znp$z=qAk^mYuArZtDarI<3xQR!Yjm|86-3jI~FFhK>XLdY&N27*uo5%mZMLK_e~9q zmtELa?jQ@YqLN6K(-tq#WhURZx@d(YP1v$gkZ?jT#Ty=NP+Rc!Cs z+IzMS+FG~wZ0$W;%QmsSXKU}-+IzP4o^8N>vAt&-yy5*Ydp5$-(K~O;j=R#8 z=k}iZVPn7P0iWvK?1*jZHBH;kaQ746-uHULF?D-F4WFmBpG7ckKi#La9~mQ#+WwK= z13y}~)sz=|k5iMs-FuOG^uFE^lO|4_H1Rm#IyL_J^d&WIl787X+n^g=pQzar_2$*> z+Q;lkbx$4qjo!a(tkYK8z0kXIA07OhYfLiDNgiC2mNCiT2>;PtI7S;^P0sO5wcSI# zA0OI!zTD3m_3Krex)sg+pnD;QQeFCR?-cdQzV{7Nm#yv{wehC@Z+j6bFJkA8LC=4> zdL!-KvAj1-eWdrF{$J<=M=14JuLR2fS3AOl+855bD7y5smtCVaywH2+Sr%^2z64@`GMJKT9w9!G^PEc6>*D|M!jnZ-9r6f?nk#%8;m!$P*2MbH(taK7e3y%qq0xp>(tNi z^^-3RgQ)Q*uWg|ol4I9h#j&aP&D>lqIvKe3s#E*6P!p%}!|zYxhnuJNeO&E%9i?qg z?z=>7b}^;yllvm|&{>q0|Fmx_bW~dr|F*mgDX`HvsIda~euk8$9`79jv}|cHbWAfR5dU zs};|1QuTCBx@smT^>(~IT76l*p5^oP&!_i&LcMV*rL5AM&)|nY%f&W6@rW}y_7AhT z-eqU@odJI-zrJ;5-2agf-~RUVE!6CfbKcZ}$NnzI&YLdh{q^TNs>{!k zOI;EfW&QAeD^*RzxUt2{1We=Jp2&g~1;P-*q`C;VbpSpWNuQ9p|KI{EXz z;O&2s^JbsR*EMr~v4i@id_7niD0>l;&*SS?Kf%{oW8WC1?v}5eXY+O0RBL;+>ojis zG`ZBgX|(m5S5x}?G~VRh*HHS+zh1DVdU~Hw`8X0kDL%^XE_Bd&@x+&sH zz0!dHvD540)R>rGpOc>Sg}CoLwTpD^zs7x^RHvUo>D`znzct~M3s2+gi9g?Id$rZ4 zxWEDD^L6;A&KRy{%GZlO&(}5cULUFc@+nTf^wRu=pVskgK9oNG&ROHs@QA+t_w)Jv z4Y}BwWv}m`KKtpuDYu`NuVAEVykn>t@!$u)0N@%b0<^>?4->m^4|8?IiyfSP_a zm9HoK_Vpdr=@;_r!Jp>q%{#oYoBFYQ{js!V_S%oXh_9bJnXkO2)6}2jl{{sM{9xg$zp0+d)mfl&_k!>L*W;R+X>S z3;BB9`F+R}Oy}!QPVYbYR{47IR9?d0=e)6#8Zm>1lq>CeJr};2Z)&DI)fqi+bgJz> z!`CxqWMu6*U%p-|?f&Lx=oK?hp_JXg=Pu)i$rtc7yMg!Q>uh;**`J;NS-$%6Ea%>G z^=|o;^tK#3M;diIJ%t-YdemU{JCN|pED*i(J^ zN>15IZt~Ap_I0U=GVl&~3jUFUuc8rudKJH(Cy#s3=lW)~v<51aMX*EUx-U(KT)CinNZ3x4$p z^{H$4^(2|jzJE>MHR=!YHrC(xD?@c(%MU&B4yOFzSDtcb^7SaW=R0Qhovcoh=NK`o zZ?RhQIZDsXVxk!-GxEW+`?{ydkZA+}yq! z)HmtZ>3_`aLsa87Y28Ji|Meki!F8PTigcN`uIu~q%&!jl$VV>t<8@nq2WFbO6hx2dR|KZBBeh|=`|_6BBghvv`R{UkQ>6U8MAkl*UV`TS|2)Jt?I_r1YGWPL$H!QaW2oYov6(l)fjW%cXR$ zl;(VK>zN<9-~lNvl7oMhQn!@ul+xFv^erhpETy-l^sJPgmC{-%y(y*jQu?Em-jvck zQhHxXw@PWq0!lARX?rRCL`oGYeOF2|_m$$8rRYlOmr^=HO8+LMQ>1jel+KgV(^9%f zO0P@lb5goPO4m#2=TcfMrAMT+LQ21o(tT1|E2YPzv{FjnmD1`VGb#R9iZ9E-J}KQI zrQb;D-=*|tDXo*zR$Y{ykkTkA{iBq|N$H1Dnk=R7Na+A6y(*<+r1Tppogt-PODUAn zyHc7?Y32o~6t9tkKax_Hl>S9ZN=kiF`bQ}}B&F3-S|X(<{~x-(J0QyA`8$UqNCz7T zC@Ly;)Yu#Lf+DfSSTTyxvw%r#v7s>uXT@k3yToYhibh>y#TGlFUt{db_2;p-Sc3X~ zW}oLolHdE!?at2ZY@3~(Ezcas{^Hmfj_u~y6^?D?n2lo>IrfBOJ2>`^W2-slGaIq> z91BU{=x-dY#IaQztIM&49E;)Dj~wg5vBwZRD}t5lQyhxtVl*yTf0sos&DlKw~>Nlh_&^N_Pf111aK_ zxtJ(AKX;0O;UJpkYxkxRzp7<^d{RPOPRl+2uk?@U3fc(f7`!%mgRP!fF};UK9S3FzcMf!L^U!| zpJhMihKZaNxvTZWT9d8bV*aY!hZ-!>e$FlIrqP!@XqEJllrhQOgAV1{1I7Jca`)*u z=ikc(dM9l0_<4?!;?>&R6FMeihTU7-T$fu!XS6lL?7e$q?mHdbBGl$hDLZn*sl}&7 zyl6`Iv7Xd)oZU(OtI=X$$I_9Ej%ZY3>B$vu$upG>tjbv&CJC@P-Ly`(eE*k+bYAz?r7jG(lY zo}ME9Z0?^rI_-N@2^j+@{+Lpl4lHyAiYeK-hjcUw4y5Sio<(WpF~whu&v8|WqIW<( zu6^xWmJ(uOJjCpaxuXmeyczwGzmfR%5~OR|R#(qFyp%iMz;F=Bo=}~>{uKRAEli`$ zzCLs_*VmKszQ@q+yqr7OK+6ha!W7sF6`^HUz%j|wHGe#=a;boWX!1AcfipV@Ue|(y zJVoZU+@ExetSKy|4qeJ46(su^}q#;5*1bZ~(= zQ2cs_<(RWDRsehVKfF`i{QW2;$choQ=I;CtI{t*>L34eBJm`EEiKu_}~21}q&9a`)&gFine5 zjE8>-arIH|Ej^KE0e4U^Wwj4p>CUC`r5{u1Udp7`BNs6Ch zN77Fo<_=V|E>y3<)BFc{Pqrkz-+T9?Ym+UJ;$Ts8X#+?O7&9Li@sb0)n!@zKm7*X8ZUyoiZ zVIHeT2bD4p(W8F_o1sc2?d;O#GkSDbm>B~gQ(KiWpVgxg5oT47hLtz}sz)zXFk@w4 zT0*LqI8@Q>(BV2D@1DEJu54bZ(@(8pzNtrnzp6)j*D&Ym(b!t%7h06=e+-5L zYMYnqD4)8nvIJ1*4q3&A_03RNGAbIHZ|ixH8YK2MHfQOmIZe$rJ^F2PGZdn%@~zh9 zU`ohVi->A5<~2G#x1|}=NiqcfsZN^Q(d;4Aw&o=|>ZkVRQ+gDrdwO(qtQm7n=KZ*f ztEGh0Kq}k6WD(K0tJ&zL;dg&x?xK^H=>C3imiI7E)Ke?>dLP~K>HBE2&&)sQ1eg1m zXXsI5Kl4ljeVJkp+C9KLSx=ld(A7{8Jjjd%%&`s|$Nc%QrWxkLzZBZz!4TSn)~=b+ ze+W)=7!DGti7ZSUr58iZrw#YSkuP`x$du#5%@>eDMsuEl_H+SX*ZEK!&F}5vmNLpb z&cJYx)G`Du<4Jdp1(y+xlFaKRrZ`1!%`Gb4CYv#TC8b=*|CwSgO&J$(e;-6&jj;gJzvIg zvxa@7276JBF;J^+-xpSSSD8y{W-Lv~7Ec4?W5V@t}9(6fco9*IY+0AnOYB=)w8#t0v8x z8)?=+=Iu_I&qIO))*Ohsw2|0?sjCEUVKA@vvWL2VCi*ZmG(Wo^1Cfr9=CEpQC3-A>= z%XxxnbzznfLrMqJq28rEX!#vjFSl2^SPHPL>qc&`p>=UCIfyR2hQj^x7xNf{VJT&$ zS!+sT)gd5O<4w)OJ*9`Thh}Wgv#lbD+9L}`;TO0bK7rHaKdT2RubDPZc zL2{Z~XasHfr!>UZiEi}WVLrzB9$c{0AmF04wY1Sr^Kr@UN3ioB2zHN7hL)xH6FLZ9_9-E`Q9cp3=r%lJrrRdSh@M7e*KD->ooHl!l1Am&G25S370Zn_XtTo>bjiZbX z7(v-vPp+7!85l-y4YpLJfZUSN+E_WR@zTr~vFwJqv71J;VwR<9`sy-ODDC$$-jvX% zoCmGCjgjqjo0mq(=a9kro}`FK%jLyPvYBf!x6{}No6X!>=LqKAX{yr_E;c&N**cHw z_mDU*xU4TFRl*ebM|EKYFpcz_O%_|Kiui|ScO5R*yhyu?6Wic%s)-B;Xahz3&C zVU}u?v%DmZm{*nb)H<%hKiqK=9ZtaxrlVI4)>u}ggYB#(#H~OJI{aT5Qwo;+v9Y3ouEK6Lnl%g}imJU?N!)0DJ2(hFX7!IQIYay}8{lg+DMwIjv zP%&FHjKH8`HIPI+?l|!-*Ffv;AIn-U=-DAk=!o9sD$@CZ+O(?^$=xV1jznhZRO$#wC+tR<2sxJA&>rsFi%|v1WjP5m%N5t8E25eOOB!bs z|5UeB*Xw$4D;R^alGd3kYjHy zd+_or>^<`@rxw;nH^v)WJH>bPEs@wU7_d{U*U)m)U>3z1S#abaQ>rzwSdil1)B>Yz z+usHFEN%`yvtKwOMd22fFAW?Gq_-C^juGBr<+UkrE5?G&ro`kN;}LeNP>C=Ff`p@$ z1xv2Pq_wj7P;4(tV~TEXDMB%~%_T*tww5D0TFM=x1<+PK5%N-TkD{6)CY6>=R@WNxd!Yn7h_%SG!oC|0UvGWrq*^7h8(CeOSv!e26BU$C_M_R4XT7ywSQ!JN-2wZ_QxO|XUPKExt^OAh4{gG zlBwWUO^XtaysC26V9J>vi35fGiJqFMWgB@)GP#^EB4?!KjSk23((>Rohh?@^QUOYh zTg)rPS5pe#jIm&8l#K4Yf?4P{468^+YGftK+E>YgQXcZjz*m<2I!#6&YnVtIYk?j8 zuRKVsOqmU<7WqIa{5{@sNFx*{CR*CKQP1<-uY5^5XR;-Za{j0HE4`g;$ut}j+oo8s zQR(@ctM@lfL+_W_3ArqpVwr5i!y+fbMoI6Yid2&f35|aSy=@r zbx3QqN*_~14yv$mz6D1JGCLLmOnga{@ecJwb{IVuEhR*yMV6y_b`W(>FJ%oDiRr9! zB{h^jSeB|(ivqp@%U>54EKF87Ik=*}cs^aq+Q4}n9fe!vesuT`^wF6WmRSbFP1>>* z;uur+ZUwP#721UqX@5;RXo;XlZc(_){5niu*Y5pnS;hp?c#{MrktixULP0Dqos zTc)SWjB@U`!0H1WB(NWZ`r#5GppbY2G8|VS*%qg#${SYP)7Z#rPJG5N{N?8 zSOO&$r`6RcdR&zfv?|q7UerC#BcIPP=Kwe!>KTrYWld2Tg zOn_ylcydV&JS)?at3*=Ln#dyBYJThtPkW935}P-V-^Y~Fq>2a2a+r8~&Q*Lq|A?Tf zxT9oCp-zqkdsfaY-d$jQ`o0tqbBX7^M0LJwX$7tMyCYe9zz}p5-S_r@OI1$2%5xcT z5C!ap*&98vY86_w(i>ijvgB#{>G3F-MO=d)=VNw38YGo;K0#+$b zd?iLMkup!*dUWUgTnmnrB&N(eUbC5-zr|8aL|S?Aml)_E4I?_)EwJ2VqNXl0QG^u6 zWlq-45+iMA$tdENC;Gg*s`3&q(OA7Dx4Pu#4Pgqs|9@o6$f~N_2A@6THGwnccevy| z?<-5NnElvtP-p9sqO#nEaLW3%nl9zyDQoKga408@2gh?3Ls>5@A6hGSzqGiy(eg*w z*2otnrq>vsv>^T5gr2{K%DpUp{fCEXdLk?{EO>n>Zm1o`=v&JS14jb|v>0|(G78Pv zQjbD4!t9r+Ulg%+)S?7}-jw-kb)OF;xqeYAOkt*^ITmxZ^u+2dHTj+EZH3V$StR+s zXTda-P^o$i%3q^e1X!V+B@4~iWpw`XG%LsoQI}|YA|{#49k9q!Qk*Yt#b6f9xVw}U z)}2h#w0K;NdLNisgF~#HT+I!&VjY&0(r%gLYsC&Yqef{FU&i`1&I@Kh`{FeY9!o@6 zJJ5h{p@NS@Sid)LG*En2-WuknMZb@<#_Lf>C2LPT+NFwhkRCl$%{p3-Hm_+-)S`rJ zpVL5V%@4b?Zf)yjy@1knt^IV$R}DZJ;8zQVXFcnE9goBWovE?0wT~YCv#GV09&Osf z+FOsVZE5YQMG50sO+>e`mex^y+gaOwfJ%3ZZvMd%U#+7R(@QqkE7m&1jXWAd-taPM zFx_e6vP*}=Sz%NH4kCH*wyBR5N-|9K7G>hCIK-70K0Bj~anYse;go21QM8*CJ7S5E zw}x7t3DMpZAFdV^m3vq*;kAt0w2bAb<3MPv9=)tFxFO`ia4i&;zA?HywN0|(Frv40 ziIzpM!gSH}u{NiOzoLs$XP7>sQvdgSS!;=if!0^9a!%lOZ{B!oBxO0Hi;K~Ntlf1U z^0+X%S#$;R=!Qeh$RXBcdLEZeRgd0PtX-7e7OstTX$%gBstskKm9=CV0lTZX&JB7s zOvD?lFz6UB29C6*yDG~~O-ZUe3VwHh#G45{r;DN|6UY}OB7 zSz&xgv{c66QJX?H*>HR_)(X|5Wkdr78VEylRw?KMJSgi&Ey7%zv~Ay5M;jOp5;%>6 zDa29AKikVFUZ<33F_rsIVqC|auqTVx37~#O>UdE<&pMuTvxn15B&Jxg_>S&^GYq^` z>q9Yd)=1IhTdUE)(LhRhft|#%@2#c9jhWWfdSb={JS&UYQl}WzoKeS59Q)pi_u5mnSpF)1DM8!4KzHVf9LM z(k62_CAilOqsy(ZJQkU6{awR|oHQOLt%wv5W&VstZmXpFP~ioTrt%A|yZ)~tiV6Rp zc;3j20b8xIrJ*$SWF3F}QsIkoI=|;Qz z;8-jFB>u*77&h|3ng2@Yr{vA9)3iw|t=}0K)=tbtc!m|XBNE2I`qSHybtCEFW!zB? zUTwvyB{8^?^C!QVbt`EHcjMMrcWW4d3*dAE{j(3H$!CN;)?4G~&@oqOf2_AA;b`j^ zN|TqAD}!vMC?UC?C%qj|&x1Bz#tG|;jn<7CjlkhFRx(L0uhS#;qvc7z*Yl^nT_LXV zTdlw8lqE8`3ne9=An)E`eV~E6cUu3}5x94(Bx>$vRU!$|K5vT40n3EbxP5N8hb4qD zB4Do-w=(a`6(|=IN}`~%{?Vei8O7g4REPfQn`MQO@}8VzH4|+0Jj8$_?;GH1Z>ae6 zm=*S%B*(3ACF=CNo{vcQgC$HRzT1F{X78P-*RX%;`BC*!4lgnCBzLhyW0HkXnyBYX z=U+F#&dsNR2i-QJJ0_gAW`4j|B%I~xC-ZRA$*)X9Z;_PEqbL)({Q~WGen^y2qJEG_ zx%j?@Xm2G#Vqu!lw;?V^!s>faSbs?6%1bQxk`ecK`VQ1r()FxRKad7yph8lWRA<|V2Uo;I5<5Sy!{uVd)nN$ z!m^fF*{qz&^^1y_ht{ilqP&}acN_JIo?gFf`ownbG<8N}4=wYA$M1&-D~>naeFc>{ z^(pI7$q^?KS|X*S)(@h$?u|XQjAx&-x|TH1{@!%%M--4yzDZ4}6kFi#m#%pvuoRWh zEC0TF^d_~52i07Ok&DaYwSxJGGH-&&cV+#`N-E0LqrG~Rfzz0&dzpxFuP}W|~g9v96Ke45V4QHq_Q40Eb z&!*n=rczrEO-L?z+P3OwyzcN8tGsL$4VF{5>)NJ8>Cp|yb(3uvl}kRh?K*Y7f{5^M z;7+0f>UYV{_TeO>cm*}T7JxP4Vt{R%o{{BOK)2a+7_WxBMMiO(KGV2ZkyX-$=Q$@m zv9{ucbue`bv2~#N{;mafcZdy#OMrs}8VX8|QuJd;(WA^}6~z2-8}yh=#A_a$)$~K3 zrwnZ7ON5P=SF>TI0j%wMM(k~k3O7;fiE1@$P@jy@+Ltq+c?n8Ozw1r|Q=1nRO>5a;xJ$G& z{vLdXmP(p3)I3P^tZlofqhZP65g7ALTh+XlNU3XsLYEoePbHCD&vso;zH zD!qA3aT*vC<4Jhg<0XzZut7=7%yJhd*)ko)cZz{E$s6;(8`-b{lr%W0_7*pAIN~N@ zxv$I5l6fo!b$T;S-_Q?h{=Uk%($MP=zf@aKY)LCxs(w^u2P_}+Cz$tKs>L2gaS67H;#POtWlouX z6gF(mXj?@xUTo>LyBGS?keB|@T7|N%vdouX&}nT|Z5b9=hO^!?$vECJnBoIl z6{Z@+T6v25BefE_$pTI0TFI71cWP5c1dPFS2E+UgNf>V{Oxf*J4^j0ihzoG8W}<%8 zTX|FR(yVbnFYl?M)7 zHI%EIiuCA{R{BDFbK1X0J)$GJ@y>J`ZlUu820VgCBA_R_922xK14wL7U6NYqi*ff< zXci>PYi`I@C+w&U|`hnY%i0TVoG*v^CA%)$Z$o5o8hX;MJN_8)C^xr#Z9AlBf7 zJ=0IN2i%gfWNX0~9D-J%lr^myh(k+kc4j(%Fy4W1sp8Qx+r57k(*@&%Wsy7kr`pIF zvA=ya(L2M2^U6GWSQ$6ovc9Vhw<<;tkGArZ>!Db;T9X&mqX=RD8Tm_OTR7(1nN=+ci2VJu)TkHyh57Kad_NQ+;+xDIkO0)&MU8T8D}$LL2M% zGoBvAcPvT~tSNFzVwGL?yDge)9&rrwDy5r>qx=1~<;+?W)dwAe#O(uG@zXugp&6Xw zIAqIa8aW%&o_8!xa}IR$7H<#B?w|)7>{1VeQcU+wg~f}bQl9b~FL}H=u61tiIa`z6 zCpCQ)QwRgJ$_ML8OxaGwh5Ko3GNL_Agx^^?`vmBvRLk0+><|%^BS$ZNE1Do#M_$x~ zlv&f1LY+KC^d+so@>ML?jJ6c*Cn;&nx*DfDB zYL(Mp8BPJ6dKclRApWVC>36o6;4Oeu|>`6(J@DXQ6_E1veE5#oWr9rlW(!BIZm z#vZ?m_tE{;(!wvuepJWsK1w_&W_M^XY*k5EUKB5BA7>zYJ5&{4vozYQ? zs@Yd)==3pGAAxFMCnTvOCSdrYM|P_x4%V_;bQX9b;Uf;#w&Rpk5~U^Ll*TvC9x4Jp zw%^l<-Y3$d)!j;qxcb~wNq(m!$k8f43NUsnLsO4+^P#ORP#1anGrJ*o6cdVs#`co` zE&|H4TQRzQt6LHBi|gho&NsE=NJy(|PqYl^V4*a(XRTbul0K#@+d8|Gn$gt){b{^lDv9<%v&jnSrfb05Y(QfP-0fi;O-f! zRuY*V?RX~1i2^;0Q+A2xP7vrBOf?B}ZA45wi>`!m{qG}2b+fP5vtqX3$$~^B@zK|S zJ*Z>a%^neA4|q%P^=I7vkXae{uBZYUe-?TS&E#O(U#%~_8mG6Z|Z1k4l0y0 zTn!VRpYs%wx$`kH_rTwKdeg%`J@GG8rJ}t=nISyo*Z$?Q%kk~%0K+zElGB$%?U{yc zqQV!fNOD)3leAA+!-hjEBpkvUU-_nM-f%lk(E#hOTsQIK=(Lbt*x^;`RaCSX!P8u# z13IIbX$^Z7qm^xY1<>>F(S*-O*|9Cs(0l+Ob7xiV<%1iyyWt`w$&SsmM6=2f7-vjB z3FE;d&V;|RnO5s5(*<3NqGMycg!(PUKix2blV%SsH7iGW&rm!Ca=%8ph& zsQK#N{&c5BZx4|>!#>JDeWS1i#aF)lD6Wb#QZ)O{jvJbq^|8Oin^qhJe{WxgH+Y{o z^t;OYsiyMvG|P@pPdKX8>(1EEqO@b9?sGAS_-YuRK#ivSuZFwK z2dg8qb0fv?^HC@WctIwqjFSWVR2JVXz}O%eOLIj+N+{KA(F0}7r9IU!9 zinZUZLtVW3c!VpAVa8oL6=PDjc98{?z_c*cIWV*2Gi-ZZ~d9}nuB z1bg?=5nj8yUSP(%O8f2;S=XRlycN1Urkoprx_U5<;(l- zUASsp-nXR4Tg93|VzAtnrdxyi1yJFC_5_Mzt5FjTb8t8wx-{8ghu!}}KX38o7dv*+ zGLKxcZ?CmKmvA@}`H6Sy>^Q4syuisPE|evyJkFCUDdWe!MJV8hzQt%oYF|$gvzfJx zq>-{B(Gg#(q11JLUk}lDD~pokhA%iC>rqtpZ#@&r2%&^^;CW|le?Qu?x-Se9ULD8n zwBvM2GL|PFNqZrQH;?r9r4}8!YBYvBbU4$Fk3H&GqQuqR_F+0bAAkzzre`1I7swCY zUw|JpywV?kueTo+&Dd|p*|tQ>Q>m#3SxZV7rb-B9{SOs;6g8kQ-8l*J$OMzGX{Rl2b1=g9Y?|cs!Q~s0ma1PKkR>M7y+G#xy3{x?X>-+ z7M1J&veTHEHJ`#2iGw~VWPTJMGcZ`ZzV==!K9HO$ z13f9}>D?gmui4K-_}ygX5HK${iNE4cp!19Hsh3o!qi?fP0<2$Q#X9VvbbH%CUz#>^ zpa;#G{fn1qk;~&HX;=>u^dKzFnFE8V#kGOHBGzKh*3l5lO4McHKtD0iX2&TU=MhN6 z4+qXUB~8F) zttyd}B&+i^=v6z6>%{(8X={T;X;jaz{Q5566SQ1ous zG8bITk!oOAK2pb{?cxsXs3a_n*n6<~bXZrjx`2~nuhCFc;DzxNef&zueZB7u%-jX1GXLx zJmcc1>?e`Yi>Hf(~gLj_H z4xA$?+y5RuJ|5_R4v>j*L)m$d1MiO*7C26a6lwIhxf0709UEZMJ;ta?A0?;0z-Y86 zxk!tq2)#d3hL1{^N_8s)$%A|};7w?$&@V)!TOIY#zs~Y*=yZ2eflUkx>*UCmdYCSfH;xonvP;zAt zPpWA}S>LbtPg!__eFk5<2kab=kJ9ah^fh7SDxQg2!|;v%x|E+GIuc|ZEl@|u@ca4* zbPK-;n*rqj4>^f+h(BtR!*hE*Pd31qY#SZxF%b-qZmDaQZHD|cb;B8i#}?K#hz1Jm zvVX{|672eOm`_oASOop=+jadd9rpO|1>fuUQNc-j z9pelf4J3XOBmDL|9%-=fKgbdyQS*Ps>Iv>8DChDw{-R5kW2}K{EQ8F-_O?CZ=#ah~ zT5(Y&dr(zzm`h9YaOZRK8 zsmu~|^*mVKX^v0%+U9Wk5e=mCP8dnAcTB~r-NBvp&$LQhbnMg7kDg(zxc@)LD;<`` zjo0ld;UeO)V4>U zFzhEBYPAhUyWvv_KB(@a-SJVb^}=@FQ3aomL_uLkJmgN7(M^vWiF&mB6UQJu`qNVu zcS%s`xx-|j3umzbhkvF~^y;F1{Y%?kU<4nCgqPf@Sraj7;IXL_&3}zz!za6D&Ofgm zRSgUWrH^ucEJoxxx@w>}`^JH70Ar|MvU8|-_0I9Bj{4l-T%t#P3pwXOq))+o$ae$P z%-z|6CZBPwC>z|JC;Amj=RpoU?)0<7YCmUf14jdeUw{)`BBLtU?KnZWk&U0)|QhS9NEEIO`c0#uC-k*+O`RI=|52hRvNF#Hldn7!4Mk z%P>*I;a?XV-i&UJs!zWf#DpCa%XffY) z=Kf_BXB{l7^YNN-cU9*PdbDeG=TbfTPYoyRDM_%QmJ@4%jGn3OtfWT^ee8s$l&LZG zol$!9n}%HMvEe8d4!Az0bB$4K)+kr8jhb+~0pmSVQz!JJjH1cEYf(aLyNRAL&Vf3N zCdY^(t(>3hq~El54%MSi+BjM2zza8~&MM-Uc1~=%jvPjp|I6c7g^sAi+#@)&pWl(o zM>LS8H3jDqu}&xohJ~rKbFm(+6UW^kQ*U;4V(TKK+dgq_)uW@kJ3Hvn6Fr;>T9iyP zo#n)5y__HGsFj~O`TBti%lpn*L0tRHSzbr^_H{znO17c>odfjftO3qEJxU4Aj(YU* zASWIiN!lVqSWIMeYN8X0`=7rcu`V}erQrY%4b8rSHD=f_XQp9^2pP_ORJ1-60=%28 zrtA2COdK1*a|Ka+HZ#%*RmM>|^TttI93RbMD^Y!ux#coi<4flvoeFZ@NO*tkEUCk? z&E3a3Tk5cE=*e;1J(4S0S5?GLa5mLpRJ)AWJ&{Lh^LH32I9Y2(A5TWLQ+{zxj*Q7% zKfu~t4w%YwnL&ZMykC#Do9;ZRM=_0i>(N;=olszs_RV)rqZZY~WAzWtI349?a$?z) zRMTcTVF4~2iEf0Kw{K`#ifi$mG}qYzeqK^=a&mT_^GiJ%pXS7=f=s=+fG3-b&RFPN zt4ACC#Kp+eCFxE)`j*j|;k>S+LU*!YN~+nroXI*>z$vGX2oWqc618oQ6FX-a&DraOVwcg{`&sT} z^!Ec!*a$M(`Veb18T}*6IaQDLI^wE=cy`oTN@o`ShqJp*Fyn-CvK~e0&~=i-fzwVr zs6PGxMi?COO{cVnFmG(wnyVqvv2jgY&*X zs{AM9FPWVN;pVR`UcLV8EH18IW@U@iATj%j^PnE>d(C-NMvIF&H=GCbRKqRIHjVb^ zZC+kvwxzjFKQ}G9*W!Gjr|z{mZ|TvE4ri{678k1&=M_EGbk~`!M~C0%=1OKIA3DD` zP|KGPRJa-JP6HmJ&i=2kLY;ohZGPvDRo&|;i=>Qhd&cTnM(_RYY^6tIUhz^YQ}4WX zp3_qgy>af;Q@?xXRQ1&9Zpt1#HMX$wL{IJNp(N?ioTAEdonWfBvP(~G>!;u&5?RFJ z0Oh4lusTSI#9upeC9jlFF6*gTrIcfOYI>+LK#vwFtGv|-N|sa3>CxxqmA*Q`=arN- z2I>=x@f#bZ45XwmmqGF}O35^=7aOW55Wm23P%!YnH~=256x;?>bt#zM)fKD)fc4e) zRt;r<28*~_%Ab0)UTp>uS`=KiH)t5 zGCJwiHVVX6=K7(Xaz>91?x1YbqZK+S-|5lcW0iLX+TrU=*8EK-#3^y~#^3dB?_!(+ zjSLu;V7!8LSVpgWqQK_jC|#YVG!*-~E9G?5gB}WO07(__sRA=dMt|-a^ikgE z(NFs+P&${^S%*`j0m|y1qFtu^y8%i~13)}~Oi<=&vD<@`BrTROSc!3y*d2*Vq86(% zOu+=$Jr9!{jxoE__eOMKpPyW2_7kHL4MF$`cJ{|36(}+py*NsV^PzG<7=5_VG~tPx zYv7ws;${Pe?H8}K6FHNWUK%VKPE}yhF-oBA{q$)2>8Pic>X@PYs7GhdRHkTALcdfO z?Y>vAo<;UWE#aiIJ!Pk&mS+aLYT4Mtr2^JV&7Q@jN*JX!5ToYskV{y0yZ=0H6~p3_ z`N}VPw8#P;9GSZPM+IiSj9yu!tTsrmps@z&5;V4m^amR2FP(wL`bbZpv2M~0Xl$VL z0UE100FCvK-anC#U4Oe>nnYF#ukzeJpr*dPgIRvc_Kf%@kAo~@I(f7;0cJmcY=gn zcY@@Q2C>u5*kaOSXKZolt`p_5uTEsR&R!u=JiF;c-BxhWK>FuI3)wj**sy0#kg{9O z*sjtiC-SpHPIMQ0;{*x2;zU2OA5P>uz=5aqz!_Ugy59tAcD)J8HyVzeZXyvLH>Yt% z_P2?Kva?O(XHT245z@^jAoj6|jO<_&0eja(3)!_MaO_tTY}ltJva>@?kgzvRKx>?RYf zXCIlsv4c$D*gGb0>>3j|_KO)?R64~(2eC&?kgz*UK<+2}4Kl5pDXZXlqnR6cvQz>H zUdF&}nz9rM@*u5Rs?@8_!oj?oR(Ai$*qnc2@RKM9ozvsaASoU{iAG!cGNn|19#uvR z?_cC2;|Ts4g`Y$@k}|^^B*o(=Q4Sy{d3E=IJ5c`d!%w0dJWfA34N0f@=PZ5_F@ALZ z*|c`FcbPJ%1P>n*t=(#T0;A6@c0lgrEtSDXX(IW4i)ShXPQi0#N5Y(>}}?R{$Ab0P0o% z>QMk8lVvcAf5>MIGzX$u{KQO88PhxFsWS;39%kbGma?$eN_PBX~S%I8l}nk zlMnGk%7@}GhZtfNi2@5iJfo&D@~TAg+{%Y|lI24@$rxgdnI>mjKE%^5A2R%=K|E2? zjD-t89v?tb-=!I+dHpxd_rFO2|4l0P-=vcNO$zyMQrL${(^&1M8Owf{rX`jCZ&Jno zCN=*cDa{yD0BThLYEuAer$f`Ue(F#F*{J~3xd0Sb0E#aFbt?e%C;;^;0QGi3kbgA4 zj|-GgzXH&J0#HH$h}9|&J*(L?sbBM<6@xq_Zi&QY6o7tt4>jP7zrF_<+E4)6TmahP zf`oCk($!#iPJ4e*8XECd(#7IZ-SP$8YJOW-h z5Iod^m0G|{0}@MNZ5U*9(u(!iqb#Kg8#69o3h^Ul3MLls+C~#71d&ejUWd4dyw%g&De>qxuYB}}S7 z(B9CpXeOJqxRJ;fHv+b}5wOLLfPKy*V1pY08{7yWOB}GljbOJHu)z)Jq86~h4TueH z1gz!}{8n2FS7`xT+(>1M8^L2O$j}0|xRJP)eD^3_q~&Om`%aVGcBaZ*r%7%)O>)m^ zl3Pxb)D$MEC`?jMn53F8$=#+&+K(o=*EGqkrb+HJO>(1YlKV`P{1*w6++>>M9@Aue z&6?XJ?LCv+VVdLy(4w=_w!%OrP}Ci!m=Cb_RP$!(=c?kY{# zR5EAYQkvwB(j+&OCb^$9$?c>GyGd+3O>#GBlAB4BG`>u7=9=VA(j+&MCb^GHmD@;@ zw2(}46KRrv++dP_+F+7XGF9#$O>+BalDkKf+&r4()aC|+%TG?Eo73rMU&htnxy=jq{y43tefOU(IoeYCMnA% zDa0nZNi@k_z%-MTSd(1*Oj2G`rMRX_X-$>Fnkr>ARf=k=l+;uys3s|=sZvZ+<+d(=E^gaN}=QRER7RTrG`vIjbf_Dd?yq{CYgIHsq z(~^Tqdjz=$q4S!@_lj zzC0!=cO6q&1A27~JnvBOaWK0>{f`6MK$DN-$Y}%pejFql=*@9degn1rL+OBEo)-M| zhs1@RkiozcN+;kpo*e2tzAtxgfU9{Cm13t);qYq)$I0H@_C<(Z_OhpYGle=7aKE%dT1Y0PEx>}g87 zjIKFNHZ5rUmy!r5<1b|h0{1I8)xJedu7L6s^|^wvJ4G9=pxURX@Kt3Pf>Bq2yGC=a z!mPPQudXT+5PW$}8IM4{rc6fg#dVx*UL)IeWh#OpH(v z!cFBX1Z{6AV-Sd2%2$*X3aVPSm1HDj+(tQ>bm%s$s7$JS2gI4Q?2hs!0>508nn^$8 z!gR@`LS~5@Z&tnrbkB^cWYQ3egsxgJNi(T~6}8QzT~-N2+LWZ~ncR2(JVW1&dF~p! zwtv4LJ3e|e{soM&mhVRta8-$-JHz0vw9FmF6P99_9qeDz0y~O+P3{h~=rv7q$i!z3 zH1jnXoyr7X$tLL|oCF0J+|r#&Pl|X@&W{E@Q;LA(GX)3Nuj!Pcj6%>rmC!mB?SDU67BJ2dGKXGiK1M zyc>1xhu2yOkCf)Hi&s6u$UGyD$0+X^zFS2PKcnl9(e`Kb$rFkD{R!&%jG~@Ga-PwG zr^*NfZ!~D=Gv#wYr=BSZ2&z7p(A?)}$}@WW9BqF^0e>UIE1LW_M)Vau`x_TBuV};z z$k;1#zL1FtFChZ2=*CM3#4GCg3gYpKPQF49zM@92CA9f9#^@DA{3A)0`~%iEY0p3C z@|#pCPwDT&XUE2&ebCzPlIg-5C6+Qn;dk)uBaHM-dXR_8-=t69peZ-$k2e^An-u*P zy?c|Ey_H;wzEg}Em)^s`<>_#GY*6d48^sWswgWCsvlPkd>N_;@=1)!4A^81SO#}xI zgIWgrh)M?aGXyCHBt9X#0TfRt)=f21jxVOfUN?0R62c0pLw%lbZ97axIf+xKth?G? zbLhuKXt=RcfGd*1EvX~D3{s9$2}1U`!s<{2y9%oV5EOS;6DT?m+$XxL{gLpOJE}tT zx4Vjm6V$7SIsy)gP}Z8+;8$`E{d`xc&3^Xa>EI2dm#Bt^iW^;8>7n9gn*u%6!CHpk zdC2hPJQ`F)?LwIW)qE-0EHmVKsv|)eS5!?xaImO^s(GPNvLLrb$k%WQcV6xHj_u$H z{+7)A0(8hVz+1)h1^UAql|4i@Z&cwB_3}|CBlw?>Itf8nUv)Zy3%)Wj&QF~J=&YZb zf}o4PgwFV@<9!ct>*{Srp(D2Q+>F+}!Y#D8)3#fR2grX9P{$*v9jHz~urW{_gCHzO z9gSdi5UP+y8-vtu5L7Iteve>tG4(qHb&9LA5gaV8Enq#OPZ1kl`jeAdRYqsIw643Q>PR(5y5XnMQ|7 ztJ4s)2$j&`P<2LS$))~va7n|DwkS=z2~eBM4lcy)rW*}P$6QVcQ|tK3q}#VZGR)#e zk1t~xdGBK_JzVv`F4i+#?TuhixcVuA-?bpHjGEvhGk3Bh^A0=9V+G16sbIlhxF& zNDQtn69-k7i5sd*p7*P(ZG8Er%$U&?C6@T45H0AgmZ3)i&Z&$wR6k^#SOdMYg8rzX zwn5-sQ203cVA{x|^b@~p0k7SzN7ffppqzg6F8sr_V`fxp>Wy$@bWtPp+ zYI}_~aVTg{eL-opK+}pJw8Y?Ke zj;!INI%+RK7wgD!%GXtU0-8`4l8VH-YF`93KZdxipm`rdV9|LWOUjn@)NX(l)q@No zu^uFA1;x~txU~ARD{j`8B}6q)TLCwsf!aZ9!mg#L;lAZGs3w}gZiR}%l$2KF3VPi@ zc3+Ezvi09KR68Q;xrTB~N;ZOs?4x>()Xu*9craS52cx;0(9}*m7@5uR`AQ?T2x$Il z1c}{8RT`s``)G1w)L+gxPeqDY`0~$~S|C%%%m+u#RQZ-_6uv2nIHnO#f&OC7MkQ zTd2b|-Ysu~cL#GJIA?J2hQk`~N?Pk>@k7lZnPPECczYW_4V_0pF=$mD4T(|vAUG6* z&dH;qEoEZgmQWOV^jk}`IFE|7QhOli+X~~6N1Iy7#J8;^WqfN4ZXRuHEfe3gmWf^4 zKsNGdMH`G`9^GpL5y_)wZ6O6@u?Hqe9&PO*xw!R| ziE%w;z9l`O&Cr8dVvSz1cc=A|th2Qs{8NZ?9{vVGHu~(Rl1oHym`iyywYMCH%e^sU z4%2gn4pW!UFxH1@^=B}#4wIn|aLeJOAIf(*yc47H%V|v?wHX3)AI$0HRJkv-$#VL( zuUZ3_z}x#G!*R;#i}H?Bm41NMQHOqNU*B~sX$x`wYpik%y_>9-ruZiDA(XSMYcc9N z7V~=@z3GSAuA}b#QTRIA(I3rQN3Z*%2i8&R0cvHO`HmQXfj&SN24J!rpy~r51P5r& zKuE>`x<3%@IzX`rYH!~ITwG0@gd2ab=*7XELJ7K^poW9yO#*6mlEMa|=TFk8LCAlS zvIjvGo}}8JLwZiq%FiJoC+VdYbQ=ubCn<9MDY#WG@==AD0&3O;|-;aKoj54y%CW4H`HRJIupUMk?7qwRC$zI#*<%-7;klO zr&T||gqu6*Gx%q~H}mhS^b0K=1u_1Glu@YJFVteR+C4&MY8a2geQ<=YnS~emFkfro z5!x{tv*QT89gVTQPvJ@E;QKTt35@PjRuU4A((NShJ4*GEF>ps|UNUC?QL-hY@<*xu z7>NE+nmtDSv=TpHF>V?M=Cvof$|~~B`?C09i_tWZmKyN~kat$u!(B>Fr7mA$lBl%c zOSL(IoG&qRR0{YCtW`?<3Nu`#&0j&VReJUnYNk@_uho_azWZ9{JN30B2^fn-O{HFA zp;l#Kj-OF@`f5s^h!W*T-r3jt`{^c~N~%U5Jx*<<(GOVz`UdN0-~`aSzPNUOPrrSf z8Uy}M#>raN9xqE9KOX8{r4!?2O}r;y-l^1Mg4#@DnX?@%5AC3L!y$|DkMD-R=XPTP zR$`UPPLymCwP4dkS;W1G5D=9bd?VXD?HdfkOIrC2blgk2`wax-B{iRfj(7<%kim^f zDEB2*oGft@CacvV_|C;xgP)G%OQD@XZRF3=(aEUtS@M_y4ri&C7Ob6uBG1zODbR~& zsl`+X$61=K1%FLNA!jLK8f4@weXRv2r=eD7sYD8-;w+6!fmEEO16trW9TmSqHKt=A zuh5L?&<0oN&UBP_g=)=!>bycf%s>fO=zlZR_=qc9$h62=Te1ckk zirbN%1&bDH+{xlcd$n%y&v!0esD5 z?A{&zEv_gfDfY~Ws&ue9%z<=j{exQ1kVO-JKv&pl@ek-bJKg&MI>=6qQ!%6Lv@jL@ zV<%@S2G34SOcF{nA;U7-X2RTCM((pvm1Xq#EcEg+`h6DiEu)~>&=|{T^lV9TY&J%2 z8TrhC^|g$~%z!x2t)HhhLSUY!Hbqc&KE`+tjhv5>+e7>2qx3ygJWZ_?!8c^a8n_?(pbwujsC7#Y z4NilQ<LiwvF+zBex(P$=l7I~5xVjz z^&_x-N*f7zo^qa{UxDcKcvqhDe5a??;Q|#~i~+ttLl>iO_fy7Vl)8ovEml8G?}PK0 z&?RaY85y-iEp0eYsY@`G&ePQ;=z;T8Ybhq=d78ddZGa1k-GlDipU2=RKr2O_ft3TCU&`?B-eYkVwE~i&wIhlbrphLzxSo62&KP0cvK?t+8EG?9bl zI2=PMd?RnHfE)OHKFx6zuk$(1*uw>|=a56kuA|4y=>Yk!LI9hEgH066!8RJs!5jJk zK{J<8@IfhZdDm*o*Z0ODSnl)du#d0pHSB%LWll%w9S16fXCQbwZ&9lnzWu7xt)Nt@T=aB(M9{1u0nJL%_NaY(q6qSoQ$a3}3uhtt8G z)M33^0Rb|Up;_zI=7o8x)2ecwCCR*AEsr}w_YKe}&#CtYDEsHMV*@nka|+mq-Q9Eg zdLvec=ajP%C#TP;;U+A6&uP^r812u~H_NnPn^hyy{O66)`3;z-v2kn+T!k3 z+@ZMZ;#S<90v(`8TPU^{Sy-fKfx`mDS-jXnad$25zSx~9#kIim&dJRA!2Z6^KldcB zoFpeYax+Ppjd)0SPYX7(@9RcZ=^5$v`6=7Qk?s=s<8awlY+3Ly(wzbBPm!45&rp?3 zm^{x=*d|<4&d|k8m=@1a&ds>DIYa)Nk=7YHw;3s)q2gO`OM8Z9ZGp{a$lSu36}P&Z zX5qQ&`z189`uTHCSfZW-Ljr^67@T8sPqn7VXmx{@70Qv8l5Il`JfITWFg-q?3ESL0 z`1h#c7wleow2+yW4sORr`#U1BPiCqjIlL(PR0_`obFc&{;Xk+>ucb==;M%d4CjWz{ zp0z63bTRse21U7lqg%yZCt>yK+fk)!DME{{+i@9MORaXW*ti3CBWo#n6t2l@saF(Q zcP$-?LglZed^_<>vX;i|boYa>cA}!!Qrlgu83~b%GfkfybENt~Sv`Ao5ANQ-dyhGW zMX4XU(^J{qxGa94Z2R5CY3FWtX}GQ3u=)d4-s2AN`k<`tkj{gaTuPmTPVd3x=mTBc z@6Jj8Uc~N+1NYz|%73prGpK7X-phQTmwV9#KG2v0?(E5p`{|H1r|~W&&D`xS;Au=r zqY!P}=gzBBAD;%B9J*6yqxbvV`4JPQRDdOoD>r!Mxe2#c9M8>s1o*X zj2$OZFCfO z9I>?IC`Xxg9kuLx3{N1jwC6f1JM0*GeJou(hRza8C61%*V`<89cNZ^}uyLp&PSGix zI4vbOf#;N1YIp+w>%`IqEmEAsxQnG~H&H9|PhvF0(%75se3bN*yP=Ms178z9jGUW^ zLQY}oh@~GlVcz3Y?iM<@Zw-9tbvR8f>U^4$ciqCH#sRo>@WkKn;s3cb>FC4>yl-iD z#+?#L^gV;V5K9-%;H_LN)jZ2$$!*lzwX?W8iKSHMa2pv*w-uUy4)-3hl>Lsokm{A0 zY0O#VQ184u7ij-G?xHm3JZtPx8YwT}5hj-WE@1kJrJQ%6dP1YdciowADjIIRVrkS} z^owcHT-<$k-TCHSWc*#>0T(fs#L~Wt?jQ)?OI+#u@1awjzJzo)4`2~F9v}&FAjm`&PIuExYNLmHqT6@v>R2I znY!F?XV4}}>(97>QNXRAmGwvD_JIL7*Sh(1}PFcz6?6 z9PR?Y=@4oCez!Pzw0X!!gz?l#vNTE8+7T3q#O zG_7R06G74WjBj_Mrju((-%mtUzeR z+7M{Kf>ijvJFB)-S~1{0_bD`>>TqbgGL-6pI}_Y!z&zCW0p@&eMKz4jfO+ZG16am0 zW@(5z4^ak-#y-Tej73KuB7ciqk5I8VOg@bc$xeQc+}?0^c!UAY!F_Pg`|Ods0z|II zxH>(j@sBZOKBqU2F=IWa&i}fDAuj!kLGzp{KEWTE&uQ%w%cx$h>d)yfH!h{m>5CgL-JVk)6So}C>8i=FoaOGX zO(;GS$>WEX4$>wRq$!p=Y07}0uHA=r55UEyzrV^bbqxB)b1D>r)E3aZ7|bFI=xz*( zw}2YFMDZ5TftUDKbpch0#h6(@n`80+=mIME$~_!nxfa=8A={DbCT^-RlmNcJ?P{)mg< zqj&B?a3_0@DnCu5-eW2_O|kFY;~|1RxW{Ev3xSRGSnN?uHd(Ys3Lx#^WIEgw~ z*V6W*yJ{Bo0D~#MNu4ArPp^Q$VE-Y3-TTim_EY3XbhlIUKH(C2iW+=E%b%j1pYV_I zDJu8bJ=KSwZp`DzL;WCjGB&nr?|{Hw{zK*%Dk{F9|BT6uZ$Uahtoq_!1X1g&dp*R< zukLjaf5o{sK{WX0-VE{On|lkyhVQJ>?uUDW$E~@EO!d3f{2L+dJ3&Zf zfUq{cxdNa`0&^UmrlJ#=eh@wh&DjwDBs7;nv`J(xh4`2VDQu?2iOsbT^*uSv?P)HD zZ6M^i0NtBS2Ufu7``*Uc(5+L8e`30=~gWj!9zob+ZVh}Y@OQ4oO{%&K_W+>pU6uVDd7n$gS+ckztoY8{f5 zUT0*j5}C|tK>ISG#2=|cW?1l%K4eCnek96*0)3>4SqC^yg|>S~J9C+{AR79ZGa+vKnDZcp zO2%t%jN*8@HE>96U9`{Ad}c!`nAc1Pm8yBs=Ik*N@h`I)v9GFw6ZPdO*L5frW*OQfQ7lv!W}hAjjl)J`x`ni(fQvn$cP5iK_*1s>afb(x@dc%;`J~Xh)&l-&GEvWwzH8}+u63A z4NN~8o!|6=%7^;s)kJ?bK)1xGX^2^YD6%0s(qlT+(Cp@MjS4q1+hx0^r{tA&c}h+) z#J|rF|Dd3Nfq`?3e`#01jNjKfrJ1=EzKwq7c8H$M*_WXOdfx#$(!yK^5!jM_SzDop9iUUKF!LOsL9H?K9H4Y< z%zk)vG^UN&7ve=5q&browlxnzbZTcFfXLR~JO=Toy?F*AvV(aEVr)lNsny9m3}2$o z<_U;%oy};7#a(dKm`VO!%|j3cx|v5ItZwX!>~8LX&*)+9g2>yGeGht?d*O@dWfp{h zEqUlgFS85YW!3jL8>Un%Z*U>|tZS_s%?dEvP`}=$dSHD<345EN&>Y1~dL z7}|%$n?B|r@D1zBBCfAF9=wfo4~T!h_5J zh&hAI0a>r8i6qGvbSCwq#?=2}WgBd&)jFL9n-!9%RWm4f*?LLHcc(ier5a+Y8>WpE zGZ=|&q_#s$e~5irKQ?S_^;z%%u6$mkVz&9lXt-X=nLS*KZ zIn|Qkb)WiCgDALrP(PJP@KCcB*55=8HH$$!8EUqIs5H!M0WobD`yLI$6u+B_grcXP zpt_;RB!ccu$93{hs96B+7ooT?MNr-0W=FmJqghep)T}7EMw`tjZn)`<(8MFm%6j?A z`!wTMCM88%n>wqlKHz%XU0UNGh?Eztk_AW zxA%a7y+YItas-W;Yz9I(b~46R1ofR_8g~6mL!4aGbev*Sxq_=tMQ@6rHB-4_QifsR zMqtAjuJy}dW_KO)%p$}*vq;zMjA>l6^QLiae3*uA9DzS#ILe{vxZmMk)CcQza?Lg~ zQI{E*81~SgGmyg`dN~87+e6)E!o)pvVWv3{qWUZ(wTG6>GJE9Yr@ZrU$vscI=b2L> z>JqLk=jj^Z+IpUP&BwLnJbjywE5>=6{ukQjJSAR$(Zbn;;??@AeP&iVyud61_saz+ zWgK;0h+C>Sy0H*_A&zP-LJh>xKZ_7Kj*3R0?c-=kgc%HxZZYa3j{aE8@Z)0E3|L|g z*Go}?662M7P-2>~*z8P=mYPYR+h!>%om^@TfUn##&T-W;a}azPmYYK%rY&a}x194B zyn^$1xPpCcR+_`161|eGslSTF!Brfg#NV7|#NVuvaW!W&c{QtetU>3BqY-P^_ht>3 zaKKtl^U+#!j5c_CQ5d|vD0N>6gS$ndm-Yzh-CI3`#L?Y#sC-n;dd$dJ;IbZbcO3QE zfI9>nfwTd4gIK+?k#qjE5e*YZA(5En<0vlD4ArS$t%uaF*3+rq-Gu&((~356k$Z1u zOKxw*bQ(wXw{U&#*}^3+vXx7>U@Mo-YnvGal~LPRC3YKTBVHslu?rHP*oA5?Gh58W0Uk%iwsTD{-j3cKM~QZr{q-87N_`L=Ka^{-nQh)~ zvr>}4fn9rs^y;qS-rIpe7f1D?IO{!88252hU?(Rydncy;IQp`aVeegB={I(<$@O-# z*s&W|nK=5OMY%ngC~%n99;aHS4Mo<|hSH(krfv+kM<-7xv-e z$NhCQ{t61*k4wWLIYbSgM&HP%$hyFNd7RO&k+YX|GFQWSgaS2&O z1rM3cAVLqB4ImC5!sFEa|rMjzct zv7iVKv>E96VKXP(UPln?7!5jNHibBF1g0LN@<(9+LmzS-Me3_5`l$IEMEYYW{A!x2 zg~xGoNV3%`ueJEn8b8$hvWepZ^EFFDQ%{&UOuRE*>#U|%$1z#0rq(Agb*-j7Crlp* zq?nC9pD;Ul@w%csHxknH(|&l1dD8U7Ut6nBqJ!?EVy94t`)K_s++*yc;-}5=$yhxT z-u4@r9^mjbGY4Hb>z9h|o-~V4U|{oXTA>6!U^GfRR2KcLFmqJ%4DpS9wCN0HqfM zB-OnPt4`A4%jiERsoWLx^^>&v3TNYUl_M;=iV5;06}`r(th&bLrM-?}e3Bxrn|UE% zdQN(H-E8G0E0mU1Xq}Fl-@whudUD-BS6@%&4Gh`!)a@q5#(FxXMX6h6p8v!ee9J6@ ze-*#q!V~n~TV}y5YW)&!wAwV#uSx>_1N!vsF%WYMD+S`O#{sv^+7MfABk6CHO&+9m4{|#1s`Hc;D6bwLIgfy-_=J*C58$|c|1W&9HG%q%(3bp&?lHXkC5vr zTH*+Oeu|bpLc^Y+Ku74)Gqc$Ln@pqUm^0io^|@IRV()Xa14PCbW*dmW7iM#agD+s4 zo6@?`1Kc#yjc(_rt8UgTY2yCLO|wnhIlAeY$?>XLtTNxiqqm!0TV}VP)-gR>Mi*Y2 z75}%62`cMjSTo^Evo(AjUScEzzQog#n|{1xBbvvu%DPzG+qo(EE6%9bE3+ef2VZf7 z)UR<{3aejpDo0;)gzRrv41L3ioql6>hDyP=W{1qYv})>Z{Ee)B)ID+t-Wy;|8!bdI z{y^UU0e2}W-kEume9}GXWrHNt{e+n*ykuxnd<2E2`b6{I;g(T_8$%BxDg2P@(*INn z@{tL+z5hhUd(_`2y7V45PaI+TaYUGYoR+;a>&USPsiCs;gQ@<&M*cND*3J89mdmnE z8xX&t?#jKp2L%WFhvI=`9r=AUE8%bMsUJ<>OlqwZdVCVCmKb+_{{8VTat>Yjh-vdI zZTW`36w7@=>Sw9dC$#EWTKx&PuxH8ZGmC)FXgMsY`i$G^vsB;wA{UelvSy;n0h2gsLA@ zccOm&L%PE{HmkYEjk)KnY?SjmX8Rjd{W~(bL94!F;M|~$KhWqmXv7c92RG>H58M>q zm|NHCh2Qm-562vXCzYliRy~M$9@cn>Eb*OQNl)xH-byH;$T6G{s zB(z3AyiaI_L5xdeb->^IT@zacC}Co&B-~{aTZJ^5;KeJa9@I@t&AhA(;f)qz32Q#f z3oUC>0Z(f*Rs^i_w5C9m^s+MIKlS=vR!yuAnBrwsfjHr1^@S+uZPmwWfd}4J4kB-> z0Ne+>ty~(ZkN6uUu_{3Pk;Li;@hS;oJ*D@np{V-ObgRkts!2gv6?~DOlviV z2v2KO!n&&SX;HkL^dYU)0HQ`ZXzrwW>8#oix6)a4A$-zXZ6HF^TWTTJ#q?GWh%y;a zVf@~tBE|JJ zsaCC~Q*9QB|30Frd3Gxg1kB1o;n}SkUTQl9BP-5k9(yY^Exkl=N`=%54m}u~h5OFL z`M-BU6H%ocR(Y)H7?Q)v{hxT7a#+Q&%;R1Tbb>9EF{jlHA~dH}1B*U(<+Q5ixM>gY zM*6`f$iELi)dcg)rkj*5m(>MJzk+gEWgyn%vU)-!^FcDRXn+s8_ggyYgVuRV336Lq zA$sPv`aqn?4b8VyA`iOTMVg-n8D6BDdC-?GQp3EKA6AN_$YStqY(N zU!Y?JtYHvU3!;%O(3XOzP_-kDVXgC|?hRb|DQ6)omB(=^S;)!<(Wa194q{p%t0~0A zqBu$-Sz)UY-0ccm6CmytM#n!+zQwI7G^2=>1@6(stt@o32!`fyx>Lle@}CUq7Uc}u z7PU%20V(^?`l6f}k`Dqx%1tS}7^VeIzB2tNX8FR6JXFR=KEKBfT3H+wd4~dhtr}Fn zgq00${}LDgcj%(8RgCVGK>RzDydObgg3jqeF_^$3X_y_Lrh2RZ(nCp)_r%%2nMV$nvFx)vT5} zMi<&q%{t@}Mf+=6)hVhvt_x9gvpR|zg_qChRij!v@*cwJYCqzv-X ziNvpindLGC*0Dm8s_jZJ4`gbLH6UZUSsC#`>x_i7sezS}ZuYm5(wB3X2b7ZW;*%$N zoZnu8M%BfTy-auOT5EMkiEp0d=MJw$(e==3m#I*FT-+|x?)uhW5Rpx++C&Xt(Petj zz#6aP+)v>}T{}<1%eIE-XKYLpD$xit%r@%M2!rtaRhQOJl@`Wkr9uDBNJDFzq5ZDX z)K*qGO6mu5u2OS9YdXXOKa}Ju4Q_7z4)LnFHAnf{Sk>^J+v*5+&X(3Zh#f64GB}Sa z)U}n9T5}*Il%Eo`#vtI-8qn0%R(80NWI?*v8Y7O=El(BOpk+DnAPA&eg?!p#ro2jR z+FILC=p^khdpx9>?W{h!Rx0Q5(hX9)z13USS1r2U-Wu?qN}JvR6~L8N3E#xv;`ERP zcSiDuI%1$dq@jWdx$fgG2?EhWL|Snt0wlUFZXOW5o@bi(CWGO-t~4%^Acz_fh37j74}Q#S+2 z=k~{xznvlsSQze)E8KQE>yNAZcFNWpQx}(e2m}h&9Relk34uaPfq?x(|6}^uzE*04 z!1RKiJ5&wDjKPW9u)-&R%Ygzk#FV@+z^d?n*#0TNDu~#yvKj;otO5bs>OsJ)yyV>v zE%X;H>SyJo4)}q4L_f?bjAmf6E7~7-eb;GSf86z4r?~#OiMUSv23SiWFcGeY*coVz z{?E+dKhP@e$&*Fq0oq*u8nAgxpp}BI4zyC~uyKL3EWpY@@dsHIkxrFCxCURRX@hXj z#u;~@CWA4{UZ>E(RueBSedRyBXqL~?%=C0H=ENOTX$bn^4w^s2YN{2QhIrA%ZHx2L zQ5PnmB|(^a$^_vOw}UX1u7vmzgc*MaZ3?ymeyz~bAyx?lpeD1CE5s`IpA4^s;O1-x zWf;o&8bi_NIs2;gdMLUoC)|xz4?}%&>QyLxsFg#YMpdtzNr;J7I4}w6&D<3MjK19P=T%V}J zGIV_w?iRQrTR=3QZPofu9d4bCiIeNFF#VWqWr79GzrK-+Qn^nj)7q_UF==@w<$}Umid8p@0mO zgi{;5#M%c`VySfy;?+`X7sSi8Rsf}4jt;n$+AW8rTj}C*%=%j?*$VV&wxJxkR^W!5 z4XH^VSD;U`H7WxbQkT-MLK)barnG96RTOTRRGz&5MuY!q*Wtf857@O6S}>_Lm0!a} zhh2jx`C6+oIE<@HGuEQJvxV~^U|c0Sv<{83mCSXRgqKs;dOTGur-U0Y5SLTO4VDYy z_6E!y%W27e>o?l65xr(P6*^!wrtXpGGs|hi0jnl`jl>9APL&T@t!U3CYiP3Ns_yPS z#ig%#8=7?xDkTqDX=&DG+$1fhnTM>F)NBi$u9wrPE!Ihh*;}oP5WTipTOl(3gO*0x z|5z71mPd`+jyrkCsXMF$kTfI8vLHt7v`mOIC#^noVHcWWdDOJsxbFm8wg+vooVuNX zovZg^+%Bio`>X{J8}{M0X*m_ykJ~gZ)MN;hXPgQ#hU-S09_FZ+n0NB@mjjQ zXljBN9ca#B%;U@P-rd>`vG|A;4uK+6Amb=TBbTENy*!G08d$yE>PN?qp&u?M6zC5+ zdmK|G7pgDKJAqk|OE!RdpTyJk@+cH9i7FC`_BV|>jq5%auMOomgZCI*MuI@`T2RBY zxZJLx{%3JHUqcJeTA3lXpT!)!4F_J}A!QpKI){P9x3d+g&3TNqZIty2?pyAi$K1S) z_FS$Xwh{{B9$()4l>0_3YYl~8rdvCFmi~3K;q5m=v7QLoP#nAiBE$-x~(CQWFrWq zw!mwN>P@{edQ<9ZFRIXp8@R<Fym&MoVxeJ#L5_-nAd=Mzm{vKzP@Pp%oy#bs)A=FB zP&gfWX!Y_8SIHI3LfyY(EcSk6wb1!grgx7}m*G_HG0YFA$j4R)M6PG(Ql0+AR2NRW z{zVT8r^-(_u_aGX0i1Mos`M0>t5r1UDbP7O`xK?+s6%wDI&|Y1%;u>1DARL1a)%S* z7obkh@w7Rcd@ZXH#eV@ln{vKD51EbE+SXu*2QP3@oK4+gQ00r}N+3A6S&vOeL?nFHd2 zbwjV}iAT?lA2EUb^BMJWjxK(7RFV$#CckmmDQV0Xl;s>9`GUEZt35w8`)ZZ@|FPld zSD3sC%R^DWoLoWjkHcdkXDex*kHdq(IeHt1d1)1vgT~aOQ{SwDDOE4T19GSzztn0+ z7rWidM;R;QrH9LVS0b9x@m@;Z18QK)D%>4$M!uB!2X1|T>A~}Upv$eIf$?L?%*`It z)nnD%(J_+&Y9@#&Ouim5t>IpnAf_T6^oXenH%u6$^#?%QjUUq!0?O?npw}ON&v+$_ z$-#Sk8fCCa@WeUBBYci%sC|R`R)Ftc$L9n;Q{W%fPzk(P-|Ya_w;Z3*A{ht26yQ$D z;FW;5Gz{L<1xP*A|01q=!cNVJkcQ2~By859?Abu)vK0ut_KP>O*|HRP)!Ov;GL_|pu^ z2~Z!Kp(qsusLy2qDl1@rbH<>W1Gum?9G{W@CI{D2;Fiks);$lEfUAxo{H537`>aym z0h~fZ$7j5Jz`>0LsL#=mLQ?^4Uo!9$5T`*40rz8Bqm_U%t}jg52-*IfK|28*elX}D zplv+1ypw>Z9t^q&sFjdGHvz2^Gw2~;rWb==wbl6J(r@)<(pyw+Bw^53fcgjyFvtO1gF_sjF(owzhX}x@aXkJ)g-pcvZAf9HfW2uM{4St{ z&SR{A%NqRru^dO4!k@}1v)1c;4?AXnV{$=MPE}-ZNx-%W46X`zticTdX?2v_0`OUvs*ZaCc2r^TP(VDF zCjSbF)Zm$bK{YszTfl>A3}OV}!!MQ1D*;V4cq;%OfGLd+0v6X{@R`RS*D1aPQz~(y zGEb}g5Ky5$YsCM}X@-{d7$g!fUIQ-yzB)=$0a&@Da!Db;HL(ek)Iy>gGe{@kcde08 zz@N=nBa48GO&Met;L;ko1U%9`Adi5e8sv8gxur=V0p7Y(6&29CC1+DYz-bLi3Fy^| zHOdOWS8J-g6$BJ*&7iUaT*ebksyW1H(1ulN3fQQ@ZvwKnWsQ0Q>;chGfIT3Z2(X8M zp8$IZxLOLahd>(v_7G?cB`2(gF2cmehhm?*#=0+R*ULm*6mJp^V5 zuzUP$0d|Ld)z9SvMJh1hZK2(aVa7huPEqyT@MSs{oA;u8n370(=> zF>ojczYtJn7z0zlbeASELe6UtE1+B`$9XLPhoY-F<*k64!x_96Fjj+)0u>7*i;FT`lW(G;K0JlW4*@=-7~6kxYp7MCLYxoNH0 ztdiXU+?F{VAI?^ZR<}t`4;G_om1o#tc6c8|K5raYkwnpgtuOdQ@EoPNs0(_P+ zC?P;?`;Mac3Q)Ve1C$o9V-(5U?SB`l)oRQrWC(xYvD-^M?bt^b;MQQQ!dw zPZCh@34k|V5)kqZ0N208Le!rBNOh?IyYwp*_@b&qZTk<6za7BUvBvQk3qEl0IsuvE z7;F%*P=iPZxcHN2B)Qokh8y2N18fyg_y>c31gKL3ps_y?1OEDYWVz_AMa{^6Y>{53aDQc!U|I)DrN+3^{f z^KkH20VRqu_$FYB20sM!D8?Ed_!LxU5f2}XBZ~wYsPU&hAqPn$D!!!{cnU~fnt`_f zqYQ(j0YO#>IZnC+ z$m#&DpX`p$3C^Vee|ug6-=0H1j{{ggpX0+<=`Id0AmsRO3%@qZE2VIClpL?wS1gDC>8YY-+NWEyKs7og7fKpHazjMHGYfTA;5V~zt{I3J10 zJcnSr00#2~sM9}?>H-1v|6;I6z*Y?w3&^&BHI^zMn*t(@6$)Ha^^;dmEv~;E!WFbe z`FO+9PS~Lo5!Ng4^IR0^0M_5^_>4*soa0sjSywUmM?i!II|MZSTaUk;LM#wux?8}8 zH4OF&xVe_WegRX~F*qnd9b1Al4htB$g~3q)Pc%5LfQ!r4Y%8mr6qOSioEC6?2Wy;F zV5X|Sl{i5J*<5e{SI0%iXQbK7!IuTpJjURvfFlfC#&sdV$64j3fHWr<+!k;|gS!HP zPqM~+0p(6Jcqkz283vC9JUPqYi3V!?sdH6OlxL#yESkX!0S7NJFa-?0%pgWUwyO+c z1@ySZ;I)9W8oU*t4q{Q)zxP7yI{l=8+QLB{#-c3y>Hx0fZ;sDU2eTmfhk$zz8F=8^ zY@I-_M+_1Oc&0%j2e^#T$E@P%5JR2Vf>gZ)sIyuCk_ssFj6re%Gc`ylAn$Y5NG;%l zn?YIufjGVeiMrAYQ3tw!WE4=vVvt!tv<6uPERSW4>;kg9Vvtk7SPgsxJl7zP4RHOn zD>=U+ywAk(ubfCB2XL(yaePL;w;Wtdz}`;`N(fMURG=ij0_+saD6mmAY%c693yt#i z)cY4jIFE`FUi}-VP+7prgdCx&0Cg4(Qm8Iqs|Ga%R7}howFPwWVo*mw1@8oW|5;Cn zI-&-tHV_b;gh3+#ZVj3UP-oO2N;3g!R}6sW0_?)JQed|#z1mk78f^hwOt|#zB|K9q z4(}*nOnL^L1$4~CpsN6N(hZXAuD}VEhuUivpqBy>3aIUR0s1(A^9*n~USn?&4(}&G zZM=a90|b;W!C;^OwfP1#1`AmK8-pMLdFn6-5pYU_VGeK^#p|)kaEBQ2u_Xsm9VtNV z(E%`8!2U)I{%3o)#tg=a#;_&~#tVpQ%3y*3buteUb^R$MUvnmt1*ok(pfXj!VGX7U z2yew2GX%72&0v;*mTee>3s9SXAkn!t!1!Cyo(YMHI^PE>e+j7BmBB&*Rk|^V5TG^% zL6ju|)VV(Z%LJ%%egIYosBb9XGFAyW(vMYE3sC!pAkJC=zJnO77Z7g0kD!?ARHx%H_N*aoAui9Il=D~;Ny$7xO9Y%4&ex& z9iOpcC#UySfI4mo8GIAqznj4i0WUQ0sPE*_^&D#?5OD7rgG36r*bLVVCZ3{F{1yXm z0Yh&yNGf2|T?WYosKc6ISxN!wXeNNv0=DR~rc;2o``GxezW!u%2$w#y<1;*-aSB-l zRC&%IyMSRY7~~Yt<2wT%0o{Hu$Rpr}2Kh8lA{}kH36rnbZ-LcIg<@6EHplg9ZXVWMz+|kb zgmz*uUO)m?hwp z2H^tQ^<|B@0-k9=0yYM)#$N&o8w?f-*seiDef9p0dqAdstg=K@MryE3!25x$u|mN7 z!3GcN9OBE;Y}VN00G?;}DW8kOtIXl>15P+TDQ9p35LS8U2E(++giQ`-ra1kH0AdjmGTvVB2dm{yID6n4v z`!B-V4qz+pD&H{`tWMK_{sRZ}b*Yucj~uTNzKg^E6<|krrod{I!Uya;geYzYa0Zs+ zGt@zB2!1J`;!y^#1gKq-pz%fnb^Y0Mipe`s>4~-7Q28L>5k6rC_$0u#;;RBM2y2mV zu*P=>uvzi2JC6=7ahrqV3vl0IkkBRME8fH+kHiAh?n(e&0@Q9w07(R>W8eUi2_U>{ z14tpjHY>FPCzYM|{$-7H4sfxd862-M{5gkb5-|EDgDe8VVi{x;u<#Xw90Jz8W{^w3 zOS}(;S-AzI#QJT3ybaX&XS>usO(6M2rO^il1qB?^ps;{CA6cWQ0ChSY(kL#V&36VR z1>E*Xq%=wiDCSDQq>PYn2^o|VaMPPX1pxz+GpHm$on?nqs|ZM&mO(WEyE8DTAwZpH zhbXlgsP_*)H%uL+vR<_m&a_i1^&P+s)zI-7g>!IlV*yKYGH5Em(}#hdfGT+yv=D$S z`1;pc5sYB97Ik{c}!iq5HEx@&= z1e3l(#*|`U2q;p4L4N^iq#6Zm06Q<)F3q0Ie^XDz&^hJ^`6M#kxsbL za}tBi0{o^h*eYQ8GzR|&_%f5h4gsOF8SE7BEu6t_0YBy@;``sdLbA+fmHh&~E?{s_ zz~~4DhXoYG`GqLkQ32{eLxAG~{$9@DqyYaF3{ETH;tEoS8Y0eFQK`3@!Fd6d)-s3| zuy!4TO9IxcXK+Qpt&I$>3CO*f!3_bQH|z0#ONcrO5r*6maA7NhdjgXD!{C8{joTSK z5^!nYrJv*_n|kA&lqr! zgWm~IJC-5E4+3r;Vem=7fujHze_w>CP0J7`PC(a_489Ant?f81t}TR@__4Dt$CszH7MTOPAUK>+i-6V6&P!KI3LKPQb6B zy8d&76uFtS5S5Ji8MG3hj?P4;Z4{WV@~DNwGXdH=fb;0+_>2L?IJmQbeia#XRp5zA zz*RRfU;leJgj49{_*A&cppOEkihwQR6fhjX`u!cBk+ePs2MSP!aYBEP0xMMl702-N zLXZOU*o3G~tTNOgoMfouGs?H(;1LQOR1t=EW-!_TtnYGsPVhJdo+|xYT7QBASpQGQ zXShao^Q(+o&(s5`S7`P z_@|j1zQ74Lh7yBC0{&gZV6lL+%NQ&bP+=v5;NvxR>x=5I>ZV5BjC$v20H{qL^IgQfajmXSDEZq zWT(ob?JWlT9Kd-TaD2v+dmMa7K>H^QjtDp!!{C^JC9fEq5YY5J1J@}b$3HSTBOv$- zgL4Ytu?ds6UXu{*05T(J{1R#P+GCp?V zGq$J{+O=Si$N`*yr{gm^G~!@y1#T++EI3mV2_$oXe*cid@jBtD6_}+Ws6!|bA)Ny_ zgA9((c-e}BGYL@V(Lz6q0&i6U>YPe|><-`raymZ4<bP2@kWYc1 zU%C`@04G`4@fmrCvwl$p_9_!@xEPdh0PFi|pL+jchnG?0=UKYE12{rO$7kFb%js1X zuw)8@stWu(Y1D84Cs51r8H;AK{%-(y|D;T8x{yg-QE9b`L45`A!UkWRtYgr~0i0wL z$7dYg#=(99KCWlbQow=@4B80Dy$JyKf9-{2-^?nV1T@^jpsRpo8uSpbTj%R9z_zom z0Nb*D0&L3y8SwmPn>JWf*t9uDumIb#VFGN+MhLJi8?C?&Rbj6td8uwQMghERif6Rn z%Y_;50IosT1jlQvjpFc00O2lJprmzTO1ZA9yp2ApVL}QT=S9_ydr^QL z_lg2|y%x_XeV>0}*mCu(L_00JjA;wN%+;Q~>XIv1%&?gDei< zqGfY@h6~$Rst7rSl#64KTL8ARR2umNbo$PqpnwDMIgcU&ZYN?;T);VR2EGEY-=#{l zj7x}ZXn6&;Da((?u}UQc@S+$yf9GdVRRH$EREg9OP__tz+6r*#ZOiHkuq|ug0GDB# z*4QD2ZCW!0uBv>`=i*dbIDo6LmE$uOrRLza0`{e4&_TfLbPPHR*pr??x5nyqG3Svl z6O*2zvM~#T-U7O0XAmIZxHhZ50Nc)i0&L5M2(T>+5ir}OO$!xbn>JE_ZQ1VvY|F+9 zur2#TfNj~I3UJHqD$BM{aRAp~nDV(e99ws)hMeJqJ54=XfZfz{1=vkJU%(cf$3g)u zN^_!%1+3K?%LKqIzFk`>#7<;ywRn=apjw+*mV@IiKEhcJR6@t0d9V~ ziV_R3Ys6cCT_ec^*fo+;fL$YL6ma2hQ2f)Vt0cW53UD9F==hxAEDG=}pHa{9*&V?8 zIUS$zr6*gRTR?^04Dt!kmu#b86ZN`=ll1P(Dn&%azLFFdka+-W_zD;o$e@gXMMD^r z7vQPwtR%oTys7|~oo@|AxK*$KI7X=4jv}p;S>fV1l*a*V6=c1VGPDF;PLlfCo*1CVl0o!Ab#1kt)(yEnv(N2I~YISj1qX0xquPG7(HRi^?etwh0)n6WJl4{Ys9qOMu@} z273iOSjOOhfaW^NVF4%B>+8=kA=oTd8Glkh*VPQp2zaK!c>%PRH7*LMzK+2a0SDGI zxGuoded-o~OZPJW4XkokRLX0W2Lc{z@K}J|F`o*syW$H0c2~3n*j+JJK#MTl|KA9) zyW)ERc31o)!0w7)1=tn;U4Y#cJ(@aW$nJ^>1=wBDv#GlO;vS&-A}T(KsMuXGxd6M5 zq!M6v#k2zKK9WIz-4!znu)AV50jFHLqvaH0_p96j>~54#fZdG>3P3kfwigj#_oCtg z>|W$6!0tt5nyUGqE5PnXeGU z``P%$4&nK&spB((H*;`v0ZF$oXeD5aPN1y-JH-wPELVA4xx-O9i-w&>HvpG5!%n29 zQo)j-c*cNR9H+Mf*sQ*e&p3U6gZl}Xa+pD&fas$P1`DWgoI$XFOlJUa|20fV)$^<} zLI8FERxLYPz{qF@V+0(#%wW8L)mIrz6j1vHgUJHoGzeqB^Z)3ZtTIDX{B`MP3$UwW zt^m6N<_oYZV4(oJ0u~FfD`1%bRRQYnvXw&Y3Ro?`u7Gs{>0XH>xEuhdl)_5ntM}v<7mcD0=F9M#aT+si&32CVFjn~Yn_4^tm z5U^A?Lt+7TyLbz*D?XV3yW&#{&=qf_VZi<0uK4t#Vpn`70d~b_6<}9<4gq$>`v|Zr zKCb|~;tL2+^{)DVVIg+K7ZYGtd`SUz#g`UfSA01EcEwi|U{`z<0bKF;(n|ps_inr5 zYl(_o@pS~)6<=S0HEM$N`^?SR$N@Ycnm9fu*iQj|n=?A8x9XTJ9l-jno2l#1&u@F$ zIpIcf5021Lz()8r=od_hQgXz%i}SM?m8wtYHXn714GL5E7!nAOW`JK>}>c zh6=DP8!o`MY?J`oGM50`vT^?-wrLYY#kOpc0Nb*u3M^4=fNiN&olbWE*Xc~hXB1D# z!QldOq+u{mK&Ol@CVvT;pPs=Y0oYes<*`J-LJgJ+_@coo0j;!IYXsPKt`}fi7THYQ ze}$`}EX&2&Y*8xCHo+?2e_Ru+& z&L)!pJD02qU_CFYu>lOh^(TizxNNx`pE0~X8=6Nzgo=Q#_aJl%*b!WTf}+7m;!a$E zoknp1b{f74EQJ-+w@b_h7dN2VEF7sdS3wG}IV~NZaj6>zw-NBspFw*8*fLxt&`H1_ z{TXx>fZe^7Mh^iw2P@z*{Ds)vsILIqtbPh`&zq&^j6l(_vl%SF&L&uZ&c+xfY3!fC zhK$evoq!8FO2X~l?Gj*TI!*vK!dFF^AYj6H29pH%|G{9YfB+q3x_})T%xWOSwrh?6 zJ5>^3r@BCZooWOFy45YF5^q7?8FLpJ5#qfTXSBc?cm>yLu|bOuTFlh~pA0CKSS|3G zgYsEgU^Tn)Ezsh$7WcHks(%&sRo&A--qK>T7GJb@q{T-q-f3}Ei_cnM*}jVYMhnv7 znidDNn5o4xEv{&>QH$I71WCo;t-TRi?9t-B7U#8y)8dd8i?mQ*T_E}~Ez~Cx@a@w= zEi8vmEhmTAq=j0y4WC*T4RIKsfGHWHy=oOPd}>iDgj#qBp%ywqsP&5wYE>eHT6_ng z)~-RQ^=J@Jv`}ls;G3s~TDAqBT8#yvmP0|Pr9=>FwT}x@Ew6!4i%}q!X`xnlz;{y% zwHyP!w_2!$5b&w>4G?P80)$#h0HM|kK&U^xAzo^s{`Q4W{h108rNw0>FsEJBUiIe+ z0@a&q2=!(eLcQ*VP%m2{)Wbi-B`ws`5Pa&U5JKJPL2T1P-EzREE?5xi>Hwi;QV2Db zL8xh~^PKp`DoWKWrlzN|W@cCcitZJYfdYHQsDs|ZdSN&JhjhAEOnGmt-ikM4PC;Wk z4f2o48E)@x?kBYz2^rmg?- zR*7!-1&0UjWV-QJ>bH;Sx?k!2-Ap(ALg`@dm}K66|H8sM?P1MTztHsMeE(zPFBHMmtbNa-j!-+%)&qwF`#CUse`8m9}_tu}ixx+gj;5>KPbU8Kc8&lLf zO1!asV|-|Onr*CwwQyW-%Zc%=zQ}&(&#bJcYUP<>MW{w-OkQdh5R+DYRuyk1RSS(N zkp>lsb$^_M>IO5za+6QLn5=Xmco#R_K_`%!_d~Xy0+9aUUs-Vj?D(&&$WC3wM}Nf& z4AexpN-B3c->$w+3!nX2D|fom{|h84|o6V-z{bMpyq+;iPWqy_Ra`RmJ8RzrH zvO>0%V`ia>15lhRzp_39V$$Li6QrDl=Kkb9G9ae1_kCOU9C-|k$)4V~;{W>LMCB3r^K<)Hn|?r?M8{1wM2)f+!EUz{L7X+HXy6?464gZrAC zZShlH{ghEZ?bOd16;M^VEam#7e!i=pZR)3^3TUQ&_A2iK_48Q$TvR`+)z2>Vb65SO zReIUfPjU5=LH)c}0j=Ar=il?nnOwn2>L-=@@l-!a)K5P3vregORzJCww}$$;uDl1- zPZ8y9tbP)zpW5o@mfx_@XHqArraf$Kod;22*V;t1WmiPeQEEGPNQTAULqJ18PJCJ$!9 zL%}fx6RPVIMMt`P;u|=REF>mNVs(uQ%S8{@Te%Z%Q=va*yL>$P!8oiCJussR!7w#T zK`Hv7l?y&~%?isz7Z>lzLa#$&awk^TtFUa;{G*i(!RqcdEHC+d!@+;uhsNZ{pb9x! zmkvT*Vj(Wm+@Ue`aV5JqG^Qp>kZV{>Z9cMcG_GWGQAt$OAER;du$a^-Rf!NqU1}jB zY3;C>N-0%Q;M=Oja(Xi?rlOZB0pJoU9U4;$litwKn2H$Kn?qyNkv#@wPkgFU^}o{UCP1$vQAISOqNWXx39nm7-GCYiQ{jhQ8PYngnmC(Av#L0h#`q_y z!NHiDm+GlIRbxdJ{IF|#Q^$1$r^sklvZdq7*v@g~=gR%E83LtZ0%}0%5j~*M%9|(1T@SnvUzBdO z@6ce^By2Tne2J<*hc9uxq-%<2u+| zxuR}0e)HWY=NqNfX(R}{ren)R?Mn8$az%X%e3QLwdQw_7W`MBkz)aq15Up=R;B7pl}5u; z&|=pdY&@r3-Ld1Gb`?42xPmV@u4xyQD{7$U+xKZ*>WR$Qge}?hZf&Ko6`OWNit9Bt zU(>7|Hd)iI4%l5yyCSe>nsz0`-e}sDIL2``z+PvXZFXECMw|O6&781YJ^TC9&@`oT zM0sR;TgxZ?6=h2N&xpXT=Gel_xDwT_>f1@FlB!2VV-dC!Gd4zT6ni23(|wI zD+JqdX;*dZ!^N%;<7w&ys9l=*2e$W z!@b2ceTH!yw+bSwiivGNts;?#hv>lWVk3A+1S2N8Avh250E8euS+-?Tm?$C_#xadb zR8Y}G1*1+kB_X`Sfrr!$jTeIph@hAyi^HvP839_6mic@8>)X3;p8iWrp#SE5%;$d( zf3AFL!}#;MR8q@O>P@>oZc8Q3(0tm02j44lL6sB?cg9+NRcj9nZ%TFQ)3;<}J-|m5 zxN#6=b>RlWD#v#y%a89Pxu!arhksnPyiLC|5+6D~F2Ifz1#1}=AgoNBPFZWQm0&gE z7%gq;u5Wl!ZiPPW%ZK<#5|n2Rn##qEgtM|yQ^&?kotqFDdes?e>eL6OdVt;e-iB$W zmVmc&)&+^ZK zl%vSonClGatK2Z*^yPKH;H(TNaMpA1Z&q2luI49Re~eY{Gi2ju7}Tq%9&h>7$yjZS z+ba*Cto1GT{#J*&)$fh4S>Na@pMp-y8}-YmH!#nsw;r;&2$NuKhk<6506(+Rp`Ka4 zfjf&^dE$NRN~w3tp_R#4<$F`D@X4Ins!g4ONaif|w5b_2rapo_=BxHPQ?<~>oUMi` zW{n3YW<9(Dz0ItsH+8VVR2~d5U(Ep?X1RX|7q~EILvX^ZGyq}NbU0wvKjHct6qvI_ z7~o)~Njvl}hkrJk`XAnxGY42N>#8Z29Dw%54bV}WaAuc79X;!-NnD{fO>z=sm)LjE zZK~&ysq4VGe03jGZm?X^^f36_?X1p=Q>AUbPn{KdJtdjlxFT5H;kpg>%Gr)yQ~$xa za<&bgHS~^f*#TBLyArPbugq-WYg4UItGsT$Cqn0u%mJUu9C#aD024EH*2y0DwIAnWxlBlI8bRd}*Gz)SI{{)l&9Y_Qa*oa}e*M^3$glS|-@l#vN=jjVitMpiu}BkNL?F10Rh zG_@*AFYV+cNFuf37%U>|FCawLM(9JM8?PIk7^|6Ye`B;BI@v)AB@5#^VMy3DX zx~vZUGy11Qg{ahLYROf~C8K{;D^!l}nNqoTm6W8UD#=O7<&r8@>Rm3rLa$0aEB8(+Kj%s> zg}>3Z`rLB6Vqov#sUrvUsl4rpW3Z@w1y{MM)ytQwUaqpMR6P1`UY0yLX?X8m{f5oU zs#Z2_P%8fC2l)TpE5F%o{P(i*Z`^$uT4j4|oD&Rv^VrFs^?G?vq8_{)nr7k4^^FDb zeLYg~yeua_w4{aC#K`$3DIt7mua?hGk@0mdMf0LWmo_|YMB0#H{gMU_FWYZ$uim5Q zfuUV=ar}xdKF$OZ>nED{1BtcxS8=7eNPgn#NWN`UWl(m1DJeG(95^t>F3OVfvw9`) z$#EsPl3+`n_>w%AXaNUi>u}e#fObULI$R7G+P7H@YLWfCT}fV)5(!*m((v!)KvE^0 zk#FF$anV5gU2iXV@g_qCZa;756J;4d-L^?ap6gc;)JgNm`0OYjC>-pm!YB52@>i0g z`DCAkGlESAS{V7nzBbMQl0u$35NZUtRrYBFpWiQN!g~(voiuo0QgYdpego5b593|PlEuC4e34Iw>aFNfI~K{_<86is z$!^EyUR}wF5bN*UK@*Ik!W#qHrr z1GlzwY1A|d)ZJ-`;y?DS#e2J2z@6vqY@oo}QO4WL+Q4r$>|Xv{Y&pJs-*|pbsTi&V zn0U8U3I0}JH~(8oEH5fmlJkJ1dE*^?{#pq_D*;}PwwK_`m5k!=_9@H7fpR~Wj3d2F zJeMBDYx;V0>VSAXhm07UHZRKslIpi~@dbUnygtgzZ;lP&XDrt#gc!&&fh~V%ES!~J z@k=D%uVgI0q--o#VcW5?l2TyHn+z*4pSo{8k~HJm;2;5!@R8jivKJjq`>~k%bcPtAxr=_ zd6|{xN=5VH6oWr_Y1-Y7i2&ILRvM5(l}VtAvIGb4Z^}gR6-s*ft^GOQ5}kP&GE z`}H0+9QlBsxZKKH6D{1Q9KGE$N-(?M6;XgVF}F(;f2Xe#%z56f1WgbjG;s*?Z@QEQ z!@B6o@JT)^U(mx$5=E2sA70040utY582OherD#;4FmcRxKf`%r0dqDyweazMOZkTm zA?3AER!+!d9FfR3TbjDdp^U&G9-gK8q*+SRP`*wt2VbFwlRwnQ&AGtA>Q60Tf2F4~ z1TW+>YVOZ@erfj*&_Cp866$2^#7HL{_)^!vXwvQb>oZz1qa61L|IY%xlK|0!;)qE z+y3rXMVxV1@_+v~L*9rVFz19t*8eTxM#l~!+&RKsd^MbKg@o%dbqwJi5bitk1j20~ z+*kZ$!rdd>n(qbf6yat)61W9~>;9*}EzclqsBH>qIEQd~eWnraJ>mAoPbb_jgj?KE z;5HHNa--Sgx4#K@?E5){do0v!IFE3Ua190s+%CfDt1cqHZI)zU?Zr(5b|Lw(#g|LS zk9mY!TV)yHt`TnO$K{0knQ*-#a|w5raLc86gexN4`$?+__XFW-ncecguc` za3=`2z4S%G?IT>t3J(dlif~uWj|jJhaHi@{2)6}u8FFQ^z`i3tj`~sH_7F~+_>5G& zNVtrH&k6U0aKO7ZwR}R zu<<7Z?j_*{djBN9T_Iem@dM$G5^hGvkA!rgbV#z z;C?6EFNX#04dLFO7q~lwE7|r3(rz8$>Rg}6W8?FLo3^pze9WyS+^onYAOo|92)o_- z5n%3D!p&LLbphtK6E3Gh?0U?tC*0|l0(X;e4$oHd+Zn<8ignM6g>}Fi^A>q!y za_3`iKj9>o7j4DdZNlCDTi|jDcTWG~HvHQkgsWd;-o6tSm8}0I!uHmFzyAbZX?SDq zFn?~ok$*B=72cyqzrp>|di01(9WyVx|6BgXc3ke}d#?3}v-_Xp!_!iE!-)1=3}1JO z38Xe{spZ$D4dh3RTF*DwVdf3rY54rDCHP)zJ^YsGxJe;tGGbJ7kSLmGMw8`dEr*ZV zz>ioI$B$j@mE*}}_Pl6*$doSpmeFlOv-{%-29;!0;9HM%@vFy1@Lz7#@`+;=Aa$ZT zgrCfNL1CUr&b!B!uH6dD#Y{g z*XQSE*5rp~mj$lVQF?w(W;}3JwuSPpnbr9Qlj`z@spuDxD-7vcMu{gi3|)$tW5PtW z5>ITnBp#Q{<#oLF>+)DuUN-w10SLFlGu%H#;u~-D*XzP>9qmPZB`CA|V+#L9qe$)OY%dZQ&(2uf2E_5Vel26-FV6a8@(Xj4 zNU|WaBXKtJbLJjY;z=7fiNU@Evv-$M5~t(Y8yD9i5*G6nxdOiK2DB?2D*-# zL$+ zC!0m`!x!oJ)P)A*E(KC^4H*aKY`5~4QH1<|`W*|>V+Z+>PaI`H!-AV1GNXzTuNts8 zUOeXTDDvfa;eh*mxuHCtl7qF!iw9iiv(Y7atrzuskqlwDzr<^;jQr@;UVie@lK&7w zM#j1)ym?0%{`;k6Ilr-$$V)L;R4fhGpLcI+&JP-`;j1pw$ng>cOE7d<96x5YPl*>H zxc|~fMmMlMYZuC2URFVgS0lJMmK39Xu$(_Xt0EdM8}OrZJt$GT@Vz$l-)f+i<|& zClZ|m#hfjPK)cW^;b9)=Ioq!tkAto15{9O==#G98;E-Kmlg? zN4StF0S^biZ77GlHxudpngn;^LP7M}M_cImK1&_{Xe9($HvjjgcqLwJ;l7elU+qGM z_3ksQ_weEUh79I4Bf21qn)zLu4Jby0DU+MW-^v-lr{?$i2Og24X?_%PFiu&#V#AQ1 z1=`R>b^>&HRy-NK(Ab316))zn1ywsE5!kR#s-W)gS(~$3ikleip^y!a4*m-mq8`!R>?JevJ%%h%elk&Hc(J z!MSq0T*Ix0{*cE1vL~HS-klDzdp}e1qjsh7eSdhz-`t(fKiQSe58gF_zqoe_-+Rv} z&?DuU4B>3$yY8F7U)w(s%zX5nl217>8uaLcnj(VlvVS6f<3K2PnGZWW5M=1KY56_} zr}J|Trw|6%Mx%<9vmmUeNTz{&_d^@yc$J1FnsfLqSAh>X_JN;%A`_I^wOh$+e|!s; z_J5|}wZ|v&FAI8ug0vsZy!Pl@@b{|S3VzPwU89KQdhlH4ztR^pv4mgmzYDL(YF zQHGbg{a^9Xmuqu}xAnO^ocs4zhQXY4T_j$tZi~B;$RU{7zs!{Xdl>%qaO1XKx0i6- zTb{f7*S`nw%i#bGe^&JZq0Q|&{^WfJ|NFgO3}9|M*L~Z=`yVBYZNbd1MNWSHlU%m; zGqx2!y&(gx#XYqA%~u!MK;~{6`TJ3k0Mh(zGAqciKbs05+s^!TUM#?E`M8=94w^ac zg@6al5-x=i2Am1u!e9$2*PJ5~!3{F5h>{Bw9HeAoNPvtEt<(piUN4C*w15EU>k zfon}A&HjR;Q4XKh=hh1zhHIK|2P8s#jcUnV7W#$V+i+Kf+=PugbN6V4+C8{+EDF{& ziTcg`5DHR)0=A{5ws2I&mEL8SdD^01X`PldSDb6Ny!K4TpNX;R+FjR zWvW2AZ@DgEjD3L?YAzDiT)-W%62U>kZJeGj_}v2QZRaktnuVYOgsOn&c5_Rp`6uk> z;;DZQ9LAQyqa<`3=UP&7!l?jxqcA|$zQjGD6{=t5rc=LPxW+w`3kc`#aWjs=?_o zqH+ob1LCoslm9XA}z@M zAkl!_*83%}^EA-|5h(0AUJF~#5ZzS^GSM4adVNKp zLh(w`&5}a1TPH<16l~g6ky0*{uDC5aN)bli6`i7FyZa)wSg4TpP&A#z&2v82FN@7U zEkMn!X_25H#}WbapNX~zB7tEqMN@(RbijGPiSij%u>k4R0yuW3S;5UC$sr*8FOdce z2IW=Y)yHjz|Y+x44V5(J& za*hPnPY&@c7N-u45-$a=Xa$-LyyB89GGT;-0YirM?CXhRJ{toON?(bf%HtUEc^cNI ztBTKPgwhR-#a*bbrsm=awCwhK-cD?#>0;?9?n+Cibro-*iBZ3oc)U~qJJ(O# zk%CnpB>qTqq{$HE6`_J-sQ4NsLx+ohrKEU-xGBZ$F-F{nBK$mF{FqiaKS6wkl3Oyx z1+>D~lf@IMWD(QE-%uGgWd%wTW{c0!x*lG%RU$JeyS--yZQE z3RAp~SsJjvKpX}o2gEgKLbNIne^1Gx%lmTH-D zO1$Xb%K*!r7Qbg1Fp100oD~nE-8VZgp2yI=_JVjkv-WY91C!Y=SJ*vZxGG-DEJOF} z;^ou?>RaMv|K0>b@-)9KKE&*X{JY{2REEkASll4UFyL45kIXU@J`%5?GE9FeUdU>P zL(jz9n0*oXQap;vucjbvkp zP*)|A-lhm2#nNJd+$oc8rd11+(nIujK2(}Y#f{KNy|h9jz0|+K)ET6gXx+Dw()qOR zGOP4!hP5Va?UY`jeyd(mS}RPDcX|bBN1H&tY$^Sln&jhG(%lS~CGfD?5)`hyEr$u6 zq*EpSO;}Mk=_>}2KfwV6r-0p(r30vye(5dsC)>6@(sXK?x&x&$>Zp!Gr3t}kpa%Bl zNfwweN;)*4#?f(7L(rIVm^v|_#?#3GHI7aVsL}RYsfwyGEL&=4$!+Wi7!IVnq<$Y< zTOuvPiUcy+jnu;>E2Rsl`M+EfklVRVT8El{$VO>TD)-&3(s?x4rtg;Cq7}v*kp9MK zz}DbaN6kqmfpz)}5fXS~MxFK!JIEzx?<@IGMIODdoCl&R>ed#we85TU0 zZlV?dn_vJg1Ajg0Bq zL;wLi96xFx7}Z{;2Uokw)S&bd>3C4Pz0Bt~1Nw<+i;SkeCZJ&1C_RYV-oy;9MOM&* z6VpZ|z_cXUW|j#32cQ!c_K_(?NXQkpbrJA+KUr!BViF?t5kQhA)56JVvW_g{p}!X% zJ{~Qrz!LC>9<=yon5+9w)m?J%2D=Hj_qqkFRAC8X9SnWz|{iG3SuHK6tldln(S5 zI$95M4M~IGjv2B}OaVo)OmOjRSvnnoVt82wmGOu9vhFlyqZi8>FsvfM?Pu~4p!=OB zI#^<*>~1Kt4bE1U>)}UJQzZv)dgOJfkmaJ}kEo?fm6X3R3h7p%jy#o$ zzP-MD6Rj}3fqVfaZH?qxD0!o?d>38wtZ5afoAOnlZg|^3-E-~a7iry{T?2JTbPv>Z zBnIlSoUg*rC&cKwZ@2|UaYoO}7ZGox-cF3>O*{#z)xtt+EAWD#_jLFa*E;}Ya zPUC9SPx3`Hf;@$CHznI%l7Gt}RUi-az&2y_H_&}eK3n_mlL4Y+ctG>?%F969pMNEP zOXI#MR8fJ7>eMRyaeqUn@W=hM2!%iH8%HWSP-AbgD=M(uYeEysXZLtuS_y^D1kR62 zYXr{JRxn+{z_*>6Zh5SPd+R7(uZWkQm@gD)n~+};&B?L#6&i^^Hf^Mc zq2!ciisO{*-dfR<;f5!A;7#a_;er`%+YX}3$(urmWZ+|8MaI962@KN>hV@sNSf(w~ zc2o)ey7q*+OC+(s^7{Tig66V zj7O#JaO18(LUq`~o=^k!Di+Yhh&Z4a`0rJLD5Bd@n;L&qO#Al;!YEt%h@w2p<`5a9 z4m@*G@g@umXgSgVuU=6^GmcVqz_R)>HO#!Gcp-QfX5Lbu^MYiWYjj6(PB0XVy{~8` zXbiu7q|nm38=oo?gs}mBc&R{VfJn2;uN19lg(`0pdsITHSgK5p6v&ZQWf$7)4thy| z4&*l&t%GmME88fA3SDX{-%x~}3Chllvp`vpaOja0Ec#1nhOHYYcgY27Ia(+O1ceAC zZIxSuNfsXMu6(Ewgg!7t={MZ8p-R8u`lTtIGNHo4vC5sH0+~2f*;FBrduJ(Mnb;zz zEQnvCP=eIxN>XTFtE?O%DA;$aQpXq$pCJN-sDQ;gly)kpV}C%u2L}TB9Y3Tr(70nloGFb^)9T=h8d0*K?E>!LERC!d* zYKnwE6-IDV8=`=@e<{a>3#Nz<4XMhQVJLbKB1DMj@BmTjpdq9T4cm{F5WlaF*+Trj zUgr$)+v2P@#BYnWB|gmj%U#ABBMf$8MJZH#dgK!O0!X^lYqbfF9}Vhli~T*p$BQCu38iNj@oAP#!wBlZsCs5 z)6C)IcWbT)?${TKZZ49P717{s!GKl=#&Mb`k4^3g6m>rAqI1VDj zzH}sR6dP8LD!8Ov*bU~X6`LBM3@QuqucnzmEw8vdueiNZ z!w&y1+#1_B%el$7EpUG>d2FO0s17wLAVNEE)#MxnenVp^4ce@wd*che|M%QT|Y`j+RxM^Kj zJ!WfRScqUlXvF@xCE)SqKm2b!4w1)yr_S~i_?^A;M3|boz*!jZMw6cd-r#Qpyix6L zSTibT&aYvMsad~x7Irqci8c4fM;bWeP1triOuqgjj1H5TYE=v7H3eA)5bTBq)eb7H z%Bs3V=ciY0)$sp)O68PL`BSP}w921SHOi^}Cn*(KP32Fi)74e}lseE@wTCM8Z7Y?3 zhx4YL3Z+zb?noW1+f6l(dhS7z%0E0VOi}q$YH(kbKc(vTS4C1|4H%+QGiS`LG?f`- zK1>J!*E^KafR-u!rQq@CgvPM*C{-JoFd?28rJ|mGk*>PVyh8AIC5O#2RTZfv=1f)j zSIV8HtNbhF8sDn?E9IowD*yVV`dpR&0;(RUrqEe&-9pt$IwW?>Q|YKtGS{f4Ga7|n z&z-tiHM|7(06kyX5d7Z$wgyaVoS_2UFROTl^(lJ3!2*`QQH6lqcaLS@Osqo*G<}o% zf_>=mOBTF0Dig@;>2QD^cMxbsE42(RxT0#pk|}fk3(E;gyi#`uh1XQ}U}Y;OJZ-S> zx@wC!XK{Zm=yF@NG#F5b6t2lKcmG38E3`jUjbsVs|9~+(R&7v$8pHb=;N>@}DQc`E z94J#SkrK)rras0I>ZM9uF@#W+P3m8SGM7a?T0zRzdDMr6vUHz1Q$)(tCDnC=7TwFK z?+bWstEig_RDMl$cYQF13`EXGP;sf&0TOe1mj%w4n3CwR8TCjOqFi$<&aiv+<84FDa5 zQqPkTF`!|Z8a?%dO$C3Ou3kmSH8a#pDA_hEKytIx)<~glnN{kdP=Pe(t9!}>a^_C; zAuXFsIFLGkf!)wJ_UNTr53YAphcF_MI6!yKBB1go^#TbI4QxH5{+107BD_kh>4Dm| zhb_*lyHl_4yQrScCI%o-_b;gpLCL~jQTL>>$cxn3!N?MSO?`k124MOPH9BHT()8{v zR`&>Yk>62Y2uhaW_tfYS10u`I2kN=OsAYSo_6FsnE05I)RF;@$>TiOPrRj5Zd&W@$ zWO~Ef;Rl)`VDs1NKZFzqZU15q8gF)(j_c>K9z+F4`-h9uq;(H;WL7gB}pINm&$V0 z5I!>)cgv08XP6TkD>K3zzKP0G(H6ce7+Hqd!!HIU%L8ZlIx0)9CwwWJED*&mI*&~< z;C+ekR5lcx0q9^zba)|!dR8i&d8ENmk!8ZK1r;=NjUgMyD% z8SF7Ud|^0AG^m^uev&ST?@taF8HLifi^FU67RUyi=C-iZgjHplV`iaLkaGCHBX1NzI(+dL2aGTkqEfs@`aR2u25th~q&HQWtq;p!a)?77Q7$ z4u=!pX?_#(ZpUP;KN(w#v~e`ovK87*G%s7KwR>2vT=<wdh{C)}a@kVrtPu`;%X8kHt3vCb!$m#%h z1yNTUsYZLh3TQO7Z9pS+N9~m$)??LRayM@VUtQI@DLMI?whcvicuRXqCDc9gTsuW9kX?S$zM>U+ywSepgwno$YD-gu z)qiQHX+diDBps}+(xDd~5^-K>bm&23Lf+Tu8cGGSmPvQR$}J!_r+QY@6|gEFTkzNh zdhZ=$h8rvCmWV)ZnFk*$ zV9jQ_?IGN9__Dn&O@jWWbkV(afs04RGy>m^*X{oI>Ogdd?I}7x+HI^B&YGtykIp<{ z@*L33qvXiNx;S*p5SQ*)sw+jwm&1NUXcKxl3rll`Ge)5$_kKQam`m;;* z_yi{I`lCYcw`p3a9=+RvloqP=_!Kg(;MVK+)2@pn^es`>5IxP=idI}<(xd0}NyTXv zeFPQ^{px_bt$HiE!;AqQc=i6!iYcl0ht`=`y+5>6W%T~gYFt+D53Pme^nSONuc-gR zuQJ$JL$884mGm`fw|6V+H&b$DRXsjKfIID6U0>VZ1fnKiQF%4B_5OG~R9EkhM^$}& zXIf!&1HC_tt2NU5gV5Ae?+?P?TLcW&zqQ^U{ny$Ank{Xo_eX#4j(UH%MRpDJmef7a z+o{Arvzf{IO;mv+LJbQJ(&I8v4?0ozCKyPg}1)4?V2YS1PGe}~%n#uxikO+U4E*~1PgLct-ctksD-;-kkx@C=v z7)%jDGa{~0gtyZpyp$|GH^M;&moAGUQfS@tOCwgIqsq9qsha{|4f7-Zpl)fgBLcmD zgj8_DfSPxAMc~skxY_r+BU(}1u)`4<)E7(6Mxe9rq(bz~K(oiUBJR^>x9&vDrCm(= zHDVAIhkFt+i;9!`SD;z)-x0||g&mg+&(LW|-0y`j!wqWbL*a(46n2W%FrJp`A`EwE zsWj4no>eE!R$2@kt+2ypKo7H%(sd4l%_xwUD;cg)UmZ>`pgT6CLeqMNVp_M^mxgPU ztk%%*6RjKZm7xRm%J_~3zjYg;fkWLNx zVz}WRRr6kk;ZNG^`PYVMYTlBw4SsKbH`lPAx_HDA!*z<=bD3eJR_NmK=74oJZZW*4 zV7s>){Ih4qPQ!L;o%(wWyC{NcpP?4bg)ToC(Bh298+FQXoFaTUV^C1ic+TLTbdR1l zyrFf^Tr~Kn#@L??7irz_s|K{rBw*Y%1Ad4ATj%_B1AeXtlNIh5=2GP^KQm;}X2XjO zt*EIlzB8mzn|1nNzz-+jX7%Nfr#bYoK}33#k?W|{uW2F&Q0sKGMDC(>-QLKa6k&de z$W^pLllVwl86egDKWF!B*P&y3~0GcIxn)i^mbayU(v2eTs^Qry~$BK34Rk-R+e8I>V%V`KvD zV$06RvUHGpc_MNLRS2Grd`&Ct{WfKweZVnL^GboJq% zQN|pmV@~NhAO2R95&l)mxJClvm)F(8ZSh95Y$?844?RXz!N`k+(#2JbXxV}*h(>n? zxA*AELv?i{3KP;MvZfI&UkI5}+lbZ%guIeqM8h^A7k*(xYXd?ieQ8815kl%48_`PS z)~hdcut!rPx&=;3uQv}gTh`KuR>q{XQEMYwln}CHTO(SOkY>`3Ms%Wpl#c0aL@Q%L zKIm$kPRWcOMl{Wk(m#^|xVw7>#Q8eKh?Xj(LWTZV970YQXdFz*zXu1J?N1Ge(|4E= zt&BB=QjtRN{TO&$uLQa|)=(x;mBg#`!dM(?C7RQ8~G1pk16MDPL8yiuunmI#YojJ5sZEHk2|F{zNS!g!q4HLo_Jr7@-FQ6#%Lb0-8gk9G-;6-{ivY zXAaz2yOKV|n7n470>huU$dUR4i z&Eq{yXhopggDyZUUs|#>$RA*0IRklaqtgXm+H z30(IcE5Q8YrIJ8lY=0dH|1nAn;wPGv=QuyL-#^nt-+X>&iYZ)zjP=_$rrp8lg%BOE@wcWw817&M=b2_;k=Ez@4@7zZOl=rK+i##wfAj`K^WhRg4no-j1jc6*p$L> zFO>S}OHk*HNeyn<%rc0>hFzUcNCRR0KTMU`W2XiXs;>(5QRXpnI!u8-qs)3xoMlq-+3&UROlfmH9CNy|=J9M2 z3ti~q%>x*NjsSo=Ic6txl{d#Tx>gY5Vij|Dw6ca3YMLLRff?Fso8RHTrUdgz{P$j6 z^H%&9)H83!e;a;jK8OFB8=Cjxzn2>czkkz2_`O;)^Ko1*YGFR-MSm|2HDAR1y5Z)H zjN_{y=+%+tFR-BYapq_v`rBZx*~D<3#J?=8itQJ~?xgC@1t`x^9E@6QUKvCjYaP|=M5w7}Ioydg~4 zZa$`Dv`WEgb6vQ5zxkGuCNtc8+&mPguluAqogK6xEO*LWk5NI0q_WCT2w%HkPQ@YJ z{EB%Q{`>TrIh{465oSk_+Q!ly47g*qGisLb*xW^Udh+|W7CpKJaL+7<-R_wavBma3 zFt1|A?FqFH&39QXh6KBSWr%oYULA}KeV?0qvsxI*@Fnd2%6y(t34j3r0+4~MI7?%w z`NKS#;m8)rF$9H<;XW~kfef)l23?%xbP!SrP!K`IunL4`&59s9)Dj9Ss4b09a0@H^ z>R(XYS}Gvc+F<%kCkoc zw5($cQY;}v;Km@PN+MlFSi@@>i>28aWmzALG`C7vRupi%_cI}!}(W0B#9t17~py)8?F^dM;V+p~~MHYsa1CRxZ9}^k)r zKL~I=Kv|*7vy7yIEnID3oxTH@iDGLEeE6NEU64K~58~&dxGvshQNZgPEiqEC;Y@o2 zv~IJY15d<^D|c8J-tzGeGY0xl!yP*IF82!k!C0%%0mA+%{X3_OHRx2um;hl$ zg7|1o0bj&f_y2F?Y*ER&RSY^e>tFztt6I@p0l&3a;1|`b=oQ{%$oZ?L6&*<>L8eIX=mXj$#ozzf88GN013wFvyxN%vZ2Q zn)MayU5kLp6E8kOuVH(oSq8sNw_2$_dor!3{ulZXWEpuL8P=I>RnwJh_vu!2+Lx$P zYKAq6s*{v$ji76asq?Lsf)3_PlQjagT58q6fs3uI*Iqv@J1`tXa1%r%H{jjn)|cp8 zM|iPwe~s0~x-$tlB72v$5_mGKsvbYdFNfE+TG5$2l7;uS__Hu`hjmi0eu1c?;ndC% z`>j7xpFBEbo$|jhc?|TOu%gq)SaNvklog%iBQ_deXssADK1yg6NVsU#fPKSKLVy!U zHNun1M=o2>3tevb+1emj6M=v9BZn)mTJhJ^v8y}Zuznfz2Eh6HaU>{yY?Xnl9m?oo zm;2U_B4HOWU|T>m2Ikzg}C>vn)iDgMV1jlN*Gb{MNcANTsSm zw6k<_++*_WXcTA5V?3jn^ZR2JEG@FFW^-Z;a8}aC#dt*77lZzwh5w~l3lg1 ztim=_ptgkAGG(Of3$3l6P_|cZt1D3INL#*`{Cd`GTNJz)%cE_>z+$_N?Vc1>sJ7Qe zk2Vf**rpKifYf7Kz_bn%Fd@QZyvM;<-PeVqh!-A@|>Vj`VYueVb`(_9nSIedof^b=a&CZsb#44>} z?}oN#P7=>O``AhnSHZ;tZ0J*5uF5@h(3)ziAr$sWvyB$0;?cH~0(C0g1_UbYYug-w zikxN}6G{Mc=h~VHWq;?`h6z;WVp~mtI=$TXwLm4VvNaQ0?AvT>D3lqt`&%s76uF5L1O%#50+_D*jvif&zHKnB9oQM7vxsPoXgnIX$+YG|5A+K$RLm49`US{vV zBikM=7F0bgwli)?V<3XMCk%s8N_(6@^$NA`5LAs-*@p{iZPM6BuubPN0QJ!V434lz zfR8P;^7+|zJ$xH!*Hh_T7JEI?2S~Hq*{*~AM;9u%)?qgZ20!QV>jHfCbUATMRB3yM zATo^1HYYhqX1@4}_El^%Uo`l5=m~m7d&Syj*s7AfFXLv4pD-~LhF72m;2ovv;7f&h22IN=sw9+F4##iFSpbx;Y(`nCbR9 zps2T<&gv@??e7KSf=#{b46l;?OfrNF5%Maw@zbwgy1k)rjPgZKE(F#YY#%8HqZSM^ zz@J9gM^j(58O@lXpE_v{`;M_UWxFUWpuq5Sd$%yb+3DZdUDU&yX4-2|^4%Q!l3?`N!dE!`dYh3ST`+MY)=;C1L3*$yr5$VA;-dzEA0J)%SIfQ1Zwpv`!(w3 zxohlf*GWIq93s%K>F|-d!QPK;^7sr8TtA3r5PUfXF5YVA!i3=5vfn-@Xahh5T~k4a zkDu%-(O2s5sCVOn9lg(ykh?G0<)H$3{+7MJTp*i2v|pzcYCN{LmI|dyU)WE`1aj0L z_M@~yi?{YXN^%#!Dse@&BGmOY%8G8Pyj-4 z!SPzhTajS!Zz3G|)U8cSj?xMsDQf3{^IVSYEMHzgPpMUcn>-Hm2yViIcF5#D#{>zt zkW66z_&|pp+=y{7-ngv{T|3{ios~$Hbs-2RUR?WU)rcj>2FpM!ZaJ8hq^OP_d1cpX8$V zA6}(6_G5Q$?dLfAzY(tQ0Eanf;b7um$4x9(!cfP>pyeu5G*`m+!yFMo%LOuTpm)H& z9UA3vA5w7Xij%94~7!eM=stbQu z;NdjK5j@y!$_ge87Q&&k9FalzaUmQ#$8ifAsLMRZId%grgw7nts~`rig;2WCaUKhD zWpQwVELrN<6OG_}5F+l-SK83*!tw-pqZ^rpcD8&INh3*p91 zj-NR6cXYm^1=~XkvC#E{!!AY`wf72G%KeTiY`1)30m2#yH76YC0Ovxu@1y`Y{j{Sc zDtXM7F z|IE=fh*>ff%zk($3>N?H$iQ^v;%tWo4JcJQ z7qV?VNO+}!n~(3PzyV8?13WsjzQSAAxQkbL?vh`oI>RmmWY6LTRG8lGYjF?w$7mn^w-zT`9_ZZ z+Il-rV9P#8aUR8gH}-W_z~#4xI5Tklq%`L~{MR|g8Ha)swwU02h_$TpwUhCgZIb*$ z!RF>32PjsQ{04@6<5XiOo4<9E9KD?-h_ZH;b2Dq4qVZ(}=-RN14HQ<59RxSecY1Lb z7l3mCD-;GcR9d^m4iX2Yl>+ZJIKTV%mlq-0@U>!{gk2(6 zQ?SY6c7n^f=sBh7L&SzpS4^-aie9Rbz zey~V@R-sDx0XlzUO%4K;eZeX0slcr`cMK?85*Y&jKH$6_hQuTT=ZjNLF_!t&StskB z%HNS1jy~t?#5$B=6o|x)4h8@q04K<~0a>`x&{(KT2|)eJa)2fH~&N1 zjZd7+o0I>5I`G_i8XIorODF4g^FI))y>eDy9Uc+XG+}d+^rv%|1j%Lj5KOeqhG#xH z-!i%pB58)>QDC0bb&5TxX2ZsE7t5C${Bb@TmJ4y6!%h;bf)iwy+QqytLB^O3yJ}rW zu^`?E*U?}sa^B!-9mEJe^s~)Ly4{5~CwXwL(}gxCd9a(?Rf%zPg2$&6kRR;|1My## zm}1mu%(F2=_+$q1T~Q`MydnLSEKgx$rm>Vn|gYP!(wA`ecl?LsS;JlHBh z=+63uz~8OsV)+`UKYCI?xa4jGJkr9o6Psy#YZrQrKpt$-MnI2j=XxAOwx+;>F0QF~ zS|Iagmn2u`AXXtM0HNuH??27z<$54Pf{qyAnj4IOIjP82X}S}CEw=t6s$JUIBM3+-j{;H@(*w3o?) zS1!BIUM3IbU2&nkOdjla)rIyld2s1%7uw6@LHh$2+RNm@qQ@?@m&t=6#V)j$$%C(6 zxjF}ciA4WnLy@~b+ zd!l+8H`){B!9F^7UJxPP6r$}%6vtg7H>j*OH^UYPznQTT$kshkkw*#Pe7l?VRz^;; zyD9jgH}XgKX729br&zZhoNeZ2Of-ZxUU+7GfZP3C3=-RCYC-=fcM;nRir^+gZ%OwZ z#+*X!Q$U?&ZhBVnu$l-ls;|3%O$dTy=_G`7evh;F}>X1&#o0Q!L3#cp)}{Rf8u9HrgdQc(V@MUf=%XNqeLbOZy?bgi+HML;R^il2M zlO68qBL9pueV4l{V}J`{lOD(|jQxAu4`jl0vEz_?EbCGV8v_;}ccYIoUW0Q^xmVKJ z=*vR4B#0d70}y5e$j>M%gTC|bQ$hqn?vnc~dZRm@?rvXpJ6YFQ#Dn?Q+y+oM%|#=k z)=ji$V~cJy4%P$35wW9Srzh_A>=Q2mi4&e{%Pe;Hrl$Pkm3tqZ*nfQMzD7&8ymt>_ zOerF7s=Q1zxbb`GTF@i$+avNeaP9*&ffYa)F#4>p{O9!o)KX@&uo zo$Hy7J_~_mJ3h}dh;4|%x+X#dJ)3n<_RFRQ&mVcTAa0FE1N$uSyp0P&Agn9Fn*>@+ z@UYJBNV1V+6$#Lu;~?z#lSeNR>^1(3XDhpS6QHcn!@B3d2A=@)&U^Bx@7i7Ru)W?O z79yxdtg}85Bl8!}9x6t&YaX_DK*S0fUA^u(9z+ODfMaiY3aBhi?|K;5lT?;_9_C9x zxiat9!q%hz6VECdFV14-ctLnG;EtD`zgdk#0CHY?ex$}3@W!)^F?I=*=ugkfpk(>^ zFAv%l7ORv|7OcIYoG(p5$NEQ(_1H~4mOR6)`I<6Wz7&BWuvnS z{3bTgLEF;ara^UpkBdRHBYH@!)31v6M{1qg)x79ULpYwGtVW>6b2S5{3u}8Pu+9O* ze4nlvk8SK#QwbI}4Rnyy+>6$oM1ts+-Y%>QNZc2!-Ojs3=wW9^Z~dU4K6dk>4`~vy z4kdbRL4;@$(6qIOg3Mkn1-Lb_A9`1PXIDk|s*ksf6kL6oZh(~rdF!*zB*esid^K#I z>P7oUB6a;y-gd!Q0MvPb-tJdmi86zPQPTeKe!ABy5d^k>?M2r&NiVCXc$s&UM0V24 zt-;Y@aKbb%+EEhJE;GDnM@h&US>7*$3I3c?&Iq7+;%*EV%=4lzxM7O}`FyV)#DDFz zzyjdC9mIf~gy1c3aMO#n zhlFf%&x^K)gw#IrqU|9e6P|m~_K=V%^lw?Y`c^UZ<|Yw^Ga%f%~Dpt4uQ~ z0UHFfRKC+}kw&!X05t~RBoz{b+$&$}@qH8_W^I&@?TlGGL?+5%OE4l(H_)NAPYVif z`#!(HvM|Qi09gy(D(!nBL4Qw`^Bt3-zw@g2E_3MbfNDPUVS*y)sNq95NQ>b8nm%+^ zt_VJ=<2#D$=hqkNO=}?3tKLYc$2B4PLaw=QA=_iBpM++6$cx4VdH5l*TuciQ3~A?E zN_^14cOaO^sMyKJxNV}Lb)<`L2^J)|yKg_6AP~iS71mrsZ3n^0$-doKhC01{KeEYy zb8ZkUOz|j_13Q1~ zV|<-ImSqf-&hlNv?zx)nJIZF(opXIjjOjuos6O9!3`-zd;A6X)C@8Xcq3h38!7CCR^Zm; z(qT}u%XftBW)=a-If&-cj2p;3BJnBcR(`0yykFF^=q@pqtx zMqN}ttm(vvsEI*|Ecs0h(T4FV9(;-GHanxxV^c*i#v8?WZjs80kOA2w%A=ytxy2%Q zv1AlFw}`wG6ZJ8en2TRtf?RtU0B@Fy+QXO(cpp$zIHtJ1R#X+XdyQn}SXFrBYSR}{ z=$K*=jA#&rjwu$wJ58d{F~uTywnbD|Mr{QdKRt34(>`iC+x+(XHXH8>2jIHy4Qq$i~wNkL-*>pNjqgylhyj5pe8^ zTEn^-cAbt21+$~kj=0VbQSH!9zP(Nb79A>uUa(aZrG-WNqLL)sVsfJq?YX1DhC@-T zcQHY6%#%p?|5&^3_$H2E{oEV4U>h(P+Z0=tY|D~t%iWgbUL~2{dvB(f(0dCVmfk}N zod82GfzXQy5IPt_?+`)@5CrW0y8)-C|N~L$j%{3>u_h zW`vv!dqp+A=wk3L2a^A`t1ooD7VIjK9CtGqdE}Alj6cX7oJ)h7<0f=ma{?vxPVih# z3Lf1H-hvC4|At2>o)?*LB$&S4HzUM{d_OA$H(e5~`?nBU|2%lFEpKCwSHZX-nuAV; z?XQE8L9_s9^=I%NiAv=AU|bk2kS=}*#vXWNrZ5@CehR)SQR(?L7#B?|woMH=gqxQO zDH82NE=nY-JB8pPX@PXgIRqI=bAaK{-7RFRL?zli1h?EJs9f*}`CaO+$Gk&uA+unriTi=lK_N3AFZoY77U`Qg~PQSrB()YYVR`Ko&t4D+!l;jyW%2LW7 z6S776&0}21TB-F;P6)Xm)z~y8Ht+|#qdoeGh6|&9P$dw~ST3uF# zm~oL7_lP+_UkIBgQFGfEvR4xI%1w0rTmil*5}lYO$;MV7wE&n8tf zWQ!4DrI(#tOAbWSh*FU$D~I%BWNNnT7A`DfRWranR~AX5**;NTq_9wS!wM)up(;YD zQHDO3KecjbCMnLB(IlIVWg;7JW$uAJfm>_YS$nc} zWt1&34p`pCx9^8@ULHs6)q zpc!l_ZXa59>%L*sV@bDG9V5FYDH5C}$h26GODQ*i7xQEx6}b4T6zgT8c@j6tu(3A- zB^1<|=;qXLwDoF2Uj11;cJ>dpu5f>|%pd6t$UkAp{!211a$r*E-?z%Mx60UA9j40? zki8PR`gJe$O46?j_R9{4V%LK*nx~fE8+1t4k{%>t)utbprHN|y&&d3+uI2x7#qE$Q zB&m(}X$Sfi>>tchkQ$W&pH&DcdPnh5aGJrtAI2 zYSSATdO_eDO7=V12*K*w2icESG#=r)ultwmsPHEdUuEm8#oM+f^pt=bV;_n!0AC7>lUZM8rsYB(^5wOcA)M8enDup87JOCoyaaHthFI0D>dp;{|u8*SLa zL09Om4DF8{S3DnuHXBk3j&}yHxX=#R;F2n*Au+A~{cn5Z(mSNP(n9-K1sYU9 z`SBCL{F{RN9m3|qQe&vrNt$9ktrwbOg>^L~7JPRysu?{@?z~0jNrLvtC((IkXarfZ zr$#t9H4ZHm!}$9ap|z1A53|6A#G`Vklo*qo?H1`x8l?n#N~QhXB6TpoedtXaNwCQs zLkEf3N7b&O=##=_4+WYn^NM7;aJ)w-J0#4eC~JC!zQtOh#eN)E_L^GKi^ylb3q6W% z?`&DBv_i3RY-l2Og@T4IsnTBX#z~>XxucEELZTm9Ih$nI%IE+0fE{SSo@Gy_md1ENM<;nL ztVdd+lj|YWRsIq?Q)K{z0t6BdmAn~Im6zi_U#}n(se`o7Thm=m7iXAkq|{4(6glsr zc*W4eTaJ#fDL@f<87aP(Kqea+xsvC5Y6TM26n_VZtSX=FK)xFj;|o`VzhzK?3k zv2my6aqf^8EFW$~dvMZ$WZee2A8eAzmq@CFmSOVWv1;7>15`K42MR9h%<`4ixB>s#^8G@^PwQFJLyMtV z1NmVA71cz(#u`>Do66Av+=0IG-cpYWX)PZldel$t(LIXd4FYXPIX1f~;Q;nsMfr+%o;1Fuio-vi}CW)*ke&92Sr1m+rFy=?3|fpu&rmycOy4l znMKtmi)|nOJ^`5Q!D73|;@!}s zlk$oXeo~%kE6rQRo|g9&lLPm2a&*MU1>jHN`&?IkmD6`aIrr@s!F0RH{|Gr6;9ZK=Pc#$8Br>)DW-F~?#WY~B-XCaGY3Ho4^hvd=LWT`(=?I!Eg|_W|6;asG zmZR`&tnI2OXlTo2zFtj1Lt9?_v4+B;2@<04!8R}zzYYod^AU~fKL#z^9-*M`o^$-b zNQI?iKTs)X^vQqSpi$JZ;!zFwM;L&9gkh?9OpioGG8T{<)08>CJCo!^fn(vZUQtt^ z2Ba%yyV#uI$8bLtD3D)XkC`!biZhfmD$rj9Q_WIjk;S{i0!i{(MKjWV|dk1fz7-^@drS^0Sa_r#{t|2DOQN~JTydsji@+O_AmuDup=Dc-U!9d zg3FH43hY@`4wW`mfsXDtK;8re9h!NE4gFq$J?+Y&woO(Xx5C5+fO(o?uiz3mQ-Mrl z1eA*&J3Z%eq|Z@|5j3vNQ()HsI8>trij$%TXqPCk!4HRmrHT>(HRlJ#Mr%B4l~oFK zkU1bU6F%0sQM5UF2b6%!Hiq zFdELX{sD4j*k`1Ufj(drGEpv@Qs|_xF5VE9iVf>H3J>eDvchOs$3@zk8%D!AUYuwQ zqhTE{_OBg=d{JB>k^Qz~d8Sd=RP2r=XUw5^HY8b>Fq#dC6I@*!Mz<|_vC4ojx^2me z6^4h=ZA)IfJ|c_;j=Z>hR2bd2$LM)xgw(RWrD-M8e$^m$=)-;x(2 z7KN#;FxRH!z{)Tl+KRVa$E*nZXa!zNX&ZC(+AtfW2@-DOC7Z%r2>ouLpY)FFuUo>x zv5u8CPZrP+Gt$Opp7eU_q^`ZyBztcd_Px^?OQyO(}_6ud!hA* zqt*a>kx=_uZOG?C!D_Okd4w0l9S<9Toy@kl9M+IPn#`RHyc9Mv{-kx^Ipk;~e+?4{ zj<1~x`)Ef@VRHHgRY}-mRc_<9@K@X4oR^2tw=5fUrAZ zf7(hk)c3-$VI7AmxgTagF4hsMjXwW;3wSC_dJ&dfp8OId_l29E!dyk0efS!NT})sP z0s5+O4=e1l4{WjvzbbKo`A*?oq&9@g<-?EIa6Q5c_i%cQm>C!>^9-kck{3Hx2(Kin zP4f-EWiS0Yyh?a2ti$0tqih1n#7kk#$fN$@-sICI^coa}TLjJ3a-%KT8yxNgO@hN| zPF&tkB0|FtBl`)rjGOXs^x^{tm=Yd-L~v;r8IFBVmP1ukhocuCIKb(s@VkP`&)V?g z*65{wTsV61fpeLc7=BA|nUE5G%o;AKx^Vo~GV>&F4B@K`#bhonL z$>CD7@bg%I_6=ou%kXQW@usv1{{?AC-|!0Bg`*GZe?w7r48JN^`E~h!V0Ec$I6AKX z#%f}5_+`PWcQ3Sce!~mz6W$g(25^+(4Ym5il|kW;uv1Nr!V+vrXNXP^X^BKm1BjGfZ=EXtB z!sD=0G5&zEyinWEg}Y+|YdWJ4FDuJ$gtx#3)*OWe)};N*aChi_C%nE;YqmqNzf!4r#CvQ+^-pM^&=*Ck9BCKPTQpl<=ZJfvs4tG#E}Gc6e?&R#Nz!kRJ#a0| zjoke%q7Krd{SyhC2S?CPba1n}Ff?M8ua&6PA!T;NM@PvW7A%a|Z;hUTHsK4Q-2*Ek z1`CxIu8E*;l}P<#ll3a~Bi*)Itxa~oDdLP!WVam=BP-$+`E6aq3l5!)NOQBf%9n5o zuSM+p??>LHJm98!PyEQl>k&JVv`QaDv?kk2BLX4lX2ccbNK7m!*z?e|{yganMT0vL zwd_f0VSpF;{(i&aY2E2$bz`L$sqd`xgm$jVv)C!41!_dXq_@^B&+&HSZ!&N5RsQZEDQHbq^YOeaLSSi^wl z53IV5P#UoFZ;OQ~0LCbN1gq=gm6xp6)$WPPKdtah!XkD|Ryqk*CDW{NP@`bj45i%q z#@jqw`CNF+O>?ay)MCC8z0mlr-As#=PX(cZrOH!Qw_Ek)$|2Zrm$NeYE6bBj8XA;t zOb_vvPU*b;Q5lRqW6D8;d>)sVR`_~sQ~F?6bvV@2{Yv_pM)MH+zkO-?^+Dx8t3WrL zSNcKgGs+!Sp_odQLEv{y`5e34$OZfwdAHoRj0I5cfzsE7bpI>B7ql;xy{+m37HD@8 z{9a7Od9ng9zEQ?YLleyXsQd}Jv&=@!QRKOOqzA;?M4qvef)9U($a2zP4Dl|J*R8_- zYX65XID1CYqy9XwSzjS?o^={wfC&{Ny(BLMP5dGc+VCLU61i0rk2Q@PfL%yu52Jw2H&6ERrss^J4U>NV<5=i`Cag&b4CTD&!e32>)E)u`Q9mSYgr< z6qpW2(qtN(+r49vbn%=Q>z|9Hi|4#(yi#T$e%Hzjr1W|uT|DPE_}q=8i|4#J^I;@i zJmUaQ@~IbPKYH#Q3~f|FG1Y&n%XDXN9mP)X3K+^wQwm!?`K zQQ4khomR?asgMbixK_->)KKM2#$T`OO`a@Lb%Ri&YPua6+ePCGXNyz=C6bNms=DI! z#h>90J?p8EFXKo|fig{XVC@G>nyGf;W;Nf04kVLXtDBLWt|}iA5T?R~BOI>1v{qlg zjmkx`^d9Y13-Idd4#zsEkjHcUiRUy`5&7IxRYf8-#Zzr#15w>o-$^aGzlUlGk{Uw> zihLjG3d*R}faQHGmZj{kT5JU$CTR`$et>EjZmbjfdNEk#KrTE~4S>91DsQeS=srUA z25V!y5rXR6bphA0s^6^A7e^U8Ugcyfb;{)vRn?KQ0;Ls+bz8Jk=@rCZ$ z<91y9N$E;eOX88G9u5r`tCk6GPK8T$#TC?$yx6Rg&UuqS8}(Lj+n^dF>1Wv{6>iH-0tO0vR&rElx2aa( zG|k$OQw#ttpuH6Y?NL>h<|sJ_&_Yp={zMgO;|zNbs*rnS{)D5n=oa7tg@;w+B~3p( zqFRO24~HvpE^vV+$5f}0J(iJbMauP4w}SYysxDTbG$KKl=*-q*tV&77UR3>om#Ps^ zq#WS|hFn(Ztzy;nsLC0--c;4Zb~>t|MuelJl&VrCT4YVB%A4r2R8?UAZB-{+tidg! z5uAOfn#PR*dOT4b!$K9;P&bCs*Q!W+?mfxnKP&{z?^Nq0WApfkb$f)t6AJH4Qg(K8 zgrLF7km)6Z* z{i8KBDP{oNa8PfP;Fi0nS6TrF6z&&nC`i@ThWJ;u$VjJhQzcR=A8Tafm^350uNv(u z88e{FL^yS&ih2!RNrI2bUwr}TN`Uf7vZ8A?A>BjOF3?o24z;4&NGL>pN!6KjP^i6$ zqe|^g^7quF@y~d5A}I`4E2O#8_u=Xsq^QjBn~)Y&)y|~TG*uMYsZqbit6oBa#?flM z@SI1YDRJ&OZ^o#5TccC>n4}h-b3v;52o}n-Sly5m8`aK0CyX^E_X$~fYB5*T6snPP zMZ%DQBBO&+3pIB#xV6PgZYWY?z2raOMv|fH&@m}TDrhbohctcE)l-Y<dlffvTvrw&LJ5bP@a3R9+Cp||9hN!r>%OTG?)(QV2zN&;B`m5cciR_!H6#E z2@;iR-POoRBv7P6D>_aqpi{>)SWiPA-Ux;bR!3reA_E{4z@5<*ifCr&=Np zHmY&Shq!P$porC(w)3~D-(d}%QZso`F8s6cJ9jfH-ASh_o~P9HXakb=XVimmLPO+P z^%@3o<(zsL4uVjKLipoXb(#Z}GWN211GB07SJg6hb-$th!-igMZ>hiX>uq%-d-`|N zduo5Cm4Oe{o!Q^_pQ^XA`tx6_Be4syj0kD-Nj(WENOvDi7MWtJ5fR1u&*~qU0W`4D zV23w`2ow?d!8Ctjp%ei54w@0Hq0TyKuw(Z(uuvDxJ)|u%N=DMDre+o-duk5QHsw|c z6)I@Fklhz3er6f$VkrB;OX`V9T(b1aMZZ=D$g#D!xs|AypIt?Mm|yw23bAv+5LhBaB5!`OzhFvD(h z()w}4v_Ml4f(kT4?6|7PMw14+nP9;SfR|>?X6&4cqm&HRI7383O(XAFu>*WzK^IM5 zsVPa#?wam+g~t(!><+bxHECAZ14ju2*Pa>!?kI;pu}Eok+e!P>m4|97*-H(m8>yLX zje@8_1VH~$n#EQrh@ME2>4rOF z?oT$wM*kZ4 z&h&HJeUqXbgauF1M?Jt=FzXhiMJ_c!x9q6XNOkaT3KT^l7|l0E$=rxnc8h8xsI?b8 za9`K`H?p%y6y5f&XYWOt*K^m9kS0-o{`VC|GHq~$fElH2Xu6#G?iGkn%P3EBtU3Kc z>Hgx%&B3c#l$)c?0sf}{;)OB?GG%sK8JXH93KKBXCsiRE`aN+X4cbN>M^HV`H%dcN zyGJ>~gmzIU>}(D|-A+-Nw)DE7OO(#m3dDK1y6xyU)uV3Q`a~`I?-=xpL{Y(Z z|Gggl7)(?*7&S0zE)|{x433(M#i%zV${VS;Zs0sTYB?jYZe$eVvxkxp_eVu#p$VKC z8`XyqFieP=g4ICr#HfajxXLE-#Y^u@{;JW=8`@5f%JiXB_}bHfl~D(g&B`&|!E-bQ)En4vbSfuD&W2)T4iZA(qMD6H!)RL{kx$=N9H$9b?wmSn~*=kFfKnWY5=% zxxzHQJ}hR06TPaUVlGz2A#<-CNX8mtw%bhSgUM)9%t{27S59&*GRz$F2d3_%7!$lH zidlha0WVsa_%({b3>3WX+~zT2ucBGw7zaC>>7-4wn5|ebDB59+eNrlBQrtAgiOlb4 z;p5phrW@lkv_s4c93Kf1C}bK^w`OQj9P^p6;Qq5`@0jCA@tW|rBjDPAm?h;ba8t*` z&~a)yi5?#_6DMISXgnciG@@St)i_YO;P{l7S?t<;M$8I!wI?yt*md^2m<$9^n@*YVtTSB3f>=s z*d~`SIvj}Ei6(IP=a{~XK;kbk%di?4b|mI1n!x8{F-44k>1518EP<(~Vvb5CV>Lq+Xf#IvR5f8nR4 zr$?rfp8ncZ*bcC#n)WSP`*nk~Ll}VzHMBoq3HaC2K1OR`jZ7jCs=yN{4zq&5XQh_+ zz#KKc2aeNdk0CSw!(+5RGwr9xY0(aNM7$R7|J;(ae73wX1#f>JQl(CG&7d8MHKEUG zS{^6aWoglK(u`~^en>u%tDVkTqG#9rDZjKK9icux@0PkRbI63rT*-OC8n9;99W z-?a$p!CEs~`@zGsN7=KVjnHoX@6VPxuzr*lKN0?UjJAXkm@!`a6PCcE3EC@Y?YI4& z&SEHm+^Jf?5?C=!dmBw4bf)$mBj8T7yRZa0&(S_W+rXdmwNn^@(TngM;Ot`UAcm2@ z3_lchTdu817mLXBmD(S%inz5(dkEbU89z#$q5OI+X3dhjqBa|}bur6>ymFImQcFAq z{7@LPQ(F~b3NU=P_5*9d@Al!X;FtZ{I}Bs>&)QMg7Cd`M`;l3}iKE&TSPZY@+8K<; z4=1&l9W&k*mrhB3Vb592m?(Khn{(PIL|aIeFP+!cVM2uerp2tsb0Ioj(%wUNhgVnV zl!6lIbX|*Htz3UYt3qpFSgE!FBXH#oK0x-ntNj_Rfg$&$COH2PA0btEtX;u`fT!BQ zSbM(oO#2(d*zgh`Ej@i@MYPoCjh1dfPbW{_YL{Y#hjdZAMFMQdcP zVVF%UCS<2T1EIt=b_c^4?-+|%cL0h})1Foz?G}siPMpGpa9%N|;8mAXI=ONwL$ZX+T3= ztj-O~Wm7?{8+qIzO-X9!$6iOG07bdxNU2P!6T6*JN^217#Qx4}7Q44R4%AG(AD`9> zK6i=T$_!>pk60PT^r*Txk_U9^9UFp}Yym~+hcuR^jj=(m%Ty)L52ks5VrlGPj8ZKK^g}8uVoy`= z0OeN2K4nsUSRGrz2_Y3n3@k}22Xi;YR>P>%vUu&7RovjN`HW zv1&|@W61E`;n)BMHt!hD4mmvv;tB;PV9y{3` z(Ma6&Eb&TrhvX-*<>(eYCrxk0)`L!e#NI;mPr^C`oc$Qv9@7`5 z1;&}lo*L=hiJx7ZH`(YP7YGgQ<4~LC7A!Yd>=^fkS=>yQxDwVY+PcMgF}K*yJxS+wMW_^ztMiKfMic4ySti z5=Zrx6A@R;fOo0mu&&xfD6luV6cZhtbJu4!G1l6p#-DobfvM&su7q_S?r4h6}E+5@!#ZS|V zq3Nl(1}oN|fC7!9UUJ*Yc$#}*I@Gm`_h;9h4)J{$$%oGI zES`n^Zt;Hf{2E-T6z{?Qe&iP)T8&;S#KzxbPWDw?{9UwKzH6S5NT#L4mm)2eP=NCA zH8tMMhDCEmJf97vWW@)2U=ag$WjK;k4dSVv{VrAs!S&;VF!LgAJPZpc)`0SqU1q!Z zOH5$_9pbmJ>$#5cr`dIJ=lFEY`QfrBkgtm~lF0tUNe*P~kocEY2~MHhK{YI1%X~@u zF%sj{aT4R#*MjIOi$@2FL4Nw3d7fN8v zxc~GipkXb3g7u~KD!IwPh8Rtv(CT0$T5q=5R+$gJN!3m+vDUJ1!D&Q7^9uCZer5tHxaCc} zWK}|SvgAPKe5kxA!N~<-`3zqsLtMzFopH9kRu6?7-i2B2_EbkbUI-- zYn$tr6FQ)E9^{a<8oJ&|n2%l5A{3z}H)+!TQ$i4AmCJf#14kYwRAttD=S2ed`MX{v z>}E3ceUrdDWSh4M2KM)=_X#u^&UEPTF(H_G+-;K+RZQgl?uoxM5tmm;EYGf+eG~s= zaI2~&4zotoO2o59BK`WdG0T~?lQ;S6c0y066P&ow8u7oOx|24si9s;Lm{rjR9)u@) zu|DxZmDruh+A%8eFD7f-m_#NkOiWBnVZxrsNqoYD++L7aja@I85;dp{LSh{% zHp!Tph@H|A&XfYVLz8KVFPPHvXC}s>+g7(Pi@<_;i51bRqX<=?U~%G9*0491CGKTT zbHT>M#q95-pAz4pk-5(H?nvx}cJ*9Y6v2s_zyi6R$?9Azp#6Pk24}(7?7E*&Cr@kg)wu1TCLos}|y-cde49m$r$qB9g zDK1Hk&^ARYdy-Fo&_H;KTha;z6SCS&YYIyj|k&| zK70`-yF36;d<_>ui_ImM7( zA$dM?RHc=YCnEIBaDm}6a$l+@>zFB})=d6{k(BTLy!4E9ffMrNrWi+Od2KTgj%t$S zzU1}PLD?iOJ9+hg7Y*pUr&Ta6O5Z2B2sY#<2Vn$Yl?kovNLqZK>`a>1PM-ANsS}FQ zUwYARb)96RgUufDzG3n{9MCXm-#Ga+QW3-8Uen~Awv@o)7MMn0k_?0QEt8!vI|97& zrZ&mz7=fnklYhW!;HM7BXVDsn>YTid5qQ)!c_o&Bu6uG7vZ3z{RP_&i3?rbEb5CFekYu`@7M?ldHhiUCFMP5u9qe zHZitK_JMl)lLuf~NeJx^CXaQrP>cQ9LQQon*#%9lMZ)7swkVBpc2 zAn1BP)=l2Bk-}|L-%Z92c6WD!*pp-F~B}Q&bn}YATKwVi%1{=G0*WDPN zG61RRe+{T!WfX!^4m*Ur`ly(2zClWe0s7V%1f8qu=qEj{^2KpK5xs~8Ta!OMh zkJc9sQ))^}M>5h-Et@R7)X9ld$xPXX4E46Kw*XoA~yX}Fk>-ASRiSsd;gRpn66C`#=z5|DZgQYR$93|QAOUPWAM0? zB1}xk5dug`1ws+3z>v8q6A?X^sN+(HaZ_G(U|EVk+196;FI?Q0ViMZb9zxko87j~Y z;^-~)wlSAdUVBKz@efj(x=6)$FH>yYq@wGml*+DBG0HLZCr5EZxzx6z*ws6=nuGM~ z{K~1VCEErM|5U9+7wQG2ri)+K)=XU>?rk7XE$=K<>#I&}j4(K+rV(URZ0ex@-id(L zO~#CV?3qwKAvGRdxqMP8>hLUm@^JDlId%GfmzHU2I7v)RJ%+8jO_z#!FM>T6Yz(RP zPEt!(%t@^z>?);BYBgaMUFxS^vypCS&@gqcD26mnePJm!O$`zEHf@ngzd*_dimt6v z?}}opHmS!&F{xeZIx&)b=#cu8DDLf?x>ghibW7bQirGC66-0JmP)-)Gy)& zr$MQo1+MRq)JXAb-C?P{#JyKWroI=&J7ZHfiW`x$=|2?iW^!_Eu-FRdKvW& zGgD8BN2JeAeJrY_&P_coihc`HABtjy#i+N1VZP1si(!gIR{cNV?6WluDU*C zkyhsnXOE`t^pc#~!YiqRq(>0N_0%p1>$JeSL+*{#Jjo@ImA|Ksu?nm7ZfcEMl9hS8 z=*|e2_1ax`Ubw>F{B#4vuPp*~bA&5&3DLC|${Q}%B?!|x6`{)(zXq#y=P^?ei848^ksMCdZO3V79n{zBHc0Z2iWxf0;t{2^4u)px;swm{935tg%wdZ1 z%Gh`rb)&FC^)%_y1e+tZb(^p-wd?Bk3z(V>b(rN&F4V+EWxBc8RJQ@krbTnzSHY&Z zHT~pOtFG~Jab0`#id4n7idDCw|Kg&ws@CnaZDZTDY#H0CWh-^dn3%R|RaBdp*4nl$ zHH5P{-$plGvSre@BmMLc5~f^dT{>cw2PlVW7M=FcVcwkPQf%(2bH~gIY30de=tEsq zvVWk?7d8ykO|c^j_R%R>(GZ=7&`Zw|*p9%lo#B^}Ixj9{1$a0{=PP`R`y`zL$$20# zgzyF_RsT^)wkt@l6qDZ%GJUAHK@*`LjFF7Tm#K+#W#j5`e{bjS;m^nM8EN*E$g#KU5y=aZs8EL!4Gs(vq$n2NK9N4bEk zjs6#`76?O;R#s-T)9<&HXtnOB$E2exqXkPk=?jp$ZAePK)6%T|LFDNAr7zx|^=#L<^BoJcy>*+UWc)RT%s2_`D15~`RnBHR%#fvN%r+0>rBlJFY zq-rm-FR4FT?>$Rrr~;-j`fb+8=miv-h9rS?%oX6{M13tu`4Blp-@%&Zv?nDU^_3uL zmOetF3`6GVk6^r#MF|ojx!SXBc~XCc-kt0jr|%Dg7U;K1Ed=_-`e4Dn-!lD5B>PT0 z!!OzYw8)ioAFgi#>NWazHeBnFyjH(Tn8Tmz^_cjA3R4VKHtO}rHXBZcZq$2{sUEo@ zByF?)G|nPFA*$H~8N??4$Dj1IyroVNc~p;C+of2;V8AhbDMkytvg=9x7|{|-Pow-Y zhk1HNk9s|kSFU$XPgi!hb9i-LzW}GxVUTiBk4o#yIUK*FZznkDuIdSv!?<9+TXca1ON}lsW1fkMK4rd!k1r`Q;qeJ}c8h;TG@|V6;z?}G^pM`|k=4n8sIpYdhY-{K! zDEK)T5C>8u`)c86K&8Co9NsyXap>V@n1fUU>?&utgc(3N2ZN`fxzNLw3V1zy@HU_l z|8fqUDjEh04(}@)&<-=BiUF1TmvcDmZ=j#@A1#hPQ6NCPSfFz4W{F-#X6wnrN<30OIdqt<}Q0}R#U z4HZO`k)DKq{LEz3<0Y38sW0o1i_`Eu@_xDjlL%Pi&^)`WH(bayU>!76$wzrdP!}3v zMKcUA<1O)Ik>R#5roD9y-LVFJqn?58opIOT)X0FC*TT6*hE`|~eYdG$rI2EN3%pG} zX=y;E1m^w8wyj~B;IN{-0h1()!~EI7fXWKYE4z0wY_{d`C^^^7fLWB_FhRuzRAOLW zxnVEEHlc^WzJ_I3i|X0WfXWTbIm{nO1(3`!dN5|F0GlC(hG=ti8*bPu9)D$|VKr6- zn$f7i8q{MA(V{c1~FV0w#3_e#mUTvuprgwa0)t z5y>_3X|Dm5JeXH5K2X*}njA79_7o)R+`kK{O4Rj}p&!djs#1G&VOAXxxo7r~^nAfMdc^vt@ z%yFE(j~PZK75hIlpfU5!z50nZGWQ@LD{ea{W3oWi_vomYlQg2Ssn44929 z4wLk!0hLymSFZNn&_!^V_Yo6&OHFa-F9RyGFy~PBi={1Qok>G42l?8jtq_u&uutoX z?I{l((&!;S-cx>ePD6)Za@REc;?#k1X_iR5wMQD}n=o9j8$HudNrvf$NGoz6I4yv0 z{}GyLxD*yuO0z7IXsV=P76&Y-Auyq8+9~0l+Xtp$7CXLS9Slm_E3l^2O2b4Z3=62V zX9dg>c^alGexvkHEnFLpgtpX=iY2EClJ+8u-G*8Uz#KOrLXmaA4lK+Q? zNonqAdYdYzxf7b3xDEVeNJH)0_t=+KhvgW~B(6DW?-9M!0#KRIB*jA^ATMnY<_tfB z0h+0JFXp@_=Rhl0fL;yLrb~tc6`Q7|yI}=ld5VGNDfYz7#yK5|Fc3a;O6%vyy%!Ac zk+xDWi|dp2&O!QB_g&i2@<@^}X?$9Wz_~U#trEs0IaP||31g?FC15t-Il|6Cu~ObR zGJH$F)6Ppn7~DRbc3ntx=15va%vnWBr7mHqiwR9#tR#zz(%i_#Gii@;O0NqP z>ZmZ$cfX~5up=+B=`jb}YiU0V&KGZ_B_cW{=9dN(U^6NEa*8a72}UNho(iO!{rCU_@m| zuRwlGq-nxTbsfzxAvL`^R!*Q;bp)qbndzvsPuzr90%V{Gko|?f&of(LJrt}f#(Fpt zntHbaJZYT19@(wxu;jg!A*N;eBOyy<`}7gMIQPZD>{))|eq`pLbZ;-k^r27h&J#bO_po&=C z(agouq5SsrR5T}^`}qE@^hH%A70voBy&kqHfhH}kAxvWVE4+CVmi(B|8a`&i^OREU9F6AqBticqpg^+x+^k{NWZSS7oI^qH|q~?<1*;Gg}msPm{GZ! zRE%tpaYp>=-YDZCT6r|Xadq_Mo25r4G(B=VnAtMJMi|w~b{Uq**NhGsa!hmFhKxpk zOOiaIe?|y~qXlLsJRO+vn^5QZu^C5&;?|DOSSE_iCT7q#Jh_s?zt70VBur*c1DfDC z7EP69MFnO4 zGM&wNl2IabHsD!Cz7K*l@7v`|<5Q%lVC`UoD_LlpdEW{s&R+VY456QtX#*?mGn1Sp zIsPb@d0#Mo?4J2ECOqSeS)yg2iI$IJjtrF{uvE<=$MX8%OmUzMWTBZ=#r&&wc;;`y zY7;b>uduN$P`b@924P_;8TV_A(VhK=X?36(es^G!F!KhY2r_d2Ql=LP`XkGe zJY1D9nT$W3DdLjSlbN3-n$J&V-W4MKel2sT=-Ry=WnK}|HGP)(RY=$MW#(Epsha## zW>2hiKvOO^#G385e9a&$mlY@4sMtHpGUjCaX3r2NR1tk6;>XYy`tmKO{epEW{yPXW9ZW(7!7OVF*%3P!gR zr%ZD(PlBNvv&14d>9#csJz2E?y2F5NSr&&eU`Lh#vue&79cXsuL)dvK;i;XM9m<+2 znmX-h)_UQ`Z7yWdcb$0`T6!t#FZ3h0#56;57U}*Zt2_+3k>!sba4cB=C)@LmTUm$8 zVP^&`+cTlro>#!`XIVd?1*I_l;PFS+9nr;X|IE502Dd*yWYHI)xh`LQ$r^*1tWQ&B z*M-mS*=?k5O?vudV-^G$452V|&8$^ic`~=Qn(RM?EpFbBeO63=r$KfIX03xVYXkYGv+E#MCV*C^seO32aK4-!B8KtQ zTiMGneVL-w1)3@P0;UJE%7i9~u0Vcxmn}_~#5!)`yX^n7j{E$NY_X2}>zi!LI_~nf z+53bvJwIlz$D|PBELd7;plPKqORYradgfpb99XctV4+vePGJY_y>o0Zy5%Fyv%nnu znlG*FMrfL8M;I8KvrgzKR-SVNy%F)xbkji7O;?xJ5y`8RobRxM0Y$9@&bpkBqCa`3 z<*0;V*2&Fr#LQUvK85FB21jy4p4=W9nRB)vdJ8c}<~AXoUb)Wyeqpsrqnxc(NOCp$ zn(+8WInrywo_%sGFEY>Tmop5Z4a?))VO#&4!5IH(K?o$9Y%)CI`M{jL!Uydcl`}|~ zK+d?F$)fmhVoqOC>^>!Df+)Jq$QdPyi)ZKb6Ghp)oF7E-#=@K-qOrOx$+_w!Ih6Wa za+Zj8bKaG6SQKv@%$X#L1CP^YknT-Bm-C}2zQ3F^OB5HC=DZihRS(M^p?#9G%ZHzw z*yfOX!$CSj@y;PP%26t&mdj1YI3SC%Fvmk^-NB?-)yWsSR>&E%sxtQZl6l*kG z^2*k`q;Ysz^o@{JQN51Ag`qNzEzAd|gOS4=z zk!V8RGWR*6i!jZ$2MRk;3?zB&EshJWbM$9~lGYPEs*ac!1=gP252ty!wx>kN<@^88Q zVC2$V8dJ08fKMxP|HL#ko#4fg#f$ny6Xn)iKXScdls7p(wx15(t~)?a+^n3}S-6o#{&^Oq)CtJDRY~fU>Ds(((GwRY=4}vKYm%HdM-&}W z^EQj(QC;39aU^0~R@uE-Ic4|0%q_cjOMc!4ac_^>W%sJ;mfd@$UfI3#8{};f_cm)@ zc5k(oW%nLwRd(;VHhGuC?6H z6>V1VZzebuUZK4MM60@56o)XTp`Gh$U6>_w(F&j0zpD~Le>6>TtL0%)Pp9$q)k z-()M%_^DMsBDKjkD9<+e7ySYfkw6*!y5qr!Q zigD!m$^43pqBq>!maq2W6v^1_`QD^OoBS$ZKAKPStMleLbi$gJjsyB6no^w$;Bz*A z6k=HV#=114XJs<<-hhs<@nZgB2T8H5ujTI+TqAGgBXZXK3;*i|9SvJNJ3GSI()?C} z`p4h%X`)Ro#o2rLJ4A8LgZwRsd9mez+-DuMSw)t<$bazPy8xLsxI#s8_GSLL|6Ui) zy~@9iI2c7}JuPuh7~o9y?k)6!h|l>m5#5f#sK~~^0w0p%T~JXte1(+1p|AyJKAAc<0e-LP(*v0CYxF!jBZ&FA~injXUy$!C-7u_s0oX{z z>>dSKZc=f{pn@9ZrQ-SV1tsF%t>H^U7 zw}Ow3(yxPW6pW|oq*=8}uM3)ZO2tvOg)sv6gll0}7wOk*pTZpRh-I?E2jYf#szN<# zdy93`7MtxI$=8EVeCf9Y3imik`VGw~#GCIo#7Fss2ZS1SnF=k698pv_T&TgPLE##y zxav&PLeVI<+7xyY|KF%n;c2YlGRZ2Cl8Oa^WXPiKRp5Nj!Xd7bcUY>cYbBgw35?T)0i#Fl}YwMA4iP z8_VQhy|r*9X8)h|oNs>osLf_Rkyk}mQ<9JS3j6+d9|ueK7cNC;Y)18d-ZO>_cOxDN z)hdw#=L?-_I`+aa8=K8={g=XECvv`O^=uM2svDi0oi5z^--!{gU}JTnJ5oqTmH4`C z$+~@mD-dNuT^ABi)96D!o+)gN06llFFoX>KwJ-@@o-K?+IU0dbV#U+7B=GQ)O7O?| z!s~X#lu+G^lwK;_Z#`hzmBMC-c@42>h4b>e~>_|*s>6fOL#~JtjcjE+# z^#f+6MC(m~x5>s6wDsBJ&*_Ya=zxhb1tJVaTTCzKm0zSA4+stivW%E*Ee_+CWAsLI zc$#N?AUNDDG%ow^%^>L^(_}=Y0OkT*t!*4FI26}2PQ-H9UEjC?5k^V^$eS6*3l4`` z7$;#lc(gLsz=Thmdm9Ik13e49;dvKhrahS#p5hBRJ&dsk0|yG$#h%+XCJV(n%=&wF1=MXgnk&k!>!M@ADQTZV%^> zv6m!@d8cudlhihk4;VuboeuPej2h84qmCNsu%xS;LJ1!?z7oIIJ!8xj5^cI@Ommjx zw7+TWfl0_fHP@JId}OQwRi7G5B<|ba7~dkOvwkA57Q8e5Vka^0^_Ow9pzC61`d#wq z@Y%&=5X?;#Oh3|Llr@%HWz!u@w85Gm2Fgv#+_>&ZhiDU>FZ@J>Y8GP}jI~qfkZ5`@ z`1UZE?ucTW98+~ceYV-OUzkz5+NO=77*f~7W(!Q9EA>n(MR95aQ#_qGuwSpXHEk2W zE@^LiD=c+YXH!M-h%-G*v?=(#8wZ#?g?37YnDQ|*cHTKQ&M>)>Tvv&C^&d>vg`V6un2Oz{U#ILbMPmYX`k-&Kiz_x4 z`1Gjj3DX{gBc>5YAZc;kG+}bbOe-}tBPC}|j!^Zq3De7o1p%>f!Riueij;ZI zROCd?IBC4dn#-os2vtz5#gKW`^c!N`nh{wHPp_MPv6VRde9MH$oCFkRAIjaZ#|Pdu zofVJ&df&7htAd^nO`eD#R8m3FGZQ_s!5FDFe#|w4Y2g2@B`o^3{ZzI@6}z*2jDpO~J+9yhBj<)zOTl04dJq z?U;C$n)Gm3>0u`2$)RA4FS+Dy_9nxwnySFiYUYc`zBZh^yxYnhe1goaCDCA94YM86 zYP*mn$DfoVEB~safp#);J0vFobM~iQ8-{D{a(^@G*a&T*7R313dbN2w!u#{Nk*eg0FEOq$zd!&~cPnZDM}NerhE*ol*PAiZ zBL3j78_WR?q}bHaiyqK3Z$t7Y6h?eUZ^AY+YVCwe@(m_^hnao>oAWxi%Z%Bg{1>3( z9y98D1pk8Z*l+$(@H%nOJkxr8IUF+EVN96v>PSviED~F~r;eMCh<03l){K}{5({7e zd?+zHVEXAdgze|e^c5T4db;1tnDwV`SR*f)QK{0uA^2Q19}{ezT}RDrzG3Nan!mSB zH)C#>>BjS}c^b}wc+&?!!+YkM*0G6xXr^byc}tm|nAcmyX4_MJ$piv1WfRipL#5v8KYiSsKQ*4j%=Ho>=OH4+f0?})I@b~gJJ9TcrI(!c0OBoXGs z0^nY?B2<<{s$9_*wgwgbA=vDwS%lfY{DxI4xM((J0(3jEXo|GbFgdKqDE#qrRS_nv zq*w&%Yl=Ey8i`jPA5%0|Xry`^p2LLrBFvHvP!1a5T56>h{eUnJF2yumQ3_fGB&}$s zP(e~=5n`nQyt0a_A+`(%=l(XgXt;R%xB`3&yece0eQAz!7+@~4%%mLa6k%RB<1pRo z7TI9tDYWtc@M}_Z!Iir#_|mRu7bZCUU)J6NI*KG*8@>~rxC2Ru;2z?F1$Rv{$z)tI z6ZcGXA_Q1$u|_5dqA4 z7}y71T@rP{gb;;?mPesk;)r@{)7o7JsCq17e*^6Zf8Q5%f#pqs0mcU)ulvD}6H!bH zP-7T~3?0eXd!j1A{+FU2)J+V8U<=;n+quDmSEABcT0ny$j&Rj2wm>r?0EA!ze1n6! z!I-;Ikt~%D!ion9_ctCe>`7EHqc$9Z;8|3jHI4Xd@1laOd5=Nsaq%7DVAE&~pT_(i zo9OLa`2XS*y^Tlr%3Y!-aR+?yjBdgm5Y#C8ENva3d$Z^cjL{blCil3-iB z@aPN7h7z#79inG*%yPO!FXRewvmVhix$Ln%Mk`DPMIT@cS|n>pv^DToM)Sdz+IB8@ znQ<+=E{N_!D?r#$9IfLT&t1~!G=}~Ibw76%dw5(HeUw=mOco-t(>ed0(?+A2Lr7IO zKPehbbV9P(DbZaRtGcgx_<+dPQ8G}IAItYY;av${orVMBhQ* zt)K=U3YSEWW9jG;S&Xo7`0{A9G6u1v>8j{eT$#POE}G9}KWvJQV=1$|_tDAV=nGU_ z(Y<;ROxqqUv8Bwf9yFFz^%16$YQVOK1xKS_uoO}Qf)5y?jMl*!C!#-dDl9$|-HWS# zKU|4^!a4EnwP-ZqACc+Rjp(_SG`sLYbT3Y(cTb{OmO}srA}o(&(Ya%w@2lv)DF@L0 zUG#z&Imj3s#Zuz?Gl z)i4%p#WFe!%sZG*Eb~tslI7HO7m`G{ zLt*^DAiSR74)^S!U1LEEC;l%j1iM&fZ$oXl5MButl=Hws=`}B)NY85nri<@6gQ{== zOI?g#Pfk@7IDtPR1howHXm*?+7Pjvw=*eP8i55YRSQHc#TX+%gwWX( znb3%D;|jvG0vF&rNZjuae1(!RXpK?X~;jfsLU%6m4@XNtfcnM@Ta zm}XEUbGjh7PQU;GTf)w>1l34y_*(7Mi(g7r%M8MrJy9L{++DSVF+c5iPy981kE+h5{j^pj< z1A;X;H8~{cj`#OEE;x#}T~1POJvb#e#B!gCNPMk5_kxi9ZTfr%~@NFJz4K3aXm~IWT{}zbA40oXqm}?fB(_vBj zy!0&muS$;y4^Pj|ZSNnU3JXx7|L~wtf3-GL6Q)%v!&FLDfHEXR6W|||5TXv%C<6gP z$|8?d;K}!bHE6*8CJmZ%qtsReB16nn*lvZ?19%k-eh$R^D#R#7)L8Jo7A;p#Jk_IdEXxF>U)lWJB(@JL8;F8u0~foETgM*w@%jXOB{HW?Y!NFF z9K|i*LBCiuD>{*7UqI~AIX2{<5sj=uq1j&9%i=E45S7yYbcM@dpfP&ciW;B~y63es#C*m&w&#yf80h33? znt|CnV*TLE5wQaqwV+rKVeL1kGNg@<^{}KI!7s7s<9xzAXqHhCn>n!|4s`FZRk2Mt zdq%B`O=bAT3nF`h7=yZ`dROc!JHi@-)x^4h6K!Hq5A#@T9OuT^vqsW>=Z$VWamDDy zU#}V6Saiqe#>jg{H`+chx^e5n*twj`Q=Z3eu%imJ`y6|Y`gxh_msnc1U^8AEdN)OM zdu0*VfK#ZUP22VHR0rOAB*#O7-aTc(TdmQ@2^6fHhJ#emJ9Gd9?8-3g>t~H~I z|HKBqae&hd%mMvaumq3O>F{qveQ^c5+|u1bu1ucF!NLvb!F zomhiW&7uBy9AGVr5P7*9p9XZRi*Z~)H@OrS&yk*RBW@Qbzx;08PA=R2QQSJtKef-} z&`T6z)t@ioR&&|mui~0<2=ILzdhAIK_~~ODniqg%C7d2~=Mo|I?=xc;O*r?UKS8PvJ`jQE@*RpmQxjZA)PQ2=f*)yeRkvqz~-~ zR`>|Jqj^t&vlBSoM946d{Tt9Bux&HpTQoNc#tUvKO#1P5*@y>`rD*ww+RJXvpr);m zVaTfy3X3)bzHTSXW4Jy21|~JB&v;p5DLxiklsQJD{!Tf^Z znoh#SoEOxQLQn@Uka&aTU4kc$6c)h_ znZh^JTd-S>@FtBZ7*rrcy)k0a`$8e=jgjoWVj+5qK(apNLiA}F$$I`Q9MA2AlZ8qy z+iJS7tnNzGbQabF0~ZSUpfpM70;RKs4hBsCoGV06!@Pua#+Wtpgr;>@2wxAP>s?3l zPGNs`S}F`d(=p*}44WGRv0fw`iUXuXB+2L=5Xt_di zz@+!W*(kv9-cF|R8(2D62A_3$YHtI-aGsL%wjku@6lNcUO|70V_LranpMF-hRvn9}?o@7-%-q z$M*#O&*ClM5ly@wi*^PCA22Z~o~5uL02Nr1A5TB40MA-Ae8M==^kczMIUIq_&&3BqQqF8&ubnN<+k$g+kaM5Zv!8-~tH0%h+C-Qb+E zc$GOwnO z_(3ew03j~DK&K7y?%;G>J2ZLa=vY2Dv?<;hw0K-;2bSf zj7K-GJK~!%I*(otR_=;-q@e^C?Ttsbc*Kr3hvP%IY^PK4R$MmrLVP1(HN$az<_60Jt7rC?h3O++knHhhZ* z`XU-vk_fk=~R6ObKFjZzHldci5*2OuS&iHta1|7 z{s+8LT}9J5UQYEz3=_wHuUBRR(fc~_f++U4ag?rliC6~f8l{51KB9Prn?ug1yN~UG zm4`SG3Yv)m*^R<5O&f~cVgDAQPbRz<^iELRT6B~aY#8A$LN{qRIN+B65gPSQvKvB0 z=_pAz*Im?)*$fN=BYTP#nDbu1oBc$lsP4p!{~BT>zjc_X z1!vN$SkVE_q$5HR8m&%_ogosTiML2LRwBB_9otJKLNjxby>1C2^qPQV_h>|DR5Z!{ zoG6;lWjiN}thv*K86q^RFgc)Aj>wW>C>%ukyk-=n3|zRE?grh5i^d>9=pcsh3Xu!A zF+t=3Z~r99;%FxPEJCv!5Smk`7!6fVH5%$XU4%w=lLL;=5JhmZy3Y~uxIk#LKs1!4 z|3SPTxl+W3KC48@jCQ61i~taVIsH1P_ZpF{nIVW1H;B;pSA_e3Ka6qUv_8hD!RZS z^muKw-s+9$ur)ch>aN%TyV1m$9d0Hz6qs%nVgsxxUu=NgU@acS$=BCG?8Y1>L%c-} zknbVRV%Cr#G-)UfHU>wUued&E^0ek+bZtK^s)fd2CVwS!L>0?$rL${PGdyCKhcpnR{?<2m#(t$+h^#naL_VPUrT0!u^@6?}B!(TT;mMP z3dIah?rAV|EfOcPyn7@Z29}EFQ5im!i^s9b&}O*!Pi6{JM~TN$3hl;-$Fow9jukWA znGhA6e->||6wXf+vphv1DE5=ZEtrGh(l25irJ$HD9>u7_vT-xS%naK9DlVi9{+PvH zFWi|ewq~Xxj4e1e~Ou=IwKVL`;dgBoh~{c9?lwx^A3t%F-Kz95pgP|u<@99 zBrAn0$Hmu}DacQWC6vOEGwfZ3S7*gM=34333*t$XLd0eEa7?@+?#N7`&vo(dl!D1E zG0Sr3B%(Up7Bh_rB_}t(C(fW0mONl@9!@?K-)D@4bTFXS!xg4H5l`pgVgVhWiC3AC z0&?`F_-EGW{QFfM83Dv-D7^nh+>6rc{7zg%Y3={SUT&X$7BhVqf_+uBNwS=}D&15v zfmN7!W|Cvf0qe|{{6s0Nu$KJ9O5u!+glW!X60ke$C6g%yxs!ysC7<9d31e0v*-gUr zXIvVvQ|RU{31Oz-*-(-|RhaB8VXneA`$(83^CphSXe#-IQgCV^naCOoJzGkc3k0-j zBdMem=C+eC-(wu}lMH5gc7s%i1==Geo^VHmL}dm_?y22CQ3r_&sO>NHfT}K%-x%+n z5bU`UdpM=LB$iY;@Lg}oPFf8e=qp)Eb7T5T7SdeDfs&;(ht{t9K+pIbC23$z>eJ>z zi6_fr_>&K$UBNZAq&_%YHP8iKkxHyhiH-21Lc%m9GDd_5Q9_9gNH!SdnQAcVa+<-Y zi5Ui?dSyv`=ovblq%pH8J98ePX}lAgctF1r$y+OGN{3MrmH|(Ih=UQ~meCTuDG|EQ zc!?bqUo%PKOLH@(O1x=qFOb}&xvjG$=gr6i0=RgAq$i6(DD)!1^CkD}z}k%xOPIDy zf(97l_=73yBnKF46^aNEqCJ)S*dLOcG_Gp4NY2xJ%WEW?>AsxZk|--;_}Rmf^)@62 z&P$jkkS6xX3&o8=#cPQNTya&h%969^uB4o?6h#69q9y&Da?C?XIdwsUXOep?sKZ~$ zdVs9g5;rhbAMXdNUP}6~bbBxiL@={#h>=ykQVW)a#E@!Tf#Ybg3z+CA<%9S6b}n$Q zmDGeQrdMpGek?{BVIhLmQn#DelkTN%zg%D1hl&`~Q2K;MzQ3>ZF#XlGv9uRsKoe8Y zlyA+X)uQXkrCz^nbG7AyvR z1yc@^R#RuR940+TDVjt}OQ-=8;|%+f;-#zXNm*@{Bz0mj09Ae6K>H_;9YOirO!pZ_ zRc7#Py7V;{bl0+_Opi{#LA8KrMNbKz&|Fz6-9U}VsFZfIAp2^@NWG{(o=uR>XE7q+ zq_h{fu|(=dm!oPsO`76BE1Z>!q&r#4G)9C7aSZiB(F&<4r9EM_)S2eit(RKU+~F!| z0L|HLkp|M-&>hlaETa*LDd~Hq&S2hgsUNVvBDI8<|CBalHUeR-G^b*;J1o7$QiUK+ za){_C8Aw2Ma!U(({fzU{M~v6+1&>{psu`{ih@j|XXRsq@up2yfRXUQ&0hZq~)Iig2 zOKlnA4x%vsgDdlMpGsM#*Tr3rcsRILI*#;w;lr2Gb_`7L!?Z|H#*@{DbKXhOT9l;s z`u?rKK))~28!X~sScqV2XiyKakZq-vktbjF2hH8Fk}aXR-)v;_X>Nd>VIR*y#?{1! z9c72;uS=a}$7${-SJ?`h>srrn#+&+vGiuxoXUy`H4PsVhem?5gB{Y)Rb8bJ-OvW`l zo0`k^vZ?|I>|ZTq^JxvSw5>s!96#AMYE-1ZL6F)2gLzAX4CZBp7|a_GCW~e^ujaJa z63pu%v!^X=XlL06u7&-ntHIEmZnA1-L-7S5xFa^NX?tn*I=lmzrm>H17)l| zhDfxUvDgOag)%;THca*xXGMg-U`4Z78SBGxiVYDqeV+*J#j+bLRS{~UJ-^Inv0q$drN;60ogznWet~W2m@ysytHSI z>@>w+K2O$-u~QuhCfyf1!sHdQ51cleR~ocgvP#yH(!RD9$ zd^qa>f}y?1!?I9jHFg$0Y5;nz7r4VuCuHbTArg5GfplYtT-x5fyNt95-najb}x;F`gaoyzh%q=s9fzP_jtvE$&d&>)$IaRckxI)W; za>Mfm?;-N}48?)=LeMk}ag+z^BZUZDmauEaQ z$qDlQ;Fk+_9&kXh+>E6uCJ2Z0a+X2(=-fQ|X}MRKd>5M7u&CS#JRc$doy`(G>^({@ zV5tib5k2fXPQD&Z35z*cPmnXro&yog7M8dqmk<9%K9#%tm1%O8K|}<`bB25^OQ|I% z7tEBe;5Y=#V&{-GTRwtWhxzm6cv5!khUSapEU#sWDe}c~romL?GGfQ(5X|L{SL3-bU{QJT|$bmCBFF+ws5hgwk{Jc*Y2zuyEidIa**7hXFi#Mc$T? zV-y%PRc;T*-IAkMN=6ysio0^AdHRvn9HQj|gMx7EBRSK3B>|hmQ`Dn($Hles?Uw)G zIPjhP7|S?$3=0t~T637F*Un7g!KmH{u0*4AKtYeju>3iO2w$qo!v*wUsACU;civ3%fzT-qO? zHr59ebXU~yUZD>yLqK{D1{$jK;Bou(u`wB zh#(^v!WI5LOrhfOPC>h9#Wi!@ZSoCiP`rX=eMzHf!2d6$1sMA7u{mrlQhYH3LxyKL zfevye>xRux^oK(fia9(213xPjXr&8`2#0DEtI%oyIBPdb;o`*5Z9(Yg7*3mVUojZ; zTZrn8t}?zWJb|Wh=Byk%Tfs6W-vHkhQSm!V$KS{cBHwPNl%|hS zGR#r+y$28SlucOLStBDHZQgL2nG*E`i3i;*l`Ml-zXKe~S2BJ5^c~D?Yh@b8OJVn4 z@S0_>T*%U;H}J9r{U0j>mwj|$c^PVSo-LT|qjZP!-IT*k!3t@%8w_<RfaN$qu)NqNZ&NiNPnMB>BG{EK=g-#=Qc_U zn5I{@W~^>G1g|pXO%oD}ps3U!K-b|)rWLM-{i+m`{tZC=oBl9htg0MC<{-i)_6T!u{{d%3@A}vDcI=6R8lGW7pZLIdZc0mNK8?@bnHlhroNv(JZYx z;vfT#Pf-ZSe8MAFq3Q1x7R8I7@5R?8(?E<<^tkcDwC@wsH)6q?<3Aa#WW`gMuiB~(EIq) zR%PgY0DG08_aSmr8G0Y1>Zwi{dLIo`#@>ggY6eU1gBUfbiOLS5-bbD#wPkZ#)fbkI zhY<{SWw?%qFhFJKc$^J3nzka;Xj)phY8Xq$gIsKF#Um>?psVU07kRyVs+hhB`3m-? zx2llqX_WUj@{Jy7h9Y3GoSF<#{`2 zAU-v~W zIbW5`a+42k)92#*tXhLrsottu%%}=Pg z0=4^9Di6eq%)EW|rfPUy%xnk|aDWw}*!Y<$6_rvr@h{a`9!eA5suHbHdW5I8GDqn- z3-wEE%0X-O7<^omv-%J|&dXIDis--?Kedk?O7l9Zrz6>*br*G<1xi&t)l>2Io8Ia; zj5By3-M%$gy%TRQjG@Pe$EnBi(e`dR{XJHt7UJ{QCaIJ0b=}j{2T-jGZ)K_X;_EKY zQSZiSYMy$PJxUvlP){Ai=qFrRH3TPyqvdM)o>T|98PuJ8Pd%+p>Jm)gaXY~l9(||| zM7mYKP!oC2y;O^_d4ccMURZ{qf2+-~c>0dUpKpi?Rfi(Gu@u* zmarCY_wc00U-U|tg11wf(BHo_OE{0W&$mg4!tQDvlt5&w4Nf4kZ46Bqh}>S?HNmO{ z`q?@$;Rs8g6a}al6uv9;gr#W-8xSC!Gj4Ng0vgzTQ{@4(^Ang>!o|RFR#8F%az^!} z1ghEOgaBJamOm$9FV^bVf`nyQ!~Eq5wRk&mb;2OLU9~X*t?G9aj;o^QDPTek4&_F> z6ZYXye{eWq3`1`aB2GOJ4lQ}_uO~1qE{;IbpzrO3mN?k^J*EtOo+d2C%=W!WD8OFp z@+n~$_S$4q%@k}=V{1)UoT?o)#IkT_4N=72RWlXuU+AIffD75xh8jY&%UC#F*ONGE~DfnH92~gKHR}*@lT->`V<=8>y+r25b9h zW?^AWhH9$t_8)PYc$_-RH90nHrMuhoiBGse+3iv_VpNw~}eV%ITUKU_QQzTeEiF95f5%q!}8PWlBkR z)9akp132=Y*npWp^O;4z`OGFX0z(0G+^z zQQ8Jz(ozlgZa8rc?y7xni_&$2w1TE}Agu-;*9W`6^EuiI1WO&1 zR;sPf@_Y+dI1tr-3D_Au$7%~vB?Grl)K02f1SwkI_dt)$LM(yf<3=v9!3^znCj(X6 zP?JhgddV4a(_6PR>MyZgs=`QM=RfPYIKAJ)60jbJEn|4%&E``YIwl&R|@EyGy! z|0nW@$J%iWPuaf1J0UINgB!z>qoKoVZHX7~w6S)B^PCbtGj!hmH?%z*Rxh!_oY)U< zc_zBq&@8`2VuCHrmIfv6vZUD|9TR;_X|}veq9=7QT-iNwDYsYEJMp9yJ)q~%L(;C8AGD$N`RNiFOt= z>z9*QZcVd0^oh^;Ty|8V7ngl9A+eN0D4v{nltU0sOB}>qqIzax5AIm&1&L=|>k_95 z^CwNf^UH}Az|kk!1+J}5yvTWL&Y8sD7^=yy-onrjL8Bp9M1##Y5=U_|4|$Ym&uNhH zI`KMQAjH-g%HJEkGyZepGS2WGyrf;+X>K-22JigjkYwy7kJD^XSq$(?L4O&VZ4w)vo>>zoetgh{r| z***D;H=R7&Ms1NTI2w500Suj@w*%M8lbBvY;sLni-s5^xbnh`aBhMZ3h9})&XoFEa zGzI0;^k_1hD_VDO{n1O})KPkN}|L1?C(^?Mx zxfK|GPumLk%+Q;|XJe9rEP$!Qc{+Hg(-{bC5bY=>wDGO+nX& z$(_K5xq5f#@Jo_ATl>YKY@U(Ca5F`8MJxnh=aHh;pi5RGK5RcTX@wc@G`KiBiDByS zuZZ#mN!~DjZc-#$lSS+jK!oCAirC~XPGYz>`HszBOOnc1qmQWcWldKL&>=6z4-Q*} z3MjkV1)%(HQ8H|{HmTeWSx0UlHg8LsZN)ncWA`PY{{CrLbubC__fNyXV@dUJ+V50S ztvyOR+)N5HM`_NzB=o@WG~_=_LW>Wch7F!1tw3OK_xq%Ke3Y&*Nj}O$X@MC{ds!s! z#M|cl`OPoW$_-0&5JBI<9r_vj*DxB>!q{P-0uFE%JmM1ky~$wYzS(a8WG=PpdP#1=J@B`;)n z4`zs(P5_lEACQ}tJQMJa4(cEGY$?6{uM}YAl!u!DBJaY24WSHI=awhqMu2WM;AG$Tv z>5|dV{Nv{bJAvLs$t>?#4MKfI!&Jvs=3rb#o)28&lQN5;Hig-Z zQYv^3yS{1ly@AsDi8u6al457Uy9?Hb=A?sPTct3U*~y(!%t3`UTEIMOa*`aJXq_^W z!QKVW(+1z)2QUoXGqGC|A5besFW(qCr*&Ev@ZGp5&|1zQ)>SM zQt_gcJ(!fYv~D6%QhHg6FT+y}^o)$tns)l;XjA6eB2uK&H#9ee$M87gADF05$_H}C zR15evKZWPay9?isNjc6#>A`U+Yj9fla|(L%dlz<`m|~BrMA&~?%1twrw*55)y;Hmk zd9zY1Q6&Ja7N*=XMd_0zDd^4fU0AU^C7X}Zm+Mka;p6shpm=$kQflyaNOg)SG6Y8K zrpF)Mld{+xZRZ?H8H@2h9ZNaEaPv=X^FD)G*~yw>3EX-vB@x%;M6a-`DQqw1u@4NG zmQ=6Q8z~nt-(L4pv{;u_Pg0iSZNbZwILv?bo0Rs<{1q?J$9G+yr_}?cYf>#i#k)cm zIPG)F3NjN8$4h^`qNhK8@?3rmWvdrAygGrE~w2N_S-smF~$QDjoj>J^u1ZD&4QAsdNi3 zQR!A(r&8tLOfALIy}nPkcRfsaPUooJu7 zuP)M|weJ4@-~ii2q(z~+ffOQ86rSb+YGf&Ba)kkDo$8_=MF$9-)rernoKEOf$UKh9u&fLA)xFkp0^2tM>qw`YlGbaF13)i|Bu9S|7SC%ux6cfHyq zeV7$EIw#%Vn zE4jSyz;vcX!pO;Y2d8i0Bv>~ro#i`c0%I0k2R96iO&`l~xF<|!_=b*#LR(QfOSccc zkffJ!Zm3YCv)m{V32rOX2QgGDP^n25a+g1pl+H4Mi(I~OO8Rz|jwm`g4g6h}&IhP{ za)BT_J=2=^lr~bH`t;rmfsNgf1`%dZTN2%{`^xl2zBHS6IQ@;TbOQ>AiHh17{)t zf2F&CuJtoK;KVoSS&YVhy@V}X_db0BHLz-MMjOtOapoC=IjbMqWE`ONKiut>fo9w$ z_I>osFlceuD+9gDBYP`+GPZHqL5++Dcr`H|aH?s>67GO8%`^6KSChBR*vst=@ypoF zW%>RY1~o4QWH8;dU^U^S@Qg-wyr*z|uZ*qCdLa;B=-e-3JZJx!Ax5np#Td2fC(f8) zO{KW6G1?CkjrOM{XH;|M1*K-7CAW!epVN#7Y{RWwhn4HZMP8KexA_Fav!u zMot@0Y|Q%TGoly^lK|9IWOxE~T7nM{jmW4E`;N%)F*B4X{pgHQ%%WjnxNuyCmNUbB zicvJdjEr&I-rCtl@9&$Naf~x=$$aD9l7$(;EMQ19I?t3$!+mH83Ai{mjH?$TXB6 z`Jl{B4d~ugnoL7&Rg{=1268EloiIk ztt&HaxxIbH8WB9k8%ZAgITNiWPe}eWF>?l2ySAH|xtQfO3sKU)JDNi3`O3`JbfJow zb2B5X3{ih?StirkI7VQIfIrw%!XLI|8Y=!n+l&?!?J&yTsV38pld@!A=0nc2y2F|1 z1r9N}|Iy4AoII6hGXJJs2{`3K=5$W>uxm!qtZx`)-+9w0@R-|~Y7XJkBO{$7PmFX* zo*4xWug!$?!qqR0zps6j`76gJ{;$kq+;zi0W@=d;g%X|SCZ>DBNYkt?2HC*@n=G!3 z?6l2dnzGIa3=l9Mu5`#6!6_SAFU#NshXz^8I9v9+XBmQjoM)E73kMrz8NBdk^DKiG zX12^Sc;Q6*EQ1%W2W9Q!!m+xu@e)5pW*N#?NVhCQ=)UZp#VHH7^fVrj+&jx4txMmm z(;VNogR`n_c^~OVrh{6y1&t(Gj4!Y1gX@y4(?4F>f}2HIfnc8|-UGImWgTQGX#_!> zki~NIhtBN@{8O^(!3s^*Z>GGDz%x0ErM*Wd4+LYcG;jf*CkI)>McG;I z=7gmcDa&9y-cI?c%H&N4a-S)c~R30X3b6_V}s-Lqe^ z`tU0=te!Va?v7DPB&GNkDTVpAtW54XSEd9}MvEbHW+0Rh0(L2{2((D43Zq#>} zn-tkA98dtuva;J-p>$$V_FXICa|&UwuvxrUKBTTMvrLARX!mLylxFQ>5?$-Nqs zGmQQ!7@8Bz67>cOKEOOWhvD%yL;yjA7Whk)^Am#z0kRx5bdcn{V5p}cI@yOv29(Mi zhRGvgBUMf%i*AH&M2$M~eS zxwa@rZbfo~SLf8TBRSocoPn)K?$qs^qx9ExPjkANlYJ(ya{AGlO7b?xlGapt?{h3@ zZv4lbc$S+7ROLj1p|Z7(py*wp2U`0scbyxtcKZHY)bH+@;{mhk=i0Kwj}aPva?fpK zPmJ(uncLZd;$bFMF?=(00cM-BLOZ|-KgPklIdJFP1Nj$)r-|2#OAJCZi9rI&JF z(p<%@+(Go$Yxi?=8A>8Rv;sg@L5?>_>6zyVpFGPAGNXnDzsmJuj8G17%YZz4c>S+j z6)km9Uvg(qvhU6ET2PY%Z1T9U8sV5Xg3&(#=$j)ntURq}o;#3bMIm?9%X6VtfQN2* zT#0MunfEuN;+&8F?(LPEH-R&TXpCS{tC)QB;4%mON`%ot4*)$D0iA zWam9I=T(!j-=2keEMvco6rpcX9@DgR-A?571Pxc^`2dG0d5-X2N#1x$?5Qq8M8i6u&Rf5_`-!K<$NTh|IDu%)HW2Ja5G z*B!%$n>y;4UL0UM0J6ggbX=8(CfO}6a0OfI=~#wYtyk*O=x`xjeVvStd~(J|$1*?! z0p-C4jdaBfBNG5QIjotk2nWUb7P>_Y!AdaRx70mgY8Ej2pW5hhFoE~&bPHGsM7G!M zW>#QnkgggNkcR3QhU!rj*M{kWnF);PsGEcdH0YvZ`K*ArAURTZnyIIOU2wBIIvEkD z>ZM~@Wrq-O=%Zs=|A3r)zMt*@CNO^>JAn^_bT^rUuwtk#8xwdLrCZ7xgq>q_Y_}uW z1uWRb|O{;(w79%lD% zNzu)~#t%!^vCM%@1bo>&X zqcuuruhkvK+ezznCvY0EQHQ>ku7;LXx@$PSSFKAyjWZm!6SZ$B?XXLCAE%A~)UC(q znLRo*L0>i09@fPn@!*c5x@a4eI$zXX#=k$iq+5c2pLUb>Jk+;!t#QX?;ys-N^LqS< z?%(o6mx6mJ&0f>(*MI4n*rM$QCixrj{v%fT9UM?<>7HMKuQSFoKOd)Gyz&JM-!_Aj z!TBnnx9Q{pKeWluKs|Y?b!k9;6NW|%BDmAotR><37qQvp9rCAQ^IRhHU*nYDGrt+r zy_-@O4IF^^L>SpWzpasG#gP0GRybHL$PdSy{)o>fAu&aqPeP(ZntuRY0rphqlaO%K znGH62U4eN#vS*CtON~{Xr%1+Cn9Hwv|eG`e)^GQGZ_M!Y0 zI261v$1H{ z1r;=4jFj(y?cj;ff_Iqw!43szB86&rvTH#voYwDCKqCKD--316n8kw&n&I?Nbit&$ z8Fk{9NA*FiqQC-uIZ@yOokRt_5CK{@rAiC#F}ALpWf&bIbTrW}x^+w_Xo`*TNG*uL zX=ZjoJ#55J`2{`x2eB7xKc031s)t-@Pfrl-(dN`*$fr#-#7FQc64h8lH`dh#b3kz=JLg&4>U=DWqw&ew`xY|4Ud%<94 z1+G^Wv;*?&LKlFR3`>VC*B6Lc!iCt0u-4%MHhFUazWsx~+i2}DX;(o$OE-$xj~L4`MPp<3F3{;ugnf4A>Ke?JjPe_!95{+`vB{_ftN{(gBt;Te4X zx+wa4W(@tkK`j0KQe5E?{QEK){ave|zdNYt?IvicVw z|9S$1;0)&Ox3qx1`Gvc&n{O8u{*Kj~SXLN-)0z>5Oi#8A&XU81;|jf<>+bFcv#Gmd z=2LeMURd}AyL<4K!XB9DFFUE+!*)@*KkTM*Z`)Ith~;j2q_7=hHANrf!nMW6 z3ajc(VHm@`=T|5)71qsng|U{rxun%wGO);osx7rC%0deqV|QG0DzfA}^Tw^n%9`$V z^er+qr`e{>itgL8x&2$uIDt8VMH6{9&=;|2a??3MMJ&T_Ng#gNS7Zm~hZb3ajNqbK zKh6yV_&%wR0V42xPwsTOyZ0eQaz-eKpq?^B@3%Zy7DO``5(FHbik%^vDRrT-aILvpa6FgP*FS=z1cD=Q8gR6u^ zfTd0N4tsu23tMjP$ow^o9p9CkL;1F%H4J5) z#19ngD3bDcOX0?yMU533;O->~f&!24hKR2++y?v?8Ckz1Rud zUFRbMp|^`%I{v)8eO`JN{#T_(gomeR=eGBcP=y7k(0_PPsJ~hpstMC7m0>ESDnJ<$ zq6zR1N(fPhYLtOkqlQ3sswkem9eQ}AD9sFoVKXP7Jz2!^Xp-280Q)oBiB49+*t115 zOem4h=ZhvV3XUyP!tjel<4p+`JaeT8O}>ilgNfIR#xOKSM#XwS)P(GF1j5T`K$PfB z5z~Tm2Kjs7rj46X=gGUG*0z*m3-jV3)E#iNRdFeob+a!v3UaYXB*@^9pd*j*{qj_`50mnm%Te;J$)sSNJ^$FQ~ZD=w2;*(@IMHNrx zjupfgi@6K$k{0)5c}!|BxD6OuTH*{RX^MUML_+W&p%^XV(!SUOzDO_rNG}6E=M*!H zzcl)YUIn15aN0J_EB?ib+O@y5cs-}r*b&7CI1^RlidS(5_)IHCAEglu-cBz*&8OMR zbBnie$1Yz|9Lj0?d{uE54y?6f=wz zCY3zq5dsv&#SSoQZ}Aq?#uv0kFU=1Xvy5dyejtn}AV7dz8~^j+;-Pgh@t=SvmNc+} zqmLCYH=$g+o-AhQRDWmuKe(2hDrT7)_5TlW#y+tX>~OaDSB~nP^TmwS@&A(bhItPw z*zjU;EX&h}Z~X-SzFz#)3H)l;#;y8g@v#5EPY94thy6W%U3?LBZct3Yvmc82XnJ^@ zeP&WJfJy@Uo0lx$4)|nUf+`Jiz!}?;1Ki%#&Lu~WH3Hol9WPkN5LErU}Y+wJ90PcWs9ZPT*4IdlbxnvZF`>?z5v~4|&r=|8T*~sy2 zKcs|Z9^!w5#3b;j9_%V8;X4wYp;S}Spl(8AL_j*Gu1O`gIs5o|B?gTf>5UqfmX-WX z3pV_DLJkZuyKjS0?n#?U9&?u%zqzCp=exZ-OAc~-=j|zBT2A|GEJxPdM_rR6B{~bL z@rzR>59+2dMLbsmO{u}{FO`Tn(`H>aD!u8xQEA6VC7(Hayq_DDE_+pi`X59x+jk|X z|3R{iK9vBPtvaaxjf2gz&~LD*LzD7`S4HoF&$;NC8@4v-M*0IkZV*Hm zV;L<-187+cw2-{I%ny3D(wDQ`jiJjE7;bfqU)tzD+aP1er>*Bh^)A4_k=_c{gz0-) z@T#DB7yW*7lpgJ&x3Wg*`9b>kZYVve))(Xb1C#ZBmMAUB(xYi7tKfhfJ(}RH3Vz7d zZ^J3n>Cuq9D)_2If0mEZgCq4XSbAmOxi4X|ej+&4vqfLfVTyj+k2`@Z#S2kvGJQXZ z$oN3CB0)NjcNIRJt{-LrZf_j^&&35+&8}OCF)S{SK-V|ev7^)tbZwn%4qWEy6%6KL z#(2d6Z!mu+T5$l)MSPPn1pfg;CnU~VqGx!T3BF+zNGBxTw^aYcj8_XbuGF)9aQ7V~ znM=0QYW-@Kdiy&pG;gmDT)qxrA$qYJ^-JpNgFrf~?B-4S^`^X9nEHo)1A>O$TlKCi z&zOvKA@VQNq+vz`93kOw=x+T!2V^T5i__+m9xYB#3lCh@KgDVFUA@2&rM7SMXffDY zc>b;aeKVAv^eXLSj#B$3rS{e+^=em&rn9VtFa1gn;B>2h>2nK|t_&;9z^O-<(m5=j zcYedw11N@;HlPbLj2c`T%~&UXjcX5x0Q(?2sqx$5OS7<1?c}A0u<`GbN;hGbtxhZD zVV&tQ#+Rbe5w&prFQxmj@kP^0(Tt6?u=kA8PI&)_Ii*|p zDDASew2Wnx!#5(h8_S{-P;D!n3C_Z1eZk}%#ce^x_R_jF-d%T;{>>2XH?NjTK-WJ@ zE$EHu-JPY!SPG&6hGlp@IyV*HjJ1aI_mpll|jKl+~$H=l_7z*)yecFsa=0r7V@4L2^#1Qx{6FG1O-e!MHIRlMSv7 zPj&;>ss?s|_ivQGazw_ETI~6YQZqhp4}AT;^pYh?kMqjV(91n=fLYmP6dSOGRT=8S z?168s%TO0)4_s^(5EURi}LN^2X_?X6AALR`@Hi!gfLt_XTwR>v~b z_1Od4buK%F&aduOhNi&X15fv+KUelGJ86x!W1`D67AV~kU-pdUl?9SW3KXg`SAd2b znM2ekge+CxSC~jai40n3%M{2cs#r-;nFcF%b2znd{RnD;VidK|Yjl|{{=M}is^ros zRLRO2^!TWm^myKHWf!oLmljavmMkh;YJ;{1uBF@c*Oy(v%D&!CrP{xfo|nI?jE9da zJW@8o9HpO5Qrsh_>F*_HDUa~;WxX(d*|jpX`1l@p?oL?)y#4%fS)3DF$&!N1bEOXO z_UE!xW>pEo<1c015O)yZ?&JpY%*vfX*59QbFvGl@nDo-R91RNC1LruFli*8tE+@g) z(6yWd(M7lNFl>@j!}5tZSm%3}kH*2;vI#x@T~m7evgYOcu*n&Ibbl9ry8mea#rZv` z{7-ydMtHf5rO8EMLTYm#P}sM8A#WvE{{VW!h<@cJ4D!IV{^fp+!Tjw4C%7`L`~i<< z7iW|ov8LJKMdb%AXjWWNe$|p@`;95DH8WXh2438=aDjs-l*gDDwgB2{2k%TOZ};sk zFlTRh2RPxEa&r!D(aiE^W)yDWoN^~_@18~FvDOAG*nUmKY>t=f8u3=b;kD&aJlmE3ShoZyhR=0{ zuU?cdGef`6dQ-l|6s55r%F*D#m9YD#^5wQbHNvDX$hE2n23o6%JwG1QP;6ZhY7e@O zGjW0o8&ur0rP*JbRXi}G*8Lg5?PMX}kqS_Mpb~JN_!u}N- zP3hi-gDc)~*=A7{9XY7%*b4Lxgq+qwQgN9(z(rBE?!kLY-f8Aft=RqJG61KkbL)eOX%(Y*Z=uEX3U708M%&m6 zc=zU6!oI&%bYl6c%Yf-H^#pp(F+cbTA4E=_YdiYQq6+wC(eS4ZycM{-_(A7Q!<*FU z0>Gi;6KfE*W4k>#KVg(T+^~K4s!?E>*8(?ixJRWgXxp>02{`J#z#Ba7fpRN*R5kC2y{&sc!CiFD_u<6`nCYsy(;SipJoff9Vn@< zoN5MCHU|OdIB=rrf=+ctfinhH{uJgL9-$132n`5TC1@gol_6mf$^=z-LO^I>s5&&z zUmFG*>1T}j_oI}PD;vO1BP-`v`)b0~VIg5EjVer=5FDfq2v-I~get?e5dr?HfN*sv zMf|s;AVOSZ?W+#a1}lTY!&O15h~NOkjl87}4GIhm3JdlR3ZP*BdK95|XIABSYoCOW z@L;7TK^qYss0|K7$O!@J0Ik+PNEsL&qzM7O`Wa(=|K*?%Kmdm zj0pA*4hU6hL&Fl3!T#9fvEKjpK|nFN(j8{*s61}%qYesH`-fu(Cxirtgas-S!onf~ z0)jM}kl+A~1`PL`FxK~94pLHn-iIph3i<5{c>ja{z>}YL%!1dwMl|Aqr;SIr;pn!7 z51NixI)b+Z4E=3nKd&JFU~PaVK^YLL4hRm{sKT|OXuLtFR^=b2NdW%qeyazE3PwuI zydyM$TK}+!1a(MQa8PJyxJs!B3=H*Gs)Ll;2!D9eb>uvrkH02Jn-HWyLTEyRgF^z9 z{^81m0A-+mP>?z>Kn%`<%O+mn`Tn054pxT%$3-Itdk6fVmj&HIM+Jb@i$+@e zgoJC=p$P&00m#4TFG8h7@-MjiX5MPGHUY^T;GdvGQL71x2>18* z4-C}=1*-!5wcw`JH8)tXe&kA?4=NggnsAj?tqfNNYZ8J~{(HPP7H{SB>=X3DJgy2B3fs2}dCoqzMa; z2o4Di2oFpM4M(yD!C{ks%QW-R25GgbfIz%UjS69Cc!CBE6$wxU2Zja)goL3NKXV&E z|63!L@q7Xj(6P!ee}8SDGB`w~Rt2N7uL%oN2czqR20~uzSvz?Dc3H4MJ2K#3ud4iO zb{JSwHL{6caG+msYWMcJ(#EBwZG9W7wZRbqs0>D+fC<+4hlOkWaitcHJQSb_3W3?b zVx#`0zJo~lxxDg!@lRM|biIB<2Sdz}&7eGh^WQT-B zKnUcnvL|5?2ZU@LLK;YjfgH0+hS6yjG3^LfNW$iZf(qj@E=fa!0xBXnqcSrh&-dJ0 zU8yd^y{|ma=bh($rTgW0KB zvBre=94GV*%M6^*Fyff8H$7ho#ljocj!d5X@bcSA6=rPUnr<90?1mOt4u7TTif1W~ z%~mORG+o&2VrbD>{FIpCV^=M zh8D+Kvgy7Jj3F~uu~;TI}uo6W6Qdf+{!N(>XC)V8g%PabVRobtN)=KV~an zleIiER#nwD*m2o%R43_Oziuu=qI#}pdqLnB5ff7nEjQNnFt7th^>`@mezMf&#WdDVU0C z|EFCyx3glFR#kj+NXN)Z{!7K;DR0R{F?YuLfn`&VG$ja4T{8?_12Pv!?D{IQh#f?R zm^Xgg2ziEGAp1a94bRbIH;x%9-O+-;)=e!m86HcQeK4Z7!dxqMY{pm#1JCe0$B*b; zR;R78UR7Pr;J%a0&u>5^-g>R$^uoH;o=!#F@p{MLG6H}?i-OQbu5hSOb3Mg1vo#J{%QXUKFGqsP-xxOS^Uc~J_TsXx(pUwFgCXz(q%KCy zGZl_Ujyhcl9r3~$8xBl14_opDj3^&Ddb^`^(zZU5P!R^wRpREO$z5-tN0sy6N!;`5hJ(|itE|W)8@b7jSzc`4p2ZYm_YXA9RymZ0u0v!Rvi8CO zZCV&uOg~Mr6@y*eQ*2$Xl~~o)*h^LpTyjsT;#py+M6T|747NP{96gZYm@gHE*iYVm zVaFS#YJQzwC@vhlP}QT@;Q(d>Q4miMQaoGp5ha;mR*Z&|%)EQ~6Qy#fMo!FW?z9hE3KC^|YM=p<~AEa*-m%aH&6ekxJ_W z9{~v|CfRH)VSgyl^u+Xcn1R{KQu4>9X{{8@MXmqJ()0T)6$*dx{IXG%{Fl-Ng2-X0 zqzdzpJ;X$S3nD~8)T>BE!uLW%MNz7(8<9-gd&#T;V_n~jdBActL*qzdA97K#jDVp+ z4f$AiDihvbYKuaoKjeGPE7TrVmPUs*C5#bD^#B1iTWgh&Ekuu4hqh_>u8&;cMvlj+Z3LWPsbu&> zsm*j0&17fL_^ps8pen~YuM=66Q+4x^a4qXGzs}l9%db)jhmKfu%#sgHG1_&bVU_8I z87ipj2uBD=%rUkNL!K%&FRF{~b9eN~69qO9(ffzxeM_xifSU9#H0YekX*E6V=60KH z%R?+(YWZ*G$P=KZfO)#B`5H1`C}*A=kHC#0)s;iznu?hI?($Sf#L!`S1X!SbnMfgs zC4TInqB#LGf$s8?P1mo-(4l!Yh7vDgV?|0~Dsz5C7H1-pm5JLZ9u`y`h;zivKuSDfvBX!%r(=}eU=5Q!t-rY*Nq10u&h{ttsyDtw9ZgeEnRw^=jjU4 zqLLs-K3S@SKF7PqG)6ZyA}vBFM0kwQdF+s7mmoquUaIC-ie$KO>=Lz{Tc0L3zM2O1 z%6Ur;u7n(-K4C2g2UsK&1^vzU(K}*8V^oyP8c+^x6SdN3?XeMz`)s&LdASVe9$%h41iX6-^~_*1T)g8g zIpi?6K_62>H;9ASWal;54m3CPG+P=;UB&Ws@%GE;@w3OTnl+#;*N&KU@4gmGN5Kd+ z*)9quX44T^&}Xh(X`i3IVRR+;jWkcp{Mq`$%8{*v(u9F=6!F|}oCvL7H!X#wriC^0 z4u&aR9{8r~a9Ttd8ZE?0SC1pis5Vl{DV=>fn4>Fl(+xOZd?RF1>Yg27ma`O_fsJay zqMcu@E}omWMUinj1YCfR9$28M>Cc}Irb-3 zmtrB7n3)EdS`bmQF+yox%ps4VUk!0axQLLZW}0do2v6@Gl^H~fs!o?z729!M%?KEC zJ1lW|$C8OtG_zf4IL~+sHr^<}+h7`&!v^eX2$D*Kx-5L9?+7%z8XBMs@C#Uq zXV{_Y7=a7M*a7wr-Z1tF6G`y10O%r&!gawWr9M{$=$>gg5~u>A*9;;h1F~d@|NNSR zP@E8Uo>5S%z!Rb#rhyh}S5mD*b#cn$xH9ps0%<3Ph0qS$#tWzLI)GnOpuFzHwvL}4 z-#LCsVE=}%(F-y7eqE1ic;pNy4@|-Y#1Rt@fg23S2M8-oQA34*0MjyRaNdGyGoXA? ztvem!KfSVZTm>MO7XcR09nZ!!<^r2!kZ`Yo^3+^Vh8a8_thEQS#`i4^U~1@^8W_Y# zBC7#^)-a#ht1!5PXM`5MQ(*pJX-s}g1)Lm!7d4$ky>vZLwSsChZ=I80Yt38tt50?w zGTBucT;Wa_dKQj;Q=%^R+Vw%+2JJ~o#gUHe&VlfQjX4N?Wq_^(wtJeeZ%73c{;6Ez?XQ>WED%Qau0ogKv;VOWI zKrsLyCm;s6yymL5t%1wJ4QK!{mB>OH7zVihSO@Kt!ud1ge+cT4TZG>L;$hu-Dscif zepx)TxZX1$%Yxf?fc(#|+7pl8(s@>4)o;guC}%J298$4Bb^&WJnU~--Ow|WBV#Ovw zC3yFJGmEgneQt)10uosbL17S2qy?c59yip%+xwP8>y1h7tggT_4mQF8#iE67Y)FU= zKt(eI6y`)|2zIv6ss**0;;FNit6&84Dm61m@_Bc5POPXn;_ZMbDI;kBvARJ2V+o&D zBsfZ`#V^Pp1V3gAbHPjpq3aWo5P?t$EoLN7F(IEQRRFjFM_^FF{)2X4s{lypM!Frv zW*A!u?+SLNpvF*4KXaQ}$*(XFE6?0!i!0Z39z2C$ss?8`v22b4U`p3au&O``L*3+r zRE<~%?rSE%DP%kbD9sSGbf^*a1HQ?#e48jjaQ<;hoxzO6->vV{{k!M zFtg7cUMYAh2|la=yTULAJ1oP#Jk^l!Ps0bSLEHnlQeC&RrIVrmZJW>=%_Kxk14`!- z#-bY`$a)#8VLECSD8MSa9gHu_%FzkS<41{I0mUaHUWjI6KL+bSNJk&|zo33q9R25I zXO#1+7PG;lim{E?!SA1{IP_I(hDz*vZji!^=}&^7QGKXiC&F>VTw%M>(URQ0sk zE3`^Mr4oavis$#}oKz-k$M)j?2IhTErBUrP`}LO2N$sl9t~H!zUgWUn1_9vYlTKuSsR3I9XI8_yX48!= zlDQe%HiLqoB|&$D>Va4Bh$PUX#x<8eNN!U^0FyRvb~de0BAoL2O{=fDqE{n8WulmI z>5_qMY#^G(q;o(X0+ICS1HwWr+X4!2WRT>n3xM$v#id0=q<~cf_wU-A@45;;*iuY8 z0pJp5}CWNyu#EuMImBdwrT;cZ^8h*_1+ zApr0VkM(R4$pCmzu5->aaFWPZU=foUcdjJ_%x2=Uo$Dc;Zur2~0*lo{G#gP71P>2A zdDW=o$tM=yPmGs^07}FrXBcZu0S^rNkLW#BC+^6s0r1n9(Mo>JfVpI#Wq!@7+yzx} z{*OAV6&=Vir+)}O&LwWfbO4G=WWR!V>#0E&Usy2+B;>RvT87spx&|Z|dm#s!%Q%HB zHW`(diH?MM5Cvvf^1vs=!Qhfk&;$NYzE1{Qs}@wNrK_#5+Eff4di<*W#ic!*Z%mek z^Nm$w5EZA|0H_VZw19j?uEJSIq?`64Mfy4!6A$%4Rm5ekc48;j+F{1_J z(}Y6KpO!(>(N@r5N`09Xyimi@rT{38LHVj2L4*(ZG<--2qhC00;t78mgR z$(`dX0KPTa;t~H9N^RIfV@8TZq0)$@i?b+)blWSlXb6GALl_b(FM+TgvOh3jRWSnH z7pk-2fJ_7)YjDh|v4zy=q#`izW`b}4=WD)|D9#1|+C}xI;SKpU5(s`Haq=$>U$^Jo zuio~dDXP+LHY_of5JMoYrWc^2@G=C&(#fco1QhdPE5E;@FFpXhk=IsOROo4hOd@d- zOGu1~36>KSI6>qfn_rPJr1|3%^_L3^CT0_;lDYf-y%yLKv|JTmn7(0TCI8J-ksfIh zRypSGIRkeAt8Cd!S~ioG&7{9YuVpi7*-TnCla|e-Wi$Cgsbw?iGt{(fCc88TwQMFW zn@P)N(r3zR*-Ub+G%cG+%Vv^e+xoxEW^!z@V6WR24;0rdez~@m{GbSy zRh!9yIQ8T=1}2Y=x$W?AhuB2;!Xbq59QrlrgMg;M<_K;8SB6&&kM<}yNTCrjJVi#M6N=B8StcmwOd&fCfR${E-FtuuUCBIHZ+9(zA{JARzRa`d;nGc*HIxK}Itx_$B z1S}i>FnqpAx3vTkC>4JjqYND+&JZYX!P;n`MI_fI)U~jw)EV@BnGH zbka#~DFr$R>2d(~z%olpQ#-do{gGd5MhXWbZeFdbczY9$;WO@Bes%?VARpKT9#mD* zy}>;k`*2h;gK$jPeaxoV^`UlyZx2dFBlH!>s-T8~A~IG?T=5wx-184DhuJQI6PWpC z@H#N@fCg}&Hs%hSh8rdDuHiN)s5JEjl=JHpv;VN(6+J!64-s?EUcN7snK;s7n0j@1 zBEZnO@Z16z16-oO8KfrDhe#sKf=#9o*(6^eZ#?>&%yTCoyJ!EWjoePsRq37jsMay6 z=&dr=#gx(%HbR(XAfSQz49-jlXkwW8z`nSkdb}E%;;qwHz^H?7Nzy{&S}>*e!~xKT z55bqrS1hZVbBbL_x=%G~G_tHYK8vPJbWAV&sl%C9*RcN!~B1vr#jYZ}=& zRh<62<$G0N)WRJV+X`fY_^537(jbtOP&~E@mmNZ~sn#$gz$@TlG(iQzYY1SEvnYhb z&QSvo_PdOiYR2dl;1wbZ^d8iCau30X3}+jBLwJr|c(MI{&fvoOA*X_nIKSr98GOt; z%g-r;93+RdYQw3*5CQdo9}_GE;5vhSUa0>G(Pv66*5HqNlT3guR3i`gfv zFse9|^cavJ_zn$fW{5grJ!f_RBfwwJ-qgK?)m6?vZ<9@DcEFzlTVvipGY# z3_I`%S`b!+EEY*;m7Y{pTgPJ$j2F5U@J|4PAPdEIr^!tcR!b)t=63uB?$7*sz4Wkx zggm$2Kx{g9g;Rl0200eIEI1Bc0j3xu)WE4aK&fzTW-?H+(R*Bv+LmAO z!b9L%8G7`JgGKq2uauh~U3`1)G4Tu>=2 zrj9(d4n5qx^x8TTw;ct#Y3lGQ0m=d(#vTjp7mUS`?)aLUp|)!8fd01QYCcSK{J5T z9;m3xG=}e50j_H~;+Rucfc{B2xk*wWY2^S0rD)O^sS_E5V*(F8D1nR;E<3>TE7sBj z3}k&y#jz_=WNvzXp&~$h4~MR#b%zxRBru=^;DE?}IP)dI0vr?UiGXpDF+c)Z@NP*u zdqgV~3dBUnc;#+ihIW&^f@2Vf8MJ}G{Sl{-Fm>?nJ`(GBoqZ%v1(jwyKAezwmC7Ao z74p!kfDA`YHKCy*!iB>Hw53#RAXJ1I*fVPAVkRiL8$cE+AXs<{2&e$Fu(yD4=X4Y7 z_^iehE(muzQ=0ap-El~Ju!sT7g6tk@VaH0KG6Wr&U#svw*{M~E>V)MTYQDK0d&;Bh z5HWk}@_j1EfFOh6GNpM2#CibQf#=I~1i;!YFN5x+l$hmwjjVQts8^GI%*8SAc-7auG$z;c#04=70!h(WAKmy=7W}K!1E#Ao)>4G*6ZLlyh9f%zw z4~8)l7ih7nD5ex3Q5>IGESWxGF0;wa0JaY{N;z|5IQ~)9LI~07Wbp+x_x@&?S|J1_ zx6*~rtT-h-!Ya@|a&p=_m|_boF5Js-3erS$mY5?dlPTJOWD;)(JGcsdnk~cu-($rd zY9j$8$$}f#K3yv7@~4PC0LO(@19Y$IV(Z{B-paLWWOfDB3H3Ozjk&eCDM^tnW_)Rd zRq-&;NR1S{n9Rfh1lfsoTPAd26Eo@D+Av6d_k3%FJc0XQ?os|gG=XRfCZON{tRjLZ zubb*vz-qy(VS>7O`JrV}{a_9;1EAq(^oYW2$G|aB)FFU|x>WMP&tBe*qD3^2%`+xg zTCkE(RtE~&hC>{e12blJ0%i6KNdpRG+>QATR6d~qs5O{9;FC8zvFXoj^EJqAZslOU zq_PDaYJSZr#ItIy*uRp-5m^wx%iKc>LM{?wYCWVKR3;xI#&P!u;f2^ct0QL9J8bj6S(NbQu$9} z{>1P>D`vN>gDvY|%R1Py4mQ~&Th>9ysdJ5WE$iSejMOdbV4hX7WgTo;2jAa{+p-Rh zNLtpxMw4XAI*3M}i`Qsb2W2wM0^>}}I=Cy7WXn3(j8$q`2gzvJvJU>WO|oSj{GVkV zOt232>{)tRbibaoCl~atnDRkktzzykR*YKu=C4=qxifk5*DIHn%K?erC3XP%3=ka> zf=SjbOX3PV+)ctee|2Xy{~6cLAf4w7{>+7c#!Cfr6#gjkCy`HyoVJ*;Nnr#51mKxa zmyXkUXrvnGdtuUkD__MZZa0L<@i3D^cbpc%x;O_+m0&@>e0o+>| zsIdwgN9fo(lmOs@ar(NL*1(wt^EI%H~2sLX79)RK;lTxMjzgndeKZGlSzHVJoK z(7+B*EvUDa(Ja5(jPB-lN3J@qqLR*u+|Oh&1D=R~9oq@+2T7kHQy7wqROUd;02NW- zk&%&<*FNYNE&w>E3`6kpNa`qQSa}jhyhLJ<%v}d{0Fi@Frgj&aBYZZBX;~RUq_EbM z8=#;*DP=q2jd80c>?!%}+I3T$cKoW*P%uG}1n&pHHoT>#32Z9@(;ljSC77fu=Up=uUMwIRd~m0;({jj>iPDDQ zguHSlcv#TQ0Vpa>3|qCalKsL-f4Y11$yJUYBf!$>Nylys5D}j*@I{wx8U%>v)`A|2 zo=Srrp7_Y>Uk|R@CSVRA`qC4QP{2tN5%oc?Y+UmY+th*{3ZBY>9+sWH`mw>dv;eZ{ zq_|e$pTVu|>LgzeL(=4tHyB#hh3$7Ns}?*2Evk$hneg$|Um08lh>gP-N>@;2hNg$U zL}vr%mY6vpH&*t}g-@lwm_(}|9$b;xfmN^#P=3KNYfEY)9dszk{ep<()RK}-hCSN6_@Po+)#lFAGnDLKz#|kbP5MpLOD%}0@Ts(kJCfC(yJR<@ zx9W*vf6+5Rj1gCj6N7hW_K0yG6*I(!iQ>rj|Nc-hRwonOfkVgN5fqj0o(ob>RXGSO1tGdhl!JhR&)emNiZhmF$eS^uw_LH3|r9y5QepZ zGxMLy2JZJqia!k64OAH2e7KlyJBw+*a8v-@5N%{%g(v@s+2E>NQugHRgd9-cs zEEhbJcB45%95b{EL!Ai%%`hEU|G@|nAwgW5!~hXULf-dm0Teuyto{E2$y zwa$IN7L0pjo=A4D!dVT@U78wTUPH-pEs%EbBocihQA9>IKMS8qJ62pLJJ$0e_`Koy z1lBFdya9Ci5(UQg1=ioJ&G^En(qDY!7V(L5*m{ZYAq_jI9^mXc)Rh3%UC3~e&VAsT zSsM$VN`LX)?Xrviv}w(xGwT1nPI>XO9CqJa1MBSnJ&k($-df^XwhD}5EG~F~Nm8z}$`Ff*rX>(78TQE)5N~2?gUr%K z;KR@-saA9x23K>E-ng3(5#Zk(D4bKo zZK1EooZ=vn0S`x{OizO)M`n4zs|D58Y;5_pW;V9R=dT?mw*FzwhbkKK0+ISrNMInA zHj;mD#IuvM!E`;6QFyio9WF8;5yg^80Lpa<$e%V}hH1KR#Daa6 z1h<4oavp1ujg}+Bwk*@DLD~yy%{&A}m8x$nv&HxSvS!j0;@cWHrQvq9Nz{OS3O;2R zO-XqVj5i|E1@cz|%KQd^d%jND$SIB0F>jojph^WZ)a(z&CCoXm({=*f3tp`Ta7Q5` zxD~!{!j1?K_E~4xaDlrMaz~uSOq-ydG+3rWV2CcwsvflGMBxIKM${p)Mn+)EbUo}B{Z=ARO49wZN^~yP_h|crZ z?_H4`s*)N24W8-AEF=IZCJc;-6_w!bYa-nC^W@ zAz;OTNt(Tn-7+M~n!v-rQERI)<;AWR)E{O1?FCh{{mt#L#A)N!9y;038klaOsdb4D zq*lp>4;3-g_%h~CC3sACc1H9NN>X5JsUa_jXwMy_{>!FdUN)P-^Ls6g**CB67*#EJ zt89^BZjr>`Ce+KsM#!WBzJtMv?ayDH}OSl2Q0 zz`QMt1Gml!;N8Daexg{>Yas62p+&MWl z$C5-s5&M36{g5iVkAtej?tm_-6A&XK!HCBvzK(GvugVKw-$2MC>4?x(Fz69d$mAp& z32fMSz}RmI0?eF7Wz$tO>|z9;K(lR-Mu$1g6!~>#c^$Ec z<<(g~%?_>*h{ej`e6nEOfIgptRC3_^rUG4-Wn`OF<}o7l(jn`IVaK!(f@4Uc5lTqO z!(km_pWGQpQf8S#hYj~UE*G3j5J5Lamm>=LzH zP%**9wm5M4`cdM+BQ^|c*W1m0t1V)OGl){vpn%zq(C7CuqTow0skSyv!cAt?tjTVxnuhbOF& z;lp-Xq>(FkhZ}iXsD;B4|vaG-wc^aLbC@OKoa^{0XlH5$_lv ziR)6KwTBUbAYI!|7GB)_+fo&`Z(g0I_}zx}Gb#|L=T@2q6))eoexC}=OQdy>5obhZ zLaRa~BVJ%gB`l(zkbhIQnM!D39D=qbhLGMMnE-3w#vn{6p~1P_FQtIAmq)~bn$pu7 z;K{Wtq*7RHBnea4?-VGgyB7IgQ1#C2T1bxv!*+ww3g@sBVjYfHQsm^&bWUBF;72iQ zd@V4y1ObOPyCV6jV&0$7G0B;L;SbgevGC^`cE)Vsj#Y7$6Ve5d4Lnce0+NY<6!;q~ zt-;w`&aYc|Cvi*CH8h{PiEM9bL|UshvbLa4E2}OK(5oGA#5Y zg3?n?dYG6j$Xg%)f=6P=TEZh?dtgp>jy1*}P~${?c?pqNG2+|sN*S->$Q2;@n^ zu1=IN|4KJF$0eK&q_l&JqcH(ce)YO4u6lC)Sw&T|b0}iSQ|tGu;O-&K6bWKbLL@T- zj)4fiiU4b#tp-*yZ144R2egHOVxyjr%*aEeMTkYEiyiiTf^{wN!gXW`%BV9K8(vqw zC5jLW(nm^;6?#d7x`(Ver2GIkQBY|bT3FF?E7dZJr*x^sG*~7yfDcKBkb}5x&H$1w zK}i#`-DL_*7O~19L}orXxyTkq&H-MMf6PeX2AgGq>hnYiDj!>ccLY!h;xef~JSkrj zPAS(K%5*p^qxqFWZMtcPn=@48*YQ}hzxAQ4TcYa{AV$2PuNu< zH^9MWL(Y;sWpA51pwOvBqe6Qrk-630zhW{vz5Ox<5f*e_wS+XE%L=>m zmGy(mHa<&aRvcyc9Z7_S16Xn4Hh^1?sM}25lbNZ?hJ)=KPB(J*5tD2CPzx{x0Kc%* zJUvTDQr1aT$B7ED1V^R98BTsbM76=nWjdEq3lIc8b--4KpW3mP|%C9iYHi?1?<+e>&{{w3enQS(iKu9YD z^9PT$F(}`4E4tr;G3c$s*56i|pF1diQ$8*9o4m=`L=aWb zSrQjf73tb4c&Ua=Ke*;)BtDzHOoE1SkIf(Z4GtZq7K52(iDZ~1bt9~b%r3le9vV3( zS4fBeqM=f=HIm&;=6^!?C*B;r%L$OT9o$ROX%i_~k{_ADGOtE)#U2|@s}@vfij`Z| z+7)nyIKvSTV~Fr%V>ow-q}L^c0X~;nKA%=^>j*t(sQ>ucc6y7-UFKVcwbUiD_ zM$E;8#dZjDSDK)%sK%5wr&>^9AnhBr_|A9N@^h}zuIdfcP9gSAC59|T@nV!wG)LMR zK~#zS?u2%h;1WD&fZ+xa9TG`&W3u&Np0#mC1*s#q>QwcbanVK+W=X?21}T;@Y7}S#6n~kf&UO{t5uwcHh71T79?~iL z3ly=cTqLN4l3hq5i7l~k9}+u~%dHFV15FNX>^A}IX$UYO0Na3-MfNQWk2UE@W=_nj z6bJIM4z-+Hsg*@+4LN(mFmcRlYpdk|lrf5)iMs*1CNeg1RHB1H7K0cTB~ZL^Mn&W$ zg-b&=3N#gDipJe7wdR2JD? zjR7Z+pX3fwe~U%_)U=xxTS2cGQsqjiGm2h~8JaOXL5in>*8ms9a)0% zr1aOQZmIcIE8@nJH_Si`&#yaOYX_dPVV^3;6nZ^IJDCp{PDGS1XbOSOgSsQNFG;e` zW7}wpILR!q5YWmnm(xj#s|?e=k8NG_I-U5u4&U}5AbP0P$ZMw|IvFfnW-tkp*?-W; zy}-=)L2D@>^J`A+iB(RNoQlI*W@A>IQe_v5@f)$t1Ml}E5&)7#lkFkEj0?U5=g4s# zSFr(F4(|)`D#&w#a~3E)#D5S3!%7n>f~@Ym%7|6G3JZ<2l^o9qB|dHq6*6YhCd0K0 zo2%Vm-+)Xex9ap&iYk_g-NlnNKUYq2KsDiV8$$_q%7 zvBD=3xhYpomP|GmIG0gM&iKt@1jPJdY7+Shre~A#1wm?Fzex*6RYXqbsB*z;)tL&* z@SSS`@Iaif=v@pj04kh7sKp#_Zi2qgJ__HMhODQ^wBKkEFoWWIvayDs6oiV`N3%=V z8{H;Rjj*1RQqqHU592VzM9AQzw|`*=Q6BjfYFc`tRSRl_MB}23M^q1`4=UK|aE4-AL>xj|1ssM5MRv!3>%6bjhGD_R zs*143k>Ky7YsNN#>rg4Mx!X+M&ahB$@^FrtH-hPhN-B9-4GAY%3sC zv8Rx>(P9B990B-KOr?*5+r&o7D1-oPA+I8=2mc?-jWm&JtiaecV+UvRyd8MPY;wY5 zB0;4@-bI)rV=}fJPHMJO*Agk8;m{v+qCVzVoYHWs<=lET8RAf*D&$xjDVCY*hVO}f z?jk{^E3GWa))ff%@tdOM+ZO(3SmH>y3<-D~B{L`Y%o{K^4{|Dwd3X8fJ2h5XszYyp3YGKeGr^&if?=awVM zlLG-ZI982x-WsSbDjf_w5vvl&nnp`K!%EKPKqhr&=wuFL)*S9o1S7^MtZ8Ni)n@0h zpI>WgrMJbe9$zaGZcDQ2h_-!?(a|QdOg;0q_Tx-hAPZ#b3a?|yTnLh27y|Zp7h|2vuQf~& z5oCSHt5tNLw?s=9S2?ob6y%7te4Md5W>+j7Pz{m=1xvbJOSay&ge^jo{z#mPm@nX3 zMMeOiq+@}?@&xj$aebM9Y6!?g&L{qW93_}~(dF=0Kst)#mc4Q&^yXKO^t=Qyuca&gl#?2d=Z$RnAznUO7jbb zr^!NJFfW_dSV5Q7!5y%?=Dv{x6x4Jw9I+Cy$9zLFF@cW3myT`?Jte~ff$|S`@a8NT z0#ymPHka89g}&z{N2l0;T%uzyq{7L^ndnU}0tEG2ODTFA{rJi#5slJ4f$ zjkqWmT2b9kok5c7(=S=KSH+5ekPyhj@Z#N#^$XoUw!L#x6!iUB>76qT>;KvK-F6cF$B z#Y$17(!iY^W7yu2DuAo`8Uh1a9NA{1f{8|p`^|DQlF%{+DAoiH-!V* z1g44UKk8$_ZzE3wLc7d~;iFEXN3+QgF^x|WX58e(KVUyCsx!0E=T{lZ4exxg9IDf> zu)re4h%n3^P6w1hk_TW00fRy>f(U4gZ!QQKNieYi=uq;Y0_O_v4|YfBxgyu9xfjz)J5s4C5S@jbO0QKpBC=}^t=QGB9D<4 z1%U&gl(Zy54qsEl7+c8qU5Ob+(_xFk(cxfMj3pFR^E3L@%(|Fgwak>TVgo{AZmn#Y z7j-Dv;$nJn5+UfKli?*m_Xo^L?gD9=XPIR-?=s>Z*e+@IBvK8G7e^lGL)_nN2qY0n zEgs74oum;Wet`T|fH4TIf>0J9AgD!$a|IhK+Fq7Ms8UdCX7|pow9nchg+w^5=~C1y z0vct4AnZ#fyFLdMb|#RsH40viR2oC-6BI9Gc?}Veo`y?VmuikzlXHpkv+zg|NryHm z{T6sfBAE<@MT>bMMZ9G`ynBgdqyN+S{T1&N5c6Lu&ICkGd&R+HfzMxh zacy`fu&T0mnjB9$57pt%WpF__wltJ|oHlIcGGk3(0-0rq9TJ_r0E8t2aNx@fFbU(_ z0i5Fy{EB}HOgBadLlSN@BJK<7hqaLPRnD#1mWFRdNFA&KJ|JyojB}Z#f`1wR3u+%s z9~O8^iN?V;ipI&2N?Y*Y$pi*i8Ua3e3!6^I4JPe>BQjWa z8D$0*cx;L|`S4S)ZjdNxt&|;XAe7RApP6ki(ZJRa18@W~%-cv8Atsl2|c$KzKE-mC@(#zqLAhl-z-9UYa_A@v;=4b&~* zEWqJ1c%LbQp0QxboPjdEA1H1cJD$gcg&suj3vcnDf4AsDJg9ic2ouM~Pr@PgQCCC$ zXGiKoa}-poq>^H_pxQLNMG;5exnXb{gfKE)piF!MSb%Bg%KS#a9EeXzJ!J^JB$HyF zU?Gy40nu1xqXCr3JVkf`mnz!_Uh3)%V0;lLNvdZ_ihb6loV|b`0nq|dAv;3mV8Sn+ zTdO7|MO7WgqR)7A>1*Tw_)U!BZlnZ z0b7H3#g$P&08WUX$A6~P+|X$v7&b&)Wx%iCFNna2(t4n45)zQ8m#)W$UR0-KxFADj zZiO{BwA906I-grH8Arc9>m zJHx^01QF8_zbNtgIEpZKA^qbmWhNvqjOZY2j5Ud#LJ+QxF#)~7!$u-gprJ-!g!HpL zDiab5>NYYLbm-+)E4}H8NL|n%SqZS>M51+uD$`s7mn10&`5IVaK}`e0jZ5GTPCA+J zltc%z6#-@)WGM20av;}Tw`EL+A;AG4q{!2d2Ki9*VpJE-jVQsJ4$!ZlRtz?C@Ie<; z+PCrVlNvlwiCDnc`LMnbcE>J7!aIneuy{zEH5+{`xgQn}Rv@A=el8NANJJHCvSpDI z7C1JpFKK=olPp-?f!W@ZR10KJBS{fkCq{b`l+d{trZD!Vu1z+SKd-r;Cktwqsr}S~ zig7>K;^?^>M}5RP_=;#)FMyv1A9qdQT*xVZt+kHI>LW zfI=jSBWx(kOUcU23+`?VB+DPUW@mH3oDKR*k|@4;9hsUz{&>lfQI&$Xl4|!v0eO=p zmQ7hdx)sCOis5X-M&Q=WP z`>@TmVmMndoXzp0tr*UJvC^#=&Q=U(D~7XFX~l4!fAMK&9C!Sw7q?ND~1#IKr4o`6~ozz;cUfl0@^A~?c7#s#c(#pjrREgTQQuC;i;_{&Q=U(D~9v0 zLX4Xb#H|?4TGVJOhO-sJ*^1$8#c+yN4CnZQaL0_AuNA}Dis5Xa2u4CnjCkhWqtTQQt@2^U*2 zoE5@gTQQtFBS%{?oa6I@9$PV-1;Lc97|vZrj<#YrTQQuwj!fMd!R$;L=#}%XnX16$rOK2IurNz{U?{wy^OGsQNPJ9iyiO82V%{P6ShcYt z=3f5B-eSQOV+M(B9S{4Z`;(qU8^1cR^rGl~J!wzAv25c(gZ}oPUdm7N`CKw=)jh9{ zDSa>du?zm;iG6n$#|*!1FY(^IHwGsg{`sECC9!$qf_;;lH{Y{uz~5eve1+=jtKS$T z?8mq5m)!gCJ>x$iZYyu9h{?w-a>Z}To66!h$1a*6o;`L^ReV=oUQyXJLcDi8DSsc3 z_qMienozn)cxT)(QVcC`I`VJ->tsP?)1D>Kb>gA}#DsC1+Qq{sEE*$zT;0?rN+&Hk zNc>xM)0m-wcU2HwapA?+UhQ3VO&nbz#YQoc-W4ONadDy~&XO z{KtQtBEH)F`ANyXhkX8lW#aq4`og58FLr-Ed9nKoZ`tCKr@JOC{o}8`ko@si|8&HZ z`EYd`>cv;jxn8+Am~(|PxjNzOi~HYGcX3bK#XWr&_l#ZKGaK*CpL4ysi;B~G{T`fi zy|#AQF?z1Q@dA)nj3;f;kmrmKCA^yS4BW4caj>KmuA-L+=hySUf%T-wB@ z=hAyk&!tW5_Z)qb-fVg>ZFj#1=UkuOYkJO<@7MHPdavm@YZuR@_vSY}Xz${|^j_0* z&Muxy?=?N=?&7)hUhTR0eN$6S=VsHZWH+0BQcWjL^ONb#<|lVGE^5DlxuUi*)W04Y zhJRN>qwZ>KvYXA-H;;}OcTm^ywaKRrT{J?>Kd9^I+Vw>H2W(?!2AF zGtQ~sT}g59&OHKR@UBr}Xtiq(ac;G%ZBYFi;a%M|S|}gu8sGTzJfrXFpI5sMZ2V?( z{hI^Fb(L#P`0%){b81B~uHMF*&#kxS$#c7=)gHKXeAh9x;uptv9l!Ip)vS%x^JwGf z30>oB4;?+B{woV6bRAK<`^1F$uYB(OdgZe|)b-JwKS(CJsl3L;A8&j&ZkqDu!PGK% zV*L%KOsxOjyorsiA`6G?x%By;Ppr3U;|29ry>vmnRh0|7j%n!Hg~!sh>0iEfaFtT(*5BH61bNbCehu7QOJG<*6eN`P^Ulu)w*SoK6a(xiI$@R8uncQ{4&RWfM zP*(?3I%!JdoALz%%NHN2)p5s^`men(rEy3h4`N8upE$C;KB9jK>P?yv)|<2#m*-BckLb#&^(nu7YS*!~>Yt1n|I*4js}k3n_n^|)CM%m}$0)qlD7D_G53BV? ztx)TY`kq>Uvxh!W@24xY#>sDIlYiQ!a&)w=3AI+er`6|K&n1mh2rW^L8P6Y9dvwmF z{l8DASo(WM7+q6p4_#r@TlIiZZ`JRNdaF({>z$)qUhkakW_>>xXVw3#bVYr4{gTyK zxg*lb7g(})?5-(0r-LKX`JH}qiQTwWIU=3p={NsmH%?D}jZqZoH@~s#!}!#d^_I?c zx{lphhnsB~Z@JX|6Q`?Md-Zpn`gDHjs(QnhyY;*C=5(Fb_$z5k(_cB^h{l$>SxeJz zZaJc{rEb>J^qcP-QE%xzbL&UV%p)6Tkt&9rBX{!;cMTNVj;y!z=6PMm)f#>HQC%nO zUElmkq>}D#=^v~)sy^+WJgV!A+8=Dby6dP~@$IX-rtf?oc$~)7>-uoLZGZZ3y=^aD zv$I!@-q|bH_Wzac@m*s?^*Z|Y!^d<@Y-n5UJeYknFSG2JdfPT1Q*YZn*VWtBdtKM` zS~G8(RzFc+n^tek^Pj9Y=H}`3$#?Pf^`6=1BmH`&w(k%9RM#Q3-`(_)dc`Y0)pb-u zOEoe3e7fSL>Ab{w$JY1LPaj)v$WM;#I;pYi=1t=HIXCcTCmvT{n{$ur`bfjC>T=5% zE#}@(-!k4ku5l++MfIY-U%CAFdjGWF*mXv~Ul}Lc#;@!l_WEeof&IS9ntfxvf-65- zZ}GQ3+I3RHv!qavXX)&lXtH}ky~*AQ^>OVwp*{j{p3tu=jck&oe|zDH^@dh%?$=PB zk`2A{=EeoU9GJ|_=WnhbA{U)hZ{lMo^=o2wGKeSVcO66A+l~edFz8@$a zJ-I$gJ5KJ`*z9n~o;u}}`il-(*srlXB^$e7VOOQ0lgw-$+<6Lpeb}k>8csj8>*gjk zr9q*ot930EE>mxth45V{AiL5PcBLxx(-dlo!e8qNEfua$hia*CEfr1`EfuaVAc>X= zw})t{aH;LJrNXJArNSWuw^X>63a5&e3a5(yNh;i#$x(~CuH1dkm~;hNsEW-?u8^)Hmfp;~-BwpjF_&i9wckOS73-|GD`-r74ckQ?I-QF%f_wl)( z&jWlOOy2GN;+RRLo~*Lt20gU<2dr##vSRo{tF~4kN_s^-N{wsge1v@fLtZj z5_x>Z+_vqV<$`Bs-?`|3WVh!Zx^eGH2%WtubLM)aMIfiP=SL*S&=sE~+lCSg^+>U- zTJVrBygL_-SvqU`L&>b|Un>2!(v-y%Ai}aMC=gPc$l60LyU^nEmsF=DRhM@%`I2lM{ z(mIk)+ww^j8EF;?KC;9fSsE3R>X9~pY|8ur1nN2&vw&SF7Aa6kH5N5yb};iB5QwL4 zS$M?0EV2=7K!InP1DR;j>r5(m~7sCE%_e2{BdeZ16wdZoANyr^jke?Y^C6RMCpcg zwWNExOgv@M^CT7`g^V9NWXw@W0d9n09M-a^7#aygVp2PVs$uxhnn5q%li^OcN&aAw zVD|d;WP7m5Evu8?j-(_uxwd?=Ed(SiAh%^qG6r9)9KZ}cWWDAa@yky{MHyhLOd5%v8Sdy4I>}J5=95Ouyq?vamHqME%Ej-;K z%lXGpmc%#9UKHdHTi6tCl0RL&{!eq*=Ja43%2>%i9I$RwrRdE_o|Yzhu*H+-b)VNd z^;)N1>(pzK%37yh&SBd+^$Jd(RAg?QdVRvm|6QlvvB{Q=-8T#>{W#N%!>;bO52_i9 zbq~HV3V?6-0i$>O@c{Ams{{8>_WgGEp+|~;8UD|cmd+aRA{hY#utm{hHRO%)V=P}#J%pZ>HCS{*F8EZ*|hkv4dcX+JGM+pqR&4zcz^Mq z$534T)yI_m#pgdo@wd-D_A^!7u=ue_$(!#!)-z00Ebji>kS#OEilaZz-ODF$`N|;i z&1Wfo)RM(-y-RW2v@IQu_}LXb&bkHg1`9*#2?3^y;@Cko<7a z)*g7eBX6n}G z28&HoDQ-Dp>sw>X8X8PQe&-Pf5^WJM>zG(_p4N?v2~w%fH(Gaa*lqFXTr8xk#IoANBwtteDgv>rvtl!8ow zET}dX!`il;T~uwBE^ynlZ9^+@NXk!*e21tihKb!GG{|77Xn}^oP4yG?K&e66cH~An zxuj7G6`9P?)jeCcNs}D~kxu66yO)!iQYX8nXZj@S!$jqHrsrbdu{Clbb4xQ4(qW=K z7Su>0QJE?*zebt!Nflo_c-#1jqw5;OpnH)@YFY)W45<$t%eF}g$ba=Lffo$GI%Sg9 zQAbr&OhYygosn#hvawk#5#9$U~~|>%JIv z@~XZxfkoAmCa|dDdEthG#n9td?Ju5~x^3cQ$2jdHQ?HqoS)j;3saoXtRYb{O5*;;F9f{B9N>2F(WN%`a3o*Pl>m4Z)M+;so2q2ho!+cthc zu_t+N&bG1brQT%h#%*7#e83+OKToy|%_OtqAK#W7|M=sty;AyPCYcefIr0O@D@!*$ z@C2VH`8>tvX+B@$^L0Mo;PXvB-{SKOpKtT|4xeZFJjds|e7?u$`+T0~^8%lL;qwDN zKjiZxK0oI3uY7*O=cjyrmTY?9=jTLK+e1iT`<6ZntdN%LhLWj(T)e(UcGpOZ`}FEt zi=UGIrsT)Nw%@pS)ge+gupRt50bU{tBdhN?v96E@JqmQ+&VI4*sq`1s^7gf5@n&hq zq~!NUZU6M{VzNu|?rGbHf8Z6f8p*~t}MQ)a`%r%?fCre72DTH$r~Wl*(ABf z4Hw$Deq5RL8<$tum@ZneJnCjHk2_AQ6jhzFtlzVsV{b9%sGdRP$i_iv zE2JdXY+PNDYioAk7)lsvp|{=kaE1hm6l*c9n^xkzunb|=G@Y3KHJCiSS!f{0lkMC@1|&5%PQ5g#d}c>6 z5qjegH3GMg?<1!3v>V_t^Hi6?)4N9{cV6CkpA>!bDz=5p%3jW|Sj>E5y(V7TuX9iF z(yKehP1UV-&A#;7x+F-LJl^M@D7@53uV`pb+ ze*OqGn@{p*XOrbp&+WL#LmI4#Up~KVWToJ(1he$8GFqG^rQjIPHJP!=+KmvdDM-Mf z7h1_vcP?jG*@DbSj<{`;`&`vYxQ?d|^nzhvH;wNjK1P$XUQoQL?};6rdDJ5X(1v(RqH)h}L{(e%tQUR0}C`MnOcuu^aH`qVF;`syZDG@Nc>tSRt>;Lo;A2bER} z$vIDE^1yQvZ_I|d1ID@`Z({1MVn&8xStw}aGY5ZQD|R4eKE3w9M0t7fKb0zBjJk`r zQukPtn(jH$6=%6N`QP~)HQ|j>E(_`uy*oP9vX@tYPxqjl_2@q$Q2sv#Y_W&Bz8LqB4Wnv) z@Pe96@u}rI&Md5%H&Mg^D|YNxk*FY_J;HH4%`j|y!Dfi>6?B7VVuYx@iDN3BY2bKO zO%MMMke3XP{Qd3dIc`&>oSwj5g#Z&$m=B%6mV`9i5$ zP`4>w*uGdnc*(CjU1CE&yJK)g8nDe+4+3Vh5d`#H>=~RXQ>2^ah(J;0+%urjc0=+Z5P!%s{tw&M+f3 zY+nUdC?!pU^G&>c7Yi;E8S|^e=q5!*Ex*ppY?w-mItOrs$fJVG;|yRBZIZGh)yj8? zMCqy}ptsKH!05(T2FDU|B9AaHS#CxoUnSDbz!2(-jN+XmRz1jZ=BO4(JPD!#krTKc zC^s#%O>C#k?PTH4H%J>}ZpCVL3>4Hk?A7H5iv??z?;}3>*p8zs%tOUP+|?9meYI6L z^n8i110dvZs3pL6<_xGBwy8;U6iN6&p|Q8Q!k6n@YnPV-v8D zlRRJ1!Tji&6ZxhEC_`O8#pF;%#f&CE}=OcbweP(pp+tOH1o-LuhGfyVea`T3Sm>tLx1zEv==c zy|0GY($ZR5T1!i7X=&(%EiLV@wA;T$OS>RB@MAr&VXLiq+4~n=; zj{Zc??#B<-tEzK^t{-7)V#?Qgg3%@%IiRZ)ZbZrvDltAs9N`$I81m(w5AS9w;`A@~ ze6!tZS4;`Isq){YS5=jE?V7=ZH8lJwiZw;u`IFT{BxoILOTeZ_U%JtKEE=>PX`p77=el$u`n9Pz89XaBx}FV;TRq|QALvi_yw%hP|Bse@A~t@# zXP^HAqyK+k-ER}`Jx5#q_Qh|DBcJJM`=9&zOXq&KhtG@2-0!}0!Tiz#;<;0MA1!@N zEIg}syy!Zu_v7M`OM54*`ot?^#D`Ds{ix8d?VTVtuIn8uo<6;InwU9{%PY6^?k}7( zxcu`~Twe6!eMgD;KkOYS5_xaV4DQYN;`}{CWk&A|@#DF@9}+iytar4ye+J)C_x!wfFEMS<%Ok|}GkNZ#*KqIgH{13S&wqM2AkQ;t%S#^j zZunU57%}ZE9{KjwT=rEoRD4z5JLzWbE#Ed~A2IaGmj{X|XLIkzG578~yZ3xComUh4 zoYQ-bX#0CgFO^;$CDxw9Bi>vt-#v%7pCuorj`PH2pQg0)-G-gZb8pV)-nHlUo-4le zNlI_Z(i`%*`A5HUkXU>kkNo3xeV3*4x%}frT;BQaEBlM<<>hW?a=HAmiNnS6Prouy z{9fLhH>dBBOFk|yFXr;J4X=z4FUreb$;&IYzA{{#eSy3@yZ1w@f6AB7$*U{R?wzoD z@oQtm2^VrzxuEZdw#mzX`52egS-pW+C>!zOX}>r~JTKbtDM>(J9q zJxG*)%ftWR^YF*yBeN#IHbNW_aCxR2=X9(-BQKvlm&<+kTfC?EbHIQFv$;I&LuZT< zD?)y6uzc138vW|{(j{V(*L#duaV0lyih3^=&n}_#UetS$Sb8C)1#$1k#3(rlPk&|f zFj2nr)q!H@C#Ybd9HTRCcy)wWDlb1Cars0Cmw%C$Gd{uPdp~()r1<0|T>eD%!cQ;h zy+jB(v!B@T>TvPNOZj4~oFH%XygEj_Eibpo`8@x(Ot{M~8QI<<%XUCs@1>f#=2KUnL`G&l_aVD2N^Dh~f_23y- za_{`C)lFxnjTBgy`Pxbvp zcpYCPvRSjwd~KxIE-$ysF+1jyy>rFl(ina3cczOBm z^}U_qPqK0Q?D4uTc6^G)t;!lV?eBZ%i+^0eSI>@l{WLN42L9$-asq64V}&K&+y2@> z@jZEO@ht9r@#0l8#g}$tecXB@_jZ#t^8;hVUru~|k~r+s+*9SUdhrvlSHy$zvWL05 z`tsL5E-t-^s|)1z_S{XqH;EhMHuK``uWMrC&3tjDT(5V$(xnSyK9j|hYiYy$-kD+_ zIgj^!`}MO#xPa$oo=dkqvw&&+vK-+%5C7Fg;&Ti6Vu2ip_J2>NiK(}+O`o`kd+*45 z7ma?@&F=kL-aB8;lhYRW-X`{=-;@7Z+)EhJujPJz^B12uGJEj0B|JFi2JXGNr1!J) zzc%3S{_e7OmJH&5WND9ED7_#{!)57tS*pm=tFkm%mL8NPSC)PuOCOb`=Va+DS^BIj z&6cIl$Jt?^IchbNS1yrOIu_qk)>y3>8rBz zBU$>AEWIpCYh>wnvh)wK^k-SxE=z-!Qu4pS-M%4elJV6$9ex*MOpg1Ed5HBzAQ_dWa$Z6 zx=WUxlcgtR>8G;vnfbE#sw{4mrGJy9)w1+=w^I7HEbS{x+hplLS^7s=nj}mABuj=Y zb<5IpS^7^|I$f5w$kGL}^g~&?M3#OdOV`QL=VfWpt%K&%I9XgFZ+=Ub*2~iGWa&Ox zdPbHWk)?ZO>1(p|wk$m_OFxmN9kTRIS^Bjs{hKWPNtXUamIf@N^olGElcn#E{o5~q9aRp%hK_(^aEKsQ zS-MA-?v$l3%F-jU^q4Gdl%;RU(n|y8Q~aSUenH;sm8JiXr8i|s$kKnw(!;W}S0|+% zvNTeb-jb#9vh;OXnkq{V$kI`=^aoiwNtXU3OCOV^mt`rCrTb)QE~WXGt&+u?XfCYWl6}=YyXR_>kf$Oc>do*5u}3+EEGj7SWshE#9mOume_?D8x}CpsIg&UjAtxZ zC&p;78!Kw!CMt?C_NZ8rV2A7PVZp>0yT8xQdq+ur|J>~C%+9vi+1c{;WN3>FeJ?}% zWoV}i9h0GZGIT+PF3C`i3>}ams|-Dqp+9Blt_;1Eq2Fc5>q~?(WGE;>2EUQP2pPIB zLrrAJAww}TbWDbN$xxmQ4VIyF85$!)Pi1I|4E-iU^AMW4xb&3dksqy^y{dN7N%D_2 zD2ej;Gd$@@BChsGI4EkfQ!sbP-_vTeyvvXg7 zu&mEZ(+N?tEKI1jrc~+DzFHYS%LOU~j4$U8-sF5HGjpozZz3?#-)1e)g$Bln`z85FtDAPV1C?=_WmO z+6sGh(SB!MmQIPOV)fb{ygSc@>meYbq86lMJFI$|g1e>4Q%Ws2cbc;vMc3Hj5{{sL?K1tN3@Bc_(yA z)M-#!{j7vi!=>(SV()QTbeTq^p2#cEnc}na{3+(SJ6^+1c6TQ*d5EJY^Mua%`Kdfl z7cHaui55?>=S*G|#;ehnC-QtLd4qc$QSE%*U0qz(ev_w0$#~@%E@FSpyRB1Vp4xOu z?)UE1>A@CJPzB$D^gc4$6+{BWrc@quPq$66vxnzl>^v=$v zcziu?nnB_L#1&Q@-oBLjMlDT~Ox|8}C(qkm?EYPfsPz&}9<>zCMbXM?eNJ9C!*05g zW2zy_-T)Vn#}gdoDD@M2S$Zi{KT1#VaijFW0C(Ew3Y|N8Gw(~u6?VW@Rb$AlF{Quf>qWC~`M8MhA(dBfG7t*!wW=FUb}<%Mwm8ZoU=7tpao{ zV)pK^7S*<_c=Tu9pE5eJzr8BWJ#KQRjIRE5M8m(e8Wm+z=O3;9GDaZdN-nhgQ#jG7 zryJm*`ImXP-2T{>ELY79sPe14Zj|Ni?AQgb@+ui59w7F;&P&#VQE&6QYr!ABG^OZ~ z-YzB>BW7Ju%Jf(du6C6S4;>W-S;qEGkhzuJWVh4n2X+~TZsA2$AmG>Je3no^@YvP)YCxk9fYQqSl*YR zp97F<==ZRj4a%A78)VR5Oek*}t_N>bFnz2C->+mEr3Z5YO`G-L;>xC9_29UwrgM6* zW3cI>9t;aLq#G0HB}NhH47srMVbOA_pDlmzOG~P7p7XK z#d^xQbxau3Tuv~-5_51+eUnKK_H1Z+rUmKYJ0?$&(8%B4pCNj;0_g7;JJC^AoHW{fQp5bT)0&gKN5)&g;R+-AxblU~;VK2Q5gbX&KSFmnlcbK?92E%gk zc$jI4PF*&_S=a4Bi6$3vbg>p6DJ?RfSVgAmuaVHHviqS^BR((%8D!937)ME+l0kYl z+H`^L?6>=ht7A-NJ@WK8(^V~Udy?s)fl?Mbk_$JL;wUD~q3i#r6J;%dV}`i|d;I06 zrplClCD2o}N;Z9`Q=<0fc^;Z>WzBUEqP{d$76sExhji}LPffK&?hMmC9S=!`flK&RsUjd39mXQ- zUo&xJMQZm?pbsTYH3f)Hb4+djC6{6<1$j{e3Un90rkXZsi3M_S(-?_``}qb{62Hzj zVcIGZj!3-ETP?^}yj)=FptHy9)|*94F`B;B*kvUIDgia))J09VZ-0=NNLXU(sHaZ; z+2$#-mYI&|oIZ08-CDhG<}4JP=aG6#Vi znz+!0v9R*ks0^al1b&AxpHIq@1 z>?^3JTO~_5Vcc#yrc=59qw*_P5{thxUDqRJ)*38{NB!>Gy{pO_z0^4Hq?@cZBV*v#{dVqoy@_7P6cI<%E5UUynA! zmTm>waY9ZX2b^tI{%6x9n2ZBxGpKJ>k#UmEsS~Gycl|3;@0!7WwChLY{_vCuE+Mne z>1D1%DP^kF5Z-4^SF}h`aLxoT?0aum0^W*z=U3T7zPcr#^j}RG1|j-flm;PhGHeib zlPgpFWpE`=ch1&FFUx)e4tpUzJ-8Cs-_B9O#79?5J2Z+wPldQJlNkP+RO8P^*@|1Z zlrboS)5*hLQx3A|GS(3;p5&P38f4I)X8N1!iHw_=fEgFx+%~m#(MTH>nIkFVrh-pD zx0(ILz9u!jy(oFge(t{5;JbVo#o&r6gG_HJiF>GK9@)>ZFT<SJjLS(;2D z3)_G$HZqqJ6`q)|lwr!fsw}JyrELmvr_^^FxCuCMe;H^)0h$L}^p)t`Gqg<9bEmOx z`dl^-@Bpem)?8NDsYgQSYIOqd&8ZUi+5E^kK5vZUAbkVl$tSUql4%{3lg(Tqjb zulJ$XIP<7P7X!`R$nTL;uUiJ0Q}I8pkD%93+3J*KMCuq(5v?dkc4QSZTr^1*s2_8(p!ekRM88UiP+SIUeTI0PF zE}Mrb$|za%Pr@1rG#q>|jzn*}P^O*v zLxaQvNZMqAO@;$ep?Ymf%f=YtuE>osuhx06fr09{)QDhx7tnW9hf~A+)}@SV)oW6A zjRqK8vU`F$n}62HQlTU{tXPBg>uNr!lhGKF6!T7v$YLX7S$8wsS{9Cd6;54MV6dZ0 zWu$<~#iEDlx%E)={Ho?q@_SpoGQAy!mzU)5)_TS@-V7(08MX2kRBxcELCd~o7;vWe z-9Z+9zx!9Ac8?TqF}%MS4^0qqEHKWj3Y7U`}$ z$NcR#7S3nP_V5Ui_L2Fzj9xz2QlDdJ#QK`9lvN(BbZM&j*#DCxcbfSR8NIQOqnx-f z!whHeoVy7ww0`axN8gk+g|C@y&YKJuspeS* zi3gDES&=L5BnCix(JysZHS}@mj!0bcpU7#&>XD?!S9T{zt|Z|Y#}ltBd{G2 z2~)FsnHjrMEFVU{E~P%Mi6QinIZ!-UE_IBBVsuApLW!ADp4P0dO;Tglm@%<26HHt) zor&{cNku*N_t#R%maMlV%k$o$)LVuXinX^85*V zPnW(m|D==Q6;-8pYpq)JXi8OmkU!jLUZ;~Wlp`rSuy%N{N$u5UIaXOXTkC{UwX0KV zL2XxxuVtwu8f}xtkI6jJQ*YO*EaG>V9mPc!xYQ1!&|bCS-$g{YYa?*iPH90nA;xAW z@(rwAp0eCAG1_*^*+^0Zssnq!+mHFXa)md|=Rux+6i)LPS&%DqL!Xj;LCL z9*l7|;>ly?wHl9r>|hvS$u0{@X`|~@TGOLW8A>T_sVH9jEUV2_)F_goKCV-NzI9QH zdj?HUNu6LG2#cYDiGLQK|Hqz@8pmWde;4+`{IQ()mvrmd=5mFCO{4%D2iM|oy!@-UeP9+Q0**9{OgEpk$4ikxIb zl+FB1$B|nXk?Js8bzC|^#3_#}X5G!YrAoc$m`CHl;CQCO}D`j>@ zWbs+B$}_3i=1rz#K70T2g|wHuFx&I#$UiU48HTULj+e3rULP^DRUJYJ$IQBQ@qJ_d z6c*|j?v!u~Cq&e%M=8V10Y7+Jw&(;HP0XS5>a{F3pEY%{py@dstS3C?h z0lAb|P}+idR+2?h8A~@9KA8gxV$O_h^@=Nfi?S9hEtqGS*;IGUsCw-+Yq8AJBCWWT z^PzX49Lb~QSfs`6{VY%w7NL2@vOsL97YA4{9GJpRAs0ZZw!p-7<3DLIV+D%Jl`K#I zPNU5TarK)PGbf{hEIsr(#l>LB`)d^o)@jVnb`n|mQ&xKY%C!0~tG^f-Y#E8>{{!Y@b~hFjwGpb}vjpa*-`u_Wrj6OooldN8Je zWt0{qBzu2N6t*~u>~PaYmfv;xRhw9b>WnX&gVFV`a^g)>3l?XbJ>n8{krP^32J68; z+F0JzgVF6Q1NGqc_LkmSkj9n4dM!Ju0bV8F*RYJha_){Ua99^h=VDB2T%w}2^+o;e z7WjIcsaLG!0~d<_6lNJ$l15VM0;gFX9cO_93mj%y?vmZ=V}Yv}*T|i|-uStPXcTY3 zCZHsX>^>HE7mbt8_P`k_Li<~O)01O+qAI0-92F)yy=&>KbIQmyJEN*o*JSuE{|vOi zzH?@lgZgFOirA}11o zJ-a+zXxv9~52I3}di1(9YEUp3DeI4xTFLB8j;hnBK8!*mH;U>H@`$k(OamJEccjh@ zRqKg4NpduBWRazY+;FPv(a1~enIN^2$z18wXYy7w6Jt|0kA7 zPsd3QwDa=3e_on+To8X{&E!(o4xO?TKgb=npJw)6(*^g%) zme^DBi$NC@T{H9F09$2^!LIr24VKRhGKl@4@is3Jl5Y7&$8m7&M{g!H!DX?lD9fl# zva-yHqi8?!ncpNrOxj|>Tqh$%yKNRS(A8neI7(2bmCCNz_ZsL=jmhUx+fIeV?WG1wUrwHC_vFo_sU2ADkB|~-!)3GZY zu{yQ6x2StSwj;-(nIov-v8L`K>U#^kQjWwHbcBdHWVxu}0xJBtIRCMv=4I*LwWb)T zgRLH-?_tY9oh*w$C_)v{_NbixSRAZZ;F`RqzEp2bb6GF%_-sJ1m z+)bpMw_s7rl94iEO#{_cjQLd#4VH$gIx|Ks@w86^9Bi%J__@FMG~0qB1y0EAk#g07 z4Kl`Mg{Yu%vuc#`S8I2AF$0Q}e%gf2RGG*Tnmm47)QqSD7RNLSmx1KXP8Wd zRp;Knb`ko<5}&PT7KS=n`-pvItk?nNa&R+Vc5j32)QHY*RBadZ z|95xmUY(4q44(8&4XAI5Z*w1!>0#9sRGMI%wrp)vmI`h+bECHVWI`|Nemx;8ZK!W^ zSE_JnL4f$($68#OC|+siMMDlE&2>NPK0OVOs3QSZr(Fom!Z}Cl)3^^k=kI1^X_~MG zh@A4)13EjGpun%W9}QcGTPn9JT46EOQ!tSW5^y=8XOOiUojeWe_+yZDnn4Er1+K}I zcHtlud}zfHY)0D}R6nt;n>PP#s%AZ^bK<584%1{J3VCCxOi@GHdQd_uwIXf#5&CvD z%(_SCOsiqd*Mh{igyOR;KFlsMYFcOG)V?)}9K+0Oz9$Tz2stCMplK!o!mkQ7}l3XlCNVBfCJ+bf`7Y zV92DzV{kKv{$=qNF~hBx7MKlrMNz@gj%8_IL3=lfT!6u}EW!GdPG%`-7dwVh@IN5) zT(J3lE8G}P4a*uxAP0$cAIJg6kxpyutx=23g3(wXwH=#G}_zN4V0~Y>A z%WIO9D@H6T)bgTc%<7@m&?eB;i>+|8ST5U+m+P$!DC<*nLecbgW~sBOsbIaeB^9*j z;>MGz))V<@dIMGynD}r~z|!OmO=4+&X&u}t>Ufv3+HBZwb)kA;Ti;W(B`Y=>IgPXk z1dHHJsarZUr-Fa5=DD`EP`$9xqljK>4sjVqtQ^T-_V8 zLXUQh6ob>P_w;(gI0ecK!sy!*9m>(8ljzWIHx-TsUb3ROYtsEo9V$|~3v#%y#hHWL zl8mB+-ndm4KNUvs(Kah4Ynh=qzQc-Xo%1egY3~09)(##NZ%00uXmxhECh?@(r(liJ zo_Bzwyr-~Pc!a3SWmCp~!e7^ix9){cOd4B@?2~N+a}l_j2OJNjbxCq-+j>=1?^pYqGj@ z^m=!9;c>Qb$YAQn*JU9+$_uyig{|eRUWoAfRZcTf8mEpKpt@^wK=Vs-vg2&Hq{ur+ z)Xgp&Va{cOw^oOUtIk$Gblv(&PpFw^S^1E6Rosw`?oo#BY{rer_kOp+G1r94B`=&Z zO%7!=>ES^W9wy)xfxJ&UD(C-UL~X(~@<%tNN5pdEN{O&iDkoxZTMufH0+CKT%M-fi zb!&(S&9!1-!im^SgqjK`r6`NDHAps*fCga4lv!~s;Ypl6!QpIha+=O6_jJMP%`FDm!Jg%5($t=~!g{i-n@D&h8y950-=WQj zlBWhmU+C#PSAXo}5!gGy1a{sXQ#^l8wD@m0M9JRHDgN2tGBe=XeuG&0kM#K%hx6!3 zgHGg!Q1~hAa{lsM3Svt7C3whRzm)Z3oUhgn-d`HGx=!Smr%OJ)^x5<3Yb#b#%)=f& zcyOdwu@_cfKiWKg@Uda1u<~xS1Fn_~C+lwbaqqj>G7S4gxl%Tit7{-Oah;#MRi>)0 zwr+H(s&hMcp{otfAaLDdYcRl8mM-0ii=?0$xYItyO^QDiXvHa${7kNQSz8=6tYXzS zgHM#TEx?`PD%Jq}3nQ%Gk#G8yrIev6Y&2R&?Dn*s)X8kNSa^Kv_#nz&*Bi$<-Ztz` zacaJlv)9)quR=>{yj#W6avSxoMEjK9m4#nGp)_8~6_m5t_2d|NSaB&Rdit6CDk89= zZHj?@o`GFLe9f0cA+wyjgvLPIB7?*Oh^>26Wg8q=#-;luhF6tEV4RmqGcTa)dN;>k z0Pz+7tHCxH1Sa!z6kp$lC3Hc2Q*9f=5N3lj$7HF)BDcB?-a6yX`ukAotUeKjtxr(;MxL|s`a#0p@OP? z{ixmdeR0a$6I&{4B5mt+9$8d@qGIadG;)(IFhxrN;5Q9!pwd(=ty(Sp1Zo* zaGb?tHr9JSg|w_0{i;##(P~*j&Hcs6?l#3fg1t+D{Gts;-n5R zrLe%1@wi_#F(TduFPSMgBf|2yuWgeqlZ_)r2kv+)bF%$Hf-eq*RIA2 z^x{Ju=UE%AUsgm-l+DFVJXEE%5b?=2%px3FWRU#2yoWDL?&Mb%-%Xb4!DQT;^u+xH zTV0J^{5sW!(+4K;E(pd4TA*(Ps-wf?zDau#^n!lY;dtTby4dxb(rovXh`>N0!MxMi4s} z%Vm4ZAfQ)~^Kl!8%!q8Uau=d|f@5s#S67SlbP@xdw@AI>wfQ(pL+HUEQ>~SM9iW=-h zyS%eQnjB__x9KUocG@24c#%OvVenD;7emU?`h`PqdE+!}RnOgW4%G6I-W>OtlhKco zYYy|ExMf4!#jw57qDn^5FvEuZXig*RBTyf#{0lQDWbQ)=+mTuB)?q%hXVVZjb}hv8 z?`_x&X2#^BHhlNBeMo>vK4iPDM@lOtV5Oe?iwWN~-x}sk#vf7B&4-;b1Y|flib(#su&~Z1_o1w7LojxKvEe|usB}?@!^?@U zPfNSZk<$JN*gt2UT=(_oZ4Y#Mq0b;Pezo1zvqM2(qdC2_djfXP$6dNzR=!q%polR`eP)W&##NzS zD@XXyijAKKh>xr`ETIa?0=oI9j?1S zM-PUtIi{DK3=eIm>DsTj0LiZ(bb175^yO9k6p;=+!rXFIj45ERcMOI+9z_^JY2%$0 zzx1b^9D(x*5eDf~oMSbC9TzK~NXscH0yTrD!b}L_3PngFmYyL!^sf##J(HDWGCQHO zUf5phIF?{6GlWuO6TL;&E88`VA`kFH#v9x7B9wrJ&_mBew;%4?ab6FB@cK&Gp}Z`c zmqhWd_Og0Wc%lIwPWzsqJdZ9U>g74)W{11MX?VqsIt8ssReeQfSvw{qCSc{y1q%|{ zp7sJglHHg)-gfNoF%#pjeeJmYQ~eXze7qo0mG%bMyV1<~&Lg(U5Ln-AXzTf1F zb$9C7;k5wA)fc&ucYfH|CcK{1uCR#)cI;I#Sqdfyu1vX4MtM;?$LK2JPLzGBfn428 z%_w26xn;3eHyn*oi+gUSaO&R#d9N0(@5qdX213#KX^po{!H^JyYx?7x*;8?78-$(X zSIzD63JHRg7G;m1TpC-AGB%I(q`Ua|PJG!)w%6j)a?RStK9oLiwS|j2ZR{8U2>Mg# zUUX2t*L{D=Z8JVptHGXVnP$~}toHE2$7l+DtS|JaY!ggD$@7OZb$j4dwM_Z?BN zs3thg2<;>bhM+&;D_<{>+1U>7jPYYO3+Ggkg0Cmx6PKJBm|vt)_;j;l(qtYu4_>06 zyB+(~jPrcoE8bp_68@YJrm^?$X~(RV3wEe0CD(3YY-Kr*#2%9gvx z>HXyOwPU^qjyneOOO@ym_8{_0o){?h_P1k!%@nyQM;CnV2T|KaY6vBdKttxgYsXB= zWFAN$H`XYggXGwg6afbwt1D(=zmsKT``!;0-G-qW#X4&-#9zA(TV zqdcD3@{M7PCuOs6c5 z*EyizP-wNQD}MtohA*{a9%eF>26x&DKYw4EX2+V6DeT)xkpiE;!_(qOwuc*5*>M52 z5GUX@D0>A?>*BlM3;VmPFbIN4s+Z&u1z*{{HFkmAuv5(`xdFMvg+D_o;|o~x$e__M8-xt*7DBOkpdsdV|mFq*HV5TFYtXlCbpoFPQAlZ zJfjR7G?mNSfw5%RAQE@le=^XEYnrJnPwRJM$X&di7cR=~k%k6A{p!btz4osSc(n%) zGE5@8+EbZMWPtaVFY&=}{r&a~`f72WueiV8KHfle=W4ncKsg7&Q}DS{K|6gf6%@F> zxQ)!R<4kDzCop^Wdb(>yqS_%ld{*W`hXztg=IcsSFlVN_2>sCx*C;K=tlJ0w!w~-F zwo~}*!}gD1_HRQtdnvCFd`Gkt%=p8`KZ)5LKs{r;+gZR=o&hKMn1_BfdH#wSRqS zh)+F-5!%+nsr_%x$p!$9jgAY_H;_SjtmsMWF4!xJ?2Gm<4CFlv^7%QVTbCjK_AGO_ z=$b8ShoCJ{R%W4zvxius{M%0gJqqUcy!JFT*u`D3x#RiDf#!= zzPOz@+g)46b^KjcD`JQZPUqXazVhv)DC(Spyf2P)n&167_Gl=?NZ3llO*cRHq94GZ) z#R?8MQOuB2(J|jZ?zQ2#;T^2i^m}c{njhq7itF{Y;aR5FS7L-m6~`DIZyD|AE-qAc zOxAGGE7*aJ7|AO9LLD3R;Ll->oqBL~4aYZnux?GqDm{2PLY6CjKK!4e_qN>YIJ!}l z&*2G8spDvDkU@VT>N?=naxlK01M2_|zN+t7uLpNFbYPR1V}EVrz|C_GmVU>9j}bW7 zzL}$r9-P@iW}DIrThB#LdR=aXY|{oiH=$d%mX!w{Ko=@I+KCfwWaT9;T17j4(n)c_ zj=ti(7{>^mbhf=?lTPw2<#46XYB)kfdPheGo&Kbg1B%8{gNHflh^<{5u<`**p&ibL z#FA-Yno~uVcbA0#t{0+GtOJ8s;$m@62kF74agMcmFt@h@6BRQY=;PR<2PgM)bk&3B z`^&Pj#KrR+p<>9pj(2p@#`hf92xrpU&mGmp?Lm&}I>~Q{1Fk=dMX@oKIJjiE1G5hY zzfN#;(}PbE9auGRY}pSSqqSICH^Wg4Zj!96{{x%uUE`g!F?8pFEu50ZLKSz4D&u7H z)URbt#-nMQ=uIu$rZ_!b4ig0R5!h^^10#@ejKD_X%p}L>8ZIylVYDPkH2hF18FT$n z(a}EmtzNSlbs}khjvI6 z=Ez;&IqK^I)LjnPdKpW6@pHx=Y0-*s?|qJ;da9Wjj>S3&hnAH@)B(pWomB06$ME8* zmjB?Gpp$%s0}d%?yZ=Xrub%DI!&1XIw#m`L20N1JfVaf4osUby$HB8%&LW9{KRb&c zo}P5TGh~L4(~f>R@BA~4Sz3^gv6l!wC#MGHI)2`P1;zfSShMjnfKx9z;%Lb~ShLwL zIvQZJgcEk+dr3$$gz1Z9GCRitk;eo^w7P->RaVsBJXusCIg z6P1)xdMs5@M(9De5aq4TP$^8gqz9i?SBB~gBO{cp2I~0CltR;M<59xUAK;0!S;u|Wz>A~iWl!wk>69scU zGhBQ}Iiv?yH&eR1Xt4z?6gbGtu%wkTPY;H+Q5N8cdn8n>=%L9W(MmUJ{Q>msOtjL< zAcOuQAVyY32I)p0cq<+q6xce(Z_ZU(irpQRV4d|=C)wbf%GgD@pa(~FQ}*e>nmrU) zcV;*eD;sh31Qej?Rm-t)C_wIP=dsWAIHe61?z3_1vv`)$MU0JC5;R=g?4zvJNw?-I zEktHNB}^w3^jEMbmZ?O*d&*orcJn}GwI1v-Sb41n2Mtwb7-+J=HjY{kS2j_!3mg^0 z2n7m@AP!p+6zC%da}$*mJ(xIBY44)N9vr2N)`NA&Di{Z4Tfv6oCC+}dFbS1OY2!5H zPm+`H^Xex^nOe%(4AC=XGXRI5FiYma!B%r* z(Kv_}7^(-m&r_D_LFH3rg&tfoUzx2139VC4bX%Zcx*1j*Ma8S2T`7AZGK{Z--L5u9 znO9UZ7-??u>_rNuKE{z@bCJAQ_CDj>?*2<h`)d!w=1W23Qd{L(1W$!A7mOY<9} zvGw_ZQLxC@MG+}q7L5(!XGLRu_)XDRSAI|w>EvsoVA&^M;6w`fkSKWME204M3DH<@ zem^v}6h9scOuih7qRD4NkzPI-ib(lhC=$rWLV?MbLct=R2?dLMBNUi?AT+idzYZE( zo}UIqzVcmABv>V1phWiaNl=t+g#^v{El|`@J_HIe@)c09$|pc$d-MCBNG~7%M03fP zKfxlO{X{#-H$Rb1KKL2y&aZvOR^q2VAzD832~PROCus74PekH%&$%+8eA^Qhl@EI& zy?oU(Hk6Ifuo zokZ5q+^=C8_tVC&m8Ns0R!E_3YPtR|DO&!-;Aa%~wv3OvfT(!k1ajQ9_(zw+m#xJzq09P8fp^VZn*_cJxtHT;5nDb2u?0-j!(dH((6i1Uvm%z%D zz}!n<9wjh?hYM%_2WMES1m;=-b1Q+(En5QhEP;8KzXH>&1;qoRvNr6t9bz&ez`I+eh>=-6DXow}7E_9%h%EP=(9z~W0_eM?~d zOJMJozy>-o=s&7I*oiVWv;;Q11eQ<&leSeViL|w8Y-EeD^@;9Glg~}3C8d|ZHWy;e zC2?CJDzWcMV7p6T2b`Fguu17{FkGRdo0XOTPbJ8ts4WbVG_Xa2Lv&XIfm@aKh8JS+ zR^_t6N1rX5@@)Bxnr~MkAZ7S=rJo_24s2ICm6tEp%lTtK4yJ@!H~xqDV>fy1P=>Xz zFohqj$F%sBhRK-&*m4cL(tw;A5LpRxLt@fi`gRAFE3c{McS@W=r77PjVU6Vk0gi{5 zArjfAlv(0!4oroa_?dqKKle||d0IYN56-o8Mke1x6?X#MrcpbU?(Wj+gLat?0W;iM zvrFmcF3m0C*3pn%h&xPMcY%LBJ(1XXirx(tePaKU)&eu!qzAi|F@`-fV2?5(SmETg zlcN4~!QxK0%gV9AhAT@ENSqqgdT%T$Hm5gCl1^bq{GhvBDf4e5qR z8!d|kvz(Z8h8`nvob+a;^n2aFRwouefj#jP)C)f?<7Fy1y38@EAEIjamr>H^m5JI7 zK~&OE{2Uk|;~!J&1`XGn^iQjq*GW|2g8#U;H}D(H9S;U|5OWRkwQj1O9lsP!xG(|a9$25gl? zX+k04Zw*LW1WbDD0McUzkRCh0Td1-3om8p>zrbb?u8hKf2 zue z4__m%LXEr#HS*9j@@QPh3s57kKaITnH1g`x$m7n)YfmFDJ&khZITzW>;b!E)W#mz1 zZA6NPUEIO|A1o-1PM@D90Yv>Ann#GZqvy?u-!cH(Y>4efR^a?sF>Cz|o zStxa9%Bp#*l5V8}ozTkTf3=gcDer{R8q;^RpOsDk@BfV1KbyY!S?K_9?`N32Y^r<` zTU*&Q?W8gQ;NnT;J%F0OU~0^!DZenM_(kam?By@0l#ME%f-oD6I0bAs%{hhbtlf0v z6j*lC+f%62Zt8kkk?-TDY2e0brd2z`An}aS1GL>|&@{X0;TcZQ>@4!zO`o4dL+z#u zXHoCnRQ()^w40`%W6r}Gcy&&xXShLi&Lj7|)a^Wk?WL9H(O!GWejY8mmzrNt1_3O; zpu_^)xuEn1X#A@Z?7yT5Y6x)(X& z+>1&)(q~^(1_MN1QrZEGzr-x!5@+vnS&2bp$IIxMy_9xY=>>52GU~FI!n4t9d+FnB z^zU9em(7vBS2!~9iqf|hm&t!Q%CrqXS|3hW0aWY5*RseRu+13V5?5>rt|$%RFNI!3 zeP7d*t0>cJx_lMVUQ^gLG}mjIb`3p_s z2HjC+c)@l0Uy|GJD9ENi$j_uS#-W(f4Aic7mB|1<-BmsUsDDqH63V>scforaKUybT zy$4k5giUnf9vs03wjCsmT09O;!W|)*Iz#f`V*iAIr%-Ah6 z8h#V?u%JGhNLUz)uqw&G)>u*3+w_A~84D0>Q>J*y-O{9>SIGa%SF-4h@XAV96uq^f z32&2|9hJOI^Xw3Po1WU0sQ?okD9dfKIv5+GK=f_8pePdoTB?kFr(%EoHdW3?ewV3b zJ~ZPpeU+~yd0m$Ig#^Hx{Vjl&ze0Ze*lGN0#T_gY@1wYv>Gpj{xlBDDC?f$f9w?&# zDn3+31I&J?BvI7Y=)n6A(NLGE|088QK-MGXiYQQm-Q{j?(!14NsLxPn@@@a{<`nOx zy2)oT3y|g(m3<6ZxA43N8tE3@d5oIeqJDoe?Z}@f!!4@&monCi1$j3?X$QYUBOal& zco8(1{LTe?Qbv$k27GV92Qc=D@;<Y}wz+$a*Xzw+&>p!e)%t;p?M; zY8}2#mbIb8rM@RTQlbctY}VEaypHBPMdz-gr%!Rnw2mhJ1BF~i>OaafFHU&5D-z!5 zPPtwxUaEXrvq7=4t)sio&{ON^z30%Ob#(qYI%OTTe!;x%Ro0*eW6@OGpbqj{FU3Bc46!TbuimRR)?R3QyQq#gJ$kB?0h_~sr0c1di<$)R zqYFf=r{GfRXf18GSx7r-HifyWUA3nhqwhlH)|0K2Iu0Pdv^p99R(%sY#0m`|nBLSwlGmF_>od7JpteOmv zRhF^(9w^dzSsj;EC{l~HH193+D%(S?4W{Ry0wj2CaP;$4XCUIDuR0B&v!6N@;D{e%P5jmAz;^qq zlL3MQ)JXtK0+82D+8v;N0#K`*x&UBrIrVdZcgm|@0%Vm}mjm>zpne6AUx8UZtf(#o z_Ohb71i)B{L8U--F|aLx>K6d@g49I-B8ahel~M4UbfU647odF=#!gmIKLysMDhjcO zMpadN1N=}`?GNBlO&tg@vYPrHz!3niJ+l3#o6&yd9kNSn;BC1u%KkOVqntjhn4^ac z90zPg93g*1dD5j|DE1!uEg0Rohnj|{LjhKVsDl9Rhp6uZ^bTckAQb(-hsuXRDfZAu zVO)RZ|T&H(#rs67E*)llOBdWD0wktT$z?ErR% zt8oA?!_^)DU1~B|UQ_J`>}E~14?w*LB;QCgBGg!bQxQz_sik%W_HHe;m)Azw3JIR2 z{+HCiixO+8c)6fQ6R!x(t}rp$3q&vPQo7lx<^xnCXOVwx%@e_gc~z=*mi&kEX6SMA}2odo>hU1tan?n)<` ztMw`2d{bA7id5af(lS!*rm?tm2g`%*G^rj~@Mf30yIz_VbUqSYzJe;(W2qzSaaOzP zasH3$shvQ3r@q<+U}k+Z%L+PMpCi2+pcX4=U<1@*1#QqUr2z|T*^o>6g$90W$O$S( zvCQF7%(6F%GkO}uoShn}aau{cC84AT$CIIv+Qe^S@&{8VjQYswwymJNM(EKM)VML{ zJ-e~`F0kv3Sz>q-bpWtWnn0fr*+d-z5cLkUWCf+YqrR`nU$y}9YZ>WYW3?GS4&~Ha zZp!9HP#Z6ztoFD?k9Vpnk>6LXJ!olD*v}QTrl~qqlhR=^`23bo??!0P$YyFqEjn}w zqFXML!s}CgM{9h?)LV7)X3^c3fi^6y6h+0W!GtHJsucCXy=GjWy3N%N$Yx@5?utXr zxn*B9=hkcAf?MzN7HW5}TyDWEfi0meN2z&BwWs${sS53OAd@A#O3~xa$OO+Zg}Z55 zca(0lgl-?D$X04!fH|#@)loXp3V9qQx7KPS!y0PY8sg5;z}7H@=jeEAwZFGKMop^q z6Qm9}T#By5K`Nd_s^u*DIhxo8qwySFYJnQEf#v8No9IsTFj)Ro|u#~DZ3|{K9gGY z!hD!X+j}vmAr1yKlZMBklQQX49On?+n`zT~bHy+B<{ZM~G5#}Yay&QKFY#(`tu<2L zLxGnKqK%!=8rg3`?)P6|n+Lx0K>ya>$aesoAG{{w zizE%- zwhU5-hss^tBnK7~NfY4+YF_12?1t$&yPc{JhSALx6`)4YFhxyV2tAJRA&gR z(sufMh+4mv-0DrLA-8tnf9iswe<~F8LXuDXSehmuQ7Y1-A($RsP~=b)>j?E23Nc4$ z+fY>C2)!MO>Kvf~!!TJMq3?&mupXgT!_Z_$sPk~O7Iup#4u=9z6bDbWIK*g_9uLKCYPTMr_HUSysQ*a_WC7+TL!I@9liI|-8smc4$pL|MxA3Bmx zFEr49B&6iifsxRreDeK(Y2!Xn2YTgmMR0DPRO=tQI~n@^)g zp*Qm>V-#wZPhO+ZC;5~xnzP?Onx%P;LFw~p^cXdnk{7_$x;aMeuZ5b7g=NU6*<+#L z`D7o9!f&NA<1iGr(!1l(JX>k^IIwJ`ry7V!Qkxl$)3hWt*j?W4NZM1&m3p5?OV1iM z1g{sgcsE!t;Tg(HLMhHrZborw@9_tlf` zc5|hTUtkS1d=j4I!bkQMoul{>eKQft_=xf+qFj%t{Uo(tD5q(GO?R9}y6U=cRqncL zhVU$XKM6X2c1a9nNLa@>6F** zgF<==8^wmV$BqnCvO2=woUz8QT7smP}UPtMypsvg>1{Y&63usLUsY zf^sC;IHRcPBAnICq23>=9le-gD8l!IZz`r zEz!V@Iq(n7vJ2DipzuTUY2I9TMd^?J@uK9pXi_tMJQoAeOy}pKNM@>(3OzB?q*UmM znT~6~Zys{LNDb$qCoj_cd9VW)$utjzxJZpYh5fup#!r#$Mf&Yiq`OEFpJ9|>D;obi zUAYXsb;T%Iv~^T#TK^fmtb?@mGYsN`#cDJ_OPaC-di9dT63i?w>D3ajJfSK} z5&49MFGYhtp`Ah~NTV)kNPdV$r9p)b z(RXPm#36c|1}TTA?Q&SoL-fUR6z~w;S&r%-qQ)!G&xa^Y0}od~COB6z%gU7yeTeR_ zt7T-V{SEE$9l(ib8 zB$qtbz)RgmZPy_3IljfjaC}a?*Pw9E>8Xq)sz7Qt8sUk#;eArOYoQFnz$1D};P`iP>c`Wm!f=(DfY<~Tq&^0itGM*}w`xI+H`w9S^8tjC7^*cM}3Xzs!ldAJ_cL2lp6 z^Y*0vz>BDBa|@}vsn0q{x0Vyrx|esB}&OL3V()a3iq$gA?>3Iry%^nG0`y zjs;#s<(*Hh44bI^H;{CjMo55-J_&BoItkX%PZAuaKLFbDW>6S5gNo#g`y4BMO%Cs^ zyqsU0dIPuTbn2hfXgws|q}~$jp@|YG^rZwF={pIs=nOzxUM{)REmbU+Cfl$m&~o8* z&h)LtscWJ=oYXZGwgHmPQ9B8+9*|%Q&6Hp}t(9Ou34pdv|EgFn7jb^6=W;~0=TkWQ zMKw*wT&7d6lmEAnlur#M*h;-5I8NgwI73DW9?^Dyw(yEaDXK5Q35u1#O5-GWKwki~eJSe_lU1geoOw43b9o}E?*T8W%ZZ{~(kM?# zIz(?J*g(}b0pwC^3AWK737*q5fVQ|2f${RbTQND8<+-_57kQMPR2_IxE`bh?HL{2j{UV~)MJNQ0{{tvY4HvElD>V2!SnezI{dX{vS14d7)?ruZUsdSLnCh9NBCS{PrvK%^t>H?_rivd)2UF`KIrM1<$7Jy=onR7kkx?6cTjbl{)N$ z_0FcH`!GLb)3trDsM!>j0b`g=V=^Eqn=WTSZZ<{jhxeLIEBB+w+4NvPbGAO9##LtH z_2w$tT>gBqYO(9cE#yY{}$mihyadnn~RqRX{rf7>>aVzfb z?(Xj10*gb7!-30(7byh>cZYJJNUBWcTbQ zsDNiwY$pcBXEbG}+XsKWH2mt$L??D)wX>Dt@51D|l`8JSOt6(^?7}RumHyd9L&b)gX(`(tJaj4R z;hhq%zEhsP?)HgUsa1R^wZefx&)w;?PTDdlGANx_dr{R}sog$Kb~{8Sj^UjIG1L#r zo1kYm|8D)db)RS4rtJH%FgZ_I4q=wNdPwhb~uBOOB z=MT8+YBV{e$Nc0tp|sdROjze>!a+PDIghP|(fH@7O*s0~c^Vzg$^9Mf&Z#3!Oo`2* z+$l2Ar*L;}C?M0y5S$1Bcvc|IFz1ApQEn=E*qs(`8@ z4x^D5(tsoGoRs1Snq?u?If9%RweeU%Cy$`XR#1YYSc9*i!4cSZ*zYKo5i4j@ggY0V zJ_>sf9N{hxQ9Z(4SZkHh3N<`}C^`a9=7Xr~F?Z{PL8zPFWsQg$3CUv^+N$euw-0?j z=FSO)pEvRRw9#=a5`t*eagH1g;Fi~~XBaR=5tJ>zb!BlNC{&rBjxW}_}=ahDQA6YgMz-|G|}c6>hTPNsDx z*YrTN^{FYxIo2`Gp?QPo$~ipq3Zl+;ai`MfJg!F+@vb`uMV`mPEQnHGz$!0@?klwT z0u~ZMl=YrFA2xZ%8Y_qf+;bPC1s9ozD~{_3$6=gtXHOi^uV0})Lx%?V;^jMPehI@$ z5c%APU1u(#-GZp`ef0JMr`;u~*9~{-I7(~Wee{9Zm(lJ)bof5naP43dr%9@ofKD<# z*gCcmwBP~M23|p5h1wPOP>AslP=Rf(qN@kdkq0Qs`Kwq01ySZ}?qLvhqckc>udZQe zMVmyq^HPcHxUPd}&UO6T5JbsuU}z1Z!4Gkb?z!P^sB0}VJ`PXb1; zdDEQ+ZuA=;ioEI01vk2g$`8Gx0FAokP7OD@NFfOHj=~V=7)qc|q^FXRxU&nQI*}L_ zxnpFed6DkqaHDr*q$82IBDjlWp^uTA7Wzp>%6;3N9vq#e`hWV#y4$$-;I8BJlP9+^ zy>LINsRN{o^uL2^jJrs29U>j$(jCqh9U~*fzUxj0E%Xj-+fBq>JaE16(G}XdAG+||UsytwZ)~f;^8cto6XtTUj zFv^_~ZZw=iXfDZB|>CMVjmOLv-KUl?KYi!1PgA{gvTgz5C3#2y!frHf7O~ib|*%7$Hy25SgjWp zxi25P%O+B9OkluxQZr#JDtZHVd)uG6OVRx&?nLOz+i21g45HiU{S%Df+o;PwZhwgD z|KOV2MirjoU%zd%!&H%<`=bi0#6afurP&^G$+#x9hqz@jENd}bXSw^Q|Myi8^*#t@n7C?&QDrI+4Xq!vFd75M4~mM0i9e{pE139$ zj=sX5jX$XJYg~^%DD*Y{P5eRm-{7CdAGB7BEHUo!@U4i!S_dzRymilk2z`tH4-xMj zF2Wyl=pDx^{T}lJ-Vk|@=x%&Fg3jWmq#sZ-ZX6AP0oYA3AKVim0zSI`%ET{wY}t#_ zs~G*V+U>j zgnqV{Vt>Z%>t1T`8BMsC_J79zr+caF7xxSwzKJpM-mjs45Ir#uab5iS4Cv`QWS+5? z{`rD+3ok0#Lu~l!UJ6n3n|lkyn{V#T5KF$h|AuJr!@V8i`w#aHh;2VvrTs7WR*yyV z6PW6Em$@Dxc-pwuW6^@x?AZ|8+yK@jj`4c}}}a~(t}FZM-xnM>gdNN6sG zNS=s&A&Jao@HI$mW`gLQ*qnyjvA2oMrpeT6BFKNOuFr|IDwR1A`QM{kNs!z<8kH1T z-J?v&%nkaLl7>G}e+_?7RWGv$%}Hr?pa%)eBv9#<+*|{ZC9U-2jG4oJ{G-fNf2c>LDWk4}5QH6}=e26O< zO@io?$y})4TZxwz_mT0^QstUvk>EFzlTy_TW*uFyOSB?0tiD8*vaqrN(fYh*TZmtI%?uD3@|g=0 z@LMBADpQq)Cbr}GpR%%*V!0ZH_p9Rbv z5Zeo)?=GQEh0N^`Nei1H5C;pRu9r~HBIsvJC}C0dg%&k8!q=e~t9TVR$KWo0a&fah z#FgSG)_&?$!kh~6ri3{UVp2&n7$SWsa}mVOQVi>sX3YnsQ7ijtcp3I3DQnJ#Z&_KC zd_NT^$G!vQP^tT=VRgkO2H5nkZfRo<)(@vXe+f*4)FoCT4vBH}Hhg%y$CGAdY! z;ekp>Wf?W7jIO_oZd68vFQeX77=Er|PJwTHRSrv7&77W|pF||Zvj#)`s9|&fmPGT6 zWfW4)9FI3R3RgE9LX57CBA%tVHP9)}($X4e@v~H-CVJpmx?B_8{45Qug-p)UuUf1^ zwNcWuRJ0Cy=UF;mhkd?vVGiCysf!|>rD^rpm#IGNKTF%|qm94Ox%y^TkHu85f!Q{b z`och6v$c5)OgO~1*AU;KL;DOIFwdAnD;prmw^Xj7*+RYi(GXYhTPoTJt^1Z9H$t<% zrQpWq9*Fu)7=CYJhQjxEQ*$?jZ!`9#YmR>KmQFM`H)G2?GamW3Ky$yP%q`K}Z|Pi1 zT;y+QNGn|AZz)Y{v#;kJ7-g)z8ynAf)264@t#Mu8Rg%`o;tnlqV;-T`-_&EXw&nqV zEbYt_5dX9@&p~W&Z(fC%*ugvkQM02N0g<4Sc?#lEC-XAI%FYTR-^0XaO7ysgc@SbnPc!d-tb5VZRIh*3_eF0Fq4~b%Ac**W z<_HLvA9`{KefKj*LyYLf;(agkfAEd$&EjWob0U0y^+8Vvp*V&)7Gi>7PKNO8%VKt4 za}s>s{V*5?2bklt^Ghu+-k`gwA9S}Q{Rj5+?bl^sfd8NX zf4rc;#+ISO1I>g9a}4nvG;j!Rl3&v7fo4TK;h46kl6=f!637LM)jqMkr3aN z@DEaq|8J};gH83OO6S35SqK_zwt;v(7?D>|yCJ48#9=LR4K;hfH*Kid58~rcvlm2X zf71`*gg=Mn3oyIG7Z_mnhWMaGXWWFrH*A<$9Z%i%4KoWtJRfGZgs3>&Yz{GdIQ#w? zj*fDK3XMQ7-$_k9EN|*G!fcFp5FXCLjoh&jW*)fB5ttR`Qr(ee2mK~QlY)3)*Q6j# z7;846pCe5#gnEuLD?rp7g@VkbZKKSdS~rJ!e-)X@QbyL>-8+XRhI*FhdGYyy3Tr#GchR%v#V#zjBS8i7-PvYUh-tHt#X)*A+Z?Q4X<4=f5%HtVUwOAuBHB0G z%!NJfE2;b1gLGw%IS?_b1tH^uv?|E#o|T^wNA5&K^@AJ}_892z+YOB{pqGl0eJ(on z0_r;#>yibuX)e||?8COFb5W)v$P?gf|^&(OgI<_rj&crY6xk}%DkA-{zf@6XV$g_t|e(40l)a0t)ExNJC^ z5qL#3)Ad!p7wQ5( zv||kFYtBBie8K?(yYvX?iMzpYdbkHyTsYMWqzP+5{yuG+$!s+{7hQ0T3 zjosPDnbzCSV()%TA>s5{i?RpI0Qj~Y;Iig9$YH$>a?*DXVtNdxcHvybSHjI~@S#U$ zq$GzhcCMvChcF+krDKOs`D>~2VHW!iW2%Jjh?!ff_|W7dW?}rtvipcx0OHXRTw)t2 z|539E#HgcYJ&5B+aSyS9ydz-$1{xcIrQ&X)2+WaucbJCU5oT7n6CQ)YS3H|CeJJ=C zCa14-^cd{>O686tLk<~?w_Bo4q2^v4H}k@s_5{j!fM#kD=Oh~B01Z27j!w$|glT&k#$KmQr_q(JQ;{>M zrt1`P1`CGkRP-#m*>&1=)*PSsy6XHz@XZ^3Xu?So`_12L>P=Cn%>p!MOtUnxjq9}I z90rf;ROmb|drmn!4L@(T#y?0G&tr{aQu+(%P9{ycfIe-K=SAdV(u|AfwgNQi3ZSHsK0P#=AII&^RUqTt)SnbpI-Pi%E5_A#an8Uqf@7RQ5W0 zqlrz@I9`q$9AWtlj94ZWzR9U*$;oCGVIy{u68H9kZmz;RSciG<4{WnKy&_ zJ{2qG*7fvLg8{yMdiCx;5V!nFX8`_F8+g~O0kQKg5s zHC1_pbfNMH9g{UvQ`95GI!(nNBi3me^cWZMX}a|oa1G^uVwQ&J_5^SZoqmF;V+|Gh z2bCB@d0&`$>Eb^qW(>u7iWZ0=*Hd!>gvT?CR53K+8CoEQzCA;8#?Z*;C`t@{eU94X z$UX7D-^>?gQHVn?a04Dm>0hG5MAD#_W;2M0moOocyxnN(NE+)l+d5IR2G-Vl}fvMs)T_nrC8R7fCNoPOhrOF&A67VU47Bmf2M&@O%{#c)p6R z#F*vuAqzMgAt_WsqFFQkE8P1>QpZ=gNC02qZYGjEUYpH+dyQt(W*uFTNWeUa^mOT;zl?UpNE+3)AMUZGxozo z^@9mMZh(Iu-2O$x(y6#CT^&a`2q=oOXB08x$@306Bol3avRG z%o2PW0BYwX_4|MdJxSL;U{Q0DN`Ex_X5~0tP9u)`QLBkz-TL*xV>`a15d$`zV66=-G=)6`;Neb`Hq@@GRx!d+nJxtVi1Qv;R(Q1y7>uf=_i!yGg|ry zwf>AoeL|Z)V=4875`JOP_X}DGZ})t`-13C-eMK!ip($EC{fg2)p{n07em$Y}S|t9C z<=GSJ`yJQH6T1E#rGG+Yewf`e@Vh=&+$f3qK}q8E^&Qd;w=Yj<=MQwN3-d2onaJlS z2H^`-?I#kwKpTGInz%see<7I*H0Bqs^9%Ii7ZzI==GV1);y1+d;h5v~4MH7=g&x+# zl>D#s?M(QGSp6Wkv9#*EZvlE4+bT*$Lws|@Hg-}-Y-=VWRET3ufjAb&8iMzDO2@To zL5zuOje__T*9wIAUp%Y5$9(D*-^xSr<6A}HE)(C%r_m(OYpP`*){aljJgqdr4VGjG z-o7zj{2@b8_tz+20&6V(;@*(Jnx38&hvCz4L;a|}Go;&qzVnPXRNvF8hJU~VJ*|om zXFRRm5XHT$y6TM}FPL{GexU1=iZN^s2>z1!O(#I{ky40v&ZRS3RwJ&a;LNkL9|SX zVtk`zDXmrz?^0S#AZnztnnBD@WtGRPK$lZlc_2Qgvg$!pPYuoYv@o?*1L9t4t2RUq zZ>u%LC~r%>J9N$4>JCvl4eE;@Y^0+ZY0w$wP)Hi2zlVOLv8q5+N{d)~XkJ=Ny)yJR ztpWjd=1#IAIxw>^|Cy=6emNROi8B>^plWXVq? zBid06ZwKrsM&mMAjp=SCD-o2QXW}R=GFv&|gBe+9erBtxr~0&2Ku1)5}oxyRTIU_jx33Mvs=9&E@X!$QL!B8JG*Id z4y3=E?&d(p*i8*{T1`FfQ}SF^b~>EXDgd{c)5@vQFudw8B^PS{4IR&gntMZKb0gLp z+LRmB$z8yk^5sDXI8JTyp!Xf8Q+cf65LNO*{W$H+i@df_#)4L{Bt_Iy_7R2oirGTN z^I5qN(l(z}8e(=nt1-lbeAZ})_W7+z5D)WP{+?S@jn?0hfPBJT#c5UnD>Fh|g{=&9 zvVfIV#VG*$IEzXU?Fw4OA&{OAg%sp0kZ4hgQwZIRQ*KQ23*qACQw|C_yg@Ig6{T#k`-lNyP~)nKG2GytR7z6 zDnsRqS*3swwYyd?w4k_^Mo00Xvc;{WaMvl0I_G$qX-;vgAl!%?;PHtzl(2G9+Y+$i z6S+#@(qRc}6a7s1?ucD=_IvVwhNI)qDyvRl? zN?GHfoUOF=H^k-A)(nV_Wl-CX!;o49505BHI>72eL(6fh&?ruq%UQ*=T1Bc{-fHBr zi2}=`mu;fw<#Fw9qDmF4k)E4W-c@d)%g6aE4?V4bG&fPViqNnd52m|SaBT-u{u)T4S5-7_ zFfFc%E*4DZYgo0YO*QoJU^-mQT0~Wz;H{KS)lu7=L>~x5s|$e`S!i|9Ddl1t9B-zM z(t<*2T6sLx-V{c%q1f%cx>bM@)WTJ=kp|U5BW$E+wXANQYJUsk<>v(C(GJxzp*Grm zBSqD=HtCQeKN3*06EmvQ)jAlqHd2AQ)*Og~b*)7Z+Z$OmXi+_@u2#N)J?|&H56nS{ z>s##*>{lN%2WQuaiZ#G+u#~zsz%}-qt~9VFdaBJdjB|NBbq32Dq5=@o5Le$us@MqE z7-!)7pR}tswo2%YZrZ!@btg15A?^3sxKXoU!h+Zx?EUvrc{f~GV_@gm5lg|z@;Zwsp* z1ahfJ-CCkca~{ngkbKYoq&&S9COJ;IEd&xB0D<%>(~j1-WH`}^l%oxXxd>|8#@dN8 zCvIy^N~UT9%lN4cdG*tVj=q?UV^95~lhe7jsJiF$wXL;OS6y|w-OlR&pZc5A-s-ID zuRK1LusZ4B9i^~y|Au+R=|~66xX&p`N0j9`jp~R2jWcdT)jDCA;ISZU1a#75XU;B{JZFNXIv}0sD2k*Y`f^b3du0pN{ts1ti)8ZtCbzJN-wK0 zP3mg3g!@icYZFA_-c~ER-HlVt&>ekb7d`BagI8vDM+tY)!R}TsPqnv-F&XC;p5L>u z2(|Bl*4{<4dRT3Ah&RsEd-HT*W=hx-vjH2IgL?PGqW6 zG5zeKi@umscTpBUs{sT`G6VuEErF z`c97xPfw!_Oss5u9S9hnlM?mCV6~Z+_qDQ8NBqD&rY}YiMzb-z74C-%EsD1G!;&P5 ze)dDBi=zJht(6cM`nEvqA7G9B&uCx_#9R?YO9rB6MA3_Z826&6@*vEaQ8arH7EGLQ zdulQm<7O0%8jNA`BAp(LEAt{%9D=&ONQ;MHa=S<`hoD9;5(d4s5FY**iZ9X*f2$8f z#sEwrTo;*WLI9@3i?lZYQ}{(nHw?q$Md~+<6_8>jdN&MKa0*>%({L1xG%K;>afnoAD?F#+uy zgQXCYB*8e{@%Gv*lzuEaS19!vi)DBy#f-J4K~$TCQE10Fj6$Kbc$QU&a=NU}I%4z! z498X0Riu+Hs}6#bj<+U2%o%S@hA2D-6Gz<%7|KFv#T-nAA0}X-9!gpNvRdo-C70Rp z_x*(>Vkmw23k?%WXJ@1S{x^}6JUZDF> z@togrLv}hi$*QQy^L3u&;kh9#rJc;Scbd#KlOY)O`fM_0(@<)y+_k1)_Ccz_Sb!Xw zf(8sFX0YBtX*N&BZ_unVO(Q_%%NDN3PP)2x;{k0&9RCqg$Cr%cn)v$!RT)5z&o z8Mx7CswL1~s^-vCogmOkwaFt8R}ME-3F;JRC4(F7RR97_RT%=Mt*!71?sHO} zAXaV|#Hpd8OVaHitO8VRH`fU}6+LFIm0lC6=v{L$T%xFxt^DK>Y^8%6wQX0lUB|5f zQN6_|&phr7sAJWuQN5XIw??RAU!Ag4@3{FG4_?vb`4|shQNaZmieJ%$1=bjdp9`#c z5W!@PfPhLls)z(_gY3>q?Ef46@TC`@qrKqe2)NUPa zJT5QAUEKq^z78{Ry=9o$IEew5JSnEz-|Z;va@^)Vph_F8@sw)?`uYR>EVM zHlan?$h8o#Zy^LsD^JHZqeUN3^k$6KH)+-utp9FO{H<7%+@wxhEf>W7tr(L5$mLnGhFF zTfOMYJ}Vp=v-ex6l*ZY!R%`llfbHsZ(Ao|3^&FbpHylF*(hax9K@>WKrr|;TT&CW%@D#>aE?9r+eHu5$ zH^Wf6gsMa+*?Jmx7K;Tg9YLUA4QbmsMkw7-kL@(zJXS5+Y1w%zz4oQWlU{@@r8(EE z&b0CZuIr_A>;kSnUig-ywihv5E~U)ZakV|Xh~a)Igc@@LtQd)Wy&ApVC-@;f^@frss(?B33z5)X2hCv|7 zW_0of1|v>)JOq-Q34zpFK_H>*$D zN%L6Kal)0U>H`eQFKF-stGnk7mC4{qUX z=vSP}2nb|Qf=)iPGQy2qa+BvHTstqQ%OiBi7j*0qmgs7WJtJ=hFB)8NUup7vjFNMn z73kw*OkFRi>J!-ig0?@g0<^MEVJ~XZZ+~Ix@DIkX7j)ns%+W8X(o;@!)l;-7XHkVJ zKEq6RgF5}h@-g%o%=kzbpII&blT4fEc;dmy)S^4jQ8G>|7iD;X+wK>H1oKem7g$su zqJ1xL+joe3UZSrY!Xs;IFvL#_^K42t2ERkp)om?@_~pi$`VftNW!0m%Cf3v(wE>N@ zFpP7=;uLA&F#*T!0fC5>X=OB~4vyW7%D%Fy!;K_%dpx3IuhCSGXv=FX%pcK(7<8?2 zZ=n2$#=o&jB*MQmv5ZS~ykZ5`qN+2)i_)t%Xj6{Xg4V>K2XUk}TE9?O^S4%uc&Lr3 z-!MEq|Aae=kL3B;>gxGXC3Ll`-5TpZW5x23UVXNP>5%XKb`RLl!%9X4zF4Vf&ll9v zN2>B2w`n3=f7b5pZ#SoU##z0e?UzOf$SwAJbr=-PKInm^Kq z?-+D$EQlRlhtB=Lymf=#|G*6-w_%`;S&TCNvKsxTM=tz@et&}o$Br&JKWlUsj~nw{ z(bE9DJfd9?%i=_rqX>`aN}To}t=S(UDt2@at(Kqq$B8bYb^GDJkc4rgv+$;lMoDZd zI~jXWs_$`*p?-Roh3_B7=LA1j;Ipc}IG(KUb^z;Jj?ZYGn1f#la3^E%M!@%!4Bl3E zIZ5Wp#N@rGw9{*ovQy&$yhAgJacj^naFP5L-Zn#@JL5 zC5({a1z~#z0d{p{RzN;oghn<8aQ$R=d`5|>NWeAE$SI`HY)&$_fEM!^ zS??=#-yaEOgzh=v;g%D6N*w+ zfch*Gpn?MSr%VhgJAeyY)$tj*Z*y>U1^AoFJJ?AM3Ak!0!XFPsM6pU;2XG4Y9iQCmqAwn>PsqUbQdtklR?iK>iXl-hk7yb6P3t>40;Pt-&G+ILjnF~APu&O z2I#NAdDV`0Q!^Ok0ItCyj?b8$f`bDD;FBx9{zeGF7gs9D(E<*pVlYlXbDhTo0oOE$ zg3wmHPsUNEBPk8G=zNbLDGl(6mda&1(s2D@`AkXGwsnpG*s9_L3$RUHAiy?tkpSD& zr2=eIS17PhRaoUTE>3l|L%7D)IzEJR@CF4|s0g*wG1%+?*5B&*jC43T14jNWptS~} z0xIhSc00i3B)QiiP9g^c*ohocfIp`3Xv^6g6_7%M;|^f6PC7or-Hi3m2v}K?!TA~q zU3QY`OEbA7Drd?uxGG?0Sq3)*JkcOhKq?*Ou7IN&JP@#_BB$|4KrELg{|MQp!E*tF zs&X8+0DOg}DmhvJzAaMVjey1)yc2+rjFiSl0n2MK_`=s8*D1a>QYzm?Wr0@tC7^6w z)`*P{YjiWTsKX$hfQcG-3Mi(dBocr(dsHq-1-K?RVv<70<%SGW3mB(0(h8W;gf%h< zxYC$GW&tj(kxjs3-2-w6D5ybhmykP}z66E~urGm80_;m*tN?upxQy{a>`P#x0Q(Y{EWo}5rU|ewfj|NFB`{ln-Q(v9 zusi&G4X`n@VfXljqGI>>B?9aozg&Rb<5vl=d;D4fc8}j6!0z#z1#pMQ`YS|;-Q%|l zuzUPY0d|kyBf#$Q`vllM{-6N6#~&78clZbfy#BI#{0UL9d;Dnuc8@=&!0&VaMF;SR zf7$V=?*!Eqa!tTy4Q>j!r-AFX5IfF20d|}y0d}0n3h>u>WruP$PaVKkJa>G?z+oKx zQb5V!3`_yDT$)4+xv0Tw0i{Q9oEQN(W?Yr+odC6EHNXb}6EyfF06PLJjV}VSj%M(! zrdoe-QATR=Lsa%@@JoQt7>?tC@5ywObpK-zN5BIO;t2?v#2N_%s81nbh?f9Yoasyw z3E87T5&;_mStFT%=`$Im5Kw6rgH!?v&tc##Kz%WZeA5cBTP}l3ksoSlgI%0ejXlC?#OYdIn_#sI9zF)^fGf`ser3S5zwe*{0gg8!A;Cz|~RB@fp9i za&Qd+X?HQGB|vTRjRfil*s_;FJpn2U7gQQ5qQ3q#(qJ1JfF=&$Oq(g+4i(%LpLrs< zr2=qb^Qlv;-^Kx~-_G$F29AV*eg^>)aXbt_Cjq7lpNoQY5n?CVU4h?k)O;PldGvC8 zMx`^HKpz327a8;wFyaz}{sQ`6W-w3z7w6Ia3X{R2vi&N9p#t(=V-O%9;yQ!j0@PmS zD9K0xp|==}7V!BVgRuh6-q-g(d=aoAYLjy$GC`@VRyEu+ioyRJz@?w;_>4RcIe4mo zyiXZS7w}4hKmkvlvBoS7)cjZM1(P|V66Ym@xdKMG8O#$9ZZcRPAk<>8P(Y_w3>FJm z^Nzt%0Ris;F#jzV@=Xz(J|e&_{Tc<-=d{MH53I4?0bCs$9iOrIBL{C5pmu3TidzLN z(O{bcT=?LYRkl0CaBC1MApbAc*d<_Ktk^2mJp!_MFxV^LTxWe@;L@LVd`4y+d`>_U4K6Cco5(NM;EHHuc4=~5h#lwF zf8*S70B3s7@fqC`u}u#IsEz7j*sI)>*sQO#@os+4$mV*eMXH8@(Bp6#h`$I3AGs%5}@|;N0cH0 zaP+eR#RNR4&!B{WX$={as;%Z*`9nKMY3z##4fgxbhNCy1`TpPt;fBRx0pKT^nliIi#^h0rio+ky8&XuJsP#3ficAb5wXo z9PEY&TNL1 zIe@Fy z$as#y69G@pGkB_jy8fPBWb#~8o?mA0Qoxa`3`_xouQ7-gkm&}4*8;lVVGtwWyaw+C zl)eiM%zqz*V2=e=r=JzzeFI|OXYkDdT**HipAq$dgMSHl@Q8s&9VdaFj~T=f@LYp< z4sh|29LO|*Lkx8S2Y{D=2n`Ym$oHHzk_eciK{5e3U$90B0UzBAQVAGfGH`hdxuHo~ z0TnG)NiX2C1{npce$5)01!TY;3$Q(_fC(D-2vEB)KqH3@F#p<>oLdpzTjAt4R>|i8 zuJr^ z6$Gq}%MmIGC=ic96#=0dR1;7xK5Ntv(B6|lEdgb{;_&*jj*#nKtWr;ae?kTg1h_S5 zBtRWzf}%7LpbjtrXePieY)b`>sIm2(E`1vS7ZWahI|)yhoKxr^V7xbjP69e)W6(uF zuAB_IDZpQkVS{L8MNb9hs!Y|kumHUrzk_=DZ*f&fG0H= z3>L7ZCWD~@)CLtuBS3&UaRp$w16)SoI!s17#84-$KxMQ5wQ~i)SOJF`F!MX z5RKuD7)%rp)|kO00V|v6G^Pm2)r`qB0oj@}m?0oSgP8(?Te8M%0c~3`2olhuHG^OQ zgW58fZv$L^YuYg(QMuTG!6E_Gx-eKGpkh}B%LJ%hHBdz>1o-+fSS3L1tO1QR0@QIa zYW=rP$g#exvO&PY{tPw=C^m?}76Gw_FbEM4G?c;L0{$MxV21#;9|sKCsezh*wz!z= z7L^tg8H5Q?N6#S6J^^ZH4uAs!s!wMS{x1k*a9DuaoC8sg3Q)(&sQKrZkp6R6<%EFt zK@3g_cr}l~83DT&GdL&U+)@S?1h|(oxFn$RN(NUL@bmv;tC(C96}8(3Y`r1CzIY=Q zkZqiyan}KSHQ#r9e3}h{qXekEKmZ;I*tV5{>xq!@AxxeMXugfXa{+2g5G3+afZ9wN zz*1m=8f2Q{^k#t94q&rl9G?^XUIA<3tKR4%9&gKLq&h zXYfnFOAS2gI(c-tz#4G`Jh;gqo&qj5!xhOSfv6O|!@x_xu)7Qr2^e#qK@tJgq8KC- zpibw3sVM~P&}B`n0Pp(|@{gW>(mI4opWg8q9?v<2i~=gYV31kB@Rtm-3h4fmfscT$ zzZm2Y5UD{f4b=5FE*3vl&Lb*MJQ(B?5Eh3)0Rie%Ae60;0JUQZKoJ4n2^bU;P|%Y> z2?71Q0C4@464ELmtCSINClP~k0&XN`P(gq?PYC%|5}>wR0jMG%Npc3&1bC)kP=f(q ze`@~~#Hl4JZBsL-BS7uG0*!hCKBi~TKtN0e28{#^%fz6G0ChSM(r6}NR(2dJ4AMf# zkDRR1O2CNR4B7~2l$Sv}0nhR?=pbNsK?a=!)Go}Ri-4ZR7<5y>#T~IwR-~w>zEAd@>CKE(uL`Mb_1tjgvV3L5z8cY%J zvnOjz6EM@4!3+VJ{20s>u*DDk52no)qPDgH2oi8cgJ1z|d$Y!T0narc0U>=@W08RT z27@I6c5AS#u6q8)Js@3QR#_n`qcvD1;KM-HSR-KJU1{|K-nJXhd=N)gh5gPwpl3@FqNGT{$Y*O4sfxdX&kRH@&$*d z6EOA_gA4)!Uo*%gV96T>Sp;m3VUSJ0tG5iY3rO~XLC$*W`e(bgXp&o08hm7xyaJAD zkY7NpPpnZ;Kvz6zMEw*N(E2BXq5|%E#8Vo@1r&0{VNz1akGKp<3%KpYpsaxYNf?wD zkUTkqiULxlVo+JY{xl4#3K*S^LG^m-`NQuGQ%k8h`!p$A>pFlNs=nhh@@L@`8VXpE zl|f?x349nd6;Lq;gXRLT6%@~ZtrR(|x<|u2tkTv2oN0T<=LC0B;FQwG*=x$kt`1=R z?vBrh%Fn?)1q2pg;3vSfu?UmiLdF+oU0NXhNK9>&9+kjIT<%An)8!{LpAYCH{;{>QP-;m^Z0XR5Lfr$#7R+*~9V*n;Q zfHR%y_>4R)5sdZcbVb&v2 z%?@C*wz3cFk64D+WKLn56K<$u=MZ7LfTq(KgbG+alffI zegVJc$K&;H}r zbrc>_y(i#OD1!$A67FK~P(a9T29E`t*~8!;0Z+piJQLu7oxhOF3jmkyA!;u$5Vxq{ zWI_d^6~KfY%NP>Q;Ee;g550AKM*kxm{9b_CDGUjG6ma_(gUq;Y&ks>_^SIss2_FvuWa!c7L51SGx1APWP&{?^`Rl1)_pcb7qS0r7Ck zASxoK0CnsjKyCp$o-oKOpwT}J@(Z}5K|uk7p6lzcu#l!NIZjalYO^zBQ(S;u9i(H3wG|Q05nd$~M6IqrDeDsjez2F-aLz7f>fPgPH=;q+?K9 zfNe!R1$HX4?8n~?9l&Nac6_|88p_qQzMB6zLelJ(Fy%@|8kicLtQ$SsR2D1fB z8^<6>fI3hT#SB&;T3NB@FoOjSU@I2F=hESy=WzI9C)^lD43-M`XDNf_0?w~uuu?$T zwG37ZD6xUTS^*0-F<39)$W9lNjY8CJbg+E00=RR+X{|xrVj&7(eJ%gwZ+8F}CDid5 z)sJ!ly99ha%V3XyWtSQ3Wx(T4#0@6<6?w1nP>0dMif{*T9)}&DvEl&-9~IE%Az;ND2B!ox{=mR>M##xeOwI}L|H|Nk0>8hLaM=ND)>Y-(qpS|suPoef00-Z4 zd`4I-uF2a1dM8f6>yNuaKBi%n`vNkiXAmWzX=VnG1XRt<;E90ic^Etu@F+in=K{(U zV(?M{7hAqu6H`=T7h#oX0U3)jcr8Hf-G?TM5m2czgLeYdDWTB#Ai%Dl&kEpa1aIfZ zhaeI6oA&g=kAAgkju zTs}QHf{&0XeHr8s;5U>(E(Lyn=#tj~oMe8-XXG5o`UMrhGX<={aZV~sDB=LtFQ$F! z`G*}|QjyvlH)Ztg>m>)0U7o)m?0ql0S2=K^w%Ir zKr@}kJOOs5B*4yPu??{Pva?wxDt0z21=!iF5nyMtUI9D>!m~%6?>sIAo(iz@c%cAyp*q#LirAoD`fKmk*)KGv+ zZ(CMdfNfbl2e=H|w1y5bY}1-35TWwDn2l3y?f|aBmX6O@nu3Gd2nbKbpuGU>ld0_N zB;bHIgRTwL<6_PuS2`v=L?t8x13v+sGc)KT;G{OIp8(s=fdXvHh6u1N3lK2ZrA-?l z#5QfT0Nb*00&L4B2(T^tp8(skDGG4Q?JLE$Pj>*iCRiWjT1afTz_M?A1UmS1wm)azIr2*I;l+z`X_xjtVHRGd(V#b2HXBC16%7 z24@9e4^UM<7X)N(3xMUqWg*xMRHEkLfVaBzw*{>2%u((MSgJvkfUvHt@mN4{ zZTnLOyj-xW@P(+@bz};#tLT*gyNY52*j4mifL%qO1lU#dRRNw2qQ`sk?aB{PvFj)n zw!hRWeiPaFI0|s{+f@`_fL$YA0_++|EWoajWCH9ONvVKqv+7ibbd`83q5$`yw2sdS z&Y%E~@@e%bpVq0SrnCSUQA38375jo#h4ChF22cvh%H~2)9awDV#_R0kNhrsOSELS39(Zhr~v+(#zWZ<))?XdF1^3wGk(nB;Nb!uO=mDlz`Yp^#tLX2$Y4AJ zzWzSwL?((#v<8y}Y?;q-rU{rdmqDNa>=CNQj@bgj=P{ToV2w^=zJOGV_4T(<$nXUm zXNdsp?W$5;E}#c7SS29UA_i*(Btoi)vO&Q36$~~DIJ}fWhypIIWb9L_;%pa{GaBp^ zFj6P7M?kx^9A%$?rYjj76!35rgTn%v=_nBbu!||rKPQA>7gJ@(X#rg}FgPdRxds;n z&?eTnBB07<2G<1~-ooIP08{s=I{+@-%Y3)8%6(BOqg5UXz%HoDvL^!Uj`>W0-4$O7 zu)Crq!0w8#1vC%T{r{~HyDNSWV0XpO0_?8%O@LkTKLyxb(F0qm>eAU=F|Gi+D<){H z)?eHMR9{5#5{io56_W_C`$%#Dc2`U#!0sby1lV0My#Tu_W)g75r8`i)st7dr>_FUa8^DweJuc-_RjEzBP7yhW~aBZYChn4hAg+?9d6c5n!j-UV)n` zkL&k1N+;2<)94D|(q`C+^iV1fRGj{IIF6qK*sR`;&p3OSgZm1=2ED2c1_-!(oWWoL zWlu8j7m)580M=i_g;cu8Dx(Bo&t8@4SOKFiGZ-)6#5D#J1#Gy%V6uQ3kqo8@_^v@9 z10Mg!-e#5AqJph`Rlait*wry#fL#F#1=tm^M1WlZ%LUjKuu6cc0QI`&S|N4?Y!F~q zz-9q<1%wE&D`2|-y8?C!uq$AX0J{SADd6JPwkzPEsMr;7SOM-s8$WZ6L^y!^!*R#w zbg@$cd>^p>Spn4^F}NUL))NI>#$_RsnHbjuJblJ-ZVI@s!EFH@+^lg=0Cx9PEf*zV zs>$H7fZovzo@$`(Ke}r2LR4OVVii-sqZkIS1l-mjMnJyztnprej|QIvto*>~8>@*^>rooS5wKD>Lwo^tyLbt(D?YIRyW*1x&=qf_WWfF3u6S=zu`52E z0K4Kd3a~3aivYXgeFWGQpHqNc@p%NOdRP5FzYx3P3kk3*zNi4Z;!6myE55VAfKM897I49fHM$9?>&c*}fD>Aymw<)|S;G+E zDxmG^FC;*NK>}>chYGMQ8z#WEY@`6&vM~Z|%Ul9%%l`V8*rrVq72C3@0&L4>C}62J z=$V#FGs^*7r*j;iQ8*a~2MfrOlEDH29n-p)EE2NNo54~6*d|)F+X?|oG*~U*s|M=? zwA5y86kyxAMSyMDwkB%*g%>pO$znFnW`|O_p#V0nR{8FdIJRYB0&L6n3$QH<7hqd< zM1XDCF$Fl=sjiZo%}IxF6`po{YLjba#W?}Cofien%EcO21WeZ8x&Z8bt+)=UK{z~;1Yd}@bp zm04>6pL`j#6M&t*l}1Ma|Lez~i-1G}8FUwrb+7_1!&ivijd}~P&FZTF_q-rIW(*Jw zJDb4*>}>o6=xmJPlExu@b&t{joq!8FM#Amh?Gj*T`j-HEe3&F)(nK!XQ~|#KV=zNN zAD!te0edtEswc#@Yn}i*RT5yQx>$gn>M{m&uWNL9-h#Xn-mXU@LR`_}vKG&@*s29y zURNsTwOFXd3N3=P_^!omEw*X#LkqVSVOs3f;%~L4L8AD;LW$K{+|%Ng7MHZZOZ-X& z-zX@tM2r1eEYsqw7K^obtHm8HLbQ0P#VRf4;S(g4+7a!YtHnVr7HEO*6O>B07HhTG zpv4X?)YlbIIiQ95BmqA4VmX9*ogCt@7N@jOuSEl%#wTD(s`rl})LX<5>ZMc&_2MPO zJ1wqiq25XaR4?B_?9@WNj|Sg-Ev{*yUho1`uWdo7x3M79>rfEtRU!!WwvP)^ya7I`_3iR~H<>gFFp-Hb!1yCI01TBwB{d}@6L zp_UvFYQln0vjc=0Ng>ow2BC(nPV-_LHz;M#=xPa+HFE;MF~_lz#%wLX5VShMHl#Zg^@{i3r_e&6WCUU;MHcb2rxLa)Ra)bQrl?|6<<-S`Ld zE?Kfm(ZYiU^qL3tkl%xRQVL)92d9F5(OzDE|H-=eMW?_?VX!E_*S0@`QkHa*-|{=p z8f@+LR5ot?on{Fhu$L|0Y12@u)GNBM*N)%4*@N#L@}d>Jq7&itAp~a+esGv0h5n&M zGheP}yz5U~p*LzF%w{*KY47NQUU=P&E9xf2^p5tSIVpE?%)Ni&dn)F>-&rX>lw?j| z0cw0|Z%(qB?)9X0eWDY^Q_Vhys*Z>*k`iS+WyevyU`}9mdbDfXN3hmv`W}f&HFEyf5<2Vl_Rmcnb?fjc^cJk^QoyZHX=Kap9 zC>HStgKfo}Ry+Pj2t6oufSc|79~cozIT21vNVk5`Ia5kP=lE`xQ08lYvIqT8I1bN1hsPddTQ2^tlFJJ(7IOJ)tv>yuQ#mo{H}{GD(G|S@ zv2{Pvl>yP2y^EFmw^1Jc5kv*6-s8%S{2gbbtPStQSKau@A2@jXb*A@zr}?~Y|L)B~ zJ_BJH=bR<@;$KW~*cy>h))t`F+x zj{3=^*a_uIqFl|@Pl)oCQLcLGXS4DiR6lK%w}$#@rGD-!c3u5^Q$PFEkE^5#Ijo!y z)lV_yt*w44sh+gv^gcybC%MUNI) zsi2J`umYm<#8s0M{hF)7)kqbXk0wOoFuE7C6`}FfEESlJE+2NKqnH5Lre>%>oGXqK zaFD-R&j#k4?-QMqdJK!sl17zptS%FTno}V*5)F&4i>d43u;^-u)s#9GJ!n4ai7xky zE=rw-M|+}Ne#4_nCsPGN6g9U(gwmGb(dCn=xfMP&w?f>c_rs&hc`Cc%v#8XF=;|RrEVv?*-% z$mrnO`P2&3h?^Wg>`If$aaF_NG@4bysWistum(q>Z(psWma4{@iuhsI?#7PmI*yUi ztY{0zmA0+p%F@Ykt-{GL#+503gI|U94Sqc>rLS7`8WV90i$1}nKh9s#t{XUbMZ2=D zbzBCHTG8w^&REf|EI3?6yAmFET+48pie~AqDOXs#^{=;kdprwEc<^;#K!>d=&o6KA z!>)z zdf)07*bQ5|+Kh2rr?6ACW)}9J)~=!0R@&GWHgmw6mUY^xCA<-}6og%QS2(W!VS{GP zI$&pJ?OKT~nYAl5wqDk*Gvb<$-ItjK80Y7CkjKEc1!;WS6rN!N_Phxx=&kM&jPck# zS#QLA0^24V?y#ay-n44zt?n6&Wf36ks*3%OjlE%u%fzJ4npNFE7(1{}u->;g+YQ?l zV2nKL5zC)eU3!_B2EEFfHq4_<%(i@4S1bKMY_+R*`n`!gcG(qR^mrutm$Uk$3yU)$ zrg&2CdrH6ZPiV1gDt4tc?uFH#9b*;Gr*2RTpLDV9eO{+v>r=hs>*WlND=@Qig>{LD zxn3~8x|1>T76D<`@ZyeZVhP(7V6@5^JC^@E8a$(5ej0QBvd!mhX2rBAyaVc$IMdVvk|*cD(5 zTh0YJ@~lwRuz_dao~T&qj*4IZ3^dp^51ZC$S2yfdr(FduI4=K7j%(%>Z923qHfYnX_Sl(CyOv?UHSLOvebuxpezfDNhkepC z+wQmmjMh=AB!Ss_^z)@*DT`+bi<9YHbsukaM`^_Vf(YzthV9RcmtpNIy_=dmk-E(^ zmSQV1V^vsmqj&YXziG#kvnYufcHV=I)tlyT4VPbd*d5yTccg~v0sgL9qb&}c0Dp2SIxeTYlFDj z4sw_^Sh>O`YFw|3n?9ckBC+;eN!cidsKE5L}4`3)_#BXhHS zVe!L0jI3Ho-TWKz?n8rJ-k9;Ut2l0`wW}WPL$#|e=5X!Wfg5|{df35FA3VFdOqE6v zTwMC&^k(lIS6AFlYc}ee;|l!gxE95UXNQ)E=eU9sIE96q`>)`W$B`}iYA3H7|hXww^nT^;fDv~~@{XVcnM6W>c~ z*GYURZN!8{XZ=)vxc=^UEWUHrAHW*Z9oIp8*{oUWAjcJqZ<#eqJI`^YU*Nb(;;UsH z>b=Bq5x!H_tOmYE)~?w25Lvs9uEuxY+UZ*3xW=t@T;1^Xu?}sC&yKb0*k*CzLu1X} z|G%fZ3u!8j!#LhZ6gfpilOm@PjC2(-*-gd5AiM}GSb0YuDO5PCRQQF#eB%;V=iTmK-1c?$ppv+mh)r5#QjufITi@!kCay>KmkH5f4) zm2?67k_rDAwDo?-)_t&E{CEwYZ8}SB@6WsK$f?CqqZg?VtLyG z`I>*CP-S22?RKF~eYLmH4_gE9t$cRX&mxl@^;2oBpZZ(c5;23C#Gq5@T2GV~=gV1S z>!9CO7ywmXYsc=)Snb-!=E-XKQA*Mpz)@Bm#AvQuxm;0fKDto+Q=&Pf{ns<8EzYoc z?i^643~TRLCS2vmiDWebL$dBb zL9)6#P3g8}vl}~OX7H0Pa7IeUEF2^28vr9~C*&e)JBBOPBP?62QA|Rt%~)&Xm%i(n zo!_!i0zOW?E{LU}6)eD_R`uC>N)=_vo-kPgz)vmGC1ZXFHnyT;;mA;#L zE9wnY`NnncAuqAoF$<^E0gy>X%P)E14P|ERlpcUETCy{cU=r5@ue@@`Mj^npI`ZJ;sSIPAHwjNd5rNKwg}-s901M06)*q* diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 609d31207..ff90509fe 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:44.446466Z", - "iopub.status.busy": "2024-06-13T18:21:44.446295Z", - "iopub.status.idle": "2024-06-13T18:21:45.686437Z", - "shell.execute_reply": "2024-06-13T18:21:45.685801Z" + "iopub.execute_input": "2024-06-14T00:16:35.102776Z", + "iopub.status.busy": "2024-06-14T00:16:35.102607Z", + "iopub.status.idle": "2024-06-14T00:16:36.367224Z", + "shell.execute_reply": "2024-06-14T00:16:36.366563Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.689093Z", - "iopub.status.busy": "2024-06-13T18:21:45.688801Z", - "iopub.status.idle": "2024-06-13T18:21:45.707625Z", - "shell.execute_reply": "2024-06-13T18:21:45.707085Z" + "iopub.execute_input": "2024-06-14T00:16:36.370397Z", + "iopub.status.busy": "2024-06-14T00:16:36.369735Z", + "iopub.status.idle": "2024-06-14T00:16:36.389330Z", + "shell.execute_reply": "2024-06-14T00:16:36.388796Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.709963Z", - "iopub.status.busy": "2024-06-13T18:21:45.709612Z", - "iopub.status.idle": "2024-06-13T18:21:45.880864Z", - "shell.execute_reply": "2024-06-13T18:21:45.880310Z" + "iopub.execute_input": "2024-06-14T00:16:36.392026Z", + "iopub.status.busy": "2024-06-14T00:16:36.391500Z", + "iopub.status.idle": "2024-06-14T00:16:36.626524Z", + "shell.execute_reply": "2024-06-14T00:16:36.625916Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.912284Z", - "iopub.status.busy": "2024-06-13T18:21:45.911831Z", - "iopub.status.idle": "2024-06-13T18:21:45.915729Z", - "shell.execute_reply": "2024-06-13T18:21:45.915266Z" + "iopub.execute_input": "2024-06-14T00:16:36.657354Z", + "iopub.status.busy": "2024-06-14T00:16:36.656861Z", + "iopub.status.idle": "2024-06-14T00:16:36.660828Z", + "shell.execute_reply": "2024-06-14T00:16:36.660317Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.917850Z", - "iopub.status.busy": "2024-06-13T18:21:45.917512Z", - "iopub.status.idle": "2024-06-13T18:21:45.925712Z", - "shell.execute_reply": "2024-06-13T18:21:45.925300Z" + "iopub.execute_input": "2024-06-14T00:16:36.662889Z", + "iopub.status.busy": "2024-06-14T00:16:36.662710Z", + "iopub.status.idle": "2024-06-14T00:16:36.671428Z", + "shell.execute_reply": "2024-06-14T00:16:36.670838Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.927911Z", - "iopub.status.busy": "2024-06-13T18:21:45.927592Z", - "iopub.status.idle": "2024-06-13T18:21:45.930065Z", - "shell.execute_reply": "2024-06-13T18:21:45.929642Z" + "iopub.execute_input": "2024-06-14T00:16:36.673814Z", + "iopub.status.busy": "2024-06-14T00:16:36.673616Z", + "iopub.status.idle": "2024-06-14T00:16:36.676392Z", + "shell.execute_reply": "2024-06-14T00:16:36.675941Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.932090Z", - "iopub.status.busy": "2024-06-13T18:21:45.931759Z", - "iopub.status.idle": "2024-06-13T18:21:46.461706Z", - "shell.execute_reply": "2024-06-13T18:21:46.461165Z" + "iopub.execute_input": "2024-06-14T00:16:36.678451Z", + "iopub.status.busy": "2024-06-14T00:16:36.678052Z", + "iopub.status.idle": "2024-06-14T00:16:37.201770Z", + "shell.execute_reply": "2024-06-14T00:16:37.201197Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:46.464224Z", - "iopub.status.busy": "2024-06-13T18:21:46.463855Z", - "iopub.status.idle": "2024-06-13T18:21:48.129673Z", - "shell.execute_reply": "2024-06-13T18:21:48.128977Z" + "iopub.execute_input": "2024-06-14T00:16:37.204126Z", + "iopub.status.busy": "2024-06-14T00:16:37.203935Z", + "iopub.status.idle": "2024-06-14T00:16:38.949183Z", + "shell.execute_reply": "2024-06-14T00:16:38.948545Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.132549Z", - "iopub.status.busy": "2024-06-13T18:21:48.131840Z", - "iopub.status.idle": "2024-06-13T18:21:48.141925Z", - "shell.execute_reply": "2024-06-13T18:21:48.141418Z" + "iopub.execute_input": "2024-06-14T00:16:38.951734Z", + "iopub.status.busy": "2024-06-14T00:16:38.951171Z", + "iopub.status.idle": "2024-06-14T00:16:38.961167Z", + "shell.execute_reply": "2024-06-14T00:16:38.960660Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.143991Z", - "iopub.status.busy": "2024-06-13T18:21:48.143676Z", - "iopub.status.idle": "2024-06-13T18:21:48.147703Z", - "shell.execute_reply": "2024-06-13T18:21:48.147259Z" + "iopub.execute_input": "2024-06-14T00:16:38.963247Z", + "iopub.status.busy": "2024-06-14T00:16:38.962939Z", + "iopub.status.idle": "2024-06-14T00:16:38.967202Z", + "shell.execute_reply": "2024-06-14T00:16:38.966760Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.149715Z", - "iopub.status.busy": "2024-06-13T18:21:48.149389Z", - "iopub.status.idle": "2024-06-13T18:21:48.156519Z", - "shell.execute_reply": "2024-06-13T18:21:48.155966Z" + "iopub.execute_input": "2024-06-14T00:16:38.969238Z", + "iopub.status.busy": "2024-06-14T00:16:38.968905Z", + "iopub.status.idle": "2024-06-14T00:16:38.975988Z", + "shell.execute_reply": "2024-06-14T00:16:38.975557Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.158532Z", - "iopub.status.busy": "2024-06-13T18:21:48.158158Z", - "iopub.status.idle": "2024-06-13T18:21:48.271142Z", - "shell.execute_reply": "2024-06-13T18:21:48.270566Z" + "iopub.execute_input": "2024-06-14T00:16:38.977991Z", + "iopub.status.busy": "2024-06-14T00:16:38.977634Z", + "iopub.status.idle": "2024-06-14T00:16:39.091919Z", + "shell.execute_reply": "2024-06-14T00:16:39.091342Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.273443Z", - "iopub.status.busy": "2024-06-13T18:21:48.273042Z", - "iopub.status.idle": "2024-06-13T18:21:48.275951Z", - "shell.execute_reply": "2024-06-13T18:21:48.275426Z" + "iopub.execute_input": "2024-06-14T00:16:39.093925Z", + "iopub.status.busy": "2024-06-14T00:16:39.093747Z", + "iopub.status.idle": "2024-06-14T00:16:39.096634Z", + "shell.execute_reply": "2024-06-14T00:16:39.096182Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.277990Z", - "iopub.status.busy": "2024-06-13T18:21:48.277687Z", - "iopub.status.idle": "2024-06-13T18:21:50.344321Z", - "shell.execute_reply": "2024-06-13T18:21:50.343524Z" + "iopub.execute_input": "2024-06-14T00:16:39.098393Z", + "iopub.status.busy": "2024-06-14T00:16:39.098225Z", + "iopub.status.idle": "2024-06-14T00:16:41.120718Z", + "shell.execute_reply": "2024-06-14T00:16:41.120010Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:50.347493Z", - "iopub.status.busy": "2024-06-13T18:21:50.346863Z", - "iopub.status.idle": "2024-06-13T18:21:50.359183Z", - "shell.execute_reply": "2024-06-13T18:21:50.358611Z" + "iopub.execute_input": "2024-06-14T00:16:41.123876Z", + "iopub.status.busy": "2024-06-14T00:16:41.123090Z", + "iopub.status.idle": "2024-06-14T00:16:41.135100Z", + "shell.execute_reply": "2024-06-14T00:16:41.134531Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:50.361456Z", - "iopub.status.busy": "2024-06-13T18:21:50.361126Z", - "iopub.status.idle": "2024-06-13T18:21:50.439475Z", - "shell.execute_reply": "2024-06-13T18:21:50.438951Z" + "iopub.execute_input": "2024-06-14T00:16:41.137227Z", + "iopub.status.busy": "2024-06-14T00:16:41.137042Z", + "iopub.status.idle": "2024-06-14T00:16:41.168646Z", + "shell.execute_reply": "2024-06-14T00:16:41.168192Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index fc4fd930e..816bb204d 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:53.349069Z", - "iopub.status.busy": "2024-06-13T18:21:53.348887Z", - "iopub.status.idle": "2024-06-13T18:21:56.766258Z", - "shell.execute_reply": "2024-06-13T18:21:56.765677Z" + "iopub.execute_input": "2024-06-14T00:16:45.162695Z", + "iopub.status.busy": "2024-06-14T00:16:45.162281Z", + "iopub.status.idle": "2024-06-14T00:16:48.258885Z", + "shell.execute_reply": "2024-06-14T00:16:48.258283Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.769016Z", - "iopub.status.busy": "2024-06-13T18:21:56.768599Z", - "iopub.status.idle": "2024-06-13T18:21:56.771941Z", - "shell.execute_reply": "2024-06-13T18:21:56.771507Z" + "iopub.execute_input": "2024-06-14T00:16:48.261476Z", + "iopub.status.busy": "2024-06-14T00:16:48.261152Z", + "iopub.status.idle": "2024-06-14T00:16:48.264538Z", + "shell.execute_reply": "2024-06-14T00:16:48.264097Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.774034Z", - "iopub.status.busy": "2024-06-13T18:21:56.773643Z", - "iopub.status.idle": "2024-06-13T18:21:56.776767Z", - "shell.execute_reply": "2024-06-13T18:21:56.776243Z" + "iopub.execute_input": "2024-06-14T00:16:48.266679Z", + "iopub.status.busy": "2024-06-14T00:16:48.266276Z", + "iopub.status.idle": "2024-06-14T00:16:48.269340Z", + "shell.execute_reply": "2024-06-14T00:16:48.268893Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.778889Z", - "iopub.status.busy": "2024-06-13T18:21:56.778480Z", - "iopub.status.idle": "2024-06-13T18:21:56.846746Z", - "shell.execute_reply": "2024-06-13T18:21:56.846182Z" + "iopub.execute_input": "2024-06-14T00:16:48.271244Z", + "iopub.status.busy": "2024-06-14T00:16:48.271069Z", + "iopub.status.idle": "2024-06-14T00:16:48.304367Z", + "shell.execute_reply": "2024-06-14T00:16:48.303838Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.849082Z", - "iopub.status.busy": "2024-06-13T18:21:56.848651Z", - "iopub.status.idle": "2024-06-13T18:21:56.852424Z", - "shell.execute_reply": "2024-06-13T18:21:56.851841Z" + "iopub.execute_input": "2024-06-14T00:16:48.306482Z", + "iopub.status.busy": "2024-06-14T00:16:48.306139Z", + "iopub.status.idle": "2024-06-14T00:16:48.309749Z", + "shell.execute_reply": "2024-06-14T00:16:48.309179Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.854664Z", - "iopub.status.busy": "2024-06-13T18:21:56.854215Z", - "iopub.status.idle": "2024-06-13T18:21:56.857528Z", - "shell.execute_reply": "2024-06-13T18:21:56.857084Z" + "iopub.execute_input": "2024-06-14T00:16:48.311782Z", + "iopub.status.busy": "2024-06-14T00:16:48.311456Z", + "iopub.status.idle": "2024-06-14T00:16:48.314925Z", + "shell.execute_reply": "2024-06-14T00:16:48.314465Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'getting_spare_card'}\n" + "Classes: {'card_payment_fee_charged', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'change_pin', 'cancel_transfer', 'visa_or_mastercard'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.859663Z", - "iopub.status.busy": "2024-06-13T18:21:56.859334Z", - "iopub.status.idle": "2024-06-13T18:21:56.862455Z", - "shell.execute_reply": "2024-06-13T18:21:56.861945Z" + "iopub.execute_input": "2024-06-14T00:16:48.316969Z", + "iopub.status.busy": "2024-06-14T00:16:48.316591Z", + "iopub.status.idle": "2024-06-14T00:16:48.319828Z", + "shell.execute_reply": "2024-06-14T00:16:48.319280Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.864701Z", - "iopub.status.busy": "2024-06-13T18:21:56.864281Z", - "iopub.status.idle": "2024-06-13T18:21:56.867587Z", - "shell.execute_reply": "2024-06-13T18:21:56.867135Z" + "iopub.execute_input": "2024-06-14T00:16:48.321992Z", + "iopub.status.busy": "2024-06-14T00:16:48.321656Z", + "iopub.status.idle": "2024-06-14T00:16:48.325046Z", + "shell.execute_reply": "2024-06-14T00:16:48.324462Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.869701Z", - "iopub.status.busy": "2024-06-13T18:21:56.869278Z", - "iopub.status.idle": "2024-06-13T18:22:01.330144Z", - "shell.execute_reply": "2024-06-13T18:22:01.329578Z" + "iopub.execute_input": "2024-06-14T00:16:48.327100Z", + "iopub.status.busy": "2024-06-14T00:16:48.326776Z", + "iopub.status.idle": "2024-06-14T00:16:54.189165Z", + "shell.execute_reply": "2024-06-14T00:16:54.188516Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "89a29616bde94a579adb8d1626c620f7", + "model_id": "e113f5d111d6444d98179aa0948e256a", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8c757beb7fd43c18a196a8f910b18c6", + "model_id": "ac4d8d83e38c457da6b39758bab16610", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c5f4a388b3b941adbaa7ba6326374031", + "model_id": "f7489924975f4416af61f5d5655b562d", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d584aedf982f4788bd1c1ff03a283e55", + "model_id": "a79ea7294ad0416baab0dcd40c7a3b96", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd42363c65e44be49bed5e16bd5bfbdb", + "model_id": "e5bb8d5844324089ac770f470702eda3", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6103bb2eacb748469a940416af67da40", + "model_id": "62e526cceeee40a582a8477c2069264c", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c36c086bded54572ad779113ee541eea", + "model_id": "9cf2070823924dcf92a725c5f310b852", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:01.332759Z", - "iopub.status.busy": "2024-06-13T18:22:01.332554Z", - "iopub.status.idle": "2024-06-13T18:22:01.335507Z", - "shell.execute_reply": "2024-06-13T18:22:01.334977Z" + "iopub.execute_input": "2024-06-14T00:16:54.191918Z", + "iopub.status.busy": "2024-06-14T00:16:54.191704Z", + "iopub.status.idle": "2024-06-14T00:16:54.194576Z", + "shell.execute_reply": "2024-06-14T00:16:54.194092Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:01.337656Z", - "iopub.status.busy": "2024-06-13T18:22:01.337263Z", - "iopub.status.idle": "2024-06-13T18:22:01.340086Z", - "shell.execute_reply": "2024-06-13T18:22:01.339528Z" + "iopub.execute_input": "2024-06-14T00:16:54.196462Z", + "iopub.status.busy": "2024-06-14T00:16:54.196291Z", + "iopub.status.idle": "2024-06-14T00:16:54.198887Z", + "shell.execute_reply": "2024-06-14T00:16:54.198447Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:01.342142Z", - "iopub.status.busy": "2024-06-13T18:22:01.341756Z", - "iopub.status.idle": "2024-06-13T18:22:03.601315Z", - "shell.execute_reply": "2024-06-13T18:22:03.600684Z" + "iopub.execute_input": "2024-06-14T00:16:54.200705Z", + "iopub.status.busy": "2024-06-14T00:16:54.200536Z", + "iopub.status.idle": "2024-06-14T00:16:56.506255Z", + "shell.execute_reply": "2024-06-14T00:16:56.505540Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.604543Z", - "iopub.status.busy": "2024-06-13T18:22:03.603720Z", - "iopub.status.idle": "2024-06-13T18:22:03.611540Z", - "shell.execute_reply": "2024-06-13T18:22:03.611084Z" + "iopub.execute_input": "2024-06-14T00:16:56.509370Z", + "iopub.status.busy": "2024-06-14T00:16:56.508656Z", + "iopub.status.idle": "2024-06-14T00:16:56.516875Z", + "shell.execute_reply": "2024-06-14T00:16:56.516278Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.613612Z", - "iopub.status.busy": "2024-06-13T18:22:03.613341Z", - "iopub.status.idle": "2024-06-13T18:22:03.617176Z", - "shell.execute_reply": "2024-06-13T18:22:03.616716Z" + "iopub.execute_input": "2024-06-14T00:16:56.519102Z", + "iopub.status.busy": "2024-06-14T00:16:56.518763Z", + "iopub.status.idle": "2024-06-14T00:16:56.523268Z", + "shell.execute_reply": "2024-06-14T00:16:56.522694Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.619138Z", - "iopub.status.busy": "2024-06-13T18:22:03.618810Z", - "iopub.status.idle": "2024-06-13T18:22:03.622149Z", - "shell.execute_reply": "2024-06-13T18:22:03.621704Z" + "iopub.execute_input": "2024-06-14T00:16:56.525484Z", + "iopub.status.busy": "2024-06-14T00:16:56.525053Z", + "iopub.status.idle": "2024-06-14T00:16:56.528316Z", + "shell.execute_reply": "2024-06-14T00:16:56.527860Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.624319Z", - "iopub.status.busy": "2024-06-13T18:22:03.623849Z", - "iopub.status.idle": "2024-06-13T18:22:03.626846Z", - "shell.execute_reply": "2024-06-13T18:22:03.626411Z" + "iopub.execute_input": "2024-06-14T00:16:56.530483Z", + "iopub.status.busy": "2024-06-14T00:16:56.530147Z", + "iopub.status.idle": "2024-06-14T00:16:56.533125Z", + "shell.execute_reply": "2024-06-14T00:16:56.532682Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.628835Z", - "iopub.status.busy": "2024-06-13T18:22:03.628511Z", - "iopub.status.idle": "2024-06-13T18:22:03.635848Z", - "shell.execute_reply": "2024-06-13T18:22:03.635380Z" + "iopub.execute_input": "2024-06-14T00:16:56.535213Z", + "iopub.status.busy": "2024-06-14T00:16:56.534950Z", + "iopub.status.idle": "2024-06-14T00:16:56.542784Z", + "shell.execute_reply": "2024-06-14T00:16:56.542284Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.637942Z", - "iopub.status.busy": "2024-06-13T18:22:03.637616Z", - "iopub.status.idle": "2024-06-13T18:22:03.861617Z", - "shell.execute_reply": "2024-06-13T18:22:03.861034Z" + "iopub.execute_input": "2024-06-14T00:16:56.544784Z", + "iopub.status.busy": "2024-06-14T00:16:56.544606Z", + "iopub.status.idle": "2024-06-14T00:16:56.767981Z", + "shell.execute_reply": "2024-06-14T00:16:56.767397Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.865128Z", - "iopub.status.busy": "2024-06-13T18:22:03.864185Z", - "iopub.status.idle": "2024-06-13T18:22:04.041976Z", - "shell.execute_reply": "2024-06-13T18:22:04.041445Z" + "iopub.execute_input": "2024-06-14T00:16:56.770660Z", + "iopub.status.busy": "2024-06-14T00:16:56.770259Z", + "iopub.status.idle": "2024-06-14T00:16:56.967481Z", + "shell.execute_reply": "2024-06-14T00:16:56.966935Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:04.045815Z", - "iopub.status.busy": "2024-06-13T18:22:04.044882Z", - "iopub.status.idle": "2024-06-13T18:22:04.049806Z", - "shell.execute_reply": "2024-06-13T18:22:04.049308Z" + "iopub.execute_input": "2024-06-14T00:16:56.970170Z", + "iopub.status.busy": "2024-06-14T00:16:56.969766Z", + "iopub.status.idle": "2024-06-14T00:16:56.973702Z", + "shell.execute_reply": "2024-06-14T00:16:56.973191Z" }, "nbsphinx": "hidden" }, @@ -1113,7 +1113,48 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06c724843d86401292792aaa30b64020": { + "0015bc7e91634f7f9b3f678cfce37e8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec132e991cd0421791c6fb51e54e9211", + "placeholder": "​", + "style": "IPY_MODEL_2eb223ab0852412ca2da1711cf480c7b", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 386kB/s]" + } + }, + "03c72d9f975a49ceb1543f2f70c28427": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "05112a6096dc4b6992511c3e169aa821": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1131,7 +1172,7 @@ "text_color": null } }, - "07a4e7d0c1834cb6830289017bc05cc3": { + "0c65144726234495b1e2424bfdbe42dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1184,7 +1225,7 @@ "width": null } }, - "0915eccf7f2440cba62abbcdc2271dad": { + "127b88a1ef9f426fb32225e9cb20adbd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1237,30 +1278,7 @@ "width": null } }, - "0d1e8fe76b9648049e1e32f175cdefe0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c500b1cbcab4350a404dd79cd3d3b99", - "placeholder": "​", - "style": "IPY_MODEL_3ef8f21bb7004e9f9a72b4496216f388", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "0d9cfcf583f44c629da274a38906b32a": { + "15a50dc87af543188449977797dc8737": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1313,49 +1331,76 @@ "width": null } }, - "0e3fd3eaf6e64452a08ad1a2033c21ca": { + "181134befe2849ebb555197e214dc531": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_304f1eda16c148eb8f63606fb07ed4c5", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19e2f079dc5743668bae2260ac3af90d", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "15aa5565c591472cbf81818c96a6d5bb": { - "model_module": "@jupyter-widgets/controls", + "1996e0d8e853404baec6b267edf30cf7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "19e2f079dc5743668bae2260ac3af90d": { + "1d5b38fc442747789c0c4132e3a54dcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1371,46 +1416,33 @@ "description_width": "" } }, - "1d3ffa700f2a45bcb4fd4e77c4613624": { + "1e9bc931375e4b0588b82f7cac05b6eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f7613a258b743e789456182d684523f", - "placeholder": "​", - "style": "IPY_MODEL_f3ffb128452c4a368de0cf1b4262157d", + "layout": "IPY_MODEL_f9b9eded2f9741d9b1ae92b5ff845b74", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1d5b38fc442747789c0c4132e3a54dcd", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 42.4kB/s]" - } - }, - "2153098059814befb06bbc93fe9a97e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 54245363.0 } }, - "2604e4cda1734a8694eea8d49064ce5a": { + "1fd24115d6134759af8bdad760e976d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1428,23 +1460,7 @@ "text_color": null } }, - "26f219ea88db465c8d44ff7895ab0d47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "28e1b644bcdf4877962e8bc56c42ff2d": { + "26866f38b46c4fbe8e5f186b89cef8b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1497,7 +1513,23 @@ "width": null } }, - "29a42523208748fd98121c510d37b190": { + "2ddb486e950c49fb9f7a74e8b9495419": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2eb223ab0852412ca2da1711cf480c7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1515,33 +1547,46 @@ "text_color": null } }, - "2a7f63aeecfb408d8632e6c22465fe50": { + "2f942d31b8fe4add8ac62a92d745b5af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a392b245bdf548c2aec9ee195c2a950c", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15aa5565c591472cbf81818c96a6d5bb", + "layout": "IPY_MODEL_26866f38b46c4fbe8e5f186b89cef8b9", + "placeholder": "​", + "style": "IPY_MODEL_70f2fd35702d45fe80084d581f973157", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": " 665/665 [00:00<00:00, 112kB/s]" + } + }, + "31c8282842d345e4ab52116521d9cafd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "304f1eda16c148eb8f63606fb07ed4c5": { + "32577e389af443438208118eb7377807": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1594,7 +1639,30 @@ "width": null } }, - "345d0bae432443118f4646f8776d538d": { + "37d80b7f58c34f7a9c783fdc47a1f4a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_511f80ec74cc4edeafb6e65f4bdcb6c8", + "placeholder": "​", + "style": "IPY_MODEL_edc4790944c0413e8df52df30282110b", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.32kB/s]" + } + }, + "3b81bfed69294a02b3e452450bf33cb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1647,7 +1715,23 @@ "width": null } }, - "384311e4b7b24c43a430c7ff085f98c9": { + "41e240f623f74156906703ad3c830b4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "423ebee759034858904232bf5f536772": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1662,33 +1746,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dfe7b6e71faa4500a20bb9e5f425c203", + "layout": "IPY_MODEL_32577e389af443438208118eb7377807", "placeholder": "​", - "style": "IPY_MODEL_d75ff2ba3ca045e6ba5105cd49a2ce75", + "style": "IPY_MODEL_1fd24115d6134759af8bdad760e976d8", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.39kB/s]" + "value": ".gitattributes: 100%" } }, - "3a2066a99c53429792294f28c0cbd9a0": { - "model_module": "@jupyter-widgets/controls", + "4493c470e240442db44c7f6c71df5dbc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "44b4facc3eff433296405e0cead6cf6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, - "3c0f8b3eba8f4a5b8677585908779c44": { + "47ddcc786da644998b195975e893ac3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1703,15 +1840,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e7b6196949654362b1d6df86f46a5348", + "layout": "IPY_MODEL_56e0dccc437a4d2ea8bb618731a52530", "placeholder": "​", - "style": "IPY_MODEL_4b4e940f7113481d85a489023a3ecfe7", + "style": "IPY_MODEL_60246563bec04a288e443d042b033587", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 241MB/s]" + "value": " 466k/466k [00:00<00:00, 23.4MB/s]" } }, - "3ef8f21bb7004e9f9a72b4496216f388": { + "4a94dd7164024ca4b962caeab918464a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1729,25 +1866,30 @@ "text_color": null } }, - "4379279278f548d896fb87a5fe5b746f": { + "4bfa8a1e3e1c4f26a7847431f614e75d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c114b094b2c416a8e752c7d1aa77bef", + "placeholder": "​", + "style": "IPY_MODEL_05112a6096dc4b6992511c3e169aa821", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "449b5fecb692428788da9d3e4c7799a7": { + "510979737fa64f6a9185b72528bab456": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1763,69 +1905,7 @@ "description_width": "" } }, - "4b4e940f7113481d85a489023a3ecfe7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4d4043e1d6754b9b9729e8a59c4c69d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4ed60800fca44d518826aa80a83f0d67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dd035097454a4cecbee2fe1182adde74", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_449b5fecb692428788da9d3e4c7799a7", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "51ce7c4b02e34b6b8db650fee5e0bf76": { + "511f80ec74cc4edeafb6e65f4bdcb6c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1878,7 +1958,25 @@ "width": null } }, - "53b0d2af5149411d94a93eb52551fcea": { + "53aa28bd59b14351bc52d87f3467bbdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "54545e76698f48e1af1c8cbf42b8d099": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1893,33 +1991,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_07a4e7d0c1834cb6830289017bc05cc3", + "layout": "IPY_MODEL_d2a95f19397c43abbbd2b9be93984244", "placeholder": "​", - "style": "IPY_MODEL_2604e4cda1734a8694eea8d49064ce5a", + "style": "IPY_MODEL_a4c05cdb97fd46e1904cc54264e62459", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 25.0MB/s]" - } - }, - "5821a9a7acc84e89a3d69f33dc7c81a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "vocab.txt: 100%" } }, - "58fc6d101be44449bf3ee94d5f32ac85": { + "56e0dccc437a4d2ea8bb618731a52530": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1972,7 +2052,7 @@ "width": null } }, - "5c500b1cbcab4350a404dd79cd3d3b99": { + "5928055c57be47f4beaaa4b6222ed8a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2025,7 +2105,49 @@ "width": null } }, - "5f7613a258b743e789456182d684523f": { + "60246563bec04a288e443d042b033587": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "62e526cceeee40a582a8477c2069264c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4bfa8a1e3e1c4f26a7847431f614e75d", + "IPY_MODEL_d85c97b6e3574a09b4bfdfb9d1d816a1", + "IPY_MODEL_37d80b7f58c34f7a9c783fdc47a1f4a1" + ], + "layout": "IPY_MODEL_eeebdd15c615415eb8be9a40c2d6328e", + "tabbable": null, + "tooltip": null + } + }, + "634f7e4ecf0a477e9bc3927ea23c2300": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,31 +2200,51 @@ "width": null } }, - "6103bb2eacb748469a940416af67da40": { + "68c9ecf61665485dba761c00db9f52f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db15ead67eb34e2ebb47a8ea7a7d569a", - "IPY_MODEL_2a7f63aeecfb408d8632e6c22465fe50", - "IPY_MODEL_384311e4b7b24c43a430c7ff085f98c9" - ], - "layout": "IPY_MODEL_0d9cfcf583f44c629da274a38906b32a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0681e417d204571ad93b8784c857f8a", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_31c8282842d345e4ab52116521d9cafd", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 466062.0 + } + }, + "70f2fd35702d45fe80084d581f973157": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "68af76c492ab41b0a681bb40d307f066": { + "754a913b376a47ddbf7f9e3f1ac20369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2117,15 +2259,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_72a0d59cd7a94872829aa9ef43cbc920", + "layout": "IPY_MODEL_a4249e39308242c1bae44b681f1b50f9", "placeholder": "​", - "style": "IPY_MODEL_b0021b3089b64ef69706d41507a8b91a", + "style": "IPY_MODEL_4a94dd7164024ca4b962caeab918464a", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 232k/232k [00:00<00:00, 34.8MB/s]" } }, - "6e3c959fcc4a42c689ea230a60871ff1": { + "76b1105c524e4c95821b18dd10270d6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2141,17 +2283,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_83de765eb3b04d9384a52cbeae018192", - "max": 2211.0, + "layout": "IPY_MODEL_0c65144726234495b1e2424bfdbe42dc", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_26f219ea88db465c8d44ff7895ab0d47", + "style": "IPY_MODEL_41e240f623f74156906703ad3c830b4e", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 665.0 } }, - "72a0d59cd7a94872829aa9ef43cbc920": { + "76cc3096920144069d0aadc6f4755dbb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2204,7 +2346,7 @@ "width": null } }, - "758f9e53f68a498e8c24312a480840f9": { + "7b6952671e6e4af38ebc195c57c98390": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2219,15 +2361,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_28e1b644bcdf4877962e8bc56c42ff2d", + "layout": "IPY_MODEL_f835c1e565b44583911348ee493969d0", "placeholder": "​", - "style": "IPY_MODEL_3a2066a99c53429792294f28c0cbd9a0", + "style": "IPY_MODEL_c2aafe95a5124e85b5c0aabe982d9fe8", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": "config.json: 100%" } }, - "7dab156d2780448da0503a9b7e7267df": { + "8c114b094b2c416a8e752c7d1aa77bef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,83 +2422,33 @@ "width": null } }, - "7e70d6f213bb452488e29435609ee2d3": { - "model_module": "@jupyter-widgets/base", + "8c90fa29ef3b4cb9b3287545751940ae": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7fd2e8bfca8a4ed3b02c2e0655b36a97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58fc6d101be44449bf3ee94d5f32ac85", - "placeholder": "​", - "style": "IPY_MODEL_ccfdbde10daf4ae39800026e34b10f77", + "layout": "IPY_MODEL_d394dda8b98a46ec9306372d401e36c7", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b5b4c0a5470b49e5aa6e01784d3e0f66", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": 2211.0 } }, - "8302a3ccd10b4d8ea3a7cd2e607c7fe2": { + "92d13c93ec3347349a43c3856bcd56f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2372,17 +2464,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7e70d6f213bb452488e29435609ee2d3", - "max": 231508.0, + "layout": "IPY_MODEL_634f7e4ecf0a477e9bc3927ea23c2300", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2153098059814befb06bbc93fe9a97e7", + "style": "IPY_MODEL_510979737fa64f6a9185b72528bab456", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 391.0 } }, - "83de765eb3b04d9384a52cbeae018192": { + "97c3f89f639b470582663d39387a0e5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2435,7 +2527,7 @@ "width": null } }, - "85fcd7e09800416aae1f71cb9381ff30": { + "988a3179c63147be9dcf9698918a210a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2488,7 +2580,54 @@ "width": null } }, - "890aeeec41a5468fb4925fc0ea9440f4": { + "9cf2070823924dcf92a725c5f310b852": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_54545e76698f48e1af1c8cbf42b8d099", + "IPY_MODEL_bfd0cd1a60cc4851bee1b6c9dfff425b", + "IPY_MODEL_754a913b376a47ddbf7f9e3f1ac20369" + ], + "layout": "IPY_MODEL_5928055c57be47f4beaaa4b6222ed8a2", + "tabbable": null, + "tooltip": null + } + }, + "a125d8b8c16c4b53817e61e02ea59b9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97c3f89f639b470582663d39387a0e5b", + "placeholder": "​", + "style": "IPY_MODEL_44b4facc3eff433296405e0cead6cf6b", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "a4249e39308242c1bae44b681f1b50f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2541,7 +2680,25 @@ "width": null } }, - "89a29616bde94a579adb8d1626c620f7": { + "a4c05cdb97fd46e1904cc54264e62459": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a79ea7294ad0416baab0dcd40c7a3b96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2556,118 +2713,92 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7fd2e8bfca8a4ed3b02c2e0655b36a97", - "IPY_MODEL_0e3fd3eaf6e64452a08ad1a2033c21ca", - "IPY_MODEL_1d3ffa700f2a45bcb4fd4e77c4613624" + "IPY_MODEL_a125d8b8c16c4b53817e61e02ea59b9e", + "IPY_MODEL_1e9bc931375e4b0588b82f7cac05b6eb", + "IPY_MODEL_f1517c994a994396bd34f71559512a31" ], - "layout": "IPY_MODEL_cf4915e49f904e078e0bde9832a1e353", + "layout": "IPY_MODEL_c9e3b3321c304cc9a69ee2102e3b8bb8", "tabbable": null, "tooltip": null } }, - "9530e5bbf0da41e6a5f111745419e218": { - "model_module": "@jupyter-widgets/base", + "ac4d8d83e38c457da6b39758bab16610": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f9a09c560c2a4f82a8af86c1ab20f9c3", + "IPY_MODEL_8c90fa29ef3b4cb9b3287545751940ae", + "IPY_MODEL_0015bc7e91634f7f9b3f678cfce37e8e" + ], + "layout": "IPY_MODEL_fc82d8cd699e4c7a8cac5db4ccedd0c3", + "tabbable": null, + "tooltip": null + } + }, + "b2f84d3734804a1ab316156aa1a7c14d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "95802575c2ae4d379af9f3656e679a77": { + "b5b4c0a5470b49e5aa6e01784d3e0f66": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9826d59097ae4896a075e4df12a3c8e8", - "placeholder": "​", - "style": "IPY_MODEL_4d4043e1d6754b9b9729e8a59c4c69d8", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 4.34MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "96f8781a0dca4aa8be36021972819130": { + "bc41f3a8890b44f396f6d5e552e6110d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b53e20cd5324432bb7fe5f311ad7ce4e", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e8314a83f9ff45b382cc7352d5953636", - "tabbable": null, - "tooltip": null, - "value": 665.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9826d59097ae4896a075e4df12a3c8e8": { + "bf92e88f3f0d445e93027d35cfb4a756": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2720,83 +2851,51 @@ "width": null } }, - "999f7a3bf1f945bba896579b6a8f948f": { + "bfd0cd1a60cc4851bee1b6c9dfff425b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9530e5bbf0da41e6a5f111745419e218", - "placeholder": "​", - "style": "IPY_MODEL_5821a9a7acc84e89a3d69f33dc7c81a8", + "layout": "IPY_MODEL_15a50dc87af543188449977797dc8737", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2ddb486e950c49fb9f7a74e8b9495419", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 378kB/s]" + "value": 231508.0 } }, - "9f0b48690f9c4563b1e9429ab7533420": { - "model_module": "@jupyter-widgets/base", + "c2aafe95a5124e85b5c0aabe982d9fe8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a392b245bdf548c2aec9ee195c2a950c": { + "c9e3b3321c304cc9a69ee2102e3b8bb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2835,65 +2934,21 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a6dd0e939a694e01883ce10db6326fb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0915eccf7f2440cba62abbcdc2271dad", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f2dc66d420704243a0738191f131facd", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "b0021b3089b64ef69706d41507a8b91a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b350a582360f481696bd9606de4eb2fb": { + "d2a95f19397c43abbbd2b9be93984244": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2946,7 +3001,30 @@ "width": null } }, - "b53e20cd5324432bb7fe5f311ad7ce4e": { + "d36d53cb159449d9a2c1bee733d8af47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_988a3179c63147be9dcf9698918a210a", + "placeholder": "​", + "style": "IPY_MODEL_bc41f3a8890b44f396f6d5e552e6110d", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "d394dda8b98a46ec9306372d401e36c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2999,54 +3077,33 @@ "width": null } }, - "c0226197bc48452da508b762130d8516": { + "d85c97b6e3574a09b4bfdfb9d1d816a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_51ce7c4b02e34b6b8db650fee5e0bf76", - "placeholder": "​", - "style": "IPY_MODEL_f95b272ca8694c169de914b047b40b5d", + "layout": "IPY_MODEL_bf92e88f3f0d445e93027d35cfb4a756", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_181134befe2849ebb555197e214dc531", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 112kB/s]" - } - }, - "c36c086bded54572ad779113ee541eea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c95bd6ed519940babd3ba871acc307b0", - "IPY_MODEL_8302a3ccd10b4d8ea3a7cd2e607c7fe2", - "IPY_MODEL_53b0d2af5149411d94a93eb52551fcea" - ], - "layout": "IPY_MODEL_890aeeec41a5468fb4925fc0ea9440f4", - "tabbable": null, - "tooltip": null + "value": 48.0 } }, - "c5f4a388b3b941adbaa7ba6326374031": { + "e113f5d111d6444d98179aa0948e256a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3061,57 +3118,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_68af76c492ab41b0a681bb40d307f066", - "IPY_MODEL_96f8781a0dca4aa8be36021972819130", - "IPY_MODEL_c0226197bc48452da508b762130d8516" + "IPY_MODEL_423ebee759034858904232bf5f536772", + "IPY_MODEL_92d13c93ec3347349a43c3856bcd56f3", + "IPY_MODEL_eab9a05151654c03a28aaad0e39d31e5" ], - "layout": "IPY_MODEL_ff1a18da5cd344d0ae6ed974fc5b6668", + "layout": "IPY_MODEL_4493c470e240442db44c7f6c71df5dbc", "tabbable": null, "tooltip": null } }, - "c95bd6ed519940babd3ba871acc307b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7dab156d2780448da0503a9b7e7267df", - "placeholder": "​", - "style": "IPY_MODEL_29a42523208748fd98121c510d37b190", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "ccfdbde10daf4ae39800026e34b10f77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cf4915e49f904e078e0bde9832a1e353": { + "e4bb5f66cdab4e418fb04f459e9f7130": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3164,7 +3180,7 @@ "width": null } }, - "d584aedf982f4788bd1c1ff03a283e55": { + "e5bb8d5844324089ac770f470702eda3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3179,34 +3195,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0d1e8fe76b9648049e1e32f175cdefe0", - "IPY_MODEL_a6dd0e939a694e01883ce10db6326fb2", - "IPY_MODEL_3c0f8b3eba8f4a5b8677585908779c44" + "IPY_MODEL_d36d53cb159449d9a2c1bee733d8af47", + "IPY_MODEL_68c9ecf61665485dba761c00db9f52f9", + "IPY_MODEL_47ddcc786da644998b195975e893ac3b" ], - "layout": "IPY_MODEL_85fcd7e09800416aae1f71cb9381ff30", + "layout": "IPY_MODEL_1996e0d8e853404baec6b267edf30cf7", "tabbable": null, "tooltip": null } }, - "d75ff2ba3ca045e6ba5105cd49a2ce75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "db15ead67eb34e2ebb47a8ea7a7d569a": { + "eab9a05151654c03a28aaad0e39d31e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3221,15 +3219,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9f0b48690f9c4563b1e9429ab7533420", + "layout": "IPY_MODEL_e4bb5f66cdab4e418fb04f459e9f7130", "placeholder": "​", - "style": "IPY_MODEL_06c724843d86401292792aaa30b64020", + "style": "IPY_MODEL_b2f84d3734804a1ab316156aa1a7c14d", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 391/391 [00:00<00:00, 62.7kB/s]" } }, - "dd035097454a4cecbee2fe1182adde74": { + "ec132e991cd0421791c6fb51e54e9211": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3282,31 +3280,25 @@ "width": null } }, - "dd42363c65e44be49bed5e16bd5bfbdb": { + "edc4790944c0413e8df52df30282110b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_feffe57a99a0465690c71e9842979ac7", - "IPY_MODEL_4ed60800fca44d518826aa80a83f0d67", - "IPY_MODEL_95802575c2ae4d379af9f3656e679a77" - ], - "layout": "IPY_MODEL_345d0bae432443118f4646f8776d538d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "dfe7b6e71faa4500a20bb9e5f425c203": { + "eeebdd15c615415eb8be9a40c2d6328e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3359,7 +3351,7 @@ "width": null } }, - "e7b6196949654362b1d6df86f46a5348": { + "f0681e417d204571ad93b8784c857f8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3412,23 +3404,30 @@ "width": null } }, - "e8314a83f9ff45b382cc7352d5953636": { + "f1517c994a994396bd34f71559512a31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76cc3096920144069d0aadc6f4755dbb", + "placeholder": "​", + "style": "IPY_MODEL_03c72d9f975a49ceb1543f2f70c28427", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:01<00:00, 31.9MB/s]" } }, - "e8c757beb7fd43c18a196a8f910b18c6": { + "f7489924975f4416af61f5d5655b562d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3443,16 +3442,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_758f9e53f68a498e8c24312a480840f9", - "IPY_MODEL_6e3c959fcc4a42c689ea230a60871ff1", - "IPY_MODEL_999f7a3bf1f945bba896579b6a8f948f" + "IPY_MODEL_7b6952671e6e4af38ebc195c57c98390", + "IPY_MODEL_76b1105c524e4c95821b18dd10270d6c", + "IPY_MODEL_2f942d31b8fe4add8ac62a92d745b5af" ], - "layout": "IPY_MODEL_b350a582360f481696bd9606de4eb2fb", + "layout": "IPY_MODEL_127b88a1ef9f426fb32225e9cb20adbd", "tabbable": null, "tooltip": null } }, - "ed10c085e9514b438d6d6ccd4bf253d6": { + "f835c1e565b44583911348ee493969d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3505,59 +3504,7 @@ "width": null } }, - "f2dc66d420704243a0738191f131facd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f3ffb128452c4a368de0cf1b4262157d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f95b272ca8694c169de914b047b40b5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "feffe57a99a0465690c71e9842979ac7": { + "f9a09c560c2a4f82a8af86c1ab20f9c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3572,15 +3519,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed10c085e9514b438d6d6ccd4bf253d6", + "layout": "IPY_MODEL_3b81bfed69294a02b3e452450bf33cb3", "placeholder": "​", - "style": "IPY_MODEL_4379279278f548d896fb87a5fe5b746f", + "style": "IPY_MODEL_53aa28bd59b14351bc52d87f3467bbdd", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": "README.md: 100%" + } + }, + "f9b9eded2f9741d9b1ae92b5ff845b74": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ff1a18da5cd344d0ae6ed974fc5b6668": { + "fc82d8cd699e4c7a8cac5db4ccedd0c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 11653057e..cc30a9966 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:07.196563Z", - "iopub.status.busy": "2024-06-13T18:22:07.196039Z", - "iopub.status.idle": "2024-06-13T18:22:14.112556Z", - "shell.execute_reply": "2024-06-13T18:22:14.111910Z" + "iopub.execute_input": "2024-06-14T00:17:01.289276Z", + "iopub.status.busy": "2024-06-14T00:17:01.288792Z", + "iopub.status.idle": "2024-06-14T00:17:06.403193Z", + "shell.execute_reply": "2024-06-14T00:17:06.402532Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:14.115493Z", - "iopub.status.busy": "2024-06-13T18:22:14.114968Z", - "iopub.status.idle": "2024-06-13T18:22:14.118130Z", - "shell.execute_reply": "2024-06-13T18:22:14.117688Z" + "iopub.execute_input": "2024-06-14T00:17:06.406313Z", + "iopub.status.busy": "2024-06-14T00:17:06.405767Z", + "iopub.status.idle": "2024-06-14T00:17:06.408993Z", + "shell.execute_reply": "2024-06-14T00:17:06.408538Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:14.120144Z", - "iopub.status.busy": "2024-06-13T18:22:14.119788Z", - "iopub.status.idle": "2024-06-13T18:22:14.124288Z", - "shell.execute_reply": "2024-06-13T18:22:14.123807Z" + "iopub.execute_input": "2024-06-14T00:17:06.411145Z", + "iopub.status.busy": "2024-06-14T00:17:06.410812Z", + "iopub.status.idle": "2024-06-14T00:17:06.415745Z", + "shell.execute_reply": "2024-06-14T00:17:06.415173Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:14.126288Z", - "iopub.status.busy": "2024-06-13T18:22:14.125979Z", - "iopub.status.idle": "2024-06-13T18:22:15.655949Z", - "shell.execute_reply": "2024-06-13T18:22:15.655288Z" + "iopub.execute_input": "2024-06-14T00:17:06.418044Z", + "iopub.status.busy": "2024-06-14T00:17:06.417726Z", + "iopub.status.idle": "2024-06-14T00:17:08.050915Z", + "shell.execute_reply": "2024-06-14T00:17:08.050181Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:15.658656Z", - "iopub.status.busy": "2024-06-13T18:22:15.658271Z", - "iopub.status.idle": "2024-06-13T18:22:15.669053Z", - "shell.execute_reply": "2024-06-13T18:22:15.668589Z" + "iopub.execute_input": "2024-06-14T00:17:08.053460Z", + "iopub.status.busy": "2024-06-14T00:17:08.053223Z", + "iopub.status.idle": "2024-06-14T00:17:08.063793Z", + "shell.execute_reply": "2024-06-14T00:17:08.063234Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:15.671192Z", - "iopub.status.busy": "2024-06-13T18:22:15.670906Z", - "iopub.status.idle": "2024-06-13T18:22:15.676181Z", - "shell.execute_reply": "2024-06-13T18:22:15.675707Z" + "iopub.execute_input": "2024-06-14T00:17:08.066149Z", + "iopub.status.busy": "2024-06-14T00:17:08.065855Z", + "iopub.status.idle": "2024-06-14T00:17:08.071436Z", + "shell.execute_reply": "2024-06-14T00:17:08.070971Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:15.678127Z", - "iopub.status.busy": "2024-06-13T18:22:15.677856Z", - "iopub.status.idle": "2024-06-13T18:22:16.181475Z", - "shell.execute_reply": "2024-06-13T18:22:16.180932Z" + "iopub.execute_input": "2024-06-14T00:17:08.073595Z", + "iopub.status.busy": "2024-06-14T00:17:08.073262Z", + "iopub.status.idle": "2024-06-14T00:17:08.539051Z", + "shell.execute_reply": "2024-06-14T00:17:08.538476Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:16.183815Z", - "iopub.status.busy": "2024-06-13T18:22:16.183448Z", - "iopub.status.idle": "2024-06-13T18:22:17.076266Z", - "shell.execute_reply": "2024-06-13T18:22:17.075643Z" + "iopub.execute_input": "2024-06-14T00:17:08.541347Z", + "iopub.status.busy": "2024-06-14T00:17:08.540959Z", + "iopub.status.idle": "2024-06-14T00:17:10.124125Z", + "shell.execute_reply": "2024-06-14T00:17:10.123609Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:17.078873Z", - "iopub.status.busy": "2024-06-13T18:22:17.078536Z", - "iopub.status.idle": "2024-06-13T18:22:17.096552Z", - "shell.execute_reply": "2024-06-13T18:22:17.096064Z" + "iopub.execute_input": "2024-06-14T00:17:10.126608Z", + "iopub.status.busy": "2024-06-14T00:17:10.126407Z", + "iopub.status.idle": "2024-06-14T00:17:10.146074Z", + "shell.execute_reply": "2024-06-14T00:17:10.145537Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:17.098731Z", - "iopub.status.busy": "2024-06-13T18:22:17.098301Z", - "iopub.status.idle": "2024-06-13T18:22:17.101559Z", - "shell.execute_reply": "2024-06-13T18:22:17.101029Z" + "iopub.execute_input": "2024-06-14T00:17:10.148118Z", + "iopub.status.busy": "2024-06-14T00:17:10.147930Z", + "iopub.status.idle": "2024-06-14T00:17:10.151246Z", + "shell.execute_reply": "2024-06-14T00:17:10.150765Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:17.103571Z", - "iopub.status.busy": "2024-06-13T18:22:17.103195Z", - "iopub.status.idle": "2024-06-13T18:22:31.927625Z", - "shell.execute_reply": "2024-06-13T18:22:31.926993Z" + "iopub.execute_input": "2024-06-14T00:17:10.153474Z", + "iopub.status.busy": "2024-06-14T00:17:10.153116Z", + "iopub.status.idle": "2024-06-14T00:17:25.884957Z", + "shell.execute_reply": "2024-06-14T00:17:25.884418Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:31.930382Z", - "iopub.status.busy": "2024-06-13T18:22:31.929971Z", - "iopub.status.idle": "2024-06-13T18:22:31.933687Z", - "shell.execute_reply": "2024-06-13T18:22:31.933130Z" + "iopub.execute_input": "2024-06-14T00:17:25.887851Z", + "iopub.status.busy": "2024-06-14T00:17:25.887326Z", + "iopub.status.idle": "2024-06-14T00:17:25.891147Z", + "shell.execute_reply": "2024-06-14T00:17:25.890696Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:31.935815Z", - "iopub.status.busy": "2024-06-13T18:22:31.935479Z", - "iopub.status.idle": "2024-06-13T18:22:32.625447Z", - "shell.execute_reply": "2024-06-13T18:22:32.624830Z" + "iopub.execute_input": "2024-06-14T00:17:25.893147Z", + "iopub.status.busy": "2024-06-14T00:17:25.892890Z", + "iopub.status.idle": "2024-06-14T00:17:26.608700Z", + "shell.execute_reply": "2024-06-14T00:17:26.608081Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.628290Z", - "iopub.status.busy": "2024-06-13T18:22:32.628062Z", - "iopub.status.idle": "2024-06-13T18:22:32.632761Z", - "shell.execute_reply": "2024-06-13T18:22:32.632230Z" + "iopub.execute_input": "2024-06-14T00:17:26.612120Z", + "iopub.status.busy": "2024-06-14T00:17:26.611624Z", + "iopub.status.idle": "2024-06-14T00:17:26.618075Z", + "shell.execute_reply": "2024-06-14T00:17:26.617519Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.636034Z", - "iopub.status.busy": "2024-06-13T18:22:32.635120Z", - "iopub.status.idle": "2024-06-13T18:22:32.730942Z", - "shell.execute_reply": "2024-06-13T18:22:32.730385Z" + "iopub.execute_input": "2024-06-14T00:17:26.621596Z", + "iopub.status.busy": "2024-06-14T00:17:26.620583Z", + "iopub.status.idle": "2024-06-14T00:17:26.716625Z", + "shell.execute_reply": "2024-06-14T00:17:26.715970Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.733286Z", - "iopub.status.busy": "2024-06-13T18:22:32.732906Z", - "iopub.status.idle": "2024-06-13T18:22:32.745436Z", - "shell.execute_reply": "2024-06-13T18:22:32.744969Z" + "iopub.execute_input": "2024-06-14T00:17:26.718896Z", + "iopub.status.busy": "2024-06-14T00:17:26.718701Z", + "iopub.status.idle": "2024-06-14T00:17:26.731123Z", + "shell.execute_reply": "2024-06-14T00:17:26.730647Z" }, "scrolled": true }, @@ -880,10 +880,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.747532Z", - "iopub.status.busy": "2024-06-13T18:22:32.747193Z", - "iopub.status.idle": "2024-06-13T18:22:32.755008Z", - "shell.execute_reply": "2024-06-13T18:22:32.754454Z" + "iopub.execute_input": "2024-06-14T00:17:26.733182Z", + "iopub.status.busy": "2024-06-14T00:17:26.732848Z", + "iopub.status.idle": "2024-06-14T00:17:26.740863Z", + "shell.execute_reply": "2024-06-14T00:17:26.740385Z" } }, "outputs": [ @@ -987,10 +987,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.757159Z", - "iopub.status.busy": "2024-06-13T18:22:32.756812Z", - "iopub.status.idle": "2024-06-13T18:22:32.760990Z", - "shell.execute_reply": "2024-06-13T18:22:32.760455Z" + "iopub.execute_input": "2024-06-14T00:17:26.742882Z", + "iopub.status.busy": "2024-06-14T00:17:26.742620Z", + "iopub.status.idle": "2024-06-14T00:17:26.746690Z", + "shell.execute_reply": "2024-06-14T00:17:26.746139Z" } }, "outputs": [ @@ -1028,10 +1028,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.763138Z", - "iopub.status.busy": "2024-06-13T18:22:32.762750Z", - "iopub.status.idle": "2024-06-13T18:22:32.768655Z", - "shell.execute_reply": "2024-06-13T18:22:32.768100Z" + "iopub.execute_input": "2024-06-14T00:17:26.748730Z", + "iopub.status.busy": "2024-06-14T00:17:26.748395Z", + "iopub.status.idle": "2024-06-14T00:17:26.754459Z", + "shell.execute_reply": "2024-06-14T00:17:26.753879Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1158,10 +1158,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.770732Z", - "iopub.status.busy": "2024-06-13T18:22:32.770398Z", - "iopub.status.idle": "2024-06-13T18:22:32.885235Z", - "shell.execute_reply": "2024-06-13T18:22:32.884652Z" + "iopub.execute_input": "2024-06-14T00:17:26.756577Z", + "iopub.status.busy": "2024-06-14T00:17:26.756264Z", + "iopub.status.idle": "2024-06-14T00:17:26.868280Z", + "shell.execute_reply": "2024-06-14T00:17:26.867709Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1215,10 +1215,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.887631Z", - "iopub.status.busy": "2024-06-13T18:22:32.887282Z", - "iopub.status.idle": "2024-06-13T18:22:32.993937Z", - "shell.execute_reply": "2024-06-13T18:22:32.993431Z" + "iopub.execute_input": "2024-06-14T00:17:26.870482Z", + "iopub.status.busy": "2024-06-14T00:17:26.870268Z", + "iopub.status.idle": "2024-06-14T00:17:26.974709Z", + "shell.execute_reply": "2024-06-14T00:17:26.974206Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1263,10 +1263,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.996112Z", - "iopub.status.busy": "2024-06-13T18:22:32.995776Z", - "iopub.status.idle": "2024-06-13T18:22:33.100291Z", - "shell.execute_reply": "2024-06-13T18:22:33.099688Z" + "iopub.execute_input": "2024-06-14T00:17:26.976882Z", + "iopub.status.busy": "2024-06-14T00:17:26.976471Z", + "iopub.status.idle": "2024-06-14T00:17:27.080302Z", + "shell.execute_reply": "2024-06-14T00:17:27.079721Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1307,10 +1307,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:33.102486Z", - "iopub.status.busy": "2024-06-13T18:22:33.102219Z", - "iopub.status.idle": "2024-06-13T18:22:33.207139Z", - "shell.execute_reply": "2024-06-13T18:22:33.206536Z" + "iopub.execute_input": "2024-06-14T00:17:27.082334Z", + "iopub.status.busy": "2024-06-14T00:17:27.082120Z", + "iopub.status.idle": "2024-06-14T00:17:27.186369Z", + "shell.execute_reply": "2024-06-14T00:17:27.185875Z" } }, "outputs": [ @@ -1358,10 +1358,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:33.209457Z", - "iopub.status.busy": "2024-06-13T18:22:33.209131Z", - "iopub.status.idle": "2024-06-13T18:22:33.212269Z", - "shell.execute_reply": "2024-06-13T18:22:33.211797Z" + "iopub.execute_input": "2024-06-14T00:17:27.188652Z", + "iopub.status.busy": "2024-06-14T00:17:27.188237Z", + "iopub.status.idle": "2024-06-14T00:17:27.191622Z", + "shell.execute_reply": "2024-06-14T00:17:27.191046Z" }, "nbsphinx": "hidden" }, @@ -1402,7 +1402,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0e6cff9c13364fbf9188bc8ed9570dfe": { + "049fc237b5604097b936619a022dcef0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,7 +1455,23 @@ "width": null } }, - "130c522cf9de40f4ac92754b6190d2cd": { + "0bb29db854e34b7b8204b554cd997f29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0c5a717783524e799fe00012c4808898": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,7 +1524,7 @@ "width": null } }, - "15197c6fed684dc29e6af9b64024430d": { + "12aca159806146a4af975df430437cde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1561,82 +1577,43 @@ "width": null } }, - "15eef3bc3cb84f9e8cf6b521589d4ed2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e6cff9c13364fbf9188bc8ed9570dfe", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5a334f4cb35e4ee5afbac7cc6063dc7a", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "15f88ea20e114c26a6d052aa053684cc": { + "13f4f188f95c47ab9320fc789b24c86c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1aa5223478e94472ab31dc5676e1e4a7", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c208402e150c450e997644316d660574", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "16b957adb748495c8f843617b5c1c95e": { + "1cb741f673484f3789660f4cc7df7182": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff04469994fe43588e35ff413d36d84f", - "placeholder": "​", - "style": "IPY_MODEL_bfad5d6457064c60bad64e108880ebff", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "172803a5acf34268bbfb95b6230a1f16": { + "1db2118a850a49ad8f86d22268e3d544": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1689,7 +1666,7 @@ "width": null } }, - "19d5ba8653894fdf91d5e7737b00d22f": { + "1e0492b89ec04f4da62069600a4b6049": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1742,7 +1719,7 @@ "width": null } }, - "1aa5223478e94472ab31dc5676e1e4a7": { + "1f22ab5c9c0546f4867105f7926647d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1795,7 +1772,30 @@ "width": null } }, - "2431bff6596c4cd9b2a4e0a2d61c530c": { + "1f7a16de96c74854bba19433b3cb1f4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4970f56bd214401faeec877e4c626ba1", + "placeholder": "​", + "style": "IPY_MODEL_21e054ee16204a2ea9d138fdd06febbc", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "21e054ee16204a2ea9d138fdd06febbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1813,7 +1813,57 @@ "text_color": null } }, - "291772dd08904344964877a8689f3ac1": { + "22462da2556548cc97fdfffaa9df09bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_82c84c4fc7034fa5862359013ad4c985", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b39b926e7f47453c889e772829230a97", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "26a08a01edc840fdbf0fc669d332e966": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c2df9eea38404515b97c32652d7b884b", + "IPY_MODEL_4e6ebbf588be443d810e1636093ddcec", + "IPY_MODEL_58c68625a51740c2b3532df8814fc567" + ], + "layout": "IPY_MODEL_049fc237b5604097b936619a022dcef0", + "tabbable": null, + "tooltip": null + } + }, + "272caefd758042709a3f8bd67d1f6dfd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1829,7 +1879,25 @@ "description_width": "" } }, - "38f73950f0b2483984b2c52fbfc33fa0": { + "2a40cadb3f064fbc8236ecd4b9a40de5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "35133f64bd704635803c2bb4a9fdcde1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1847,7 +1915,7 @@ "text_color": null } }, - "39d8f21da7c947b58878f4a50c33a1c2": { + "3d47639a1fe1481593c844e53b0cabbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1900,31 +1968,41 @@ "width": null } }, - "3b4ed508d2fd4aa5a6b7db88f9fc4439": { + "432343ad04c24ac293b82ca705f4bfb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_844c80f92d9f4181823a5dd898ef9f7f", - "IPY_MODEL_df2d3ac8ba464754a15c87d2a2aff21c", - "IPY_MODEL_4bfcd2779bf1488c8a8679e37ef5df65" - ], - "layout": "IPY_MODEL_9be80958325b44509d35ded14f351657", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3e4a2fc52718432280f5f292abf0bb9f": { + "47540f3bc87a4a2099a431a8e86a5613": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4970f56bd214401faeec877e4c626ba1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1977,7 +2055,7 @@ "width": null } }, - "4289413ed1f3437799576c029e105a8a": { + "4a18eea0b3ee4b22889acc4216b9f537": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2030,48 +2108,7 @@ "width": null } }, - "495aa7e30d1847b4bc03f2c539208db0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4bfcd2779bf1488c8a8679e37ef5df65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15197c6fed684dc29e6af9b64024430d", - "placeholder": "​", - "style": "IPY_MODEL_2431bff6596c4cd9b2a4e0a2d61c530c", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 203MB/s]" - } - }, - "4da158336ca1492280244bca089d2fcf": { + "4e6ebbf588be443d810e1636093ddcec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2087,17 +2124,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ddfb6301bea14d1e84ba9b4ebd7e3371", - "max": 3201.0, + "layout": "IPY_MODEL_9a462f409c7d44379e9242ab654c0d76", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_774d925e3f2d4091b634daa979b6581e", + "style": "IPY_MODEL_47540f3bc87a4a2099a431a8e86a5613", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 16887676.0 } }, - "551dfbf7707540f0b6412868fada53e9": { + "5168a705b2314d658bdbaaa89386ddc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2112,32 +2149,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ffbb575da0e44e23b40187c7bd8b6596", - "IPY_MODEL_4da158336ca1492280244bca089d2fcf", - "IPY_MODEL_bf09b30e0d3f4522bb9624f3fec5f8a2" + "IPY_MODEL_1f7a16de96c74854bba19433b3cb1f4a", + "IPY_MODEL_acabb809d8ed487a9816fc9839a6c5fd", + "IPY_MODEL_b828666b72f04ef89c2797cb7addcd3e" ], - "layout": "IPY_MODEL_ae854acc0bff4783bb318d52e5f085d6", + "layout": "IPY_MODEL_1db2118a850a49ad8f86d22268e3d544", "tabbable": null, "tooltip": null } }, - "5a334f4cb35e4ee5afbac7cc6063dc7a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6438cfc59b0a4551b5ea6f5fa7ee2b55": { + "5257844331e34f2cbe0041b95a5cc8b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2190,25 +2211,33 @@ "width": null } }, - "70fd5df3d1584b598c67bd4f2eccbd17": { + "54e58c26f02b42e39b2f3f027788e688": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a18eea0b3ee4b22889acc4216b9f537", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_272caefd758042709a3f8bd67d1f6dfd", + "tabbable": null, + "tooltip": null, + "value": 2041.0 } }, - "7199ce63e02644699a50db9401c5a8bc": { + "559ce94d479c44128c0617d73e3840a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2223,103 +2252,62 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e435c4cf6c1d493c8a53201d0fd2564f", - "IPY_MODEL_e1699196b24c40de956824283f65ce04", - "IPY_MODEL_f4aac3d64d8c46a9955501657c9b658c" + "IPY_MODEL_779ab53f84364921a89a86019fc55c33", + "IPY_MODEL_54e58c26f02b42e39b2f3f027788e688", + "IPY_MODEL_ea8fc958ac764717af568a7ad6193c06" ], - "layout": "IPY_MODEL_8dda6fe752b24aa8bf822e9564fecb13", + "layout": "IPY_MODEL_0c5a717783524e799fe00012c4808898", "tabbable": null, "tooltip": null } }, - "761bb4df403b4744a96d28a20e1f13b1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "774d925e3f2d4091b634daa979b6581e": { + "58c68625a51740c2b3532df8814fc567": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e1494eee470f4b2286066bbcff458a2c", + "placeholder": "​", + "style": "IPY_MODEL_35133f64bd704635803c2bb4a9fdcde1", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 30.6MB/s]" } }, - "7d5d806971d24ceb82cdb51cd330eb65": { + "61ba8ceb51ba4ba3a01c72dd9932d866": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b13ce02574ad435a8bbf0260d2f6a8ed", + "placeholder": "​", + "style": "IPY_MODEL_13f4f188f95c47ab9320fc789b24c86c", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 839kB/s]" } }, - "844c80f92d9f4181823a5dd898ef9f7f": { + "74c86e44676b4eb189a415af718be86f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2334,15 +2322,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6438cfc59b0a4551b5ea6f5fa7ee2b55", + "layout": "IPY_MODEL_bf49502611ba49a397de19605da7550e", "placeholder": "​", - "style": "IPY_MODEL_7d5d806971d24ceb82cdb51cd330eb65", + "style": "IPY_MODEL_ca3fa2e09bb64003865cbfb4308803f0", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "7517e16e60534f379b8d6c502ba22449": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "84f741f66798418186ba90846f2b6c79": { + "779ab53f84364921a89a86019fc55c33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2357,33 +2361,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a7f2888a4d0d4c98ab61fed5012681f6", + "layout": "IPY_MODEL_12aca159806146a4af975df430437cde", "placeholder": "​", - "style": "IPY_MODEL_cfc704dd7d5745248a343629104c3b79", + "style": "IPY_MODEL_e64b09bf0a344ff1b5391edbe1e26160", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 10.5MB/s]" + "value": "hyperparams.yaml: 100%" } }, - "8c56abf2bb624aad952666ec0cb06d1a": { + "80cb1f1cefe44a4c9d6dc8382490d21b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_74c86e44676b4eb189a415af718be86f", + "IPY_MODEL_22462da2556548cc97fdfffaa9df09bf", + "IPY_MODEL_61ba8ceb51ba4ba3a01c72dd9932d866" + ], + "layout": "IPY_MODEL_e5adc1ec15a54e5eaf0bfa3dab004f14", + "tabbable": null, + "tooltip": null } }, - "8dda6fe752b24aa8bf822e9564fecb13": { + "82c84c4fc7034fa5862359013ad4c985": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2436,7 +2446,7 @@ "width": null } }, - "8f90ea53897f455fb156545ff7469bea": { + "859ef03643e94d62aba7ee90f12360b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2454,23 +2464,86 @@ "text_color": null } }, - "915beea47d184c989e868b1b3fbb18f4": { + "8d9696f9111c4bc28e65bdb9ceb4bc54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f22ab5c9c0546f4867105f7926647d5", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7517e16e60534f379b8d6c502ba22449", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "92eb4bfab7354c04b4ad4cf5062076df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "96fdf58bd8944e0e8a4c6895138315e7": { + "9360de93990243adba0e99e98272eabf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2485,15 +2558,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e4a2fc52718432280f5f292abf0bb9f", + "layout": "IPY_MODEL_5257844331e34f2cbe0041b95a5cc8b8", "placeholder": "​", - "style": "IPY_MODEL_70fd5df3d1584b598c67bd4f2eccbd17", + "style": "IPY_MODEL_432343ad04c24ac293b82ca705f4bfb9", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": "label_encoder.txt: 100%" } }, - "9be80958325b44509d35ded14f351657": { + "9a462f409c7d44379e9242ab654c0d76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2546,7 +2619,7 @@ "width": null } }, - "a5bae75c38a74e49b02f9d2550022983": { + "9db82fd51e2e4fed9b33f37367503967": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2599,7 +2672,33 @@ "width": null } }, - "a7f2888a4d0d4c98ab61fed5012681f6": { + "acabb809d8ed487a9816fc9839a6c5fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba9d61fc2a5a410d944eb91e9dcf5a0f", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0bb29db854e34b7b8204b554cd997f29", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "b13ce02574ad435a8bbf0260d2f6a8ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2652,7 +2751,64 @@ "width": null } }, - "ae854acc0bff4783bb318d52e5f085d6": { + "b39b926e7f47453c889e772829230a97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b4450546991d4b42af0822f453b55996": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b828666b72f04ef89c2797cb7addcd3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e0492b89ec04f4da62069600a4b6049", + "placeholder": "​", + "style": "IPY_MODEL_b4450546991d4b42af0822f453b55996", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 48.0MB/s]" + } + }, + "ba9d61fc2a5a410d944eb91e9dcf5a0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2705,7 +2861,7 @@ "width": null } }, - "b64482117e4d4595a54e905b421aeb27": { + "bf49502611ba49a397de19605da7550e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2758,7 +2914,7 @@ "width": null } }, - "ba658f46cfc549e4a65d5d3c3c395130": { + "c2df9eea38404515b97c32652d7b884b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2773,114 +2929,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_39d8f21da7c947b58878f4a50c33a1c2", + "layout": "IPY_MODEL_92eb4bfab7354c04b4ad4cf5062076df", "placeholder": "​", - "style": "IPY_MODEL_495aa7e30d1847b4bc03f2c539208db0", + "style": "IPY_MODEL_2a40cadb3f064fbc8236ecd4b9a40de5", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 150MB/s]" - } - }, - "bf09b30e0d3f4522bb9624f3fec5f8a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f786259934684201a10fd4e447c05047", - "placeholder": "​", - "style": "IPY_MODEL_8f90ea53897f455fb156545ff7469bea", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 14.2kB/s]" - } - }, - "bfad5d6457064c60bad64e108880ebff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c208402e150c450e997644316d660574": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c9bab60f3a264953b441b080a504e204": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16b957adb748495c8f843617b5c1c95e", - "IPY_MODEL_15eef3bc3cb84f9e8cf6b521589d4ed2", - "IPY_MODEL_84f741f66798418186ba90846f2b6c79" - ], - "layout": "IPY_MODEL_172803a5acf34268bbfb95b6230a1f16", - "tabbable": null, - "tooltip": null - } - }, - "cfc704dd7d5745248a343629104c3b79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "embedding_model.ckpt: 100%" } }, - "d812fb2694d347deb1eaf075f6199608": { + "ca3fa2e09bb64003865cbfb4308803f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2898,7 +2955,7 @@ "text_color": null } }, - "ddfb6301bea14d1e84ba9b4ebd7e3371": { + "cf94497ef2a34f5ebac150c27ee21545": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2951,82 +3008,7 @@ "width": null } }, - "df2d3ac8ba464754a15c87d2a2aff21c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4289413ed1f3437799576c029e105a8a", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_291772dd08904344964877a8689f3ac1", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "e1699196b24c40de956824283f65ce04": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_130c522cf9de40f4ac92754b6190d2cd", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_915beea47d184c989e868b1b3fbb18f4", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "e435c4cf6c1d493c8a53201d0fd2564f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d5ba8653894fdf91d5e7737b00d22f", - "placeholder": "​", - "style": "IPY_MODEL_38f73950f0b2483984b2c52fbfc33fa0", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "ed5cb1a3a84545419e6177e49f3a08d7": { + "d2840cececad49699fbc2c57ff6d7452": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3041,39 +3023,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_96fdf58bd8944e0e8a4c6895138315e7", - "IPY_MODEL_15f88ea20e114c26a6d052aa053684cc", - "IPY_MODEL_ba658f46cfc549e4a65d5d3c3c395130" + "IPY_MODEL_9360de93990243adba0e99e98272eabf", + "IPY_MODEL_8d9696f9111c4bc28e65bdb9ceb4bc54", + "IPY_MODEL_e745c6f9e0974eb497903a433d7fd972" ], - "layout": "IPY_MODEL_b64482117e4d4595a54e905b421aeb27", + "layout": "IPY_MODEL_3d47639a1fe1481593c844e53b0cabbe", "tabbable": null, "tooltip": null } }, - "f4aac3d64d8c46a9955501657c9b658c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a5bae75c38a74e49b02f9d2550022983", - "placeholder": "​", - "style": "IPY_MODEL_8c56abf2bb624aad952666ec0cb06d1a", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 490kB/s]" - } - }, - "f786259934684201a10fd4e447c05047": { + "e1494eee470f4b2286066bbcff458a2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3126,7 +3085,7 @@ "width": null } }, - "ff04469994fe43588e35ff413d36d84f": { + "e5adc1ec15a54e5eaf0bfa3dab004f14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3179,7 +3138,25 @@ "width": null } }, - "ffbb575da0e44e23b40187c7bd8b6596": { + "e64b09bf0a344ff1b5391edbe1e26160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e745c6f9e0974eb497903a433d7fd972": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3194,12 +3171,35 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_761bb4df403b4744a96d28a20e1f13b1", + "layout": "IPY_MODEL_9db82fd51e2e4fed9b33f37367503967", "placeholder": "​", - "style": "IPY_MODEL_d812fb2694d347deb1eaf075f6199608", + "style": "IPY_MODEL_1cb741f673484f3789660f4cc7df7182", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": " 129k/129k [00:00<00:00, 20.0MB/s]" + } + }, + "ea8fc958ac764717af568a7ad6193c06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf94497ef2a34f5ebac150c27ee21545", + "placeholder": "​", + "style": "IPY_MODEL_859ef03643e94d62aba7ee90f12360b9", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb index 452bdad07..dd03aa2fe 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:37.420344Z", - "iopub.status.busy": "2024-06-13T18:22:37.420171Z", - "iopub.status.idle": "2024-06-13T18:22:37.431092Z", - "shell.execute_reply": "2024-06-13T18:22:37.430565Z" + "iopub.execute_input": "2024-06-14T00:17:31.839397Z", + "iopub.status.busy": "2024-06-14T00:17:31.839227Z", + "iopub.status.idle": "2024-06-14T00:17:31.850050Z", + "shell.execute_reply": "2024-06-14T00:17:31.849616Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:37.433379Z", - "iopub.status.busy": "2024-06-13T18:22:37.433075Z", - "iopub.status.idle": "2024-06-13T18:22:38.659460Z", - "shell.execute_reply": "2024-06-13T18:22:38.658898Z" + "iopub.execute_input": "2024-06-14T00:17:31.852197Z", + "iopub.status.busy": "2024-06-14T00:17:31.851875Z", + "iopub.status.idle": "2024-06-14T00:17:33.079477Z", + "shell.execute_reply": "2024-06-14T00:17:33.078900Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.662117Z", - "iopub.status.busy": "2024-06-13T18:22:38.661650Z", - "iopub.status.idle": "2024-06-13T18:22:38.680318Z", - "shell.execute_reply": "2024-06-13T18:22:38.679847Z" + "iopub.execute_input": "2024-06-14T00:17:33.082262Z", + "iopub.status.busy": "2024-06-14T00:17:33.081776Z", + "iopub.status.idle": "2024-06-14T00:17:33.100692Z", + "shell.execute_reply": "2024-06-14T00:17:33.100156Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.682642Z", - "iopub.status.busy": "2024-06-13T18:22:38.682318Z", - "iopub.status.idle": "2024-06-13T18:22:38.702576Z", - "shell.execute_reply": "2024-06-13T18:22:38.701983Z" + "iopub.execute_input": "2024-06-14T00:17:33.103062Z", + "iopub.status.busy": "2024-06-14T00:17:33.102755Z", + "iopub.status.idle": "2024-06-14T00:17:33.123038Z", + "shell.execute_reply": "2024-06-14T00:17:33.122520Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.705151Z", - "iopub.status.busy": "2024-06-13T18:22:38.704804Z", - "iopub.status.idle": "2024-06-13T18:22:38.721925Z", - "shell.execute_reply": "2024-06-13T18:22:38.721454Z" + "iopub.execute_input": "2024-06-14T00:17:33.125128Z", + "iopub.status.busy": "2024-06-14T00:17:33.124945Z", + "iopub.status.idle": "2024-06-14T00:17:33.141155Z", + "shell.execute_reply": "2024-06-14T00:17:33.140606Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.724298Z", - "iopub.status.busy": "2024-06-13T18:22:38.723937Z", - "iopub.status.idle": "2024-06-13T18:22:38.739305Z", - "shell.execute_reply": "2024-06-13T18:22:38.738831Z" + "iopub.execute_input": "2024-06-14T00:17:33.143459Z", + "iopub.status.busy": "2024-06-14T00:17:33.142986Z", + "iopub.status.idle": "2024-06-14T00:17:33.158151Z", + "shell.execute_reply": "2024-06-14T00:17:33.157556Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.741746Z", - "iopub.status.busy": "2024-06-13T18:22:38.741326Z", - "iopub.status.idle": "2024-06-13T18:22:38.941463Z", - "shell.execute_reply": "2024-06-13T18:22:38.940915Z" + "iopub.execute_input": "2024-06-14T00:17:33.160225Z", + "iopub.status.busy": "2024-06-14T00:17:33.160050Z", + "iopub.status.idle": "2024-06-14T00:17:33.354159Z", + "shell.execute_reply": "2024-06-14T00:17:33.353598Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.943766Z", - "iopub.status.busy": "2024-06-13T18:22:38.943570Z", - "iopub.status.idle": "2024-06-13T18:22:39.308179Z", - "shell.execute_reply": "2024-06-13T18:22:39.307537Z" + "iopub.execute_input": "2024-06-14T00:17:33.356457Z", + "iopub.status.busy": "2024-06-14T00:17:33.356266Z", + "iopub.status.idle": "2024-06-14T00:17:33.674701Z", + "shell.execute_reply": "2024-06-14T00:17:33.674108Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:39.310462Z", - "iopub.status.busy": "2024-06-13T18:22:39.310125Z", - "iopub.status.idle": "2024-06-13T18:22:39.347673Z", - "shell.execute_reply": "2024-06-13T18:22:39.347074Z" + "iopub.execute_input": "2024-06-14T00:17:33.677033Z", + "iopub.status.busy": "2024-06-14T00:17:33.676832Z", + "iopub.status.idle": "2024-06-14T00:17:33.716185Z", + "shell.execute_reply": "2024-06-14T00:17:33.715559Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:39.350338Z", - "iopub.status.busy": "2024-06-13T18:22:39.349993Z", - "iopub.status.idle": "2024-06-13T18:22:41.058756Z", - "shell.execute_reply": "2024-06-13T18:22:41.058146Z" + "iopub.execute_input": "2024-06-14T00:17:33.718813Z", + "iopub.status.busy": "2024-06-14T00:17:33.718468Z", + "iopub.status.idle": "2024-06-14T00:17:35.462480Z", + "shell.execute_reply": "2024-06-14T00:17:35.461920Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:41.061244Z", - "iopub.status.busy": "2024-06-13T18:22:41.060758Z", - "iopub.status.idle": "2024-06-13T18:22:41.089201Z", - "shell.execute_reply": "2024-06-13T18:22:41.088763Z" + "iopub.execute_input": "2024-06-14T00:17:35.464948Z", + "iopub.status.busy": "2024-06-14T00:17:35.464506Z", + "iopub.status.idle": "2024-06-14T00:17:35.493853Z", + "shell.execute_reply": "2024-06-14T00:17:35.493228Z" } }, "outputs": [], @@ -706,10 +706,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:41.091502Z", - "iopub.status.busy": "2024-06-13T18:22:41.091169Z", - "iopub.status.idle": "2024-06-13T18:22:41.124662Z", - "shell.execute_reply": "2024-06-13T18:22:41.124172Z" + "iopub.execute_input": "2024-06-14T00:17:35.496490Z", + "iopub.status.busy": "2024-06-14T00:17:35.496150Z", + "iopub.status.idle": "2024-06-14T00:17:35.529714Z", + "shell.execute_reply": "2024-06-14T00:17:35.529212Z" } }, "outputs": [], @@ -746,17 +746,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:41.127211Z", - "iopub.status.busy": "2024-06-13T18:22:41.126850Z", - "iopub.status.idle": "2024-06-13T18:22:46.237072Z", - "shell.execute_reply": "2024-06-13T18:22:46.236488Z" + "iopub.execute_input": "2024-06-14T00:17:35.532027Z", + "iopub.status.busy": "2024-06-14T00:17:35.531683Z", + "iopub.status.idle": "2024-06-14T00:17:40.644858Z", + "shell.execute_reply": "2024-06-14T00:17:40.644258Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e155721fcc9474885d252e622f5129c", + "model_id": "af3c9926cfbe41799e7720f657b418c7", "version_major": 2, "version_minor": 0 }, @@ -816,17 +816,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:46.239395Z", - "iopub.status.busy": "2024-06-13T18:22:46.239200Z", - "iopub.status.idle": "2024-06-13T18:22:51.567056Z", - "shell.execute_reply": "2024-06-13T18:22:51.566473Z" + "iopub.execute_input": "2024-06-14T00:17:40.647123Z", + "iopub.status.busy": "2024-06-14T00:17:40.646777Z", + "iopub.status.idle": "2024-06-14T00:17:45.970828Z", + "shell.execute_reply": "2024-06-14T00:17:45.970248Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "02f2137bffe34409859676b4022f4c63", + "model_id": "c905ff0a515748b2882ff279d6825f91", "version_major": 2, "version_minor": 0 }, @@ -954,10 +954,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.570082Z", - "iopub.status.busy": "2024-06-13T18:22:51.569725Z", - "iopub.status.idle": "2024-06-13T18:22:51.605338Z", - "shell.execute_reply": "2024-06-13T18:22:51.604879Z" + "iopub.execute_input": "2024-06-14T00:17:45.972931Z", + "iopub.status.busy": "2024-06-14T00:17:45.972751Z", + "iopub.status.idle": "2024-06-14T00:17:46.008366Z", + "shell.execute_reply": "2024-06-14T00:17:46.007888Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.607507Z", - "iopub.status.busy": "2024-06-13T18:22:51.607110Z", - "iopub.status.idle": "2024-06-13T18:22:51.638254Z", - "shell.execute_reply": "2024-06-13T18:22:51.637704Z" + "iopub.execute_input": "2024-06-14T00:17:46.010530Z", + "iopub.status.busy": "2024-06-14T00:17:46.010113Z", + "iopub.status.idle": "2024-06-14T00:17:46.039604Z", + "shell.execute_reply": "2024-06-14T00:17:46.039092Z" } }, "outputs": [ @@ -1263,10 +1263,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.640292Z", - "iopub.status.busy": "2024-06-13T18:22:51.640106Z", - "iopub.status.idle": "2024-06-13T18:22:51.685638Z", - "shell.execute_reply": "2024-06-13T18:22:51.685140Z" + "iopub.execute_input": "2024-06-14T00:17:46.041700Z", + "iopub.status.busy": "2024-06-14T00:17:46.041523Z", + "iopub.status.idle": "2024-06-14T00:17:46.087095Z", + "shell.execute_reply": "2024-06-14T00:17:46.086568Z" } }, "outputs": [ @@ -1324,10 +1324,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.687636Z", - "iopub.status.busy": "2024-06-13T18:22:51.687451Z", - "iopub.status.idle": "2024-06-13T18:22:51.714303Z", - "shell.execute_reply": "2024-06-13T18:22:51.713837Z" + "iopub.execute_input": "2024-06-14T00:17:46.089242Z", + "iopub.status.busy": "2024-06-14T00:17:46.088922Z", + "iopub.status.idle": "2024-06-14T00:17:46.115710Z", + "shell.execute_reply": "2024-06-14T00:17:46.115153Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.716610Z", - "iopub.status.busy": "2024-06-13T18:22:51.716421Z", - "iopub.status.idle": "2024-06-13T18:22:51.744745Z", - "shell.execute_reply": "2024-06-13T18:22:51.744258Z" + "iopub.execute_input": "2024-06-14T00:17:46.118213Z", + "iopub.status.busy": "2024-06-14T00:17:46.117881Z", + "iopub.status.idle": "2024-06-14T00:17:46.145350Z", + "shell.execute_reply": "2024-06-14T00:17:46.144891Z" } }, "outputs": [], @@ -1373,17 +1373,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.747012Z", - "iopub.status.busy": "2024-06-13T18:22:51.746827Z", - "iopub.status.idle": "2024-06-13T18:23:02.174933Z", - "shell.execute_reply": "2024-06-13T18:23:02.174312Z" + "iopub.execute_input": "2024-06-14T00:17:46.147640Z", + "iopub.status.busy": "2024-06-14T00:17:46.147287Z", + "iopub.status.idle": "2024-06-14T00:17:56.582243Z", + "shell.execute_reply": "2024-06-14T00:17:56.581585Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "51cdc48742e448a3a16617004036b215", + "model_id": "241c2db461cd4830bf37c0bf3865ebaa", "version_major": 2, "version_minor": 0 }, @@ -1407,7 +1407,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a76b0a9b5434a0abd3980129de891b3", + "model_id": "d98b02b0b64a4352a52b1fb2a06fa798", "version_major": 2, "version_minor": 0 }, @@ -1473,10 +1473,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:02.177564Z", - "iopub.status.busy": "2024-06-13T18:23:02.177381Z", - "iopub.status.idle": "2024-06-13T18:23:02.261027Z", - "shell.execute_reply": "2024-06-13T18:23:02.260407Z" + "iopub.execute_input": "2024-06-14T00:17:56.584698Z", + "iopub.status.busy": "2024-06-14T00:17:56.584344Z", + "iopub.status.idle": "2024-06-14T00:17:56.676285Z", + "shell.execute_reply": "2024-06-14T00:17:56.675620Z" } }, "outputs": [ @@ -1561,10 +1561,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:02.263454Z", - "iopub.status.busy": "2024-06-13T18:23:02.263113Z", - "iopub.status.idle": "2024-06-13T18:23:02.293327Z", - "shell.execute_reply": "2024-06-13T18:23:02.292846Z" + "iopub.execute_input": "2024-06-14T00:17:56.678493Z", + "iopub.status.busy": "2024-06-14T00:17:56.678294Z", + "iopub.status.idle": "2024-06-14T00:17:56.711426Z", + "shell.execute_reply": "2024-06-14T00:17:56.710921Z" } }, "outputs": [], @@ -1577,10 +1577,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:02.295624Z", - "iopub.status.busy": "2024-06-13T18:23:02.295161Z", - "iopub.status.idle": "2024-06-13T18:23:02.322611Z", - "shell.execute_reply": "2024-06-13T18:23:02.322061Z" + "iopub.execute_input": "2024-06-14T00:17:56.713957Z", + "iopub.status.busy": "2024-06-14T00:17:56.713587Z", + "iopub.status.idle": "2024-06-14T00:17:56.744323Z", + "shell.execute_reply": "2024-06-14T00:17:56.743678Z" } }, "outputs": [], @@ -1609,17 +1609,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:02.324749Z", - "iopub.status.busy": "2024-06-13T18:23:02.324435Z", - "iopub.status.idle": "2024-06-13T18:23:12.799500Z", - "shell.execute_reply": "2024-06-13T18:23:12.798880Z" + "iopub.execute_input": "2024-06-14T00:17:56.747201Z", + "iopub.status.busy": "2024-06-14T00:17:56.746776Z", + "iopub.status.idle": "2024-06-14T00:18:07.235530Z", + "shell.execute_reply": "2024-06-14T00:18:07.234999Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eda514a8c8274628875bda061064c9bd", + "model_id": "930d293ba91546b8a628364a1ac1c691", "version_major": 2, "version_minor": 0 }, @@ -1673,7 +1673,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f60b4c5f8294befa2ae7b9c319ecf23", + "model_id": "b03cf3b41bf146c9837eeb0db067f3d8", "version_major": 2, "version_minor": 0 }, @@ -1791,10 +1791,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:12.802172Z", - "iopub.status.busy": "2024-06-13T18:23:12.801988Z", - "iopub.status.idle": "2024-06-13T18:23:12.831705Z", - "shell.execute_reply": "2024-06-13T18:23:12.831148Z" + "iopub.execute_input": "2024-06-14T00:18:07.238422Z", + "iopub.status.busy": "2024-06-14T00:18:07.238242Z", + "iopub.status.idle": "2024-06-14T00:18:07.268800Z", + "shell.execute_reply": "2024-06-14T00:18:07.268274Z" } }, "outputs": [ @@ -1878,80 +1878,106 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "027ee2cf0c244bbe82d896d2c6d45fb5": { - "model_module": "@jupyter-widgets/controls", + "06c69d48973a468db203c242950ad690": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49b9881793fc43c7b3e269be0249debf", - "placeholder": "​", - "style": "IPY_MODEL_448b0b23f9d14e108c2183edc8c85746", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "02f2137bffe34409859676b4022f4c63": { + "08858a6fc3f344fc8404fb03cc7ddf9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ae6f9d5ec6934555b1de197bd9374be7", - "IPY_MODEL_0a96fdf2b8b744ee91dd8d828825b1a1", - "IPY_MODEL_027ee2cf0c244bbe82d896d2c6d45fb5" - ], - "layout": "IPY_MODEL_a503f5644f324b13829adfdf0c42fc68", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ae842be536a74541a0c3a55ddf8a5cb1", + "placeholder": "​", + "style": "IPY_MODEL_407cf46e56f94d0caf3d4729acc5692f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "0a96fdf2b8b744ee91dd8d828825b1a1": { + "096a5e714eee4874a49ca26e5597ca9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_43c43d563f174199abf97b37e9c80a1e", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64eddbaa26854d0d85000f3b4a4c55fa", + "layout": "IPY_MODEL_71235f4ab4144fb58d20c27b3c8b51f2", + "placeholder": "​", + "style": "IPY_MODEL_3102e98c61a6489783b0269c3514d8a5", "tabbable": null, "tooltip": null, - "value": 7.0 + "value": " 50/50 [00:05<00:00,  9.78it/s]" } }, - "102ea76a23a84c6595628ba8e0b6d412": { + "10e5f1412fe3445bb2c392ebd6c4eacc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1969,7 +1995,7 @@ "text_color": null } }, - "162c5f5c61b84c82978365dcff6f4020": { + "1827938a16834ee7b95ec4311f0524b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2022,7 +2048,7 @@ "width": null } }, - "19d7ed71b048467d838dfc2c97910051": { + "1e92dd244e824b46a1c52ea44cba333d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2040,33 +2066,54 @@ "text_color": null } }, - "1c12aec4f2b6402fafa1f95c4a7f5010": { + "241c2db461cd4830bf37c0bf3865ebaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_08858a6fc3f344fc8404fb03cc7ddf9f", + "IPY_MODEL_3b6e90804bbb4dc1ac263c325b4787af", + "IPY_MODEL_096a5e714eee4874a49ca26e5597ca9f" + ], + "layout": "IPY_MODEL_45b647211ee64bb8b2b1e82b121c6041", + "tabbable": null, + "tooltip": null + } + }, + "2be17b4b5adb402abacba17470175b68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4151c73fda664b4a8ddb2556216147c2", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e146a9852ee64af99289bc502dd68f91", + "layout": "IPY_MODEL_442780b7002b40e78a38a5e56efbc364", + "placeholder": "​", + "style": "IPY_MODEL_bb0ce3c5b47a474f824353b1dc5fe5df", "tabbable": null, "tooltip": null, - "value": 7.0 + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "1c7a9d82e9534a3daec49aa2709535f0": { + "302f871ed70b4e45bcc21a616093a562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2119,30 +2166,43 @@ "width": null } }, - "1ffeea764a1545d8b16876783d0fbc52": { + "30b477ffebff4e608c64c2edb926e665": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c48101272bcb441aaff126eaf956bbff", - "placeholder": "​", - "style": "IPY_MODEL_5e9882c39a0e46efbc2e04db6174c6f6", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3102e98c61a6489783b0269c3514d8a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "26c220d238264957965e393a2fe2aa5e": { + "3409580436d44c0e92b9a61762a45ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2157,108 +2217,82 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e4c57afd2d05435d944d295289226f27", + "layout": "IPY_MODEL_1827938a16834ee7b95ec4311f0524b9", "placeholder": "​", - "style": "IPY_MODEL_6830acf7aeb44380a1ea3951201619c8", + "style": "IPY_MODEL_4738d841b3b740ba919afa2f70d5dca6", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "value": " 50/50 [00:05<00:00,  9.74it/s]" } }, - "26e30fd773804c929d1ad4997c06a01b": { - "model_module": "@jupyter-widgets/base", + "3b6e90804bbb4dc1ac263c325b4787af": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6544bf6ee5344bbfb4793e4b6057deee", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b5c86a86e594ec58a959585374e67cf", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "2ad97b845a20459388c0937815b811e0": { + "407cf46e56f94d0caf3d4729acc5692f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2f60b4c5f8294befa2ae7b9c319ecf23": { + "40b2ef021b654a17868665460e59d553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8d6e1f77af6c45119aba326234002134", - "IPY_MODEL_aaa3eb19f15b4bfb881a957d0214a182", - "IPY_MODEL_d26f02fd63a1401b8809a0bf7feeab2b" - ], - "layout": "IPY_MODEL_5e23af02695345cd8145e29e6f11e2d4", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1cd1d47270f4401bb27252e34320173", + "placeholder": "​", + "style": "IPY_MODEL_30b477ffebff4e608c64c2edb926e665", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "38dbc29c0b194c18a1fb3de8c8bc373f": { + "442780b7002b40e78a38a5e56efbc364": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2311,7 +2345,7 @@ "width": null } }, - "3cc7ea8dc3344181a462765f15bf5b89": { + "45b647211ee64bb8b2b1e82b121c6041": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2364,7 +2398,100 @@ "width": null } }, - "4151c73fda664b4a8ddb2556216147c2": { + "4738d841b3b740ba919afa2f70d5dca6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4823285543054255bfc4a2076dfb1090": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd528df4f8364cf189aff7b3b4c6cc0a", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_87faf0443d8a41199a973bb50d2e18e4", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "487477967d28446aa21b181e22851d23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f77b835d52d468598e452547031e53a", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e2e83fa6a60943a6be6d017f0a792585", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "52b9f13089ac4436bdf2935aca874153": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_936683bd163f457eb9709ab59dc45f68", + "placeholder": "​", + "style": "IPY_MODEL_a1aad77d500f4b7bbdbdf5d50727b621", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.33it/s]" + } + }, + "5755db67209b4886bedfb6c91105fcc4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2417,7 +2544,30 @@ "width": null } }, - "43c43d563f174199abf97b37e9c80a1e": { + "583f932db19445818da1db82118e1dca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab5b2671a50f4eba81b5d29f525735d7", + "placeholder": "​", + "style": "IPY_MODEL_1e92dd244e824b46a1c52ea44cba333d", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "5da7305f7dbc4720ba13d22abe2a3df7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2470,64 +2620,7 @@ "width": null } }, - "448b0b23f9d14e108c2183edc8c85746": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "44fa733fc310439994ad1e0ca1b982fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4539ac03270840949603846cfff65068": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_99edcdc334354151ae1671a678a27570", - "placeholder": "​", - "style": "IPY_MODEL_102ea76a23a84c6595628ba8e0b6d412", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "49b9881793fc43c7b3e269be0249debf": { + "6544bf6ee5344bbfb4793e4b6057deee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2580,119 +2673,49 @@ "width": null } }, - "4a76b0a9b5434a0abd3980129de891b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1ffeea764a1545d8b16876783d0fbc52", - "IPY_MODEL_1c12aec4f2b6402fafa1f95c4a7f5010", - "IPY_MODEL_bd4447ab16c94540acd1bd86134b086b" - ], - "layout": "IPY_MODEL_c06cd2f71e3c4b349a5cb094d5db96ae", - "tabbable": null, - "tooltip": null - } - }, - "4e3e561045394b9fb687be561f909e31": { + "6b5c86a86e594ec58a959585374e67cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_38dbc29c0b194c18a1fb3de8c8bc373f", - "placeholder": "​", - "style": "IPY_MODEL_8f88b72191744db0b3e1f7a49f0544bd", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.86it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4e52a677dc6d49e7b534de63dadc113a": { + "70905837b13840ba837bc8243a7688cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec62ef62743a4ba483cc919868a07290", - "placeholder": "​", - "style": "IPY_MODEL_d2a6cd3c9dff44fd9b5e4e0d9d0d2fdd", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.79it/s]" - } - }, - "51cdc48742e448a3a16617004036b215": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26c220d238264957965e393a2fe2aa5e", - "IPY_MODEL_73395eea60474d60889bb6527be5a188", - "IPY_MODEL_4e52a677dc6d49e7b534de63dadc113a" - ], - "layout": "IPY_MODEL_7ec355310bfd4bb582547a6a8e38b294", - "tabbable": null, - "tooltip": null - } - }, - "52fc04baee224401b54e000fc50c99bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_302f871ed70b4e45bcc21a616093a562", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e7263fc171154a11b042187ba86a1512", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "5e23af02695345cd8145e29e6f11e2d4": { + "71235f4ab4144fb58d20c27b3c8b51f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2745,7 +2768,7 @@ "width": null } }, - "5e9882c39a0e46efbc2e04db6174c6f6": { + "73ed20769f924434b75f109f346607ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2763,59 +2786,87 @@ "text_color": null } }, - "64eddbaa26854d0d85000f3b4a4c55fa": { + "7e0e82dcfdd64151b441dd9bc466ae67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6602a7b4119b4aff853b6fa0b664d947": { + "8150e8488c9545dc954e47fc59d9ec9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bb5fdc09f53c415dab01e7db5e36ca20", + "placeholder": "​", + "style": "IPY_MODEL_73ed20769f924434b75f109f346607ee", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.86it/s]" } }, - "6830acf7aeb44380a1ea3951201619c8": { + "81fa5610238442c6aa240ce9eb222b16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3566741fcf74408812d8c1fc4a7d6d4", + "placeholder": "​", + "style": "IPY_MODEL_10e5f1412fe3445bb2c392ebd6c4eacc", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "87faf0443d8a41199a973bb50d2e18e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "70ca7b9038f94435b08127a5d3144fca": { + "8f77b835d52d468598e452547031e53a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2868,33 +2919,7 @@ "width": null } }, - "73395eea60474d60889bb6527be5a188": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_70ca7b9038f94435b08127a5d3144fca", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c3ece56d55b041e3a3ee2d3ef62cbdac", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "7ec355310bfd4bb582547a6a8e38b294": { + "90a96a607d204d89af09cc6331729c65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2947,25 +2972,47 @@ "width": null } }, - "7f61a9e58a5c4b5ba540d88381cac667": { + "92e2e9396b4c4f308030b1a5ae2f21a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "930d293ba91546b8a628364a1ac1c691": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2be17b4b5adb402abacba17470175b68", + "IPY_MODEL_70905837b13840ba837bc8243a7688cf", + "IPY_MODEL_3409580436d44c0e92b9a61762a45ff8" + ], + "layout": "IPY_MODEL_e80083c9cca44de19c3162df95e08a62", + "tabbable": null, + "tooltip": null } }, - "8648267303b64209a6db138d29df5e4a": { + "936683bd163f457eb9709ab59dc45f68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3018,7 +3065,25 @@ "width": null } }, - "8bf62851738342c6bca51cd59c2caa45": { + "a1aad77d500f4b7bbdbdf5d50727b621": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1cd1d47270f4401bb27252e34320173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3071,7 +3136,7 @@ "width": null } }, - "8d6e1f77af6c45119aba326234002134": { + "a81fccc1d0974b48a0fed97207d44fe8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3086,57 +3151,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c56ab6e5e7fd408f95438c827705d083", + "layout": "IPY_MODEL_90a96a607d204d89af09cc6331729c65", "placeholder": "​", - "style": "IPY_MODEL_b305188cea7c48439a4ffebd4f8956a4", + "style": "IPY_MODEL_7e0e82dcfdd64151b441dd9bc466ae67", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "8e155721fcc9474885d252e622f5129c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4539ac03270840949603846cfff65068", - "IPY_MODEL_ca46e6772a4b4896b28ce1bee03e90ae", - "IPY_MODEL_4e3e561045394b9fb687be561f909e31" - ], - "layout": "IPY_MODEL_26e30fd773804c929d1ad4997c06a01b", - "tabbable": null, - "tooltip": null - } - }, - "8f88b72191744db0b3e1f7a49f0544bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "9613bbdb2dd449c08bc01c0d1cb2217c": { + "ab5b2671a50f4eba81b5d29f525735d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3189,7 +3212,7 @@ "width": null } }, - "99edcdc334354151ae1671a678a27570": { + "ae842be536a74541a0c3a55ddf8a5cb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3242,7 +3265,55 @@ "width": null } }, - "a503f5644f324b13829adfdf0c42fc68": { + "af3c9926cfbe41799e7720f657b418c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a81fccc1d0974b48a0fed97207d44fe8", + "IPY_MODEL_4823285543054255bfc4a2076dfb1090", + "IPY_MODEL_8150e8488c9545dc954e47fc59d9ec9f" + ], + "layout": "IPY_MODEL_d819cbb015d149f1b2d0bde4edf08ac3", + "tabbable": null, + "tooltip": null + } + }, + "b03cf3b41bf146c9837eeb0db067f3d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c318bab061cf41d7bf4f26d8b654763b", + "IPY_MODEL_f6ab54b1c3624e21963f46022233678c", + "IPY_MODEL_81fa5610238442c6aa240ce9eb222b16" + ], + "layout": "IPY_MODEL_c3fdc27918854845b627213eb3665c0f", + "tabbable": null, + "tooltip": null + } + }, + "b0452a5bd7724709a7183635c5e408b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3295,7 +3366,7 @@ "width": null } }, - "a8ebed8620b8446e93e3cb295d8c2493": { + "bb0ce3c5b47a474f824353b1dc5fe5df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3313,56 +3384,7 @@ "text_color": null } }, - "aaa3eb19f15b4bfb881a957d0214a182": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_162c5f5c61b84c82978365dcff6f4020", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2ad97b845a20459388c0937815b811e0", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "ae6f9d5ec6934555b1de197bd9374be7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da9f41f70b764fe7a3e5f3e75c25a921", - "placeholder": "​", - "style": "IPY_MODEL_7f61a9e58a5c4b5ba540d88381cac667", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "afccf65013da4edd818f372363efb55c": { + "bb5fdc09f53c415dab01e7db5e36ca20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3415,25 +3437,30 @@ "width": null } }, - "b305188cea7c48439a4ffebd4f8956a4": { + "c318bab061cf41d7bf4f26d8b654763b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e05c8604f8a5417298a1f4d190247ee3", + "placeholder": "​", + "style": "IPY_MODEL_cd68c2b6adb547dba8e1197318b4d191", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "bd4447ab16c94540acd1bd86134b086b": { + "c3d2c3ccf902411688a9dbd2c8933428": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3448,15 +3475,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8bf62851738342c6bca51cd59c2caa45", + "layout": "IPY_MODEL_b0452a5bd7724709a7183635c5e408b6", "placeholder": "​", - "style": "IPY_MODEL_a8ebed8620b8446e93e3cb295d8c2493", + "style": "IPY_MODEL_e09300f2b9774d8e90dcbb4970b76721", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "c06cd2f71e3c4b349a5cb094d5db96ae": { + "c3fdc27918854845b627213eb3665c0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3509,46 +3536,49 @@ "width": null } }, - "c38648ac8e4340299319fe3b6feee970": { + "c905ff0a515748b2882ff279d6825f91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8648267303b64209a6db138d29df5e4a", - "placeholder": "​", - "style": "IPY_MODEL_6602a7b4119b4aff853b6fa0b664d947", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c3d2c3ccf902411688a9dbd2c8933428", + "IPY_MODEL_fba7e04e257741bdbe79b70262853c69", + "IPY_MODEL_583f932db19445818da1db82118e1dca" + ], + "layout": "IPY_MODEL_06c69d48973a468db203c242950ad690", "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.74it/s]" + "tooltip": null } }, - "c3ece56d55b041e3a3ee2d3ef62cbdac": { + "cd68c2b6adb547dba8e1197318b4d191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c48101272bcb441aaff126eaf956bbff": { + "d819cbb015d149f1b2d0bde4edf08ac3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3601,7 +3631,31 @@ "width": null } }, - "c56ab6e5e7fd408f95438c827705d083": { + "d98b02b0b64a4352a52b1fb2a06fa798": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_40b2ef021b654a17868665460e59d553", + "IPY_MODEL_487477967d28446aa21b181e22851d23", + "IPY_MODEL_52b9f13089ac4436bdf2935aca874153" + ], + "layout": "IPY_MODEL_5755db67209b4886bedfb6c91105fcc4", + "tabbable": null, + "tooltip": null + } + }, + "dd528df4f8364cf189aff7b3b4c6cc0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3654,90 +3708,7 @@ "width": null } }, - "ca46e6772a4b4896b28ce1bee03e90ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f5afacb27efc4abe925acc1dbb8f6d2c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cff9951557da403796934d61ae755f06", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "cff9951557da403796934d61ae755f06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d26f02fd63a1401b8809a0bf7feeab2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3cc7ea8dc3344181a462765f15bf5b89", - "placeholder": "​", - "style": "IPY_MODEL_52fc04baee224401b54e000fc50c99bd", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" - } - }, - "d2a6cd3c9dff44fd9b5e4e0d9d0d2fdd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "da9f41f70b764fe7a3e5f3e75c25a921": { + "e05c8604f8a5417298a1f4d190247ee3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3790,33 +3761,25 @@ "width": null } }, - "e083eef43696473e8139430985ed229b": { + "e09300f2b9774d8e90dcbb4970b76721": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c7a9d82e9534a3daec49aa2709535f0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44fa733fc310439994ad1e0ca1b982fe", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e146a9852ee64af99289bc502dd68f91": { + "e2e83fa6a60943a6be6d017f0a792585": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3832,7 +3795,7 @@ "description_width": "" } }, - "e4c57afd2d05435d944d295289226f27": { + "e3566741fcf74408812d8c1fc4a7d6d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3885,30 +3848,7 @@ "width": null } }, - "e8eee715770f45b295df4ffa84d2608f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9613bbdb2dd449c08bc01c0d1cb2217c", - "placeholder": "​", - "style": "IPY_MODEL_19d7ed71b048467d838dfc2c97910051", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "ec62ef62743a4ba483cc919868a07290": { + "e3e66aa278f04488b16a3a1ff04a79b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3961,31 +3901,23 @@ "width": null } }, - "eda514a8c8274628875bda061064c9bd": { + "e7263fc171154a11b042187ba86a1512": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8eee715770f45b295df4ffa84d2608f", - "IPY_MODEL_e083eef43696473e8139430985ed229b", - "IPY_MODEL_c38648ac8e4340299319fe3b6feee970" - ], - "layout": "IPY_MODEL_afccf65013da4edd818f372363efb55c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f5afacb27efc4abe925acc1dbb8f6d2c": { + "e80083c9cca44de19c3162df95e08a62": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4037,6 +3969,74 @@ "visibility": null, "width": null } + }, + "f6ab54b1c3624e21963f46022233678c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3e66aa278f04488b16a3a1ff04a79b1", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_92e2e9396b4c4f308030b1a5ae2f21a3", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "f9a16b84534349bc8d8c66d65e029b0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fba7e04e257741bdbe79b70262853c69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5da7305f7dbc4720ba13d22abe2a3df7", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f9a16b84534349bc8d8c66d65e029b0e", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 91fe9a5a9..08a99a10e 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:15.430767Z", - "iopub.status.busy": "2024-06-13T18:23:15.430364Z", - "iopub.status.idle": "2024-06-13T18:23:16.611818Z", - "shell.execute_reply": "2024-06-13T18:23:16.611199Z" + "iopub.execute_input": "2024-06-14T00:18:09.746768Z", + "iopub.status.busy": "2024-06-14T00:18:09.746577Z", + "iopub.status.idle": "2024-06-14T00:18:10.952864Z", + "shell.execute_reply": "2024-06-14T00:18:10.952251Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.614616Z", - "iopub.status.busy": "2024-06-13T18:23:16.614190Z", - "iopub.status.idle": "2024-06-13T18:23:16.617176Z", - "shell.execute_reply": "2024-06-13T18:23:16.616736Z" + "iopub.execute_input": "2024-06-14T00:18:10.955816Z", + "iopub.status.busy": "2024-06-14T00:18:10.955310Z", + "iopub.status.idle": "2024-06-14T00:18:10.958401Z", + "shell.execute_reply": "2024-06-14T00:18:10.957959Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.619382Z", - "iopub.status.busy": "2024-06-13T18:23:16.619076Z", - "iopub.status.idle": "2024-06-13T18:23:16.627528Z", - "shell.execute_reply": "2024-06-13T18:23:16.627085Z" + "iopub.execute_input": "2024-06-14T00:18:10.960566Z", + "iopub.status.busy": "2024-06-14T00:18:10.960248Z", + "iopub.status.idle": "2024-06-14T00:18:10.969195Z", + "shell.execute_reply": "2024-06-14T00:18:10.968610Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.629659Z", - "iopub.status.busy": "2024-06-13T18:23:16.629273Z", - "iopub.status.idle": "2024-06-13T18:23:16.634367Z", - "shell.execute_reply": "2024-06-13T18:23:16.633817Z" + "iopub.execute_input": "2024-06-14T00:18:10.971378Z", + "iopub.status.busy": "2024-06-14T00:18:10.971036Z", + "iopub.status.idle": "2024-06-14T00:18:10.976441Z", + "shell.execute_reply": "2024-06-14T00:18:10.975843Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.636461Z", - "iopub.status.busy": "2024-06-13T18:23:16.636139Z", - "iopub.status.idle": "2024-06-13T18:23:16.824614Z", - "shell.execute_reply": "2024-06-13T18:23:16.823981Z" + "iopub.execute_input": "2024-06-14T00:18:10.978862Z", + "iopub.status.busy": "2024-06-14T00:18:10.978323Z", + "iopub.status.idle": "2024-06-14T00:18:11.169841Z", + "shell.execute_reply": "2024-06-14T00:18:11.169195Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.827268Z", - "iopub.status.busy": "2024-06-13T18:23:16.826871Z", - "iopub.status.idle": "2024-06-13T18:23:17.198642Z", - "shell.execute_reply": "2024-06-13T18:23:17.198077Z" + "iopub.execute_input": "2024-06-14T00:18:11.172293Z", + "iopub.status.busy": "2024-06-14T00:18:11.172071Z", + "iopub.status.idle": "2024-06-14T00:18:11.553712Z", + "shell.execute_reply": "2024-06-14T00:18:11.553097Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:17.200792Z", - "iopub.status.busy": "2024-06-13T18:23:17.200510Z", - "iopub.status.idle": "2024-06-13T18:23:17.224200Z", - "shell.execute_reply": "2024-06-13T18:23:17.223697Z" + "iopub.execute_input": "2024-06-14T00:18:11.555917Z", + "iopub.status.busy": "2024-06-14T00:18:11.555717Z", + "iopub.status.idle": "2024-06-14T00:18:11.579398Z", + "shell.execute_reply": "2024-06-14T00:18:11.578913Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:17.226842Z", - "iopub.status.busy": "2024-06-13T18:23:17.226231Z", - "iopub.status.idle": "2024-06-13T18:23:17.237882Z", - "shell.execute_reply": "2024-06-13T18:23:17.237434Z" + "iopub.execute_input": "2024-06-14T00:18:11.581769Z", + "iopub.status.busy": "2024-06-14T00:18:11.581548Z", + "iopub.status.idle": "2024-06-14T00:18:11.593475Z", + "shell.execute_reply": "2024-06-14T00:18:11.592959Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:17.240116Z", - "iopub.status.busy": "2024-06-13T18:23:17.239759Z", - "iopub.status.idle": "2024-06-13T18:23:18.925230Z", - "shell.execute_reply": "2024-06-13T18:23:18.924563Z" + "iopub.execute_input": "2024-06-14T00:18:11.595660Z", + "iopub.status.busy": "2024-06-14T00:18:11.595446Z", + "iopub.status.idle": "2024-06-14T00:18:13.341928Z", + "shell.execute_reply": "2024-06-14T00:18:13.341336Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:18.927917Z", - "iopub.status.busy": "2024-06-13T18:23:18.927449Z", - "iopub.status.idle": "2024-06-13T18:23:18.950415Z", - "shell.execute_reply": "2024-06-13T18:23:18.949816Z" + "iopub.execute_input": "2024-06-14T00:18:13.344417Z", + "iopub.status.busy": "2024-06-14T00:18:13.343873Z", + "iopub.status.idle": "2024-06-14T00:18:13.365914Z", + "shell.execute_reply": "2024-06-14T00:18:13.365340Z" } }, "outputs": [ @@ -831,10 +831,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:18.952889Z", - "iopub.status.busy": "2024-06-13T18:23:18.952555Z", - "iopub.status.idle": "2024-06-13T18:23:18.974048Z", - "shell.execute_reply": "2024-06-13T18:23:18.973444Z" + "iopub.execute_input": "2024-06-14T00:18:13.367986Z", + "iopub.status.busy": "2024-06-14T00:18:13.367601Z", + "iopub.status.idle": "2024-06-14T00:18:13.387728Z", + "shell.execute_reply": "2024-06-14T00:18:13.387151Z" } }, "outputs": [ @@ -951,10 +951,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:18.976283Z", - "iopub.status.busy": "2024-06-13T18:23:18.975858Z", - "iopub.status.idle": "2024-06-13T18:23:18.990818Z", - "shell.execute_reply": "2024-06-13T18:23:18.990333Z" + "iopub.execute_input": "2024-06-14T00:18:13.389923Z", + "iopub.status.busy": "2024-06-14T00:18:13.389578Z", + "iopub.status.idle": "2024-06-14T00:18:13.404098Z", + "shell.execute_reply": "2024-06-14T00:18:13.403652Z" } }, "outputs": [ @@ -1089,17 +1089,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:18.993067Z", - "iopub.status.busy": "2024-06-13T18:23:18.992630Z", - "iopub.status.idle": "2024-06-13T18:23:19.012949Z", - "shell.execute_reply": "2024-06-13T18:23:19.012337Z" + "iopub.execute_input": "2024-06-14T00:18:13.406263Z", + "iopub.status.busy": "2024-06-14T00:18:13.405919Z", + "iopub.status.idle": "2024-06-14T00:18:13.425101Z", + "shell.execute_reply": "2024-06-14T00:18:13.424534Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c86b68a04781440abde2e6a483a13b97", + "model_id": "61b21c179030414d84a173eb52b09517", "version_major": 2, "version_minor": 0 }, @@ -1135,10 +1135,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:19.015142Z", - "iopub.status.busy": "2024-06-13T18:23:19.014810Z", - "iopub.status.idle": "2024-06-13T18:23:19.030336Z", - "shell.execute_reply": "2024-06-13T18:23:19.029832Z" + "iopub.execute_input": "2024-06-14T00:18:13.427177Z", + "iopub.status.busy": "2024-06-14T00:18:13.426889Z", + "iopub.status.idle": "2024-06-14T00:18:13.441816Z", + "shell.execute_reply": "2024-06-14T00:18:13.441231Z" } }, "outputs": [ @@ -1261,10 +1261,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:19.032487Z", - "iopub.status.busy": "2024-06-13T18:23:19.032196Z", - "iopub.status.idle": "2024-06-13T18:23:19.038230Z", - "shell.execute_reply": "2024-06-13T18:23:19.037674Z" + "iopub.execute_input": "2024-06-14T00:18:13.443921Z", + "iopub.status.busy": "2024-06-14T00:18:13.443640Z", + "iopub.status.idle": "2024-06-14T00:18:13.449509Z", + "shell.execute_reply": "2024-06-14T00:18:13.448977Z" } }, "outputs": [], @@ -1321,10 +1321,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:19.040500Z", - "iopub.status.busy": "2024-06-13T18:23:19.040114Z", - "iopub.status.idle": "2024-06-13T18:23:19.059068Z", - "shell.execute_reply": "2024-06-13T18:23:19.058506Z" + "iopub.execute_input": "2024-06-14T00:18:13.451536Z", + "iopub.status.busy": "2024-06-14T00:18:13.451247Z", + "iopub.status.idle": "2024-06-14T00:18:13.469036Z", + "shell.execute_reply": "2024-06-14T00:18:13.468547Z" } }, "outputs": [ @@ -1461,25 +1461,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0bbd873ad6ae493e9f5b98b629279938": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12f0b198cb35478c9c2a393378c87ed0": { + "2bed0b3fb37648cfa29eaaeb73e2258b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1532,7 +1514,7 @@ "width": null } }, - "1cc35bb00a544e468b00216cfca99ac6": { + "3c4e9bebc84845b58f6c27a5c27ebb80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1585,46 +1567,31 @@ "width": null } }, - "4928e6b237ca425ba34e854683edc684": { + "61b21c179030414d84a173eb52b09517": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7fbc6991eb3348ceb76c0bf9dcde86ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_12f0b198cb35478c9c2a393378c87ed0", - "placeholder": "​", - "style": "IPY_MODEL_0bbd873ad6ae493e9f5b98b629279938", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_86f5507978a44bd1b21acebb2e59dabb", + "IPY_MODEL_95f16b6c107f4497a1a9529c046b2806", + "IPY_MODEL_dc85edeb35504a76804314f4c1f8cdee" + ], + "layout": "IPY_MODEL_2bed0b3fb37648cfa29eaaeb73e2258b", "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "tooltip": null } }, - "9672d221fe914bb38b30dab8784f3d35": { + "731cf8d717ca4fd9b73b1549cbaa624b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1677,60 +1644,30 @@ "width": null } }, - "9b0914a61ca44f55a0e1ee08776e0653": { - "model_module": "@jupyter-widgets/base", + "86f5507978a44bd1b21acebb2e59dabb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3c4e9bebc84845b58f6c27a5c27ebb80", + "placeholder": "​", + "style": "IPY_MODEL_aa8acfc8790b411182e1e24f47542887", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "9c44a87f1b6f4edaa81455c57b86e749": { + "95f16b6c107f4497a1a9529c046b2806": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1746,64 +1683,51 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9672d221fe914bb38b30dab8784f3d35", + "layout": "IPY_MODEL_731cf8d717ca4fd9b73b1549cbaa624b", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4928e6b237ca425ba34e854683edc684", + "style": "IPY_MODEL_ab2656823fad4264946d966650d4bdc4", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "a1e38b0cf3e647ccb77c9301eb10566a": { + "aa8acfc8790b411182e1e24f47542887": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1cc35bb00a544e468b00216cfca99ac6", - "placeholder": "​", - "style": "IPY_MODEL_eca3f053fb054eca9a322802018e37e6", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12564.35 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c86b68a04781440abde2e6a483a13b97": { + "ab2656823fad4264946d966650d4bdc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7fbc6991eb3348ceb76c0bf9dcde86ce", - "IPY_MODEL_9c44a87f1b6f4edaa81455c57b86e749", - "IPY_MODEL_a1e38b0cf3e647ccb77c9301eb10566a" - ], - "layout": "IPY_MODEL_9b0914a61ca44f55a0e1ee08776e0653", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eca3f053fb054eca9a322802018e37e6": { + "c3d834c085f848f3b38a2225117fb6a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1820,6 +1744,82 @@ "font_size": null, "text_color": null } + }, + "dc85edeb35504a76804314f4c1f8cdee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8e37a3b0b2e4b32998dde62afa1d03d", + "placeholder": "​", + "style": "IPY_MODEL_c3d834c085f848f3b38a2225117fb6a7", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13277.57 examples/s]" + } + }, + "f8e37a3b0b2e4b32998dde62afa1d03d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 45d43726f..77d302562 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:21.667849Z", - "iopub.status.busy": "2024-06-13T18:23:21.667367Z", - "iopub.status.idle": "2024-06-13T18:23:22.865827Z", - "shell.execute_reply": "2024-06-13T18:23:22.865205Z" + "iopub.execute_input": "2024-06-14T00:18:16.425189Z", + "iopub.status.busy": "2024-06-14T00:18:16.424825Z", + "iopub.status.idle": "2024-06-14T00:18:17.645689Z", + "shell.execute_reply": "2024-06-14T00:18:17.645142Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:22.868648Z", - "iopub.status.busy": "2024-06-13T18:23:22.868229Z", - "iopub.status.idle": "2024-06-13T18:23:22.871311Z", - "shell.execute_reply": "2024-06-13T18:23:22.870873Z" + "iopub.execute_input": "2024-06-14T00:18:17.648403Z", + "iopub.status.busy": "2024-06-14T00:18:17.647970Z", + "iopub.status.idle": "2024-06-14T00:18:17.651087Z", + "shell.execute_reply": "2024-06-14T00:18:17.650540Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:22.873516Z", - "iopub.status.busy": "2024-06-13T18:23:22.873197Z", - "iopub.status.idle": "2024-06-13T18:23:22.882207Z", - "shell.execute_reply": "2024-06-13T18:23:22.881746Z" + "iopub.execute_input": "2024-06-14T00:18:17.653178Z", + "iopub.status.busy": "2024-06-14T00:18:17.652861Z", + "iopub.status.idle": "2024-06-14T00:18:17.661891Z", + "shell.execute_reply": "2024-06-14T00:18:17.661319Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:22.884128Z", - "iopub.status.busy": "2024-06-13T18:23:22.883838Z", - "iopub.status.idle": "2024-06-13T18:23:22.888409Z", - "shell.execute_reply": "2024-06-13T18:23:22.887984Z" + "iopub.execute_input": "2024-06-14T00:18:17.663954Z", + "iopub.status.busy": "2024-06-14T00:18:17.663668Z", + "iopub.status.idle": "2024-06-14T00:18:17.668856Z", + "shell.execute_reply": "2024-06-14T00:18:17.668300Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:22.890520Z", - "iopub.status.busy": "2024-06-13T18:23:22.890129Z", - "iopub.status.idle": "2024-06-13T18:23:23.075325Z", - "shell.execute_reply": "2024-06-13T18:23:23.074813Z" + "iopub.execute_input": "2024-06-14T00:18:17.670934Z", + "iopub.status.busy": "2024-06-14T00:18:17.670610Z", + "iopub.status.idle": "2024-06-14T00:18:17.857869Z", + "shell.execute_reply": "2024-06-14T00:18:17.857222Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:23.077767Z", - "iopub.status.busy": "2024-06-13T18:23:23.077565Z", - "iopub.status.idle": "2024-06-13T18:23:23.453755Z", - "shell.execute_reply": "2024-06-13T18:23:23.453172Z" + "iopub.execute_input": "2024-06-14T00:18:17.860356Z", + "iopub.status.busy": "2024-06-14T00:18:17.860163Z", + "iopub.status.idle": "2024-06-14T00:18:18.228866Z", + "shell.execute_reply": "2024-06-14T00:18:18.228294Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:23.456091Z", - "iopub.status.busy": "2024-06-13T18:23:23.455731Z", - "iopub.status.idle": "2024-06-13T18:23:23.458493Z", - "shell.execute_reply": "2024-06-13T18:23:23.458048Z" + "iopub.execute_input": "2024-06-14T00:18:18.231198Z", + "iopub.status.busy": "2024-06-14T00:18:18.230763Z", + "iopub.status.idle": "2024-06-14T00:18:18.233641Z", + "shell.execute_reply": "2024-06-14T00:18:18.233104Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:23.460685Z", - "iopub.status.busy": "2024-06-13T18:23:23.460374Z", - "iopub.status.idle": "2024-06-13T18:23:23.496482Z", - "shell.execute_reply": "2024-06-13T18:23:23.495866Z" + "iopub.execute_input": "2024-06-14T00:18:18.235607Z", + "iopub.status.busy": "2024-06-14T00:18:18.235303Z", + "iopub.status.idle": "2024-06-14T00:18:18.270224Z", + "shell.execute_reply": "2024-06-14T00:18:18.269584Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:23.498982Z", - "iopub.status.busy": "2024-06-13T18:23:23.498606Z", - "iopub.status.idle": "2024-06-13T18:23:25.223619Z", - "shell.execute_reply": "2024-06-13T18:23:25.222928Z" + "iopub.execute_input": "2024-06-14T00:18:18.272374Z", + "iopub.status.busy": "2024-06-14T00:18:18.272040Z", + "iopub.status.idle": "2024-06-14T00:18:20.044172Z", + "shell.execute_reply": "2024-06-14T00:18:20.043436Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.226003Z", - "iopub.status.busy": "2024-06-13T18:23:25.225669Z", - "iopub.status.idle": "2024-06-13T18:23:25.244901Z", - "shell.execute_reply": "2024-06-13T18:23:25.244346Z" + "iopub.execute_input": "2024-06-14T00:18:20.046914Z", + "iopub.status.busy": "2024-06-14T00:18:20.046312Z", + "iopub.status.idle": "2024-06-14T00:18:20.066681Z", + "shell.execute_reply": "2024-06-14T00:18:20.066166Z" } }, "outputs": [ @@ -847,10 +847,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.247139Z", - "iopub.status.busy": "2024-06-13T18:23:25.246829Z", - "iopub.status.idle": "2024-06-13T18:23:25.253261Z", - "shell.execute_reply": "2024-06-13T18:23:25.252839Z" + "iopub.execute_input": "2024-06-14T00:18:20.068986Z", + "iopub.status.busy": "2024-06-14T00:18:20.068624Z", + "iopub.status.idle": "2024-06-14T00:18:20.075541Z", + "shell.execute_reply": "2024-06-14T00:18:20.075028Z" } }, "outputs": [ @@ -961,10 +961,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.255123Z", - "iopub.status.busy": "2024-06-13T18:23:25.254945Z", - "iopub.status.idle": "2024-06-13T18:23:25.260794Z", - "shell.execute_reply": "2024-06-13T18:23:25.260276Z" + "iopub.execute_input": "2024-06-14T00:18:20.077638Z", + "iopub.status.busy": "2024-06-14T00:18:20.077355Z", + "iopub.status.idle": "2024-06-14T00:18:20.083371Z", + "shell.execute_reply": "2024-06-14T00:18:20.082900Z" } }, "outputs": [ @@ -1031,10 +1031,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.262893Z", - "iopub.status.busy": "2024-06-13T18:23:25.262485Z", - "iopub.status.idle": "2024-06-13T18:23:25.272957Z", - "shell.execute_reply": "2024-06-13T18:23:25.272422Z" + "iopub.execute_input": "2024-06-14T00:18:20.085490Z", + "iopub.status.busy": "2024-06-14T00:18:20.085145Z", + "iopub.status.idle": "2024-06-14T00:18:20.095763Z", + "shell.execute_reply": "2024-06-14T00:18:20.095306Z" } }, "outputs": [ @@ -1226,10 +1226,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.274976Z", - "iopub.status.busy": "2024-06-13T18:23:25.274680Z", - "iopub.status.idle": "2024-06-13T18:23:25.283891Z", - "shell.execute_reply": "2024-06-13T18:23:25.283372Z" + "iopub.execute_input": "2024-06-14T00:18:20.097855Z", + "iopub.status.busy": "2024-06-14T00:18:20.097511Z", + "iopub.status.idle": "2024-06-14T00:18:20.106536Z", + "shell.execute_reply": "2024-06-14T00:18:20.105975Z" } }, "outputs": [ @@ -1345,10 +1345,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.286121Z", - "iopub.status.busy": "2024-06-13T18:23:25.285703Z", - "iopub.status.idle": "2024-06-13T18:23:25.292791Z", - "shell.execute_reply": "2024-06-13T18:23:25.292244Z" + "iopub.execute_input": "2024-06-14T00:18:20.108515Z", + "iopub.status.busy": "2024-06-14T00:18:20.108339Z", + "iopub.status.idle": "2024-06-14T00:18:20.115737Z", + "shell.execute_reply": "2024-06-14T00:18:20.115167Z" }, "scrolled": true }, @@ -1473,10 +1473,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.294884Z", - "iopub.status.busy": "2024-06-13T18:23:25.294470Z", - "iopub.status.idle": "2024-06-13T18:23:25.304096Z", - "shell.execute_reply": "2024-06-13T18:23:25.303544Z" + "iopub.execute_input": "2024-06-14T00:18:20.117954Z", + "iopub.status.busy": "2024-06-14T00:18:20.117545Z", + "iopub.status.idle": "2024-06-14T00:18:20.127922Z", + "shell.execute_reply": "2024-06-14T00:18:20.127430Z" } }, "outputs": [ @@ -1579,10 +1579,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.306234Z", - "iopub.status.busy": "2024-06-13T18:23:25.305827Z", - "iopub.status.idle": "2024-06-13T18:23:25.317934Z", - "shell.execute_reply": "2024-06-13T18:23:25.317373Z" + "iopub.execute_input": "2024-06-14T00:18:20.130124Z", + "iopub.status.busy": "2024-06-14T00:18:20.129782Z", + "iopub.status.idle": "2024-06-14T00:18:20.142026Z", + "shell.execute_reply": "2024-06-14T00:18:20.141552Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 354fc4567..1d9f2b5a9 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:27.969954Z", - "iopub.status.busy": "2024-06-13T18:23:27.969778Z", - "iopub.status.idle": "2024-06-13T18:23:30.884415Z", - "shell.execute_reply": "2024-06-13T18:23:30.883646Z" + "iopub.execute_input": "2024-06-14T00:18:22.951894Z", + "iopub.status.busy": "2024-06-14T00:18:22.951417Z", + "iopub.status.idle": "2024-06-14T00:18:25.901373Z", + "shell.execute_reply": "2024-06-14T00:18:25.900723Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:30.887579Z", - "iopub.status.busy": "2024-06-13T18:23:30.886861Z", - "iopub.status.idle": "2024-06-13T18:23:30.891989Z", - "shell.execute_reply": "2024-06-13T18:23:30.891396Z" + "iopub.execute_input": "2024-06-14T00:18:25.904175Z", + "iopub.status.busy": "2024-06-14T00:18:25.903848Z", + "iopub.status.idle": "2024-06-14T00:18:25.907796Z", + "shell.execute_reply": "2024-06-14T00:18:25.907326Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:30.894459Z", - "iopub.status.busy": "2024-06-13T18:23:30.894016Z", - "iopub.status.idle": "2024-06-13T18:23:50.861088Z", - "shell.execute_reply": "2024-06-13T18:23:50.860515Z" + "iopub.execute_input": "2024-06-14T00:18:25.909962Z", + "iopub.status.busy": "2024-06-14T00:18:25.909620Z", + "iopub.status.idle": "2024-06-14T00:18:36.794453Z", + "shell.execute_reply": "2024-06-14T00:18:36.793951Z" } }, "outputs": [ @@ -172,7 +172,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e9f4cce5ae224f93a5b80a19ccbb04a9", + "model_id": "1ee131dda41d4a5abf71f783e7cc48a0", "version_major": 2, "version_minor": 0 }, @@ -186,7 +186,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "759d78e08c824405bbe8746ddbfbc1c3", + "model_id": "d73213875ad74216bf0d0a81d14bd1d3", "version_major": 2, "version_minor": 0 }, @@ -200,7 +200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "385563d79152405193b8ddd5fcc77e0a", + "model_id": "15b1ef3bed814b2698d221b31db8c797", "version_major": 2, "version_minor": 0 }, @@ -214,7 +214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "82823a5ceaf9423dbdd8d54dddb2c7a6", + "model_id": "de636abade924ea8bc76c1bff06498af", "version_major": 2, "version_minor": 0 }, @@ -228,7 +228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf2511624c2a4778bc836f290acedf8b", + "model_id": "c502cbfcb20042b496aab97e7dff0338", "version_major": 2, "version_minor": 0 }, @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c7eaef39a414d45bdced17678d5f2f3", + "model_id": "6baddd7f88844b9fa3d1ea84d9b8f4c5", "version_major": 2, "version_minor": 0 }, @@ -256,7 +256,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "745b7366dbb64c2daf84c029de3688bd", + "model_id": "e02ac76f211c452fa47443c8fe5a66fa", "version_major": 2, "version_minor": 0 }, @@ -270,7 +270,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8df15e8710f842479f05326569119ec8", + "model_id": "944bc13775bc43f9b5195a84db492404", "version_major": 2, "version_minor": 0 }, @@ -312,10 +312,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:50.863251Z", - "iopub.status.busy": "2024-06-13T18:23:50.863037Z", - "iopub.status.idle": "2024-06-13T18:23:50.866878Z", - "shell.execute_reply": "2024-06-13T18:23:50.866443Z" + "iopub.execute_input": "2024-06-14T00:18:36.796820Z", + "iopub.status.busy": "2024-06-14T00:18:36.796385Z", + "iopub.status.idle": "2024-06-14T00:18:36.800363Z", + "shell.execute_reply": "2024-06-14T00:18:36.799816Z" } }, "outputs": [ @@ -340,17 +340,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:50.868998Z", - "iopub.status.busy": "2024-06-13T18:23:50.868816Z", - "iopub.status.idle": "2024-06-13T18:24:02.112754Z", - "shell.execute_reply": "2024-06-13T18:24:02.112111Z" + "iopub.execute_input": "2024-06-14T00:18:36.802496Z", + "iopub.status.busy": "2024-06-14T00:18:36.802096Z", + "iopub.status.idle": "2024-06-14T00:18:48.280589Z", + "shell.execute_reply": "2024-06-14T00:18:48.280033Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e6e7b8be4c634d7c9456a02023a3facc", + "model_id": "6090aaf8150b44059029d2d920b6c28f", "version_major": 2, "version_minor": 0 }, @@ -388,10 +388,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:02.115570Z", - "iopub.status.busy": "2024-06-13T18:24:02.115119Z", - "iopub.status.idle": "2024-06-13T18:24:21.056382Z", - "shell.execute_reply": "2024-06-13T18:24:21.055738Z" + "iopub.execute_input": "2024-06-14T00:18:48.283245Z", + "iopub.status.busy": "2024-06-14T00:18:48.282939Z", + "iopub.status.idle": "2024-06-14T00:19:07.022616Z", + "shell.execute_reply": "2024-06-14T00:19:07.021971Z" } }, "outputs": [], @@ -424,10 +424,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.059343Z", - "iopub.status.busy": "2024-06-13T18:24:21.058955Z", - "iopub.status.idle": "2024-06-13T18:24:21.063686Z", - "shell.execute_reply": "2024-06-13T18:24:21.063239Z" + "iopub.execute_input": "2024-06-14T00:19:07.025397Z", + "iopub.status.busy": "2024-06-14T00:19:07.025062Z", + "iopub.status.idle": "2024-06-14T00:19:07.029948Z", + "shell.execute_reply": "2024-06-14T00:19:07.029402Z" } }, "outputs": [], @@ -465,10 +465,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.065705Z", - "iopub.status.busy": "2024-06-13T18:24:21.065382Z", - "iopub.status.idle": "2024-06-13T18:24:21.069541Z", - "shell.execute_reply": "2024-06-13T18:24:21.069126Z" + "iopub.execute_input": "2024-06-14T00:19:07.031952Z", + "iopub.status.busy": "2024-06-14T00:19:07.031771Z", + "iopub.status.idle": "2024-06-14T00:19:07.035929Z", + "shell.execute_reply": "2024-06-14T00:19:07.035527Z" }, "nbsphinx": "hidden" }, @@ -605,10 +605,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.071702Z", - "iopub.status.busy": "2024-06-13T18:24:21.071195Z", - "iopub.status.idle": "2024-06-13T18:24:21.080034Z", - "shell.execute_reply": "2024-06-13T18:24:21.079501Z" + "iopub.execute_input": "2024-06-14T00:19:07.037773Z", + "iopub.status.busy": "2024-06-14T00:19:07.037582Z", + "iopub.status.idle": "2024-06-14T00:19:07.046492Z", + "shell.execute_reply": "2024-06-14T00:19:07.046034Z" }, "nbsphinx": "hidden" }, @@ -733,10 +733,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.082075Z", - "iopub.status.busy": "2024-06-13T18:24:21.081901Z", - "iopub.status.idle": "2024-06-13T18:24:21.108865Z", - "shell.execute_reply": "2024-06-13T18:24:21.108294Z" + "iopub.execute_input": "2024-06-14T00:19:07.048349Z", + "iopub.status.busy": "2024-06-14T00:19:07.048178Z", + "iopub.status.idle": "2024-06-14T00:19:07.075367Z", + "shell.execute_reply": "2024-06-14T00:19:07.074746Z" } }, "outputs": [], @@ -773,10 +773,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.111096Z", - "iopub.status.busy": "2024-06-13T18:24:21.110795Z", - "iopub.status.idle": "2024-06-13T18:24:54.007832Z", - "shell.execute_reply": "2024-06-13T18:24:54.007184Z" + "iopub.execute_input": "2024-06-14T00:19:07.077826Z", + "iopub.status.busy": "2024-06-14T00:19:07.077459Z", + "iopub.status.idle": "2024-06-14T00:19:40.346737Z", + "shell.execute_reply": "2024-06-14T00:19:40.346096Z" } }, "outputs": [ @@ -792,21 +792,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.819\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.838\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.519\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.624\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2fdd69f96954463490403bc82cba45e2", + "model_id": "33a3000ed6594bf7b6f38f302093cdd3", "version_major": 2, "version_minor": 0 }, @@ -827,7 +827,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "53c571a3a3e6480b87ae02c4703c6c98", + "model_id": "5460e9c61e374fef8cf751db7a3ebbcb", "version_major": 2, "version_minor": 0 }, @@ -850,21 +850,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.005\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.018\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.589\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.862\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9be18dcff7494e939c53941df53f0871", + "model_id": "584249182a514d5aaeda8f1622a4d8a2", "version_major": 2, "version_minor": 0 }, @@ -885,7 +885,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "da75209458cd4d829d58a3543863fb93", + "model_id": "33592263eb514630bb35720f102d8618", "version_major": 2, "version_minor": 0 }, @@ -908,21 +908,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.978\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.951\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.481\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.680\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d5b12008f99d455c966fa2e14fe5f154", + "model_id": "fe280fc7af794d66911aa8d37a5a9a22", "version_major": 2, "version_minor": 0 }, @@ -943,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aaede45da5534b61881b204536652752", + "model_id": "2cb2a83a46194afe8f70770bcf582ccb", "version_major": 2, "version_minor": 0 }, @@ -1022,10 +1022,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:54.010361Z", - "iopub.status.busy": "2024-06-13T18:24:54.010125Z", - "iopub.status.idle": "2024-06-13T18:24:54.024225Z", - "shell.execute_reply": "2024-06-13T18:24:54.023671Z" + "iopub.execute_input": "2024-06-14T00:19:40.349130Z", + "iopub.status.busy": "2024-06-14T00:19:40.348885Z", + "iopub.status.idle": "2024-06-14T00:19:40.363093Z", + "shell.execute_reply": "2024-06-14T00:19:40.362634Z" } }, "outputs": [], @@ -1050,10 +1050,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:54.026441Z", - "iopub.status.busy": "2024-06-13T18:24:54.026142Z", - "iopub.status.idle": "2024-06-13T18:24:54.494147Z", - "shell.execute_reply": "2024-06-13T18:24:54.493582Z" + "iopub.execute_input": "2024-06-14T00:19:40.365498Z", + "iopub.status.busy": "2024-06-14T00:19:40.365051Z", + "iopub.status.idle": "2024-06-14T00:19:40.853319Z", + "shell.execute_reply": "2024-06-14T00:19:40.852717Z" } }, "outputs": [], @@ -1073,10 +1073,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:54.496674Z", - "iopub.status.busy": "2024-06-13T18:24:54.496365Z", - "iopub.status.idle": "2024-06-13T18:28:20.318441Z", - "shell.execute_reply": "2024-06-13T18:28:20.317795Z" + "iopub.execute_input": "2024-06-14T00:19:40.856035Z", + "iopub.status.busy": "2024-06-14T00:19:40.855603Z", + "iopub.status.idle": "2024-06-14T00:23:10.603771Z", + "shell.execute_reply": "2024-06-14T00:23:10.603194Z" } }, "outputs": [ @@ -1124,7 +1124,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf43deff8d6f44328677d9cd944ab999", + "model_id": "9966542321eb42f7b958a6114ba286a0", "version_major": 2, "version_minor": 0 }, @@ -1163,10 +1163,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.320847Z", - "iopub.status.busy": "2024-06-13T18:28:20.320428Z", - "iopub.status.idle": "2024-06-13T18:28:20.775137Z", - "shell.execute_reply": "2024-06-13T18:28:20.774589Z" + "iopub.execute_input": "2024-06-14T00:23:10.606354Z", + "iopub.status.busy": "2024-06-14T00:23:10.605778Z", + "iopub.status.idle": "2024-06-14T00:23:11.064625Z", + "shell.execute_reply": "2024-06-14T00:23:11.064061Z" } }, "outputs": [ @@ -1312,10 +1312,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.777850Z", - "iopub.status.busy": "2024-06-13T18:28:20.777334Z", - "iopub.status.idle": "2024-06-13T18:28:20.839490Z", - "shell.execute_reply": "2024-06-13T18:28:20.838973Z" + "iopub.execute_input": "2024-06-14T00:23:11.067560Z", + "iopub.status.busy": "2024-06-14T00:23:11.067036Z", + "iopub.status.idle": "2024-06-14T00:23:11.131124Z", + "shell.execute_reply": "2024-06-14T00:23:11.130554Z" } }, "outputs": [ @@ -1419,10 +1419,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.841735Z", - "iopub.status.busy": "2024-06-13T18:28:20.841332Z", - "iopub.status.idle": "2024-06-13T18:28:20.850254Z", - "shell.execute_reply": "2024-06-13T18:28:20.849702Z" + "iopub.execute_input": "2024-06-14T00:23:11.133778Z", + "iopub.status.busy": "2024-06-14T00:23:11.133375Z", + "iopub.status.idle": "2024-06-14T00:23:11.142588Z", + "shell.execute_reply": "2024-06-14T00:23:11.142035Z" } }, "outputs": [ @@ -1552,10 +1552,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.852278Z", - "iopub.status.busy": "2024-06-13T18:28:20.851931Z", - "iopub.status.idle": "2024-06-13T18:28:20.857915Z", - "shell.execute_reply": "2024-06-13T18:28:20.857349Z" + "iopub.execute_input": "2024-06-14T00:23:11.144686Z", + "iopub.status.busy": "2024-06-14T00:23:11.144284Z", + "iopub.status.idle": "2024-06-14T00:23:11.149149Z", + "shell.execute_reply": "2024-06-14T00:23:11.148684Z" }, "nbsphinx": "hidden" }, @@ -1601,10 +1601,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.860018Z", - "iopub.status.busy": "2024-06-13T18:28:20.859702Z", - "iopub.status.idle": "2024-06-13T18:28:21.366649Z", - "shell.execute_reply": "2024-06-13T18:28:21.366082Z" + "iopub.execute_input": "2024-06-14T00:23:11.150953Z", + "iopub.status.busy": "2024-06-14T00:23:11.150783Z", + "iopub.status.idle": "2024-06-14T00:23:11.652330Z", + "shell.execute_reply": "2024-06-14T00:23:11.651700Z" } }, "outputs": [ @@ -1639,10 +1639,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.369041Z", - "iopub.status.busy": "2024-06-13T18:28:21.368702Z", - "iopub.status.idle": "2024-06-13T18:28:21.377158Z", - "shell.execute_reply": "2024-06-13T18:28:21.376635Z" + "iopub.execute_input": "2024-06-14T00:23:11.654447Z", + "iopub.status.busy": "2024-06-14T00:23:11.654245Z", + "iopub.status.idle": "2024-06-14T00:23:11.663297Z", + "shell.execute_reply": "2024-06-14T00:23:11.662737Z" } }, "outputs": [ @@ -1809,10 +1809,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.379280Z", - "iopub.status.busy": "2024-06-13T18:28:21.378960Z", - "iopub.status.idle": "2024-06-13T18:28:21.385957Z", - "shell.execute_reply": "2024-06-13T18:28:21.385515Z" + "iopub.execute_input": "2024-06-14T00:23:11.665344Z", + "iopub.status.busy": "2024-06-14T00:23:11.665158Z", + "iopub.status.idle": "2024-06-14T00:23:11.672583Z", + "shell.execute_reply": "2024-06-14T00:23:11.672114Z" }, "nbsphinx": "hidden" }, @@ -1888,10 +1888,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.387951Z", - "iopub.status.busy": "2024-06-13T18:28:21.387643Z", - "iopub.status.idle": "2024-06-13T18:28:21.859421Z", - "shell.execute_reply": "2024-06-13T18:28:21.858831Z" + "iopub.execute_input": "2024-06-14T00:23:11.674460Z", + "iopub.status.busy": "2024-06-14T00:23:11.674278Z", + "iopub.status.idle": "2024-06-14T00:23:12.146975Z", + "shell.execute_reply": "2024-06-14T00:23:12.146339Z" } }, "outputs": [ @@ -1928,10 +1928,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.861630Z", - "iopub.status.busy": "2024-06-13T18:28:21.861322Z", - "iopub.status.idle": "2024-06-13T18:28:21.876648Z", - "shell.execute_reply": "2024-06-13T18:28:21.876090Z" + "iopub.execute_input": "2024-06-14T00:23:12.149806Z", + "iopub.status.busy": "2024-06-14T00:23:12.149400Z", + "iopub.status.idle": "2024-06-14T00:23:12.171208Z", + "shell.execute_reply": "2024-06-14T00:23:12.170602Z" } }, "outputs": [ @@ -2088,10 +2088,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.878920Z", - "iopub.status.busy": "2024-06-13T18:28:21.878509Z", - "iopub.status.idle": "2024-06-13T18:28:21.884047Z", - "shell.execute_reply": "2024-06-13T18:28:21.883571Z" + "iopub.execute_input": "2024-06-14T00:23:12.173668Z", + "iopub.status.busy": "2024-06-14T00:23:12.173289Z", + "iopub.status.idle": "2024-06-14T00:23:12.179233Z", + "shell.execute_reply": "2024-06-14T00:23:12.178742Z" }, "nbsphinx": "hidden" }, @@ -2136,10 +2136,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.886058Z", - "iopub.status.busy": "2024-06-13T18:28:21.885741Z", - "iopub.status.idle": "2024-06-13T18:28:22.355000Z", - "shell.execute_reply": "2024-06-13T18:28:22.354461Z" + "iopub.execute_input": "2024-06-14T00:23:12.181349Z", + "iopub.status.busy": "2024-06-14T00:23:12.181007Z", + "iopub.status.idle": "2024-06-14T00:23:12.670175Z", + "shell.execute_reply": "2024-06-14T00:23:12.669493Z" } }, "outputs": [ @@ -2221,10 +2221,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.357504Z", - "iopub.status.busy": "2024-06-13T18:28:22.357301Z", - "iopub.status.idle": "2024-06-13T18:28:22.366573Z", - "shell.execute_reply": "2024-06-13T18:28:22.366013Z" + "iopub.execute_input": "2024-06-14T00:23:12.673189Z", + "iopub.status.busy": "2024-06-14T00:23:12.672942Z", + "iopub.status.idle": "2024-06-14T00:23:12.683878Z", + "shell.execute_reply": "2024-06-14T00:23:12.683262Z" } }, "outputs": [ @@ -2352,10 +2352,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.369144Z", - "iopub.status.busy": "2024-06-13T18:28:22.368947Z", - "iopub.status.idle": "2024-06-13T18:28:22.374685Z", - "shell.execute_reply": "2024-06-13T18:28:22.374121Z" + "iopub.execute_input": "2024-06-14T00:23:12.686798Z", + "iopub.status.busy": "2024-06-14T00:23:12.686383Z", + "iopub.status.idle": "2024-06-14T00:23:12.692814Z", + "shell.execute_reply": "2024-06-14T00:23:12.692190Z" }, "nbsphinx": "hidden" }, @@ -2392,10 +2392,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.377067Z", - "iopub.status.busy": "2024-06-13T18:28:22.376873Z", - "iopub.status.idle": "2024-06-13T18:28:22.872568Z", - "shell.execute_reply": "2024-06-13T18:28:22.871951Z" + "iopub.execute_input": "2024-06-14T00:23:12.695452Z", + "iopub.status.busy": "2024-06-14T00:23:12.695211Z", + "iopub.status.idle": "2024-06-14T00:23:13.276855Z", + "shell.execute_reply": "2024-06-14T00:23:13.276228Z" } }, "outputs": [ @@ -2437,10 +2437,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.874684Z", - "iopub.status.busy": "2024-06-13T18:28:22.874505Z", - "iopub.status.idle": "2024-06-13T18:28:22.882498Z", - "shell.execute_reply": "2024-06-13T18:28:22.882079Z" + "iopub.execute_input": "2024-06-14T00:23:13.279046Z", + "iopub.status.busy": "2024-06-14T00:23:13.278860Z", + "iopub.status.idle": "2024-06-14T00:23:13.287441Z", + "shell.execute_reply": "2024-06-14T00:23:13.286973Z" } }, "outputs": [ @@ -2465,47 +2465,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2526,10 +2526,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.884564Z", - "iopub.status.busy": "2024-06-13T18:28:22.884255Z", - "iopub.status.idle": "2024-06-13T18:28:23.082663Z", - "shell.execute_reply": "2024-06-13T18:28:23.082076Z" + "iopub.execute_input": "2024-06-14T00:23:13.289388Z", + "iopub.status.busy": "2024-06-14T00:23:13.289211Z", + "iopub.status.idle": "2024-06-14T00:23:13.461882Z", + "shell.execute_reply": "2024-06-14T00:23:13.461280Z" } }, "outputs": [ @@ -2569,10 +2569,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:23.085063Z", - "iopub.status.busy": "2024-06-13T18:28:23.084725Z", - "iopub.status.idle": "2024-06-13T18:28:23.089384Z", - "shell.execute_reply": "2024-06-13T18:28:23.088941Z" + "iopub.execute_input": "2024-06-14T00:23:13.464189Z", + "iopub.status.busy": "2024-06-14T00:23:13.463764Z", + "iopub.status.idle": "2024-06-14T00:23:13.468377Z", + "shell.execute_reply": "2024-06-14T00:23:13.467894Z" }, "nbsphinx": "hidden" }, @@ -2609,7 +2609,130 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "011e1c405e3a487bb6cd4db6269dabaf": { + "000f51896196443c9f695cbb14d857cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39cbff9c77594902ac1b336a55f05db5", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_491a8e08d9ee49ef90656a55ac982d4e", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "02b3ab1c99f54ef3925d5e044cc8f184": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa06f921c76f40189c687a3f781b29aa", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc95859b7c574b2bb9d6244f9a032f2a", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "0321d07b59324f6da681cafe18318797": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0445168202e84bd987a8c99bbaa42154": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04c9d61b124843488d6c8485d3276cf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2662,7 +2785,7 @@ "width": null } }, - "0127201b714d436eaeadac20dceecb5c": { + "06c9466df0c44e909952c44e64700f34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2677,33 +2800,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_27398c396b2548d9a159143ce575cdd6", + "layout": "IPY_MODEL_a9da5b0e5e484eaba9bb8e2dd7a3620b", "placeholder": "​", - "style": "IPY_MODEL_8ee1e100ba224c86971a4eb5c2aa8d2c", + "style": "IPY_MODEL_809cef9781a34951bd88663cc8461e2b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.83it/s]" - } - }, - "02744ca1e8454e48bde1845bfe448428": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Downloading data: 100%" } }, - "031ba280948b4100b7f66a834088d319": { + "06feb365096443a6afc34cd47e0ce44a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2756,7 +2861,7 @@ "width": null } }, - "03302e2436184c00bf4112e516e9a069": { + "074ef5d49e1b43a789322b593f76170e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2771,113 +2876,125 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6e28af39d0e0449b86fb861e46caf297", + "layout": "IPY_MODEL_91fa85e0a2f04ca190bae9f341b1bdef", "placeholder": "​", - "style": "IPY_MODEL_c69f5486f5854cdc9b0f28f343dc5cbb", + "style": "IPY_MODEL_2bdfe30cf5784be3ba9ebf94b3ef6368", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 63.17it/s]" } }, - "0486167697834cbfb7031daef4c202a4": { + "0838d93a38da446fa5babd7cfbccea4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_946ae0b4ccb44762a01989bba335fed2", - "placeholder": "​", - "style": "IPY_MODEL_50321cbbe67d4c51924a23c58e9ae983", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "055f310ad17942a195bb466d23c3b972": { + "09106c1b90dc4eb085f5f605736acb94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a5e89613a9ef4d60af510371acaae248", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f7334dfe237e4e7f9b2835e84059e0a1", + "layout": "IPY_MODEL_f74bae4636c84e44a721b635741423a3", + "placeholder": "​", + "style": "IPY_MODEL_d6d73ba68a06438fa862d7e105099af4", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Map (num_proc=4): 100%" } }, - "05d23d732cc649158da39cae536db0b8": { - "model_module": "@jupyter-widgets/controls", + "09b5225d46a341c0bbaffca3110244dd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f783743818724180b7f32fc5790faed2", - "placeholder": "​", - "style": "IPY_MODEL_a0c4a73bbcdc41fa8f881db96483a666", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0887279366d947918a2859b5000c3142": { + "0c867e0cc02547b083b9135cd8ac51f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_40e2cec84288490ea94550d4701ac922", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c2c2c15028944865b0e3c7803228d0aa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0fb820347f364c79ba9ef78c5ca1da2d": { + "0e2c5d9d844044d483fb12d45f0ba447": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2895,7 +3012,7 @@ "text_color": null } }, - "100059655a4b4d11b2e4b02133955b21": { + "0f9c12350af541d48cb128f8707cf8d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2913,25 +3030,23 @@ "text_color": null } }, - "110c7268e08143bfb0bf9bb6a831308d": { + "11d0a7d94195419780e6813f5d09e9f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "12395429544748b9ae9539173c4e28de": { + "14b011f3d58b45019e4c8d194743e726": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2946,41 +3061,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82c9a984fa4a45d6bbef34980ab6cc9b", + "layout": "IPY_MODEL_9417954b1e6a4ea997a82279df1c1e06", "placeholder": "​", - "style": "IPY_MODEL_e2358f94bd824cb297783cbce5bd4b6d", + "style": "IPY_MODEL_2f3ac0cd144940acadf4f4c4ee2a021a", "tabbable": null, "tooltip": null, "value": "100%" } }, - "14fb0bfb489048289623514f4c431a3e": { + "15b1ef3bed814b2698d221b31db8c797": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e87f6146964a4d0b8eb91e61b43a17fd", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_49823216ca6949e5a14b61cd123ee7e8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_06c9466df0c44e909952c44e64700f34", + "IPY_MODEL_bdf6bc67142548d6b578370fa647bf61", + "IPY_MODEL_2f979b7cad2b4d6e8a64b5ecc40adf6c" + ], + "layout": "IPY_MODEL_60c8a5975d844ab8b11b4600e7eac41d", "tabbable": null, - "tooltip": null, - "value": 8845.0 + "tooltip": null } }, - "16244a9faef744f7a1f8ebc93c498cb3": { + "15b2884c3ebe43d9b97793956a82ff7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3033,82 +3146,7 @@ "width": null } }, - "171462d98af24358a5961b04c9b74604": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce85d6a5941844bb979d569eee20cec8", - "placeholder": "​", - "style": "IPY_MODEL_e508a8da39c24fd88425f7c7260a2470", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8672.48 examples/s]" - } - }, - "187b5884ecb54bf48c15186faab99e02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8dd9f155917f4571a7ce9acde49d0e5a", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9490a9b9bdd24394a12824ed76bc8a05", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "18bab8a142254c219cd8b1f4a5772397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf145e78e7c44335849bfe2731b76547", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44d69a1bdf4f4884859553b7fb83131a", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "190c1eeccee04fd2bb6a6c9b72dc1038": { + "18e9578262f94f698121d43e99dd82d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3161,25 +3199,60 @@ "width": null } }, - "196b795a1e9b497db76e66252b9eefa2": { - "model_module": "@jupyter-widgets/controls", + "1b972aee47154e24a633dd4afcce07bb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1bccdd768eb9423db31eb1aea279ce94": { + "1c603154a9444624a9173aae824a8387": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3232,30 +3305,7 @@ "width": null } }, - "1cfc9524b7a24cdbb7e8f0e2d2d568a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc1a2da537ce4bb5911e830c1b271c69", - "placeholder": "​", - "style": "IPY_MODEL_2dc07d6525ea431e87ab9f81e0b66622", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "1dcfbde1b2e24c5f9c238e501811a342": { + "1e083f03e45740369b9c816e94c17c7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3308,7 +3358,7 @@ "width": null } }, - "1ec163f519174e658357ad372ba5c630": { + "1e547fdab21842a3a820b8cfc8107067": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3361,7 +3411,7 @@ "width": null } }, - "20c8f73e92d2495bb274955e092d539c": { + "1e87658a42504ce4b3575fd1ea760a2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3379,7 +3429,47 @@ "text_color": null } }, - "258a85ded32444efb41a85839c269873": { + "1ee131dda41d4a5abf71f783e7cc48a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e1e5f72e17845ce8e2ce7eb2812f21b", + "IPY_MODEL_000f51896196443c9f695cbb14d857cd", + "IPY_MODEL_30acba55f7104d72b4cf84be0a775cd0" + ], + "layout": "IPY_MODEL_9c5c89be5849407e958b709b927463b7", + "tabbable": null, + "tooltip": null + } + }, + "2026c613a85740ac9f350f0587f79473": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "29887663f048431b82be1858f43767e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3432,7 +3522,65 @@ "width": null } }, - "27398c396b2548d9a159143ce575cdd6": { + "2b7405d95f1a40f3b4a3714ff881243e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2bdfe30cf5784be3ba9ebf94b3ef6368": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2cb2a83a46194afe8f70770bcf582ccb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c11ffc22a8844386af101099ad307235", + "IPY_MODEL_6b37c615fe9e4a17ab3210fec9f293a8", + "IPY_MODEL_30b6fd6af0e94eabb6bbdc5849d080b1" + ], + "layout": "IPY_MODEL_1e083f03e45740369b9c816e94c17c7f", + "tabbable": null, + "tooltip": null + } + }, + "2cf5b64d8e274727afa2e967216d5823": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3485,7 +3633,7 @@ "width": null } }, - "27f324cbc4a04172a48a9afff95019c7": { + "2e96200f404c48e4a508630b21ca59aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3538,91 +3686,14 @@ "width": null } }, - "28ccc81cdae14256b911f7294cdbf8a0": { + "2f3ac0cd144940acadf4f4c4ee2a021a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_85ea5d5292d0441b8ae5ffa8f288b8f6", - "IPY_MODEL_187b5884ecb54bf48c15186faab99e02", - "IPY_MODEL_45b3e59d32ed454bb407cd63a1a1bfc2" - ], - "layout": "IPY_MODEL_d42a0fef40af4deb82ef3e72a10e8d7d", - "tabbable": null, - "tooltip": null - } - }, - "2ce8a4e687914f688c1fe339a120d37e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2dc07d6525ea431e87ab9f81e0b66622": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3633,31 +3704,30 @@ "text_color": null } }, - "2fdd69f96954463490403bc82cba45e2": { + "2f979b7cad2b4d6e8a64b5ecc40adf6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6e05d7a3ce5444fc9fc185c7cefb7bfb", - "IPY_MODEL_e9f41dad882341c69e15673ba734984b", - "IPY_MODEL_fb4c67cbf0b64f5aa774cf47171d88d2" - ], - "layout": "IPY_MODEL_736e4c44e03a4e058853275f160e4869", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_18e9578262f94f698121d43e99dd82d9", + "placeholder": "​", + "style": "IPY_MODEL_4a9cfcaefb4d43eca0252678d899d971", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 118MB/s]" } }, - "31fed1d7091d4d4583d2c3c572eeac5e": { + "3077a3fdcc2a4e449725168230ce8fbe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3675,23 +3745,30 @@ "text_color": null } }, - "32798c5dacb74eab8aae5f6ac9ee796e": { + "30acba55f7104d72b4cf84be0a775cd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_81c92cbe85a64e0dae661e38ac134935", + "placeholder": "​", + "style": "IPY_MODEL_3077a3fdcc2a4e449725168230ce8fbe", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 586kB/s]" } }, - "373774c569f4410195997abcc6ad3963": { + "30b6fd6af0e94eabb6bbdc5849d080b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3706,15 +3783,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4891d350edf24c798609f0b9928b5070", + "layout": "IPY_MODEL_d1a5c9e7b59a44a8a410c2d4bd592db6", "placeholder": "​", - "style": "IPY_MODEL_56c3894d38584313b981ca981f1f0023", + "style": "IPY_MODEL_9583fea99f244c53b350c8a2a83db01e", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5959.13 examples/s]" + "value": " 40/40 [00:00<00:00, 67.34it/s]" } }, - "385563d79152405193b8ddd5fcc77e0a": { + "33592263eb514630bb35720f102d8618": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3729,57 +3806,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_59025fcd0836440cbb0c7a3cc76d5043", - "IPY_MODEL_ae026b12c92849d5bd39572928ad683d", - "IPY_MODEL_5b1361e0e7fb4ec0aefd77ac19b58177" + "IPY_MODEL_40a4f47b13704e6e9113395309f9cb0b", + "IPY_MODEL_7b28e55b99c64c719152ced290022060", + "IPY_MODEL_b3082ca8e24944d8a9afe85efb6c2e97" ], - "layout": "IPY_MODEL_5e68e43e8bc84e98aa7848081512647f", + "layout": "IPY_MODEL_3e629d3e6a4c4606b65b4ee034f1c813", "tabbable": null, "tooltip": null } }, - "38e8901d59a242a7a78f904b7290ded1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "39f79d0861b8408eb576872d24d086b6": { + "33a3000ed6594bf7b6f38f302093cdd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ddd12c4562a4a6bb710906c16680943", - "placeholder": "​", - "style": "IPY_MODEL_8486651bed1f4017b1c7d57e069f8a3f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_14b011f3d58b45019e4c8d194743e726", + "IPY_MODEL_7f12c2a169084ac584c4d5d42290c2ae", + "IPY_MODEL_4e1d27532d5445dda4478fecf2f54572" + ], + "layout": "IPY_MODEL_532659a862c046cc962c62df200b203c", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "3be96dde9d6847bea2d8924f31c32778": { + "35aeaa207d8b4315a53e9ccc136d7c99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3832,7 +3892,7 @@ "width": null } }, - "3c31735201f94e48b675a2a27622dee7": { + "36409ce50f734cb1a6fbc6c16c409f54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3885,7 +3945,30 @@ "width": null } }, - "3e5176ff8340418d88424cacf1b110d5": { + "37271d07367147f4be0852aeaf55f7cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fe34629a39544206b7f24e16ba979dac", + "placeholder": "​", + "style": "IPY_MODEL_0f9c12350af541d48cb128f8707cf8d3", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "372d87500ea844ad9c334c4038a5de46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3903,7 +3986,7 @@ "text_color": null } }, - "3eeef52bf4544c6aaaaf0bf5433c63d5": { + "39cbff9c77594902ac1b336a55f05db5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3956,7 +4039,25 @@ "width": null } }, - "3f30b8a9d870425481b7d11fd5b128fe": { + "3b53ea05cced4f95ad3692b5dad66669": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3b6d1e0aeda744baa73455a128e7cac0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4009,7 +4110,33 @@ "width": null } }, - "3f966dd8d8b242469965478fdc13d63b": { + "3bab6a019ed34b06adda1f21a50d9487": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d7f0cb2a73fd46379721cf57c08cd319", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b4cab1f0ee6349b08c9ea92b8876b105", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "3c2a8efd20a4418b96f345c922e370c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4024,15 +4151,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a356232b26645178f647be6f1e2d699", + "layout": "IPY_MODEL_8319119647e04033b0206a42648258f1", "placeholder": "​", - "style": "IPY_MODEL_9b2e77ad12b34f9088fd97aac97718de", + "style": "IPY_MODEL_0838d93a38da446fa5babd7cfbccea4b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.18it/s]" + "value": "100%" + } + }, + "3e344010573d4a2b970fcadcaaf1143b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2f500af341144c0a3cf7871b79f7b61", + "placeholder": "​", + "style": "IPY_MODEL_6da3f0a20b1d4b79b31b85715311aeee", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.46it/s]" + } + }, + "3e529136e4ef4a42b8e93f739db5d154": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e3279b4ee474f9cae543a3659a1b8c3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c867e0cc02547b083b9135cd8ac51f2", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "40e2cec84288490ea94550d4701ac922": { + "3e629d3e6a4c4606b65b4ee034f1c813": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4085,76 +4261,30 @@ "width": null } }, - "420c839a26384dc5889ea20b50aa064e": { - "model_module": "@jupyter-widgets/base", + "40a4f47b13704e6e9113395309f9cb0b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "44d69a1bdf4f4884859553b7fb83131a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_36409ce50f734cb1a6fbc6c16c409f54", + "placeholder": "​", + "style": "IPY_MODEL_b1869063dcf24d67ad31856aef1dc659", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "45b3e59d32ed454bb407cd63a1a1bfc2": { + "46c9eb3ff7cd477ab56d83cd7dc1507e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4169,15 +4299,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_011e1c405e3a487bb6cd4db6269dabaf", + "layout": "IPY_MODEL_cc90930abb3f4f7f88e60548b044cc9e", "placeholder": "​", - "style": "IPY_MODEL_e4f41606a6914a85a45ef33edd7e734c", + "style": "IPY_MODEL_f425c905ba994524966c845289425320", "tabbable": null, "tooltip": null, - "value": " 4/4 [00:00<00:00, 1190.13it/s]" + "value": "Downloading readme: 100%" } }, - "4772ae3590184806856c23495a6d5fb1": { + "486c8450634840abac68df8d0982f86e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4230,7 +4360,23 @@ "width": null } }, - "4853e3bc55ad4fc5817a0174845fb700": { + "491a8e08d9ee49ef90656a55ac982d4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4a9cfcaefb4d43eca0252678d899d971": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4248,7 +4394,23 @@ "text_color": null } }, - "4891d350edf24c798609f0b9928b5070": { + "4bfd698030ae4c27b1fae44eadbc2370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4c3ddf93f1bc418c8c4d117df4802636": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4301,7 +4463,7 @@ "width": null } }, - "48da0e7bbb134052bcf38fe2d2386ef9": { + "4d105525e96449bb8723e4a3a6e422de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4354,23 +4516,30 @@ "width": null } }, - "49823216ca6949e5a14b61cd123ee7e8": { + "4e1d27532d5445dda4478fecf2f54572": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4c3ddf93f1bc418c8c4d117df4802636", + "placeholder": "​", + "style": "IPY_MODEL_a544040b92ca479e96afc733a38b2542", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.48it/s]" } }, - "499f31a9a65d49d99d2e7cea0d9d65a0": { + "4eda81d164454150a984ec786c637c79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4385,15 +4554,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_258a85ded32444efb41a85839c269873", + "layout": "IPY_MODEL_1c603154a9444624a9173aae824a8387", "placeholder": "​", - "style": "IPY_MODEL_38e8901d59a242a7a78f904b7290ded1", + "style": "IPY_MODEL_3b53ea05cced4f95ad3692b5dad66669", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 619kB/s]" + "value": " 60000/60000 [00:07<00:00, 8716.44 examples/s]" } }, - "4fb7aac9b0e94c8fa3c52feebef9c46c": { + "514d2734602646f3b7b9bc57cd59c08c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4446,7 +4615,7 @@ "width": null } }, - "4fc26b2a19f84b129f4775ce0945ded5": { + "5299f45022f948ee9f393f0723ded761": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4464,25 +4633,60 @@ "text_color": null } }, - "50321cbbe67d4c51924a23c58e9ae983": { - "model_module": "@jupyter-widgets/controls", + "52a4c80fd0304eba81bc227cce43e285": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "50497ec5c80e44358b57db251c24387c": { + "532659a862c046cc962c62df200b203c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4535,46 +4739,31 @@ "width": null } }, - "51a3f5b510c94a16b839c2271267ccd1": { + "5460e9c61e374fef8cf751db7a3ebbcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e77fe9166b7843cd869d9a01fc8db7cc", - "placeholder": "​", - "style": "IPY_MODEL_a2eb003071a143059b9b0390a394eb4a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a0899edd79a453ca74c9dee92cfc546", + "IPY_MODEL_c5f977ef161c49eab8ca610fc2c1665f", + "IPY_MODEL_f9c2e28d91d2414ea49fd9522f8baaf6" + ], + "layout": "IPY_MODEL_acc4bccb9ed94206a99b3c0cb5d3518c", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.66it/s]" - } - }, - "52daf431b0a94628ba07879a297b0935": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "53c571a3a3e6480b87ae02c4703c6c98": { + "584249182a514d5aaeda8f1622a4d8a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4589,16 +4778,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_df05021fb6014b5fb00e86de8cbc5040", - "IPY_MODEL_7c463c80c1ef4d0e884f3805ef6eed6b", - "IPY_MODEL_51a3f5b510c94a16b839c2271267ccd1" + "IPY_MODEL_78b9fb091ca34d8bb1c6679ef5f9dafa", + "IPY_MODEL_3e529136e4ef4a42b8e93f739db5d154", + "IPY_MODEL_074ef5d49e1b43a789322b593f76170e" ], - "layout": "IPY_MODEL_190c1eeccee04fd2bb6a6c9b72dc1038", + "layout": "IPY_MODEL_c5ecb31d2e7b4e67a569229a1d7126da", "tabbable": null, "tooltip": null } }, - "53df56998d414e0fb40f239bbc4cd05b": { + "59668d38fe1b46fd966c97d3f1adc0d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4651,69 +4840,23 @@ "width": null } }, - "546d6472476a408db47ac78880209e25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_16244a9faef744f7a1f8ebc93c498cb3", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_71a4a89670674acd8e36794dd960bda5", - "tabbable": null, - "tooltip": null, - "value": 4833.0 - } - }, - "54de94abab13425c9eb83dca42b7ab08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "56c3894d38584313b981ca981f1f0023": { + "5c52fa7390d241c7ab1368e90de0d289": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "57b68fd51b664f71b708a03754a68baf": { + "5d0c2a951f1948a596b3437f78c38cfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4729,111 +4872,16 @@ "description_width": "" } }, - "59025fcd0836440cbb0c7a3cc76d5043": { - "model_module": "@jupyter-widgets/controls", + "5e3279b4ee474f9cae543a3659a1b8c3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f318fe5a17094397885ed4b5d5d443a8", - "placeholder": "​", - "style": "IPY_MODEL_54de94abab13425c9eb83dca42b7ab08", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "5aad96c8587b4663a593ea6088d92cd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_944e1e1d04094a4e8ff97089ee27d050", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_52daf431b0a94628ba07879a297b0935", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "5b1361e0e7fb4ec0aefd77ac19b58177": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_420c839a26384dc5889ea20b50aa064e", - "placeholder": "​", - "style": "IPY_MODEL_0fb820347f364c79ba9ef78c5ca1da2d", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:07<00:00, 3.52MB/s]" - } - }, - "5b7605ae7b0743be88ddec218178e9f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86021858fcc44db9b65cce430695ebe9", - "placeholder": "​", - "style": "IPY_MODEL_fb08d1be0f1f4522bf0962f5c3e0a3ae", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 54.33it/s]" - } - }, - "5e68e43e8bc84e98aa7848081512647f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -4877,7 +4925,31 @@ "width": null } }, - "5e8f52f10ea34bebac052bbccb949668": { + "6090aaf8150b44059029d2d920b6c28f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_09106c1b90dc4eb085f5f605736acb94", + "IPY_MODEL_95690eae1fd64b069f2d46ea99ed1e04", + "IPY_MODEL_ac7cb49d7e014221add7b56c181c0eee" + ], + "layout": "IPY_MODEL_514d2734602646f3b7b9bc57cd59c08c", + "tabbable": null, + "tooltip": null + } + }, + "60c8a5975d844ab8b11b4600e7eac41d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4930,23 +5002,43 @@ "width": null } }, - "6293c2fff3b94a64818b0f332c7e90f2": { + "6229bac9f5f24f3b992ea6e2e124e473": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "62bbe5d8a2ac428ba7c4afd7bc2cc947": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6470ece4ed814117a6e5b1b514808db8": { + "64ade2f788414e54a4962dcf947d79f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4961,15 +5053,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f8309841ad434c54ade8bf2d179d62ac", + "layout": "IPY_MODEL_0445168202e84bd987a8c99bbaa42154", "placeholder": "​", - "style": "IPY_MODEL_20c8f73e92d2495bb274955e092d539c", + "style": "IPY_MODEL_a75ec49d939949b4aba0c0dcda5ec1e7", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 6.49MB/s]" + "value": " 60000/60000 [00:38<00:00, 1505.40it/s]" } }, - "685c28d1ea8c436b879c775672150d98": { + "67c7c88e2fc74d2c893b8233ce6047ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4984,15 +5076,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_acf3a46e5bb4448e8e3cf1f98131ac03", + "layout": "IPY_MODEL_e79b262ba0714f71991d5aa27ef737f5", "placeholder": "​", - "style": "IPY_MODEL_110c7268e08143bfb0bf9bb6a831308d", + "style": "IPY_MODEL_a8dcce467f684437bdd88f30992a529a", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 10000/10000 [00:01<00:00, 8416.24 examples/s]" } }, - "6e05d7a3ce5444fc9fc185c7cefb7bfb": { + "6a0899edd79a453ca74c9dee92cfc546": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5007,68 +5099,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4772ae3590184806856c23495a6d5fb1", + "layout": "IPY_MODEL_29887663f048431b82be1858f43767e8", "placeholder": "​", - "style": "IPY_MODEL_31fed1d7091d4d4583d2c3c572eeac5e", + "style": "IPY_MODEL_7ca9c9f9ace24ed697596027f69fe80d", "tabbable": null, "tooltip": null, "value": "100%" } }, - "6e28af39d0e0449b86fb861e46caf297": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "71810b974ac5406c96228c3bf1a9a2b4": { + "6b37c615fe9e4a17ab3210fec9f293a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5084,33 +5123,105 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_031ba280948b4100b7f66a834088d319", + "layout": "IPY_MODEL_52a4c80fd0304eba81bc227cce43e285", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9569f75dc5b8477abf5aae0210adc4fa", + "style": "IPY_MODEL_d733b613944e4e75b6618e5374ed9c98", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "71a4a89670674acd8e36794dd960bda5": { + "6b780f0e064b41bba8a06a7f135ebc1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b697f4d096cf424bb6d2a25ca2a750eb", + "placeholder": "​", + "style": "IPY_MODEL_e7283eea272d41f5bd1005878f97a57e", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1223.63it/s]" + } + }, + "6baddd7f88844b9fa3d1ea84d9b8f4c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f1f4b23497004a979ad4edbb22a83db1", + "IPY_MODEL_940d995970d94bbb80a50785cd164a0a", + "IPY_MODEL_e4817a1d5aeb484d83832c29b2a72272" + ], + "layout": "IPY_MODEL_b524b89d52eb438f904142f942771f9c", + "tabbable": null, + "tooltip": null + } + }, + "6da3f0a20b1d4b79b31b85715311aeee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7582e2bbc15d4784a7fcd1cf876b75f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba5ac5ec14bc451889b43a9e0bd0a11a", + "placeholder": "​", + "style": "IPY_MODEL_de707fb7fc114ccc9af0cd6d0e6a9204", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "736e4c44e03a4e058853275f160e4869": { + "76456cf6d81e47f2af4b70c2990d00ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5163,7 +5274,7 @@ "width": null } }, - "742365443e36450f819b04b24e41e98b": { + "768c64fd4b4548b4bd4bd6b308987029": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5216,96 +5327,135 @@ "width": null } }, - "745b7366dbb64c2daf84c029de3688bd": { + "78b9fb091ca34d8bb1c6679ef5f9dafa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_05d23d732cc649158da39cae536db0b8", - "IPY_MODEL_055f310ad17942a195bb466d23c3b972", - "IPY_MODEL_171462d98af24358a5961b04c9b74604" - ], - "layout": "IPY_MODEL_7836bce9530c4eb3ab99f462a04475e1", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a28aa8d2cf4049c2868e8a01d547da26", + "placeholder": "​", + "style": "IPY_MODEL_b65c63d6a5df43b58beded2082ebde3d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "759d78e08c824405bbe8746ddbfbc1c3": { - "model_module": "@jupyter-widgets/controls", + "7adb5c5d93654fc1ab43e73608f0769f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_685c28d1ea8c436b879c775672150d98", - "IPY_MODEL_14fb0bfb489048289623514f4c431a3e", - "IPY_MODEL_9873ba06e34e4a47a706d7a3bb5c81d1" - ], - "layout": "IPY_MODEL_50497ec5c80e44358b57db251c24387c", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7686ddc55ca942d09f5a6aba850cd0f4": { + "7ae417819f1346658e838efdc886696f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_768c64fd4b4548b4bd4bd6b308987029", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b7405d95f1a40f3b4a3714ff881243e", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "76f9273b67624d7f9704e27b6b3db40a": { + "7b28e55b99c64c719152ced290022060": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_98a06d21f9e9497dbd96f228223ae5d9", - "placeholder": "​", - "style": "IPY_MODEL_8a4b9023d2e146b2aa334211a615d74b", + "layout": "IPY_MODEL_3b6d1e0aeda744baa73455a128e7cac0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bb15e0200382433ab6115997e77b3b05", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 859kB/s]" + "value": 40.0 } }, - "7836bce9530c4eb3ab99f462a04475e1": { + "7c1214c0cb704ee8b59146966c29f7ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5358,7 +5508,69 @@ "width": null } }, - "783799c6f0bb4b3ab94155acebc59f10": { + "7ca9c9f9ace24ed697596027f69fe80d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f12c2a169084ac584c4d5d42290c2ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_86f4617dbe29439e863bb84c65c91950", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_96832e8ed78747308e49ab249abd8b5a", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "809cef9781a34951bd88663cc8461e2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "81c92cbe85a64e0dae661e38ac134935": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5411,7 +5623,7 @@ "width": null } }, - "7ad48d85c5e24005aa51d677c09d99ac": { + "82ea75491d10401aa18be4f1e9268abd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5429,30 +5641,7 @@ "text_color": null } }, - "7ad7c9a18ca54e8599f65da863c69ea1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a1da1d84c4b476c823feb701fe4b911", - "placeholder": "​", - "style": "IPY_MODEL_196b795a1e9b497db76e66252b9eefa2", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1705.05it/s]" - } - }, - "7c463c80c1ef4d0e884f3805ef6eed6b": { + "82f0f61acf50476d9c6439a0e0c55b03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5468,17 +5657,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b9541f63da674ed3848054b726fe49e7", - "max": 40.0, + "layout": "IPY_MODEL_bcaa266b153e40bc99699e89a26a0bdb", + "max": 8845.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_32798c5dacb74eab8aae5f6ac9ee796e", + "style": "IPY_MODEL_11d0a7d94195419780e6813f5d09e9f4", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 8845.0 } }, - "7ddd12c4562a4a6bb710906c16680943": { + "8319119647e04033b0206a42648258f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5531,31 +5720,60 @@ "width": null } }, - "82823a5ceaf9423dbdd8d54dddb2c7a6": { - "model_module": "@jupyter-widgets/controls", + "84078cae32a94ce48ac65771b0cdc09e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e5aee9aa5b354cd6a663791ae5721dd1", - "IPY_MODEL_f1cf7a9c8a2f4c038813a09ada1577fd", - "IPY_MODEL_d201e1f4e00f4c16b4d27f14807b962e" - ], - "layout": "IPY_MODEL_d4753c4e63aa46828fc2fdefd66e9d1b", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "82c9a984fa4a45d6bbef34980ab6cc9b": { + "86f4617dbe29439e863bb84c65c91950": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5608,7 +5826,7 @@ "width": null } }, - "82d93159d97f4bf3a1efaed6610dba7e": { + "8e1e5f72e17845ce8e2ce7eb2812f21b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5623,15 +5841,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5e8f52f10ea34bebac052bbccb949668", + "layout": "IPY_MODEL_59668d38fe1b46fd966c97d3f1adc0d7", "placeholder": "​", - "style": "IPY_MODEL_7686ddc55ca942d09f5a6aba850cd0f4", + "style": "IPY_MODEL_f99f70494c0341a3b500895b4abdb988", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8681.29 examples/s]" + "value": "Downloading builder script: 100%" } }, - "8486651bed1f4017b1c7d57e069f8a3f": { + "8e363e8ddbd54765aa1928f693697c06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5649,7 +5867,7 @@ "text_color": null } }, - "84f88bfb9f804d76b3e63053be87517a": { + "91fa85e0a2f04ca190bae9f341b1bdef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5702,30 +5920,33 @@ "width": null } }, - "85ea5d5292d0441b8ae5ffa8f288b8f6": { + "93f10fc6f0574ecc9ef9244a593ecb49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_84f88bfb9f804d76b3e63053be87517a", - "placeholder": "​", - "style": "IPY_MODEL_7ad48d85c5e24005aa51d677c09d99ac", + "layout": "IPY_MODEL_7c1214c0cb704ee8b59146966c29f7ba", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d8e72a2ced5c48fda8f8dc1c6cc39bef", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": 4.0 } }, - "86021858fcc44db9b65cce430695ebe9": { + "9406c4e963b740bc8e493dc9ac2fc95f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5778,28 +5999,54 @@ "width": null } }, - "873f6734dcfb4bf3be536b78ce9a36c6": { - "model_module": "@jupyter-widgets/base", + "940d995970d94bbb80a50785cd164a0a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7adb5c5d93654fc1ab43e73608f0769f", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c52fa7390d241c7ab1368e90de0d289", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "9417954b1e6a4ea997a82279df1c1e06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, @@ -5831,7 +6078,115 @@ "width": null } }, - "8a1da1d84c4b476c823feb701fe4b911": { + "944bc13775bc43f9b5195a84db492404": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f99bd7e8707047409f0b50e53975b852", + "IPY_MODEL_a74d77af5dbf4b8f85aff11267b96e21", + "IPY_MODEL_67c7c88e2fc74d2c893b8233ce6047ad" + ], + "layout": "IPY_MODEL_f74f023dbac342a4a3f53f0532b6b2b6", + "tabbable": null, + "tooltip": null + } + }, + "95690eae1fd64b069f2d46ea99ed1e04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bb76d70987b4a618a5e587aceea745d", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f758b5dcdfd94a5081ce30faeaf2ad14", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "9583fea99f244c53b350c8a2a83db01e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "96832e8ed78747308e49ab249abd8b5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9966542321eb42f7b958a6114ba286a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c2a8efd20a4418b96f345c922e370c7", + "IPY_MODEL_7ae417819f1346658e838efdc886696f", + "IPY_MODEL_64ade2f788414e54a4962dcf947d79f9" + ], + "layout": "IPY_MODEL_bc1db211ff334a49abfea262dfa089f7", + "tabbable": null, + "tooltip": null + } + }, + "9bb76d70987b4a618a5e587aceea745d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5884,7 +6239,7 @@ "width": null } }, - "8a356232b26645178f647be6f1e2d699": { + "9c5c89be5849407e958b709b927463b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5937,51 +6292,7 @@ "width": null } }, - "8a4b9023d2e146b2aa334211a615d74b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8b2d4a8bea734a84a61b894fdce0a5df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e5c9e48ceef94e2d803b080a03e69231", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fdd71d2ec9544d78a91224b72724e54f", - "tabbable": null, - "tooltip": null, - "value": 4422102.0 - } - }, - "8c7eaef39a414d45bdced17678d5f2f3": { + "a00494c4e4ce4302957d0fbc13992a21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5996,16 +6307,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_39f79d0861b8408eb576872d24d086b6", - "IPY_MODEL_18bab8a142254c219cd8b1f4a5772397", - "IPY_MODEL_76f9273b67624d7f9704e27b6b3db40a" + "IPY_MODEL_7582e2bbc15d4784a7fcd1cf876b75f0", + "IPY_MODEL_93f10fc6f0574ecc9ef9244a593ecb49", + "IPY_MODEL_6b780f0e064b41bba8a06a7f135ebc1a" ], - "layout": "IPY_MODEL_3c31735201f94e48b675a2a27622dee7", + "layout": "IPY_MODEL_d279182f67ef4b33bbd38615c3e18109", "tabbable": null, "tooltip": null } }, - "8dd9f155917f4571a7ce9acde49d0e5a": { + "a14a32c0511b476bbcb4eb4baab411a2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a28aa8d2cf4049c2868e8a01d547da26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6058,31 +6422,30 @@ "width": null } }, - "8df15e8710f842479f05326569119ec8": { + "a347919eb8db46719f804141ae71294c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc6efd362b3d40b7a2459be242fdac57", - "IPY_MODEL_ef0d0c57ff11419f88dc5a80cf6f145f", - "IPY_MODEL_82d93159d97f4bf3a1efaed6610dba7e" - ], - "layout": "IPY_MODEL_1bccdd768eb9423db31eb1aea279ce94", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15b2884c3ebe43d9b97793956a82ff7a", + "placeholder": "​", + "style": "IPY_MODEL_d29037f79ec1449fb9ae77739c5beb4c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 99.8MB/s]" } }, - "8ee1e100ba224c86971a4eb5c2aa8d2c": { + "a544040b92ca479e96afc733a38b2542": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6100,7 +6463,7 @@ "text_color": null } }, - "8ff5163deb5a46f1a798f0c447bb66bc": { + "a74d77af5dbf4b8f85aff11267b96e21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6116,17 +6479,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_933ba0c6cebe44259ca771eb59652a64", - "max": 60000.0, + "layout": "IPY_MODEL_486c8450634840abac68df8d0982f86e", + "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_da822ce7d4844a02b7a83a908d6ac39d", + "style": "IPY_MODEL_c289066ee5fe48278ccef4590891130a", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 10000.0 } }, - "91e2cb0cc83d4e8e8d5c95580d720455": { + "a75ec49d939949b4aba0c0dcda5ec1e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6144,30 +6507,25 @@ "text_color": null } }, - "9334c7f0c80745ec92aba94b367913e9": { + "a8dcce467f684437bdd88f30992a529a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ce8a4e687914f688c1fe339a120d37e", - "placeholder": "​", - "style": "IPY_MODEL_d70de9168a15409988fa73fe4fd9f932", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "933ba0c6cebe44259ca771eb59652a64": { + "a9da5b0e5e484eaba9bb8e2dd7a3620b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6220,7 +6578,7 @@ "width": null } }, - "934b338bf0644e88b98751581aacb27a": { + "ac7cb49d7e014221add7b56c181c0eee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6235,15 +6593,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bac3c6a0ec8b43718060802d7c2114ae", + "layout": "IPY_MODEL_cf13889632e34436b517a1f8a062e0e4", "placeholder": "​", - "style": "IPY_MODEL_4853e3bc55ad4fc5817a0174845fb700", + "style": "IPY_MODEL_8e363e8ddbd54765aa1928f693697c06", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 54.35it/s]" + "value": " 60000/60000 [00:11<00:00, 6507.94 examples/s]" } }, - "944e1e1d04094a4e8ff97089ee27d050": { + "acc4bccb9ed94206a99b3c0cb5d3518c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6296,7 +6654,7 @@ "width": null } }, - "946ae0b4ccb44762a01989bba335fed2": { + "af1edd54576f4760b58d9a74f514f7c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6349,39 +6707,43 @@ "width": null } }, - "9490a9b9bdd24394a12824ed76bc8a05": { + "b0e9a5aae2bb4bee85bab1838bff06b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9569f75dc5b8477abf5aae0210adc4fa": { + "b1869063dcf24d67ad31856aef1dc659": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9873ba06e34e4a47a706d7a3bb5c81d1": { + "b3082ca8e24944d8a9afe85efb6c2e97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6396,15 +6758,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f30b8a9d870425481b7d11fd5b128fe", + "layout": "IPY_MODEL_f8047790d7c5408d9ace2e8ae2a8be39", "placeholder": "​", - "style": "IPY_MODEL_91e2cb0cc83d4e8e8d5c95580d720455", + "style": "IPY_MODEL_0e2c5d9d844044d483fb12d45f0ba447", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.42MB/s]" + "value": " 40/40 [00:00<00:00, 64.49it/s]" + } + }, + "b4cab1f0ee6349b08c9ea92b8876b105": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "98a06d21f9e9497dbd96f228223ae5d9": { + "b524b89d52eb438f904142f942771f9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6457,7 +6835,25 @@ "width": null } }, - "9a931db84c9949fb910e747936c33cb0": { + "b65c63d6a5df43b58beded2082ebde3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b697f4d096cf424bb6d2a25ca2a750eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6510,124 +6906,7 @@ "width": null } }, - "9a984e22ab1c4c008c21c51301be8576": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9ac8275e5feb48c88901ff6957e27821": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_783799c6f0bb4b3ab94155acebc59f10", - "placeholder": "​", - "style": "IPY_MODEL_02744ca1e8454e48bde1845bfe448428", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "9b2e77ad12b34f9088fd97aac97718de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9be18dcff7494e939c53941df53f0871": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_03302e2436184c00bf4112e516e9a069", - "IPY_MODEL_e8056d945fb848f9b33f6c6e4f9d3e1f", - "IPY_MODEL_3f966dd8d8b242469965478fdc13d63b" - ], - "layout": "IPY_MODEL_873f6734dcfb4bf3be536b78ce9a36c6", - "tabbable": null, - "tooltip": null - } - }, - "a01cc5bbd9224afdb8c560889a3e96da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a0c4a73bbcdc41fa8f881db96483a666": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a19bee29c83a4b148f5ff7b8a8518f38": { + "ba5ac5ec14bc451889b43a9e0bd0a11a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6680,7 +6959,23 @@ "width": null } }, - "a2ae0a31904443769c4d293f49edfe75": { + "bb15e0200382433ab6115997e77b3b05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bc1db211ff334a49abfea262dfa089f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6733,7 +7028,7 @@ "width": null } }, - "a2e080fe09244d67a81b3a35650583fc": { + "bcaa266b153e40bc99699e89a26a0bdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6786,7 +7081,33 @@ "width": null } }, - "a2eb003071a143059b9b0390a394eb4a": { + "bdf6bc67142548d6b578370fa647bf61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_84078cae32a94ce48ac65771b0cdc09e", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d0c2a951f1948a596b3437f78c38cfb", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 + } + }, + "bea986622eb049729843684d300dd516": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6804,7 +7125,69 @@ "text_color": null } }, - "a5e89613a9ef4d60af510371acaae248": { + "c11ffc22a8844386af101099ad307235": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76456cf6d81e47f2af4b70c2990d00ce", + "placeholder": "​", + "style": "IPY_MODEL_372d87500ea844ad9c334c4038a5de46", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "c289066ee5fe48278ccef4590891130a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c2fc2bcf7d594cb8b13abe28ebd12237": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbd1ed79923949c4aae8f6e0e38bf619", + "placeholder": "​", + "style": "IPY_MODEL_1e87658a42504ce4b3575fd1ea760a2a", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "c38d17ba1e91481ba0a5df257be8b41b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6857,7 +7240,7 @@ "width": null } }, - "aaede45da5534b61881b204536652752": { + "c502cbfcb20042b496aab97e7dff0338": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6872,21 +7255,44 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0486167697834cbfb7031daef4c202a4", - "IPY_MODEL_5aad96c8587b4663a593ea6088d92cd3", - "IPY_MODEL_0127201b714d436eaeadac20dceecb5c" + "IPY_MODEL_c54e83ca222449f488a45d0ea889941c", + "IPY_MODEL_f7ea7f75b5e94d5992ed5713a8b6aa43", + "IPY_MODEL_a347919eb8db46719f804141ae71294c" ], - "layout": "IPY_MODEL_3eeef52bf4544c6aaaaf0bf5433c63d5", + "layout": "IPY_MODEL_c5db8bc0291144c6b2f76279d7dec09c", "tabbable": null, "tooltip": null } }, - "acf3a46e5bb4448e8e3cf1f98131ac03": { - "model_module": "@jupyter-widgets/base", + "c54e83ca222449f488a45d0ea889941c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec4c8f1871e746038c22dcd78c7d6dc8", + "placeholder": "​", + "style": "IPY_MODEL_62bbe5d8a2ac428ba7c4afd7bc2cc947", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "c5db8bc0291144c6b2f76279d7dec09c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -6934,51 +7340,7 @@ "width": null } }, - "ae026b12c92849d5bd39572928ad683d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf47b5535f2346d28b89cc90d9210536", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6293c2fff3b94a64818b0f332c7e90f2", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "b036f89410c24342941ba7cd9a14888a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b307087dec614a23bf0ca47f5392a715": { + "c5ecb31d2e7b4e67a569229a1d7126da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7031,7 +7393,7 @@ "width": null } }, - "b67c746e1c0f483b8fb9a0d6874bde25": { + "c5f977ef161c49eab8ca610fc2c1665f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7047,17 +7409,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a2e080fe09244d67a81b3a35650583fc", + "layout": "IPY_MODEL_09b5225d46a341c0bbaffca3110244dd", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9a984e22ab1c4c008c21c51301be8576", + "style": "IPY_MODEL_4bfd698030ae4c27b1fae44eadbc2370", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "b9541f63da674ed3848054b726fe49e7": { + "cbd1ed79923949c4aae8f6e0e38bf619": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7110,7 +7472,7 @@ "width": null } }, - "bac3c6a0ec8b43718060802d7c2114ae": { + "cc90930abb3f4f7f88e60548b044cc9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7163,7 +7525,49 @@ "width": null } }, - "bc1a2da537ce4bb5911e830c1b271c69": { + "cc95859b7c574b2bb9d6244f9a032f2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cf0f828d9523419c8ab60d6ec4329aa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4d105525e96449bb8723e4a3a6e422de", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2026c613a85740ac9f350f0587f79473", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "cf13889632e34436b517a1f8a062e0e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7216,7 +7620,7 @@ "width": null } }, - "bf145e78e7c44335849bfe2731b76547": { + "d1a5c9e7b59a44a8a410c2d4bd592db6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7269,55 +7673,7 @@ "width": null } }, - "bf2511624c2a4778bc836f290acedf8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1cfc9524b7a24cdbb7e8f0e2d2d568a0", - "IPY_MODEL_8b2d4a8bea734a84a61b894fdce0a5df", - "IPY_MODEL_6470ece4ed814117a6e5b1b514808db8" - ], - "layout": "IPY_MODEL_fd5751582c0a4fd1a5278821527d3156", - "tabbable": null, - "tooltip": null - } - }, - "bf43deff8d6f44328677d9cd944ab999": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc1d95708e6c44d0b808eaf13dbc5e72", - "IPY_MODEL_8ff5163deb5a46f1a798f0c447bb66bc", - "IPY_MODEL_7ad7c9a18ca54e8599f65da863c69ea1" - ], - "layout": "IPY_MODEL_742365443e36450f819b04b24e41e98b", - "tabbable": null, - "tooltip": null - } - }, - "bf47b5535f2346d28b89cc90d9210536": { + "d279182f67ef4b33bbd38615c3e18109": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7370,39 +7726,25 @@ "width": null } }, - "bf70343c851049b695bb344693e150a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c2c2c15028944865b0e3c7803228d0aa": { + "d29037f79ec1449fb9ae77739c5beb4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c69f5486f5854cdc9b0f28f343dc5cbb": { + "d6d73ba68a06438fa862d7e105099af4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7420,30 +7762,47 @@ "text_color": null } }, - "c92922f6dcba4f028e88d18869237688": { + "d73213875ad74216bf0d0a81d14bd1d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d979554ee4e64ec6ab9f3d2a5c5efb8f", - "placeholder": "​", - "style": "IPY_MODEL_4fc26b2a19f84b129f4775ce0945ded5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_46c9eb3ff7cd477ab56d83cd7dc1507e", + "IPY_MODEL_82f0f61acf50476d9c6439a0e0c55b03", + "IPY_MODEL_ede95459c0314d9f92ffebfa58091d0c" + ], + "layout": "IPY_MODEL_af1edd54576f4760b58d9a74f514f7c8", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null + } + }, + "d733b613944e4e75b6618e5374ed9c98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ce85d6a5941844bb979d569eee20cec8": { + "d7f0cb2a73fd46379721cf57c08cd319": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7496,7 +7855,7 @@ "width": null } }, - "d201e1f4e00f4c16b4d27f14807b962e": { + "d81e03c48bae4f46b68b672d5fe5ba6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7511,152 +7870,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53df56998d414e0fb40f239bbc4cd05b", + "layout": "IPY_MODEL_2e96200f404c48e4a508630b21ca59aa", "placeholder": "​", - "style": "IPY_MODEL_a01cc5bbd9224afdb8c560889a3e96da", + "style": "IPY_MODEL_b0e9a5aae2bb4bee85bab1838bff06b5", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 1.52MB/s]" + "value": "Downloading data: 100%" } }, - "d42a0fef40af4deb82ef3e72a10e8d7d": { - "model_module": "@jupyter-widgets/base", + "d8e72a2ced5c48fda8f8dc1c6cc39bef": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d4753c4e63aa46828fc2fdefd66e9d1b": { - "model_module": "@jupyter-widgets/base", + "dc28142388c542ffaaded35e8407a154": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d5b12008f99d455c966fa2e14fe5f154": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_12395429544748b9ae9539173c4e28de", - "IPY_MODEL_b67c746e1c0f483b8fb9a0d6874bde25", - "IPY_MODEL_934b338bf0644e88b98751581aacb27a" - ], - "layout": "IPY_MODEL_fbf3aa1585aa48ac856dd426c1259b1c", - "tabbable": null, - "tooltip": null - } - }, - "d6dcf373f0df43f29287b2c60241cdb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -7667,78 +7912,7 @@ "text_color": null } }, - "d70de9168a15409988fa73fe4fd9f932": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d979554ee4e64ec6ab9f3d2a5c5efb8f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "da75209458cd4d829d58a3543863fb93": { + "de636abade924ea8bc76c1bff06498af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7753,125 +7927,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c92922f6dcba4f028e88d18869237688", - "IPY_MODEL_71810b974ac5406c96228c3bf1a9a2b4", - "IPY_MODEL_5b7605ae7b0743be88ddec218178e9f2" + "IPY_MODEL_d81e03c48bae4f46b68b672d5fe5ba6c", + "IPY_MODEL_02b3ab1c99f54ef3925d5e044cc8f184", + "IPY_MODEL_f070cb60991549639017073137468357" ], - "layout": "IPY_MODEL_48da0e7bbb134052bcf38fe2d2386ef9", + "layout": "IPY_MODEL_a14a32c0511b476bbcb4eb4baab411a2", "tabbable": null, "tooltip": null } }, - "da822ce7d4844a02b7a83a908d6ac39d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "db79d0f62aa04d6b8eb00119ae4b9e51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "df05021fb6014b5fb00e86de8cbc5040": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f563dde9529f40a4838fd749dbb3dc7d", - "placeholder": "​", - "style": "IPY_MODEL_100059655a4b4d11b2e4b02133955b21", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "e20f61f6ffe34bae933bcfe43be75b50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e2358f94bd824cb297783cbce5bd4b6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e4f41606a6914a85a45ef33edd7e734c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e508a8da39c24fd88425f7c7260a2470": { + "de707fb7fc114ccc9af0cd6d0e6a9204": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7889,83 +7954,7 @@ "text_color": null } }, - "e5aee9aa5b354cd6a663791ae5721dd1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a931db84c9949fb910e747936c33cb0", - "placeholder": "​", - "style": "IPY_MODEL_d6dcf373f0df43f29287b2c60241cdb0", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "e5c9e48ceef94e2d803b080a03e69231": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e6e7b8be4c634d7c9456a02023a3facc": { + "e02ac76f211c452fa47443c8fe5a66fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7980,95 +7969,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9334c7f0c80745ec92aba94b367913e9", - "IPY_MODEL_0887279366d947918a2859b5000c3142", - "IPY_MODEL_373774c569f4410195997abcc6ad3963" + "IPY_MODEL_c2fc2bcf7d594cb8b13abe28ebd12237", + "IPY_MODEL_cf0f828d9523419c8ab60d6ec4329aa2", + "IPY_MODEL_4eda81d164454150a984ec786c637c79" ], - "layout": "IPY_MODEL_a2ae0a31904443769c4d293f49edfe75", + "layout": "IPY_MODEL_04c9d61b124843488d6c8485d3276cf3", "tabbable": null, "tooltip": null } }, - "e77fe9166b7843cd869d9a01fc8db7cc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e8056d945fb848f9b33f6c6e4f9d3e1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1dcfbde1b2e24c5f9c238e501811a342", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f4dc3576e46b40058f18c613354b5841", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "e87f6146964a4d0b8eb91e61b43a17fd": { + "e2f500af341144c0a3cf7871b79f7b61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8121,109 +8031,48 @@ "width": null } }, - "e9f41dad882341c69e15673ba734984b": { + "e4817a1d5aeb484d83832c29b2a72272": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f423567591fb4ee6990bac72ff64527d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_57b68fd51b664f71b708a03754a68baf", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "e9f4cce5ae224f93a5b80a19ccbb04a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ac8275e5feb48c88901ff6957e27821", - "IPY_MODEL_546d6472476a408db47ac78880209e25", - "IPY_MODEL_499f31a9a65d49d99d2e7cea0d9d65a0" - ], - "layout": "IPY_MODEL_4fb7aac9b0e94c8fa3c52feebef9c46c", - "tabbable": null, - "tooltip": null - } - }, - "ef0d0c57ff11419f88dc5a80cf6f145f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ec163f519174e658357ad372ba5c630", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bf70343c851049b695bb344693e150a1", + "layout": "IPY_MODEL_f2998cb69287422e8a9af2e58836f92c", + "placeholder": "​", + "style": "IPY_MODEL_82ea75491d10401aa18be4f1e9268abd", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": " 5.15k/5.15k [00:00<00:00, 811kB/s]" } }, - "f1cf7a9c8a2f4c038813a09ada1577fd": { + "e7283eea272d41f5bd1005878f97a57e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b307087dec614a23bf0ca47f5392a715", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db79d0f62aa04d6b8eb00119ae4b9e51", - "tabbable": null, - "tooltip": null, - "value": 29515.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f318fe5a17094397885ed4b5d5d443a8": { + "e79b262ba0714f71991d5aa27ef737f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8276,7 +8125,7 @@ "width": null } }, - "f423567591fb4ee6990bac72ff64527d": { + "ec4c8f1871e746038c22dcd78c7d6dc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8329,23 +8178,76 @@ "width": null } }, - "f4dc3576e46b40058f18c613354b5841": { + "ede95459c0314d9f92ffebfa58091d0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c38d17ba1e91481ba0a5df257be8b41b", + "placeholder": "​", + "style": "IPY_MODEL_5299f45022f948ee9f393f0723ded761", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.58MB/s]" + } + }, + "f070cb60991549639017073137468357": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9406c4e963b740bc8e493dc9ac2fc95f", + "placeholder": "​", + "style": "IPY_MODEL_dc28142388c542ffaaded35e8407a154", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.45MB/s]" + } + }, + "f1f4b23497004a979ad4edbb22a83db1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2cf5b64d8e274727afa2e967216d5823", + "placeholder": "​", + "style": "IPY_MODEL_6229bac9f5f24f3b992ea6e2e124e473", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "f563dde9529f40a4838fd749dbb3dc7d": { + "f2998cb69287422e8a9af2e58836f92c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8398,7 +8300,25 @@ "width": null } }, - "f7334dfe237e4e7f9b2835e84059e0a1": { + "f425c905ba994524966c845289425320": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f488ec34ec9147fcb7e87a3b43494e7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -8414,7 +8334,7 @@ "description_width": "" } }, - "f783743818724180b7f32fc5790faed2": { + "f74bae4636c84e44a721b635741423a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8467,7 +8387,7 @@ "width": null } }, - "f8309841ad434c54ade8bf2d179d62ac": { + "f74f023dbac342a4a3f53f0532b6b2b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8520,48 +8440,49 @@ "width": null } }, - "fb08d1be0f1f4522bf0962f5c3e0a3ae": { + "f758b5dcdfd94a5081ce30faeaf2ad14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "fb4c67cbf0b64f5aa774cf47171d88d2": { + "f7ea7f75b5e94d5992ed5713a8b6aa43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a19bee29c83a4b148f5ff7b8a8518f38", - "placeholder": "​", - "style": "IPY_MODEL_b036f89410c24342941ba7cd9a14888a", + "layout": "IPY_MODEL_1e547fdab21842a3a820b8cfc8107067", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f488ec34ec9147fcb7e87a3b43494e7d", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.84it/s]" + "value": 4422102.0 } }, - "fbf3aa1585aa48ac856dd426c1259b1c": { + "f8047790d7c5408d9ace2e8ae2a8be39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8614,7 +8535,7 @@ "width": null } }, - "fc1d95708e6c44d0b808eaf13dbc5e72": { + "f99bd7e8707047409f0b50e53975b852": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8629,15 +8550,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_27f324cbc4a04172a48a9afff95019c7", + "layout": "IPY_MODEL_1b972aee47154e24a633dd4afcce07bb", "placeholder": "​", - "style": "IPY_MODEL_e20f61f6ffe34bae933bcfe43be75b50", + "style": "IPY_MODEL_bea986622eb049729843684d300dd516", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Generating test split: 100%" + } + }, + "f99f70494c0341a3b500895b4abdb988": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fc6efd362b3d40b7a2459be242fdac57": { + "f9c2e28d91d2414ea49fd9522f8baaf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8652,15 +8591,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3be96dde9d6847bea2d8924f31c32778", + "layout": "IPY_MODEL_06feb365096443a6afc34cd47e0ce44a", "placeholder": "​", - "style": "IPY_MODEL_3e5176ff8340418d88424cacf1b110d5", + "style": "IPY_MODEL_0321d07b59324f6da681cafe18318797", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 40/40 [00:00<00:00, 63.12it/s]" } }, - "fd5751582c0a4fd1a5278821527d3156": { + "fa06f921c76f40189c687a3f781b29aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8713,20 +8652,81 @@ "width": null } }, - "fdd71d2ec9544d78a91224b72724e54f": { + "fe280fc7af794d66911aa8d37a5a9a22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37271d07367147f4be0852aeaf55f7cd", + "IPY_MODEL_3bab6a019ed34b06adda1f21a50d9487", + "IPY_MODEL_3e344010573d4a2b970fcadcaaf1143b" + ], + "layout": "IPY_MODEL_35aeaa207d8b4315a53e9ccc136d7c99", + "tabbable": null, + "tooltip": null + } + }, + "fe34629a39544206b7f24e16ba979dac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 622cbbc92..f5d1b5193 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:26.770421Z", - "iopub.status.busy": "2024-06-13T18:28:26.770244Z", - "iopub.status.idle": "2024-06-13T18:28:27.910509Z", - "shell.execute_reply": "2024-06-13T18:28:27.909879Z" + "iopub.execute_input": "2024-06-14T00:23:17.215009Z", + "iopub.status.busy": "2024-06-14T00:23:17.214828Z", + "iopub.status.idle": "2024-06-14T00:23:18.364639Z", + "shell.execute_reply": "2024-06-14T00:23:18.364024Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.913265Z", - "iopub.status.busy": "2024-06-13T18:28:27.912960Z", - "iopub.status.idle": "2024-06-13T18:28:27.932962Z", - "shell.execute_reply": "2024-06-13T18:28:27.932465Z" + "iopub.execute_input": "2024-06-14T00:23:18.367392Z", + "iopub.status.busy": "2024-06-14T00:23:18.367102Z", + "iopub.status.idle": "2024-06-14T00:23:18.386160Z", + "shell.execute_reply": "2024-06-14T00:23:18.385637Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.935912Z", - "iopub.status.busy": "2024-06-13T18:28:27.935457Z", - "iopub.status.idle": "2024-06-13T18:28:27.976491Z", - "shell.execute_reply": "2024-06-13T18:28:27.975890Z" + "iopub.execute_input": "2024-06-14T00:23:18.388849Z", + "iopub.status.busy": "2024-06-14T00:23:18.388307Z", + "iopub.status.idle": "2024-06-14T00:23:18.412558Z", + "shell.execute_reply": "2024-06-14T00:23:18.411992Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.978696Z", - "iopub.status.busy": "2024-06-13T18:28:27.978370Z", - "iopub.status.idle": "2024-06-13T18:28:27.981972Z", - "shell.execute_reply": "2024-06-13T18:28:27.981428Z" + "iopub.execute_input": "2024-06-14T00:23:18.414714Z", + "iopub.status.busy": "2024-06-14T00:23:18.414531Z", + "iopub.status.idle": "2024-06-14T00:23:18.418185Z", + "shell.execute_reply": "2024-06-14T00:23:18.417749Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.983973Z", - "iopub.status.busy": "2024-06-13T18:28:27.983665Z", - "iopub.status.idle": "2024-06-13T18:28:27.991715Z", - "shell.execute_reply": "2024-06-13T18:28:27.991170Z" + "iopub.execute_input": "2024-06-14T00:23:18.420267Z", + "iopub.status.busy": "2024-06-14T00:23:18.419955Z", + "iopub.status.idle": "2024-06-14T00:23:18.427953Z", + "shell.execute_reply": "2024-06-14T00:23:18.427541Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.994077Z", - "iopub.status.busy": "2024-06-13T18:28:27.993754Z", - "iopub.status.idle": "2024-06-13T18:28:27.996274Z", - "shell.execute_reply": "2024-06-13T18:28:27.995815Z" + "iopub.execute_input": "2024-06-14T00:23:18.430063Z", + "iopub.status.busy": "2024-06-14T00:23:18.429737Z", + "iopub.status.idle": "2024-06-14T00:23:18.432325Z", + "shell.execute_reply": "2024-06-14T00:23:18.431868Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.998153Z", - "iopub.status.busy": "2024-06-13T18:28:27.997891Z", - "iopub.status.idle": "2024-06-13T18:28:31.016966Z", - "shell.execute_reply": "2024-06-13T18:28:31.016420Z" + "iopub.execute_input": "2024-06-14T00:23:18.434326Z", + "iopub.status.busy": "2024-06-14T00:23:18.434032Z", + "iopub.status.idle": "2024-06-14T00:23:21.444210Z", + "shell.execute_reply": "2024-06-14T00:23:21.443570Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:31.019578Z", - "iopub.status.busy": "2024-06-13T18:28:31.019374Z", - "iopub.status.idle": "2024-06-13T18:28:31.028946Z", - "shell.execute_reply": "2024-06-13T18:28:31.028507Z" + "iopub.execute_input": "2024-06-14T00:23:21.447078Z", + "iopub.status.busy": "2024-06-14T00:23:21.446878Z", + "iopub.status.idle": "2024-06-14T00:23:21.456246Z", + "shell.execute_reply": "2024-06-14T00:23:21.455786Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:31.030842Z", - "iopub.status.busy": "2024-06-13T18:28:31.030663Z", - "iopub.status.idle": "2024-06-13T18:28:32.779042Z", - "shell.execute_reply": "2024-06-13T18:28:32.778442Z" + "iopub.execute_input": "2024-06-14T00:23:21.458287Z", + "iopub.status.busy": "2024-06-14T00:23:21.458109Z", + "iopub.status.idle": "2024-06-14T00:23:23.341274Z", + "shell.execute_reply": "2024-06-14T00:23:23.340671Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.781905Z", - "iopub.status.busy": "2024-06-13T18:28:32.781391Z", - "iopub.status.idle": "2024-06-13T18:28:32.804446Z", - "shell.execute_reply": "2024-06-13T18:28:32.803944Z" + "iopub.execute_input": "2024-06-14T00:23:23.344241Z", + "iopub.status.busy": "2024-06-14T00:23:23.343663Z", + "iopub.status.idle": "2024-06-14T00:23:23.368009Z", + "shell.execute_reply": "2024-06-14T00:23:23.367478Z" }, "scrolled": true }, @@ -617,10 +617,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.806930Z", - "iopub.status.busy": "2024-06-13T18:28:32.806386Z", - "iopub.status.idle": "2024-06-13T18:28:32.815633Z", - "shell.execute_reply": "2024-06-13T18:28:32.815159Z" + "iopub.execute_input": "2024-06-14T00:23:23.370678Z", + "iopub.status.busy": "2024-06-14T00:23:23.370285Z", + "iopub.status.idle": "2024-06-14T00:23:23.379984Z", + "shell.execute_reply": "2024-06-14T00:23:23.379464Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.818072Z", - "iopub.status.busy": "2024-06-13T18:28:32.817533Z", - "iopub.status.idle": "2024-06-13T18:28:32.828315Z", - "shell.execute_reply": "2024-06-13T18:28:32.827811Z" + "iopub.execute_input": "2024-06-14T00:23:23.382581Z", + "iopub.status.busy": "2024-06-14T00:23:23.382187Z", + "iopub.status.idle": "2024-06-14T00:23:23.393612Z", + "shell.execute_reply": "2024-06-14T00:23:23.393103Z" } }, "outputs": [ @@ -856,10 +856,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.830701Z", - "iopub.status.busy": "2024-06-13T18:28:32.830314Z", - "iopub.status.idle": "2024-06-13T18:28:32.839044Z", - "shell.execute_reply": "2024-06-13T18:28:32.838666Z" + "iopub.execute_input": "2024-06-14T00:23:23.396245Z", + "iopub.status.busy": "2024-06-14T00:23:23.395857Z", + "iopub.status.idle": "2024-06-14T00:23:23.404240Z", + "shell.execute_reply": "2024-06-14T00:23:23.403810Z" } }, "outputs": [ @@ -973,10 +973,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.840982Z", - "iopub.status.busy": "2024-06-13T18:28:32.840540Z", - "iopub.status.idle": "2024-06-13T18:28:32.848584Z", - "shell.execute_reply": "2024-06-13T18:28:32.848191Z" + "iopub.execute_input": "2024-06-14T00:23:23.406288Z", + "iopub.status.busy": "2024-06-14T00:23:23.406103Z", + "iopub.status.idle": "2024-06-14T00:23:23.415321Z", + "shell.execute_reply": "2024-06-14T00:23:23.414831Z" } }, "outputs": [ @@ -1087,10 +1087,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.850489Z", - "iopub.status.busy": "2024-06-13T18:28:32.850051Z", - "iopub.status.idle": "2024-06-13T18:28:32.856960Z", - "shell.execute_reply": "2024-06-13T18:28:32.856579Z" + "iopub.execute_input": "2024-06-14T00:23:23.417651Z", + "iopub.status.busy": "2024-06-14T00:23:23.417232Z", + "iopub.status.idle": "2024-06-14T00:23:23.425396Z", + "shell.execute_reply": "2024-06-14T00:23:23.424822Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.858886Z", - "iopub.status.busy": "2024-06-13T18:28:32.858446Z", - "iopub.status.idle": "2024-06-13T18:28:32.865457Z", - "shell.execute_reply": "2024-06-13T18:28:32.864899Z" + "iopub.execute_input": "2024-06-14T00:23:23.427638Z", + "iopub.status.busy": "2024-06-14T00:23:23.427308Z", + "iopub.status.idle": "2024-06-14T00:23:23.435158Z", + "shell.execute_reply": "2024-06-14T00:23:23.434668Z" } }, "outputs": [ @@ -1308,10 +1308,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.867653Z", - "iopub.status.busy": "2024-06-13T18:28:32.867265Z", - "iopub.status.idle": "2024-06-13T18:28:32.875655Z", - "shell.execute_reply": "2024-06-13T18:28:32.875093Z" + "iopub.execute_input": "2024-06-14T00:23:23.437530Z", + "iopub.status.busy": "2024-06-14T00:23:23.437174Z", + "iopub.status.idle": "2024-06-14T00:23:23.446128Z", + "shell.execute_reply": "2024-06-14T00:23:23.445609Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index b41598c4e..a5b1f31ff 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:35.494932Z", - "iopub.status.busy": "2024-06-13T18:28:35.494754Z", - "iopub.status.idle": "2024-06-13T18:28:38.225515Z", - "shell.execute_reply": "2024-06-13T18:28:38.224926Z" + "iopub.execute_input": "2024-06-14T00:23:26.426660Z", + "iopub.status.busy": "2024-06-14T00:23:26.426484Z", + "iopub.status.idle": "2024-06-14T00:23:29.333875Z", + "shell.execute_reply": "2024-06-14T00:23:29.333186Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.228170Z", - "iopub.status.busy": "2024-06-13T18:28:38.227830Z", - "iopub.status.idle": "2024-06-13T18:28:38.231088Z", - "shell.execute_reply": "2024-06-13T18:28:38.230658Z" + "iopub.execute_input": "2024-06-14T00:23:29.336704Z", + "iopub.status.busy": "2024-06-14T00:23:29.336344Z", + "iopub.status.idle": "2024-06-14T00:23:29.339965Z", + "shell.execute_reply": "2024-06-14T00:23:29.339477Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.233283Z", - "iopub.status.busy": "2024-06-13T18:28:38.232947Z", - "iopub.status.idle": "2024-06-13T18:28:38.235936Z", - "shell.execute_reply": "2024-06-13T18:28:38.235509Z" + "iopub.execute_input": "2024-06-14T00:23:29.342240Z", + "iopub.status.busy": "2024-06-14T00:23:29.341795Z", + "iopub.status.idle": "2024-06-14T00:23:29.345149Z", + "shell.execute_reply": "2024-06-14T00:23:29.344678Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.238184Z", - "iopub.status.busy": "2024-06-13T18:28:38.237753Z", - "iopub.status.idle": "2024-06-13T18:28:38.279855Z", - "shell.execute_reply": "2024-06-13T18:28:38.279322Z" + "iopub.execute_input": "2024-06-14T00:23:29.347354Z", + "iopub.status.busy": "2024-06-14T00:23:29.346935Z", + "iopub.status.idle": "2024-06-14T00:23:29.369308Z", + "shell.execute_reply": "2024-06-14T00:23:29.368737Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.281983Z", - "iopub.status.busy": "2024-06-13T18:28:38.281783Z", - "iopub.status.idle": "2024-06-13T18:28:38.285634Z", - "shell.execute_reply": "2024-06-13T18:28:38.285133Z" + "iopub.execute_input": "2024-06-14T00:23:29.371529Z", + "iopub.status.busy": "2024-06-14T00:23:29.371328Z", + "iopub.status.idle": "2024-06-14T00:23:29.375296Z", + "shell.execute_reply": "2024-06-14T00:23:29.374748Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'apple_pay_or_google_pay', 'change_pin', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies'}\n" + "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'apple_pay_or_google_pay', 'change_pin', 'supported_cards_and_currencies', 'cancel_transfer'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.287866Z", - "iopub.status.busy": "2024-06-13T18:28:38.287518Z", - "iopub.status.idle": "2024-06-13T18:28:38.290632Z", - "shell.execute_reply": "2024-06-13T18:28:38.290100Z" + "iopub.execute_input": "2024-06-14T00:23:29.377403Z", + "iopub.status.busy": "2024-06-14T00:23:29.377213Z", + "iopub.status.idle": "2024-06-14T00:23:29.380495Z", + "shell.execute_reply": "2024-06-14T00:23:29.379939Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.292858Z", - "iopub.status.busy": "2024-06-13T18:28:38.292527Z", - "iopub.status.idle": "2024-06-13T18:28:42.021573Z", - "shell.execute_reply": "2024-06-13T18:28:42.021004Z" + "iopub.execute_input": "2024-06-14T00:23:29.382617Z", + "iopub.status.busy": "2024-06-14T00:23:29.382436Z", + "iopub.status.idle": "2024-06-14T00:23:33.102395Z", + "shell.execute_reply": "2024-06-14T00:23:33.101746Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:42.024191Z", - "iopub.status.busy": "2024-06-13T18:28:42.023967Z", - "iopub.status.idle": "2024-06-13T18:28:42.915684Z", - "shell.execute_reply": "2024-06-13T18:28:42.915096Z" + "iopub.execute_input": "2024-06-14T00:23:33.105336Z", + "iopub.status.busy": "2024-06-14T00:23:33.104961Z", + "iopub.status.idle": "2024-06-14T00:23:33.976761Z", + "shell.execute_reply": "2024-06-14T00:23:33.976174Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:42.918648Z", - "iopub.status.busy": "2024-06-13T18:28:42.918254Z", - "iopub.status.idle": "2024-06-13T18:28:42.921196Z", - "shell.execute_reply": "2024-06-13T18:28:42.920705Z" + "iopub.execute_input": "2024-06-14T00:23:33.980560Z", + "iopub.status.busy": "2024-06-14T00:23:33.979620Z", + "iopub.status.idle": "2024-06-14T00:23:33.983667Z", + "shell.execute_reply": "2024-06-14T00:23:33.983182Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:42.923540Z", - "iopub.status.busy": "2024-06-13T18:28:42.923156Z", - "iopub.status.idle": "2024-06-13T18:28:44.500944Z", - "shell.execute_reply": "2024-06-13T18:28:44.500333Z" + "iopub.execute_input": "2024-06-14T00:23:33.987150Z", + "iopub.status.busy": "2024-06-14T00:23:33.986223Z", + "iopub.status.idle": "2024-06-14T00:23:35.661805Z", + "shell.execute_reply": "2024-06-14T00:23:35.661023Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.503883Z", - "iopub.status.busy": "2024-06-13T18:28:44.503278Z", - "iopub.status.idle": "2024-06-13T18:28:44.526637Z", - "shell.execute_reply": "2024-06-13T18:28:44.526135Z" + "iopub.execute_input": "2024-06-14T00:23:35.665669Z", + "iopub.status.busy": "2024-06-14T00:23:35.664354Z", + "iopub.status.idle": "2024-06-14T00:23:35.690398Z", + "shell.execute_reply": "2024-06-14T00:23:35.689880Z" }, "scrolled": true }, @@ -671,10 +671,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.529014Z", - "iopub.status.busy": "2024-06-13T18:28:44.528639Z", - "iopub.status.idle": "2024-06-13T18:28:44.538023Z", - "shell.execute_reply": "2024-06-13T18:28:44.537545Z" + "iopub.execute_input": "2024-06-14T00:23:35.694095Z", + "iopub.status.busy": "2024-06-14T00:23:35.693148Z", + "iopub.status.idle": "2024-06-14T00:23:35.704086Z", + "shell.execute_reply": "2024-06-14T00:23:35.703690Z" }, "scrolled": true }, @@ -784,10 +784,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.540397Z", - "iopub.status.busy": "2024-06-13T18:28:44.540007Z", - "iopub.status.idle": "2024-06-13T18:28:44.544432Z", - "shell.execute_reply": "2024-06-13T18:28:44.543936Z" + "iopub.execute_input": "2024-06-14T00:23:35.706901Z", + "iopub.status.busy": "2024-06-14T00:23:35.706172Z", + "iopub.status.idle": "2024-06-14T00:23:35.711108Z", + "shell.execute_reply": "2024-06-14T00:23:35.710686Z" } }, "outputs": [ @@ -825,10 +825,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.546345Z", - "iopub.status.busy": "2024-06-13T18:28:44.546076Z", - "iopub.status.idle": "2024-06-13T18:28:44.552370Z", - "shell.execute_reply": "2024-06-13T18:28:44.551901Z" + "iopub.execute_input": "2024-06-14T00:23:35.713293Z", + "iopub.status.busy": "2024-06-14T00:23:35.712845Z", + "iopub.status.idle": "2024-06-14T00:23:35.719912Z", + "shell.execute_reply": "2024-06-14T00:23:35.719364Z" } }, "outputs": [ @@ -945,10 +945,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.554350Z", - "iopub.status.busy": "2024-06-13T18:28:44.554010Z", - "iopub.status.idle": "2024-06-13T18:28:44.560448Z", - "shell.execute_reply": "2024-06-13T18:28:44.560003Z" + "iopub.execute_input": "2024-06-14T00:23:35.721952Z", + "iopub.status.busy": "2024-06-14T00:23:35.721634Z", + "iopub.status.idle": "2024-06-14T00:23:35.728059Z", + "shell.execute_reply": "2024-06-14T00:23:35.727512Z" } }, "outputs": [ @@ -1031,10 +1031,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.562393Z", - "iopub.status.busy": "2024-06-13T18:28:44.562069Z", - "iopub.status.idle": "2024-06-13T18:28:44.567691Z", - "shell.execute_reply": "2024-06-13T18:28:44.567201Z" + "iopub.execute_input": "2024-06-14T00:23:35.729815Z", + "iopub.status.busy": "2024-06-14T00:23:35.729643Z", + "iopub.status.idle": "2024-06-14T00:23:35.735346Z", + "shell.execute_reply": "2024-06-14T00:23:35.734811Z" } }, "outputs": [ @@ -1142,10 +1142,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.569706Z", - "iopub.status.busy": "2024-06-13T18:28:44.569380Z", - "iopub.status.idle": "2024-06-13T18:28:44.577734Z", - "shell.execute_reply": "2024-06-13T18:28:44.577264Z" + "iopub.execute_input": "2024-06-14T00:23:35.737489Z", + "iopub.status.busy": "2024-06-14T00:23:35.737089Z", + "iopub.status.idle": "2024-06-14T00:23:35.745473Z", + "shell.execute_reply": "2024-06-14T00:23:35.745003Z" } }, "outputs": [ @@ -1256,10 +1256,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.579614Z", - "iopub.status.busy": "2024-06-13T18:28:44.579435Z", - "iopub.status.idle": "2024-06-13T18:28:44.585021Z", - "shell.execute_reply": "2024-06-13T18:28:44.584562Z" + "iopub.execute_input": "2024-06-14T00:23:35.747355Z", + "iopub.status.busy": "2024-06-14T00:23:35.747177Z", + "iopub.status.idle": "2024-06-14T00:23:35.752635Z", + "shell.execute_reply": "2024-06-14T00:23:35.752093Z" } }, "outputs": [ @@ -1327,10 +1327,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.586873Z", - "iopub.status.busy": "2024-06-13T18:28:44.586697Z", - "iopub.status.idle": "2024-06-13T18:28:44.591997Z", - "shell.execute_reply": "2024-06-13T18:28:44.591529Z" + "iopub.execute_input": "2024-06-14T00:23:35.754654Z", + "iopub.status.busy": "2024-06-14T00:23:35.754333Z", + "iopub.status.idle": "2024-06-14T00:23:35.759718Z", + "shell.execute_reply": "2024-06-14T00:23:35.759179Z" } }, "outputs": [ @@ -1409,10 +1409,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.594215Z", - "iopub.status.busy": "2024-06-13T18:28:44.593806Z", - "iopub.status.idle": "2024-06-13T18:28:44.597358Z", - "shell.execute_reply": "2024-06-13T18:28:44.596916Z" + "iopub.execute_input": "2024-06-14T00:23:35.761736Z", + "iopub.status.busy": "2024-06-14T00:23:35.761395Z", + "iopub.status.idle": "2024-06-14T00:23:35.765518Z", + "shell.execute_reply": "2024-06-14T00:23:35.765060Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.599364Z", - "iopub.status.busy": "2024-06-13T18:28:44.599034Z", - "iopub.status.idle": "2024-06-13T18:28:44.604135Z", - "shell.execute_reply": "2024-06-13T18:28:44.603644Z" + "iopub.execute_input": "2024-06-14T00:23:35.767608Z", + "iopub.status.busy": "2024-06-14T00:23:35.767280Z", + "iopub.status.idle": "2024-06-14T00:23:35.772272Z", + "shell.execute_reply": "2024-06-14T00:23:35.771839Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index d4c38ca10..ecf6d2a3e 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:48.810322Z", - "iopub.status.busy": "2024-06-13T18:28:48.810151Z", - "iopub.status.idle": "2024-06-13T18:28:49.236728Z", - "shell.execute_reply": "2024-06-13T18:28:49.236099Z" + "iopub.execute_input": "2024-06-14T00:23:39.101254Z", + "iopub.status.busy": "2024-06-14T00:23:39.101094Z", + "iopub.status.idle": "2024-06-14T00:23:39.529965Z", + "shell.execute_reply": "2024-06-14T00:23:39.529437Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:49.239437Z", - "iopub.status.busy": "2024-06-13T18:28:49.239038Z", - "iopub.status.idle": "2024-06-13T18:28:49.372700Z", - "shell.execute_reply": "2024-06-13T18:28:49.372097Z" + "iopub.execute_input": "2024-06-14T00:23:39.532708Z", + "iopub.status.busy": "2024-06-14T00:23:39.532210Z", + "iopub.status.idle": "2024-06-14T00:23:39.664883Z", + "shell.execute_reply": "2024-06-14T00:23:39.664295Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:49.375327Z", - "iopub.status.busy": "2024-06-13T18:28:49.374790Z", - "iopub.status.idle": "2024-06-13T18:28:49.397811Z", - "shell.execute_reply": "2024-06-13T18:28:49.397191Z" + "iopub.execute_input": "2024-06-14T00:23:39.667286Z", + "iopub.status.busy": "2024-06-14T00:23:39.666882Z", + "iopub.status.idle": "2024-06-14T00:23:39.690237Z", + "shell.execute_reply": "2024-06-14T00:23:39.689633Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:49.400442Z", - "iopub.status.busy": "2024-06-13T18:28:49.399960Z", - "iopub.status.idle": "2024-06-13T18:28:51.887633Z", - "shell.execute_reply": "2024-06-13T18:28:51.886980Z" + "iopub.execute_input": "2024-06-14T00:23:39.693015Z", + "iopub.status.busy": "2024-06-14T00:23:39.692524Z", + "iopub.status.idle": "2024-06-14T00:23:42.216120Z", + "shell.execute_reply": "2024-06-14T00:23:42.215470Z" } }, "outputs": [ @@ -296,7 +296,7 @@ " \n", " 2\n", " outlier\n", - " 0.356959\n", + " 0.356958\n", " 362\n", " \n", " \n", @@ -331,7 +331,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356959 362\n", + "2 outlier 0.356958 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -716,10 +716,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:51.890183Z", - "iopub.status.busy": "2024-06-13T18:28:51.889836Z", - "iopub.status.idle": "2024-06-13T18:29:00.073413Z", - "shell.execute_reply": "2024-06-13T18:29:00.072833Z" + "iopub.execute_input": "2024-06-14T00:23:42.218867Z", + "iopub.status.busy": "2024-06-14T00:23:42.218243Z", + "iopub.status.idle": "2024-06-14T00:23:50.142965Z", + "shell.execute_reply": "2024-06-14T00:23:50.142466Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:00.075634Z", - "iopub.status.busy": "2024-06-13T18:29:00.075287Z", - "iopub.status.idle": "2024-06-13T18:29:00.219063Z", - "shell.execute_reply": "2024-06-13T18:29:00.218570Z" + "iopub.execute_input": "2024-06-14T00:23:50.145182Z", + "iopub.status.busy": "2024-06-14T00:23:50.144839Z", + "iopub.status.idle": "2024-06-14T00:23:50.292667Z", + "shell.execute_reply": "2024-06-14T00:23:50.292143Z" } }, "outputs": [], @@ -854,10 +854,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:00.221604Z", - "iopub.status.busy": "2024-06-13T18:29:00.221192Z", - "iopub.status.idle": "2024-06-13T18:29:01.572354Z", - "shell.execute_reply": "2024-06-13T18:29:01.571758Z" + "iopub.execute_input": "2024-06-14T00:23:50.295277Z", + "iopub.status.busy": "2024-06-14T00:23:50.294923Z", + "iopub.status.idle": "2024-06-14T00:23:51.637178Z", + "shell.execute_reply": "2024-06-14T00:23:51.636624Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:01.574616Z", - "iopub.status.busy": "2024-06-13T18:29:01.574202Z", - "iopub.status.idle": "2024-06-13T18:29:02.418662Z", - "shell.execute_reply": "2024-06-13T18:29:02.418050Z" + "iopub.execute_input": "2024-06-14T00:23:51.639519Z", + "iopub.status.busy": "2024-06-14T00:23:51.639078Z", + "iopub.status.idle": "2024-06-14T00:23:52.521154Z", + "shell.execute_reply": "2024-06-14T00:23:52.520594Z" } }, "outputs": [ @@ -1095,10 +1095,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.421098Z", - "iopub.status.busy": "2024-06-13T18:29:02.420715Z", - "iopub.status.idle": "2024-06-13T18:29:02.430227Z", - "shell.execute_reply": "2024-06-13T18:29:02.429697Z" + "iopub.execute_input": "2024-06-14T00:23:52.523753Z", + "iopub.status.busy": "2024-06-14T00:23:52.523146Z", + "iopub.status.idle": "2024-06-14T00:23:52.532299Z", + "shell.execute_reply": "2024-06-14T00:23:52.531850Z" } }, "outputs": [], @@ -1128,10 +1128,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.432242Z", - "iopub.status.busy": "2024-06-13T18:29:02.432047Z", - "iopub.status.idle": "2024-06-13T18:29:02.464139Z", - "shell.execute_reply": "2024-06-13T18:29:02.463680Z" + "iopub.execute_input": "2024-06-14T00:23:52.534502Z", + "iopub.status.busy": "2024-06-14T00:23:52.534095Z", + "iopub.status.idle": "2024-06-14T00:23:52.555328Z", + "shell.execute_reply": "2024-06-14T00:23:52.554797Z" } }, "outputs": [], @@ -1159,10 +1159,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.466168Z", - "iopub.status.busy": "2024-06-13T18:29:02.465988Z", - "iopub.status.idle": "2024-06-13T18:29:02.662637Z", - "shell.execute_reply": "2024-06-13T18:29:02.662012Z" + "iopub.execute_input": "2024-06-14T00:23:52.557540Z", + "iopub.status.busy": "2024-06-14T00:23:52.557232Z", + "iopub.status.idle": "2024-06-14T00:23:52.777000Z", + "shell.execute_reply": "2024-06-14T00:23:52.776448Z" } }, "outputs": [], @@ -1202,10 +1202,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.665583Z", - "iopub.status.busy": "2024-06-13T18:29:02.665135Z", - "iopub.status.idle": "2024-06-13T18:29:02.683864Z", - "shell.execute_reply": "2024-06-13T18:29:02.683295Z" + "iopub.execute_input": "2024-06-14T00:23:52.779602Z", + "iopub.status.busy": "2024-06-14T00:23:52.779376Z", + "iopub.status.idle": "2024-06-14T00:23:52.800798Z", + "shell.execute_reply": "2024-06-14T00:23:52.800210Z" } }, "outputs": [ @@ -1403,10 +1403,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.686290Z", - "iopub.status.busy": "2024-06-13T18:29:02.685844Z", - "iopub.status.idle": "2024-06-13T18:29:02.831920Z", - "shell.execute_reply": "2024-06-13T18:29:02.831300Z" + "iopub.execute_input": "2024-06-14T00:23:52.803371Z", + "iopub.status.busy": "2024-06-14T00:23:52.802964Z", + "iopub.status.idle": "2024-06-14T00:23:52.971559Z", + "shell.execute_reply": "2024-06-14T00:23:52.971012Z" } }, "outputs": [ @@ -1473,10 +1473,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.834256Z", - "iopub.status.busy": "2024-06-13T18:29:02.834052Z", - "iopub.status.idle": "2024-06-13T18:29:02.845053Z", - "shell.execute_reply": "2024-06-13T18:29:02.844480Z" + "iopub.execute_input": "2024-06-14T00:23:52.973966Z", + "iopub.status.busy": "2024-06-14T00:23:52.973621Z", + "iopub.status.idle": "2024-06-14T00:23:52.983905Z", + "shell.execute_reply": "2024-06-14T00:23:52.983359Z" } }, "outputs": [ @@ -1742,10 +1742,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.847006Z", - "iopub.status.busy": "2024-06-13T18:29:02.846824Z", - "iopub.status.idle": "2024-06-13T18:29:02.856697Z", - "shell.execute_reply": "2024-06-13T18:29:02.856237Z" + "iopub.execute_input": "2024-06-14T00:23:52.985899Z", + "iopub.status.busy": "2024-06-14T00:23:52.985558Z", + "iopub.status.idle": "2024-06-14T00:23:52.994971Z", + "shell.execute_reply": "2024-06-14T00:23:52.994547Z" } }, "outputs": [ @@ -1932,10 +1932,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.858597Z", - "iopub.status.busy": "2024-06-13T18:29:02.858422Z", - "iopub.status.idle": "2024-06-13T18:29:02.885907Z", - "shell.execute_reply": "2024-06-13T18:29:02.885315Z" + "iopub.execute_input": "2024-06-14T00:23:52.996957Z", + "iopub.status.busy": "2024-06-14T00:23:52.996630Z", + "iopub.status.idle": "2024-06-14T00:23:53.036349Z", + "shell.execute_reply": "2024-06-14T00:23:53.035789Z" } }, "outputs": [], @@ -1969,10 +1969,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.888294Z", - "iopub.status.busy": "2024-06-13T18:29:02.888113Z", - "iopub.status.idle": "2024-06-13T18:29:02.890998Z", - "shell.execute_reply": "2024-06-13T18:29:02.890443Z" + "iopub.execute_input": "2024-06-14T00:23:53.038520Z", + "iopub.status.busy": "2024-06-14T00:23:53.038213Z", + "iopub.status.idle": "2024-06-14T00:23:53.040935Z", + "shell.execute_reply": "2024-06-14T00:23:53.040403Z" } }, "outputs": [], @@ -1994,10 +1994,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.892972Z", - "iopub.status.busy": "2024-06-13T18:29:02.892795Z", - "iopub.status.idle": "2024-06-13T18:29:02.912354Z", - "shell.execute_reply": "2024-06-13T18:29:02.911746Z" + "iopub.execute_input": "2024-06-14T00:23:53.043065Z", + "iopub.status.busy": "2024-06-14T00:23:53.042740Z", + "iopub.status.idle": "2024-06-14T00:23:53.061957Z", + "shell.execute_reply": "2024-06-14T00:23:53.061479Z" } }, "outputs": [ @@ -2155,10 +2155,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.914733Z", - "iopub.status.busy": "2024-06-13T18:29:02.914377Z", - "iopub.status.idle": "2024-06-13T18:29:02.918762Z", - "shell.execute_reply": "2024-06-13T18:29:02.918189Z" + "iopub.execute_input": "2024-06-14T00:23:53.063997Z", + "iopub.status.busy": "2024-06-14T00:23:53.063693Z", + "iopub.status.idle": "2024-06-14T00:23:53.067984Z", + "shell.execute_reply": "2024-06-14T00:23:53.067456Z" } }, "outputs": [], @@ -2191,10 +2191,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.920610Z", - "iopub.status.busy": "2024-06-13T18:29:02.920438Z", - "iopub.status.idle": "2024-06-13T18:29:02.948785Z", - "shell.execute_reply": "2024-06-13T18:29:02.948294Z" + "iopub.execute_input": "2024-06-14T00:23:53.070027Z", + "iopub.status.busy": "2024-06-14T00:23:53.069719Z", + "iopub.status.idle": "2024-06-14T00:23:53.097724Z", + "shell.execute_reply": "2024-06-14T00:23:53.097328Z" } }, "outputs": [ @@ -2340,10 +2340,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.951033Z", - "iopub.status.busy": "2024-06-13T18:29:02.950688Z", - "iopub.status.idle": "2024-06-13T18:29:03.320697Z", - "shell.execute_reply": "2024-06-13T18:29:03.320120Z" + "iopub.execute_input": "2024-06-14T00:23:53.099752Z", + "iopub.status.busy": "2024-06-14T00:23:53.099429Z", + "iopub.status.idle": "2024-06-14T00:23:53.471711Z", + "shell.execute_reply": "2024-06-14T00:23:53.471117Z" } }, "outputs": [ @@ -2410,10 +2410,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.322997Z", - "iopub.status.busy": "2024-06-13T18:29:03.322642Z", - "iopub.status.idle": "2024-06-13T18:29:03.325973Z", - "shell.execute_reply": "2024-06-13T18:29:03.325504Z" + "iopub.execute_input": "2024-06-14T00:23:53.473903Z", + "iopub.status.busy": "2024-06-14T00:23:53.473579Z", + "iopub.status.idle": "2024-06-14T00:23:53.476805Z", + "shell.execute_reply": "2024-06-14T00:23:53.476270Z" } }, "outputs": [ @@ -2464,10 +2464,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.328240Z", - "iopub.status.busy": "2024-06-13T18:29:03.327826Z", - "iopub.status.idle": "2024-06-13T18:29:03.341063Z", - "shell.execute_reply": "2024-06-13T18:29:03.340510Z" + "iopub.execute_input": "2024-06-14T00:23:53.478879Z", + "iopub.status.busy": "2024-06-14T00:23:53.478551Z", + "iopub.status.idle": "2024-06-14T00:23:53.491638Z", + "shell.execute_reply": "2024-06-14T00:23:53.491167Z" } }, "outputs": [ @@ -2746,10 +2746,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.343146Z", - "iopub.status.busy": "2024-06-13T18:29:03.342968Z", - "iopub.status.idle": "2024-06-13T18:29:03.356960Z", - "shell.execute_reply": "2024-06-13T18:29:03.356378Z" + "iopub.execute_input": "2024-06-14T00:23:53.493591Z", + "iopub.status.busy": "2024-06-14T00:23:53.493266Z", + "iopub.status.idle": "2024-06-14T00:23:53.506506Z", + "shell.execute_reply": "2024-06-14T00:23:53.506059Z" } }, "outputs": [ @@ -3016,10 +3016,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.359084Z", - "iopub.status.busy": "2024-06-13T18:29:03.358893Z", - "iopub.status.idle": "2024-06-13T18:29:03.368869Z", - "shell.execute_reply": "2024-06-13T18:29:03.368433Z" + "iopub.execute_input": "2024-06-14T00:23:53.508671Z", + "iopub.status.busy": "2024-06-14T00:23:53.508229Z", + "iopub.status.idle": "2024-06-14T00:23:53.518094Z", + "shell.execute_reply": "2024-06-14T00:23:53.517648Z" } }, "outputs": [], @@ -3044,10 +3044,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.370864Z", - "iopub.status.busy": "2024-06-13T18:29:03.370686Z", - "iopub.status.idle": "2024-06-13T18:29:03.380683Z", - "shell.execute_reply": "2024-06-13T18:29:03.380098Z" + "iopub.execute_input": "2024-06-14T00:23:53.520248Z", + "iopub.status.busy": "2024-06-14T00:23:53.519825Z", + "iopub.status.idle": "2024-06-14T00:23:53.529309Z", + "shell.execute_reply": "2024-06-14T00:23:53.528831Z" } }, "outputs": [ @@ -3219,10 +3219,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.382863Z", - "iopub.status.busy": "2024-06-13T18:29:03.382463Z", - "iopub.status.idle": "2024-06-13T18:29:03.386295Z", - "shell.execute_reply": "2024-06-13T18:29:03.385835Z" + "iopub.execute_input": "2024-06-14T00:23:53.531319Z", + "iopub.status.busy": "2024-06-14T00:23:53.531025Z", + "iopub.status.idle": "2024-06-14T00:23:53.534642Z", + "shell.execute_reply": "2024-06-14T00:23:53.534199Z" } }, "outputs": [], @@ -3254,10 +3254,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.388450Z", - "iopub.status.busy": "2024-06-13T18:29:03.388121Z", - "iopub.status.idle": "2024-06-13T18:29:03.441077Z", - "shell.execute_reply": "2024-06-13T18:29:03.440479Z" + "iopub.execute_input": "2024-06-14T00:23:53.536715Z", + "iopub.status.busy": "2024-06-14T00:23:53.536425Z", + "iopub.status.idle": "2024-06-14T00:23:53.587543Z", + "shell.execute_reply": "2024-06-14T00:23:53.586984Z" } }, "outputs": [ @@ -3265,230 +3265,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3564,10 +3564,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.443543Z", - "iopub.status.busy": "2024-06-13T18:29:03.443131Z", - "iopub.status.idle": "2024-06-13T18:29:03.448891Z", - "shell.execute_reply": "2024-06-13T18:29:03.448446Z" + "iopub.execute_input": "2024-06-14T00:23:53.590168Z", + "iopub.status.busy": "2024-06-14T00:23:53.589538Z", + "iopub.status.idle": "2024-06-14T00:23:53.595593Z", + "shell.execute_reply": "2024-06-14T00:23:53.595125Z" } }, "outputs": [], @@ -3606,10 +3606,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.450994Z", - "iopub.status.busy": "2024-06-13T18:29:03.450544Z", - "iopub.status.idle": "2024-06-13T18:29:03.461968Z", - "shell.execute_reply": "2024-06-13T18:29:03.461423Z" + "iopub.execute_input": "2024-06-14T00:23:53.597822Z", + "iopub.status.busy": "2024-06-14T00:23:53.597339Z", + "iopub.status.idle": "2024-06-14T00:23:53.609364Z", + "shell.execute_reply": "2024-06-14T00:23:53.608758Z" } }, "outputs": [ @@ -3645,10 +3645,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.464045Z", - "iopub.status.busy": "2024-06-13T18:29:03.463710Z", - "iopub.status.idle": "2024-06-13T18:29:03.653451Z", - "shell.execute_reply": "2024-06-13T18:29:03.652842Z" + "iopub.execute_input": "2024-06-14T00:23:53.611735Z", + "iopub.status.busy": "2024-06-14T00:23:53.611307Z", + "iopub.status.idle": "2024-06-14T00:23:53.831564Z", + "shell.execute_reply": "2024-06-14T00:23:53.830938Z" } }, "outputs": [ @@ -3700,10 +3700,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.656092Z", - "iopub.status.busy": "2024-06-13T18:29:03.655607Z", - "iopub.status.idle": "2024-06-13T18:29:03.663862Z", - "shell.execute_reply": "2024-06-13T18:29:03.663283Z" + "iopub.execute_input": "2024-06-14T00:23:53.833965Z", + "iopub.status.busy": "2024-06-14T00:23:53.833466Z", + "iopub.status.idle": "2024-06-14T00:23:53.841493Z", + "shell.execute_reply": "2024-06-14T00:23:53.841007Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 5be2c242e..f6cc4f941 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:06.800712Z", - "iopub.status.busy": "2024-06-13T18:29:06.800356Z", - "iopub.status.idle": "2024-06-13T18:29:07.946534Z", - "shell.execute_reply": "2024-06-13T18:29:07.945964Z" + "iopub.execute_input": "2024-06-14T00:23:57.221134Z", + "iopub.status.busy": "2024-06-14T00:23:57.220733Z", + "iopub.status.idle": "2024-06-14T00:23:58.343641Z", + "shell.execute_reply": "2024-06-14T00:23:58.343061Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:07.949273Z", - "iopub.status.busy": "2024-06-13T18:29:07.948725Z", - "iopub.status.idle": "2024-06-13T18:29:07.951733Z", - "shell.execute_reply": "2024-06-13T18:29:07.951263Z" + "iopub.execute_input": "2024-06-14T00:23:58.346240Z", + "iopub.status.busy": "2024-06-14T00:23:58.345974Z", + "iopub.status.idle": "2024-06-14T00:23:58.348707Z", + "shell.execute_reply": "2024-06-14T00:23:58.348271Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:07.954045Z", - "iopub.status.busy": "2024-06-13T18:29:07.953867Z", - "iopub.status.idle": "2024-06-13T18:29:07.966485Z", - "shell.execute_reply": "2024-06-13T18:29:07.966034Z" + "iopub.execute_input": "2024-06-14T00:23:58.351014Z", + "iopub.status.busy": "2024-06-14T00:23:58.350685Z", + "iopub.status.idle": "2024-06-14T00:23:58.362766Z", + "shell.execute_reply": "2024-06-14T00:23:58.362250Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:07.968412Z", - "iopub.status.busy": "2024-06-13T18:29:07.968232Z", - "iopub.status.idle": "2024-06-13T18:29:12.961681Z", - "shell.execute_reply": "2024-06-13T18:29:12.961199Z" + "iopub.execute_input": "2024-06-14T00:23:58.364682Z", + "iopub.status.busy": "2024-06-14T00:23:58.364510Z", + "iopub.status.idle": "2024-06-14T00:24:02.100766Z", + "shell.execute_reply": "2024-06-14T00:24:02.100187Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,13 +694,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 79f1af61e..988506189 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:15.240860Z", - "iopub.status.busy": "2024-06-13T18:29:15.240447Z", - "iopub.status.idle": "2024-06-13T18:29:16.384353Z", - "shell.execute_reply": "2024-06-13T18:29:16.383694Z" + "iopub.execute_input": "2024-06-14T00:24:04.042644Z", + "iopub.status.busy": "2024-06-14T00:24:04.042160Z", + "iopub.status.idle": "2024-06-14T00:24:05.140924Z", + "shell.execute_reply": "2024-06-14T00:24:05.140354Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:16.386968Z", - "iopub.status.busy": "2024-06-13T18:29:16.386668Z", - "iopub.status.idle": "2024-06-13T18:29:16.390133Z", - "shell.execute_reply": "2024-06-13T18:29:16.389583Z" + "iopub.execute_input": "2024-06-14T00:24:05.143834Z", + "iopub.status.busy": "2024-06-14T00:24:05.143380Z", + "iopub.status.idle": "2024-06-14T00:24:05.146605Z", + "shell.execute_reply": "2024-06-14T00:24:05.146154Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:16.392357Z", - "iopub.status.busy": "2024-06-13T18:29:16.391889Z", - "iopub.status.idle": "2024-06-13T18:29:19.468226Z", - "shell.execute_reply": "2024-06-13T18:29:19.467438Z" + "iopub.execute_input": "2024-06-14T00:24:05.148740Z", + "iopub.status.busy": "2024-06-14T00:24:05.148310Z", + "iopub.status.idle": "2024-06-14T00:24:08.089242Z", + "shell.execute_reply": "2024-06-14T00:24:08.088575Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.471268Z", - "iopub.status.busy": "2024-06-13T18:29:19.470698Z", - "iopub.status.idle": "2024-06-13T18:29:19.505916Z", - "shell.execute_reply": "2024-06-13T18:29:19.505316Z" + "iopub.execute_input": "2024-06-14T00:24:08.092480Z", + "iopub.status.busy": "2024-06-14T00:24:08.091803Z", + "iopub.status.idle": "2024-06-14T00:24:08.126229Z", + "shell.execute_reply": "2024-06-14T00:24:08.125476Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.508740Z", - "iopub.status.busy": "2024-06-13T18:29:19.508346Z", - "iopub.status.idle": "2024-06-13T18:29:19.541943Z", - "shell.execute_reply": "2024-06-13T18:29:19.541331Z" + "iopub.execute_input": "2024-06-14T00:24:08.128987Z", + "iopub.status.busy": "2024-06-14T00:24:08.128545Z", + "iopub.status.idle": "2024-06-14T00:24:08.154937Z", + "shell.execute_reply": "2024-06-14T00:24:08.154239Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.544632Z", - "iopub.status.busy": "2024-06-13T18:29:19.544325Z", - "iopub.status.idle": "2024-06-13T18:29:19.547296Z", - "shell.execute_reply": "2024-06-13T18:29:19.546858Z" + "iopub.execute_input": "2024-06-14T00:24:08.157494Z", + "iopub.status.busy": "2024-06-14T00:24:08.157260Z", + "iopub.status.idle": "2024-06-14T00:24:08.160350Z", + "shell.execute_reply": "2024-06-14T00:24:08.159818Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.549339Z", - "iopub.status.busy": "2024-06-13T18:29:19.549012Z", - "iopub.status.idle": "2024-06-13T18:29:19.551527Z", - "shell.execute_reply": "2024-06-13T18:29:19.551099Z" + "iopub.execute_input": "2024-06-14T00:24:08.162410Z", + "iopub.status.busy": "2024-06-14T00:24:08.161992Z", + "iopub.status.idle": "2024-06-14T00:24:08.164611Z", + "shell.execute_reply": "2024-06-14T00:24:08.164162Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.553610Z", - "iopub.status.busy": "2024-06-13T18:29:19.553339Z", - "iopub.status.idle": "2024-06-13T18:29:19.576688Z", - "shell.execute_reply": "2024-06-13T18:29:19.576106Z" + "iopub.execute_input": "2024-06-14T00:24:08.166881Z", + "iopub.status.busy": "2024-06-14T00:24:08.166422Z", + "iopub.status.idle": "2024-06-14T00:24:08.190557Z", + "shell.execute_reply": "2024-06-14T00:24:08.190016Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9ea1e33b89cd4f6d8dea308e197a4ca0", + "model_id": "802031e2f68847f982e3f2b4d625d3ea", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "daaf1aba8aa94491abe37130b32c40fb", + "model_id": "9f8deaf7b18248f793dd47fecf106fa7", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.583103Z", - "iopub.status.busy": "2024-06-13T18:29:19.582789Z", - "iopub.status.idle": "2024-06-13T18:29:19.589377Z", - "shell.execute_reply": "2024-06-13T18:29:19.588822Z" + "iopub.execute_input": "2024-06-14T00:24:08.196532Z", + "iopub.status.busy": "2024-06-14T00:24:08.196238Z", + "iopub.status.idle": "2024-06-14T00:24:08.202633Z", + "shell.execute_reply": "2024-06-14T00:24:08.202212Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.591493Z", - "iopub.status.busy": "2024-06-13T18:29:19.591167Z", - "iopub.status.idle": "2024-06-13T18:29:19.594701Z", - "shell.execute_reply": "2024-06-13T18:29:19.594162Z" + "iopub.execute_input": "2024-06-14T00:24:08.204532Z", + "iopub.status.busy": "2024-06-14T00:24:08.204243Z", + "iopub.status.idle": "2024-06-14T00:24:08.207684Z", + "shell.execute_reply": "2024-06-14T00:24:08.207159Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.596967Z", - "iopub.status.busy": "2024-06-13T18:29:19.596576Z", - "iopub.status.idle": "2024-06-13T18:29:19.602864Z", - "shell.execute_reply": "2024-06-13T18:29:19.602398Z" + "iopub.execute_input": "2024-06-14T00:24:08.209736Z", + "iopub.status.busy": "2024-06-14T00:24:08.209304Z", + "iopub.status.idle": "2024-06-14T00:24:08.215488Z", + "shell.execute_reply": "2024-06-14T00:24:08.215023Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.604843Z", - "iopub.status.busy": "2024-06-13T18:29:19.604513Z", - "iopub.status.idle": "2024-06-13T18:29:19.639897Z", - "shell.execute_reply": "2024-06-13T18:29:19.639310Z" + "iopub.execute_input": "2024-06-14T00:24:08.217432Z", + "iopub.status.busy": "2024-06-14T00:24:08.217126Z", + "iopub.status.idle": "2024-06-14T00:24:08.250652Z", + "shell.execute_reply": "2024-06-14T00:24:08.250057Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.642567Z", - "iopub.status.busy": "2024-06-13T18:29:19.642123Z", - "iopub.status.idle": "2024-06-13T18:29:19.677395Z", - "shell.execute_reply": "2024-06-13T18:29:19.676668Z" + "iopub.execute_input": "2024-06-14T00:24:08.253365Z", + "iopub.status.busy": "2024-06-14T00:24:08.252931Z", + "iopub.status.idle": "2024-06-14T00:24:08.284883Z", + "shell.execute_reply": "2024-06-14T00:24:08.284201Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.680308Z", - "iopub.status.busy": "2024-06-13T18:29:19.680041Z", - "iopub.status.idle": "2024-06-13T18:29:19.803527Z", - "shell.execute_reply": "2024-06-13T18:29:19.802887Z" + "iopub.execute_input": "2024-06-14T00:24:08.287611Z", + "iopub.status.busy": "2024-06-14T00:24:08.287384Z", + "iopub.status.idle": "2024-06-14T00:24:08.408016Z", + "shell.execute_reply": "2024-06-14T00:24:08.407384Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.806340Z", - "iopub.status.busy": "2024-06-13T18:29:19.805600Z", - "iopub.status.idle": "2024-06-13T18:29:22.893170Z", - "shell.execute_reply": "2024-06-13T18:29:22.892601Z" + "iopub.execute_input": "2024-06-14T00:24:08.410681Z", + "iopub.status.busy": "2024-06-14T00:24:08.410113Z", + "iopub.status.idle": "2024-06-14T00:24:11.435259Z", + "shell.execute_reply": "2024-06-14T00:24:11.434597Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:22.895562Z", - "iopub.status.busy": "2024-06-13T18:29:22.895198Z", - "iopub.status.idle": "2024-06-13T18:29:22.952881Z", - "shell.execute_reply": "2024-06-13T18:29:22.952325Z" + "iopub.execute_input": "2024-06-14T00:24:11.437659Z", + "iopub.status.busy": "2024-06-14T00:24:11.437463Z", + "iopub.status.idle": "2024-06-14T00:24:11.498831Z", + "shell.execute_reply": "2024-06-14T00:24:11.498233Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:22.955079Z", - "iopub.status.busy": "2024-06-13T18:29:22.954758Z", - "iopub.status.idle": "2024-06-13T18:29:22.995749Z", - "shell.execute_reply": "2024-06-13T18:29:22.995168Z" + "iopub.execute_input": "2024-06-14T00:24:11.500917Z", + "iopub.status.busy": "2024-06-14T00:24:11.500609Z", + "iopub.status.idle": "2024-06-14T00:24:11.540754Z", + "shell.execute_reply": "2024-06-14T00:24:11.540177Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "222c1687", + "id": "aef058d0", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "af9835c3", + "id": "11cfdf53", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "34ad4f96", + "id": "8498a251", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:22.997999Z", - "iopub.status.busy": "2024-06-13T18:29:22.997601Z", - "iopub.status.idle": "2024-06-13T18:29:23.091957Z", - "shell.execute_reply": "2024-06-13T18:29:23.091429Z" + "iopub.execute_input": "2024-06-14T00:24:11.543023Z", + "iopub.status.busy": "2024-06-14T00:24:11.542702Z", + "iopub.status.idle": "2024-06-14T00:24:11.631026Z", + "shell.execute_reply": "2024-06-14T00:24:11.630502Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "31238303", + "id": "652c9db7", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "8f9f9d9b", + "id": "9f53afbe", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:23.094370Z", - "iopub.status.busy": "2024-06-13T18:29:23.094125Z", - "iopub.status.idle": "2024-06-13T18:29:23.163941Z", - "shell.execute_reply": "2024-06-13T18:29:23.163438Z" + "iopub.execute_input": "2024-06-14T00:24:11.633528Z", + "iopub.status.busy": "2024-06-14T00:24:11.633294Z", + "iopub.status.idle": "2024-06-14T00:24:11.696152Z", + "shell.execute_reply": "2024-06-14T00:24:11.695602Z" } }, "outputs": [ @@ -1438,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "8e350dde", + "id": "2bdcc5cc", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1449,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "dd6a1bb7", + "id": "fc2ad715", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:23.166782Z", - "iopub.status.busy": "2024-06-13T18:29:23.166450Z", - "iopub.status.idle": "2024-06-13T18:29:23.173774Z", - "shell.execute_reply": "2024-06-13T18:29:23.173369Z" + "iopub.execute_input": "2024-06-14T00:24:11.698768Z", + "iopub.status.busy": "2024-06-14T00:24:11.698300Z", + "iopub.status.idle": "2024-06-14T00:24:11.707551Z", + "shell.execute_reply": "2024-06-14T00:24:11.707083Z" } }, "outputs": [], @@ -1557,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "36c30bcc", + "id": "1b38b50f", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1572,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "840bf5e1", + "id": "2d7f570a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:23.175775Z", - "iopub.status.busy": "2024-06-13T18:29:23.175369Z", - "iopub.status.idle": "2024-06-13T18:29:23.193970Z", - "shell.execute_reply": "2024-06-13T18:29:23.193390Z" + "iopub.execute_input": "2024-06-14T00:24:11.709611Z", + "iopub.status.busy": "2024-06-14T00:24:11.709301Z", + "iopub.status.idle": "2024-06-14T00:24:11.727979Z", + "shell.execute_reply": "2024-06-14T00:24:11.727444Z" } }, "outputs": [ @@ -1586,7 +1586,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding near_duplicate issues ...\n", + "Finding near_duplicate issues ..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "\n", "Audit complete. 3 issues found in the dataset.\n" ] @@ -1595,7 +1602,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7918/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7910/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1629,13 +1636,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "7d1a6875", + "id": "9e6db6b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:23.195975Z", - "iopub.status.busy": "2024-06-13T18:29:23.195800Z", - "iopub.status.idle": "2024-06-13T18:29:23.198968Z", - "shell.execute_reply": "2024-06-13T18:29:23.198454Z" + "iopub.execute_input": "2024-06-14T00:24:11.730024Z", + "iopub.status.busy": "2024-06-14T00:24:11.729866Z", + "iopub.status.idle": "2024-06-14T00:24:11.733505Z", + "shell.execute_reply": "2024-06-14T00:24:11.733089Z" } }, "outputs": [ @@ -1730,60 +1737,66 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "005dc0fc26de4e32a6765dc6a6ec9d40": { - "model_module": "@jupyter-widgets/base", + "2106fdb30fac4ad88f1641333e9fb156": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e7758f2d38c432db621bf8579ee92f6", + "placeholder": "​", + "style": "IPY_MODEL_24218dc20a7b46a29e0d3d5792f7a70d", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1661373.68it/s]" + } + }, + "24218dc20a7b46a29e0d3d5792f7a70d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "40fc756d62284274997de8fd4bef1a89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "139b655d93874856bf86a00efd4ddfd0": { + "410455c05835405eb00db806e4798ef9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1836,7 +1849,23 @@ "width": null } }, - "26e3efb335f94029a8a0942d3f14ab77": { + "46f040889d8c4d91a5770aa907ce3c4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4e3966e206e342f49153565cf397c2af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1889,46 +1918,7 @@ "width": null } }, - "3080c4b358ac4f56bc5ada9868be7dfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_005dc0fc26de4e32a6765dc6a6ec9d40", - "placeholder": "​", - "style": "IPY_MODEL_52ba4c088b91429096dcf08b713b1041", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1572431.58it/s]" - } - }, - "42ef4fd6ad144b85982db28a3744a67b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "52ba4c088b91429096dcf08b713b1041": { + "4e43e54457d44d16b7012febae0ec625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1946,23 +1936,7 @@ "text_color": null } }, - "53bddd624ef94ffc998a6b56ce26802e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "56037d09ff294f7da99541c1d9995c7c": { + "5a4311cd34324b2ab825d22429f65fab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2015,7 +1989,7 @@ "width": null } }, - "62b72d6fc05a4a188177f4611a122257": { + "7cd55b0cd5184fd295ca5442d000f65b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2068,92 +2042,7 @@ "width": null } }, - "68d1f7cfc0ee4f8bb5d23d935af368bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7d513cafe9a7477baffc476380f7f3ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_139b655d93874856bf86a00efd4ddfd0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42ef4fd6ad144b85982db28a3744a67b", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "8b241bab36c4416fbf031eed934c99e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b1d33a0bfce94c76923032f9e851fa71", - "placeholder": "​", - "style": "IPY_MODEL_68d1f7cfc0ee4f8bb5d23d935af368bb", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1135713.63it/s]" - } - }, - "98d642600edf4f07885e1cf46096e201": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9ea1e33b89cd4f6d8dea308e197a4ca0": { + "802031e2f68847f982e3f2b4d625d3ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2168,16 +2057,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_acaa08d7cc964e36b6d60ecd5b053e92", - "IPY_MODEL_ef6ceebf7ddd4c43a0660c06d35de1e3", - "IPY_MODEL_8b241bab36c4416fbf031eed934c99e3" + "IPY_MODEL_99116c9a10164fe38bb939608f05f279", + "IPY_MODEL_d94d2e86792e4ea4a46e165e167ea3fd", + "IPY_MODEL_b851827878cc47a8b469a14afd6273aa" ], - "layout": "IPY_MODEL_62b72d6fc05a4a188177f4611a122257", + "layout": "IPY_MODEL_ffa7179852944715b693e86ee15ed2aa", "tabbable": null, "tooltip": null } }, - "a8b6e03e08964cf688e5cbe291bb78ee": { + "89176b0677b54ad5a5e2d068211279d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2230,30 +2119,25 @@ "width": null } }, - "acaa08d7cc964e36b6d60ecd5b053e92": { + "8dbb43a4a64c4dbaaf119413f3ac8539": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e9b9667e29b84609a0b7317179d17472", - "placeholder": "​", - "style": "IPY_MODEL_98d642600edf4f07885e1cf46096e201", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b1d33a0bfce94c76923032f9e851fa71": { + "8e7758f2d38c432db621bf8579ee92f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2306,7 +2190,7 @@ "width": null } }, - "c64eb8d0b2944d8ca26f2e5a40cc021d": { + "99116c9a10164fe38bb939608f05f279": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2321,15 +2205,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_26e3efb335f94029a8a0942d3f14ab77", + "layout": "IPY_MODEL_b0171109241c4a32be48a99db42e1afb", "placeholder": "​", - "style": "IPY_MODEL_f8a72a5f66e844c085dfc455bde9fcdd", + "style": "IPY_MODEL_40fc756d62284274997de8fd4bef1a89", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": "number of examples processed for estimating thresholds: " } }, - "daaf1aba8aa94491abe37130b32c40fb": { + "9f8deaf7b18248f793dd47fecf106fa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2344,16 +2228,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c64eb8d0b2944d8ca26f2e5a40cc021d", - "IPY_MODEL_7d513cafe9a7477baffc476380f7f3ba", - "IPY_MODEL_3080c4b358ac4f56bc5ada9868be7dfd" + "IPY_MODEL_b990ab240fd14a62ae5e45ae13fdb8f7", + "IPY_MODEL_d20d92ba03694e74b75198bfeb43258b", + "IPY_MODEL_2106fdb30fac4ad88f1641333e9fb156" ], - "layout": "IPY_MODEL_a8b6e03e08964cf688e5cbe291bb78ee", + "layout": "IPY_MODEL_4e3966e206e342f49153565cf397c2af", "tabbable": null, "tooltip": null } }, - "e9b9667e29b84609a0b7317179d17472": { + "b0171109241c4a32be48a99db42e1afb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2406,7 +2290,69 @@ "width": null } }, - "ef6ceebf7ddd4c43a0660c06d35de1e3": { + "b19a3ba716d74930b77aecfe99f64f71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b851827878cc47a8b469a14afd6273aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_410455c05835405eb00db806e4798ef9", + "placeholder": "​", + "style": "IPY_MODEL_4e43e54457d44d16b7012febae0ec625", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1075186.88it/s]" + } + }, + "b990ab240fd14a62ae5e45ae13fdb8f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7cd55b0cd5184fd295ca5442d000f65b", + "placeholder": "​", + "style": "IPY_MODEL_8dbb43a4a64c4dbaaf119413f3ac8539", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "d20d92ba03694e74b75198bfeb43258b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2422,32 +2368,93 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_56037d09ff294f7da99541c1d9995c7c", + "layout": "IPY_MODEL_89176b0677b54ad5a5e2d068211279d4", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_53bddd624ef94ffc998a6b56ce26802e", + "style": "IPY_MODEL_46f040889d8c4d91a5770aa907ce3c4e", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "f8a72a5f66e844c085dfc455bde9fcdd": { + "d94d2e86792e4ea4a46e165e167ea3fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a4311cd34324b2ab825d22429f65fab", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b19a3ba716d74930b77aecfe99f64f71", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "ffa7179852944715b693e86ee15ed2aa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index fdca46287..edb54b671 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:26.583346Z", - "iopub.status.busy": "2024-06-13T18:29:26.583186Z", - "iopub.status.idle": "2024-06-13T18:29:27.799421Z", - "shell.execute_reply": "2024-06-13T18:29:27.798861Z" + "iopub.execute_input": "2024-06-14T00:24:14.913783Z", + "iopub.status.busy": "2024-06-14T00:24:14.913593Z", + "iopub.status.idle": "2024-06-14T00:24:16.060176Z", + "shell.execute_reply": "2024-06-14T00:24:16.059552Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:27.802016Z", - "iopub.status.busy": "2024-06-13T18:29:27.801573Z", - "iopub.status.idle": "2024-06-13T18:29:27.987860Z", - "shell.execute_reply": "2024-06-13T18:29:27.987333Z" + "iopub.execute_input": "2024-06-14T00:24:16.063049Z", + "iopub.status.busy": "2024-06-14T00:24:16.062554Z", + "iopub.status.idle": "2024-06-14T00:24:16.237307Z", + "shell.execute_reply": "2024-06-14T00:24:16.236743Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:27.990464Z", - "iopub.status.busy": "2024-06-13T18:29:27.990259Z", - "iopub.status.idle": "2024-06-13T18:29:28.002483Z", - "shell.execute_reply": "2024-06-13T18:29:28.001900Z" + "iopub.execute_input": "2024-06-14T00:24:16.239715Z", + "iopub.status.busy": "2024-06-14T00:24:16.239530Z", + "iopub.status.idle": "2024-06-14T00:24:16.250660Z", + "shell.execute_reply": "2024-06-14T00:24:16.250226Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:28.004651Z", - "iopub.status.busy": "2024-06-13T18:29:28.004455Z", - "iopub.status.idle": "2024-06-13T18:29:28.238936Z", - "shell.execute_reply": "2024-06-13T18:29:28.238326Z" + "iopub.execute_input": "2024-06-14T00:24:16.252750Z", + "iopub.status.busy": "2024-06-14T00:24:16.252355Z", + "iopub.status.idle": "2024-06-14T00:24:16.483083Z", + "shell.execute_reply": "2024-06-14T00:24:16.482509Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:28.241479Z", - "iopub.status.busy": "2024-06-13T18:29:28.241068Z", - "iopub.status.idle": "2024-06-13T18:29:28.267639Z", - "shell.execute_reply": "2024-06-13T18:29:28.267172Z" + "iopub.execute_input": "2024-06-14T00:24:16.485402Z", + "iopub.status.busy": "2024-06-14T00:24:16.485062Z", + "iopub.status.idle": "2024-06-14T00:24:16.510364Z", + "shell.execute_reply": "2024-06-14T00:24:16.509918Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:28.269780Z", - "iopub.status.busy": "2024-06-13T18:29:28.269594Z", - "iopub.status.idle": "2024-06-13T18:29:29.991902Z", - "shell.execute_reply": "2024-06-13T18:29:29.991276Z" + "iopub.execute_input": "2024-06-14T00:24:16.512321Z", + "iopub.status.busy": "2024-06-14T00:24:16.512139Z", + "iopub.status.idle": "2024-06-14T00:24:18.143922Z", + "shell.execute_reply": "2024-06-14T00:24:18.143221Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:29.994563Z", - "iopub.status.busy": "2024-06-13T18:29:29.993949Z", - "iopub.status.idle": "2024-06-13T18:29:30.012281Z", - "shell.execute_reply": "2024-06-13T18:29:30.011691Z" + "iopub.execute_input": "2024-06-14T00:24:18.146275Z", + "iopub.status.busy": "2024-06-14T00:24:18.145923Z", + "iopub.status.idle": "2024-06-14T00:24:18.164339Z", + "shell.execute_reply": "2024-06-14T00:24:18.163802Z" }, "scrolled": true }, @@ -616,10 +616,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:30.014412Z", - "iopub.status.busy": "2024-06-13T18:29:30.014089Z", - "iopub.status.idle": "2024-06-13T18:29:31.447124Z", - "shell.execute_reply": "2024-06-13T18:29:31.446533Z" + "iopub.execute_input": "2024-06-14T00:24:18.166470Z", + "iopub.status.busy": "2024-06-14T00:24:18.166105Z", + "iopub.status.idle": "2024-06-14T00:24:19.544814Z", + "shell.execute_reply": "2024-06-14T00:24:19.544251Z" }, "id": "AaHC5MRKjruT" }, @@ -738,10 +738,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.450003Z", - "iopub.status.busy": "2024-06-13T18:29:31.449223Z", - "iopub.status.idle": "2024-06-13T18:29:31.462850Z", - "shell.execute_reply": "2024-06-13T18:29:31.462310Z" + "iopub.execute_input": "2024-06-14T00:24:19.547672Z", + "iopub.status.busy": "2024-06-14T00:24:19.546992Z", + "iopub.status.idle": "2024-06-14T00:24:19.560873Z", + "shell.execute_reply": "2024-06-14T00:24:19.560426Z" }, "id": "Wy27rvyhjruU" }, @@ -790,10 +790,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.464980Z", - "iopub.status.busy": "2024-06-13T18:29:31.464592Z", - "iopub.status.idle": "2024-06-13T18:29:31.539196Z", - "shell.execute_reply": "2024-06-13T18:29:31.538572Z" + "iopub.execute_input": "2024-06-14T00:24:19.562878Z", + "iopub.status.busy": "2024-06-14T00:24:19.562570Z", + "iopub.status.idle": "2024-06-14T00:24:19.634911Z", + "shell.execute_reply": "2024-06-14T00:24:19.634312Z" }, "id": "Db8YHnyVjruU" }, @@ -900,10 +900,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.541665Z", - "iopub.status.busy": "2024-06-13T18:29:31.541248Z", - "iopub.status.idle": "2024-06-13T18:29:31.759710Z", - "shell.execute_reply": "2024-06-13T18:29:31.759127Z" + "iopub.execute_input": "2024-06-14T00:24:19.637109Z", + "iopub.status.busy": "2024-06-14T00:24:19.636886Z", + "iopub.status.idle": "2024-06-14T00:24:19.851572Z", + "shell.execute_reply": "2024-06-14T00:24:19.850982Z" }, "id": "iJqAHuS2jruV" }, @@ -940,10 +940,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.762168Z", - "iopub.status.busy": "2024-06-13T18:29:31.761733Z", - "iopub.status.idle": "2024-06-13T18:29:31.779276Z", - "shell.execute_reply": "2024-06-13T18:29:31.778808Z" + "iopub.execute_input": "2024-06-14T00:24:19.853932Z", + "iopub.status.busy": "2024-06-14T00:24:19.853552Z", + "iopub.status.idle": "2024-06-14T00:24:19.870366Z", + "shell.execute_reply": "2024-06-14T00:24:19.869819Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1409,10 +1409,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.781534Z", - "iopub.status.busy": "2024-06-13T18:29:31.781200Z", - "iopub.status.idle": "2024-06-13T18:29:31.791084Z", - "shell.execute_reply": "2024-06-13T18:29:31.790627Z" + "iopub.execute_input": "2024-06-14T00:24:19.872346Z", + "iopub.status.busy": "2024-06-14T00:24:19.872158Z", + "iopub.status.idle": "2024-06-14T00:24:19.882186Z", + "shell.execute_reply": "2024-06-14T00:24:19.881756Z" }, "id": "0lonvOYvjruV" }, @@ -1559,10 +1559,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.793371Z", - "iopub.status.busy": "2024-06-13T18:29:31.793029Z", - "iopub.status.idle": "2024-06-13T18:29:31.884168Z", - "shell.execute_reply": "2024-06-13T18:29:31.883487Z" + "iopub.execute_input": "2024-06-14T00:24:19.884142Z", + "iopub.status.busy": "2024-06-14T00:24:19.883968Z", + "iopub.status.idle": "2024-06-14T00:24:19.968121Z", + "shell.execute_reply": "2024-06-14T00:24:19.967535Z" }, "id": "MfqTCa3kjruV" }, @@ -1643,10 +1643,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.887306Z", - "iopub.status.busy": "2024-06-13T18:29:31.886795Z", - "iopub.status.idle": "2024-06-13T18:29:32.023092Z", - "shell.execute_reply": "2024-06-13T18:29:32.022452Z" + "iopub.execute_input": "2024-06-14T00:24:19.970470Z", + "iopub.status.busy": "2024-06-14T00:24:19.970219Z", + "iopub.status.idle": "2024-06-14T00:24:20.097080Z", + "shell.execute_reply": "2024-06-14T00:24:20.096456Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1706,10 +1706,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.025855Z", - "iopub.status.busy": "2024-06-13T18:29:32.025393Z", - "iopub.status.idle": "2024-06-13T18:29:32.029435Z", - "shell.execute_reply": "2024-06-13T18:29:32.028972Z" + "iopub.execute_input": "2024-06-14T00:24:20.099419Z", + "iopub.status.busy": "2024-06-14T00:24:20.099188Z", + "iopub.status.idle": "2024-06-14T00:24:20.103298Z", + "shell.execute_reply": "2024-06-14T00:24:20.102846Z" }, "id": "0rXP3ZPWjruW" }, @@ -1747,10 +1747,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.031432Z", - "iopub.status.busy": "2024-06-13T18:29:32.031109Z", - "iopub.status.idle": "2024-06-13T18:29:32.034987Z", - "shell.execute_reply": "2024-06-13T18:29:32.034529Z" + "iopub.execute_input": "2024-06-14T00:24:20.105262Z", + "iopub.status.busy": "2024-06-14T00:24:20.104942Z", + "iopub.status.idle": "2024-06-14T00:24:20.108769Z", + "shell.execute_reply": "2024-06-14T00:24:20.108327Z" }, "id": "-iRPe8KXjruW" }, @@ -1805,10 +1805,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.037039Z", - "iopub.status.busy": "2024-06-13T18:29:32.036740Z", - "iopub.status.idle": "2024-06-13T18:29:32.074964Z", - "shell.execute_reply": "2024-06-13T18:29:32.074379Z" + "iopub.execute_input": "2024-06-14T00:24:20.111058Z", + "iopub.status.busy": "2024-06-14T00:24:20.110546Z", + "iopub.status.idle": "2024-06-14T00:24:20.146626Z", + "shell.execute_reply": "2024-06-14T00:24:20.146097Z" }, "id": "ZpipUliyjruW" }, @@ -1859,10 +1859,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.077222Z", - "iopub.status.busy": "2024-06-13T18:29:32.076899Z", - "iopub.status.idle": "2024-06-13T18:29:32.120372Z", - "shell.execute_reply": "2024-06-13T18:29:32.119753Z" + "iopub.execute_input": "2024-06-14T00:24:20.148596Z", + "iopub.status.busy": "2024-06-14T00:24:20.148309Z", + "iopub.status.idle": "2024-06-14T00:24:20.189307Z", + "shell.execute_reply": "2024-06-14T00:24:20.188773Z" }, "id": "SLq-3q4xjruX" }, @@ -1931,10 +1931,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.122579Z", - "iopub.status.busy": "2024-06-13T18:29:32.122257Z", - "iopub.status.idle": "2024-06-13T18:29:32.216827Z", - "shell.execute_reply": "2024-06-13T18:29:32.216212Z" + "iopub.execute_input": "2024-06-14T00:24:20.191360Z", + "iopub.status.busy": "2024-06-14T00:24:20.190967Z", + "iopub.status.idle": "2024-06-14T00:24:20.281050Z", + "shell.execute_reply": "2024-06-14T00:24:20.280364Z" }, "id": "g5LHhhuqFbXK" }, @@ -1966,10 +1966,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.219365Z", - "iopub.status.busy": "2024-06-13T18:29:32.219137Z", - "iopub.status.idle": "2024-06-13T18:29:32.310700Z", - "shell.execute_reply": "2024-06-13T18:29:32.310066Z" + "iopub.execute_input": "2024-06-14T00:24:20.284046Z", + "iopub.status.busy": "2024-06-14T00:24:20.283583Z", + "iopub.status.idle": "2024-06-14T00:24:20.370452Z", + "shell.execute_reply": "2024-06-14T00:24:20.369905Z" }, "id": "p7w8F8ezBcet" }, @@ -2026,10 +2026,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.313017Z", - "iopub.status.busy": "2024-06-13T18:29:32.312788Z", - "iopub.status.idle": "2024-06-13T18:29:32.525519Z", - "shell.execute_reply": "2024-06-13T18:29:32.524922Z" + "iopub.execute_input": "2024-06-14T00:24:20.372673Z", + "iopub.status.busy": "2024-06-14T00:24:20.372432Z", + "iopub.status.idle": "2024-06-14T00:24:20.580106Z", + "shell.execute_reply": "2024-06-14T00:24:20.579505Z" }, "id": "WETRL74tE_sU" }, @@ -2064,10 +2064,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.527951Z", - "iopub.status.busy": "2024-06-13T18:29:32.527502Z", - "iopub.status.idle": "2024-06-13T18:29:32.718210Z", - "shell.execute_reply": "2024-06-13T18:29:32.717679Z" + "iopub.execute_input": "2024-06-14T00:24:20.582345Z", + "iopub.status.busy": "2024-06-14T00:24:20.582162Z", + "iopub.status.idle": "2024-06-14T00:24:20.747639Z", + "shell.execute_reply": "2024-06-14T00:24:20.747115Z" }, "id": "kCfdx2gOLmXS" }, @@ -2229,10 +2229,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.720527Z", - "iopub.status.busy": "2024-06-13T18:29:32.720331Z", - "iopub.status.idle": "2024-06-13T18:29:32.726515Z", - "shell.execute_reply": "2024-06-13T18:29:32.726001Z" + "iopub.execute_input": "2024-06-14T00:24:20.750179Z", + "iopub.status.busy": "2024-06-14T00:24:20.749657Z", + "iopub.status.idle": "2024-06-14T00:24:20.755778Z", + "shell.execute_reply": "2024-06-14T00:24:20.755358Z" }, "id": "-uogYRWFYnuu" }, @@ -2286,10 +2286,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.728479Z", - "iopub.status.busy": "2024-06-13T18:29:32.728207Z", - "iopub.status.idle": "2024-06-13T18:29:32.950162Z", - "shell.execute_reply": "2024-06-13T18:29:32.949566Z" + "iopub.execute_input": "2024-06-14T00:24:20.757634Z", + "iopub.status.busy": "2024-06-14T00:24:20.757463Z", + "iopub.status.idle": "2024-06-14T00:24:20.968491Z", + "shell.execute_reply": "2024-06-14T00:24:20.967921Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2336,10 +2336,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.952512Z", - "iopub.status.busy": "2024-06-13T18:29:32.952145Z", - "iopub.status.idle": "2024-06-13T18:29:34.030294Z", - "shell.execute_reply": "2024-06-13T18:29:34.029656Z" + "iopub.execute_input": "2024-06-14T00:24:20.970563Z", + "iopub.status.busy": "2024-06-14T00:24:20.970384Z", + "iopub.status.idle": "2024-06-14T00:24:22.020206Z", + "shell.execute_reply": "2024-06-14T00:24:22.019659Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 7fb9d8ac9..077fe02d8 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:37.440969Z", - "iopub.status.busy": "2024-06-13T18:29:37.440789Z", - "iopub.status.idle": "2024-06-13T18:29:38.583138Z", - "shell.execute_reply": "2024-06-13T18:29:38.582576Z" + "iopub.execute_input": "2024-06-14T00:24:25.221902Z", + "iopub.status.busy": "2024-06-14T00:24:25.221698Z", + "iopub.status.idle": "2024-06-14T00:24:26.321602Z", + "shell.execute_reply": "2024-06-14T00:24:26.321030Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.586001Z", - "iopub.status.busy": "2024-06-13T18:29:38.585518Z", - "iopub.status.idle": "2024-06-13T18:29:38.588557Z", - "shell.execute_reply": "2024-06-13T18:29:38.588111Z" + "iopub.execute_input": "2024-06-14T00:24:26.324196Z", + "iopub.status.busy": "2024-06-14T00:24:26.323765Z", + "iopub.status.idle": "2024-06-14T00:24:26.326860Z", + "shell.execute_reply": "2024-06-14T00:24:26.326406Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.590790Z", - "iopub.status.busy": "2024-06-13T18:29:38.590429Z", - "iopub.status.idle": "2024-06-13T18:29:38.599298Z", - "shell.execute_reply": "2024-06-13T18:29:38.598749Z" + "iopub.execute_input": "2024-06-14T00:24:26.328965Z", + "iopub.status.busy": "2024-06-14T00:24:26.328651Z", + "iopub.status.idle": "2024-06-14T00:24:26.337167Z", + "shell.execute_reply": "2024-06-14T00:24:26.336716Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.601562Z", - "iopub.status.busy": "2024-06-13T18:29:38.601178Z", - "iopub.status.idle": "2024-06-13T18:29:38.648831Z", - "shell.execute_reply": "2024-06-13T18:29:38.648343Z" + "iopub.execute_input": "2024-06-14T00:24:26.339164Z", + "iopub.status.busy": "2024-06-14T00:24:26.338837Z", + "iopub.status.idle": "2024-06-14T00:24:26.386371Z", + "shell.execute_reply": "2024-06-14T00:24:26.385928Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.651142Z", - "iopub.status.busy": "2024-06-13T18:29:38.650814Z", - "iopub.status.idle": "2024-06-13T18:29:38.667918Z", - "shell.execute_reply": "2024-06-13T18:29:38.667401Z" + "iopub.execute_input": "2024-06-14T00:24:26.388438Z", + "iopub.status.busy": "2024-06-14T00:24:26.388124Z", + "iopub.status.idle": "2024-06-14T00:24:26.404738Z", + "shell.execute_reply": "2024-06-14T00:24:26.404301Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.670098Z", - "iopub.status.busy": "2024-06-13T18:29:38.669693Z", - "iopub.status.idle": "2024-06-13T18:29:38.673640Z", - "shell.execute_reply": "2024-06-13T18:29:38.673117Z" + "iopub.execute_input": "2024-06-14T00:24:26.406834Z", + "iopub.status.busy": "2024-06-14T00:24:26.406420Z", + "iopub.status.idle": "2024-06-14T00:24:26.410296Z", + "shell.execute_reply": "2024-06-14T00:24:26.409736Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.675829Z", - "iopub.status.busy": "2024-06-13T18:29:38.675455Z", - "iopub.status.idle": "2024-06-13T18:29:38.691653Z", - "shell.execute_reply": "2024-06-13T18:29:38.691239Z" + "iopub.execute_input": "2024-06-14T00:24:26.412382Z", + "iopub.status.busy": "2024-06-14T00:24:26.412004Z", + "iopub.status.idle": "2024-06-14T00:24:26.428471Z", + "shell.execute_reply": "2024-06-14T00:24:26.427924Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.693720Z", - "iopub.status.busy": "2024-06-13T18:29:38.693384Z", - "iopub.status.idle": "2024-06-13T18:29:38.719476Z", - "shell.execute_reply": "2024-06-13T18:29:38.719048Z" + "iopub.execute_input": "2024-06-14T00:24:26.430731Z", + "iopub.status.busy": "2024-06-14T00:24:26.430422Z", + "iopub.status.idle": "2024-06-14T00:24:26.456532Z", + "shell.execute_reply": "2024-06-14T00:24:26.455950Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.721617Z", - "iopub.status.busy": "2024-06-13T18:29:38.721313Z", - "iopub.status.idle": "2024-06-13T18:29:40.457892Z", - "shell.execute_reply": "2024-06-13T18:29:40.457312Z" + "iopub.execute_input": "2024-06-14T00:24:26.458938Z", + "iopub.status.busy": "2024-06-14T00:24:26.458515Z", + "iopub.status.idle": "2024-06-14T00:24:28.160613Z", + "shell.execute_reply": "2024-06-14T00:24:28.160037Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.460638Z", - "iopub.status.busy": "2024-06-13T18:29:40.460275Z", - "iopub.status.idle": "2024-06-13T18:29:40.467215Z", - "shell.execute_reply": "2024-06-13T18:29:40.466652Z" + "iopub.execute_input": "2024-06-14T00:24:28.163228Z", + "iopub.status.busy": "2024-06-14T00:24:28.162806Z", + "iopub.status.idle": "2024-06-14T00:24:28.169617Z", + "shell.execute_reply": "2024-06-14T00:24:28.169169Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.469359Z", - "iopub.status.busy": "2024-06-13T18:29:40.468940Z", - "iopub.status.idle": "2024-06-13T18:29:40.481697Z", - "shell.execute_reply": "2024-06-13T18:29:40.481155Z" + "iopub.execute_input": "2024-06-14T00:24:28.171637Z", + "iopub.status.busy": "2024-06-14T00:24:28.171308Z", + "iopub.status.idle": "2024-06-14T00:24:28.186169Z", + "shell.execute_reply": "2024-06-14T00:24:28.185646Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.483723Z", - "iopub.status.busy": "2024-06-13T18:29:40.483428Z", - "iopub.status.idle": "2024-06-13T18:29:40.489774Z", - "shell.execute_reply": "2024-06-13T18:29:40.489244Z" + "iopub.execute_input": "2024-06-14T00:24:28.188280Z", + "iopub.status.busy": "2024-06-14T00:24:28.187947Z", + "iopub.status.idle": "2024-06-14T00:24:28.194454Z", + "shell.execute_reply": "2024-06-14T00:24:28.194008Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.491908Z", - "iopub.status.busy": "2024-06-13T18:29:40.491444Z", - "iopub.status.idle": "2024-06-13T18:29:40.494277Z", - "shell.execute_reply": "2024-06-13T18:29:40.493737Z" + "iopub.execute_input": "2024-06-14T00:24:28.196460Z", + "iopub.status.busy": "2024-06-14T00:24:28.196134Z", + "iopub.status.idle": "2024-06-14T00:24:28.198862Z", + "shell.execute_reply": "2024-06-14T00:24:28.198307Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.496405Z", - "iopub.status.busy": "2024-06-13T18:29:40.496103Z", - "iopub.status.idle": "2024-06-13T18:29:40.499473Z", - "shell.execute_reply": "2024-06-13T18:29:40.499015Z" + "iopub.execute_input": "2024-06-14T00:24:28.200773Z", + "iopub.status.busy": "2024-06-14T00:24:28.200484Z", + "iopub.status.idle": "2024-06-14T00:24:28.203853Z", + "shell.execute_reply": "2024-06-14T00:24:28.203396Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.501505Z", - "iopub.status.busy": "2024-06-13T18:29:40.501194Z", - "iopub.status.idle": "2024-06-13T18:29:40.504037Z", - "shell.execute_reply": "2024-06-13T18:29:40.503482Z" + "iopub.execute_input": "2024-06-14T00:24:28.205784Z", + "iopub.status.busy": "2024-06-14T00:24:28.205598Z", + "iopub.status.idle": "2024-06-14T00:24:28.208116Z", + "shell.execute_reply": "2024-06-14T00:24:28.207697Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.506034Z", - "iopub.status.busy": "2024-06-13T18:29:40.505665Z", - "iopub.status.idle": "2024-06-13T18:29:40.509706Z", - "shell.execute_reply": "2024-06-13T18:29:40.509175Z" + "iopub.execute_input": "2024-06-14T00:24:28.210158Z", + "iopub.status.busy": "2024-06-14T00:24:28.209843Z", + "iopub.status.idle": "2024-06-14T00:24:28.214216Z", + "shell.execute_reply": "2024-06-14T00:24:28.213649Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.511847Z", - "iopub.status.busy": "2024-06-13T18:29:40.511430Z", - "iopub.status.idle": "2024-06-13T18:29:40.540453Z", - "shell.execute_reply": "2024-06-13T18:29:40.539863Z" + "iopub.execute_input": "2024-06-14T00:24:28.216084Z", + "iopub.status.busy": "2024-06-14T00:24:28.215916Z", + "iopub.status.idle": "2024-06-14T00:24:28.244437Z", + "shell.execute_reply": "2024-06-14T00:24:28.243987Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.542620Z", - "iopub.status.busy": "2024-06-13T18:29:40.542301Z", - "iopub.status.idle": "2024-06-13T18:29:40.547020Z", - "shell.execute_reply": "2024-06-13T18:29:40.546583Z" + "iopub.execute_input": "2024-06-14T00:24:28.246368Z", + "iopub.status.busy": "2024-06-14T00:24:28.246198Z", + "iopub.status.idle": "2024-06-14T00:24:28.250854Z", + "shell.execute_reply": "2024-06-14T00:24:28.250420Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 09252aea4..e64e7dec9 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:43.353643Z", - "iopub.status.busy": "2024-06-13T18:29:43.353286Z", - "iopub.status.idle": "2024-06-13T18:29:44.574294Z", - "shell.execute_reply": "2024-06-13T18:29:44.573664Z" + "iopub.execute_input": "2024-06-14T00:24:30.897477Z", + "iopub.status.busy": "2024-06-14T00:24:30.897010Z", + "iopub.status.idle": "2024-06-14T00:24:32.028085Z", + "shell.execute_reply": "2024-06-14T00:24:32.027537Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:44.577545Z", - "iopub.status.busy": "2024-06-13T18:29:44.577130Z", - "iopub.status.idle": "2024-06-13T18:29:44.777115Z", - "shell.execute_reply": "2024-06-13T18:29:44.776474Z" + "iopub.execute_input": "2024-06-14T00:24:32.030698Z", + "iopub.status.busy": "2024-06-14T00:24:32.030295Z", + "iopub.status.idle": "2024-06-14T00:24:32.223090Z", + "shell.execute_reply": "2024-06-14T00:24:32.222439Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:44.780047Z", - "iopub.status.busy": "2024-06-13T18:29:44.779543Z", - "iopub.status.idle": "2024-06-13T18:29:44.793466Z", - "shell.execute_reply": "2024-06-13T18:29:44.792882Z" + "iopub.execute_input": "2024-06-14T00:24:32.226031Z", + "iopub.status.busy": "2024-06-14T00:24:32.225498Z", + "iopub.status.idle": "2024-06-14T00:24:32.238493Z", + "shell.execute_reply": "2024-06-14T00:24:32.238034Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:44.795632Z", - "iopub.status.busy": "2024-06-13T18:29:44.795302Z", - "iopub.status.idle": "2024-06-13T18:29:47.483288Z", - "shell.execute_reply": "2024-06-13T18:29:47.482762Z" + "iopub.execute_input": "2024-06-14T00:24:32.240446Z", + "iopub.status.busy": "2024-06-14T00:24:32.240264Z", + "iopub.status.idle": "2024-06-14T00:24:34.858596Z", + "shell.execute_reply": "2024-06-14T00:24:34.858092Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:47.485692Z", - "iopub.status.busy": "2024-06-13T18:29:47.485238Z", - "iopub.status.idle": "2024-06-13T18:29:48.839646Z", - "shell.execute_reply": "2024-06-13T18:29:48.839072Z" + "iopub.execute_input": "2024-06-14T00:24:34.860912Z", + "iopub.status.busy": "2024-06-14T00:24:34.860509Z", + "iopub.status.idle": "2024-06-14T00:24:36.188478Z", + "shell.execute_reply": "2024-06-14T00:24:36.187853Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:48.842016Z", - "iopub.status.busy": "2024-06-13T18:29:48.841816Z", - "iopub.status.idle": "2024-06-13T18:29:48.846037Z", - "shell.execute_reply": "2024-06-13T18:29:48.845566Z" + "iopub.execute_input": "2024-06-14T00:24:36.191133Z", + "iopub.status.busy": "2024-06-14T00:24:36.190723Z", + "iopub.status.idle": "2024-06-14T00:24:36.194670Z", + "shell.execute_reply": "2024-06-14T00:24:36.194110Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:48.848144Z", - "iopub.status.busy": "2024-06-13T18:29:48.847815Z", - "iopub.status.idle": "2024-06-13T18:29:50.704644Z", - "shell.execute_reply": "2024-06-13T18:29:50.703942Z" + "iopub.execute_input": "2024-06-14T00:24:36.196670Z", + "iopub.status.busy": "2024-06-14T00:24:36.196341Z", + "iopub.status.idle": "2024-06-14T00:24:37.933461Z", + "shell.execute_reply": "2024-06-14T00:24:37.932903Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:50.707210Z", - "iopub.status.busy": "2024-06-13T18:29:50.706833Z", - "iopub.status.idle": "2024-06-13T18:29:50.715096Z", - "shell.execute_reply": "2024-06-13T18:29:50.714606Z" + "iopub.execute_input": "2024-06-14T00:24:37.935997Z", + "iopub.status.busy": "2024-06-14T00:24:37.935595Z", + "iopub.status.idle": "2024-06-14T00:24:37.943365Z", + "shell.execute_reply": "2024-06-14T00:24:37.942886Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:50.717050Z", - "iopub.status.busy": "2024-06-13T18:29:50.716873Z", - "iopub.status.idle": "2024-06-13T18:29:53.301382Z", - "shell.execute_reply": "2024-06-13T18:29:53.300856Z" + "iopub.execute_input": "2024-06-14T00:24:37.945300Z", + "iopub.status.busy": "2024-06-14T00:24:37.945044Z", + "iopub.status.idle": "2024-06-14T00:24:40.534797Z", + "shell.execute_reply": "2024-06-14T00:24:40.534195Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:53.303579Z", - "iopub.status.busy": "2024-06-13T18:29:53.303373Z", - "iopub.status.idle": "2024-06-13T18:29:53.307014Z", - "shell.execute_reply": "2024-06-13T18:29:53.306488Z" + "iopub.execute_input": "2024-06-14T00:24:40.536994Z", + "iopub.status.busy": "2024-06-14T00:24:40.536650Z", + "iopub.status.idle": "2024-06-14T00:24:40.540045Z", + "shell.execute_reply": "2024-06-14T00:24:40.539525Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:53.309179Z", - "iopub.status.busy": "2024-06-13T18:29:53.308778Z", - "iopub.status.idle": "2024-06-13T18:29:53.312332Z", - "shell.execute_reply": "2024-06-13T18:29:53.311786Z" + "iopub.execute_input": "2024-06-14T00:24:40.542087Z", + "iopub.status.busy": "2024-06-14T00:24:40.541760Z", + "iopub.status.idle": "2024-06-14T00:24:40.545186Z", + "shell.execute_reply": "2024-06-14T00:24:40.544732Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:53.314367Z", - "iopub.status.busy": "2024-06-13T18:29:53.314075Z", - "iopub.status.idle": "2024-06-13T18:29:53.317229Z", - "shell.execute_reply": "2024-06-13T18:29:53.316673Z" + "iopub.execute_input": "2024-06-14T00:24:40.547130Z", + "iopub.status.busy": "2024-06-14T00:24:40.546811Z", + "iopub.status.idle": "2024-06-14T00:24:40.549964Z", + "shell.execute_reply": "2024-06-14T00:24:40.549398Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 888352347..66b599714 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:55.811501Z", - "iopub.status.busy": "2024-06-13T18:29:55.811327Z", - "iopub.status.idle": "2024-06-13T18:29:56.996025Z", - "shell.execute_reply": "2024-06-13T18:29:56.995423Z" + "iopub.execute_input": "2024-06-14T00:24:42.926320Z", + "iopub.status.busy": "2024-06-14T00:24:42.925972Z", + "iopub.status.idle": "2024-06-14T00:24:44.069118Z", + "shell.execute_reply": "2024-06-14T00:24:44.068519Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:56.998652Z", - "iopub.status.busy": "2024-06-13T18:29:56.998361Z", - "iopub.status.idle": "2024-06-13T18:29:58.329872Z", - "shell.execute_reply": "2024-06-13T18:29:58.329181Z" + "iopub.execute_input": "2024-06-14T00:24:44.071740Z", + "iopub.status.busy": "2024-06-14T00:24:44.071494Z", + "iopub.status.idle": "2024-06-14T00:24:45.220737Z", + "shell.execute_reply": "2024-06-14T00:24:45.220051Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.332344Z", - "iopub.status.busy": "2024-06-13T18:29:58.332148Z", - "iopub.status.idle": "2024-06-13T18:29:58.335282Z", - "shell.execute_reply": "2024-06-13T18:29:58.334843Z" + "iopub.execute_input": "2024-06-14T00:24:45.223345Z", + "iopub.status.busy": "2024-06-14T00:24:45.223129Z", + "iopub.status.idle": "2024-06-14T00:24:45.226683Z", + "shell.execute_reply": "2024-06-14T00:24:45.226207Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.337442Z", - "iopub.status.busy": "2024-06-13T18:29:58.337105Z", - "iopub.status.idle": "2024-06-13T18:29:58.343657Z", - "shell.execute_reply": "2024-06-13T18:29:58.343212Z" + "iopub.execute_input": "2024-06-14T00:24:45.228821Z", + "iopub.status.busy": "2024-06-14T00:24:45.228396Z", + "iopub.status.idle": "2024-06-14T00:24:45.234979Z", + "shell.execute_reply": "2024-06-14T00:24:45.234557Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.345689Z", - "iopub.status.busy": "2024-06-13T18:29:58.345414Z", - "iopub.status.idle": "2024-06-13T18:29:58.834945Z", - "shell.execute_reply": "2024-06-13T18:29:58.834347Z" + "iopub.execute_input": "2024-06-14T00:24:45.237078Z", + "iopub.status.busy": "2024-06-14T00:24:45.236665Z", + "iopub.status.idle": "2024-06-14T00:24:45.726517Z", + "shell.execute_reply": "2024-06-14T00:24:45.725903Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.837978Z", - "iopub.status.busy": "2024-06-13T18:29:58.837618Z", - "iopub.status.idle": "2024-06-13T18:29:58.842965Z", - "shell.execute_reply": "2024-06-13T18:29:58.842410Z" + "iopub.execute_input": "2024-06-14T00:24:45.728946Z", + "iopub.status.busy": "2024-06-14T00:24:45.728592Z", + "iopub.status.idle": "2024-06-14T00:24:45.734110Z", + "shell.execute_reply": "2024-06-14T00:24:45.733639Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.845045Z", - "iopub.status.busy": "2024-06-13T18:29:58.844634Z", - "iopub.status.idle": "2024-06-13T18:29:58.848604Z", - "shell.execute_reply": "2024-06-13T18:29:58.848037Z" + "iopub.execute_input": "2024-06-14T00:24:45.736082Z", + "iopub.status.busy": "2024-06-14T00:24:45.735744Z", + "iopub.status.idle": "2024-06-14T00:24:45.739665Z", + "shell.execute_reply": "2024-06-14T00:24:45.739219Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.850768Z", - "iopub.status.busy": "2024-06-13T18:29:58.850466Z", - "iopub.status.idle": "2024-06-13T18:29:59.755567Z", - "shell.execute_reply": "2024-06-13T18:29:59.755009Z" + "iopub.execute_input": "2024-06-14T00:24:45.741784Z", + "iopub.status.busy": "2024-06-14T00:24:45.741445Z", + "iopub.status.idle": "2024-06-14T00:24:46.593513Z", + "shell.execute_reply": "2024-06-14T00:24:46.592892Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:59.757902Z", - "iopub.status.busy": "2024-06-13T18:29:59.757703Z", - "iopub.status.idle": "2024-06-13T18:29:59.978821Z", - "shell.execute_reply": "2024-06-13T18:29:59.978328Z" + "iopub.execute_input": "2024-06-14T00:24:46.595825Z", + "iopub.status.busy": "2024-06-14T00:24:46.595611Z", + "iopub.status.idle": "2024-06-14T00:24:46.825680Z", + "shell.execute_reply": "2024-06-14T00:24:46.825213Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:59.981057Z", - "iopub.status.busy": "2024-06-13T18:29:59.980715Z", - "iopub.status.idle": "2024-06-13T18:29:59.985048Z", - "shell.execute_reply": "2024-06-13T18:29:59.984479Z" + "iopub.execute_input": "2024-06-14T00:24:46.827710Z", + "iopub.status.busy": "2024-06-14T00:24:46.827521Z", + "iopub.status.idle": "2024-06-14T00:24:46.831897Z", + "shell.execute_reply": "2024-06-14T00:24:46.831340Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:59.987166Z", - "iopub.status.busy": "2024-06-13T18:29:59.986705Z", - "iopub.status.idle": "2024-06-13T18:30:00.454266Z", - "shell.execute_reply": "2024-06-13T18:30:00.453605Z" + "iopub.execute_input": "2024-06-14T00:24:46.834049Z", + "iopub.status.busy": "2024-06-14T00:24:46.833726Z", + "iopub.status.idle": "2024-06-14T00:24:47.289065Z", + "shell.execute_reply": "2024-06-14T00:24:47.288441Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:00.457576Z", - "iopub.status.busy": "2024-06-13T18:30:00.457184Z", - "iopub.status.idle": "2024-06-13T18:30:00.790609Z", - "shell.execute_reply": "2024-06-13T18:30:00.790005Z" + "iopub.execute_input": "2024-06-14T00:24:47.292391Z", + "iopub.status.busy": "2024-06-14T00:24:47.292016Z", + "iopub.status.idle": "2024-06-14T00:24:47.629057Z", + "shell.execute_reply": "2024-06-14T00:24:47.628471Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:00.793040Z", - "iopub.status.busy": "2024-06-13T18:30:00.792628Z", - "iopub.status.idle": "2024-06-13T18:30:01.157408Z", - "shell.execute_reply": "2024-06-13T18:30:01.156853Z" + "iopub.execute_input": "2024-06-14T00:24:47.631994Z", + "iopub.status.busy": "2024-06-14T00:24:47.631620Z", + "iopub.status.idle": "2024-06-14T00:24:47.969577Z", + "shell.execute_reply": "2024-06-14T00:24:47.968977Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:01.160112Z", - "iopub.status.busy": "2024-06-13T18:30:01.159751Z", - "iopub.status.idle": "2024-06-13T18:30:01.602908Z", - "shell.execute_reply": "2024-06-13T18:30:01.602344Z" + "iopub.execute_input": "2024-06-14T00:24:47.972695Z", + "iopub.status.busy": "2024-06-14T00:24:47.972260Z", + "iopub.status.idle": "2024-06-14T00:24:48.413648Z", + "shell.execute_reply": "2024-06-14T00:24:48.413066Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:01.607171Z", - "iopub.status.busy": "2024-06-13T18:30:01.606869Z", - "iopub.status.idle": "2024-06-13T18:30:02.061239Z", - "shell.execute_reply": "2024-06-13T18:30:02.060632Z" + "iopub.execute_input": "2024-06-14T00:24:48.418012Z", + "iopub.status.busy": "2024-06-14T00:24:48.417609Z", + "iopub.status.idle": "2024-06-14T00:24:48.870046Z", + "shell.execute_reply": "2024-06-14T00:24:48.869376Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:02.064488Z", - "iopub.status.busy": "2024-06-13T18:30:02.064100Z", - "iopub.status.idle": "2024-06-13T18:30:02.280511Z", - "shell.execute_reply": "2024-06-13T18:30:02.279861Z" + "iopub.execute_input": "2024-06-14T00:24:48.873324Z", + "iopub.status.busy": "2024-06-14T00:24:48.872940Z", + "iopub.status.idle": "2024-06-14T00:24:49.066877Z", + "shell.execute_reply": "2024-06-14T00:24:49.066254Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:02.282794Z", - "iopub.status.busy": "2024-06-13T18:30:02.282466Z", - "iopub.status.idle": "2024-06-13T18:30:02.482430Z", - "shell.execute_reply": "2024-06-13T18:30:02.481886Z" + "iopub.execute_input": "2024-06-14T00:24:49.069340Z", + "iopub.status.busy": "2024-06-14T00:24:49.069147Z", + "iopub.status.idle": "2024-06-14T00:24:49.252363Z", + "shell.execute_reply": "2024-06-14T00:24:49.251770Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:02.485080Z", - "iopub.status.busy": "2024-06-13T18:30:02.484701Z", - "iopub.status.idle": "2024-06-13T18:30:02.487652Z", - "shell.execute_reply": "2024-06-13T18:30:02.487207Z" + "iopub.execute_input": "2024-06-14T00:24:49.254849Z", + "iopub.status.busy": "2024-06-14T00:24:49.254485Z", + "iopub.status.idle": "2024-06-14T00:24:49.257933Z", + "shell.execute_reply": "2024-06-14T00:24:49.257505Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:02.489704Z", - "iopub.status.busy": "2024-06-13T18:30:02.489381Z", - "iopub.status.idle": "2024-06-13T18:30:03.405395Z", - "shell.execute_reply": "2024-06-13T18:30:03.404866Z" + "iopub.execute_input": "2024-06-14T00:24:49.259690Z", + "iopub.status.busy": "2024-06-14T00:24:49.259519Z", + "iopub.status.idle": "2024-06-14T00:24:50.198920Z", + "shell.execute_reply": "2024-06-14T00:24:50.198321Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:03.407640Z", - "iopub.status.busy": "2024-06-13T18:30:03.407316Z", - "iopub.status.idle": "2024-06-13T18:30:03.567557Z", - "shell.execute_reply": "2024-06-13T18:30:03.567038Z" + "iopub.execute_input": "2024-06-14T00:24:50.201951Z", + "iopub.status.busy": "2024-06-14T00:24:50.201537Z", + "iopub.status.idle": "2024-06-14T00:24:50.347011Z", + "shell.execute_reply": "2024-06-14T00:24:50.346463Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:03.569801Z", - "iopub.status.busy": "2024-06-13T18:30:03.569474Z", - "iopub.status.idle": "2024-06-13T18:30:03.717506Z", - "shell.execute_reply": "2024-06-13T18:30:03.716934Z" + "iopub.execute_input": "2024-06-14T00:24:50.349324Z", + "iopub.status.busy": "2024-06-14T00:24:50.348974Z", + "iopub.status.idle": "2024-06-14T00:24:50.488386Z", + "shell.execute_reply": "2024-06-14T00:24:50.487875Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:03.719678Z", - "iopub.status.busy": "2024-06-13T18:30:03.719333Z", - "iopub.status.idle": "2024-06-13T18:30:04.487525Z", - "shell.execute_reply": "2024-06-13T18:30:04.486972Z" + "iopub.execute_input": "2024-06-14T00:24:50.490992Z", + "iopub.status.busy": "2024-06-14T00:24:50.490588Z", + "iopub.status.idle": "2024-06-14T00:24:51.257398Z", + "shell.execute_reply": "2024-06-14T00:24:51.256809Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:04.489789Z", - "iopub.status.busy": "2024-06-13T18:30:04.489443Z", - "iopub.status.idle": "2024-06-13T18:30:04.492942Z", - "shell.execute_reply": "2024-06-13T18:30:04.492497Z" + "iopub.execute_input": "2024-06-14T00:24:51.259836Z", + "iopub.status.busy": "2024-06-14T00:24:51.259465Z", + "iopub.status.idle": "2024-06-14T00:24:51.263155Z", + "shell.execute_reply": "2024-06-14T00:24:51.262717Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index a2249bb68..fe1ffe26e 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:06.806861Z", - "iopub.status.busy": "2024-06-13T18:30:06.806511Z", - "iopub.status.idle": "2024-06-13T18:30:09.610809Z", - "shell.execute_reply": "2024-06-13T18:30:09.610253Z" + "iopub.execute_input": "2024-06-14T00:24:53.422019Z", + "iopub.status.busy": "2024-06-14T00:24:53.421585Z", + "iopub.status.idle": "2024-06-14T00:24:56.183112Z", + "shell.execute_reply": "2024-06-14T00:24:56.182545Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:09.613404Z", - "iopub.status.busy": "2024-06-13T18:30:09.613108Z", - "iopub.status.idle": "2024-06-13T18:30:09.946924Z", - "shell.execute_reply": "2024-06-13T18:30:09.946370Z" + "iopub.execute_input": "2024-06-14T00:24:56.186005Z", + "iopub.status.busy": "2024-06-14T00:24:56.185437Z", + "iopub.status.idle": "2024-06-14T00:24:56.514322Z", + "shell.execute_reply": "2024-06-14T00:24:56.513737Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:09.949568Z", - "iopub.status.busy": "2024-06-13T18:30:09.949093Z", - "iopub.status.idle": "2024-06-13T18:30:09.953137Z", - "shell.execute_reply": "2024-06-13T18:30:09.952713Z" + "iopub.execute_input": "2024-06-14T00:24:56.517231Z", + "iopub.status.busy": "2024-06-14T00:24:56.516677Z", + "iopub.status.idle": "2024-06-14T00:24:56.521145Z", + "shell.execute_reply": "2024-06-14T00:24:56.520717Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:09.955066Z", - "iopub.status.busy": "2024-06-13T18:30:09.954891Z", - "iopub.status.idle": "2024-06-13T18:30:14.437726Z", - "shell.execute_reply": "2024-06-13T18:30:14.437138Z" + "iopub.execute_input": "2024-06-14T00:24:56.523335Z", + "iopub.status.busy": "2024-06-14T00:24:56.522897Z", + "iopub.status.idle": "2024-06-14T00:25:00.661311Z", + "shell.execute_reply": "2024-06-14T00:25:00.660725Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 851968/170498071 [00:00<00:22, 7505845.17it/s]" + " 1%| | 1802240/170498071 [00:00<00:09, 18016704.14it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8617984/170498071 [00:00<00:03, 46592768.27it/s]" + " 8%|▊ | 13402112/170498071 [00:00<00:02, 75623349.02it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 19136512/170498071 [00:00<00:02, 72503876.07it/s]" + " 15%|█▍ | 24903680/170498071 [00:00<00:01, 93539606.21it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 30539776/170498071 [00:00<00:01, 88534497.30it/s]" + " 22%|██▏ | 36700160/170498071 [00:00<00:01, 103142953.74it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 41910272/170498071 [00:00<00:01, 97487057.13it/s]" + " 28%|██▊ | 48332800/170498071 [00:00<00:01, 107813977.20it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 53248000/170498071 [00:00<00:01, 102831280.07it/s]" + " 35%|███▌ | 60030976/170498071 [00:00<00:00, 110893500.78it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 64618496/170498071 [00:00<00:00, 106322699.83it/s]" + " 42%|████▏ | 71565312/170498071 [00:00<00:00, 112289943.52it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 76087296/170498071 [00:00<00:00, 108899246.12it/s]" + " 49%|████▉ | 83263488/170498071 [00:00<00:00, 113771599.90it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87457792/170498071 [00:00<00:00, 110330394.92it/s]" + " 56%|█████▌ | 94863360/170498071 [00:00<00:00, 114377772.38it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98828288/170498071 [00:01<00:00, 111336949.28it/s]" + " 62%|██████▏ | 106496000/170498071 [00:01<00:00, 114916505.11it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110329856/170498071 [00:01<00:00, 112417372.77it/s]" + " 69%|██████▉ | 118161408/170498071 [00:01<00:00, 115433366.37it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 121929728/170498071 [00:01<00:00, 113477079.55it/s]" + " 76%|███████▌ | 129761280/170498071 [00:01<00:00, 115526545.23it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 133464064/170498071 [00:01<00:00, 113959996.99it/s]" + " 83%|████████▎ | 141393920/170498071 [00:01<00:00, 115751506.39it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 144965632/170498071 [00:01<00:00, 114162107.08it/s]" + " 90%|████████▉ | 153026560/170498071 [00:01<00:00, 115880597.95it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 156467200/170498071 [00:01<00:00, 114396418.93it/s]" + " 97%|█████████▋| 164659200/170498071 [00:01<00:00, 115964933.55it/s]" ] }, { @@ -372,15 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 167936000/170498071 [00:01<00:00, 114327029.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 104055673.22it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 109826666.14it/s]" ] }, { @@ -498,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:14.440345Z", - "iopub.status.busy": "2024-06-13T18:30:14.439866Z", - "iopub.status.idle": "2024-06-13T18:30:14.444966Z", - "shell.execute_reply": "2024-06-13T18:30:14.444420Z" + "iopub.execute_input": "2024-06-14T00:25:00.663439Z", + "iopub.status.busy": "2024-06-14T00:25:00.663258Z", + "iopub.status.idle": "2024-06-14T00:25:00.667817Z", + "shell.execute_reply": "2024-06-14T00:25:00.667381Z" }, "nbsphinx": "hidden" }, @@ -552,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:14.447077Z", - "iopub.status.busy": "2024-06-13T18:30:14.446767Z", - "iopub.status.idle": "2024-06-13T18:30:14.969015Z", - "shell.execute_reply": "2024-06-13T18:30:14.968491Z" + "iopub.execute_input": "2024-06-14T00:25:00.669768Z", + "iopub.status.busy": "2024-06-14T00:25:00.669566Z", + "iopub.status.idle": "2024-06-14T00:25:01.209043Z", + "shell.execute_reply": "2024-06-14T00:25:01.208432Z" } }, "outputs": [ @@ -588,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:14.971303Z", - "iopub.status.busy": "2024-06-13T18:30:14.970976Z", - "iopub.status.idle": "2024-06-13T18:30:15.492426Z", - "shell.execute_reply": "2024-06-13T18:30:15.491832Z" + "iopub.execute_input": "2024-06-14T00:25:01.211270Z", + "iopub.status.busy": "2024-06-14T00:25:01.211083Z", + "iopub.status.idle": "2024-06-14T00:25:01.707145Z", + "shell.execute_reply": "2024-06-14T00:25:01.706563Z" } }, "outputs": [ @@ -629,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:15.494644Z", - "iopub.status.busy": "2024-06-13T18:30:15.494281Z", - "iopub.status.idle": "2024-06-13T18:30:15.497844Z", - "shell.execute_reply": "2024-06-13T18:30:15.497389Z" + "iopub.execute_input": "2024-06-14T00:25:01.709523Z", + "iopub.status.busy": "2024-06-14T00:25:01.709161Z", + "iopub.status.idle": "2024-06-14T00:25:01.712585Z", + "shell.execute_reply": "2024-06-14T00:25:01.712153Z" } }, "outputs": [], @@ -655,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:15.499724Z", - "iopub.status.busy": "2024-06-13T18:30:15.499424Z", - "iopub.status.idle": "2024-06-13T18:30:28.020003Z", - "shell.execute_reply": "2024-06-13T18:30:28.019421Z" + "iopub.execute_input": "2024-06-14T00:25:01.714533Z", + "iopub.status.busy": "2024-06-14T00:25:01.714273Z", + "iopub.status.idle": "2024-06-14T00:25:14.170847Z", + "shell.execute_reply": "2024-06-14T00:25:14.170282Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "28d0e408cda44fae96e334ff5722f1aa", + "model_id": "af7e1c9834464f1ebe1f6e698f5ade1e", "version_major": 2, "version_minor": 0 }, @@ -724,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:28.022367Z", - "iopub.status.busy": "2024-06-13T18:30:28.021996Z", - "iopub.status.idle": "2024-06-13T18:30:30.141044Z", - "shell.execute_reply": "2024-06-13T18:30:30.140489Z" + "iopub.execute_input": "2024-06-14T00:25:14.173121Z", + "iopub.status.busy": "2024-06-14T00:25:14.172921Z", + "iopub.status.idle": "2024-06-14T00:25:16.259682Z", + "shell.execute_reply": "2024-06-14T00:25:16.259154Z" } }, "outputs": [ @@ -771,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:30.143301Z", - "iopub.status.busy": "2024-06-13T18:30:30.142940Z", - "iopub.status.idle": "2024-06-13T18:30:30.374088Z", - "shell.execute_reply": "2024-06-13T18:30:30.373403Z" + "iopub.execute_input": "2024-06-14T00:25:16.262045Z", + "iopub.status.busy": "2024-06-14T00:25:16.261630Z", + "iopub.status.idle": "2024-06-14T00:25:16.500213Z", + "shell.execute_reply": "2024-06-14T00:25:16.499678Z" } }, "outputs": [ @@ -810,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:30.376511Z", - "iopub.status.busy": "2024-06-13T18:30:30.376323Z", - "iopub.status.idle": "2024-06-13T18:30:31.029670Z", - "shell.execute_reply": "2024-06-13T18:30:31.029069Z" + "iopub.execute_input": "2024-06-14T00:25:16.502735Z", + "iopub.status.busy": "2024-06-14T00:25:16.502292Z", + "iopub.status.idle": "2024-06-14T00:25:17.170475Z", + "shell.execute_reply": "2024-06-14T00:25:17.169919Z" } }, "outputs": [ @@ -863,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:31.032050Z", - "iopub.status.busy": "2024-06-13T18:30:31.031866Z", - "iopub.status.idle": "2024-06-13T18:30:31.328149Z", - "shell.execute_reply": "2024-06-13T18:30:31.327537Z" + "iopub.execute_input": "2024-06-14T00:25:17.173317Z", + "iopub.status.busy": "2024-06-14T00:25:17.173013Z", + "iopub.status.idle": "2024-06-14T00:25:17.507092Z", + "shell.execute_reply": "2024-06-14T00:25:17.506631Z" } }, "outputs": [ @@ -914,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:31.330418Z", - "iopub.status.busy": "2024-06-13T18:30:31.330234Z", - "iopub.status.idle": "2024-06-13T18:30:31.564448Z", - "shell.execute_reply": "2024-06-13T18:30:31.563851Z" + "iopub.execute_input": "2024-06-14T00:25:17.509066Z", + "iopub.status.busy": "2024-06-14T00:25:17.508892Z", + "iopub.status.idle": "2024-06-14T00:25:17.748886Z", + "shell.execute_reply": "2024-06-14T00:25:17.748311Z" } }, "outputs": [ @@ -973,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:31.567120Z", - "iopub.status.busy": "2024-06-13T18:30:31.566695Z", - "iopub.status.idle": "2024-06-13T18:30:31.646009Z", - "shell.execute_reply": "2024-06-13T18:30:31.645371Z" + "iopub.execute_input": "2024-06-14T00:25:17.751555Z", + "iopub.status.busy": "2024-06-14T00:25:17.751187Z", + "iopub.status.idle": "2024-06-14T00:25:17.847448Z", + "shell.execute_reply": "2024-06-14T00:25:17.846910Z" } }, "outputs": [], @@ -997,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:31.648611Z", - "iopub.status.busy": "2024-06-13T18:30:31.648290Z", - "iopub.status.idle": "2024-06-13T18:30:42.038302Z", - "shell.execute_reply": "2024-06-13T18:30:42.037657Z" + "iopub.execute_input": "2024-06-14T00:25:17.849701Z", + "iopub.status.busy": "2024-06-14T00:25:17.849525Z", + "iopub.status.idle": "2024-06-14T00:25:28.131894Z", + "shell.execute_reply": "2024-06-14T00:25:28.131254Z" } }, "outputs": [ @@ -1037,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:42.040756Z", - "iopub.status.busy": "2024-06-13T18:30:42.040545Z", - "iopub.status.idle": "2024-06-13T18:30:43.788960Z", - "shell.execute_reply": "2024-06-13T18:30:43.788389Z" + "iopub.execute_input": "2024-06-14T00:25:28.134164Z", + "iopub.status.busy": "2024-06-14T00:25:28.133918Z", + "iopub.status.idle": "2024-06-14T00:25:29.827691Z", + "shell.execute_reply": "2024-06-14T00:25:29.827085Z" } }, "outputs": [ @@ -1071,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:43.791567Z", - "iopub.status.busy": "2024-06-13T18:30:43.791038Z", - "iopub.status.idle": "2024-06-13T18:30:43.998971Z", - "shell.execute_reply": "2024-06-13T18:30:43.998473Z" + "iopub.execute_input": "2024-06-14T00:25:29.830604Z", + "iopub.status.busy": "2024-06-14T00:25:29.830017Z", + "iopub.status.idle": "2024-06-14T00:25:30.033033Z", + "shell.execute_reply": "2024-06-14T00:25:30.032428Z" } }, "outputs": [], @@ -1088,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:44.001352Z", - "iopub.status.busy": "2024-06-13T18:30:44.001162Z", - "iopub.status.idle": "2024-06-13T18:30:44.004407Z", - "shell.execute_reply": "2024-06-13T18:30:44.003938Z" + "iopub.execute_input": "2024-06-14T00:25:30.035452Z", + "iopub.status.busy": "2024-06-14T00:25:30.035240Z", + "iopub.status.idle": "2024-06-14T00:25:30.038420Z", + "shell.execute_reply": "2024-06-14T00:25:30.037895Z" } }, "outputs": [], @@ -1113,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:44.006396Z", - "iopub.status.busy": "2024-06-13T18:30:44.006071Z", - "iopub.status.idle": "2024-06-13T18:30:44.014187Z", - "shell.execute_reply": "2024-06-13T18:30:44.013760Z" + "iopub.execute_input": "2024-06-14T00:25:30.040399Z", + "iopub.status.busy": "2024-06-14T00:25:30.040103Z", + "iopub.status.idle": "2024-06-14T00:25:30.047957Z", + "shell.execute_reply": "2024-06-14T00:25:30.047548Z" }, "nbsphinx": "hidden" }, @@ -1161,80 +1153,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "28d0e408cda44fae96e334ff5722f1aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_346aa5bc826248a5a926072fe2c82246", - "IPY_MODEL_3b24036feeb5438aaa6c02ed11ec900e", - "IPY_MODEL_b093c1d8eefc4ee88658564be60bc4b7" - ], - "layout": "IPY_MODEL_96516d2a0e1944e287358cadafe3a4b2", - "tabbable": null, - "tooltip": null - } - }, - "346aa5bc826248a5a926072fe2c82246": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fd5932ca7243458bbd414302c29cd1b0", - "placeholder": "​", - "style": "IPY_MODEL_e77e9e31299440a79893a737847ece38", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "3b24036feeb5438aaa6c02ed11ec900e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9ed5ec1b57b4c59acc407e4618397ff", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e87bc35dcff049d09f7f83d1e0f54b7d", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "8332ec13ae16440fa7bc486776b77771": { + "296e3cb31039415b8c83a473292b1d58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1287,7 +1206,25 @@ "width": null } }, - "96516d2a0e1944e287358cadafe3a4b2": { + "2ee2ceb4124d4345b6f2b015f8c1a1ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "36ac74a0eacd4b858466704e1d51f13f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1340,30 +1277,67 @@ "width": null } }, - "b093c1d8eefc4ee88658564be60bc4b7": { + "3e35e16a78dc439d86092529bd64a610": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8332ec13ae16440fa7bc486776b77771", - "placeholder": "​", - "style": "IPY_MODEL_e957713cf0054a5a9f08425e1d3233b6", + "layout": "IPY_MODEL_88b46623ee654134a3ad913f83f3dc56", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_803061e630f248e393a2e3a639de40c7", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 284MB/s]" + "value": 102469840.0 } }, - "d9ed5ec1b57b4c59acc407e4618397ff": { + "803061e630f248e393a2e3a639de40c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8500e6e8b43e47878e79e46568e9766e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "88b46623ee654134a3ad913f83f3dc56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1416,59 +1390,31 @@ "width": null } }, - "e77e9e31299440a79893a737847ece38": { + "af7e1c9834464f1ebe1f6e698f5ade1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e87bc35dcff049d09f7f83d1e0f54b7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e957713cf0054a5a9f08425e1d3233b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f34a4e42901c48969d9c228410ab22e0", + "IPY_MODEL_3e35e16a78dc439d86092529bd64a610", + "IPY_MODEL_f27ec3c201124e028532be64f872d69e" + ], + "layout": "IPY_MODEL_c9ab25d5f8974b92aafb42312352ad0d", + "tabbable": null, + "tooltip": null } }, - "fd5932ca7243458bbd414302c29cd1b0": { + "c9ab25d5f8974b92aafb42312352ad0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1520,6 +1466,52 @@ "visibility": null, "width": null } + }, + "f27ec3c201124e028532be64f872d69e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_36ac74a0eacd4b858466704e1d51f13f", + "placeholder": "​", + "style": "IPY_MODEL_2ee2ceb4124d4345b6f2b015f8c1a1ef", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 262MB/s]" + } + }, + "f34a4e42901c48969d9c228410ab22e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_296e3cb31039415b8c83a473292b1d58", + "placeholder": "​", + "style": "IPY_MODEL_8500e6e8b43e47878e79e46568e9766e", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index a495c8c0c..d0abe52eb 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:48.252986Z", - "iopub.status.busy": "2024-06-13T18:30:48.252813Z", - "iopub.status.idle": "2024-06-13T18:30:49.457686Z", - "shell.execute_reply": "2024-06-13T18:30:49.457186Z" + "iopub.execute_input": "2024-06-14T00:25:34.365071Z", + "iopub.status.busy": "2024-06-14T00:25:34.364917Z", + "iopub.status.idle": "2024-06-14T00:25:35.502849Z", + "shell.execute_reply": "2024-06-14T00:25:35.502227Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.460560Z", - "iopub.status.busy": "2024-06-13T18:30:49.459892Z", - "iopub.status.idle": "2024-06-13T18:30:49.477884Z", - "shell.execute_reply": "2024-06-13T18:30:49.477425Z" + "iopub.execute_input": "2024-06-14T00:25:35.505533Z", + "iopub.status.busy": "2024-06-14T00:25:35.505179Z", + "iopub.status.idle": "2024-06-14T00:25:35.522180Z", + "shell.execute_reply": "2024-06-14T00:25:35.521728Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.480246Z", - "iopub.status.busy": "2024-06-13T18:30:49.479768Z", - "iopub.status.idle": "2024-06-13T18:30:49.482917Z", - "shell.execute_reply": "2024-06-13T18:30:49.482464Z" + "iopub.execute_input": "2024-06-14T00:25:35.524180Z", + "iopub.status.busy": "2024-06-14T00:25:35.523788Z", + "iopub.status.idle": "2024-06-14T00:25:35.526887Z", + "shell.execute_reply": "2024-06-14T00:25:35.526329Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.485089Z", - "iopub.status.busy": "2024-06-13T18:30:49.484694Z", - "iopub.status.idle": "2024-06-13T18:30:49.585345Z", - "shell.execute_reply": "2024-06-13T18:30:49.584764Z" + "iopub.execute_input": "2024-06-14T00:25:35.528980Z", + "iopub.status.busy": "2024-06-14T00:25:35.528661Z", + "iopub.status.idle": "2024-06-14T00:25:35.603446Z", + "shell.execute_reply": "2024-06-14T00:25:35.602906Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.587712Z", - "iopub.status.busy": "2024-06-13T18:30:49.587363Z", - "iopub.status.idle": "2024-06-13T18:30:49.770480Z", - "shell.execute_reply": "2024-06-13T18:30:49.769914Z" + "iopub.execute_input": "2024-06-14T00:25:35.605637Z", + "iopub.status.busy": "2024-06-14T00:25:35.605312Z", + "iopub.status.idle": "2024-06-14T00:25:35.785176Z", + "shell.execute_reply": "2024-06-14T00:25:35.784554Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.773158Z", - "iopub.status.busy": "2024-06-13T18:30:49.772795Z", - "iopub.status.idle": "2024-06-13T18:30:49.986578Z", - "shell.execute_reply": "2024-06-13T18:30:49.986009Z" + "iopub.execute_input": "2024-06-14T00:25:35.788106Z", + "iopub.status.busy": "2024-06-14T00:25:35.787574Z", + "iopub.status.idle": "2024-06-14T00:25:35.995635Z", + "shell.execute_reply": "2024-06-14T00:25:35.995045Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.988847Z", - "iopub.status.busy": "2024-06-13T18:30:49.988500Z", - "iopub.status.idle": "2024-06-13T18:30:49.993003Z", - "shell.execute_reply": "2024-06-13T18:30:49.992529Z" + "iopub.execute_input": "2024-06-14T00:25:35.997814Z", + "iopub.status.busy": "2024-06-14T00:25:35.997590Z", + "iopub.status.idle": "2024-06-14T00:25:36.002632Z", + "shell.execute_reply": "2024-06-14T00:25:36.002193Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.995082Z", - "iopub.status.busy": "2024-06-13T18:30:49.994751Z", - "iopub.status.idle": "2024-06-13T18:30:50.001826Z", - "shell.execute_reply": "2024-06-13T18:30:50.001402Z" + "iopub.execute_input": "2024-06-14T00:25:36.004632Z", + "iopub.status.busy": "2024-06-14T00:25:36.004304Z", + "iopub.status.idle": "2024-06-14T00:25:36.010125Z", + "shell.execute_reply": "2024-06-14T00:25:36.009568Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:50.003825Z", - "iopub.status.busy": "2024-06-13T18:30:50.003569Z", - "iopub.status.idle": "2024-06-13T18:30:50.006414Z", - "shell.execute_reply": "2024-06-13T18:30:50.005946Z" + "iopub.execute_input": "2024-06-14T00:25:36.012277Z", + "iopub.status.busy": "2024-06-14T00:25:36.011953Z", + "iopub.status.idle": "2024-06-14T00:25:36.014446Z", + "shell.execute_reply": "2024-06-14T00:25:36.014015Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:50.008232Z", - "iopub.status.busy": "2024-06-13T18:30:50.008042Z", - "iopub.status.idle": "2024-06-13T18:30:58.322325Z", - "shell.execute_reply": "2024-06-13T18:30:58.321665Z" + "iopub.execute_input": "2024-06-14T00:25:36.016382Z", + "iopub.status.busy": "2024-06-14T00:25:36.016060Z", + "iopub.status.idle": "2024-06-14T00:25:44.158868Z", + "shell.execute_reply": "2024-06-14T00:25:44.158208Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.325320Z", - "iopub.status.busy": "2024-06-13T18:30:58.324683Z", - "iopub.status.idle": "2024-06-13T18:30:58.332206Z", - "shell.execute_reply": "2024-06-13T18:30:58.331715Z" + "iopub.execute_input": "2024-06-14T00:25:44.161762Z", + "iopub.status.busy": "2024-06-14T00:25:44.161307Z", + "iopub.status.idle": "2024-06-14T00:25:44.168537Z", + "shell.execute_reply": "2024-06-14T00:25:44.168084Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.334286Z", - "iopub.status.busy": "2024-06-13T18:30:58.333895Z", - "iopub.status.idle": "2024-06-13T18:30:58.337476Z", - "shell.execute_reply": "2024-06-13T18:30:58.337050Z" + "iopub.execute_input": "2024-06-14T00:25:44.170593Z", + "iopub.status.busy": "2024-06-14T00:25:44.170286Z", + "iopub.status.idle": "2024-06-14T00:25:44.173864Z", + "shell.execute_reply": "2024-06-14T00:25:44.173406Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.339455Z", - "iopub.status.busy": "2024-06-13T18:30:58.339137Z", - "iopub.status.idle": "2024-06-13T18:30:58.342221Z", - "shell.execute_reply": "2024-06-13T18:30:58.341738Z" + "iopub.execute_input": "2024-06-14T00:25:44.175819Z", + "iopub.status.busy": "2024-06-14T00:25:44.175523Z", + "iopub.status.idle": "2024-06-14T00:25:44.178852Z", + "shell.execute_reply": "2024-06-14T00:25:44.178418Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.344281Z", - "iopub.status.busy": "2024-06-13T18:30:58.343946Z", - "iopub.status.idle": "2024-06-13T18:30:58.346851Z", - "shell.execute_reply": "2024-06-13T18:30:58.346423Z" + "iopub.execute_input": "2024-06-14T00:25:44.180779Z", + "iopub.status.busy": "2024-06-14T00:25:44.180606Z", + "iopub.status.idle": "2024-06-14T00:25:44.183534Z", + "shell.execute_reply": "2024-06-14T00:25:44.183112Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.348832Z", - "iopub.status.busy": "2024-06-13T18:30:58.348521Z", - "iopub.status.idle": "2024-06-13T18:30:58.356118Z", - "shell.execute_reply": "2024-06-13T18:30:58.355677Z" + "iopub.execute_input": "2024-06-14T00:25:44.185389Z", + "iopub.status.busy": "2024-06-14T00:25:44.185216Z", + "iopub.status.idle": "2024-06-14T00:25:44.192979Z", + "shell.execute_reply": "2024-06-14T00:25:44.192557Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.358137Z", - "iopub.status.busy": "2024-06-13T18:30:58.357822Z", - "iopub.status.idle": "2024-06-13T18:30:58.360291Z", - "shell.execute_reply": "2024-06-13T18:30:58.359857Z" + "iopub.execute_input": "2024-06-14T00:25:44.194853Z", + "iopub.status.busy": "2024-06-14T00:25:44.194680Z", + "iopub.status.idle": "2024-06-14T00:25:44.197299Z", + "shell.execute_reply": "2024-06-14T00:25:44.196844Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.362307Z", - "iopub.status.busy": "2024-06-13T18:30:58.362003Z", - "iopub.status.idle": "2024-06-13T18:30:58.484332Z", - "shell.execute_reply": "2024-06-13T18:30:58.483803Z" + "iopub.execute_input": "2024-06-14T00:25:44.199302Z", + "iopub.status.busy": "2024-06-14T00:25:44.198971Z", + "iopub.status.idle": "2024-06-14T00:25:44.317167Z", + "shell.execute_reply": "2024-06-14T00:25:44.316617Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.486661Z", - "iopub.status.busy": "2024-06-13T18:30:58.486283Z", - "iopub.status.idle": "2024-06-13T18:30:58.591974Z", - "shell.execute_reply": "2024-06-13T18:30:58.591386Z" + "iopub.execute_input": "2024-06-14T00:25:44.319362Z", + "iopub.status.busy": "2024-06-14T00:25:44.319041Z", + "iopub.status.idle": "2024-06-14T00:25:44.423214Z", + "shell.execute_reply": "2024-06-14T00:25:44.422657Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.594331Z", - "iopub.status.busy": "2024-06-13T18:30:58.594148Z", - "iopub.status.idle": "2024-06-13T18:30:59.083499Z", - "shell.execute_reply": "2024-06-13T18:30:59.082972Z" + "iopub.execute_input": "2024-06-14T00:25:44.425414Z", + "iopub.status.busy": "2024-06-14T00:25:44.425103Z", + "iopub.status.idle": "2024-06-14T00:25:44.914346Z", + "shell.execute_reply": "2024-06-14T00:25:44.913727Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:59.086096Z", - "iopub.status.busy": "2024-06-13T18:30:59.085717Z", - "iopub.status.idle": "2024-06-13T18:30:59.162329Z", - "shell.execute_reply": "2024-06-13T18:30:59.161687Z" + "iopub.execute_input": "2024-06-14T00:25:44.916864Z", + "iopub.status.busy": "2024-06-14T00:25:44.916439Z", + "iopub.status.idle": "2024-06-14T00:25:44.987223Z", + "shell.execute_reply": "2024-06-14T00:25:44.986693Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:59.164356Z", - "iopub.status.busy": "2024-06-13T18:30:59.164177Z", - "iopub.status.idle": "2024-06-13T18:30:59.172855Z", - "shell.execute_reply": "2024-06-13T18:30:59.172423Z" + "iopub.execute_input": "2024-06-14T00:25:44.989536Z", + "iopub.status.busy": "2024-06-14T00:25:44.989204Z", + "iopub.status.idle": "2024-06-14T00:25:44.997742Z", + "shell.execute_reply": "2024-06-14T00:25:44.997248Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:59.174881Z", - "iopub.status.busy": "2024-06-13T18:30:59.174590Z", - "iopub.status.idle": "2024-06-13T18:30:59.177235Z", - "shell.execute_reply": "2024-06-13T18:30:59.176778Z" + "iopub.execute_input": "2024-06-14T00:25:44.999607Z", + "iopub.status.busy": "2024-06-14T00:25:44.999434Z", + "iopub.status.idle": "2024-06-14T00:25:45.002002Z", + "shell.execute_reply": "2024-06-14T00:25:45.001550Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:59.179127Z", - "iopub.status.busy": "2024-06-13T18:30:59.178952Z", - "iopub.status.idle": "2024-06-13T18:31:04.701418Z", - "shell.execute_reply": "2024-06-13T18:31:04.700823Z" + "iopub.execute_input": "2024-06-14T00:25:45.004006Z", + "iopub.status.busy": "2024-06-14T00:25:45.003693Z", + "iopub.status.idle": "2024-06-14T00:25:50.327887Z", + "shell.execute_reply": "2024-06-14T00:25:50.327366Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:31:04.703750Z", - "iopub.status.busy": "2024-06-13T18:31:04.703565Z", - "iopub.status.idle": "2024-06-13T18:31:04.712582Z", - "shell.execute_reply": "2024-06-13T18:31:04.712023Z" + "iopub.execute_input": "2024-06-14T00:25:50.330130Z", + "iopub.status.busy": "2024-06-14T00:25:50.329940Z", + "iopub.status.idle": "2024-06-14T00:25:50.338690Z", + "shell.execute_reply": "2024-06-14T00:25:50.338145Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:31:04.714691Z", - "iopub.status.busy": "2024-06-13T18:31:04.714515Z", - "iopub.status.idle": "2024-06-13T18:31:04.779472Z", - "shell.execute_reply": "2024-06-13T18:31:04.778838Z" + "iopub.execute_input": "2024-06-14T00:25:50.340875Z", + "iopub.status.busy": "2024-06-14T00:25:50.340560Z", + "iopub.status.idle": "2024-06-14T00:25:50.407866Z", + "shell.execute_reply": "2024-06-14T00:25:50.407330Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 23431d142..0d29b1672 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:31:07.571637Z", - "iopub.status.busy": "2024-06-13T18:31:07.571212Z", - "iopub.status.idle": "2024-06-13T18:31:09.320694Z", - "shell.execute_reply": "2024-06-13T18:31:09.319933Z" + "iopub.execute_input": "2024-06-14T00:25:53.064367Z", + "iopub.status.busy": "2024-06-14T00:25:53.064185Z", + "iopub.status.idle": "2024-06-14T00:25:54.955631Z", + "shell.execute_reply": "2024-06-14T00:25:54.954984Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:31:09.323468Z", - "iopub.status.busy": "2024-06-13T18:31:09.323229Z", - "iopub.status.idle": "2024-06-13T18:32:13.037408Z", - "shell.execute_reply": "2024-06-13T18:32:13.036754Z" + "iopub.execute_input": "2024-06-14T00:25:54.958032Z", + "iopub.status.busy": "2024-06-14T00:25:54.957807Z", + "iopub.status.idle": "2024-06-14T00:26:57.666795Z", + "shell.execute_reply": "2024-06-14T00:26:57.666153Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:13.039928Z", - "iopub.status.busy": "2024-06-13T18:32:13.039545Z", - "iopub.status.idle": "2024-06-13T18:32:14.160396Z", - "shell.execute_reply": "2024-06-13T18:32:14.159743Z" + "iopub.execute_input": "2024-06-14T00:26:57.669311Z", + "iopub.status.busy": "2024-06-14T00:26:57.668891Z", + "iopub.status.idle": "2024-06-14T00:26:58.764113Z", + "shell.execute_reply": "2024-06-14T00:26:58.763505Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.163038Z", - "iopub.status.busy": "2024-06-13T18:32:14.162579Z", - "iopub.status.idle": "2024-06-13T18:32:14.165948Z", - "shell.execute_reply": "2024-06-13T18:32:14.165406Z" + "iopub.execute_input": "2024-06-14T00:26:58.766809Z", + "iopub.status.busy": "2024-06-14T00:26:58.766386Z", + "iopub.status.idle": "2024-06-14T00:26:58.769494Z", + "shell.execute_reply": "2024-06-14T00:26:58.769055Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.168155Z", - "iopub.status.busy": "2024-06-13T18:32:14.167808Z", - "iopub.status.idle": "2024-06-13T18:32:14.171638Z", - "shell.execute_reply": "2024-06-13T18:32:14.171119Z" + "iopub.execute_input": "2024-06-14T00:26:58.771636Z", + "iopub.status.busy": "2024-06-14T00:26:58.771312Z", + "iopub.status.idle": "2024-06-14T00:26:58.775114Z", + "shell.execute_reply": "2024-06-14T00:26:58.774668Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.173816Z", - "iopub.status.busy": "2024-06-13T18:32:14.173424Z", - "iopub.status.idle": "2024-06-13T18:32:14.176950Z", - "shell.execute_reply": "2024-06-13T18:32:14.176426Z" + "iopub.execute_input": "2024-06-14T00:26:58.777093Z", + "iopub.status.busy": "2024-06-14T00:26:58.776781Z", + "iopub.status.idle": "2024-06-14T00:26:58.780441Z", + "shell.execute_reply": "2024-06-14T00:26:58.779894Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.179024Z", - "iopub.status.busy": "2024-06-13T18:32:14.178651Z", - "iopub.status.idle": "2024-06-13T18:32:14.181489Z", - "shell.execute_reply": "2024-06-13T18:32:14.180989Z" + "iopub.execute_input": "2024-06-14T00:26:58.782266Z", + "iopub.status.busy": "2024-06-14T00:26:58.782092Z", + "iopub.status.idle": "2024-06-14T00:26:58.784805Z", + "shell.execute_reply": "2024-06-14T00:26:58.784373Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.183616Z", - "iopub.status.busy": "2024-06-13T18:32:14.183210Z", - "iopub.status.idle": "2024-06-13T18:32:48.262578Z", - "shell.execute_reply": "2024-06-13T18:32:48.261961Z" + "iopub.execute_input": "2024-06-14T00:26:58.786970Z", + "iopub.status.busy": "2024-06-14T00:26:58.786585Z", + "iopub.status.idle": "2024-06-14T00:27:32.147723Z", + "shell.execute_reply": "2024-06-14T00:27:32.147054Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7aed56d2b6d64b3699d9bbaf95b219be", + "model_id": "ef11db34b8c2499695a63ddf4f3a568f", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8103c78f7dc5416f8ab88f30ac8ec3b7", + "model_id": "9b302d86875e4982802c79e79e9e24c0", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:48.265344Z", - "iopub.status.busy": "2024-06-13T18:32:48.264945Z", - "iopub.status.idle": "2024-06-13T18:32:48.946571Z", - "shell.execute_reply": "2024-06-13T18:32:48.946019Z" + "iopub.execute_input": "2024-06-14T00:27:32.150281Z", + "iopub.status.busy": "2024-06-14T00:27:32.149970Z", + "iopub.status.idle": "2024-06-14T00:27:32.813149Z", + "shell.execute_reply": "2024-06-14T00:27:32.812657Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:48.949086Z", - "iopub.status.busy": "2024-06-13T18:32:48.948614Z", - "iopub.status.idle": "2024-06-13T18:32:51.719038Z", - "shell.execute_reply": "2024-06-13T18:32:51.718438Z" + "iopub.execute_input": "2024-06-14T00:27:32.815580Z", + "iopub.status.busy": "2024-06-14T00:27:32.815137Z", + "iopub.status.idle": "2024-06-14T00:27:35.575530Z", + "shell.execute_reply": "2024-06-14T00:27:35.574951Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:51.721392Z", - "iopub.status.busy": "2024-06-13T18:32:51.720982Z", - "iopub.status.idle": "2024-06-13T18:33:24.182817Z", - "shell.execute_reply": "2024-06-13T18:33:24.182357Z" + "iopub.execute_input": "2024-06-14T00:27:35.577755Z", + "iopub.status.busy": "2024-06-14T00:27:35.577391Z", + "iopub.status.idle": "2024-06-14T00:28:08.108981Z", + "shell.execute_reply": "2024-06-14T00:28:08.108506Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b4a7eb981184d8681dd2c90e06a608f", + "model_id": "e5cceaa133fb416e9526d4f96306e9f0", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:24.185101Z", - "iopub.status.busy": "2024-06-13T18:33:24.184687Z", - "iopub.status.idle": "2024-06-13T18:33:38.608667Z", - "shell.execute_reply": "2024-06-13T18:33:38.608024Z" + "iopub.execute_input": "2024-06-14T00:28:08.111224Z", + "iopub.status.busy": "2024-06-14T00:28:08.110896Z", + "iopub.status.idle": "2024-06-14T00:28:22.450853Z", + "shell.execute_reply": "2024-06-14T00:28:22.450280Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:38.611468Z", - "iopub.status.busy": "2024-06-13T18:33:38.611017Z", - "iopub.status.idle": "2024-06-13T18:33:42.396373Z", - "shell.execute_reply": "2024-06-13T18:33:42.395781Z" + "iopub.execute_input": "2024-06-14T00:28:22.453315Z", + "iopub.status.busy": "2024-06-14T00:28:22.453010Z", + "iopub.status.idle": "2024-06-14T00:28:26.231134Z", + "shell.execute_reply": "2024-06-14T00:28:26.230625Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:42.398511Z", - "iopub.status.busy": "2024-06-13T18:33:42.398317Z", - "iopub.status.idle": "2024-06-13T18:33:43.874082Z", - "shell.execute_reply": "2024-06-13T18:33:43.873526Z" + "iopub.execute_input": "2024-06-14T00:28:26.233357Z", + "iopub.status.busy": "2024-06-14T00:28:26.233047Z", + "iopub.status.idle": "2024-06-14T00:28:27.617536Z", + "shell.execute_reply": "2024-06-14T00:28:27.616972Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "855b23d9bc934ddd97bbee4b55793645", + "model_id": "99bedd76990941cd911acb7c1cb195ca", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:43.876478Z", - "iopub.status.busy": "2024-06-13T18:33:43.876274Z", - "iopub.status.idle": "2024-06-13T18:33:43.904560Z", - "shell.execute_reply": "2024-06-13T18:33:43.903963Z" + "iopub.execute_input": "2024-06-14T00:28:27.619732Z", + "iopub.status.busy": "2024-06-14T00:28:27.619515Z", + "iopub.status.idle": "2024-06-14T00:28:27.648639Z", + "shell.execute_reply": "2024-06-14T00:28:27.647996Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:43.907034Z", - "iopub.status.busy": "2024-06-13T18:33:43.906831Z", - "iopub.status.idle": "2024-06-13T18:33:50.006739Z", - "shell.execute_reply": "2024-06-13T18:33:50.006165Z" + "iopub.execute_input": "2024-06-14T00:28:27.651112Z", + "iopub.status.busy": "2024-06-14T00:28:27.650917Z", + "iopub.status.idle": "2024-06-14T00:28:33.755625Z", + "shell.execute_reply": "2024-06-14T00:28:33.755125Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:50.008917Z", - "iopub.status.busy": "2024-06-13T18:33:50.008723Z", - "iopub.status.idle": "2024-06-13T18:33:50.064849Z", - "shell.execute_reply": "2024-06-13T18:33:50.064325Z" + "iopub.execute_input": "2024-06-14T00:28:33.757947Z", + "iopub.status.busy": "2024-06-14T00:28:33.757591Z", + "iopub.status.idle": "2024-06-14T00:28:33.814205Z", + "shell.execute_reply": "2024-06-14T00:28:33.813644Z" }, "nbsphinx": "hidden" }, @@ -1038,49 +1038,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07a27617b4cb463c800dfcb35f1dc300": { + "03bfdb95af0843c8aece717b904e8056": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "09885c3733c94f47b1125b4634e9521a": { + "0bd9abd61f7942adad107605ffc7dc75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7278332ec0ef43778ac6336086220ad0", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_20fe4044742d4168966ed35085b22f4d", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1266599ab03844328fb529e55c7c5fac": { + "120f9c7fc27740d2afdd5ab48aa4533e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1133,49 +1127,60 @@ "width": null } }, - "180223668e954deeaa713c9d013cad6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44f616d2fe1e450599c4b20e3adad6f2", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8685eea0977c4a138f06e0f7fc8f2f15", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "20fe4044742d4168966ed35085b22f4d": { - "model_module": "@jupyter-widgets/controls", + "170f627a5cca461e9c670c931f6de055": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2429df20a0424175883d2dcbc3deca89": { + "24bc796586994297bea0ccc4ed55e657": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1228,7 +1233,7 @@ "width": null } }, - "242d42f339d34124b0c45612de0d9236": { + "30c0cf2a5a0141e080fd662e0cb56aaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1244,67 +1249,59 @@ "description_width": "" } }, - "2b4a7eb981184d8681dd2c90e06a608f": { + "32485e464c024c12825ec5f39fbd2992": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b44b21c09f2841a79a576e8128d68709", - "IPY_MODEL_b177f340d4a14ee89820acf6fdd9b86e", - "IPY_MODEL_7f011968278e48b28c69e1b9c619bbe3" - ], - "layout": "IPY_MODEL_3ad92e7e3d8c4780a8f4bcf6a23b3ddb", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63fb187240a54b5daba3fa4abd693311", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_feca83a3cb614b578074893f537289f1", "tabbable": null, - "tooltip": null - } - }, - "2ccc49eb7d294ea29e7c17326644e344": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 30.0 } }, - "3327a8dafe624e288c3a755d1fe586ec": { + "3468c156337a43f8b50846d6445f8617": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_faaec56bb79145bbb3f8a98d43a8186c", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_af15bc39af8e4001972e48bbb8ff470b", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "34c27c586b6e4b2ea09c0458b78e5676": { + "39936a4a72ff4f55967ba78e085b262c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1357,7 +1354,7 @@ "width": null } }, - "35e31fdda4fd4bb3b2d499c72da190ea": { + "3f52d4290b4d4dbca271fa575b69660c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1372,15 +1369,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_34c27c586b6e4b2ea09c0458b78e5676", + "layout": "IPY_MODEL_9d6fc01e5c5049ebaefb6fa4a5b3e275", "placeholder": "​", - "style": "IPY_MODEL_558f5b24bbed46d49edf45532366ba73", + "style": "IPY_MODEL_49ef48ccbc87493f8b87ca4e6aa14ca8", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 736.27it/s]" + "value": "number of examples processed for checking labels: 100%" + } + }, + "49ef48ccbc87493f8b87ca4e6aa14ca8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3ad92e7e3d8c4780a8f4bcf6a23b3ddb": { + "4e9240a76e864ba9a089cc396ddb4168": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1433,7 +1448,7 @@ "width": null } }, - "3c4bec27189c42478074b65f18ac6e19": { + "5572a4d0e40142079ddc616f042bfb75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1486,7 +1501,7 @@ "width": null } }, - "44f616d2fe1e450599c4b20e3adad6f2": { + "5eaa94684cb747c3a28ea9ba6dbca293": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1539,25 +1554,30 @@ "width": null } }, - "47528177d2c543edb024ffb8b6bc1998": { + "601ca9fed097447e99bd6efefc9fc491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_170f627a5cca461e9c670c931f6de055", + "placeholder": "​", + "style": "IPY_MODEL_b894bc36f24d4abea64f2b3a70023d8d", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 788.25it/s]" } }, - "558f5b24bbed46d49edf45532366ba73": { + "60eabac5eb734ad49b38574fa0a1bc01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1575,30 +1595,7 @@ "text_color": null } }, - "6b6081a1f51d4884b8793dd3b58c0232": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_821337f5dcf44c3d8436d9138290eb53", - "placeholder": "​", - "style": "IPY_MODEL_2ccc49eb7d294ea29e7c17326644e344", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "7278332ec0ef43778ac6336086220ad0": { + "60fbd9e8e3a840a590d9972691918b53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1651,7 +1648,7 @@ "width": null } }, - "7747f3148c8842ce82e53bc96072f536": { + "63fb187240a54b5daba3fa4abd693311": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1704,49 +1701,79 @@ "width": null } }, - "780493d3a70749c7a154e6ed3e35c462": { + "641f30bef40c4c68a906ec9a86e0fa07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4e9240a76e864ba9a089cc396ddb4168", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bce2a72b4c3a401999f495cd4a606232", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 } }, - "7aed56d2b6d64b3699d9bbaf95b219be": { + "6d8cdcb377c6446c8f7bebda7f81d883": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7c78b1d0b9cf4847983f32c4f362ae5d", - "IPY_MODEL_7bb5b09be0ad45b2bd3b0ad578949d13", - "IPY_MODEL_35e31fdda4fd4bb3b2d499c72da190ea" - ], - "layout": "IPY_MODEL_a556d3a498ff4604ba0a106882210600", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60fbd9e8e3a840a590d9972691918b53", + "placeholder": "​", + "style": "IPY_MODEL_60eabac5eb734ad49b38574fa0a1bc01", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "7b2e41cdcf7048fc9d7f7c9e57509ad4": { + "80a9c340deb946e9bcd4f63b4d3b4b38": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5eaa94684cb747c3a28ea9ba6dbca293", + "placeholder": "​", + "style": "IPY_MODEL_f427f83296a442888e487519580d4e8e", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 155572.68it/s]" + } + }, + "843d8ab0fc8c4d0aa3b1fdd287698822": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1799,79 +1826,31 @@ "width": null } }, - "7bb5b09be0ad45b2bd3b0ad578949d13": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b2e41cdcf7048fc9d7f7c9e57509ad4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07a27617b4cb463c800dfcb35f1dc300", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "7c78b1d0b9cf4847983f32c4f362ae5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e766070c2a274c7e9727c840de2d4622", - "placeholder": "​", - "style": "IPY_MODEL_3327a8dafe624e288c3a755d1fe586ec", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "7f011968278e48b28c69e1b9c619bbe3": { + "99bedd76990941cd911acb7c1cb195ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a40c5f3cca9d4ccd9bfa4edf609566ce", - "placeholder": "​", - "style": "IPY_MODEL_957b3b8943754954a65071269c773939", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d8cdcb377c6446c8f7bebda7f81d883", + "IPY_MODEL_3468c156337a43f8b50846d6445f8617", + "IPY_MODEL_a28cd6c1fb4e413aa958757028592739" + ], + "layout": "IPY_MODEL_cf87bf590796485b83f3cb3695526c25", "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 155101.82it/s]" + "tooltip": null } }, - "8103c78f7dc5416f8ab88f30ac8ec3b7": { + "9b302d86875e4982802c79e79e9e24c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1886,16 +1865,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6b6081a1f51d4884b8793dd3b58c0232", - "IPY_MODEL_180223668e954deeaa713c9d013cad6d", - "IPY_MODEL_dfa6c4ab3ab2423a805dc6978a1ae114" + "IPY_MODEL_3f52d4290b4d4dbca271fa575b69660c", + "IPY_MODEL_32485e464c024c12825ec5f39fbd2992", + "IPY_MODEL_b256da8983d54af2b9e4ceef31968851" ], - "layout": "IPY_MODEL_7747f3148c8842ce82e53bc96072f536", + "layout": "IPY_MODEL_abc6e5aaeb644735877c7c01113ee577", "tabbable": null, "tooltip": null } }, - "821337f5dcf44c3d8436d9138290eb53": { + "9d6fc01e5c5049ebaefb6fa4a5b3e275": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1948,7 +1927,7 @@ "width": null } }, - "850a549641524b448419ca15180f5c04": { + "a24505594ee2402a8d205d1257ba22c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1966,47 +1945,7 @@ "text_color": null } }, - "855b23d9bc934ddd97bbee4b55793645": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8b81630b7cfc485c9aef92d75cff495a", - "IPY_MODEL_09885c3733c94f47b1125b4634e9521a", - "IPY_MODEL_b561c3bd6770467d93e1d30dbc992e18" - ], - "layout": "IPY_MODEL_1266599ab03844328fb529e55c7c5fac", - "tabbable": null, - "tooltip": null - } - }, - "8685eea0977c4a138f06e0f7fc8f2f15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8b81630b7cfc485c9aef92d75cff495a": { + "a28cd6c1fb4e413aa958757028592739": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2021,33 +1960,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3c4bec27189c42478074b65f18ac6e19", + "layout": "IPY_MODEL_120f9c7fc27740d2afdd5ab48aa4533e", "placeholder": "​", - "style": "IPY_MODEL_780493d3a70749c7a154e6ed3e35c462", + "style": "IPY_MODEL_03bfdb95af0843c8aece717b904e8056", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:01<00:00, 21.88it/s]" } }, - "957b3b8943754954a65071269c773939": { + "a9bdb34214f6431aa123433e93721d82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24bc796586994297bea0ccc4ed55e657", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_30c0cf2a5a0141e080fd662e0cb56aaf", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "a40c5f3cca9d4ccd9bfa4edf609566ce": { + "abc6e5aaeb644735877c7c01113ee577": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2100,7 +2047,103 @@ "width": null } }, - "a556d3a498ff4604ba0a106882210600": { + "af15bc39af8e4001972e48bbb8ff470b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b256da8983d54af2b9e4ceef31968851": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_843d8ab0fc8c4d0aa3b1fdd287698822", + "placeholder": "​", + "style": "IPY_MODEL_0bd9abd61f7942adad107605ffc7dc75", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.45it/s]" + } + }, + "b894bc36f24d4abea64f2b3a70023d8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bce2a72b4c3a401999f495cd4a606232": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c7bd9485cd934ce3b171fb2e7abc72b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f3dcc2f4de32472fa2584c92a14f6bf0", + "placeholder": "​", + "style": "IPY_MODEL_ee1af936a30f4cda9d271f4e74535fc2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "cf87bf590796485b83f3cb3695526c25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2153,25 +2196,31 @@ "width": null } }, - "a9dcc453905e4466ae19b0d35707c5f0": { + "e5cceaa133fb416e9526d4f96306e9f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7bd9485cd934ce3b171fb2e7abc72b1", + "IPY_MODEL_641f30bef40c4c68a906ec9a86e0fa07", + "IPY_MODEL_80a9c340deb946e9bcd4f63b4d3b4b38" + ], + "layout": "IPY_MODEL_5572a4d0e40142079ddc616f042bfb75", + "tabbable": null, + "tooltip": null } }, - "ace18bbc5c014fdcaeb868209f3a3255": { + "ed056681a76042b1860b846c89d27382": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2224,56 +2273,49 @@ "width": null } }, - "b177f340d4a14ee89820acf6fdd9b86e": { + "ee1af936a30f4cda9d271f4e74535fc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ace18bbc5c014fdcaeb868209f3a3255", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_242d42f339d34124b0c45612de0d9236", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b44b21c09f2841a79a576e8128d68709": { + "ef11db34b8c2499695a63ddf4f3a568f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dea3b61689a244708b5d4312b7a52605", - "placeholder": "​", - "style": "IPY_MODEL_850a549641524b448419ca15180f5c04", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f3052f32a2ec4a0ea2b74a0af0145a23", + "IPY_MODEL_a9bdb34214f6431aa123433e93721d82", + "IPY_MODEL_601ca9fed097447e99bd6efefc9fc491" + ], + "layout": "IPY_MODEL_39936a4a72ff4f55967ba78e085b262c", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "b561c3bd6770467d93e1d30dbc992e18": { + "f3052f32a2ec4a0ea2b74a0af0145a23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2288,15 +2330,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e3d0a97220b543719dab4ef99b68dcba", + "layout": "IPY_MODEL_ed056681a76042b1860b846c89d27382", "placeholder": "​", - "style": "IPY_MODEL_47528177d2c543edb024ffb8b6bc1998", + "style": "IPY_MODEL_a24505594ee2402a8d205d1257ba22c9", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.50it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "dea3b61689a244708b5d4312b7a52605": { + "f3dcc2f4de32472fa2584c92a14f6bf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2349,30 +2391,25 @@ "width": null } }, - "dfa6c4ab3ab2423a805dc6978a1ae114": { + "f427f83296a442888e487519580d4e8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2429df20a0424175883d2dcbc3deca89", - "placeholder": "​", - "style": "IPY_MODEL_a9dcc453905e4466ae19b0d35707c5f0", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.33it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e3d0a97220b543719dab4ef99b68dcba": { + "faaec56bb79145bbb3f8a98d43a8186c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,57 +2462,20 @@ "width": null } }, - "e766070c2a274c7e9727c840de2d4622": { - "model_module": "@jupyter-widgets/base", + "feca83a3cb614b578074893f537289f1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 872907eaa..9cdf523b0 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:52.309486Z", - "iopub.status.busy": "2024-06-13T18:33:52.309310Z", - "iopub.status.idle": "2024-06-13T18:33:53.720194Z", - "shell.execute_reply": "2024-06-13T18:33:53.719496Z" + "iopub.execute_input": "2024-06-14T00:28:35.971931Z", + "iopub.status.busy": "2024-06-14T00:28:35.971468Z", + "iopub.status.idle": "2024-06-14T00:28:37.103504Z", + "shell.execute_reply": "2024-06-14T00:28:37.103002Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-13 18:33:52-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-14 00:28:35-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,15 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::845:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "185.93.1.246, 2400:52e0:1a00::1067:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... connected.\r\n" ] }, { @@ -129,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 6.05MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-06-13 18:33:52 (6.05 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-14 00:28:36 (6.49 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,23 +137,16 @@ " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", " inflating: data/train.txt \r\n", - " inflating: data/valid.txt " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n" + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-13 18:33:53-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.133.25, 52.217.112.1, 54.231.131.17, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.133.25|:443... connected.\r\n", + "--2024-06-14 00:28:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.33.97, 52.216.52.185, 52.216.36.193, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.33.97|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -181,10 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 96%[==================> ] 15.71M 38.4MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 39.6MB/s in 0.4s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", "\r\n", - "2024-06-13 18:33:53 (39.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-14 00:28:36 (203 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -201,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:53.722822Z", - "iopub.status.busy": "2024-06-13T18:33:53.722624Z", - "iopub.status.idle": "2024-06-13T18:33:55.029228Z", - "shell.execute_reply": "2024-06-13T18:33:55.028730Z" + "iopub.execute_input": "2024-06-14T00:28:37.105895Z", + "iopub.status.busy": "2024-06-14T00:28:37.105531Z", + "iopub.status.idle": "2024-06-14T00:28:38.321150Z", + "shell.execute_reply": "2024-06-14T00:28:38.320629Z" }, "nbsphinx": "hidden" }, @@ -215,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -241,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:55.031864Z", - "iopub.status.busy": "2024-06-13T18:33:55.031392Z", - "iopub.status.idle": "2024-06-13T18:33:55.035029Z", - "shell.execute_reply": "2024-06-13T18:33:55.034497Z" + "iopub.execute_input": "2024-06-14T00:28:38.323695Z", + "iopub.status.busy": "2024-06-14T00:28:38.323277Z", + "iopub.status.idle": "2024-06-14T00:28:38.326753Z", + "shell.execute_reply": "2024-06-14T00:28:38.326272Z" } }, "outputs": [], @@ -294,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:55.037130Z", - "iopub.status.busy": "2024-06-13T18:33:55.036748Z", - "iopub.status.idle": "2024-06-13T18:33:55.039836Z", - "shell.execute_reply": "2024-06-13T18:33:55.039288Z" + "iopub.execute_input": "2024-06-14T00:28:38.328721Z", + "iopub.status.busy": "2024-06-14T00:28:38.328409Z", + "iopub.status.idle": "2024-06-14T00:28:38.331360Z", + "shell.execute_reply": "2024-06-14T00:28:38.330938Z" }, "nbsphinx": "hidden" }, @@ -315,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:55.041839Z", - "iopub.status.busy": "2024-06-13T18:33:55.041419Z", - "iopub.status.idle": "2024-06-13T18:34:03.952944Z", - "shell.execute_reply": "2024-06-13T18:34:03.952460Z" + "iopub.execute_input": "2024-06-14T00:28:38.333257Z", + "iopub.status.busy": "2024-06-14T00:28:38.332910Z", + "iopub.status.idle": "2024-06-14T00:28:47.046580Z", + "shell.execute_reply": "2024-06-14T00:28:47.046028Z" } }, "outputs": [], @@ -392,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:03.955457Z", - "iopub.status.busy": "2024-06-13T18:34:03.955169Z", - "iopub.status.idle": "2024-06-13T18:34:03.960746Z", - "shell.execute_reply": "2024-06-13T18:34:03.960235Z" + "iopub.execute_input": "2024-06-14T00:28:47.049048Z", + "iopub.status.busy": "2024-06-14T00:28:47.048699Z", + "iopub.status.idle": "2024-06-14T00:28:47.054330Z", + "shell.execute_reply": "2024-06-14T00:28:47.053864Z" }, "nbsphinx": "hidden" }, @@ -435,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:03.962713Z", - "iopub.status.busy": "2024-06-13T18:34:03.962386Z", - "iopub.status.idle": "2024-06-13T18:34:04.308689Z", - "shell.execute_reply": "2024-06-13T18:34:04.308132Z" + "iopub.execute_input": "2024-06-14T00:28:47.056198Z", + "iopub.status.busy": "2024-06-14T00:28:47.055946Z", + "iopub.status.idle": "2024-06-14T00:28:47.391996Z", + "shell.execute_reply": "2024-06-14T00:28:47.391464Z" } }, "outputs": [], @@ -475,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:04.311151Z", - "iopub.status.busy": "2024-06-13T18:34:04.310804Z", - "iopub.status.idle": "2024-06-13T18:34:04.315289Z", - "shell.execute_reply": "2024-06-13T18:34:04.314813Z" + "iopub.execute_input": "2024-06-14T00:28:47.394377Z", + "iopub.status.busy": "2024-06-14T00:28:47.393978Z", + "iopub.status.idle": "2024-06-14T00:28:47.398421Z", + "shell.execute_reply": "2024-06-14T00:28:47.397870Z" } }, "outputs": [ @@ -550,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:04.317247Z", - "iopub.status.busy": "2024-06-13T18:34:04.316920Z", - "iopub.status.idle": "2024-06-13T18:34:06.651367Z", - "shell.execute_reply": "2024-06-13T18:34:06.650683Z" + "iopub.execute_input": "2024-06-14T00:28:47.400541Z", + "iopub.status.busy": "2024-06-14T00:28:47.400253Z", + "iopub.status.idle": "2024-06-14T00:28:49.663343Z", + "shell.execute_reply": "2024-06-14T00:28:49.662655Z" } }, "outputs": [], @@ -575,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.654380Z", - "iopub.status.busy": "2024-06-13T18:34:06.653629Z", - "iopub.status.idle": "2024-06-13T18:34:06.657823Z", - "shell.execute_reply": "2024-06-13T18:34:06.657340Z" + "iopub.execute_input": "2024-06-14T00:28:49.666473Z", + "iopub.status.busy": "2024-06-14T00:28:49.665725Z", + "iopub.status.idle": "2024-06-14T00:28:49.669864Z", + "shell.execute_reply": "2024-06-14T00:28:49.669380Z" } }, "outputs": [ @@ -614,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.659826Z", - "iopub.status.busy": "2024-06-13T18:34:06.659500Z", - "iopub.status.idle": "2024-06-13T18:34:06.664548Z", - "shell.execute_reply": "2024-06-13T18:34:06.663997Z" + "iopub.execute_input": "2024-06-14T00:28:49.671966Z", + "iopub.status.busy": "2024-06-14T00:28:49.671663Z", + "iopub.status.idle": "2024-06-14T00:28:49.676633Z", + "shell.execute_reply": "2024-06-14T00:28:49.676112Z" } }, "outputs": [ @@ -795,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.666632Z", - "iopub.status.busy": "2024-06-13T18:34:06.666311Z", - "iopub.status.idle": "2024-06-13T18:34:06.692017Z", - "shell.execute_reply": "2024-06-13T18:34:06.691585Z" + "iopub.execute_input": "2024-06-14T00:28:49.678592Z", + "iopub.status.busy": "2024-06-14T00:28:49.678328Z", + "iopub.status.idle": "2024-06-14T00:28:49.704133Z", + "shell.execute_reply": "2024-06-14T00:28:49.703584Z" } }, "outputs": [ @@ -900,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.694213Z", - "iopub.status.busy": "2024-06-13T18:34:06.693893Z", - "iopub.status.idle": "2024-06-13T18:34:06.698196Z", - "shell.execute_reply": "2024-06-13T18:34:06.697686Z" + "iopub.execute_input": "2024-06-14T00:28:49.706239Z", + "iopub.status.busy": "2024-06-14T00:28:49.706068Z", + "iopub.status.idle": "2024-06-14T00:28:49.710394Z", + "shell.execute_reply": "2024-06-14T00:28:49.709920Z" } }, "outputs": [ @@ -977,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.700179Z", - "iopub.status.busy": "2024-06-13T18:34:06.699872Z", - "iopub.status.idle": "2024-06-13T18:34:08.088769Z", - "shell.execute_reply": "2024-06-13T18:34:08.088169Z" + "iopub.execute_input": "2024-06-14T00:28:49.712383Z", + "iopub.status.busy": "2024-06-14T00:28:49.712092Z", + "iopub.status.idle": "2024-06-14T00:28:51.077199Z", + "shell.execute_reply": "2024-06-14T00:28:51.076595Z" } }, "outputs": [ @@ -1152,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:08.091045Z", - "iopub.status.busy": "2024-06-13T18:34:08.090855Z", - "iopub.status.idle": "2024-06-13T18:34:08.095098Z", - "shell.execute_reply": "2024-06-13T18:34:08.094640Z" + "iopub.execute_input": "2024-06-14T00:28:51.079278Z", + "iopub.status.busy": "2024-06-14T00:28:51.079087Z", + "iopub.status.idle": "2024-06-14T00:28:51.082992Z", + "shell.execute_reply": "2024-06-14T00:28:51.082581Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 274526dbc969d62790ecc861e1a4c0fed70c8ac5..c9dde693e45342761189f3e532005dfd9d27b654 100644 GIT binary patch delta 62 zcmX>tep-A(E~BBDSyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Rfw_U9p^0Jg=6Q^|TmW@>66F8@ delta 62 zcmX>tep-A(E~8;muBC-VZeg*$fn}1pVGde zBx8pk3T76hkd-F2qpVTH0*O@oV=-hALPmnpk3=GSzWwbpbGFu51@&*wFfi=1_FC&* zYdx3uea~0!IqIwT9QE)o4x>tW$Ahz5Np?JjEPY5qij+0=&U@*(3yDyci6)c^8Xo=I zVJ~0PelrZ#jDEFCjc(kvY4pa;CyhR_YvZWey=HXOt}{k2-h9Gn->$VIvun+0?d}i% z=Y#M5;xnVcp7kTXXVd7V#gj*G>^ZJI>Z-xo6HeRQoOXG-{`xC-T)u7lbvxa)Y1{VT zu8pHR7B|-63b*5Oe6aJ%9o@L#c7$~Gw(Zwn>vmk1)3u|A7S~qWcDL7DF<3YH@}5us z-&Po{ez_jK^VYq6yqE7ib#%(!b)%fH`ZnZRcFnCXtOr|Ri>ZW_`$1fhzWG#%fOkj#E1XV68irq>j zrI(7u$#lg*-Em1+7UI8hBtSI^LgMVbG)G`6CalS&~eJknl$kCk=B(XdM_)mMIY?GpW*`Zez#n z-*{+aLuS~7VH{@%57B8>5hD9aMIwHKU_7~c;DdL?JIXy=huph ztdmF~6Nfz}>jRe2$uS-nC+#i!t7FFxKU7`1&`3(Gwwmkgl*r0iYNW?bSoa=;RP8nU z2FJ9EX?Xnjz9Xs|290Hr@?d!ioD0o`b%Fj3=KGeoVM9(pZ8|n9njxuC!+3b5{?4HfRdV>h_kKhNND3#n|5R>x#B#eXFY1 zB>`H_N`;8yO@f;2iO53QWV3D;_gBaF7gKwdjffm4Y>05wc}^7t+VNijjvb7H>I%JOU@deUPo?4jLvv# zoKOkyAc|`S+Mp3%8 zg1IHNAfmJ!aD{#7cHLvuMdd93a9i7-K2{ykaBry3DT3ob$%J_hf5C(#K64&CpWdqE z4v)@9X+0HOQXeFXMrSUR_C79utQk+$2B}D3PUMb70Z$e1z!}Ll@E&({Vc~YqO+#9j zmc?VG?f0LmPOMX)oF!{%fUGd+Ck-ll32=yH8EsepWQjc*mONt|vI75r5hgzaESTgcpI6&AV zXt~B|O1-CyG;zEA64Z<9E=w;ug+*1sazPmjQ25fg^-8 z+`{?6em7%;Myl1864X}6c?69RoI2?g|D!I_PM7ApRdWj14@C^yB8F;m(DcM&zF+2e<(Z7m7j}V1$4Tw%7{}`p#ez_qY&>&>?!(DVq`lQ{!XfeG4L7%5_S)E)F- z;o5z)x}>;12!^!VS#@M>L9QG&EhtWfhOBidva$y0sl(+i56Xj7GIs_U98@#osb&>r zl9B;*-OvMx5^Oqt0^3TZg!c&!K%N-FMCK+eaENl0}&!|Dm=()7q|gpQa_ z8->yh!m!3e(gEgVEXsY{_YS&QdD*3Wudw7nFs@U>OB9>u~THD2D;6FIBKJQXc z9(E(e%t^?7+S5E!ZCj`dC6+1l3Kyhj!L;)8%yxEk>DUfHuM`!Wz@|+T=y{ZFk};WQ z5@Fa9(mtkPVnX)9X{n~(o1##`g-Jjz)4zg z3O*5-yJwrXnzh0%axaR7UC?$Sii;NwPpz@NY)A?k;vnEzT*kpF)GB=p9#(#$5B(cO zMB3s2ke|b+B!j{Q>s~S_6GU=Q;va;uj)r)hr3sxXItw`R+9k{;QK45$zx!ATIlgt{E`JStQR($vG0s*_U?7Va(1 z!m99C>Fj8}^1&U@zoryYUw5I%f55Gty zhvJ1_fciz`G{}^Y^=YUE8aX~P6n?-j7TPVwC!aI~6dm5F4A5eoBZ^KG70eJMvJsIK zN;F+WC-ilS8s#F;lU7hrR522D8BQR01cK@~v11H{@D-L7J@yLA+8%rVxMq0bI)}}| zo`Dt(@^WacgP?iXl}x>CFM9Gou@fc}^)pRjs+kB*pwN%POIM_$Mkp~xRS?-9s$Qs1 z!|iE>vNn!0>x}6$b*RE~HH~7$MNwkv<-4$A`|M4_ZCkn6VwTCBw9F9MWzQ%tXfQ}Z znHBLM^-C}iYznhd)qV=I!kxTDy-Lq<7G{N$vP)XmltOB6xwG2#uJ``^9g{y-9CF#$ zu2}uad6xm5lX;h6-eq`u_iGl0^De_mjgEPjVcuo<_kEyQB+a`FD|b5PU50s=;a~p( zPGA3;cNvy`f2CBfZI|`-=3RyZ?TvYtVcun!cNykghIyA^wh1=xGR(US^De`@%P{TW d&btirE`yizE<@Lk`R}?6myYkcb$H|9{{*ukP1gVb delta 13369 zcmeHNTdZAG6?N}>wNQmpDO7>pvnf=RlyVk4!3Yu~kf1`-nBxaZ`H&BOeDDJi)W(>Ii3Vb#e5g3~Ip^Nq+rU}=@L_TqnvmPo zHTPU|jycAhvv=Kl`knWl{@7EeQh$>*=B8bHHWTYL_4sYLA|b1!vvb-zPo0#B5*}qx z$+4sVJoUw0{om|c+uyoxuD|Wj+WtTGUC___F798lZ$tZFsLt&FcHc$)8T{Zd4!!f% z5C89n@A>jCSKi=uT%Wej@4RtGf6MK?{@u6t*4%RA9=Cn|=H1)pZ*qI~rrp8qj{O(* zpWlCE|M~6TKUpM+8>)5v zuiy5mH_AYN^^3j!+YTH$b?CtG`;Q+u4-a(i+q>__=P&*G^A7d;FCARh9~@k}D!3gX zeSUuLZntAkPP_Y0AAHy8V=qQd%=f=|@X|Np-lN|+G`P4i)-kK7@-bQAq_!@46RBb< zC`PjGzjW+C`4D;LtfTLF?Bx|rGC@o2lh-*49;k8DDrd5##8VU0@Verm?z)$M`ui14 zkXblxjOX48iccG6rQ%F+EeNN>>xzfE>mGU%*F|ZBOEFu+ve39T(m-=2+%dzGl*8+a zhq~*odwTULO^kwZ#eo&{6WtX{Yo6G4EM&!E0fJvd#)3 zsB&59=mZ(wq)Lan4?FYu3r^_;t^zS#OrsQ1GZ(eCl=76MpegltJ$kSyoN@i`w$uJp zom)NilU3CP_g6n?|8}^(qTxhjnxdmBP+^icS)pdA?1@fM1UWeVk^1J@Ih$A}+QuNY z;7S?q5@U+Ez+JXvaHKbLf7K(2=g1ShOiBpJ95F6Z#|Y@r;y2hfGY| z8bSzDi3?AG4&7Fl)oTaG*3}PH4N{&Z<8yGvi4?gfEU-kBl%6YR^#EsoUiAuw+q*W- zkh0z5IMu%I`*p98Su2VRmIk@QlQvdJMGcF};7NJz0fvhHUAm{KMtRC?+K zQ;bU8A|h)Bzk0TMq-toyS*Hof%n9j(7XWk8ItUn2OpF~V*d01jHrqwy&TD5@v{(MH zzF@Opo5bfX+q~zx^|#)-u~{FouoURB$QhA{Hi>kF${a&`XSFL-vy0CrqoS8TG z439~pzMudS5iLjkLi~JkiBLoB;DI{;wuY(9kowM;=!KHOL?LoUCP?Q=6na4aUEf#r zkhZ}}n*$O+u%Hb73gg5nVl>KN`+?O+ff3vac3C_3c)hh~w{v83`}pJaTYJnT>H%^e zVipGFNOf2VQU$?sW~21`9;-h++e0oB1;E%KxnNdX#;nN91QL9-u6^GIR1Hv{0>3ty?vZb~klz+2-bPmF{pITM02NaCD82^88x z2fVk_G?y$&LEOTB^kCI`~E(j7i(HUSJr)R+~>C%%H?GCeZ z?$7mkJxN0X>wri*!c`EaUP+Q6W55Gh5B|_ejb66WGtEG|%8G!D1w&B$C86fbY*vk#tz>qQ*>=2I(I#i=sDZ^0xe$@Kq*An6 zZnD|-u~qe!IT<8DD+3$>30JK|GY_SSY*QIM%@Ta|NTkVRFuk`5>?Lf1ykVJYWJ}6vNO>*9+3es9 zTR&JelfS~+F{PEhV2HHm-che_lJ>v_-Vw9|z0N$1DrTdy0K0LqKxx9m6Hu#0GXZh{ zWMkeT0C$yxI83i$sPQrJsl}i+U1P@UK@iREq)x=_lIHt8iyiP(>AyL_K?3Lba z5qpyz;^YMO<^UArDyofy@(T$9675-{=n`CvY4E@+HGJ>7Aer%p$}+(~T&PwS?U@J& z7_xUnY7JT&2u3sq;5770fE~kQ8q(1riAuL%{xioiaBG(5<1X zmB~s}cfk!ZRD}?Q&rI?-B7;V7=*8|olcg{bGAetcq0k`Mv`~35Lm#esDdVT0Nb3kx zv$7;;isoXdIb9g`Yh8j)wmV{jvRx$T);SCw6o?s-a0$RsC~W9%Vuont!L-N!SdXj6 zoQNnaJOPGU3U56$gH6VP)J0HGw)fY^DhN?Sm_(6axGutT^wycfm89_hdclLqR+AY* ztYER-cBEo0G~nV_4HSSTELZ9pCVa{!&ftk=2=?KiZv2-lhC2h48(s8m`(r(*2^NA*ch&)Ev zkO~-I5Q28ndo&?gFhqllhXzg55{;(^@Bn|Aly{O6@U6f^6tYt;Rtk)E(03!Llkgfb z4iF@QqgY^ah#G7WzOfS}%Ofr;8eZVCO&jf!#*9Q8a>x>8R-gtj8y(Z#bkq{%F%TIE z$X;PeI0_AhAz!WbmqN1~HHD-+iStS?w#Z^7w@$EFqmu@~KvQ8>3iU3GNtg_9sR*FP z;zD3C&f*=*OKU(B36n_$ooRVa7^~urF~|%jUDXXJ?_NY?BzHPsf~SZ^Xwy>pSTfu` zdP{vxuVA)wWOKXq3-xIYX1YLyieM=sz*3G#%%HJ@Nt$8cyD+i??2xjIGe{=P03!Us zR1{f?Qt#0~4hJDal=U#z@evJ$q!#)NiyMehhp7%`4`|W+@aR$jS^9!erWQV6G!yyO z?wNDu&@^H~7zrl+TtGo|kBh{l=(K>T!L}DVafSJ>fSSPUSaWpGoodI-3Vg+#1Ny7Dx|`NtlV-TNTeU#I`P7-6EpmN z|9I=f{Is0yj1PQae(HtU+rz@=;cWKUnKrG0u%|euUkc^^KZ# zc;^S~iDu0qyf***DH&1_+Bt8*pAN!gUgt7mZht{95k$I62us#Qd-yeK&q zQKS)Oy!jaW^Q^Ph2mDQSqzri}0D3R6UWmrAnNw>Jmc|nkQ*XkwTLmubpAvWxdnBRE~40;wc*$V!#)kS0R<*(GTMF z`Nzj+Zq8qtb-~r-wF}7_vciU{jSDtpBfLu7jQI4Avu5F`g=X2qH<=l(|6~5}=dAh8 z7Z1LFe($;G9_{yd(gBsNQ(987-q*r8V428q0L)EIU1F!SPg6H!eIgRl;c&uctBP{O z!+7~wVCwnCRMZ~oJ%08Z7tTEKr7wT=LJNV%zb=id+B^T~aQzYXvA)&NgvAGk%O7Mr zy$@t$CGL~W1Q7b-C1GAhQ{vg0@v(nTy<1JZs+gPwXeIafF$KgGXM#3jiM5vp_EWH> zm=a^v&c%X%FgwAEFqpbmIj53Vq-xb2zV+Yvxt=!HRZ}Ae!#(fJ@9VrQkzx(es_Ezy zDP)4=a3i@jd3LE7Mcu5N#y-i9Q zEwhczQCuOjQMdw`qHB}|F!|4Z#UAR5AWsF_W_exco8b`Am}(_ZM5ZObI;DkD6*7@6 zC!-*9D#?hJea$JC;o9%n?f~wyiDNI$I>?-HM(Uu2#RbTyv_f~z34&Uf0kXN)iq;8+ z*%kD&xxPR@=l2!gH)oEpjG#uoxz-+)bLA97Dr6 zFeY22UnNAOwHO`u8Au>_pLfC_t>C(YNg6?NnGhQ_>+o&G&h@RDOK#mu?7j{Wiz5d` zjDd)Y8cKon+Cs@lWa<(6j+`h(;b;K%iqnH+=v*jQbLOVPgO7l+6V(P`GQ=}kLf0_{ z;Yq2eCJfMU@~!#W02;N$!p}BWPQ%T&+1VZ+A(%$U7yP(V4mhWQLU8Z`9^h9vj6@oJ z81Ds)7~!LGCy`0C!bH3`M?D#X0)Qj)2wS0UWCO~ zS!jeEcE7?tdq8fVA2BkKqZGmgr_qQH*;Qw>JFxULp{ zh4h}+`QIXE0G0)A0H;H$j4p#PcxMF&1SY?HfVu2}hw6n8iDHs?b!l7^ayFt|(zK#i ztLX5rr`VHytLBnkKYp5hxYy8ohj6L{*k5Ie$onLshhC=SqFaXEPDw@ZW==^`NYX3Z zXqskF)L7F^g@kXUC=@IfL_zt$fl@jxq?tLe#Z06nzWxLKoqJA_b8q49se^MbcW~jmXMOAO zd#rVDT;INaefzh6JfPBrzvn zbzp*@501AEOpoh{81MhW^yrnzyMw$W9-Av8v(-AcP%6nrF$e7}C8vTcI+yYF^WukM z9+XYBM)E~5<-nn`Rg`D9*|3qb{!G-Z;d2J2XpX49O_RnnmTI=z3q z^p5z;q#Jqo&yU2JZr~xlIsN?6P;83qtl>bdw4jQu-W#7JlF-A=kBjZ`g^BpCm>F)~ z1S^}wJF*E(NuvNQwQNj_qMd%+VSxRgtY|>u7xFi1-sS*gtH$ z_Oeh%_m4N6{jvDwJmT%Ex7l#?R4F8>(GP8{lv)Qit0r)^E~chaa++c+!D{DR%`zwH zii+deD|oFLni#VwjtXaTF$9YbQqKAulCwOVeN!A6=5J3AjBkBK{A|*Vjx^-F7yH^x z;fAa4Oh0=f$RB+9)U)S~J^%b8^J82}bPc&_lsiUFjkR8k1+|)!T4gr#Dui5}sZu*4 z%uuwlq(D+-i$7Yt^5OB|hr~;h%bnJ=V~G0L!i(;rBgT2wP+yhl5{%TfoR6uHG!Z*@@K>rx~KNrosmV(&52 z9GZz)Ede$wO&9#iDUu`LG%B0f7aetMO{+zrwpaM-1s=Zlujv!>Ufe|{r-qOIdwOu@ z$Z&4iVmu>RtCFqgt!>fQs*@dGJ}oYZqs11ME_hYI0W~o=Bw3YSmgZN)3b+94MfKq$5=sb#WL*BS(}N3_&1_qS4OO6fuJ#*!fV6ug#XW%JWN2 z{2DaTi95Xb3V34wsKbr-gc=V1Mw~dIr8#{UU?EkO!Lrdd5m_0Eu?53M%~)W5_}y!F zsV`A2R&vp;0E;%d!VJo@3S+aT+-W)H|ZLz#DjtW!CA2V|Yp{2ItgX~`L> zQjLm=s$lgPkZvlz8spUxWHaxn1Z}GUibw{9zo8OiKo>!bYPflLYkRo-ws>HC{5kO) znp}V{HpXRqY|xq)lag`-NKwQ*LRbDVnfHPZ|GZC}>BfHjlUtu2UN{7D@eayPrI9p= zJW&j;XpUM|)s#uAWafnxWJ|k1#Xy&9QZ+W|ZG&_NC;7G-K%uR-CCW-vH9k@*_SvVx zNIHz_p@n92Vh%52{JIgL0dlzf32}VZJUeYeFa)SUIHQ7cLfOb?X<-BIPURfqCoANY zgKuD!mXvjtY-=7mfPSvhNDY<;6e5ekV;UM5AcD<6Mr`9aJaa)D9)9uP>Afpa>%4(q zidrZ3j;LMxlsJA;(Mi1~Yq2u8H)jc=AkQWxqqtaIZIf)vcRZT~L0JrLS|F89E*Q#ySIaGk8&UBJy0_(N;V9oK-a>WBgq*c0!n zsub57oV8?7Y*kif5L6ApL*tEd#W`vH$~w*z+Q@LMm~ur~yXcCvI!0*?W+<;KTPL_5 zzHh`6^IqJgvfWGK;LPBafoH4Xr^zgE4q4LyS)pkutouigK?cE_0%D+K17`;)QPVZ& zRMaBzBjZyyroWoZf`b*c44|PzRaTCaA?H>ZHp+iy+~z%Vcz8?J1?Mj^tuyz;fi*6yfFgk0J2N)4+rF^AA7D-sD zK|=ntiZ$uA*_%P{;4-6$OyCq!kbKxIIBa+-~nU~nUZ~6*-DIK zZ6=|qiK$_^!|Ic)#*7Ehc3Do%a&7Cxt;2iY5@)+{m*9KpN%65+YjVf(V{==0dys$u z`@=F9;|kL{_!5}YVzEJn4p@>Y;urX6W`?JUrv#2B{B4Zue4 zlg%mzyQB2u(w=qVF9Fzz+?LXJUL2c6-!$GQQjuk`DMzf*u$fTX9y2x>B$HA@k+F*!8R1Npna#0eB4r7HVU-IOeuGq!EI~oA zAIlTK_G*_?`**4C#oWF_s&_x#sa?2(xlURu)qD4%;QL-3Kd|%l^gZXUK7Huhn-j|B zgt9rI?1tUugz~=A%~I<&CzQZ>73IEjB?)R`L${qMdFOOvqWM7AuG;le!9-$6AR!$vf+V4>F9?zkaVAL{ z!GVgXh@6ozIEXF%IuVgRoOKC>WnTig!#tisl6Nj{o3N=mk-&yC}b4T zaA2in&@xhuG6++H^=`hgd1~**V}D-!{=UI0k)>BLc+za53r0GH+bN)4=0eu3Q!Cu~ z;#ETwDpiH|kCoUY@02YiiX4TpRps^PHBaq*-d$nm+1%%>rOTD;^iipj^PyH75hIzD z#2Eg%b98mn&v))!_Rd!H8Z+VqCh|UbtI(jxub|b&Bae4SSI^7tYm0%MRMKh9N@$i^ z$C@}uVNI@)gcmFNQ}@=TBgQJ>KqAa}S$S#Olvd0YA z%v{Ur#8cgKi`~ORj?dlJQQrtSp7`jJ#0bT% z>h3`#pb9dy##b*<4~|w>JZn`*K%gV$1O`VMiL!IaYu0)CwXm&8`|L~dbwr-WS3g>G zPc2%3$8Wv5L(RD3`Csjv8b5Y>cggtVwcT~&V{h!dyU&h%ipWD}VqYoBEMhKPauqJ5 z@!@03b%!;u-FFvf8-;NvZyZkEe)`jA?!4=kPuy{))r$vDx8CgJ{Wp%cobKK` zG}2PziATEY22{{u1}aLJ7_AcnsVrrPMFQ-rojbCxJ`k{hwL&$~h%UQiOa_Vx>7!Vk zzNh=%qOUQalekE2Eg&GrVtuqi0#VQ|W_;nx7{Di=>wdRr#vNbyLU+f|2wUcQK6c6S zQXmgcXc#j{fUWSs5)eb_qzeld&FbdQp)+>{fJ{^wJ-#rz;zdU3*;^55S9jmjJ+T;6G-y;Oa8Kl% zK+Mvpq@>2B&W5@st42r+3&?6PjhIsnT^|6;GUDS+u+VxGL{dTPoU02u#i=M4Fp&km zl#zm|p0h}hWf@4~LrU6sS=U%EoI`%5CIuGYnj8zRlMqN2w;sUyp%Iky7b^_(RjZL<;H1S}{m;>x{#{u@S(Yto3x^m9x|u z8nM;7UmIcPWF}VYy)p)Kl*y>d+7_@c2s$EgVqML6;wtEZS;J%P2%zw+!P1b85h5a2 zlvLm)qS+*9EItrxNn!QOM>$db-=q zt~#!UX&DTcvBL{;5Uk!n(z(qECT@ovzDm0|w3X&W97+VF!4oR+}ou1bd zR?i@-6&Y(+Ff*z3iUs6{z%XHfOadY^dX&~088D}Ht$7&>b>rcsF&F8^RxchL$Htqv{Q+yG_QtC_ zYa%NOunn@YZgMl6i)4Zd1Z#@HPn+Va_Y$1ql{c_MxB?6X*Z|u@D6(QKXPTHttQsIL zM?zyutZ3vXFg8NMnN!BPv>vfWaGIH{5m#+6SrL=Sh1kPr!KRZQ&00Crv{%6j*k`i) zmb)<8l8goe1lG<#fdUuDDsqs$V@#@onQ^ zXvCk{Y&RVmdwkt=w6~${7Nv~=!PHbOh}k)k*oE;&)CN1v=`+iRmIHxRVSvFC1z`gt zBUVW~S)?M6lx(`|&TX*rlxSCscaqBMrci;Em@cf_MMZNlZ JUH;;o{{a)6N=E?>a$*hp@X)nZS#P zh%Vy0N~H^v4pa>E-FdiCq4I!%*+pd7MOfinb|8Abz4t%;{}_7_bh$6)X0zsd*WrB* z?=$ntYe!yr?Z{7`y-3D8gZFoS`QB?qh)zcQ@!E=1ZE=;^MUIk6_JvuUImJ!vf|=mNLq%Hs@iO?xoWk&TY3I??yKR-DJoZLB90{}!zsxeqpvor zG@d)TxO=gz72P!TLuOpA3pQxVR-(EwRoL;i+q;Km%fw`hbxtuw@&Rw)Q<1S0p-T`v z@L%SajgLIh{btszJDhu{yJeZS*B!3>@Inmz^YgbaL&@j`tw|e_1{;&sNw&_ja)8A6 z;uYOpi(U#<@WQM#d$gPh1}_rX7ZGhHsm3!u?jD~l$>_jIXyt@Qqf)R!d$QO~wFalX z^3m>zS*zsm!|Zhq}>|6|?lOYL(^0G5a{P?DZyjT(KId`#Nu@wPkg61}h9 zN5C>jN0g(8y2$F7LKTK6=KUiST@0FRIts;5qxCLMzkn!0(Zi85-R0v?X5FK+zEQWX z4zg_29ptY&H#~AxclB`ptMhmE$`&nZc20YNJ_mp#X9~e3VOhwyd5{*#jOYH*eRuXi z<3arK6aDdrYGOJc-t~_sD%C!(OIg+F}kX1pgw^of?C&J zpT<@2K`6$vNfb?FXi)ZEdzm;{>(-6gbFnpKQ_@5s#^40GNZe2k+JVyC00FKJtt1x+R4Osg*8haGg$gm7;8jMJNKl#|^-sBtVtY*rg=Mu1^Yz z40-_&4Jdqb4gtz6DpipbU>A#58H@+U1d*5;&H5bAi^ccB6kF?V0M@8Gah)6f^@Rm3 z*$7>YC8}Cclp12d866@LshaEndb(^}J<777ro)ko7e~iaA68;B=WQ&003f4sSfveX>uDsuQ?;Ux0AOHLDEP z)+XZ^Sp}nfP|8;2*7UfvUJFj3_Y!f=i9ZTsyHW{hB`g>=clpns>Cj@zCZ$AHXa-9# zfx()hgJxBWVm52qx#v@hAI|o+mmXeysgr%9u>X&2^+2+k?$nWn>@#@{!zhEdo`q9k zUwX4*o3c(J*NR8VuvmqP$N|KsYToEpPsL!Nb9us1fVnX+8pZ0&IZ3JcAU(7yuZ62o z_`Gmk^TF`NuUvcY>Erj^2Q_geX=Ah$v1Y*AfNROIg;mf#sxUtFU$PS?!V!o;zMLMa2AgoY!R#uu)@x%Y}B%P{b&6iWEovGD&#UM365Fr(fYVVL_k}?5Yt`jPeiN>$86HY+K5z zwQy}O8{`4u!dM{T+ntID(2>lwN_Z0N)z}#8hU-m%AgBblCkm`|x#K zdWn%`@{PpOkjXwuxG8u`ody1iQ3so{QFuf4jlvVz%i-=z7q|C50$bil7%5FqmzXe5 zq-;V`iJ8oXDbSd)WN(#-o^X_)i-xTa*ewJqOhmtCiaur{v@*_sxegl5Da(kzDK&vd zZ9H(8Wuy4;?U(1WZ}Eh%D_3L2I;dQ& z=Q*rJt&Tjrx^-LU;ng@=St}QsoCCZY=5)-LU^PG^zyUgeA23Ocvp-JwqRL=_in&gZ z4j~X{Ss;26MncsQbJWALz6jWoQc2rj$?4)HtiGP+>XMZTaRaSZ$ZvzOe8j<)p(zJ z7$>b}JiNMfZRb(dI?@VNdlHV$RHS1P6B+a}N7l+J^eWDy*DFuGuloVAn@0UJ*LQN+s{F=tb1~d?>EhEpOrR@p4^t#V z5_gE~%ULtsYQ=?z4a^J%76I1?XO1xnxqyKu#1ITGkpj}OaTUn)V1x?ukS!vjj-*Y zPWkPxL5DHYYQ)2FylQy;JKeXM5#25t+(m;^#<`0IchTT38r(&L z`|1F zQZZ!BA)&^UEif@_Ruqx|nS~Vq2w}AvcGa+Y^=V{)B?PcuD1m^{A%RtiwPfKnv~Ryw zt9?V=qi@ync4HNU?4ku52y^so6@x|}n8--vc73-#)vcW$+@5HNrP0Pol_{b$=+Q)P zjL{+@$AEjY?c>S8*>3G){ji$R84Q~M!e&Ho3CL^dgFwU5iT2HIeY(4MZ1Aq?U*qz2 zz1Y9N+D^UDzTd8gjS84NCk_rBYSu2BAT8*0zdF(@RiCHG?V{vW#+v)DZxxw>l)U!gnxKl&Zqix%Q z^q|QuDNBk)5kgkddlzFek}^RQD*mClGclv0Qy7HPxu9po%8`^(1K7-l4#13Ja5}}r zsvsd*;{+-w*a5N&F?IJp*RQL7?WLVsG~saBJr2?S{9a#}RMOf@+O`*e)YFaR6a}ly z${KVblk|xwl^CY7v^$u;-b5Flo>fo!ESjBfX0I*ZTDh@w zw(>e5-@r6tAri1iV-X7#MZ}GYyfz;8DHe8N*qPt6&$GLG^SgWV&t9I;d@CZ}x^s6; zMGl(FLhveOFCh~JCf4MfXa${1UdU`$lcAba&)+X4^z4z84XCYE#GM%NWD!UM$Ntr) zYJ03`c<{N}+;5`~rZYxoiP|y)GN_Ii1KJE7xPIqjeQKDVX>J^AZ8RvJ4TMD2I3}=y z&Uystl1KZqwtqO+EDY0k_5EroSxXqQW}mHeL}gm%k_(Il(#BtR-#*^FuEyuMuwSo_ zPcS{G*ZMd6^`zA%E7lPcgDX0vm<&M#C|eBDsaY_^++hIfJc*4UF*}aP-b52(1RRP8 zFRC_VPCiC03}7({2cHz@*riU;Cpo-wad>;Wd0H)vwC~psYTb_Y?F-JmR;L7xSt)YX zN|C#4jrJ)gijk6^C6Ppsm4nR6*>Z>k#-K7vqd*YR+vUrf*SD^2T)cE;D~@>d@9Ht#mT#{1deSV6V--18`o}9x=%-b4 cZQTAxF+7Ulzkh+F82sDF6Tf diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 3fb942afbc3e972975a96a42dd4e075d3bd37b9c..9140c9247a46d716f1901cd49494ea3efec1c52a 100644 GIT binary patch delta 72 zcmcaQi}UI%&J9;M4b9Aw5{;7+E%go35{*-m(@c|+Q%y`wQq#;0lM<7XOp}ZglT!^0 cjnWLv4GaxU43nE#x!PH|7`L->F$FjS0DRmPdjJ3c delta 72 zcmcaQi}UI%&J9;M4U=*$Ei7^ii}ejGlgtg1fY`#=%pf_agC6a>6B?F4;obJ;$ z!382w2;~YTZ5)y!?-0Z{8&7S<7OJrHbpsV0- z5>3!`)fBNxrZB0oGKLt7s6&;6RE@AgN+YY!JbTHh*UV)~Qp>syM%E@2A##0Voldr@ zj0>W@_4?7@9lYw1CysySM}Okhqx0HoCAG6fsI5`5jE$&8aI%&r*0R>!?S`((w|nDV zmmQtUBFfb0m}hPQ<=egPjYoO9RO&LsP$#cU3NBW*tYmB& zQ5x?;vwFILtMcvks!NW}t3s$MHdRzY7!{2#Lx|ocTXRRPU3a^otMcu>_f~Gl2G(_L z8|R!c(dTWHJfx|8bd9Ns?sh|0<=Z`TKetOl1>UbwQdXu=O)%CNUAZO|p)8xw-EQcr ze7oO!_fH?4d7i0~+FA~l(T$IV^hJI;-dh>b%GZs4Wj=6`$#?te-~VgZ%uC@#2#u44 zh{lM*3*~E7dnIC7DYx2*p{suDiCf<^(rq|7I)3`+zI)xIROZstAN`;6(;xb7ebMi~ z@q6Dq|NW~@|D6|JeDG&>Pk-WtkM(@EcY6Nt+>!5`YsV)m|aJ5)A+BI4z;dNCXxW~{{i|4mSH@swKN|Ah3%A~Dn zQsb(|7C43tI>lJUZhwn`tJsmnb1xm;u|1M`9gnqlUNgFW;!1U}kgxv0HKUUk|L~39 z+i9CujJ~$^>D8CN`QH1(ThrTao}2yEUGmbV_L6HyxBVYnxYs_tJNoq6h36k;xypax z)3nQF{(G~$%!M<`c`YQCMhSH z%7(^zQia$}XS%%52~wZubvnkBkIli%dHh*=@tiF1k86RtZ;oz&wC7*rv z;H$42zWPUUdF8e3WhalkeDOIsu15cNja0F{hu=MNynXQNqpkL?*YLduU&HsL8(-5tek)&o z@m9Y4t6v$dF8Pw-{_Q{L{5?m6l z_9+>k8ZXKsUlS_tRBhUaPfd>f_L=efMl&*cQ%L6tVP%F`zA1fC#YpaPg{|7N|7+{m z;_2J^VX&Qyrfh1yth}vt zBST$@+Ahxgx5?Wld)^aWjW?ChMg|=VA)GIw39*jewP$XdUcH#VXZ-Qe+$EWc#;PQ( zGewnLQdP1kDn|tY0$=QWX!0*d^C7$KJ8s&NvwpL#-FbE*+ROg?)=v8aPi?(w=49mw z_{o7&O%ioTWd=EpZPLc;)%Ix8M9@uLRV4LfjJK+grBhn)v`x(0vwE4C7NLrHcdZnr zwjlMYaV91aI004N-gS)kzT(HXK0ccDn=aZje>M^G0n;hJkZqrN`}l_a!j*6R%QyYa zd#+z@ldp=(`Ix{b-Uyq>P0%Rtt{Y=SF)5FHPL6u~lt2 z&ao(KMPv?N4a9u-{s~T@yVhgm_5C}@wskUYN(f4m1_*kN*E==JGErdPac-1s1Hlc9B zv#YJVZ+vWV=Rcl)ax@z--M-^rY|A0bPrZYXaqF{_?e@_>-Fo$j!oB{ymxV^Ay5?ah zemNc@7R2yCjRbgSr5B^$7!%$HIEV#@=+V&w{X1mSVW$~5nELS514~wA7yFN&-@bA_ z@Io%T*sEubh~lb{vVtS%FUjfq8qs1u=X zT5;d__~N188vm2gyx(%|+cWp!V*{4Y``B0iIZ*cG?bDqbrCj&4QdIf$*rJB93eiQG z;RpPNO`$Tf13t@uILPEJ&b)aWe;e4S!wxiXKIP%7`&X~b?ly0~{`u|WkW;;{Rd@c@ z1W^*^Waik60RB~_%ZP--7?lsLymNYN@%*E!nTw!4`WArslm1#&>8Z@=w z%EvgQ3W_!YKzx&FTkTa*7ipPV;4Yk5oc+M`+0lH!Y-qoA+4RnwH2O@2&eMMF^65)v zDtR1A@D2vXH$egmmpKmJjJ-X0k7ZWFA3b$`z_TLw34{i=VOcezOwbn z(H?|t5}F&vkW6FBSh`qRRTt2YF?473OAD@?^_veJvQ0HE2;<=>G>A7 z^+Li?Xt+>QI*6dfU2oy4-2tnwoyggMy>|44scrB5mTpnWB(T65QpL8!0|kMbygYr*6aX2?uFhrYp*!F zeM5WSL(?rJh{D*W4xCGPyP$(33y`cTC$Uv7OPu>AyI`_Pn^Xa7EX=%3*(akRJD6k_ z-}u+tkBw#x;fZ8d5If z%~E9`;H9%Nad-sDR;e1ihnP{9^$MEIOWZ3FQv;Q$QFxH8pvGz&D;P0vY?sycII{_~ z2@Y7 zsDbNPhQ4LUsFfEPS@=}R{FKp$WUZwRE+Qwm!-dO`F(ZXrF9F03O##&58z&4(6@Ne~ zUT6s+m-%h4{{h-l4@}iwzvcGv*G_zU!|l@>_PyUR524 z*HEZUB?&I*fVvb8cP{;U~_BP!JnPJc&4%jT0+4js%xuYtV2$97FDu_ zTkgDEd~NHV$*%GdR;MW%We^*4JP2ii`#>bb+irV;GHlk!hTKgY0WyNwtPizGb&O~V zPG{2S{aYZ-0i(LhW(W~|7WJB|HI!hENa~eCP*q?)9~uRN;B-bGtJCOsVoP#DXBA+P z5TwI1se`;K9qHl8>6MEo-wHC^15QhF8=?r_hk8fyCb951Dp;i!&;Q{zCFg+AssqBk zHe;P%qHOQIcJf0fq+BCGBIR&&zAh9`0A=N~lV^miC{~)4f6WGD&JJqeVDB3}(7!Pk zpum9>84jnh{?)Q-i5bgN+s9`EZ?$r;iV6Vsjl3ib@F^CgsWNi|3T7@IikmK36(HT} z0uV*sbB%))sLHC+Fi4BD-^rMfYFwhml<=08qz9Y8nE;9xo=O5?w!@4wJ7D*n@0`AV zj-&KhY&zHa;)%)8J;=0BQFx%LAT3Ms4Lccpg31v=w&Kp|@dJdFfJ#jy6%$M=9xzaY zk?J6J0%EUOgqVpC{4rxnSPys*XUNV(2uM1hjxCywpnK?DlaGz&{icCJ@;^=GUcc3h zvt;{pF?sbI$FhxqUMedn8$wiBv+4y&6@L;bF24K(T=1?{bVQ_}0I)_9R&X;>ILqNh z_iEv3UY>c=PmFdWoK*u6MPUYu5(6C+C2u1Em9gp;rmN6~40nNo9qBP_S4`uz@14%1 zQhLACZ@K>**;tdakU*Q#CL)*CF+vcRvLI_qFq7{%x4l3(gD)V`!5N@LQ?b^f$x=UY zFtj_*Os?$UqV3-#aoBT)PUhjO+2)>gli>g^&WB#AE6oi1Qxpn#2Opn_0~jj`8%h_KPC+FVWC7_Z5vd8N!s&*f z+zX4HKb`*hXx48zwY$$yoedb(ovZ!sGt-yME6y5R8+)PAD!_pOcDqahJ{$^0u6A)I z!MP<$Crk}xTw=cq94GgWK!725FB9z&X3cXMq|jF_$k$Z4Xs7H%)lFF95ZM(OGGw^j zIRS+*VD^eQp%`+;Ac6jiL+U1UDFuX@Vvst#p7qU z@0;u;PFo3xOECXj&(Q(dL?`V6AhuM;me{c7T@^8 z?R-M}4aODy(QmQr03(jJ)Bf=1r?XjtCxmu{)`z@B_JX>|Z7_;dV5!Dd5*mFQycVTa z!_&k6Mrg_0jg$j_q5N9Vn3eccMVZUlWRDaomX2s`xP45K2W&4jG`Tlm zn!sUO_XXU|;BKmOHwt&t2*d{tnuY@)qBjM41cFMWOp7fGzl`hmO!j)4)gXMY-u}qw zfu?_pE^way)2S{1ngc6VpL4Z=m%@uOyH6HF=|U`Y7QL39qfk%;Sb91M@upa(T46Ro zme305z)LnyR!PI!Cklr^BW72d%_-MCWI>Wm4O$VUZvZzX2hAt)2GFeI8wU*6%Z$d( z^xDjbOSCzmg+|CgV z$bl<%-%GeR97)u`m?&I9C5JFa<%;g>&EgyXo?I~Nx2u=HaktkZN}y`r_L0dA^9n=< z>MgZO8qYx)$wgI@A5@W>O{Y%mB~8zmtLumwMS7+zql`lcAgS3(tl|Vsni;C|VuBS= zDE2Tt1uujSE>cB( z5aiL36YMvT5#|R47a=-VAIqph7KiVp1P6~%j9V=-wG1Jdf2nb~RTcy8Q&9(rdr`_% zi2W5TW6j=rWViOrX+X>}i|zGWZo{Xx@0k03n=2;&g->n2cvo5^SQ@5F8X|CG3mcbt zt43D%^SR*oCS=`)W^n4T%*bWXi+Th{kMksj{M3~x9n7M_qg%YuFeZ^i4?72eS)&@- zObw}g(}TE=YTsucxiI%m^qZ!B3n#X3olo#5^^~${lI)4|PC_S(#zGktL1o9&H%ayUa9*s+fXU2|OK49I#)vPk&|d z`uTuq(UoJ5y>k1K8CZ`(s|0jpz%Ri-k!rf2KVMr4?Nx6960N6_L~;T`((Dc5^Tbtf zmZ!s2EI>;zinP8!)YGZ}muL!ze4DEYx-1|OA&u93YshRS@D;r-eMalfv(PN*I3e;c zTh&5#7Hx9(3C%MscZd19^oux2=LWgRYk1MJCJ`eE(qiT`3Wm3xI=1U8xEso19E=p6 z0wjN~ktqO>rxroy9+m;CE0J%=U`Dxj@9TZ3)*LG!e@7aHSx6{E*cLFI&J-I(7}Qkf zSo5Ja_zVb`TQ&tY@e4e2-RS*NBXXU*HK_f3w^2HvRitb#rdKt3UxP|Upp zN)<6L#~4m!wFaYRsM#D%Q6XsnL%>H++z?U~0#ii`$WlC9de&SgU_V5DLVq@J33OZ# zgJJp61?sGac93wuwqAPGpjiT?XqQe!XLjx(=hzd;Stf^)0FCm5gk074Vp%No(~vZHexRQ%dYuX=6UnLl}Z#I zsf6!@k%91%HL6@$uLX?Rz}Q7TXe;S?V1q7T;fIdpVMi1F3w911GQQROX2>SF@X}Di zz^6Py!u%8=4U9|^u!Jxp%va~oVLqJnH!@Ep&~=p|l}F|dP?s49vr*HRnA;<|6lT#+ z6TON)w=P!H=aPmb&aoHt+KIBeX_vwV?2Dzd?e&{(&%Tq&G|<#^N;hzHwV}Z~X6Uzi{s@EzHbQHFg9#K_TcfFkUMv)uM271s#{rYw>7)P9<}1{2D;trJzfOZtO(k4B8!y4P6wU|Bc*3)IWlh1IEg?hBoD}w+x)b z3t0W31v@Cb$Rxcl*71i-i=qZ)<&i#a7y&Q^O-F=8>dlH1$1%%?agSIE8l)D6XY}MR zWG=*`n2}hNYi>0sjMBl8tCU)2N`q3Gs+^L#$oexR^D=*3+h?}@XTPw0*B%|>Jtoh& z(H+?Mr~Fj%LV0rLu^P@) zL2ZJ{nLuFD6AOA34{*+2yX~2;Zqts^Z+0nt-F>6oH|4rNA!|c(3QN)lo)-aP-y=JM zX$TmLojWpn+drJvo&tldS~oOp13kNPVaxo$={xLrLu+;3m3rUF)7YES6o-Y%Tr@QW z6eJkh2xXIEh#OH4c%B(wUY)v_q=b?L^Om5Y8LS`=(Z~jPrh%Q#=q^F+(hzKs#bE2H z_ygotq!&Mec_4ml`A5Cz;4lDL3q4g!}ABnD=cVB1NTL>LH{6*prH8>%hAUP z`9f5kq|ik~#8?K+={98w*#urdlhF*x7jOs#*Rk;E&QzSaNh4F-OaLO7BYx7o!4!wm zT~6Ma(1+M>ICW8;6VYe1?24?Kh(nOdr4!i(5!gsx0q=oJQ}ubCny_Awnlf2K+%Q$4 z(d}~cY1dOC$eY>yC znsb4I_)`KUHA|&%m=O_FlJ!j`kq6e`?ch}Bihm#2oZ_&@^qxrs+{0H7ESJpw^`2X{ zubTD073C4`HMgY$sgb2%!RTpaC;68LqJk%ms{!~v^a)E_e1fj}_ba@I?L{MZM!AOH$bD(K!+xlVm5&r!{3 z;Xs|Ii=I{nfCC-sK`;$hF~}Hl7W0GihU#2{EZ%rnr>I(7lDn(;%9Tv zf|5zYOj9&=@eZ3MbJ~ag;(_P(DK}m9Z|L5gs_bF+vHj=s0&;_9zP?2~uPYC|Q+w(^ zZ@;Pi;G4&Hl;a3jt{Voa<(0b2GEKnc3XTY#!js&CKS(m}u8N#ZMsE z%xtbnvYVOB&CKRzW^*&Mc`)aCz({UpHa9byt1<7*%x3<{I-8lziw}%$W;Qo7n`=M7 zcB!>wWohs>>I1S zz`t-OOxmW;W0NT^pO3&BqwB*vxERWM*{LEx4K4+{|olW;Qo7n};SvH#3`? zna$12=4NK|V5oL8vzdQP$Yy5q(46RIX0zw7joZv@@|P!VW;XeW1e=-7&CKRzW^*&M ldGT@4&CKR%#C0>XxtZDA%xs>YuKoXHW^=*J=0|?ue*<;)BBcNT delta 32654 zcmeI5f2?I!b>F$~-glqJacmEGY%uuUJLAY;W5#=*{o6yZr%+zYdFCP8+;tO9qCesIl_aD6XXKoQ8 zIhpv|D=W&z)~<=srI=(irj|lgrnGe|p8o4&5B~774vj9$+QhmjbQ4rG$%`mMS*9d( z4DIcwCjWHwsfRyz;^{a4o!c*2Iuk1AYvD^@Xe~@iwRhT9RccZxOVxed*i-rI-gC$0 zmn@Yx#;VE%X$rng29I$ydv z){P2LOI>M`D!xWK>v+eeX!^Yydn$k3bNBIej&E?v+A1Z>8&^!?tAJe9xh`Ct6WYnL_mGWk^N(kflK zGH7F?Co|(M*k=<{fdC?Dk`i+xIR}b$@KC`nZ znyRv)2{st5Sy>QTDDFj3rl?Kb%G)MCKl;!MrzTggcIT7hmn~FjoQ&*AZM7H4yI6~& z)J~|? zzv8a<-52k!KXmI-pYH#3-oUy&_L|Ark%#u%^Vd!O!;5UJ_wyyKx9bi4XA3rT8B#5M zRW^;&LDxZr(x{+i)fm+XZew>(#-7Ss@HeL>S6;TPqBDiyw)wKsmB$^7kIHD}t!h%} zoowu>{C&^e!j?|lBWJ&TqJ8ZfCnsmx%L^Cq#`e$8OwPRI5A)96=_h}A@rT#69|)5l zxbVljZT-J~a(3v6d`pkDzkBQCS1vwv@eT6UzU!rauwrMQ*jZL4$wCOzMX-h}^l8=Ja_v94-uDiVy+$x82KDugyfA5%Ef-TJYI*0=uIw@rTT zEd*Ars=8@>WgD$k;jMF3D661#Od<41Y3wQ9@1HLoo~#xR?|kgD?T@JGsZaTxz4ozN zru*%=yLV2vt(u-_uY7vvn)Wx<^osVEkMF#y{p*9zJ|-@FcAK7F)jjtvoj?1Hoom}G zW%t?D?XT0OiWkMWc3`D=ELt=?*;|9GeUFSku! zxwBlhU-_ZwiQP+$A{5+ve&@#airc5h+6T_C5lcV)f%e(on_S-B=K1W7AKv)v{`}ly zw{LuQ#jSkytUvnMZu^bfr?Yl1OqbsWvmdy1`egg;&+g1xd1iV|`x|eZzUq6kUU~WC zHSI^=IQ8Eb>rcITvS?4dX_~(GTYmhL@85gxC*Obk&L5q;>}AXRSNpx2mv@d*QE^hQnofh}sfAjK`^U8%#+D4?LlOh;uX$){P zl_oTDb;q|@(NYvFw~Vs(+UQz?^~j;%yr$L~?B-VweSP}OWDz2`#2G?m2O*mV zuc>h-3oE5$kK zx=C8{@17iA*x+4%KFZhm%_5U5tg~m#4gVj-2 z0M|MNSzDR3iqbW!2R}ah@a#I=uuz4xWwb#Dicp!+Ls`i})ph&eS7%puj<*DvBtZ$O zxe1#3EZ9OBKGdb=z*XHo_3-o+tIqRAOjqsy{1ZHH(6p<4d-7w`TNklxRMfVnj^&1O z5o=X8vI$;dwiNvhl~RiBcB^OJ=)W#KDXN6$-JpnRZ) zHP#iX4_kf3|zgQZs<{P>=M8mjzE#03ZFde4Y4s4 zk`leW_a6|(*8yi~3vyr4G>sy0L@G+@lW3HJ{HTLyiq*+qnm;;OeAfz&@1=FM8k8H*M zc4vOBnm;*N3|Usuch_{x?1AUqu+)XXk;qzBd0mx;1PkpZk`WQd(HERfG|3l2Y1ih`yvoF6}}PMZy{s|j~n)tU36EcY;s9)iM4BMT7H>hZT`Xf;C2wa34i zUwZ9uBj=vHgCD=5SJ{BZ2p{Sl!6d_ho8t0k~cN;cs z+P}Gcer`EpTCUyg^+hn!^tdv_pk$RG2m^^29z=4{;P{j+l>#ZRapj`25HZR@yi^qE z5S@j05T{lYnxvgt@YRL%kO}2FMA&4wm9nzYT9B)ZHE~2%eR?>z$Zj`mTC@*7FqeyA z%i^NfEsTO2vLW~i7PZE?G=WW#j!WJ{nAPOpO*x$?WLc8c36h154NEVL6?iCMBG{_C znc~l;PfnIqA!IEZzDsaC(k5LMu94h!m%t%)m$=95w&&h7lgkmau}gA~ot(e+wA^&K zN;^Z{Qd<=PBtW2sKn_PzSzCun=4IV8+aKn)b1K*Xlq08f1W-1^_wE}N(m+dQy`42AW zgGAVPqbN-@a0&jr_DYmcW=@uN75`}O9>PZ{97RiE>IlRI(^Bg-o&=DrwMEfqH%^4L z<|R@a;erX|+6eZisEqaNisws{{b7UcQ~zjBE{hR^hdiv|ZG)#)tF+Rk(Xk>8GzF~+ z%B&(DLR|Yf6*Uf*;*E5`->6Ihl(pakpvhCOnVnd5UPjUoH5*b_U}!06#sIoy0_2lb zaL*ndkJv8P$!*N+L)Xu4XzzJq_VV`nx8P~^v<`;=C7{?58KLY&DYhS_k-p z!YL{TYuc~a`H8-Y#nWtvGLaJ+?Lh&C6IKbFlFJ|2h0?Xt?E^O>Wr)-THAq>|WvqN6 zv_|q=q1rG1&h*3qt{gJ2UHgCDIj4vlHXYZA?xuW)F7PL``oOjHn&{X?o4ceU2uoDA z9=zGtbF2a4S|+-0jTX`+SvoF7E$HmfEXc8e_q?0rupgS7<$Vqw5JEMzhxIOB_WWU5 z$(#0I9Ne(gzNQO1P+uta8*q~@TYrLo7ElvdzT2}BS3?G8u5@q zJb^h2I< z^7;|uF|YiC@#jv_`fJZWFg?2*d5<+|>Gr*D=rRK(8xQ{F9m&*m9aI(s7`eLgo8Xm& zBZv5kTHDn0_k{s4%8F)BDKdQ*SCD1oFG@gCvH@>aLTg-&OWrimHw6~_>V>c60%_Qu zYbS;*H)5}Bzw*HR-3wrPElczUHRKOFnQZPACJQTBQE+y}&3;X|lU4w217(0WxxY&- zT>}Jar&iD3Ha|aE!n&#&O@u0_VmS(2$^nNV!HAeZxYgsI+=YrAHrV8>CKrSDbeUc2 zT|x$NTB;A+cfdzhaHgWE31qRMWTw{SEo)aqAil3$&%_nJg!KW%M}kFREERxkDETv} zXjb2SX7};Q1B0i~yvU!1Z{VgsjcwBff4X`xyqapAyp|E6Lau1bXlS#L8s0RqKC_|5!<3Yd++QV5`sb7vVH2_*_kETh-x1q z5ndA(6?(4nf%~VBsud`@Ru8@+yH{=NlmB%W0wG$vY7n>PZIWFe zoG;PW(YK`r<5|#fK`1lnSFIKW<2MzbITFiT^W|M*=0+XLWuy)ie25HLo8)e zD@bzmNW_mdCk~HAV>d_$475lBDvvHItRsL6m>kpv@*|K#O9%N169@KUGq}Nlwm9v3 zNl%dW=_^-PzHjyfJ>L*mU~9TBMz}8i z?Hkxrj-!GG_mDUs1rS!`AG8pKXwUyRrONWhc4=HYEw_$Xwbp%1+t&b-BXxH zc(fMkwx=4$On>V7y&qc)8;VF8)C^etxn@XpUV;*9KiQc`xR>Lk|^*#1R3h`$qh* z*}fe(Vs=gFyY_$l@$CAWy*^ZxAq+ z888!=zRsj!uK6t)udZFNb>FFmoV4Ie$n#w2QP9EyD8900>;a^5$hDSf&~yz!aQ)uf z7aYQn-Fz)Y``PRFjxA_1sf-++TRF>XiAj7u#55MW^# zn_Mc=@qiTYD|sgne@sK)yV}SZ9U<^XZs!qK8`-i0S;%5!MeQd(J-uluY1L-k9~TaU zV$hxyNZJgU00x-&*i#_r5-8n>MYJ`!slJh(t~Pu>H;~k{mH_ry47bXFk&B7fLY64i zSgIX{hAQg0jS6kV_S)5!IP8#Zxz;|m>qKU2q$do<;NgIhkYF^~1n%*m7{4 zyNy^~v);YC`(rgc&fF?>8npkh6IFOSq_YIwiW zK|UKdpBK2H;m$m&XGsE%0)u-m{otYf_$Y`_r7BWvlTL|cZU0i<8Y`cV-7g@ zOedDQIaHY;MfQ>^BFm5|e27wXKRgU$lSQpX>Pp?NDJ=#~%h37Qh;4ec=!@4rw%~q| zlEAxEXY>tV0}#_z1$++K6mqar^nm)1hGhnnDKI2reJyXL+Hs?$NcJq@zPi_~HTuoQs=_zDsG8~z(xyTs4lAL_nHxI(5&LEDXT!Ep zeINK4x&qWz;8YsW_zXR0`Z3gjBGP6mL$6PwDZvef%wR-Km#GMlkqEJi+ zoKnFYCk-ZX;r}=2u!uEXP#Ug;c1l#= zWN82jR>T1?#OJ;>C$*V8RSdJ0=u6Z7K;0o6%wFWWCc!M_#g6oX%|xWYX3|fkbH)@l zU4WP+cS!Ik2-e!`F0~DtHllO65!>D9%sREvu(l*zD%lbhKZ*h_Velvd5kxTiLdCx> z0rufaCHmmnx(dWB2{?#5xwT*!6t3MH-g7L|bpT9>U;=eA3?w~nS`839l%OR8%&~7k zjalt3su{Mrrs{g=h)jdp6h07jJHZoX1B!~04NawiAwMik@^wBu07*puR+4h_pb_d6 z2Gwb@0seDeojy0hIKm_SG^AYoPJkNCDN8^DmxTlQruPKuV$61gu33&)U3aM0PIvOO zIqeT;ImSI|+7?TvSsCg zmyN8*bW|g(C_cj|H^4;G@uVFKz~`WV@ddw+;9_rMQAOlEWzF5BiOQrry(I`SN&{M} zT#8O5+@&{sm0E@g+63)DWf9>tpvk%W6u&lg5v=#M;TO;y!9QZV>h$}W;OC;ypvEa^ zNYg8WegonOX-=x6sp8YL7E2+P459Lfw!IL3-jG<(G4yoZh~0IeCXvPunO$dvgE|e5h7g3LW6F=fRnUOI(V;DoRmrZ! zyOcO1u$j(SNNXV$r8M$PZZd(Ak?Ni}rIO<}97JmC2*Re>5*kL-A|vOS4elGEU00Bv z$B^BQJsq`sk>G!`vN!zneP@KYRfwDK`dOyFAvy)R@53q2!FW?QqUUD>!SD+n;69nK zLtLa;neQM+N$ogm##kRG00-A<5h4z!u!S2`v2 zJ3)GQa&2`v2XpVO~LHdgRmmiFcuWlzuw-coKSGaE{NDu3iw-cmCr&l|L z$##NtWX|%C%3?b~x}6~1PLT4eoVOFChX-)C6QtV-(u3)??F8xYJoAyUw(SJz#^maD zf^<7UIxywCognT0-!rxoq#JXq+X>R`1nG8ybUQ&hJhZx*>AnJGtjvQD-Y(Tbb>bGG~EFeZEf0Aj_G ArvLx| delta 494 zcmZ2~kaPV(&J8;_4U=*$Ei7^ii}ejGlgtg1fY`#=%pf_v!UoFX^*Q?l~p#B7ntoGDt9x1@+nUY@Kzxhq9^ z@`)60qSSe$U75ws8gnZ=1Q@%cqD@wth` zC8!W;yyCRfqRG1H@{?0Cm6&2`rw4{J%1*Y~6lVsyX>vlgD|i%!o)cBUDF}G9v1z z6@iX*qqU;7B-$v_@L(EmwJ#=(RUVs$+S)YfL$!@bAKF-H&+N13n={Ar3z~T#S!eBU zukTxH?|sf*LwJ04czpKA*VFRMW|uSD?aa+Ic%9jeZm-GZ_83h@kJlo(oGzEimF;wU z3{sZYU@=INQF3QC`rK`qZNBZTZcljIr1_&6(_h${lr#Ek`=g}Mw7~6TZr`V*oN(U0 zSHokWOW~uz+p(w7)UK)|{`fOX`zm=#xVHO&JSA`6pNcm!WjOrgz?aID?y*p4ER-bw zC0`i}O?qiK=(TvgW=E?pU~ss7Ervzu3#uIPK1s)yrQ^%i@fme|Cbci<3rIS|+!qJ* z1+sK-+^4~1>)^OggEK~OGgKL~-_5jSGEbgmSg2f6n;f-nA={$k)8M#74UYRXI4&^` zC)b8MH9)RA4(JPTp9W`&xle=3(ZO+_2A8XY<3524Mz^NK z_ogNl#iu;5e69d9 zmlR;8zkuErK`s|i{&a8}SXVK`U;8I9UIM8Pnp#(Yvv;t0+ga2IolW=`7J@v-FyVbeLBW=-aQ*=$-KRgGqwtHF73tP`*$yr&+kSS z56i(l-i`gxznY4KINv^CQz~FOE5K&kPld7U%&f~UXXmJt)t%o@i`63!HYy{kVwja; zaCq(kBvXF?sxsCTs|RSt`F1HCEM=-mxuRgd#CE00fRO+7SUfO>n>f^ro>9Q1b#lztSd#y3LM z7e}GW@eWi~^x}1Ysuz{6tU;w0_tA1e{!Q|F@w`nSei8<8#W4`~9m6!M1H`8sAP#;M zN1UY)S2j@e?fU$2P~2(&@k}SY508V`%0S%3KrFdH+~cAWkf7Qbo2m}- zt1|LU896~ySn~-KW5NygA5MT>ItljiMok$0f#YGmKZ(8H>4BO%9;mtaG1Sz1Tkkfk zcNvbm3yZ7pvp3;HlM?L`5=}~?Nl7#*EYYNxS)xh7l`+wzhznJsNnwd5g&zx+Xi_4- z?6UtulX69FQcfpNHCS9ZCdtDZ&XFAt!{_K;^x^mr&5itnW-1%{jH*=LPop-wFhs`a L!AK9 zx;hU!Cpt%>iy{jj%;MYJ7n8*)AD4x>xh&a-=@yfH*y3cnJ@@q2+w1)cmVRjR+~@qx z^ZPx|Ip^N22N}t)BW&%cS|EY13cYmS7qEwf%9zXo~+%BDWtJ`FB2jGLj#nEjqbODFT>S(=$jG_}cA>lU)jIzA1KOVr@FPlMwU zV{me9xKjhHrf_~59QSE(SvolG3uu659U%8Qc;|mkP_cGS|oRBk$USQ#VkxfoDAvtrID9kZ)qgGwNac}dcD<=l;ug?Gd(rc z?eegImyBXRO4XBIX5V-zS3J-3(JEn9`lwi#pZlmpnE&{wT$s0(QI#-LmeWRI&T6HV z!mMtkb;3-_A-^!w+i2x9yb9R4K6;JS?x4x+R2wA;%=I?P5#~hHw7o|;s+m$%WabN2 z%v@^4OrMqB5kan4DR(+J4XmqxUR6jh>>!f>t+qk=lAVa+-AOh9NVbzT8bxBa+vO-_ zd9w65ep;kbmbRJZu>L$EcGphx)l+5#WzBr#qMwq~Bj@TOBft4+u6pE&OBq=pWUSdm z6~er*3zBQ{A$c%govo3z6oz%S%Q^?zDMd`Z-cAL=^sS&gVV3Mhl)l|4-@V;r6@ZQc zkT>rkM^tA9yImZnamX~^?NR3@kF-Tb=5|oBh?LWTpj{nQppNt;SHZs-A$362O$Ssx zb0C0y6;w%`4rm8cdoxJ54ia1o_M6=pK~23g_b zB3dY@F71T?Uoiw+FNT1LVzR1&uH7mJz0xJu>aQ*=$-I4#GqxIXF7LzP`*$Cb&+SGQ zk4nHj-i`ebTtoRnoOeI4Nu@AdrC_rkpuA{yS**(;XXh-F)m=D1OVlF|Hz^~kVq_`B z;Bd=9BvW$`s?yd%Rr6ZPkH#}AJ7e!5nW?D*+v$mB!t-d~53q^(CuYS*ie zr&&4VJa*+_9P)|v(DLJ9R47=EL*9G@6&g9B-j>;nZ_7XhMYg5=1ITz*0U66TAi&-Y zsDbY&t&ApaQ4Wi3BfTZoX!}O8smJ-5mB%Nu#$K8)Kz+SxK^8?22mKudr5=N-@l8x(Bqal018GhOgLIssxE192AvvE&AEubT=*LM;QR@3jHcx7kB>RUPD4 zW%!#ia+0R7rjsbfga_@-Nx3RFDQ6O=Hb_R3u})&O=gEPG;q!Dq@^E5^=7#@4GnEZ}M&&B+rxBZ79HPv~ L!_{AgD1Fs`A4{+$ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 9dd14f82fde6cf1428b169b2df547d53dc50ba6e..be0889e454b245b357bc5ee59403cbc8b3929744 100644 GIT binary patch delta 80 zcmbR9NqEjD;SGB@4b9Aw5{;7+E%go35{*-m(@c|+Q%y`wQq#;0lM<7XOp}ZglT!^0 hjnWLv4GaxU43nGRa<;$aWCUU+AZFhFmXk&QJpgx}8}UpjWJ%fdlxTi$kwZR^@V~F;z3E!YtRs?x?YKhNbuvf1kFiA z5%$msUevfAB$ybX%_WH51y5eQi5|qk^`PV+;+vV>W!J;@AK)BjpnD$m-ml*8W46YN zTjRy+n}@;L6m=WJnk-T0wwTls8l>VN#gt6au_XzrNGAah+KoF$S8m=p{QCQimr80N zRjl{uO7MzwQ3(?Hi~+jXZ){R5mk42oBy&$ot z^5^dSi(+~2i~gyX#A|Xnq6TQQMy)WZm^`CZ3RNi9l-Pa$r8w4~{!2W&P$vjcr|7_D zhe6BaTx3WTxD<=)-uQt_FMlN7u9_S$EArL_MMx1NS^{hM<0$HqyGwtFrEd8XalC)@ zSMhCCA3R0smVXoHnt=hJd;I9g*GYl{kU{ZwF=~|veGDNdR0Ofi5WRP3^xQ%%OY4l~ z1uKt=F$I^&myC%DL?3#d@^;mP0ASk?K?36>?NbUmSm}#2MY%8mb6g9CjhIM%w){uHS}kZ4RRjn@XHp(JHaURpvIJe6thrGAEnP?JG4E+b~Ji5ad6 zrAU%m=I}O}v`qU7L+blE1-Y$tsvOGD{hilx#7345slp@jUDn z78y~Bu>b@FUD&j}(K~ufA;_2%t0*&Xt%_vW<0Ek)YlDqwM~}?lf$rOa9BRBP$Va*l zPK;I>PtF-%RMvd;TIFOFq~eVWM1ccjcJ))&Y}iV{=T^z+SZYxPl38aiRmDXobI;SV z$*4&(+~svJZ(Rb~B? ncx#@K^NgHlx~H;()Zd47tV delta 3958 zcmeHJJ&0XJ6z0xb#lVJD%*NR4ySu0$hV1&@2A#XHL{nH(K&Br+BG zTRHI}S(@JHo?a)f(7vX^0ChQYC$jbYfZhgdFT1yGp)msyA4= zMvm8Vm$ikSYm*C3Ym>MOR%+@z4Ms4-j00w*;Zw!5&VrU)Q<@;lOpUcT7cme2rW2>E z!@@5&t&iSQ3noUVWfD4Q&@@F*fhv*Q=*auJ3xAVsth|=~?Jo)KR}z;Gw+Stu{YgR_ z7zk`%$T2w?jdom6!Lv(NvFr_-E=OBn*~A=aN;2CJ6mS7fD4&JK<)j=NxMWBJp`(;c z=a8vjDPf>QILF}ZmQzhXET^p{E>A4+&tW_XdVm) zjrUewdS)#%20>uVGtRjx?>^K!Fdn}u`G)N{P=1{2&3E@-CY#OK8g?s~|EXtBoId`{ z(I=0cuFdV<=vpIJP8}|5|B!=ir9d<6&jaP9Z^#`j6E0|_5DaUiRXSv=Jq~CF36O!_ z#QV9qK2JEcpgk}tgH_IQ2;6#Mr1aW^ap>8P$XiX{fMO#0oSa7zpa>#$rP0FDY_bUD zO0Rd|CLh0T>em<&vX!+PU|qJ)brLBDArwjm|v~CVend@bd8k6Q%O5km=PnD;Zm?8%1$xT z+n^H_iCR=Vv`%Z2iUBos=%+RnRQU-bmu~N2<;pd(Sbmu6?Vs?mf*tH-SY>Se-ss!+ zFvBh%`?d1WNFFTxU&)(QUz$1N%o%TC%rj@a^(V$I6KBpibHsaadwQAfus~SyG~La-yZaL0Y15N^+WMQgW(^sYz;@xnWXbQj%$sabj|+fuT{F Rfw_U9p^0Jg<|f92TmWpH6Egq+ delta 62 zcmX>saadwQAfsVYuBC-VZeg*$fn}1pVGEi7^ii}ejGlgtg1fY`#=%pf_i5ISXgC&sj)pJNiF)(2 zINa}~wf*~_M#I%S`sU8({Q7(qie;6&Ln1>(ab#5t8}Et^nHBe+y?oeuX@_2&dtNyg z$rwOpqe&qJ4B0Cz4od^A&EV;hSRLy)iP9)GC<~Bd^ca9K81$J*rdq9ui9zq8cq}@M znw1IGv$@DNqjZkMKVT1qzDpd*uY*0J?WMjOZ88pDGo$B&{aO*x1Oyi|#tH$M9W z;7G|30r(Hf)ZoIZcq3YsYcVTitMCwIzJn$tOF?o-nWEFK>5!Gg4S^~O2b)Xc_E-hX zkT{Y8%7mn&DG;U7#U&LKmpuruoG?K%qd+XdX@tnl*fcpmm+528i5>_W5&4Cf}4z=O#gKDS8N@L;_TR8bX%&Z*$s)dzkPo=EYugzS(x{NJ@y8m`*DPwnWy8ckaWYtDFtj?+W#{*&O fYDvtsdf>o-2L{}8{(%Ai{g3^h0SAo%rzU>`1Gh2& delta 2031 zcmeH{y=#>*6vhb@rQ#r1+Ck9Q;v!UUl5_GUA|iDVyl6{71ly92lTIy4hvHBaJ1Y2b zhv4Q1h#-_|hr2nsyNa8egP?zcxzNJxps(%?WH=$@Ilptxla0*-8=D8Vwnjx*cGfQ6 zS?zEaj0kmG&^%^MCVOv!55g-&fi8R1Uv~{^UHPEB3f;X4yG=#OW{-v zAZE@L4zkPKqO22{Kmr84LlL-xD3T@05s9qT$|{Y4G_TJFGfdH@yhG6K4p-ZB4-y_Li?`U}@^zY>EVt*_ zyFvK=UR%Q^YZ6zk-(2ioo4$N?5&k}?wD)#f87Jqb%7@Ixn>NZpbxxHZ_n9fp0-I?y b!EU$r9k}m6BlaEm$B*p)9N4c8oEZNN#Cbbd diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 1b1fcc262f8e7c776175a45e7a1ce241f562006a..d0138937ff1c69f48624c7c065b73887efabfab0 100644 GIT binary patch delta 64 zcmV~$(G7qw2nE0}kvu7F^wUiM;m1L`MQ1Q^LGRY2HR(MGy}L=+v2mH)QRIG{pCiTtAGC6GZ?3 delta 64 zcmbQ&&N#1~af213VN$N8g+*>*vA%(2lDT0L5L+0V86>BfrJAQDCYmQDCK)E0nx+~W S7^j#fo24ciZO&#ib^-v0Q4?bT diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 7436b2551676757b47eed77b98d03a9c1c9eec45..b600f38db56a2d07eae5ed65b51a42afb8c70341 100644 GIT binary patch delta 68 zcmdmUm~GEtwhdc24b9Aw5{;7+E%go35{*-m(@c|+Q%y`wQq#;0lM<7XOp}ZglT!^0 YjnWLv4GaxU43nFma&CXh$#{J_05p9Ub^rhX delta 68 zcmdmUm~GEtwhdc24U=*$Ei7^ii}ejGlgtg1fY`#=%pf_*lu6TFO`c3JT<#iB#ZN~>Hf4?YAPq>q_#QJ7_%D;|HkfAsnN zqZ8OCV4s9-z&-{0H0(Oq5!iU~pZs!)}J%0y_pf4%>un!ES}! z2D=@0$FP5N`<`#Kxp1C>RKZ1|hzx0OWJ*O9>9y$}ytMtZ+L@0oZEp?#xqtipBOL|F zL~_PiofSFZn244#ekcnSS^vzihm$C%KO(rc&QiY6U_@gW? ztDeGT$A=^R_K9C~L?NeS4G|+`JQ3$U1{-+{oOJYy=haS)H@m6VyJ6+F5A{Mq){(EX(OU{ZD5Pw#6VsQT^Sf25%{F>Q?F-WsMv;Lfn%l!=a# zu=2p`+2+xW&I_fP)}%73$%J=FFrB#2Hh3W-^%q}gwuaZf-M%`R7Rj_IQh1T0@+^B1 zEPnff6lgE{%Nq#hpQioIWSVO)*lT#*H)7fCU%ausyFc}K^OcrcR*bM7P2`o~nWC{Q zlH|pt%!cznZ_aH@gCkT>nj%zE9@R6d2q4okCL}Wc(FBit<=y7Dlg=;>G#9*;tWq|k zmy*dPmq;Zl;sav;<7B$pt?vK!E5uT9o5s5A_Gg}GzRa9EE%XyV-2K60I~OjT>UJcN zG+uct3NVUV806kM^pp<5h`8vu)v$JDtkkjooxe0U3|H=GFHD}PluPcw_kG{`&fWtL ze)Hb@_bQz#4xg^2Zs)O6eR`wWYFEeBU*2m@o}6XDfD*W~XhN@5(8+^q3$lWekd&M+ zvQTpLPJ)Jm;W%a;v&xYy8h~ud z&WT0-&Nkl#;1Z2R;>Ch5ee#Jj(2g!8+7zw+m_U9#nF?)^cjRQ!$^(^@Rm{0aPR2RC zz+1c8cYkiL5gn^}J%HP0|M$)I_OGgC!1)kO*52n}0DGyOwb7z%oXecGwZnPVK8e68 z!gn>^YNa}iph|~cg||>i-H5k;z0_=Wwb;fQ-+AW@aVpb@HfypoDtPkDQH+vIN~1WB zT?lO&Rbq-kM}VJ#iqb2_iKr;3D+tywBjl_d`rRKlo5M|CXnzD|RUGUS(B&+uXq+eL zdnE5n#_Ysw4-vg()V;q#DptP2^}qjO`*2rzfap(rsr_18FqK77RLaOM=+q1CR3rgZ z6%+c`pKp#Y0?L{DGSaSOMaAStVdO<+tF+W54$$SdCtb8?GY|>J3W-hy25=~dY>{PT zW6`kPYPXnb-uYg`x{6CNL*HFHoUxO0UC@}6NEt)`nYGBga2YJ^&5Q~i(ai{he25D z)5E7L>2o6p{~X%Qt`^!1gmc*|prNQu2$nEJg%F?yo?KGWJIrkd;_nN`wjs$E)RzH) zR-n!}?l3c07Ur_oNwiDk+DK`=8g)f8%zX(or;9WEf4IZES@S&Cy_(}O6xSFAT_toI zUOfspu|#;HAx_*4Z*R2cH!y8wXnNE+SgCwcSS*~j3UuIk0Q)XCs!1-U7$k@pZ^z(T zFo%ca(dn3)-O{9qYgf1qdeN;_=d*78-NWsfjtf>O+7gAefQsX-h&)uUJN2k zhLQqytAZ5E=upONxedgCI*i{-;b723I3|KSR90L9*3cYnnQ)pgkkc?5G^?KHz^ghw z0Nz&rk4M{^cll|z47*sI4Fwg#k^^cBP8JMP5?dm6u_*LH{HhDn^04{z;2*S{{k24 BumS)8 delta 7620 zcmeHLONgaM73OL?&X~k#GU+jy{{Q<=n?xkzbUjX0okC24=wcwR$s!UaVNy>ri>M(! z$YKcULd?oh@pmQJh@gmBc|}kY+y}Ff*~}t4TM!Jm7Qg%G@m_^4+~39NZn$;p)H&z- z&Ua29-hB1&=Bsc1_LPh-dFGd1e&s;;=wyVkwjxzqTn)j+5M?l?NTIVywgmN^!&Bcq zJT-xR0QN!H4(vm)6R;1%PQvDAJ_5T9c0242*hgV^!afH3IP5Oi-LTWJdtke;Gq6v< z?uFe4J3Bi(wfFGn2Ny~d*5!Ky8g`GJ+ps3w)gJI zfe})2TwP9vq^%qxbJZdwE=fnXys>p^h8y2_WKfZUE77x*OqngqoK^Co2pg>6y1cA; zYVo|2&&2Rk8`R?!M1{YN!nR2R55ZC0h zt1kIsoDn``n!Wwi?#nxaa6vgMU8EGr>cm3inxZyU=A?y~O@7k-bb{NWiGWNI_$po+ zvyS-FIQHbT)FW=Ydp3NtyD>j|yytOxv46bjczpMn&iBq*;Y3n+Bqdk8Q!X)yTvR5j z#`h=v>Dll^_uS4@D;GG2TCAd?n3E39m@I2CY)cxif3G_;d-F^E&+$OuAj&MFPnDRQ zXI-^QRJB#1m^{PT-%t8-tn=~GZm$O2a*HSq#@FxYKRcd(p?hf1ln?=46fKIYN)SE? zG8`QjW1U@9#Tc&0G64gKGm|g5k}+CoYh!SFJsNF_mNn-OAQdnlC@C!&< z0(jI)?d2YXE)FG*CwyEsu6VlVGZ(Kbw(Bfz;tL29nT7ExVI zTve6h+dKW~@!%WX?(EJ__Ftb2l7*TBfQvVj@y+0*2CoHv;_kf8K|1~!YRSRI3(Pz$ z?pR5!T{UPWL`i2RZL`OF72q{{?_&S*&Y)6CKxuSYd4g*A;*xY)SxZzj(HdZ3#ce+JGxx6z3pAnPMUYJ5;Z72{Pk+pFG46b4=q#@T}QNySMNUL;UfoxgtI7oa= z(u#u(?|vCh)A11pcgMf(_V;~8>opcSN3Lo~oRC?S3aer?L!dejU{$(FZMRJVEBq7lfQz#KQSHf2vv@$c$ z>MH;&p-rl)wa=O)I;}vhtyH;)?7^~??nUX4P6!SNN~N&JMFGO~>Q8PxYUh<`Q&7BVivDkrNzECM{KT!6=Jfx(I@e2!^~RX%GQH%cM_18Wf=- z{0-LOV~kD-X;3&8oDas?!cuXz?8FSn|HGu^cl_gvoy4rta61R+L;F&Q2UgNR0*uiq z0os%jQda{((yZ{t+EkX((0k(`UzjMgLsW)>HNr_{A!bhd@%!&|_Z}&D6;gUs6|zYj z6@zR=LeDKY8jD`>Ej0Wt_%=P>Ek>Iwog5#%+MO65_5B4Yg}lIOjdE!1UKLl+8521c zfh$E|Bq$xx*Wya}+SA~F316dPev?Wqq;8&ejRf8zUMsi-@g7(Z53?C#9x6$ciV~vv zC9APquvH*UJ{ka&sD%VTJ!jw?;no&(Rlyi|RHeLPp1_`Bl6D#rN0nTZQknUPN{~M# z!#eX?o|kIZa=cKxsfJz`3~7>~+-hD=N6}&&o`+N9nnFzR89}))XyOb&3g%In2UE03 zWS2tr#-F-hLdYUZt3`CFCPG|3lCSh3e=GKsQyz`|%H2un-0kFS%x_@{8CPl!| ztVA>@iS#){f@dEsL-oQ6n&gaPbUN%XI975LifWAxM0K@^UxbCCae&JW+JV)MuXAAm^4@D zke1<18@ttF&{~OIt4^CNYGHKqbSrbWIM)hm!MX7u^=|yujqXx&;aXLByXtLMy~UEb zTOrOW0uVAs`o!j^8dH$ L&9LhI?zVpe>@Sv- diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 3327857461bf653e9cc3e6a93894c98d44f62459..e331b01ec27ea34c1b1ea7f326cd9aea3535fff9 100644 GIT binary patch delta 1566 zcmZ4Zglpjwt_>$R4b9Aw5{;7+E%go35{*-m(@c|+Q%y`wQq#;0lM<7XOp}ZglT!^0 zjnWLv4GaxU43jti*<^mVV|u!}db-|D`o#)BkeR1opl4Xj#bsn*WTI7#I;{YENWao^bQ5awfW>#{$7|a!5`OqLj9-rx-zm)t_ZLmVIJR$>R)0r w_x8!QK|GkjOk#vnD}&czx&(iOe{eCMJTY2)r24)2KtlV01jg+L5||PL0c}5vTmS$7 delta 1566 zcmZ4Zglpjwt_>$R4U=*$Ei7^ii}ejGlgtg1fY`#=%pf_!e?-00fzN3I=*c#avuQ21X{j24=d32s0HlKq@C6 zbo_&`$ar#Hu&nPJxgx-Ngn4`~s(*>h s+}kJH1@TZE(NxReb)-i42N(0n6QjjPs^6OrB(xt$VBCHnfhjQ%0PXCF)Bpeg diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index f6a759797..3c83647ba 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index d7ed1a898..86b860474 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index bd0c7fc6e..11ffe4e82 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb index 618c1470f..30f1fae65 100644 --- a/master/_sources/tutorials/datalab/data_monitor.ipynb +++ b/master/_sources/tutorials/datalab/data_monitor.ipynb @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 729750f4b..a494a14b3 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 554b5c8b4..ed00368cb 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 4f12db1ac..2b1797e18 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 7ed36313f..99e7595fd 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 749860291..71d92cfa2 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index e5cf07042..58bce9447 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 9655ca445..48fcb69ed 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 4756e4b24..a7090c5ed 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index ae71837d8..b4496893b 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index f3266b3e4..e4461530c 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index d5fb99441..6355353f2 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 208c62570..4fb316877 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 4e1417bfa..237c4bd2b 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 9a82a99fd..efed36d89 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 92, 100, 102, 103], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 92, 100, 102, 103], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 92, 100, 102, 103], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 93, 97, 98, 109], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 106, 107, 108, 109], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 91, 98, 106], "benchmark": [1, 38, 84, 85, 90, 91, 92, 100, 102, 103], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 98, 101, 106], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 97, 99, 100, 102, 109], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "introduc": [1, 89, 99, 100], "synthet": [1, 102, 103, 108], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 92, 97, 98, 102, 107], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 91, 97, 101, 105, 106], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 97, 101, 102, 105, 106, 107, 108], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 91, 95, 101, 102, 106], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 93, 95, 96, 97, 100, 104, 109], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 93, 99, 103], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 93, 96, 98, 99, 100, 102, 103, 105, 106, 108, 109], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109], "matric": [1, 3, 47, 99], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 91, 93, 95, 96, 97, 98, 102, 103, 107], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 102, 103, 104, 105, 107, 108, 109], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 90, 92, 97, 99, 100, 102, 103, 104, 107, 108, 109], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 92, 95, 96, 97, 99, 101, 102], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 95, 97, 104, 105], "trace": [1, 90, 91, 92, 100, 102, 103], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 90, 92, 93, 95, 96, 99, 100, 102, 103, 104, 105, 107, 108, 109], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 108, 109], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 92, 100, 102, 103], "py": [1, 3, 34, 38, 39, 44, 47, 49, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 91, 100, 102], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 104, 105, 107, 108], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 109], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 95, 96, 97, 100, 102, 109], "true_label": [1, 2, 3, 37, 47, 57, 100, 102], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 92, 97, 99, 100, 102, 103, 104, 105, 108, 109], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 99, 100, 102, 103, 107], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 92, 96, 97, 99, 100, 102, 103, 104, 105, 107], "achiev": [1, 2, 38, 39, 42, 74, 99, 102, 109], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 92, 95, 96, 97, 99, 100, 103, 104, 105, 109], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 93, 95, 97, 99, 100, 102, 103, 105], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 91, 99, 100, 102, 103, 106, 107], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 99, 102, 105], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 92, 93, 96, 97], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 97, 109], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107, 108, 109], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 97, 98, 99, 100, 103, 104, 105, 108, 109], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 93, 100, 109], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 98, 99, 100, 101, 103, 104, 105, 108, 109], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 95, 99], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108, 109], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 93, 95, 96, 99, 102, 104, 106, 108, 109], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107, 109], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 105, 108, 109], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 99, 103, 105, 107, 108, 109], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108, 109], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 93, 99, 100, 102, 103, 108, 109], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 98, 99, 106], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 103, 104, 107, 108, 109], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 92, 93, 95, 96, 98, 99, 100, 107, 109], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 108, 109], "perfect": [1, 2, 37, 74, 100, 104], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 91, 92, 93, 95, 96, 100], "yield": [1, 38, 42, 90], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "loop": [1, 3, 47, 57, 93, 104], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 91, 95, 105, 106], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 102, 103, 104, 105, 107, 108, 109], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 91, 92, 93, 95, 96, 98, 103, 107, 108], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 102, 103, 104, 105, 107, 108, 109], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 42, 61, 74, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105], "pseudocod": [1, 106], "happen": [1, 10, 44, 64, 90, 96, 102, 108], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 90, 93, 96, 97, 98, 99, 102, 103, 104, 107, 108, 109], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 90, 96, 97, 99, 100, 104, 105], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 106, 107, 108], "distinct": [1, 19, 57, 109], "natur": [1, 10, 102, 105], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 108, 109], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 92, 95, 97, 99, 100, 102, 103, 105, 107], "round": [1, 41, 44, 57, 74, 97, 99, 107], "astyp": [1, 102], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 91, 93, 97, 104, 105], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 90, 93, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "pragma": 1, "cover": [1, 3, 85, 97, 98, 99], "choic": [1, 8, 44, 53, 55, 93, 99, 103, 105], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 105], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91, 92], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 95, 98, 99, 100, 104, 109], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 92, 100, 102, 103], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 93, 97, 99, 100, 102, 103, 108], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 92, 95, 97, 98, 100, 102, 103], "max_it": [1, 88, 89, 96, 105], "10000": [1, 41, 98, 99], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 105, 107], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 106], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 93, 95, 96, 97, 99, 108, 109], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 92, 100, 102, 103], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 95, 96, 100, 103, 104, 107], "maximum": [1, 10, 71, 79, 83, 108], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 91, 99, 100, 102, 104, 105], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 91, 93, 97, 99, 107, 108], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 91, 97], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 90, 92, 96, 99, 102, 103, 105, 107], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 97, 98, 99, 100, 106], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 90, 92, 93, 96, 97, 98, 99, 103, 104, 107, 109], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 102, 106, 107, 108, 109], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109], "rate": [1, 2, 3, 10, 39, 57, 89, 109], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 92, 95, 96, 97, 99, 102, 103, 105, 106, 107, 108, 109], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 93, 97, 98, 100, 104, 107, 108, 109], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108, 109], "imposs": [1, 10, 100], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 106, 107, 108, 109], "low": [1, 10, 57, 62, 84, 90, 91, 92, 96, 97, 100, 104, 108], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 91, 93, 103, 104, 105], "forc": [1, 2, 3, 5, 42, 91, 109], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 93, 95, 96, 97, 99, 100, 103, 104, 105, 107, 108, 109], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 91, 92, 93, 96, 97, 102, 103, 104, 105, 106, 107, 108, 109], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 108, 109], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 92, 96, 97, 99, 104], "opposit": [1, 109], "occur": [1, 3, 10, 37, 56, 69, 91, 92, 93, 99, 105], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 93, 96, 98, 103, 105], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "max": [1, 44, 71, 72, 92, 93, 97, 105], "tri": [1, 38, 42, 106], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 90, 96, 97, 99, 100, 102, 105, 107], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 91, 92, 93, 95, 99, 100, 103, 107, 108], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 92, 103, 104, 105, 108], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 92, 98, 102, 103, 104, 109], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 99, 100, 108], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 103, 105, 108, 109], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 93, 97, 102, 106, 108, 109], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 99, 102, 103, 104, 108, 109], "ball": [1, 98], "bin": [1, 3, 64, 90, 91, 92, 97, 105], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 91, 92, 93, 96, 97, 99, 100, 105, 106, 107], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 93, 99, 102, 105, 108], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 103, 104, 105, 106, 107, 108, 109], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 98, 101, 106, 108, 109], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 109], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 97, 99, 100, 101], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 90, 96, 97, 98, 99, 100, 103, 105, 107, 108, 109], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 107], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 92, 95, 96, 100, 107], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 104], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 106, 107], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 95, 96, 99, 102, 103, 105, 106, 108, 109], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 97, 99, 107], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 91, 92, 95, 98, 99, 102, 105, 109], "four": [2, 10, 98, 100, 109], "clf": [2, 3, 5, 49, 74, 84, 87, 95, 97, 99, 100, 103], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 106, 107, 109], "sample_weight": [2, 42, 74, 100], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 105], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 98, 99, 100, 101, 105, 107, 108, 109], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 105, 107], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 93, 94, 101, 106], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 107], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 96, 97, 99, 109], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 91, 93, 95, 97, 99, 102, 103, 104, 105, 107, 108, 109], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108, 109], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 90, 93, 95, 99, 100, 102, 103, 104, 106, 108], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 91, 95, 96, 99, 107, 108, 109], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 92, 96], "loss": [2, 39, 61, 72, 74, 93], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 93, 97, 99, 100, 102, 103, 107], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 106, 108, 109], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 90, 93, 95, 98, 102, 103, 104, 105, 106, 107, 108, 109], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 91, 92, 93, 97, 99, 106, 107], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 93, 96, 97, 99, 103, 104, 107, 108], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "clone": [2, 74, 103], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 91, 97, 99, 100, 102, 103, 104, 105, 107, 109], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 91, 92, 93, 95, 97, 99, 101, 103, 104, 107], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107], "manual": [2, 74, 87, 88, 89, 97, 99, 105, 106, 107, 109], "pytorch": [2, 38, 39, 42, 74, 84, 89, 93, 99, 101, 103, 108], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 92, 96, 99, 100, 103, 105, 106, 107, 108, 109], "__init__": [2, 39, 74, 93], "independ": [2, 3, 10, 63, 74, 96, 97, 106, 107, 109], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 97, 99, 106, 107], "neural": [2, 39, 61, 71, 74, 89, 93, 99, 103, 105, 107], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 93, 96, 99, 103, 105, 107], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 92, 93, 95, 96, 105, 106], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 96, 99], "insid": [2, 42, 74, 99, 100], "There": [2, 3, 7, 52, 84, 100, 102], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 107, 108, 109], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 91, 96, 98, 99, 105, 106, 109], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 93, 95, 96, 100, 102, 103, 104, 106, 108, 109], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "prune": [2, 3, 44, 64, 74, 85, 104], "everyth": [2, 70, 100], "els": [2, 70, 90, 91, 93, 97, 98, 99, 102, 103, 104], "mathemat": [2, 3, 10, 47, 103], "keep": [2, 14, 15, 57, 84, 90, 91, 97, 98, 99, 108], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 92, 93, 100, 103, 105, 108, 109], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 98, 99, 106], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 92, 95, 96, 97, 98, 101], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 105, 107], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 95, 96, 97, 99, 103, 104, 105, 107, 108, 109], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 92, 96, 97, 99, 100, 102, 105], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 92, 96, 97, 99, 100, 102, 105], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 99, 100, 107], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 104, 105, 107], "x_train": [2, 87, 90, 91, 92, 100, 102, 103, 107], "labels_maybe_with_error": 2, "had": [2, 3, 74, 104], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 94, 101, 102, 106, 107], "pred": [2, 44, 57, 87, 88, 106, 107], "x_test": [2, 87, 90, 91, 92, 100, 103, 107], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 91, 92, 93, 97, 99, 104], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 105, 107, 109], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 91, 92, 95, 98, 100, 104], "adapt": [2, 38, 40, 57, 60, 74, 105], "skorch": [2, 74, 84, 99], "kera": [2, 60, 67, 70, 74, 84, 99, 104], "scikera": [2, 61, 74, 99], "open": [2, 41, 98, 104, 109], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 107, 109], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 104, 105, 107], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 91, 92, 96, 102, 109], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 93, 96, 97, 99, 102, 104, 106, 107], "easi": [2, 12, 47, 74, 91, 92, 98, 99, 100, 103], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 93, 97, 98, 99, 100, 102, 103, 105, 107, 109], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 91, 93, 96, 97, 98, 103, 108, 109], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 91, 92, 93, 95, 96, 97, 99, 100, 103, 106, 107], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 91, 93, 95, 96, 97, 99, 100, 104, 105, 107, 109], "total": [2, 3, 4, 37, 41, 57, 63, 83, 90, 93, 99, 108], "state": [2, 3, 5, 38, 39, 42, 48, 74, 100, 103, 104, 109], "art": [2, 39, 100, 103], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 91, 92, 99, 102], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 91, 101, 106], "uncertainti": [2, 10, 46, 71, 74, 99, 105, 107], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 91, 92, 93, 96, 99, 100, 103, 106], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 92, 97, 98, 105, 107], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 109], "deep": [2, 40, 42, 60, 61, 74, 96], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109], "subfield": 2, "theori": [2, 100], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 91, 92, 97, 98, 102], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 107], "varieti": [2, 87, 88, 99], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108, 109], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 91, 92, 93, 95, 96, 100, 103, 104, 105, 108, 109], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 91, 93, 99, 100, 105, 107, 109], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 92, 96, 99, 102, 104, 106, 108, 109], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 91, 95, 99, 100, 102, 103, 104, 105, 108, 109], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 90, 95, 96, 97, 99, 100, 103, 106, 107, 109], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 98, 100, 102, 105, 107, 109], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 91, 96, 98, 99, 103, 104, 105, 106, 108, 109], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 99, 100], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 99], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 92, 98, 107], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 97, 99, 100, 102, 103, 104], "messi": [2, 74, 100], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 92, 98, 99], "robust": [2, 47, 52, 74, 92, 99], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 92, 99, 102, 104], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 91, 92, 96, 100], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 99, 100, 102, 104, 106, 109], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 90, 99], "wrapper": [2, 61, 87, 88, 89, 107], "around": [2, 69, 90, 91, 92, 104, 105, 109], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 90, 95, 96, 97, 98, 99, 108, 109], "along": [2, 49, 64, 82, 90, 91, 92, 93, 97, 99, 105], "dimens": [2, 57, 76, 79, 93, 99, 105, 108], "select": [2, 9, 10, 27, 51, 62, 72, 93, 99, 102, 105], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 106, 109], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 95, 98, 99, 104, 108], "By": [2, 37, 63, 64, 74, 91, 97, 99, 108], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 91, 92, 96, 97, 99, 100, 102, 103, 104, 108], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 91, 92, 98, 100, 101, 104, 105, 107, 108], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 105, 107, 108, 109], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 102, 103, 105, 107], "consist": [2, 3, 38, 42, 51, 57, 62, 97, 108, 109], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 105, 107, 109], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 92, 96, 97], "close": [2, 3, 10, 41, 47, 71, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 99], "equival": [2, 3, 38, 42, 47, 71, 105, 107], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 90, 99, 102, 108], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 100], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 92, 97, 98, 104, 105], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 93, 99, 109], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 91], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 93, 96, 98, 99, 103, 104, 107, 108, 109], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 99, 103, 104, 107, 108, 109], "particularli": [2, 84, 102, 105], "filter_bi": [2, 3, 41, 44, 64, 85, 99], "frac_nois": [2, 44, 64, 80, 99], "min_examples_per_class": [2, 44, 64, 92, 99, 100], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 91, 92, 93, 95, 96, 97, 102, 103, 107], "accuraci": [2, 39, 72, 87, 88, 89, 93, 99, 100, 102, 105, 107, 108], "n_job": [2, 41, 44, 64, 76, 78, 80, 99, 105, 108], "disabl": [2, 38, 42, 44, 105], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 91, 97, 99, 102, 106], "caus": [2, 44, 49, 91, 92, 97, 99], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 91, 92, 98, 99, 103, 104, 105, 108, 109], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 99, 100, 103, 104, 108, 109], "adjust_pred_prob": [2, 10, 66, 71, 72, 100], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 104, 105, 106, 107, 108], "much": [2, 10, 37, 41, 44, 74, 90, 97, 98, 99, 100, 102, 105], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 91, 93, 96, 98, 99, 104, 105, 106, 107], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 108, 109], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 100], "limit": [2, 5, 17, 41, 52, 64, 90, 97, 104, 108, 109], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 91, 108], "label_issues_batch": [2, 40, 64, 99], "find_label_issues_batch": [2, 40, 41, 64, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 107], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 91, 97, 104, 105, 108, 109], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 100], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 93, 96, 99, 100, 103, 107], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 93, 95, 96, 100, 102, 104, 106, 107], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 103, 107, 108, 109], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 98, 100, 103, 105, 107, 108, 109], "final": [2, 10, 74, 87, 95, 97, 104, 106, 107], "remain": [2, 74, 85, 87, 88, 93, 103, 107, 109], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 107, 108], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 91, 92, 95, 96, 97, 99, 100, 102, 107, 109], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 107, 108, 109], "scipi": [2, 4, 5, 14, 53, 57, 71, 97], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 92, 93, 95, 96, 97, 100], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 97], "torch": [2, 38, 39, 42, 88, 89, 93, 96, 98, 105], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 91, 92, 93, 99, 100, 105], "tensorflow": [2, 57, 61, 84, 89, 99], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 92, 93, 95, 99, 100, 101, 103, 107], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 93, 98, 99, 100, 103, 104, 107, 109], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 93, 95, 96, 97, 99, 103, 104, 105, 106, 107, 109], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 106, 108, 109], "abl": [2, 3, 10, 74, 89, 99, 100, 102, 103], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 91, 92, 93, 95, 97, 98, 102, 107, 108, 109], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 102, 103, 104, 105, 107], "shuffl": [2, 10, 57, 89, 93, 96, 97, 103, 105], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 109], "batch": [2, 41, 57, 61, 62, 76, 78, 90, 93, 99, 105], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 107, 108, 109], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 96, 99, 105], "eg": [2, 5, 10, 57, 67, 70, 91, 92, 99], "repeat": [2, 57, 62, 102, 105], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 93, 95, 97, 99, 102, 103, 105, 106, 107, 108], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108, 109], "seri": [2, 3, 41, 57, 58, 74, 82, 99], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 105, 109], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 98, 102, 106, 107, 108, 109], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 92, 99, 104, 109], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 91, 97, 99, 102, 104, 105, 107], "cutoff": [2, 3, 53, 105], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108], "section": [2, 3, 7, 10, 85, 93, 95, 97, 99, 104], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 98, 99, 106], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 92, 94, 97, 99, 100], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 90, 100], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 92, 93, 96, 102, 104, 107], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 93, 95, 96, 97, 98, 99, 102, 103, 104, 107, 108, 109], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 92, 98, 99, 109], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 93, 97, 99, 104], "observ": [2, 3, 47, 54, 89, 90, 91, 92, 102, 105, 107], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 93, 95, 96, 99, 100, 104, 107], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 102, 105, 106, 107, 109], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 100, 107], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 90, 92, 97, 99, 103, 104], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 92, 93, 96, 99, 104, 107, 108], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 106, 107, 108, 109], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 99, 100], "significantli": [2, 10, 93, 97, 100, 102, 106], "reduc": [2, 41, 44, 57, 89, 99], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 91, 93, 95, 98, 99, 100, 104, 105, 107, 108, 109], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 90, 93, 95, 102, 103, 104, 109], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 109], "skip": [2, 10, 38, 42, 74, 89, 97, 99, 103, 109], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 90, 93, 97, 100, 102, 106], "caution": [2, 5, 99], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 91, 95, 96, 102, 106], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 91, 93, 95, 97, 99, 107, 108, 109], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 92, 95, 97, 98, 99, 102, 103, 104, 109], "still": [2, 41, 42, 57, 71, 87, 89, 93, 99, 105], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 93, 96, 99, 102, 105], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 92, 104], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 93, 97, 99, 100, 103, 109], "appropri": [2, 10, 17, 35, 53, 64, 72, 91, 95, 103, 104], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 91, 93, 95, 103, 107, 109], "f": [2, 7, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 90, 93, 97, 99, 106, 108], "access": [2, 10, 14, 38, 42, 74, 88, 92, 93, 96, 98, 103], "hyperparamet": [2, 66, 71, 93], "purpos": [2, 52, 91, 92, 97, 99, 103, 107], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 91, 93, 96, 98, 102, 104, 105, 106, 108, 109], "explicitli": [2, 8, 10, 42, 52, 74, 99], "yourself": [2, 5, 41, 92, 97], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 93, 95, 96, 98, 99, 100, 102, 103, 105, 107], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 107, 108], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 93, 95, 96, 97, 99, 105], "offer": [2, 5, 9, 10, 88, 89, 91, 92, 96, 99, 100, 103], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 91, 93, 96, 97, 99, 100, 102, 104, 105, 106, 107, 108], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 91, 97], "label_issues_df": [2, 74, 93], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 108], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 91, 92], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 95, 97, 99, 100, 102, 104, 106, 108], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 93, 97, 99, 105], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 92, 99, 100, 109], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 103, 105], "uniqu": [2, 32, 57, 79, 91, 97, 99, 103, 105], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 107, 108, 109], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 97, 99, 100, 105], "trick": [2, 99], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 93, 95, 96, 97, 104, 105], "account": [2, 37, 62, 66, 71, 72, 88, 96, 99, 100, 102, 103, 105, 107], "word": [2, 3, 56, 82, 83, 99], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 107], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 91, 92, 93, 96, 97, 100, 103, 105, 108], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 93, 96, 97, 98, 99, 100, 105, 106, 107], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 91, 94, 98, 101, 103, 107, 108, 109], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 99], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 106, 107, 109], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 99, 100, 102, 103, 104, 107, 109], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 91, 92, 93, 99, 100, 102, 106, 107, 108], "simpli": [2, 10, 37, 72, 88, 91, 92, 95, 96, 99, 100, 103, 107, 108, 109], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 92, 93, 95, 96, 97, 100, 104], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 108, 109], "cach": [2, 88, 96], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 100, 102, 107, 108], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 91, 102, 103, 105, 107], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 91, 93, 97, 99, 100, 102, 109], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 90, 98, 99, 102, 104, 108, 109], "prefer": [2, 72, 80, 97, 103], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 96, 99, 100, 104], "invok": [2, 38, 42, 100, 106], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 106, 107, 108, 109], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 103, 107], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 96, 99, 104], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 92, 98, 109], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 91, 93, 95, 96, 97, 98, 99, 100, 102, 105], "docstr": [2, 37, 38, 42, 57, 74, 98, 100], "unless": [2, 38, 42, 52, 74, 99], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 92, 97, 99, 104, 105, 106, 108, 109], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 92, 93, 95, 96, 97, 99, 102, 107], "label_qu": [2, 62, 74, 88, 100, 102, 107], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 98, 99, 100, 102, 103, 107, 108, 109], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 107], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 107, 108, 109], "eas": 2, "comparison": [2, 38, 42, 70, 100, 102], "against": [2, 38, 42, 91, 95, 97, 99, 102, 103], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 107, 108], "ad": [2, 38, 42, 90, 92, 102, 107], "precis": [2, 53, 55, 64, 67, 70, 97, 98, 99, 100, 108, 109], "definit": [2, 7, 35, 49, 74, 87, 95], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 100, 102, 103, 104, 106, 109], "precomput": [2, 4, 5, 47, 52, 74, 92, 93, 95, 96, 97, 98, 100], "clear": [2, 38, 42, 54, 74, 88, 96, 107], "save": [2, 5, 17, 38, 41, 42, 70, 74, 99, 104, 108, 109], "space": [2, 5, 10, 71, 74, 93, 95, 97, 98], "place": [2, 38, 42, 52, 57, 74, 87, 102], "larg": [2, 9, 10, 41, 52, 74, 93, 95, 96, 99, 104, 105, 108, 109], "deploi": [2, 9, 10, 74, 93, 95, 96, 99], "care": [2, 10, 38, 42, 52, 74, 96, 97, 99, 100], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 90, 99, 100, 102, 104, 107], "cannot": [2, 5, 13, 15, 57, 106, 109], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 91, 92, 95, 96, 99, 100, 102, 103, 104, 105, 108, 109], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 91, 95, 96, 97, 98, 100, 102, 105, 108, 109], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 93, 102, 103], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 91, 92, 99], "metadata": [2, 10, 42, 74, 93, 95, 96, 109], "through": [2, 5, 7, 42, 74, 88, 89, 90, 92, 96, 97, 98, 99, 102, 104, 105], "develop": [2, 9, 42, 54, 74, 99, 100, 109], "request": [2, 42, 74, 87, 88, 92, 96, 97, 98, 103, 109], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 93, 97, 99, 104, 108], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "www": [2, 42, 74, 105], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 99, 100, 109], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 105, 107, 109], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 96, 100], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 99], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 107, 108, 109], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 91, 99, 102, 103, 104, 109], "unchang": [2, 38, 42, 74, 109], "relev": [2, 17, 27, 42, 74, 93, 95, 97], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 99], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 91, 96, 99, 104, 105, 109], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107, 109], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 107], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 96, 99], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 91, 93], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 93, 95, 96, 102, 105, 107], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 91, 92, 93, 95, 96, 99, 100, 102, 104, 105], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 109], "latter": [2, 38, 42, 74, 105], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 90, 95, 97, 99], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 93, 95, 97, 98, 99, 100, 104, 109], "channel": [3, 89, 100], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 92, 98], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 99, 100], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 92, 97, 105], "joint": [3, 37, 44, 47, 57, 63, 64, 98], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 103], "don": [3, 84, 92, 93, 95, 96, 100, 104, 107], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 100], "off": [3, 44, 57, 69, 93, 100, 104, 105], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 92, 100, 108, 109], "confident_learn": [3, 44, 64, 100], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 102], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 93, 97, 99, 100, 102, 103, 105, 107, 108], "bincount": [3, 90, 91, 92, 100, 102, 103], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 100, 107], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 92, 93, 95, 97, 98, 99, 100, 105, 107], "As": [3, 7, 84, 91, 92, 96, 100, 107, 109], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 103], "approach": [3, 37, 41, 44, 61, 87, 90, 95, 97, 100, 103, 105, 107], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 92, 93, 96, 97, 100, 107], "know": [3, 10, 91, 92, 93, 95, 96, 99, 100, 102, 107], "cut": [3, 69, 84, 100], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 104, 105, 109], "underestim": 3, "few": [3, 9, 10, 70, 84, 92, 97, 99, 102, 103, 104, 105, 109], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 98, 99, 103, 108, 109], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 99, 103, 105, 109], "num_issu": [3, 7, 41, 89, 90, 91, 92, 93, 95, 96, 97, 100], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 90, 98, 99, 104, 107, 109], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 100], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 92, 103, 104, 105, 106], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 107], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 95, 109], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 93, 95, 96, 99, 100, 103, 104, 105, 108, 109], "truli": [3, 105, 108], "estimate_joint": [3, 37, 100], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 100, 104, 106, 108, 109], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 104, 105], "done": [3, 10, 61, 74, 91, 99, 100, 103, 105, 106], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 93, 95, 96, 106], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 91, 97, 99, 100, 103, 104], "baselin": [3, 38, 44, 88, 105, 107], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 99], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 109], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 90, 93, 97, 99, 108], "practic": [3, 87, 88, 92, 93, 100, 105, 107], "complet": [3, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 107], "gist": 3, "cj_ish": 3, "guess": [3, 47, 100, 102], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 107, 108, 109], "parallel": [3, 44, 70, 80, 98], "again": [3, 61, 87, 99, 105], "simplifi": [3, 15, 99], "understand": [3, 9, 10, 37, 63, 70, 92, 97, 100, 101, 107, 108, 109], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 91, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 109], "optim": [3, 38, 39, 42, 61, 93, 97, 102], "speed": [3, 44, 88, 98, 99, 107], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 97, 104], "enumer": [3, 38, 42, 89, 90, 91, 92, 93, 97, 109], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 97, 99, 100, 104, 105, 108], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 97], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 100, 106], "poorli": [3, 47, 87, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 100], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 91, 95, 100, 103, 107], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 93, 95, 97], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 91, 92, 93, 99, 104, 108], "percent": 3, "often": [3, 37, 47, 63, 99, 100, 106, 108], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 91, 93, 95, 96, 99, 103, 104, 105, 107], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 99, 100, 102, 103, 104, 106], "pro": 3, "con": 3, "pred_proba": [3, 106], "combin": [3, 37, 91, 93, 97, 98, 99, 100, 106, 107], "becaus": [3, 47, 53, 57, 69, 96, 97, 99, 100, 102, 104], "littl": [3, 41, 98, 104, 109], "uniform": [3, 72, 98, 99, 100], "20": [3, 7, 43, 83, 89, 90, 93, 96, 97, 98, 99, 100, 104, 107, 108, 109], "Such": [3, 93, 105], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 104], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 97, 109], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 91, 95, 96, 98, 99, 104, 105, 108, 109], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 100], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 93, 95, 96, 97, 100, 108, 109], "five": [3, 67, 70, 100, 104], "estimate_cv_predicted_prob": [3, 100], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 104], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 99, 102, 103, 107, 108, 109], "u": [4, 87, 88, 89, 91, 93, 95, 97, 99, 100, 102, 103, 106, 107, 108, 109], "assess": [4, 10, 97, 104], "contribut": [4, 10, 19, 97, 104], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 95, 97], "metric": [4, 5, 10, 19, 20, 27, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 93, 95, 96, 97, 100, 107], "10": [4, 10, 19, 20, 24, 27, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 92, 96, 97, 105], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 91, 92, 93, 95, 96, 97, 99, 100, 105], "knn": [4, 10, 14, 19, 27, 32, 51, 52, 53, 54, 55, 71, 95, 105], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 93, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 92, 96, 97, 99, 103, 104, 107], "lowest": [4, 10, 62, 70, 92, 93, 95, 97, 99, 102, 103, 104, 108], "fall": [4, 10, 69, 78, 82, 100, 105], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 105, 107, 108], "approxim": [4, 10, 19, 41, 54, 71, 97, 102], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 104, 105, 107, 109], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 105, 107, 109], "arxiv": [4, 19, 100], "ab": [4, 19, 100, 104], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 91, 92, 95, 96, 97, 100, 103, 107], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 91, 92, 93, 96, 99, 100, 105], "suppli": [4, 103, 104, 107], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 97, 103], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 93, 95, 96, 100], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 95, 97, 105], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 97], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 95, 105], "cosin": [4, 10, 52, 53, 55, 71, 97, 105], "dim": [4, 71, 93, 108], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 95], "dimension": [4, 27, 53, 57, 89, 100, 105], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 107], "fewer": [4, 10, 44, 57, 71, 97, 104], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 93, 95, 96, 100], "exce": [4, 52, 90, 93, 97], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 92, 93, 96, 97, 105, 109], "rel": [4, 10, 37, 52, 62, 63, 71, 91, 92, 93, 95, 96, 100, 105], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 97, 100], "closer": [4, 10, 69, 104], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 97, 98, 105], "convers": 4, "neg": [4, 10, 69, 70, 91, 92, 97, 98], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 99], "neither": [4, 5, 10, 15, 53, 104], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 90, 93, 96, 98, 99], "55": [4, 56, 97, 98, 104, 107], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 93, 94, 95, 96, 97, 99, 100, 103, 104, 107], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 91, 95, 96, 97, 100, 102, 105, 106], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 97], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "egg": [5, 7, 9, 12, 36, 84, 98], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 107], "image_kei": [5, 10, 93], "interfac": [5, 9, 10, 54, 84, 99, 100], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 91, 96, 97, 98, 99], "goal": [5, 107], "track": [5, 7, 14, 15, 84, 90, 91, 98, 99, 100], "intermedi": [5, 9, 92], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 92, 95, 96, 97, 100], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 93, 96, 97, 98, 99, 102, 103, 104], "hug": [5, 10, 13, 93], "face": [5, 10, 13, 17, 93, 98, 103], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 93, 96, 99, 100, 102, 104], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 95, 96, 97, 99, 102, 103, 109], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 91, 92, 95, 96, 100, 102, 103, 104], "path": [5, 13, 38, 41, 42, 70, 89, 91, 99, 104], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 93, 98, 99, 100, 102, 103, 105, 107, 109], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 91, 92, 94, 98, 99, 100, 101, 102, 105], "txt": [5, 13, 109], "csv": [5, 13, 87, 88, 95, 96, 107], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 103], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 92, 96, 101, 102, 105], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 103], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 91, 92, 94, 98, 99, 101, 102, 103, 104, 106, 108], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 97, 107], "pil": [5, 93], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 92, 93, 99, 101, 103, 108], "load_dataset": [5, 13, 93], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 90], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 98, 100, 104, 108, 109], "empti": [5, 13, 47, 62, 92, 97, 99, 103], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 107], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 107], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 103, 104, 107, 108, 109], "common": [5, 10, 14, 17, 92, 94, 97, 98, 99, 100, 103, 104, 108], "real": [5, 17, 84, 91, 92, 99, 100, 102, 107, 108], "world": [5, 17, 84, 91, 92, 99, 100, 102, 107, 108], "interact": [5, 17, 96, 99], "thereof": [5, 17], "insight": [5, 17, 70, 102], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 91, 92, 93, 95, 96, 97, 99, 102, 103, 105, 107, 109], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 93, 95, 96, 99, 100, 103, 105, 107, 108], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 93, 95, 96, 100, 103, 104], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 93, 95, 96, 100, 103], "squar": [5, 57, 74, 98, 107], "csr": [5, 52, 97], "evenli": 5, "omit": [5, 69, 70, 93, 97, 104], "itself": [5, 33, 38, 42, 52, 97, 104], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 92, 95, 98, 100, 102, 106, 107, 108, 109], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 103, 109], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 96, 103, 104, 109], "ascend": [5, 37, 63, 93, 100], "segment": [5, 76, 78, 79, 101], "reflect": [5, 10, 52, 87, 88, 95, 96, 102, 104, 105, 107], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 95], "illustr": [5, 97], "todens": 5, "second": [5, 49, 57, 70, 72, 91, 95, 99, 100, 109], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 91, 97, 100, 107], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 97, 99, 102, 109], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 96, 97, 100, 107, 108, 109], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 98, 107, 109], "random_st": [5, 87, 89, 90, 91, 92, 93, 97, 100, 103, 105], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 107], "comprehens": [5, 84, 93, 103, 107], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 97], "mode": [5, 12, 19, 38, 41, 42, 105], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 97], "toarrai": [5, 52, 97], "NOT": [5, 41, 96], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 92], "suppos": [5, 10, 67, 87, 88, 105, 107], "who": [5, 69, 87, 95, 97, 100, 109], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 91, 97, 99], "clean_learning_kwarg": [5, 10, 11, 24, 31, 99, 107], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 100], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 92, 95, 96, 99, 100, 103, 107, 109], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 107, 108, 109], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 105, 107, 108, 109], "suffer": [5, 10, 14, 23, 64, 72, 83, 97, 109], "onc": [5, 23, 37, 38, 42, 87, 90, 91, 99, 100, 103, 104], "familiar": [5, 97], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 109], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 104, 105, 109], "compar": [5, 62, 71, 82, 91, 92, 95, 97, 100, 104], "issue_summari": [5, 7, 10, 14, 90, 91, 97], "With": [5, 9, 10, 41, 88, 96, 99, 100, 102, 107, 108, 109], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 93, 102, 107], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 93, 95, 96, 100, 104], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 97], "wherea": [5, 10, 57, 64, 87, 88, 106], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 91, 92, 97, 100, 101, 107], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 100, 107], "global": [5, 7, 10, 23, 38, 42, 98], "non_iid": [5, 10, 11, 15, 27, 92, 93, 95, 96, 97, 100], "hypothesi": [5, 97], "iid": [5, 7, 9, 27, 95, 100], "never": [5, 89, 100, 103, 105, 106], "someth": [5, 7, 10, 38, 42, 72, 104], "123": [5, 90, 91, 92], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 107], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 93, 95, 96, 100], "focu": [5, 10, 14, 96, 97, 108, 109], "full": [5, 10, 14, 41, 61, 70, 90, 93, 109], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 108], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 91, 92, 93, 95, 96, 97, 100], "get_issue_summari": [5, 10, 14, 90, 92, 97], "get_info": [5, 14, 92, 96, 97, 98], "yet": [5, 18, 28, 61, 98, 102], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 91], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 91, 93], "load": [5, 13, 41, 70, 93, 98, 99, 100, 104, 105, 108, 109], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 91, 93, 96, 99], "overwrit": [5, 91], "separ": [5, 37, 49, 66, 91, 92, 93, 97, 99, 104, 106], "static": 5, "rememb": [5, 96, 99, 100], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 91, 97, 98, 108, 109], "ident": [5, 10, 23, 57, 90, 96, 97], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 98, 102, 107], "walk": 7, "alongsid": [7, 38, 42, 91, 99], "pre": [7, 8, 10, 38, 42, 91, 92, 107], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 93, 99], "issue_manager_factori": [7, 15, 91], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109], "thing": [7, 42, 88, 97, 100, 107], "next": [7, 62, 84, 87, 88, 89, 90, 93, 95, 96, 97, 99, 102, 104, 107, 109], "dummi": 7, "randint": [7, 32, 49, 90, 91, 92, 97, 99], "mark": [7, 10, 85, 104, 105, 107], "regard": [7, 92, 100], "rand": [7, 49, 52, 90, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "whole": [7, 10, 27, 38, 42, 92, 97], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "popul": [7, 92, 96], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 104], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 90, 97, 99, 103], "intermediate_arg": 7, "min": [7, 49, 69, 82, 91, 99, 105], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 38, 42, 53, 76, 82, 96, 97, 99], "easili": [7, 47, 85, 87, 88, 89, 90, 92, 95, 96, 100, 102, 103, 105, 106, 107, 108], "hard": [7, 42, 98, 105], "sai": [7, 10, 38, 42, 97, 103, 108], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 95, 96, 97, 99, 100, 102, 105], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 90, 92, 93, 95, 96, 99, 100, 108], "won": [7, 38, 42, 91, 92, 99, 103], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 91], "instanti": [7, 17, 41, 61, 71, 88, 89, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 93, 95, 96, 100], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 104, 105, 107, 108, 109], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "169312": 7, "17": [7, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 98, 104, 109], "dbscan": [8, 10, 32, 99], "hdbscan": [8, 99], "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 91, 92, 95, 96, 99, 100, 103, 107], "sensit": [8, 10, 55, 97], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 97, 99], "your_data": 8, "get_pred_prob": [8, 90], "n_cluster": [8, 32, 97, 99], "cluster_id": [8, 10, 11, 32, 97, 99], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 92, 93, 95, 96, 97, 99, 100], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 97, 99, 106], "nondefault": 9, "Near": [9, 99], "imbal": [9, 22, 66, 71, 72, 92], "null": [9, 11, 15, 22, 92, 93, 96, 100], "togeth": [9, 10, 47, 88, 91, 92, 93, 95, 96, 100, 107, 109], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 92, 93, 95, 96, 97, 99, 102, 103, 107, 108, 109], "prerequisit": 9, "basic": [9, 42, 61, 95, 96, 97, 105], "fulli": [9, 10, 38, 42, 61, 99], "platform": [9, 10, 84, 93, 95, 96, 99], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 95, 99, 100, 107, 108], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 99, 100], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 93, 95, 96, 99, 103, 105, 108, 109], "fix": [9, 10, 62, 88, 90, 96, 97, 100, 107], "scientist": [9, 10], "million": [9, 10, 109], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 105, 107, 109], "suggest": [9, 10, 37, 62, 63, 69, 88, 93, 96, 99, 107], "power": [9, 10, 93, 95, 96, 98, 100, 109], "automl": [9, 10, 84, 99], "system": [9, 10, 89, 90, 93, 95, 96, 108], "foundat": [9, 10, 84, 97], "improv": [9, 10, 62, 87, 88, 92, 93, 98, 99, 100, 107, 108], "click": [9, 10, 89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "tune": [9, 10, 88, 89, 96, 98, 105], "serv": [9, 10, 14, 17, 102], "auto": [9, 10, 87, 88, 90, 92, 98, 99, 107], "free": [9, 10, 84, 89, 92, 93, 95, 96, 99, 100], "page": [10, 92, 99, 100], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104], "why": [10, 90, 96], "matter": [10, 37, 63, 88, 96], "didn": [10, 97], "plu": [10, 107], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 93, 95, 96, 97, 99, 100], "class_imbal": [10, 11, 15, 21, 92, 93, 95, 96, 97, 100], "data_valu": [10, 11, 15, 22, 97], "No": [10, 11, 87, 88, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 109], "issue_scor": 10, "atyp": [10, 71, 91, 92, 93, 95, 96, 100, 105], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 91, 92, 95, 96, 99, 106, 107], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89, 90], "expertis": 10, "interpret": [10, 98, 99, 100, 103, 107], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 93, 95, 96, 97, 100, 104, 107], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 93, 95, 96, 100, 107], "appear": [10, 37, 48, 63, 64, 67, 75, 92, 93, 95, 96, 97, 107, 108], "now": [10, 41, 85, 87, 88, 89, 90, 92, 97, 102, 104, 105, 107, 109], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 99, 100, 101], "hamper": [10, 93, 98], "analyt": [10, 84, 97, 99, 102], "lead": [10, 69, 72, 93, 97, 104], "draw": [10, 90, 91, 92], "conclus": [10, 96], "let": [10, 38, 42, 71, 72, 87, 88, 89, 90, 92, 93, 95, 96, 99, 102, 103, 104, 105, 107, 108, 109], "sort_valu": [10, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 107], "head": [10, 87, 88, 89, 92, 93, 95, 96, 97, 98, 100, 102, 107], "97": [10, 87, 98, 99, 100, 104, 107, 109], "064045": 10, "58": [10, 87, 92, 97, 98, 100, 104], "680894": 10, "41": [10, 97, 98, 104, 107], "746043": 10, "794894": 10, "98": [10, 98, 99, 107], "802911": 10, "give": [10, 49, 72, 100, 102, 108], "li": [10, 71], "especi": [10, 87, 88, 90, 93, 97, 99, 107], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 105, 107], "rare": [10, 44, 70, 90, 91, 92, 93, 95, 96, 99, 100], "anomal": [10, 72, 90, 91, 92, 93, 95, 96, 100], "articl": [10, 41, 99], "blog": 10, "unexpect": [10, 38, 42, 96], "consequ": 10, "inspect": [10, 88, 89, 90, 92, 93, 100, 104, 107], "011562": 10, "62": [10, 97, 100, 104, 107], "019657": 10, "22": [10, 89, 90, 91, 93, 97, 98, 99, 100, 103, 104, 109], "035243": 10, "040907": 10, "42": [10, 49, 96, 97, 98, 104, 109], "056865": 10, "smaller": [10, 71, 90, 103, 104], "extrem": [10, 91, 92, 93, 95, 96, 97, 99, 100], "record": [10, 38, 42, 89, 95, 107], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 95, 96, 97, 99, 100, 103, 107, 109], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 100], "nearli": [10, 23, 92, 93, 95, 96], "awar": [10, 85, 100], "presenc": [10, 52, 54, 100], "36": [10, 97, 98, 109], "066009": 10, "80": [10, 39, 87, 95, 103, 107], "003906": 10, "093245": 10, "005599": 10, "27": [10, 90, 95, 97, 98, 100, 104, 109], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 103, 107], "signific": [10, 95, 96, 100], "violat": [10, 95, 96, 97, 100], "assumpt": [10, 95, 96, 97, 100], "changepoint": [10, 95, 96, 100], "shift": [10, 52, 54, 95, 96, 100], "drift": [10, 92, 95, 97, 100], "autocorrel": [10, 95, 96, 100], "almost": [10, 95, 96, 100], "adjac": [10, 52, 95, 96, 100], "tend": [10, 37, 47, 95, 96, 100, 108, 109], "sequenti": [10, 38, 42, 61, 93], "pai": [10, 96], "attent": [10, 97], "realli": [10, 88, 96, 102, 108], "mere": 10, "highlight": [10, 79, 83, 90, 91, 92, 95, 97, 108], "necessarili": [10, 62, 70, 96, 100], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 92, 96, 99, 100, 104], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 95, 96, 97, 98, 99, 100, 106, 109], "x1": [10, 67, 70, 104], "x2": [10, 67, 70, 104], "10th": 10, "100th": 10, "90": [10, 82, 87, 95, 100, 106, 107], "similarli": [10, 38, 42, 91, 93, 95, 99, 104], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 102], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 93, 96, 99, 102, 104], "scenario": [10, 52, 54, 72, 90, 91, 92], "underli": [10, 43, 54, 71, 80, 82, 109], "stem": [10, 71, 105], "evolv": 10, "influenc": 10, "act": [10, 69, 91], "accordingli": [10, 33, 52], "emploi": [10, 103, 105], "partit": [10, 106], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 90, 93, 95, 96], "problem": [10, 33, 41, 49, 79, 84, 91, 92, 93, 96, 99], "deploy": [10, 87, 88, 100, 107], "overlook": [10, 69, 104], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 95, 96, 100, 106, 109], "diagnos": [10, 92, 99], "24": [10, 89, 90, 97, 98, 100, 102, 104, 107], "681458": 10, "37": [10, 91, 97, 98], "804582": 10, "64": [10, 42, 87, 93, 95, 97, 100, 104], "810646": 10, "815691": 10, "78": [10, 87, 95, 98, 100, 104, 107], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 90, 99], "rarest": [10, 92], "q": [10, 104], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 104], "smote": 10, "asymmetr": [10, 37], "28": [10, 93, 96, 97, 98, 100, 102, 109], "75": [10, 49, 90, 91, 92, 97, 98, 102, 103, 104, 107, 109], "33": [10, 38, 42, 97, 98, 104, 109], "68": [10, 87, 98, 100, 104], "excess": [10, 93], "dark": [10, 108], "bright": [10, 109], "blurri": [10, 93], "lack": [10, 61, 97], "unusu": [10, 104, 105], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 92, 93, 95, 96, 101], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 92, 97, 107, 108], "tabular": [10, 84, 86, 91, 92, 94, 97, 99, 102], "categor": [10, 71, 86, 87, 91, 92, 94, 99, 107], "encod": [10, 50, 70, 76, 79, 87, 88, 95, 96, 99, 107, 108], "71": [10, 97, 98, 100, 104, 107], "70": [10, 82, 95, 97], "69": [10, 100, 107], "subgroup": [10, 97], "wors": [10, 97, 102], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 90, 99, 104, 107], "pattern": [10, 97], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 99], "quantif": 10, "39": [10, 88, 89, 91, 93, 96, 97, 98, 99, 104, 107, 108, 109], "32": [10, 89, 91, 97, 98, 102, 104], "valuabl": [10, 19, 97], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 98, 100, 102, 103, 104, 105, 106, 107, 109], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 105], "outsid": [10, 99, 103], "outlierissuemanag": [10, 15, 22, 29, 91], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 93, 95, 96, 97, 102, 106, 108], "mandatori": [10, 93], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 93, 98, 104, 108], "29": [10, 90, 93, 97, 98, 102, 103, 104, 108, 109], "low_inform": [10, 93], "odd_aspect_ratio": [10, 93], "35": [10, 90, 91, 97, 98, 102, 103, 104], "odd_siz": [10, 93], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "is_outlier_issu": [11, 90, 91, 92, 93, 95, 96, 97, 100], "outlier_scor": [11, 29, 90, 91, 92, 93, 95, 96, 97, 100, 105], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100], "near_duplicate_scor": [11, 20, 91, 92, 93, 95, 96, 97, 99, 100], "near_duplicate_set": [11, 20, 22, 91, 92, 93, 95, 96, 99, 100], "is_non_iid_issu": [11, 92, 95, 96, 97, 100], "non_iid_scor": [11, 27, 92, 95, 96, 97, 100], "is_class_imbalance_issu": [11, 92, 97], "class_imbalance_scor": [11, 21, 92, 97], "is_underperforming_group_issu": [11, 92, 97], "underperforming_group_scor": [11, 32, 92, 97], "is_null_issu": [11, 92, 97], "null_scor": [11, 28, 92, 97], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 19, 97], "studio": [12, 84, 92, 93, 95, 96, 99], "data_issu": [12, 16, 17, 34, 91], "issue_find": [12, 16, 97], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 93, 102], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 93], "dataissu": [14, 16, 17, 34], "central": [14, 109], "repositori": [14, 93], "strategi": [14, 49, 97, 99], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 93, 99], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 91], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 97, 100, 104, 108, 109], "creation": [17, 42, 97], "execut": [17, 38, 42, 91, 93, 99, 104], "coordin": [17, 67, 69, 70, 104, 109], "At": [17, 70, 99], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 93, 98, 99, 100, 102, 103], "25": [19, 27, 38, 49, 55, 90, 92, 93, 97, 98, 100, 102, 103, 104, 109], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 93, 99, 100, 102, 103], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 96, 105], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 87, 89, 91, 93, 97, 98, 100, 103], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 100, 109], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 90, 91, 92, 93, 96, 100, 105], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "set_knn_graph": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 108], "priori": [23, 100], "abstract": [23, 33], "applic": [24, 62, 99, 100, 102, 109], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 107], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 104, 108], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 95, 97, 107], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 93, 97, 104, 105, 109], "superclass": 28, "arbitrari": [28, 37, 78, 82, 91, 105, 107], "prompt": 28, "address": [28, 88, 91, 92, 96, 99], "enabl": [28, 42, 54], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 109], "50": [32, 42, 90, 97, 99, 100, 102, 104, 105, 107], "keepdim": [32, 99], "signifi": 32, "absenc": 32, "find_issues_kwarg": 32, "int64": [32, 89, 102], "npt": 32, "int_": 32, "id": [32, 62, 91, 93, 97, 99, 102], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 105, 109], "content": [33, 71, 89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "fetch": [33, 41, 89, 92, 99], "datset": 34, "exclud": [34, 43, 79, 83, 91, 99, 109], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91, 92], "continu": [35, 61, 87, 88, 93, 96, 99, 102, 104, 107, 109], "binari": [35, 49, 57, 64, 66, 100, 109], "simultan": [35, 107], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 91, 92], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 93, 98, 104, 106, 108], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 92, 93, 95, 96, 102, 104, 105, 107, 109], "modifi": [37, 38, 41, 42, 52, 54, 57, 99, 100], "rank_classes_by_label_qu": [37, 92], "merg": [37, 52, 56, 84, 98, 99, 109], "find_overlapping_class": [37, 99, 100], "problemat": [37, 63, 79, 83, 89, 104, 109], "unnorm": [37, 63, 100], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 91, 92, 93, 95, 96, 99, 100, 102, 103, 104, 106, 107, 108, 109], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 107], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 106, 107], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 100], "cv": [37, 49, 87, 89, 90, 91, 92, 95, 97, 100, 102], "df": [37, 57, 83, 89, 97, 99], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 100, 106], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 98, 108, 109], "clearli": [37, 72, 93, 104, 108], "num": [37, 63, 98, 100], "overlap": [37, 84, 98, 99, 100], "ontolog": 37, "publish": [37, 109], "therefor": [37, 72, 97], "vehicl": [37, 98], "truck": [37, 98, 105, 108], "intuit": [37, 63, 90], "car": [37, 98, 104, 108], "frequent": [37, 62, 97, 99, 107], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 98, 99, 105, 106, 109], "cat": [37, 57, 63, 65, 98, 99, 105, 106], "captur": [37, 89, 104, 105, 108], "co": [37, 38, 39, 93], "noisy_label": [37, 90, 91, 92, 103], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 100], "half": [37, 38, 40, 42, 63, 98, 109], "health_scor": [37, 63], "classes_by_label_qu": [37, 92], "cnn": [38, 40, 42, 93], "cifar": [38, 39, 98, 105], "teach": [38, 39], "bhanml": 38, "blob": [38, 97], "master": [38, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 105, 106, 108, 109], "forward": [38, 39, 40, 42, 93, 102], "overridden": [38, 42], "although": [38, 42, 71, 87, 95], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 99, 102, 103, 104, 106, 109], "hook": [38, 42, 98], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 109], "nn": [38, 39, 42, 52, 93], "init": [38, 42, 100], "no_grad": [38, 42, 93, 105], "init_weight": [38, 42], "linear": [38, 42, 88, 93, 96], "fill_": [38, 42], "net": [38, 42, 89, 93, 98], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 93], "tensor": [38, 39, 42, 88, 89, 93, 96, 105], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 105], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 93], "move": [38, 42, 49, 85, 98], "cuda": [38, 40, 42, 89, 93], "devic": [38, 42, 89, 93], "gpu": [38, 42, 88, 89, 96], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 92, 95, 97, 99, 103, 106, 107], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 93, 103, 105], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 91, 97, 98, 102, 105, 109], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 97, 105, 107], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 96], "resolv": [38, 42, 90, 109], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 93, 97, 108], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 93], "break": [38, 42, 93, 104], "pickl": [38, 42, 104], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 93], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 108, 109], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 90, 98, 104, 109], "diagram": [38, 42, 106], "degre": [38, 42], "queri": [38, 42, 52, 54, 92, 93, 97, 99, 103], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 92, 98, 99, 100, 103, 104, 109], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 97, 102], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 91, 93, 97, 99, 100, 102, 104, 105], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 109], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 96, 99], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 95], "fire": [38, 42, 98], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 91, 92], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 93, 95, 107], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 96], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 93, 99], "design": [38, 42, 52, 90], "ordereddict": [38, 42], "detach": [38, 42, 93], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 99], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 96, 98], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 96], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 93], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 104], "noisili": [39, 100], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 93], "decim": [39, 57], "forget": [39, 49, 109], "rate_schedul": 39, "epoch": [39, 40, 42, 93, 99], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 97, 99], "250": [39, 91, 92, 100, 104, 109], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 93, 96, 100], "train_load": [39, 42], "model1": [39, 100], "optimizer1": 39, "model2": [39, 100], "optimizer2": 39, "dataload": [39, 93, 105], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 97, 109], "wish": [40, 60, 105, 108, 109], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 99], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 108, 109], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 90, 93, 99, 105, 108], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 93], "loader": [40, 42, 93], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 99], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 99, 100], "conveni": [41, 54, 87, 88, 89, 96], "script": 41, "labels_fil": [41, 99], "pred_probs_fil": [41, 99], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 108], "read": [41, 46, 92, 99, 100, 105, 109], "zarr": [41, 99], "memmap": [41, 108], "pythonspe": 41, "mmap": [41, 99], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 99], "yourfil": 41, "npy": [41, 98, 99, 108], "mmap_mod": [41, 108], "tip": [41, 44, 61, 99], "save_arrai": 41, "your_arrai": 41, "disk": [41, 98, 99], "npz": [41, 109], "maxim": [41, 62, 76, 78, 108], "multiprocess": [41, 44, 64, 76, 78, 93, 99], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 104], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 91, 99, 104, 105], "store_result": 41, "becom": [41, 97, 105], "verifi": [41, 54, 99, 102, 105], "long": [41, 62, 71, 102], "enough": [41, 57, 97, 99], "chunk": [41, 106], "ram": [41, 98], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 99], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 96, 99, 105], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 99, 100, 102], "seen": [41, 90, 99, 105, 109], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 100, 104], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 93], "update_num_issu": 41, "arr": [41, 99], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 99, 105], "mnist": [42, 84, 89, 98], "handwritten": 42, "digit": [42, 89, 98], "last": [42, 49, 67, 70, 90, 91, 92, 99, 102, 104, 109], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 97, 100, 103, 104, 105], "templat": 42, "flexibli": 42, "among": [42, 62, 100], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 105], "train_label": [42, 88, 105], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 96], "token_classif": [43, 56, 80, 82, 83, 99], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 99, 103], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 100], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 96, 99], "seem": [44, 100, 103], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 100], "predicted_neq_given": [44, 64, 100], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 99], "too": [44, 49, 52, 71, 92, 93, 99, 104], "thread": [44, 64], "window": [44, 89, 98], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 99], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 100], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 100], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 103], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 103], "onehot2int": [45, 50, 103], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 109], "get_sent": [45, 56, 109], "filter_sent": [45, 56, 109], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 102], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 97], "behav": 46, "unnecessari": [46, 99], "slightli": [46, 87, 88, 90], "interv": [46, 49, 105], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 102, 108, 109], "increas": [47, 55, 69, 71, 72, 89, 91, 97, 99, 102, 103, 109], "dot": [47, 82, 99], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 95, 99, 103, 105, 107], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 102], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 98], "check_consensus_label_class": 48, "consensus_label": [48, 62, 102], "consensus_method": [48, 62], "consensu": [48, 62, 84, 101, 109], "establish": [48, 61, 88, 107], "compute_soft_cross_entropi": 48, "soft": [48, 98], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 99], "fine_search_s": [48, 74, 99], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 97, 98, 99, 105, 108], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 105], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 98], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 92, 97, 100, 103, 107], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 95, 96, 100, 109], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 109], "success": 49, "previou": [49, 52, 93, 95, 99, 104], "discount": 49, "s_ema": 49, "175": [49, 93, 100, 104], "underflow": 49, "nan": [49, 62, 87, 95, 97, 102, 107], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 97], "n_label": 49, "worst": [49, 102], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 93], "onevsrestclassifi": [49, 103], "randomforestclassifi": [49, 100, 103], "n_split": [49, 92, 93, 103], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 95, 98, 99, 107, 108], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 92, 96, 104, 105, 107], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 99], "manner": [52, 66, 87, 88, 97, 102, 107], "701": 52, "900": [52, 87, 95, 107], "436": 52, "000": [52, 88, 93, 96, 98, 109], "idea": [52, 72, 90, 104], "dens": [52, 61, 97], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 103], "vari": [52, 69, 92], "exact_duplicate_set": 52, "main": [52, 62, 90], "front": [52, 98], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 92, 99, 108], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 95, 97], "slower": 53, "decid": [53, 62, 88, 96, 98, 102, 107, 109], "predefin": 53, "met": [53, 109], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91, 92], "That": [53, 100, 103], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 93, 95, 96, 99, 100], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "scaling_factor": 55, "exp": [55, 71, 72, 91], "dt": 55, "right": [55, 67, 70, 88, 96, 103, 104, 105], "strength": [55, 70, 97], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 98], "thumb": 55, "ood_features_scor": [55, 71, 105], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 91, 99, 102], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 99, 109], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 93, 95, 97, 109], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 92, 95, 97, 100, 103, 105, 107, 108], "red": [56, 70, 90, 91, 92, 97, 98, 100, 103, 104, 105, 108], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 95, 99, 100, 107], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 90, 93, 105], "versu": [57, 100], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 96, 100], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 92, 97, 100, 103, 105], "short_titl": 57, "round_plac": 57, "pretti": [57, 90, 100], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 95, 96, 102, 105, 108], "allow_shuffl": 57, "turn": [57, 84, 104], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 90, 93, 98, 99, 100, 102, 103, 104, 105, 109], "bottom": [57, 67, 70, 97, 104], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 90, 95, 96, 97, 100, 109], "jupyt": [57, 89, 90, 91, 92, 93, 98, 99, 100, 102, 103, 105, 107, 109], "notebook": [57, 62, 89, 90, 92, 98, 99, 100, 102, 103, 104, 108, 109], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 103], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 109], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 96, 105], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 100, 102, 103], "get_label_quality_multiannot": [62, 102], "vote": 62, "crowdsourc": [62, 84, 102], "dawid": [62, 102], "skene": [62, 102], "analog": [62, 90, 98, 102], "chosen": [62, 72, 99, 102], "crowdlab": [62, 102], "unlabel": [62, 93, 95, 96, 102, 105, 108], "get_active_learning_scor": [62, 102], "activelab": [62, 102], "priorit": [62, 69, 104, 108, 109], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 95, 100, 102, 107], "majority_vot": 62, "broken": [62, 70, 98, 107], "highest": [62, 70, 91, 93, 106], "0th": 62, "consensus_quality_scor": [62, 102], "annotator_agr": [62, 102], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 98], "agreement": [62, 102], "agre": 62, "prevent": [62, 99], "overconfid": [62, 106], "detailed_label_qu": [62, 102], "annotator_stat": [62, 102], "model_weight": 62, "annotator_weight": 62, "warn": [62, 91, 92, 93, 95, 96, 97, 99, 100], "labels_info": 62, "num_annot": [62, 102], "deriv": [62, 102], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 102], "num_examples_label": [62, 102], "agreement_with_consensu": [62, 102], "worst_class": [62, 102], "trustworthi": [62, 102, 107], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 107], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 91, 102], "get_majority_vote_label": [62, 102], "event": 62, "lastli": [62, 95], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89, 97], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 103], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 97], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 93, 100], "anim": [65, 105], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 98, 104], "object_detect": [67, 69, 70, 104], "return_indices_ranked_by_scor": [67, 104], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 97, 104, 108, 109], "bbox": [67, 70, 104], "image_nam": [67, 70], "y1": [67, 70, 104], "y2": [67, 70, 104], "later": [67, 70, 71, 88, 109], "corner": [67, 70, 104], "xyxi": [67, 70, 104], "io": [67, 70, 89, 97, 98], "keras_cv": [67, 70], "bounding_box": [67, 70, 104], "detectron": [67, 70, 104], "detectron2": [67, 70, 104], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 93, 107, 109], "draw_box": [67, 70], "mmdetect": [67, 70, 104], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 92], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 104, 108, 109], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 104], "bounding_box_size_distribut": [68, 70, 104], "class_label_distribut": [68, 70, 104], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 99], "chose": [69, 102, 104], "imperfectli": [69, 104], "dirti": [69, 72, 75, 107], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 95, 96, 99], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 108], "discov": [70, 92, 97, 109], "abnorm": [70, 93, 104], "auxiliari": [70, 105, 108], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 92, 97, 100, 103, 105, 107, 108], "sorted_idx": [70, 105], "class_to_show": 70, "hidden": [70, 90, 105], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 93, 97, 100, 103, 105, 107], "matplotlib": [70, 79, 90, 91, 92, 93, 97, 100, 103, 104, 105, 107], "pyplot": [70, 79, 90, 91, 92, 93, 97, 100, 103, 105, 107], "prediction_threshold": 70, "overlai": [70, 104], "figsiz": [70, 90, 91, 92, 93, 97, 100, 103, 105], "save_path": [70, 104], "blue": [70, 98, 100, 104], "overlaid": 70, "side": [70, 98, 104], "figur": [70, 97, 100, 103, 105, 107], "extens": [70, 100, 102], "png": [70, 104], "pdf": [70, 71], "svg": 70, "num_proc": [70, 93], "intersect": [70, 99], "tp": 70, "fp": 70, "ground": [70, 98, 100, 102, 107], "truth": [70, 100, 102, 107], "bias": [70, 97], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 95, 98, 100, 107], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 105], "behind": [71, 100], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 99], "least_confid": 71, "sum_": 71, "log": [71, 72, 85, 97], "softmax": [71, 78, 82, 93], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 105], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 96, 105], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 91, 92, 95, 96, 105, 106], "order_label_issu": [72, 85], "whichev": [72, 106], "argsort": [72, 88, 93, 96, 100, 104, 105, 107], "max_": 72, "get_label_quality_ensemble_scor": [72, 99, 100], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 98], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 96], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 105], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 96], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 107], "linearregress": [74, 99, 107], "y_with_nois": 74, "n_boot": [74, 99], "include_aleatoric_uncertainti": [74, 99], "sole": [74, 87, 91, 102, 105], "bootstrap": [74, 99, 107], "resampl": [74, 89, 99], "epistem": [74, 99, 105, 107], "aleator": [74, 99, 107], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 99], "fine": [74, 88, 89, 96, 105], "grain": 74, "grid": 74, "varianc": [74, 100], "epistemic_uncertainti": 74, "residu": [74, 75, 99], "deviat": [74, 104, 107], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 92, 93, 98, 99, 102, 104, 105, 107], "aka": [75, 89, 100, 104, 107, 109], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 101], "pixel": [76, 78, 79, 93, 105, 108], "h": [76, 78, 79, 108], "height": [76, 78, 79, 108], "w": [76, 78, 79, 108], "width": [76, 78, 79, 108], "labels_one_hot": [76, 79, 108], "stream": [76, 90, 105, 109], "downsampl": [76, 78, 108], "shrink": [76, 78], "divis": [76, 78, 91], "common_label_issu": [77, 79, 81, 83, 108, 109], "filter_by_class": [77, 79, 108], "segmant": [78, 79], "num_pixel_issu": [78, 108], "product": [78, 93, 97, 99], "pixel_scor": [78, 108], "enter": 79, "legend": [79, 90, 91, 92, 97, 103, 104, 107, 108], "colormap": 79, "background": [79, 97], "person": [79, 99, 104, 108, 109], "ambigu": [79, 83, 88, 89, 96, 98, 100, 109], "systemat": [79, 83, 102], "misunderstood": [79, 83], "issues_df": [79, 93], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 109], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 109], "converg": 82, "toward": [82, 97], "_softmin_sentence_scor": 82, "sentence_scor": [82, 109], "token_info": 82, "02": [82, 91, 92, 97, 100, 104], "03": [82, 95, 97, 98, 100, 104, 109], "04": [82, 95, 97, 104], "08": [82, 97, 100, 104, 107, 109], "commonli": [83, 85, 91, 92, 103, 109], "But": [83, 96, 100, 107, 109], "restrict": [83, 99], "reliabl": [84, 87, 89, 97, 99, 102, 108], "thousand": 84, "imagenet": [84, 98], "popular": [84, 102, 104], "centric": [84, 93, 95, 96, 101], "minut": [84, 87, 88, 89, 95, 96, 98, 102, 103, 104, 107, 108, 109], "conda": 84, "feature_embed": [84, 105], "Then": [84, 87, 88, 93, 99], "your_dataset": [84, 89, 91, 92, 93, 95, 96, 99], "column_name_of_label": [84, 89, 91, 92, 93, 95, 96], "plagu": [84, 92], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 92], "sklearn_compatible_model": 84, "framework": [84, 103, 104], "complianc": 84, "tag": [84, 103, 109], "sequenc": 84, "recognit": [84, 89, 99, 109], "train_data": [84, 87, 88, 105, 107], "gotten": 84, "test_data": [84, 87, 88, 90, 100, 103, 105, 107], "deal": [84, 92, 97], "tutori": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "feel": [84, 89, 92, 99], "ask": [84, 99], "slack": [84, 99], "project": [84, 107], "welcom": 84, "commun": [84, 99], "guidelin": [84, 104], "piec": 84, "smart": [84, 93, 95, 96, 99], "edit": [84, 99], "easier": [84, 97, 100], "unreli": [84, 87, 89, 95, 96], "link": [84, 89, 98, 104], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 95], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 95, 98, 109], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 100], "research": [85, 100], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 105, 107, 108, 109], "sql": [87, 95], "databas": [87, 95], "excel": [87, 95], "parquet": [87, 95], "student": [87, 95, 107, 109], "grade": [87, 95, 107], "exam": [87, 95, 107], "letter": [87, 95, 109], "hundr": [87, 95], "mistak": [87, 88, 93, 95, 96], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107], "preprocess": [87, 88, 92, 95, 97, 105, 107], "standardscal": [87, 95, 105], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 92, 105], "accuracy_scor": [87, 88, 89, 96, 100], "grades_data": [87, 95], "read_csv": [87, 88, 95, 96, 97, 107], "demo": [87, 92, 95, 103], "stud_id": [87, 95], "exam_1": [87, 95, 107], "exam_2": [87, 95, 107], "exam_3": [87, 95, 107], "letter_grad": [87, 95], "f48f73": [87, 95], "53": [87, 90, 91, 92, 95, 97, 98, 103, 104, 109], "00": [87, 91, 92, 95, 97, 98, 105], "77": [87, 91, 92, 95, 104], "0bd4e7": [87, 95], "81": [87, 95, 96, 104, 107, 109], "great": [87, 90, 95, 98], "particip": [87, 95], "cb9d7a": [87, 95], "61": [87, 95, 97, 100, 104, 107], "94": [87, 95, 98, 100, 104, 107], "9acca4": [87, 95], "48": [87, 95, 97, 98, 100, 104], "x_raw": [87, 95], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 107], "x_encod": [87, 95], "get_dummi": [87, 95, 107], "drop_first": [87, 95], "numeric_featur": [87, 95], "scaler": [87, 95, 105], "x_process": [87, 95], "fit_transform": [87, 95, 97], "bring": [87, 88, 93, 95, 96, 102, 107], "byod": [87, 88, 93, 95, 96, 102, 107], "tress": 87, "held": [87, 89, 95, 96, 98, 104, 105, 106], "straightforward": [87, 89, 95], "benefit": [87, 89, 106, 108], "num_crossval_fold": [87, 89, 95, 102], "tabl": [87, 95, 98, 102], "212": [87, 100], "review": [87, 88, 92, 95, 96, 98, 99, 100, 104, 107, 108, 109], "iloc": [87, 88, 89, 95, 96, 107], "92": [87, 91, 100, 104], "93": [87, 98, 104, 107, 109], "827": 87, "99": [87, 97, 98, 100], "86": [87, 92, 93, 95, 100, 104, 107], "74": [87, 97, 104, 107], "637": [87, 95], "79": [87, 98, 104], "65": [87, 91, 97, 104], "cheat": 87, "0pt": 87, "120": [87, 91, 92], "233": 87, "83": [87, 100, 104, 107, 109], "76": [87, 90, 100, 103, 104, 107], "suspici": [87, 95], "carefulli": [87, 93, 95, 96], "examin": [87, 90, 91, 92, 95, 104], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91, 92], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 107], "14": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 99, 107], "trust": [87, 88, 89, 99, 100, 102, 106, 107], "effort": [87, 88, 107], "intent": [88, 96], "servic": [88, 96, 99], "onlin": [88, 96], "bank": [88, 96, 98], "banking77": [88, 96], "oo": [88, 96], "categori": [88, 93, 96, 97], "shortlist": [88, 96, 107], "scope": [88, 96], "logist": [88, 90, 91, 92, 96, 102, 105], "probabilit": [88, 89], "drop": [88, 95, 97, 99, 102, 107], "earlier": [88, 109], "sentence_transform": [88, 96], "sentencetransform": [88, 96], "payment": [88, 96], "cancel_transf": [88, 96], "transfer": [88, 96], "fund": [88, 96], "cancel": [88, 96], "transact": [88, 96], "my": [88, 96], "revert": [88, 96], "morn": [88, 96], "realis": [88, 96], "yesterdai": [88, 96], "rent": [88, 96], "tomorrow": [88, 96], "raw_text": [88, 96], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "change_pin": [88, 96], "card_about_to_expir": [88, 96], "apple_pay_or_google_pai": [88, 96], "visa_or_mastercard": [88, 96], "beneficiary_not_allow": [88, 96], "lost_or_stolen_phon": [88, 96], "card_payment_fee_charg": [88, 96], "supported_cards_and_curr": [88, 96], "getting_spare_card": [88, 96], "card": [88, 96, 98], "utter": [88, 96], "encond": 88, "test_label": [88, 100, 103, 105], "suit": [88, 96, 97, 98, 99], "electra": [88, 96], "discrimin": [88, 96], "googl": [88, 90, 96], "train_text": 88, "test_text": 88, "home": [88, 91, 92, 96, 97, 98], "runner": [88, 91, 92, 96, 97], "google_electra": [88, 96], "pool": [88, 96, 99, 105], "opt": [88, 89, 92, 93, 95, 96, 97, 100], "hostedtoolcach": [88, 89, 92, 93, 95, 96, 97, 100], "x64": [88, 89, 92, 93, 95, 96, 97, 100], "lib": [88, 89, 92, 93, 95, 96, 97, 100], "python3": [88, 89, 92, 93, 95, 96, 97, 100], "site": [88, 89, 92, 93, 95, 96, 97, 100], "_util": [88, 96], "831": [88, 96], "userwarn": [88, 89, 91, 92, 96, 97], "typedstorag": [88, 96], "untypedstorag": [88, 96], "untyped_storag": [88, 96], "fget": [88, 96], "__get__": [88, 96], "owner": [88, 96], "leverag": [88, 89, 96, 99, 100, 102], "computation": [88, 89, 96], "intens": [88, 89, 96], "400": [88, 90, 96], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 107], "lowest_quality_label": [88, 89, 96, 100, 107], "to_numpi": [88, 96, 97, 99, 107], "44": [88, 97, 98, 103, 104], "646": 88, "390": 88, "628": 88, "121": [88, 90, 100], "702": 88, "863": [88, 89], "135": 88, "337": [88, 104], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 96], "cash": [88, 96], "holidai": [88, 96], "sent": [88, 96, 109], "mine": [88, 96], "expir": [88, 96], "fight": 88, "hors": [88, 98, 105], "duck": [88, 98], "me": [88, 96, 97], "whoever": [88, 96], "consum": [88, 107], "18": [88, 89, 90, 96, 97, 98, 99, 100, 104, 105, 107, 108, 109], "baseline_model": [88, 107], "87": [88, 92, 93, 104, 107], "acceler": [88, 107], "19": [88, 89, 90, 93, 96, 97, 98, 99, 100, 104, 105, 107, 108], "89": [88, 90, 91, 95, 104, 107], "spoken": 89, "500": [89, 105, 109], "english": [89, 98], "pronunci": 89, "wav": 89, "huggingfac": [89, 91, 92, 93, 99], "voxceleb": 89, "speech": [89, 109], "your_pred_prob": [89, 90, 91, 92, 95, 96], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 95, 97, 100, 102], "command": 89, "wget": [89, 104, 108, 109], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 109], "v1": 89, "tar": [89, 105], "gz": [89, 105], "mkdir": [89, 109], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 90, 93, 97, 99], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "pulldown": [89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "colab": [89, 90, 91, 92, 93, 98, 99, 100, 102, 103, 105, 107, 109], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 98, 99], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 97], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 93], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 93], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 93], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 91, 97, 98, 99, 100, 104, 107, 109], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 90, 93, 97, 98, 100, 104, 107], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 99], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 93, 95, 96, 100], "lt": [89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 105], "gt": [89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 109], "9976": 89, "986": 89, "002161": 89, "176": [89, 98, 100, 103], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 96], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 100], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 105], "load_ext": 90, "autoreload": 90, "ve": [90, 98, 99, 100, 102, 104], "prove": 90, "monitor": [90, 98], "ran": 90, "data_monitor": 90, "your_datalab": 90, "new_data_batch": 90, "your_label": 90, "get_your_label": 90, "your_featur": [90, 96], "get_featur": 90, "websit": [90, 98], "todo": 90, "get_ipython": 90, "70ae424689a9a31f90dee9e9570685540e995e44": 90, "cmd": 90, "dep": 90, "dependencies_test": 90, "missing_depend": 90, "__import__": 90, "importerror": 90, "sep": [90, 97, 109], "npleas": 90, "toi": [90, 91, 92, 93, 97, 98, 100, 102], "mid": [90, 91, 92], "workflow": [90, 94, 101, 107], "unseen": 90, "inf": [90, 91, 92], "bins_map": [90, 91, 92], "create_data": [90, 91, 92], "800": 90, "y_bin": [90, 91, 92], "y_i": [90, 91, 92], "y_bin_idx": [90, 91, 92], "y_train": [90, 91, 92, 100, 107], "y_test": [90, 91, 92, 100, 107], "y_train_idx": [90, 91, 92], "y_test_idx": [90, 91, 92], "slide": [90, 91, 92, 98], "frame": [90, 91, 92], "x_out": [90, 91, 92], "tini": [90, 91, 92], "concaten": [90, 91, 92, 99, 106], "y_out": [90, 91, 92], "y_out_bin": [90, 91, 92], "y_out_bin_idx": [90, 91, 92], "exact_duplicate_idx": [90, 91, 92], "x_duplic": [90, 91, 92], "y_duplic": [90, 91, 92], "y_duplicate_idx": [90, 91, 92], "noisy_labels_idx": [90, 91, 92, 103], "train_x": 90, "test_x": 90, "train_y_tru": 90, "test_y_tru": 90, "train_i": 90, "test_i": 90, "train_y_idx": 90, "test_y_idx": 90, "scatter": [90, 91, 92, 97, 100, 103, 107], "black": [90, 91, 92, 98, 107], "cyan": [90, 91, 92], "plot_data": [90, 91, 92, 97, 100, 103, 107], "fig": [90, 91, 92, 93, 98, 105, 107], "ax": [90, 91, 92, 93, 97, 105, 107], "subplot": [90, 91, 92, 93, 105], "set_titl": [90, 91, 92, 93, 105], "set_xlabel": [90, 91, 92], "x_1": [90, 91, 92], "fontsiz": [90, 91, 92, 93, 97, 100, 103], "set_ylabel": [90, 91, 92], "x_2": [90, 91, 92], "set_xlim": [90, 91, 92], "set_ylim": [90, 91, 92], "linestyl": [90, 91, 92], "circl": [90, 91, 92, 100, 103], "misclassifi": [90, 91, 92], "zip": [90, 91, 92, 93, 104, 109], "label_err": [90, 91, 92], "180": [90, 91, 92, 104], "marker": [90, 91, 92], "facecolor": [90, 91, 92, 97], "edgecolor": [90, 91, 92, 97], "linewidth": [90, 91, 92, 97, 105], "title_fontproperti": [90, 91, 92], "semibold": [90, 91, 92], "first_legend": [90, 91, 92], "align": [90, 91, 92], "markerscal": 90, "second_legend": [90, 91, 92], "46": [90, 95, 97, 98, 100, 104], "gca": [90, 91, 92], "add_artist": [90, 91, 92], "tight_layout": [90, 91, 92, 97], "ideal": [90, 91, 92], "simplic": [90, 97, 103], "327": [90, 104], "9297": 90, "000124": 90, "259": 90, "000725": 90, "269": 90, "000794": 90, "002061": 90, "125": [90, 91], "002908": 90, "fly": [90, 98], "feed": [90, 99], "simul": 90, "tqdm": [90, 93], "sleep": [90, 98], "generate_stream": 90, "sleep_tim": 90, "desc": 90, "singleton_stream": 90, "seamless": [90, 99], "singleton": 90, "batched_stream": 90, "processed_singleton": 90, "suggested_label": [90, 96], "250997": 90, "285757": 90, "43": [90, 91, 97, 98, 100, 104], "120906": 90, "principl": 90, "processed_batch": 90, "51": [90, 91, 92, 95, 97, 98, 100, 104], "002748": 90, "189996": 90, "093505": 90, "037250": 90, "149": [90, 104], "076397": 90, "154": 90, "294010": 90, "160": [90, 96, 107], "073622": 90, "166": [90, 93], "140832": 90, "167": [90, 98, 100, 104], "041743": 90, "181": 90, "169429": 90, "127304": 90, "235": [90, 104], "090310": 90, "254": [90, 98, 104], "183343": 90, "256": [90, 98, 99, 104], "048720": 90, "263": [90, 103, 104], "138820": 90, "292": 90, "239609": 90, "295": [90, 104], "022075": 90, "306": 90, "103040": 90, "343": 90, "234755": 90, "354": 90, "001612": 90, "359": 90, "068359": 90, "367": [90, 107], "015793": 90, "368": 90, "029022": 90, "391": 90, "106761": 90, "troublesom": 90, "623844": 90, "812647": 90, "816854": 90, "661968": 90, "632244": 90, "395": 90, "474599": 90, "396": 90, "653901": 90, "397": 90, "584554": 90, "398": 90, "817287": 90, "399": 90, "881545": 90, "183": 90, "937927": 90, "309": 90, "939505": 90, "133": [90, 109], "947290": 90, "177": 90, "952187": 90, "314": [90, 104], "997293": 90, "655501": 90, "3603": 90, "173": [90, 104], "000330": 90, "000626": 90, "296": 90, "002004": 90, "304": 90, "165496": 90, "275": [90, 103], "179811": 90, "001317": 90, "005943": 90, "001426": 90, "320": [90, 104], "186355": 90, "349": 90, "187305": 90, "393": 90, "169838": 90, "185770": 90, "369889": 90, "285297": 90, "406162": 90, "516543": 90, "440142": 90, "476283": 90, "382757": 90, "466786": 90, "522078": 90, "276298": 90, "328181": 90, "409633": 90, "281425": 90, "518102": 90, "360596": 90, "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "dup": [91, 92], "45": [91, 92, 97, 98, 100, 104], "remaind": 91, "modal": [91, 92, 99, 102], "132": [91, 92, 100, 104], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98], "014828": 91, "107": [91, 92, 100, 103], "021241": 91, "026407": 91, "notic": [91, 100, 102, 104], "3558": [91, 92], "126": [91, 92, 100, 104], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 108, 109], "000000e": [91, 92], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 100, 104, 107], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 103, 108, 109], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "348": 91, "378": 91, "357": 91, "34": [91, 97, 98, 100, 102, 104, 109], "54": [91, 97, 98, 100, 104, 109], "039122": 91, "044598": 91, "105": [91, 104], "105196": 91, "133654": 91, "168033": 91, "101107": 91, "183382": 91, "109": [91, 98, 104], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 104, 109], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 104], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 100, 104], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 102, 104], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100], "_split": 92, "776": 92, "thoroughli": 92, "904": 92, "_base": [92, 93, 95, 96, 97, 100], "246": [92, 93, 95, 96, 97, 100, 104], "efficiencywarn": [92, 93, 95, 96, 97, 100], "sort_graph_by_row_valu": [92, 93, 95, 96, 97, 100], "warn_when_not_sort": [92, 93, 95, 96, 97, 100], "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "901562": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 109], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 100], "worri": [92, 96], "critic": 92, "60": [93, 97, 100, 107], "torchvis": [93, 105], "tensordataset": 93, "stratifiedkfold": [93, 103], "autonotebook": 93, "math": 93, "fashion_mnist": 93, "1486": 93, "futurewarn": 93, "hf": 93, "messag": 93, "trust_remote_cod": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 103, 105], "super": [93, 95, 96], "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 105], "energi": 93, "trainload": [93, 105], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 107], "acc": [93, 100], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 109], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "819": 93, "329": [93, 104], "88": [93, 98, 99, 100, 103, 104, 107], "195": 93, "519": 93, "493": 93, "060": 93, "005": 93, "330": [93, 104], "505": 93, "589": 93, "476": 93, "340": 93, "978": [93, 98], "328": [93, 104], "310": 93, "481": [93, 96], "reorder": 93, "hstack": [93, 99, 100, 102], "vision": 93, "grayscal": 93, "max_preval": 93, "7714": 93, "3772": 93, "3585": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 104, 109], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 105, 106], "21282": 93, "000016": 93, "53564": 93, "000018": 93, "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 109], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "ncol": [93, 105], "nrow": [93, 105], "ceil": 93, "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 105], "cmap": [93, 97, 107], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 103, 104, 105, 106, 108], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 104, 108], "dark_scor": 93, "dark_issues_df": 93, "is_dark_issu": 93, "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": 93, "lowinfo_issu": 93, "low_information_scor": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 102, 107], "xgboost": [95, 99, 107], "think": [95, 96, 99, 103, 108, 109], "nonzero": 95, "358": 95, "941": 95, "294": [95, 104], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": 95, "000104": 95, "723": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": 95, "185": [95, 98, 104, 109], "187": [95, 98], "898": 95, "0014": [95, 98], "595": 95, "702427": 95, "147": [95, 100, 104], "711186": 95, "157": [95, 100], "721394": 95, "771": 95, "731979": 95, "740335": 95, "0014153602099278074": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 103, 104, 107], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 107], "96": [95, 97, 98, 100, 103, 104, 107], "style": [95, 97, 108], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "unintend": [95, 96], "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 103], "perhap": [95, 100, 102], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "dive": [96, 97], "text_embed": 96, "data_dict": [96, 100, 102], "85": [96, 104], "38": [96, 97, 98, 104], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "095724": 96, "148": 96, "006237": 96, "546": 96, "099341": 96, "514": 96, "006485": 96, "123418": 96, "008165": 96, "0000": [96, 98, 100], "313": [96, 104], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 102, 104], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 109], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 100], "strongli": 96, "p_valu": 96, "benign": 96, "curat": 96, "bigger": 97, "make_classif": 97, "5000": [97, 105], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 104], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "5000x5000": 97, "50000": 97, "116": 97, "523": 97, "991400": 97, "356959": 97, "362": 97, "619565": 97, "108": [97, 104], "500000": 97, "651929": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 104, 105], "third": 97, "parti": [97, 109], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "500140": 97, "500233": 97, "500186": 97, "1068": 97, "500047": 97, "1069": 97, "1070": 97, "1071": 97, "500373": 97, "1072": 97, "1073": 97, "seaborn": 97, "sn": 97, "distinguish": 97, "histplot": 97, "hue": [97, 107], "stack": 97, "logarithm": 97, "yscale": 97, "xlabel": 97, "ylabel": [97, 105], "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 105], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": [97, 99], "param_grid": 97, "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "270508": 97, "tab10": 97, "domain": 97, "knowledg": [97, 100], "dataset_tsv": 97, "ag": [97, 107], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100], "california": 97, "59": [97, 98, 104], "63": [97, 100, 104, 107], "47": [97, 98, 104], "stringio": 97, "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "coolwarm": 97, "colorbar": [97, 107], "strong": 97, "evid": 97, "inter": 97, "mitig": 97, "risk": 97, "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 109], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98], "3467": 97, "67": [97, 98, 104, 107], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 104, 107], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 102], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 102, 103, 107], "null_issu": 97, "833333": 97, "sorted_indic": [97, 104], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 107], "highlight_null_valu": 97, "val": [97, 100], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "refin": 98, "instruct": 98, "studi": [98, 104], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 109], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 109], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 104], "axolotl": 98, "bullfrog": 98, "tree": 98, "frog": [98, 105], "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 109], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 105], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 109], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "retriev": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 109], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 109], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 108], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 109], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 104], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 108], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 104], "carousel": 98, "tool": [98, 100, 102], "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 109], "chain": 98, "fenc": [98, 108], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 105], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 108], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 100], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 104], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 109], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 108], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 108], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 109], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 109], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 108], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 109], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": 98, "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 108], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 104, 108], "sign": [98, 108, 109], "dust": 98, "jacket": [98, 104], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 105], "automobil": [98, 105], "deer": [98, 105], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 109], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 108], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 108], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 104], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 107], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 104], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 109], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 108], "misc": [98, 109], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 109], "talk": [98, 109], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "capit": 98, "29780": 98, "780": 98, "medic": [98, 109], "doctor": 98, "359223": 98, "640777": 98, "184": [98, 100], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 104], "252": 98, "112": [98, 109], "253": [98, 104], "022989": 98, "049505": 98, "190": [98, 100, 104], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "020": [98, 100], "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 104], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 100], "188": [98, 100, 103], "189": [98, 100], "snippet": 99, "nlp": [99, 109], "mind": [99, 100], "alphanumer": 99, "facilit": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "from_dict": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 104], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 100], "game": 99, "speedup": [99, 105], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 100, 109], "successfulli": 99, "virtuou": [99, 102], "cycl": [99, 102], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 100], "true_error": [99, 100, 103], "101": [99, 104], "102": [99, 103, 104], "104": [99, 100, 104], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100], "max_depth": [99, 100], "magnitud": 99, "coeffici": [99, 107], "optin": 99, "environ": [99, 100], "rerun": [99, 100], "cell": [99, 100], "unabl": [99, 100], "render": [99, 100], "nbviewer": [99, 100], "cleanlearninginot": [99, 100], "fittedcleanlearn": [99, 100], "linearregressionlinearregress": 99, "n_init": 99, "continuous_column": 99, "categorical_column": 99, "data_df": 99, "feature_a": 99, "feature_b": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": 99, "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 105], "kept": 99, "ids_to_remove_seri": 99, "tmp": 99, "ipykernel_7918": 99, "1995098996": 99, "deprecationwarn": 99, "dataframegroupbi": 99, "include_group": 99, "silenc": 99, "assist": 99, "streamlin": 99, "ux": 99, "agpl": 99, "compani": 99, "commerci": 99, "alter": 99, "email": 99, "team": 99, "discuss": 99, "anywher": 99, "profession": 99, "expert": 99, "depth": 100, "survei": [100, 109], "scienc": 100, "multivariate_norm": [100, 102, 103], "make_data": [100, 102], "cov": [100, 102, 103], "avg_trac": [100, 103], "py_tru": 100, "noise_matrix_tru": 100, "noise_marix": 100, "s_test": 100, "noisy_test_label": 100, "purpl": 100, "namespac": 100, "exec": 100, "markerfacecolor": [100, 103], "markeredgecolor": [100, 103, 107], "markers": [100, 103, 107], "markeredgewidth": [100, 103, 107], "realist": 100, "7560": 100, "637318e": 100, "896262e": 100, "548391e": 100, "923417e": 100, "375075e": 100, "3454": 100, "014051": 100, "020451": 100, "249": [100, 104], "042594": 100, "043859": 100, "045954": 100, "6120": 100, "023714": 100, "007136": 100, "119": [100, 104], "107266": 100, "103": [100, 104], "033738": 100, "238": [100, 104], "119505": 100, "236": [100, 104], "037843": 100, "222": 100, "614915": 100, "122": [100, 104], "624422": 100, "625965": 100, "626079": 100, "118": 100, "627675": 100, "695223": 100, "323529": 100, "523015": 100, "013720": 100, "675727": 100, "646521": 100, "anyth": 100, "enhanc": [100, 102, 104], "magic": 100, "liter": 100, "identif": 100, "x27": 100, "logisticregressionlogisticregress": 100, "ever": 100, "092": 100, "040": 100, "024": 100, "004": 100, "surpris": 100, "1705": 100, "01936": 100, "ton": 100, "yourfavoritemodel1": 100, "merged_label": 100, "merged_test_label": 100, "newli": [100, 102], "yourfavoritemodel2": 100, "yourfavoritemodel3": 100, "cl3": 100, "takeawai": 100, "my_test_pred_prob": 100, "my_test_pr": 100, "issues_test": 100, "corrected_test_label": 100, "pretend": 100, "cl_test_pr": 100, "fairli": 100, "label_acc": 100, "percentag": 100, "offset": 100, "nquestion": 100, "overestim": 100, "answer": 100, "experienc": 100, "prioiri": 100, "known": 100, "versatil": 100, "label_issues_indic": 100, "213": [100, 104], "218": [100, 104], "152": 100, "197": [100, 104], "196": [100, 104], "170": 100, "214": 100, "164": [100, 103], "198": [100, 104], "191": [100, 104], "117": [100, 107], "206": [100, 104], "115": [100, 104], "193": 100, "194": 100, "201": [100, 104], "174": 100, "163": 100, "150": [100, 102, 104], "169": 100, "151": [100, 104], "168": 100, "precision_scor": 100, "recall_scor": 100, "f1_score": 100, "true_label_issu": 100, "filter_by_list": 100, "718750": [100, 102], "807018": 100, "912": 100, "733333": 100, "800000": 100, "721311": 100, "792793": 100, "908": 100, "676923": 100, "765217": 100, "892": 100, "567901": 100, "702290": 100, "844": 100, "gaug": 100, "label_issues_count": 100, "155": [100, 104], "156": 100, "172": [100, 103], "easiest": 100, "modular": 100, "penalti": 100, "l2": 100, "model3": 100, "n_estim": 100, "cv_pred_probs_1": 100, "cv_pred_probs_2": 100, "cv_pred_probs_3": 100, "label_quality_scores_best": 100, "cv_pred_probs_ensembl": 100, "label_quality_scores_bett": 100, "superior": [100, 106], "timm": 101, "glad": 102, "multiannotator_label": 102, "300": [102, 109], "noisier": 102, "111": [102, 107], "local_data": [102, 103], "true_labels_train": [102, 103], "noise_matrix_bett": 102, "noise_matrix_wors": 102, "transpos": [102, 105], "zfill": 102, "row_na_check": 102, "notna": 102, "reset_index": 102, "a0001": 102, "a0002": 102, "a0003": 102, "a0004": 102, "a0005": 102, "a0006": 102, "a0007": 102, "a0008": 102, "a0009": 102, "a0010": 102, "a0041": 102, "a0042": 102, "a0043": 102, "a0044": 102, "a0045": 102, "a0046": 102, "a0047": 102, "a0048": 102, "a0049": 102, "a0050": 102, "na": 102, "60856743": 102, "41693214": 102, "40908785": 102, "87147629": 102, "64941785": 102, "10774851": 102, "0524466": 102, "71853246": 102, "37169848": 102, "66031048": 102, "multiannotator_util": 102, "crude": 102, "straight": 102, "majority_vote_label": 102, "736118": 102, "757751": 102, "782232": 102, "715565": 102, "824256": 102, "quality_annotator_a0001": 102, "quality_annotator_a0002": 102, "quality_annotator_a0003": 102, "quality_annotator_a0004": 102, "quality_annotator_a0005": 102, "quality_annotator_a0006": 102, "quality_annotator_a0007": 102, "quality_annotator_a0008": 102, "quality_annotator_a0009": 102, "quality_annotator_a0010": 102, "quality_annotator_a0041": 102, "quality_annotator_a0042": 102, "quality_annotator_a0043": 102, "quality_annotator_a0044": 102, "quality_annotator_a0045": 102, "quality_annotator_a0046": 102, "quality_annotator_a0047": 102, "quality_annotator_a0048": 102, "quality_annotator_a0049": 102, "quality_annotator_a0050": 102, "070564": 102, "216078": 102, "119188": 102, "alongisd": 102, "244981": 102, "208333": 102, "295979": 102, "294118": 102, "324197": 102, "310345": 102, "355316": 102, "346154": 102, "439732": 102, "480000": 102, "a0031": 102, "523205": 102, "580645": 102, "a0034": 102, "535313": 102, "607143": 102, "a0021": 102, "606999": 102, "a0015": 102, "609526": 102, "678571": 102, "a0011": 102, "621103": 102, "692308": 102, "improved_consensus_label": 102, "majority_vote_accuraci": 102, "cleanlab_label_accuraci": 102, "8581081081081081": 102, "9797297297297297": 102, "besid": 102, "sorted_consensus_quality_scor": 102, "worst_qual": 102, "better_qu": 102, "worst_quality_accuraci": 102, "better_quality_accuraci": 102, "9893238434163701": 102, "improved_pred_prob": 102, "treat": [102, 103, 107, 109], "analzi": 102, "copyright": 103, "advertis": 103, "violenc": 103, "nsfw": 103, "celeba": 103, "make_multilabel_data": 103, "boxes_coordin": 103, "box_multilabel": 103, "make_multi": 103, "bx1": 103, "by1": 103, "bx2": 103, "by2": 103, "label_list": 103, "ur": 103, "upper": 103, "inidx": 103, "logical_and": 103, "inv_d": 103, "labels_idx": 103, "true_labels_test": 103, "dict_unique_label": 103, "get_color_arrai": 103, "dcolor": 103, "aa4400": 103, "55227f": 103, "55a100": 103, "00ff00": 103, "007f7f": 103, "386b55": 103, "0000ff": 103, "y_onehot": 103, "single_class_label": 103, "stratifi": [103, 106], "kf": 103, "train_index": 103, "test_index": 103, "clf_cv": 103, "x_train_cv": 103, "x_test_cv": 103, "y_train_cv": 103, "y_test_cv": 103, "y_pred_cv": 103, "saw": 103, "num_to_displai": 103, "09": [103, 104, 107], "267": 103, "225": 103, "171": 103, "234": 103, "165": 103, "227": [103, 104], "262": [103, 104], "266": [103, 104], "139": 103, "143": [103, 104], "216": [103, 104], "265": 103, "159": [103, 104], "despit": [103, 109], "suspect": 103, "888": 103, "8224": 103, "9632": 103, "968": 103, "6512": 103, "0444": 103, "774": 103, "labels_binary_format": 103, "labels_list_format": 103, "surround": 104, "scene": 104, "coco": 104, "everydai": 104, "has_label_issu": 104, "nc": [104, 108, 109], "s3": [104, 108, 109], "amazonaw": [104, 108, 109], "objectdetectionbenchmark": 104, "tutorial_obj": 104, "pkl": 104, "example_imag": 104, "unzip": [104, 109], "_separate_label": 104, "_separate_predict": 104, "begin": 104, "image_path": 104, "rb": 104, "image_to_visu": 104, "seg_map": 104, "334": 104, "bboxes_ignor": 104, "290": 104, "286": 104, "285": 104, "224": 104, "231": [104, 109], "293": 104, "289": 104, "282": 104, "281": 104, "271": 104, "280": 104, "277": 104, "279": 104, "287": 104, "299": 104, "276": 104, "307": 104, "321": 104, "326": 104, "333": 104, "261": 104, "319": 104, "257": 104, "283": 104, "243": 104, "303": 104, "316": 104, "247": 104, "323": 104, "226": 104, "228": 104, "232": 104, "219": 104, "239": 104, "240": 104, "209": 104, "242": 104, "202": 104, "230": 104, "215": 104, "220": 104, "229": 104, "217": [104, 109], "237": 104, "207": 104, "204": 104, "84": [104, 107], "205": 104, "223": 104, "153": 104, "140": 104, "124": 104, "268": 104, "273": 104, "284": 104, "110": 104, "136": 104, "145": 104, "297": 104, "317": 104, "192": 104, "332": 104, "324": 104, "203": 104, "199": 104, "291": 104, "000000481413": 104, "jpg": 104, "42398": 104, "44503": 104, "29968": 104, "336": 104, "21005": 104, "9978472": 104, "forgot": 104, "drew": 104, "label_issue_idx": 104, "num_examples_to_show": 104, "138": 104, "candid": 104, "97489622": 104, "70610878": 104, "98764951": 104, "88899237": 104, "99085805": 104, "issue_idx": 104, "95569726e": 104, "03354841e": 104, "57510169e": 104, "58447666e": 104, "39755858e": 104, "issue_to_visu": 104, "000000009483": 104, "95569726168054e": 104, "addition": [104, 108], "visibl": 104, "missmatch": 104, "likelei": 104, "agnost": 104, "vaidat": 104, "inconsist": 104, "000000395701": 104, "033548411774308e": 104, "armchair": 104, "tv": 104, "000000154004": 104, "38300759625496356": 104, "foreground": 104, "000000448410": 104, "0008575101690203273": 104, "crowd": 104, "alon": 104, "resembl": [104, 105], "000000499768": 104, "9748962231208227": 104, "000000521141": 104, "8889923658893665": 104, "000000143931": 104, "9876495074395956": 104, "bonu": 104, "uncov": 104, "irregular": 104, "anomali": 104, "object_detection_util": 104, "calculate_bounding_box_area": 104, "num_imgs_to_show": 104, "lab_object_count": 104, "pred_object_count": 104, "000000430073": 104, "000000183709": 104, "000000189475": 104, "label_norm": 104, "pred_norm": 104, "area": [104, 108], "lab_area": 104, "pred_area": 104, "lab_area_mean": 104, "lab_area_std": 104, "max_deviation_valu": 104, "max_deviation_class": 104, "deviation_valu": 104, "deviation_class": 104, "mean_area": 104, "std_area": 104, "class_area": 104, "deviations_awai": 104, "max_deviation_index": 104, "num_imgs_to_show_per_class": 104, "class_num": 104, "000000422886": 104, "000000341828": 104, "000000461009": 104, "train_feature_embed": 105, "ood_train_feature_scor": 105, "test_feature_embed": 105, "ood_test_feature_scor": 105, "ood_train_predictions_scor": 105, "train_pred_prob": 105, "ood_test_predictions_scor": 105, "test_pred_prob": 105, "pylab": 105, "rcparam": 105, "baggingclassifi": 105, "therebi": 105, "rescal": 105, "transform_norm": 105, "totensor": 105, "root": 105, "animal_class": 105, "non_animal_class": 105, "animal_idx": 105, "test_idx": 105, "toronto": 105, "edu": 105, "kriz": 105, "170498071": 105, "104055673": 105, "22it": 105, "plot_imag": 105, "visualize_outli": 105, "txt_class": 105, "img": [105, 107], "npimg": 105, "show_label": 105, "data_subset": 105, "resnet50": 105, "corpu": 105, "2048": 105, "embed_imag": 105, "create_model": 105, "strang": 105, "odd": 105, "train_ood_features_scor": 105, "top_train_ood_features_idx": 105, "fun": 105, "negat": 105, "homogen": 105, "bottom_train_ood_features_idx": 105, "test_ood_features_scor": 105, "top_ood_features_idx": 105, "inevit": 105, "trade": 105, "5th": 105, "percentil": 105, "fifth_percentil": 105, "plt_rang": 105, "hist": 105, "train_outlier_scor": 105, "axvlin": 105, "test_outlier_scor": 105, "ood_features_indic": 105, "revisit": 105, "return_invers": 105, "train_feature_embeddings_sc": 105, "test_feature_embeddings_sc": 105, "train_pred_label": 105, "9702": 105, "train_ood_predictions_scor": 105, "test_ood_predictions_scor": 105, "lost": 105, "unsuit": 106, "ok": [106, 109], "convention": 106, "aforement": 106, "hypothet": 106, "contrast": 106, "tradit": 106, "disjoint": 106, "out_of_sample_pred_probs_for_a": 106, "out_of_sample_pred_probs_for_b": 106, "out_of_sample_pred_probs_for_c": 106, "out_of_sample_pred_prob": 106, "price": 107, "incom": 107, "sensor": 107, "histgradientboostingregressor": 107, "r2_score": 107, "student_grades_r": 107, "final_scor": 107, "true_final_scor": 107, "homework": 107, "3d": 107, "mpl_toolkit": 107, "mplot3d": 107, "axes3d": 107, "errors_idx": 107, "add_subplot": 107, "z": 107, "errors_mask": 107, "feature_column": 107, "predicted_column": 107, "x_train_raw": 107, "x_test_raw": 107, "randomforestregressor": 107, "385101": 107, "499503": 107, "698255": 107, "776647": 107, "109373": 107, "170547": 107, "481096": 107, "984759": 107, "645270": 107, "795928": 107, "141": 107, "659": 107, "318": 107, "305": 107, "560": 107, "657": 107, "688": 107, "view_datapoint": 107, "preds_og": 107, "r2_og": 107, "838": 107, "found_label_issu": 107, "preds_cl": 107, "r2_cl": 107, "926": 107, "favorit": 107, "968627e": 107, "228799": 107, "646674e": 107, "402962": 107, "323818e": 107, "952758": 107, "422144e": 107, "456908": 107, "465815e": 107, "753968": 107, "791186e": 107, "110719": 107, "485156e": 107, "670640": 107, "225300e": 107, "749976": 107, "499679e": 107, "947007": 107, "067882e": 107, "648396": 107, "synthia": 108, "imagesegment": 108, "given_mask": 108, "predicted_mask": 108, "set_printopt": [108, 109], "sky": 108, "sidewalk": 108, "veget": 108, "terrain": 108, "rider": 108, "pred_probs_filepath": 108, "1088": 108, "1920": 108, "label_filepath": 108, "synthia_class": 108, "maunal": 108, "100000": 108, "244800": 108, "leftmost": 108, "middl": [108, 109], "infact": 108, "rightmost": 108, "discrep": 108, "3263230": 108, "783381": 108, "275110": 108, "255917": 108, "78225": 108, "55990": 108, "54315": 108, "33591": 108, "24645": 108, "21054": 108, "15045": 108, "14171": 108, "13832": 108, "13498": 108, "11490": 108, "9164": 108, "8769": 108, "6999": 108, "6031": 108, "5011": 108, "mistakenli": 108, "class_issu": 108, "aim": [108, 109], "domin": 108, "bunch": 109, "conll": 109, "2003": 109, "love": 109, "n_i": 109, "optional_list_of_ordered_class_nam": 109, "deepai": 109, "conll2003": 109, "rm": 109, "tokenclassif": 109, "2400": 109, "52e0": 109, "1a00": 109, "845": 109, "connect": 109, "443": 109, "await": 109, "982975": 109, "960k": 109, "959": 109, "94k": 109, "05mb": 109, "mb": 109, "directori": 109, "inflat": 109, "17045998": 109, "16m": 109, "octet": 109, "26m": 109, "6mb": 109, "bert": 109, "read_npz": 109, "filepath": 109, "corrsespond": 109, "iob2": 109, "given_ent": 109, "entity_map": 109, "readfil": 109, "startswith": 109, "docstart": 109, "isalpha": 109, "isupp": 109, "indices_to_preview": 109, "nsentenc": 109, "eu": 109, "reject": 109, "boycott": 109, "british": 109, "lamb": 109, "00030412": 109, "00023826": 109, "99936208": 109, "00007009": 109, "00002545": 109, "99998795": 109, "00000401": 109, "00000218": 109, "00000455": 109, "00000131": 109, "00000749": 109, "99996115": 109, "00001371": 109, "0000087": 109, "00000895": 109, "99998936": 109, "00000382": 109, "00000178": 109, "00000366": 109, "00000137": 109, "99999101": 109, "00000266": 109, "00000174": 109, "0000035": 109, "00000109": 109, "99998768": 109, "00000482": 109, "00000202": 109, "00000438": 109, "0000011": 109, "00000465": 109, "99996392": 109, "00001105": 109, "0000116": 109, "00000878": 109, "99998671": 109, "00000364": 109, "00000213": 109, "00000472": 109, "00000281": 109, "99999073": 109, "00000211": 109, "00000159": 109, "00000442": 109, "00000115": 109, "peter": 109, "blackburn": 109, "00000358": 109, "00000529": 109, "99995623": 109, "0000129": 109, "0000024": 109, "00001812": 109, "99994141": 109, "00001645": 109, "00002162": 109, "brussel": 109, "1996": 109, "00001172": 109, "00000821": 109, "00004661": 109, "0000618": 109, "99987167": 109, "99999061": 109, "00000201": 109, "00000195": 109, "00000408": 109, "00000135": 109, "2254": 109, "2907": 109, "19392": 109, "9962": 109, "8904": 109, "19303": 109, "12918": 109, "9256": 109, "11855": 109, "18392": 109, "20426": 109, "19402": 109, "14744": 109, "19371": 109, "4645": 109, "10331": 109, "9430": 109, "6143": 109, "18367": 109, "12914": 109, "todai": 109, "weather": 109, "march": 109, "scalfaro": 109, "northern": 109, "himself": 109, "said": 109, "germani": 109, "nastja": 109, "rysich": 109, "north": 109, "spla": 109, "fought": 109, "khartoum": 109, "govern": 109, "south": 109, "1983": 109, "autonomi": 109, "animist": 109, "region": 109, "moslem": 109, "arabis": 109, "mayor": 109, "antonio": 109, "gonzalez": 109, "garcia": 109, "revolutionari": 109, "wednesdai": 109, "troop": 109, "raid": 109, "farm": 109, "stole": 109, "rape": 109, "women": 109, "spring": 109, "chg": 109, "hrw": 109, "12pct": 109, "princ": 109, "photo": 109, "moment": 109, "spokeswoman": 109, "rainier": 109, "told": 109, "reuter": 109, "danila": 109, "carib": 109, "w224": 109, "equip": 109, "radiomet": 109, "earn": 109, "19996": 109, "london": 109, "denom": 109, "sale": 109, "uk": 109, "jp": 109, "fr": 109, "maccabi": 109, "hapoel": 109, "haifa": 109, "tel": 109, "aviv": 109, "hospit": 109, "rever": 109, "roman": 109, "cathol": 109, "nun": 109, "admit": 109, "calcutta": 109, "week": 109, "ago": 109, "fever": 109, "vomit": 109, "allianc": 109, "embattl": 109, "kabul": 109, "salang": 109, "highwai": 109, "mondai": 109, "tuesdai": 109, "suprem": 109, "council": 109, "led": 109, "jumbish": 109, "milli": 109, "movement": 109, "warlord": 109, "abdul": 109, "rashid": 109, "dostum": 109, "dollar": 109, "exchang": 109, "3570": 109, "12049": 109, "born": 109, "1937": 109, "provinc": 109, "anhui": 109, "dai": 109, "came": 109, "shanghai": 109, "citi": 109, "prolif": 109, "author": 109, "teacher": 109, "chines": 109, "16764": 109, "1990": 109, "historian": 109, "alan": 109, "john": 109, "percival": 109, "taylor": 109, "di": 109, "20446": 109, "pace": 109, "bowler": 109, "ian": 109, "harvei": 109, "claim": 109, "victoria": 109, "15514": 109, "cotti": 109, "osc": 109, "foreign": 109, "minist": 109, "7525": 109, "sultan": 109, "specter": 109, "crown": 109, "abdullah": 109, "defenc": 109, "aviat": 109, "jeddah": 109, "saudi": 109, "agenc": 109, "2288": 109, "hi": 109, "customari": 109, "outfit": 109, "champion": 109, "damp": 109, "scalp": 109, "canada": 109, "reign": 109, "olymp": 109, "donovan": 109, "bailei": 109, "1992": 109, "linford": 109, "christi": 109, "britain": 109, "1984": 109, "1988": 109, "carl": 109, "lewi": 109, "ambigi": 109, "punctuat": 109, "chicago": 109, "digest": 109, "philadelphia": 109, "usda": 109, "york": 109, "token_issu": 109, "471": 109, "kean": 109, "year": 109, "contract": 109, "manchest": 109, "19072": 109, "societi": 109, "bite": 109, "deliv": 109, "19910": 109, "father": 109, "clarenc": 109, "woolmer": 109, "renam": 109, "uttar": 109, "pradesh": 109, "india": 109, "ranji": 109, "trophi": 109, "nation": 109, "championship": 109, "captain": 109, "1949": 109, "15658": 109, "19879": 109, "iii": 109, "brian": 109, "shimer": 109, "randi": 109, "jone": 109, "19104": 109}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 3, 1, "", "set_knn_graph"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 93, 95, 96, 99, 100, 103, 109], "count": [3, 100], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 103], "creat": [7, 90, 91, 92, 100, 102], "your": [7, 84, 91, 92, 96, 97, 99, 100], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 108, 109], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 97], "intermedi": 7, "advanc": [7, 91], "us": [7, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 100], "custom": [9, 91], "cleanlab": [9, 10, 84, 87, 88, 89, 93, 95, 96, 99, 100, 102, 103, 104, 105, 107, 108, 109], "studio": [9, 10], "easi": [9, 10, 84, 93, 95, 96], "mode": [9, 10, 84, 93, 95, 96], "can": [10, 90, 92, 98, 99, 100, 102], "detect": [10, 89, 92, 93, 95, 96, 97, 99, 100, 104, 105], "estim": [10, 100, 102, 103], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 107, 108, 109], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 90, 93, 95, 96, 103, 105], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 20, 92, 93, 95, 96, 99, 103], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 97, 100, 108], "imbal": [10, 21, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 105], "specif": [10, 22, 108], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 97], "paramet": [10, 100], "get": [12, 90, 91, 92, 102, 103, 104, 108, 109], "start": [12, 98], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 99, 100], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 99, 107], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "underperforming_group": 32, "model_output": 33, "report": [34, 93], "dataset": [37, 63, 84, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 100], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 91], "token_classification_util": 56, "util": 57, "valid": [58, 93, 106], "fasttext": 59, "model": [60, 84, 87, 88, 89, 93, 95, 96, 99, 100, 102, 103, 104, 105, 107], "kera": 61, "multiannot": [62, 102], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 100], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 90, 92, 99, 100], "segment": [77, 108], "token_classif": [81, 109], "open": [84, 99], "sourc": [84, 99], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 107, 108, 109], "instal": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "2": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 107, 108, 109], "common": [84, 85, 109], "3": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 107, 108, 109], "handl": [84, 99], "error": [84, 88, 93, 99, 100, 102, 103, 104, 107, 108, 109], "train": [84, 87, 88, 89, 97, 99, 105, 107], "robust": [84, 87, 88, 100, 107], "noisi": [84, 87, 88, 100, 107], "4": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 104, 105, 107], "curat": 84, "fix": [84, 99], "level": [84, 98, 100, 109], "5": [84, 87, 89, 90, 92, 93, 95, 97, 100, 102, 107], "improv": [84, 102], "via": [84, 100, 102], "mani": [84, 100], "other": [84, 102, 104, 107], "techniqu": 84, "contribut": 84, "how": [85, 99, 100, 102, 103, 109], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 92, 100, 107], "pre": [85, 89, 97, 99, 105], "function": [85, 91], "name": 85, "chang": 85, "modul": [85, 100], "new": [85, 90], "remov": 85, "argument": [85, 91], "variabl": 85, "cleanlearn": [86, 99, 100], "tutori": [86, 94, 98, 101], "structur": 87, "tabular": [87, 95], "requir": [87, 88, 90, 91, 92, 93, 95, 96, 102, 103, 104, 105, 107, 108, 109], "depend": [87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "load": [87, 88, 89, 90, 91, 92, 95, 96, 97, 107], "process": [87, 95, 105, 107], "select": [87, 95], "comput": [87, 89, 93, 95, 96, 97, 99, 102, 106], "out": [87, 89, 90, 91, 92, 93, 95, 96, 102, 106], "sampl": [87, 89, 90, 91, 92, 93, 95, 96, 102, 106], "predict": [87, 89, 90, 91, 92, 93, 95, 96, 97, 102, 103, 104, 106], "probabl": [87, 89, 90, 91, 92, 93, 95, 96, 97, 102, 106], "more": [87, 88, 90, 92, 100, 107], "text": [88, 96, 97, 109], "format": [88, 96, 99, 103, 104], "defin": [88, 93, 96, 97, 107], "potenti": [88, 102, 107], "an": [89, 93, 99], "audio": 89, "import": [89, 90, 91, 92, 93, 98, 100, 102], "them": [89, 98, 100], "speechbrain": 89, "featur": [89, 93, 105], "fit": 89, "linear": 89, "datamonitor": 90, "leverag": 90, "statist": [90, 102], "audit": [90, 91, 92], "skip": [90, 92, 98, 100, 102], "detail": [90, 92, 98, 100, 102], "classifi": [90, 91, 92, 97], "6": [90, 97, 100], "about": [90, 92], "addit": [90, 92], "7": [90, 93, 100], "8": [90, 98, 100], "look": 90, "both": 90, "workflow": [91, 97, 100], "instanti": 91, "object": [91, 104], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "all": [92, 100], "kind": [92, 104], "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 106], "fold": [93, 106], "cross": [93, 106], "embed": [93, 105], "view": 93, "most": [93, 109], "like": 93, "exampl": [93, 99, 100, 105], "sever": 93, "set": [93, 100], "dark": 93, "top": [93, 108], "low": 93, "numer": 95, "categor": [95, 97], "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 103], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "identifi": [97, 99, 104], "explan": 97, "vector": 97, "perform": 97, "visual": [97, 100, 104, 105, 108], "score": [97, 100, 102, 103, 104, 108, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 100, 106], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 102], "sort": 97, "understand": 98, "evalu": 98, "health": [98, 100], "popular": 98, "faq": 99, "what": [99, 100, 106], "do": [99, 100], "infer": 99, "correct": 99, "ha": 99, "flag": 99, "should": 99, "v": 99, "test": [99, 100, 105], "big": 99, "limit": 99, "memori": 99, "why": 99, "isn": 99, "t": 99, "work": [99, 100, 102, 109], "me": 99, "differ": [99, 104], "clean": [99, 100], "final": 99, "hyperparamet": 99, "tune": 99, "onli": 99, "one": [99, 100, 103, 108], "doe": [99, 102, 109], "take": 99, "so": 99, "long": 99, "when": [99, 100], "run": 99, "licens": 99, "under": 99, "answer": 99, "question": 99, "The": 100, "centric": 100, "ai": 100, "machin": 100, "find_label_issu": 100, "line": 100, "code": 100, "twenti": 100, "lowest": 100, "qualiti": [100, 102, 103, 104, 108, 109], "see": 100, "now": 100, "let": 100, "": 100, "happen": 100, "we": 100, "merg": 100, "seafoam": 100, "green": 100, "yellow": 100, "too": 100, "you": 100, "re": 100, "One": 100, "rule": 100, "overal": [100, 108], "accur": 100, "thi": 100, "directli": 100, "fulli": 100, "character": 100, "nois": 100, "matrix": [100, 103], "joint": 100, "prior": 100, "true": 100, "distribut": 100, "flip": 100, "rate": 100, "ani": 100, "again": 100, "support": 100, "lot": 100, "method": 100, "filter_bi": 100, "automat": 100, "everi": 100, "uniqu": 100, "num_label_issu": 100, "threshold": 100, "found": 100, "Not": 100, "sure": 100, "ensembl": 100, "multipl": [100, 102], "predictor": 100, "consensu": 102, "annot": 102, "major": 102, "vote": 102, "better": 102, "compar": 102, "inspect": 102, "retrain": 102, "further": 102, "multi": 103, "beyond": 103, "mislabel": [103, 108, 109], "given": 103, "hot": 103, "binari": 103, "without": 103, "applic": 103, "real": 103, "download": [104, 108, 109], "objectlab": 104, "exploratori": 104, "analysi": 104, "pytorch": 105, "timm": 105, "cifar10": 105, "some": 105, "pred_prob": [105, 108, 109], "wai": 107, "semant": 108, "which": 108, "ar": 108, "commonli": 108, "focus": 108, "token": 109, "word": 109, "sentenc": 109, "contain": 109, "particular": 109}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [93, "Easy-Mode"], [95, "Easy-Mode"], [96, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [107, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [107, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [107, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[90, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [102, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"], [92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[90, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[90, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[90, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[90, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [100, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[100, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[100, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[100, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[100, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[100, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[100, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[100, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[100, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[100, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[100, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[100, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[100, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[100, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[100, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[100, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[100, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[100, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[100, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[100, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[100, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[100, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[100, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[101, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[102, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[102, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[102, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[102, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[102, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[102, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[102, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[102, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[102, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[103, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[103, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[103, "2.-Format-data,-labels,-and-model-predictions"], [104, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[103, "3.-Use-cleanlab-to-find-label-issues"], [104, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[103, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[103, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[103, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[103, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[103, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[104, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[104, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[104, "Get-label-quality-scores"], [108, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[104, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[104, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[104, "Other-uses-of-visualize"]], "Exploratory data analysis": [[104, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[105, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[105, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[105, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[105, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[105, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[105, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[106, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[106, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[106, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[107, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[107, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[107, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[108, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[108, "2.-Get-data,-labels,-and-pred_probs"], [109, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[108, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[108, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[108, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[109, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[109, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[109, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[109, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[109, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 92, 100, 102, 103], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 92, 100, 102, 103], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 92, 100, 102, 103], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 93, 97, 98, 109], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 106, 107, 108, 109], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 91, 98, 106], "benchmark": [1, 38, 84, 85, 90, 91, 92, 100, 102, 103], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 98, 101, 106], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 97, 99, 100, 102, 109], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "introduc": [1, 89, 99, 100], "synthet": [1, 102, 103, 108], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 92, 97, 98, 102, 107], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 91, 97, 101, 105, 106], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 97, 101, 102, 105, 106, 107, 108], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 91, 95, 101, 102, 106], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 93, 95, 96, 97, 100, 104, 109], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 93, 99, 103], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 93, 96, 98, 99, 100, 102, 103, 105, 106, 108, 109], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109], "matric": [1, 3, 47, 99], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 91, 93, 95, 96, 97, 98, 102, 103, 107], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 102, 103, 104, 105, 107, 108, 109], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 90, 92, 97, 99, 100, 102, 103, 104, 107, 108, 109], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 92, 95, 96, 97, 99, 101, 102], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 95, 97, 104, 105], "trace": [1, 90, 91, 92, 100, 102, 103], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 90, 92, 93, 95, 96, 99, 100, 102, 103, 104, 105, 107, 108, 109], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 108, 109], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 92, 100, 102, 103], "py": [1, 3, 34, 38, 39, 44, 47, 49, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 91, 100, 102], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 104, 105, 107, 108], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 109], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 95, 96, 97, 100, 102, 109], "true_label": [1, 2, 3, 37, 47, 57, 100, 102], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 92, 97, 99, 100, 102, 103, 104, 105, 108, 109], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 99, 100, 102, 103, 107], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 92, 96, 97, 99, 100, 102, 103, 104, 105, 107], "achiev": [1, 2, 38, 39, 42, 74, 99, 102, 109], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 92, 95, 96, 97, 99, 100, 103, 104, 105, 109], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 93, 95, 97, 99, 100, 102, 103, 105], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 91, 99, 100, 102, 103, 106, 107], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 99, 102, 105], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 92, 93, 96, 97], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 97, 109], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107, 108, 109], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 97, 98, 99, 100, 103, 104, 105, 108, 109], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 93, 100, 109], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 98, 99, 100, 101, 103, 104, 105, 108, 109], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 95, 99], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108, 109], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 93, 95, 96, 99, 102, 104, 106, 108, 109], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107, 109], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 105, 108, 109], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 99, 103, 105, 107, 108, 109], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108, 109], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 93, 99, 100, 102, 103, 108, 109], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 98, 99, 106], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 103, 104, 107, 108, 109], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 92, 93, 95, 96, 98, 99, 100, 107, 109], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 108, 109], "perfect": [1, 2, 37, 74, 100, 104], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 91, 92, 93, 95, 96, 100], "yield": [1, 38, 42, 90], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "loop": [1, 3, 47, 57, 93, 104], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 91, 95, 105, 106], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 102, 103, 104, 105, 107, 108, 109], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 91, 92, 93, 95, 96, 98, 103, 107, 108], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 102, 103, 104, 105, 107, 108, 109], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 42, 61, 74, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105], "pseudocod": [1, 106], "happen": [1, 10, 44, 64, 90, 96, 102, 108], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 90, 93, 96, 97, 98, 99, 102, 103, 104, 107, 108, 109], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 90, 96, 97, 99, 100, 104, 105], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 106, 107, 108], "distinct": [1, 19, 57, 109], "natur": [1, 10, 102, 105], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 108, 109], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 92, 95, 97, 99, 100, 102, 103, 105, 107], "round": [1, 41, 44, 57, 74, 97, 99, 107], "astyp": [1, 102], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 91, 93, 97, 104, 105], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 90, 93, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "pragma": 1, "cover": [1, 3, 85, 97, 98, 99], "choic": [1, 8, 44, 53, 55, 93, 99, 103, 105], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 105], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91, 92], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 95, 98, 99, 100, 104], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 92, 100, 102, 103], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 93, 97, 99, 100, 102, 103, 108], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 92, 95, 97, 98, 100, 102, 103], "max_it": [1, 88, 89, 96, 105], "10000": [1, 41, 98, 99], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 105, 107], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 106], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 93, 95, 96, 97, 99, 108, 109], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 92, 100, 102, 103], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 95, 96, 100, 103, 104, 107], "maximum": [1, 10, 71, 79, 83, 108], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 91, 99, 100, 102, 104, 105], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 91, 93, 97, 99, 107, 108], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 91, 97], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 90, 92, 96, 99, 102, 103, 105, 107], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 97, 98, 99, 100, 106], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 90, 92, 93, 96, 97, 98, 99, 103, 104, 107, 109], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 102, 106, 107, 108, 109], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109], "rate": [1, 2, 3, 10, 39, 57, 89, 109], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 92, 95, 96, 97, 99, 102, 103, 105, 106, 107, 108, 109], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 93, 97, 98, 100, 104, 107, 108, 109], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108, 109], "imposs": [1, 10, 100], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 106, 107, 108, 109], "low": [1, 10, 57, 62, 84, 90, 91, 92, 96, 97, 100, 104, 108], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 91, 93, 103, 104, 105], "forc": [1, 2, 3, 5, 42, 91, 109], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 93, 95, 96, 97, 99, 100, 103, 104, 105, 107, 108, 109], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 91, 92, 93, 96, 97, 102, 103, 104, 105, 106, 107, 108, 109], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 108, 109], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 92, 96, 97, 99, 104], "opposit": [1, 109], "occur": [1, 3, 10, 37, 56, 69, 91, 92, 93, 99, 105], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 93, 96, 98, 103, 105], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "max": [1, 44, 71, 72, 92, 93, 97, 105], "tri": [1, 38, 42, 106], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 90, 96, 97, 99, 100, 102, 105, 107], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 91, 92, 93, 95, 99, 100, 103, 107, 108], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 92, 103, 104, 105, 108], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 92, 98, 102, 103, 104, 109], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 99, 100, 108], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 103, 105, 108, 109], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 93, 97, 102, 106, 108, 109], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 99, 102, 103, 104, 108, 109], "ball": [1, 98], "bin": [1, 3, 64, 90, 91, 92, 97, 105], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 91, 92, 93, 96, 97, 99, 100, 105, 106, 107], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 93, 99, 102, 105, 108], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 103, 104, 105, 106, 107, 108, 109], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 92, 97, 98, 101, 106, 108, 109], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 109], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 97, 99, 100, 101], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 90, 96, 97, 98, 99, 100, 103, 105, 107, 108, 109], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 107], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 92, 95, 96, 100, 107], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 104], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 106, 107], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 95, 96, 99, 102, 103, 105, 106, 108, 109], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 97, 99, 107], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 91, 92, 95, 98, 99, 102, 105, 109], "four": [2, 10, 98, 100, 109], "clf": [2, 3, 5, 49, 74, 84, 87, 95, 97, 99, 100, 103], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 106, 107, 109], "sample_weight": [2, 42, 74, 100], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 105], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 98, 99, 100, 101, 105, 107, 108, 109], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 105, 107], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 93, 94, 101, 106], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 107], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 96, 97, 99, 109], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 91, 93, 95, 97, 99, 102, 103, 104, 105, 107, 108, 109], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108, 109], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 90, 93, 95, 99, 100, 102, 103, 104, 106, 108], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 91, 95, 96, 99, 107, 108, 109], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 92, 96], "loss": [2, 39, 61, 72, 74, 93], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 93, 97, 99, 100, 102, 103, 107], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 106, 108, 109], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 90, 93, 95, 98, 102, 103, 104, 105, 106, 107, 108, 109], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 91, 92, 93, 97, 99, 106, 107], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 93, 96, 97, 99, 103, 104, 107, 108], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "clone": [2, 74, 103], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 91, 97, 99, 100, 102, 103, 104, 105, 107, 109], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 91, 92, 93, 95, 97, 99, 101, 103, 104, 107], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107], "manual": [2, 74, 87, 88, 89, 97, 99, 105, 106, 107, 109], "pytorch": [2, 38, 39, 42, 74, 84, 89, 93, 99, 101, 103, 108], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 92, 96, 99, 100, 103, 105, 106, 107, 108, 109], "__init__": [2, 39, 74, 93], "independ": [2, 3, 10, 63, 74, 96, 97, 106, 107, 109], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 97, 99, 106, 107], "neural": [2, 39, 61, 71, 74, 89, 93, 99, 103, 105, 107], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 93, 96, 99, 103, 105, 107], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 92, 93, 95, 96, 105, 106], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 96, 99], "insid": [2, 42, 74, 99, 100], "There": [2, 3, 7, 52, 84, 100, 102], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 107, 108, 109], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 91, 96, 98, 99, 105, 106, 109], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 93, 95, 96, 100, 102, 103, 104, 106, 108, 109], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "prune": [2, 3, 44, 64, 74, 85, 104], "everyth": [2, 70, 100], "els": [2, 70, 90, 91, 93, 97, 98, 99, 102, 103, 104], "mathemat": [2, 3, 10, 47, 103], "keep": [2, 14, 15, 57, 84, 90, 91, 97, 98, 99, 108], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 92, 93, 100, 103, 105, 108, 109], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 98, 99, 106], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 92, 95, 96, 97, 98, 101], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 105, 107], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 95, 96, 97, 99, 103, 104, 105, 107, 108, 109], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 92, 96, 97, 99, 100, 102, 105], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 92, 96, 97, 99, 100, 102, 105], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 99, 100, 107], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 104, 105, 107], "x_train": [2, 87, 90, 91, 92, 100, 102, 103, 107], "labels_maybe_with_error": 2, "had": [2, 3, 74, 104], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 94, 101, 102, 106, 107], "pred": [2, 44, 57, 87, 88, 106, 107], "x_test": [2, 87, 90, 91, 92, 100, 103, 107], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 91, 92, 93, 97, 99, 104], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 105, 107, 109], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 91, 92, 95, 98, 100, 104], "adapt": [2, 38, 40, 57, 60, 74, 105], "skorch": [2, 74, 84, 99], "kera": [2, 60, 67, 70, 74, 84, 99, 104], "scikera": [2, 61, 74, 99], "open": [2, 41, 98, 104, 109], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 107, 109], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 104, 105, 107], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 91, 92, 96, 102, 109], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 93, 96, 97, 99, 102, 104, 106, 107], "easi": [2, 12, 47, 74, 91, 92, 98, 99, 100, 103], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 93, 97, 98, 99, 100, 102, 103, 105, 107, 109], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 91, 93, 96, 97, 98, 103, 108, 109], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 91, 92, 93, 95, 96, 97, 99, 100, 103, 106, 107], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 91, 93, 95, 96, 97, 99, 100, 104, 105, 107, 109], "total": [2, 3, 4, 37, 41, 57, 63, 83, 90, 93, 99, 108], "state": [2, 3, 5, 38, 39, 42, 48, 74, 100, 103, 104, 109], "art": [2, 39, 100, 103], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 91, 92, 99, 102], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 91, 101, 106], "uncertainti": [2, 10, 46, 71, 74, 99, 105, 107], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 91, 92, 93, 96, 99, 100, 103, 106], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 92, 97, 98, 105, 107], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 109], "deep": [2, 40, 42, 60, 61, 74, 96], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109], "subfield": 2, "theori": [2, 100], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 91, 92, 97, 98, 102], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 107], "varieti": [2, 87, 88, 99], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108, 109], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 91, 92, 93, 95, 96, 100, 103, 104, 105, 108, 109], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 91, 93, 99, 100, 105, 107, 109], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 92, 96, 99, 102, 104, 106, 108, 109], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 91, 95, 99, 100, 102, 103, 104, 105, 108, 109], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 90, 95, 96, 97, 99, 100, 103, 106, 107, 109], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 98, 100, 102, 105, 107, 109], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 91, 96, 98, 99, 103, 104, 105, 106, 108, 109], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 99, 100], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 99], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 92, 98, 107], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 97, 99, 100, 102, 103, 104], "messi": [2, 74, 100], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 92, 98, 99], "robust": [2, 47, 52, 74, 92, 99], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 92, 99, 102, 104], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 91, 92, 96, 100], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 99, 100, 102, 104, 106, 109], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 90, 99], "wrapper": [2, 61, 87, 88, 89, 107], "around": [2, 69, 90, 91, 92, 104, 105, 109], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 90, 95, 96, 97, 98, 99, 108, 109], "along": [2, 49, 64, 82, 90, 91, 92, 93, 97, 99, 105], "dimens": [2, 57, 76, 79, 93, 99, 105, 108], "select": [2, 9, 10, 27, 51, 62, 72, 93, 99, 102, 105], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 106, 109], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 107, 108, 109], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 95, 98, 99, 104, 108], "By": [2, 37, 63, 64, 74, 91, 97, 99, 108], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 91, 92, 96, 97, 99, 100, 102, 103, 104, 108], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 91, 92, 98, 100, 101, 104, 105, 107, 108], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 105, 107, 108, 109], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 102, 103, 105, 107], "consist": [2, 3, 38, 42, 51, 57, 62, 97, 108, 109], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 105, 107, 109], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 92, 96, 97], "close": [2, 3, 10, 41, 47, 71, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 99], "equival": [2, 3, 38, 42, 47, 71, 105, 107], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 90, 99, 102, 108], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 100], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 92, 97, 98, 104, 105], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 93, 99, 109], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 91], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 93, 96, 98, 99, 103, 104, 107, 108, 109], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 99, 103, 104, 107, 108, 109], "particularli": [2, 84, 102, 105], "filter_bi": [2, 3, 41, 44, 64, 85, 99], "frac_nois": [2, 44, 64, 80, 99], "min_examples_per_class": [2, 44, 64, 92, 99, 100], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 91, 92, 93, 95, 96, 97, 102, 103, 107], "accuraci": [2, 39, 72, 87, 88, 89, 93, 99, 100, 102, 105, 107, 108], "n_job": [2, 41, 44, 64, 76, 78, 80, 99, 105, 108], "disabl": [2, 38, 42, 44, 105], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 91, 97, 99, 102, 106], "caus": [2, 44, 49, 91, 92, 97, 99], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 91, 92, 98, 99, 103, 104, 105, 108, 109], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 99, 100, 103, 104, 108, 109], "adjust_pred_prob": [2, 10, 66, 71, 72, 100], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 104, 105, 106, 107, 108], "much": [2, 10, 37, 41, 44, 74, 90, 97, 98, 99, 100, 102, 105], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 91, 93, 96, 98, 99, 104, 105, 106, 107], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 108, 109], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 100], "limit": [2, 5, 17, 41, 52, 64, 90, 97, 104, 108, 109], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 91, 108], "label_issues_batch": [2, 40, 64, 99], "find_label_issues_batch": [2, 40, 41, 64, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 107], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 91, 97, 104, 105, 108, 109], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 100], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 93, 96, 99, 100, 103, 107], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 93, 95, 96, 100, 102, 104, 106, 107], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 103, 107, 108, 109], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 91, 92, 93, 95, 96, 98, 100, 103, 105, 107, 108, 109], "final": [2, 10, 74, 87, 95, 97, 104, 106, 107], "remain": [2, 74, 85, 87, 88, 93, 103, 107, 109], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 107, 108], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 91, 92, 95, 96, 97, 99, 100, 102, 107, 109], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 107, 108, 109], "scipi": [2, 4, 5, 14, 53, 57, 71, 97], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 92, 93, 95, 96, 97, 100], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 97], "torch": [2, 38, 39, 42, 88, 89, 93, 96, 98, 105], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 91, 92, 93, 99, 100, 105], "tensorflow": [2, 57, 61, 84, 89, 99], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 92, 93, 95, 99, 100, 101, 103, 107], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 93, 98, 99, 100, 103, 104, 107, 109], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 93, 95, 96, 97, 99, 103, 104, 105, 106, 107, 109], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 106, 108, 109], "abl": [2, 3, 10, 74, 89, 99, 100, 102, 103], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 91, 92, 93, 95, 97, 98, 102, 107, 108, 109], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 102, 103, 104, 105, 107], "shuffl": [2, 10, 57, 89, 93, 96, 97, 103, 105], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 109], "batch": [2, 41, 57, 61, 62, 76, 78, 90, 93, 99, 105], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 107, 108, 109], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 96, 99, 105], "eg": [2, 5, 10, 57, 67, 70, 91, 92, 99], "repeat": [2, 57, 62, 102, 105], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 93, 95, 97, 99, 102, 103, 105, 106, 107, 108], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108, 109], "seri": [2, 3, 41, 57, 58, 74, 82, 99], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 105, 109], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 98, 102, 106, 107, 108, 109], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 92, 99, 104, 109], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 91, 97, 99, 102, 104, 105, 107], "cutoff": [2, 3, 53, 105], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108], "section": [2, 3, 7, 10, 85, 93, 95, 97, 99, 104], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 98, 99, 106], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 92, 94, 97, 99, 100], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 90, 100], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 92, 93, 96, 102, 104, 107], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 93, 95, 96, 97, 98, 99, 102, 103, 104, 107, 108, 109], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 92, 98, 99, 109], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 93, 97, 99, 104], "observ": [2, 3, 47, 54, 89, 90, 91, 92, 102, 105, 107], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 93, 95, 96, 99, 100, 104, 107], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 102, 105, 106, 107, 109], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 100, 107], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 90, 92, 97, 99, 103, 104], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 92, 93, 96, 99, 104, 107, 108], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 106, 107, 108, 109], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 99, 100], "significantli": [2, 10, 93, 97, 100, 102, 106], "reduc": [2, 41, 44, 57, 89, 99], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 91, 93, 95, 98, 99, 100, 104, 105, 107, 108, 109], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 90, 93, 95, 102, 103, 104, 109], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 109], "skip": [2, 10, 38, 42, 74, 89, 97, 99, 103, 109], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 90, 93, 97, 100, 102, 106], "caution": [2, 5, 99], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 91, 95, 96, 102, 106], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 91, 93, 95, 97, 99, 107, 108, 109], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 92, 95, 97, 98, 99, 102, 103, 104, 109], "still": [2, 41, 42, 57, 71, 87, 89, 93, 99, 105], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 93, 96, 99, 102, 105], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 92, 104], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 93, 97, 99, 100, 103, 109], "appropri": [2, 10, 17, 35, 53, 64, 72, 91, 95, 103, 104], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 91, 93, 95, 103, 107, 109], "f": [2, 7, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 90, 93, 97, 99, 106, 108], "access": [2, 10, 14, 38, 42, 74, 88, 92, 93, 96, 98, 103], "hyperparamet": [2, 66, 71, 93], "purpos": [2, 52, 91, 92, 97, 99, 103, 107], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 91, 93, 96, 98, 102, 104, 105, 106, 108, 109], "explicitli": [2, 8, 10, 42, 52, 74, 99], "yourself": [2, 5, 41, 92, 97], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 93, 95, 96, 98, 99, 100, 102, 103, 105, 107], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 107, 108], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 93, 95, 96, 97, 99, 105], "offer": [2, 5, 9, 10, 88, 89, 91, 92, 96, 99, 100, 103], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 91, 93, 96, 97, 99, 100, 102, 104, 105, 106, 107, 108], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 91, 97], "label_issues_df": [2, 74, 93], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 108], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 91, 92], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 95, 97, 99, 100, 102, 104, 106, 108], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 93, 97, 99, 105], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 92, 99, 100, 109], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 103, 105], "uniqu": [2, 32, 57, 79, 91, 97, 99, 103, 105], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 107, 108, 109], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 97, 99, 100, 105], "trick": [2, 99], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 93, 95, 96, 97, 104, 105], "account": [2, 37, 62, 66, 71, 72, 88, 96, 99, 100, 102, 103, 105, 107], "word": [2, 3, 56, 82, 83, 99], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 107], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 91, 92, 93, 96, 97, 100, 103, 105, 108], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 93, 96, 97, 98, 99, 100, 105, 106, 107], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 91, 94, 98, 101, 103, 107, 108, 109], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 99], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 93, 95, 96, 106, 107, 109], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 99, 100, 102, 103, 104, 107, 109], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 91, 92, 93, 99, 100, 102, 106, 107, 108], "simpli": [2, 10, 37, 72, 88, 91, 92, 95, 96, 99, 100, 103, 107, 108, 109], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 92, 93, 95, 96, 97, 100, 104], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 108, 109], "cach": [2, 88, 96], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 100, 102, 107, 108], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 91, 102, 103, 105, 107], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 91, 93, 97, 99, 100, 102, 109], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 90, 98, 99, 102, 104, 108, 109], "prefer": [2, 72, 80, 97, 103], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 96, 99, 100, 104], "invok": [2, 38, 42, 100, 106], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 106, 107, 108, 109], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 103, 107], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 96, 99, 104], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 92, 98, 109], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 91, 93, 95, 96, 97, 98, 99, 100, 102, 105], "docstr": [2, 37, 38, 42, 57, 74, 98, 100], "unless": [2, 38, 42, 52, 74, 99], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 92, 97, 99, 104, 105, 106, 108, 109], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 92, 93, 95, 96, 97, 99, 102, 107], "label_qu": [2, 62, 74, 88, 100, 102, 107], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 98, 99, 100, 102, 103, 107, 108, 109], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 107], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 107, 108, 109], "eas": 2, "comparison": [2, 38, 42, 70, 100, 102], "against": [2, 38, 42, 91, 95, 97, 99, 102, 103], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 107, 108], "ad": [2, 38, 42, 90, 92, 102, 107], "precis": [2, 53, 55, 64, 67, 70, 97, 98, 99, 100, 108, 109], "definit": [2, 7, 35, 49, 74, 87, 95], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 100, 102, 103, 104, 106, 109], "precomput": [2, 4, 5, 47, 52, 74, 92, 93, 95, 96, 97, 98, 100], "clear": [2, 38, 42, 54, 74, 88, 96, 107], "save": [2, 5, 17, 38, 41, 42, 70, 74, 99, 104, 108, 109], "space": [2, 5, 10, 71, 74, 93, 95, 97, 98], "place": [2, 38, 42, 52, 57, 74, 87, 102], "larg": [2, 9, 10, 41, 52, 74, 93, 95, 96, 99, 104, 105, 108, 109], "deploi": [2, 9, 10, 74, 93, 95, 96, 99], "care": [2, 10, 38, 42, 52, 74, 96, 97, 99, 100], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 90, 99, 100, 102, 104, 107], "cannot": [2, 5, 13, 15, 57, 106, 109], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 91, 92, 95, 96, 99, 100, 102, 103, 104, 105, 108, 109], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 91, 95, 96, 97, 98, 100, 102, 105, 108, 109], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 93, 102, 103], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 91, 92, 99], "metadata": [2, 10, 42, 74, 93, 95, 96, 109], "through": [2, 5, 7, 42, 74, 88, 89, 90, 92, 96, 97, 98, 99, 102, 104, 105], "develop": [2, 9, 42, 54, 74, 99, 100, 109], "request": [2, 42, 74, 87, 88, 92, 96, 97, 98, 103, 109], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 93, 97, 99, 104, 108], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "www": [2, 42, 74, 105], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 99, 100, 109], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 105, 107, 109], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 96, 100], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 99], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 107, 108, 109], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 91, 99, 102, 103, 104, 109], "unchang": [2, 38, 42, 74, 109], "relev": [2, 17, 27, 42, 74, 93, 95, 97], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 99], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 91, 96, 99, 104, 105, 109], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107, 109], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 107], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 96, 99], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 91, 93], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 93, 95, 96, 102, 105, 107], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 91, 92, 93, 95, 96, 99, 100, 102, 104, 105], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 109], "latter": [2, 38, 42, 74, 105], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 90, 95, 97, 99], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 93, 95, 97, 98, 99, 100, 104, 109], "channel": [3, 89, 100], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 92, 98], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 99, 100], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 92, 97, 105], "joint": [3, 37, 44, 47, 57, 63, 64, 98], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 103], "don": [3, 84, 92, 93, 95, 96, 100, 104, 107], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 100], "off": [3, 44, 57, 69, 93, 100, 104, 105], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 92, 100, 108, 109], "confident_learn": [3, 44, 64, 100], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 102], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 93, 97, 99, 100, 102, 103, 105, 107, 108], "bincount": [3, 90, 91, 92, 100, 102, 103], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 100, 107], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 92, 93, 95, 97, 98, 99, 100, 105, 107], "As": [3, 7, 84, 91, 92, 96, 100, 107, 109], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 103], "approach": [3, 37, 41, 44, 61, 87, 90, 95, 97, 100, 103, 105, 107], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 92, 93, 96, 97, 100, 107], "know": [3, 10, 91, 92, 93, 95, 96, 99, 100, 102, 107], "cut": [3, 69, 84, 100], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 104, 105, 109], "underestim": 3, "few": [3, 9, 10, 70, 84, 92, 97, 99, 102, 103, 104, 105, 109], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 98, 99, 103, 108, 109], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 99, 103, 105, 109], "num_issu": [3, 7, 41, 89, 90, 91, 92, 93, 95, 96, 97, 100], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 90, 98, 99, 104, 107, 109], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 100], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 92, 103, 104, 105, 106], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 107], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 95, 109], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 93, 95, 96, 99, 100, 103, 104, 105, 108, 109], "truli": [3, 105, 108], "estimate_joint": [3, 37, 100], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 100, 104, 106, 108, 109], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 104, 105], "done": [3, 10, 61, 74, 91, 99, 100, 103, 105, 106], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 93, 95, 96, 106], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 91, 97, 99, 100, 103, 104], "baselin": [3, 38, 44, 88, 105, 107], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 99], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 109], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 90, 93, 97, 99, 108], "practic": [3, 87, 88, 92, 93, 100, 105, 107], "complet": [3, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 107], "gist": 3, "cj_ish": 3, "guess": [3, 47, 100, 102], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 91, 92, 93, 95, 96, 97, 99, 102, 103, 104, 105, 107, 108, 109], "parallel": [3, 44, 70, 80, 98], "again": [3, 61, 87, 99, 105], "simplifi": [3, 15, 99], "understand": [3, 9, 10, 37, 63, 70, 92, 97, 100, 101, 107, 108, 109], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 91, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 109], "optim": [3, 38, 39, 42, 61, 93, 97, 102], "speed": [3, 44, 88, 98, 99, 107], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 97, 104], "enumer": [3, 38, 42, 89, 90, 91, 92, 93, 97, 109], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 97, 99, 100, 104, 105, 108], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 97], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 100, 106], "poorli": [3, 47, 87, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 100], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 91, 95, 100, 103, 107], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 93, 95, 97], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 91, 92, 93, 99, 104, 108], "percent": 3, "often": [3, 37, 47, 63, 99, 100, 106, 108], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 91, 93, 95, 96, 99, 103, 104, 105, 107], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 92, 95, 96, 99, 100, 102, 103, 104, 106], "pro": 3, "con": 3, "pred_proba": [3, 106], "combin": [3, 37, 91, 93, 97, 98, 99, 100, 106, 107], "becaus": [3, 47, 53, 57, 69, 96, 97, 99, 100, 102, 104], "littl": [3, 41, 98, 104, 109], "uniform": [3, 72, 98, 99, 100], "20": [3, 7, 43, 83, 89, 90, 93, 96, 97, 98, 99, 100, 104, 107, 108, 109], "Such": [3, 93, 105], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 104], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 97, 109], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 91, 95, 96, 98, 99, 104, 105, 108, 109], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 100], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 93, 95, 96, 97, 100, 108, 109], "five": [3, 67, 70, 100, 104], "estimate_cv_predicted_prob": [3, 100], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 104], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97, 98, 99, 102, 103, 107, 108, 109], "u": [4, 87, 88, 89, 91, 93, 95, 97, 99, 100, 102, 103, 106, 107, 108, 109], "assess": [4, 10, 97, 104], "contribut": [4, 10, 19, 97, 104], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 95, 97], "metric": [4, 5, 10, 19, 20, 27, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 93, 95, 96, 97, 100, 107], "10": [4, 10, 19, 20, 24, 27, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 92, 96, 97, 105], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 91, 92, 93, 95, 96, 97, 99, 100, 105], "knn": [4, 10, 14, 19, 27, 32, 51, 52, 53, 54, 55, 71, 95, 105], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 93, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 92, 96, 97, 99, 103, 104, 107], "lowest": [4, 10, 62, 70, 92, 93, 95, 97, 99, 102, 103, 104, 108], "fall": [4, 10, 69, 78, 82, 100, 105], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 105, 107, 108], "approxim": [4, 10, 19, 41, 54, 71, 97, 102], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 104, 105, 107, 109], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 105, 107, 109], "arxiv": [4, 19, 100], "ab": [4, 19, 100, 104], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 91, 92, 95, 96, 97, 100, 103, 107], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 91, 92, 93, 96, 99, 100, 105], "suppli": [4, 103, 104, 107], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 97, 103], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 93, 95, 96, 100], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 95, 97, 105], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 97], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 95, 105], "cosin": [4, 10, 52, 53, 55, 71, 97, 105], "dim": [4, 71, 93, 108], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 95], "dimension": [4, 27, 53, 57, 89, 100, 105], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 107], "fewer": [4, 10, 44, 57, 71, 97, 104], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 93, 95, 96, 100], "exce": [4, 52, 90, 93, 97], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 92, 93, 96, 97, 105, 109], "rel": [4, 10, 37, 52, 62, 63, 71, 91, 92, 93, 95, 96, 100, 105], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 97, 100], "closer": [4, 10, 69, 104], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 97, 98, 105], "convers": 4, "neg": [4, 10, 69, 70, 91, 92, 97, 98], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 99], "neither": [4, 5, 10, 15, 53, 104], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 90, 93, 96, 98, 99], "55": [4, 56, 97, 98, 104, 107], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 93, 94, 95, 96, 97, 99, 100, 103, 104, 107], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 91, 95, 96, 97, 100, 102, 105, 106], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 97], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 105, 107], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "egg": [5, 7, 9, 12, 36, 84, 98], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 107], "image_kei": [5, 10, 93], "interfac": [5, 9, 10, 54, 84, 99, 100], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 91, 96, 97, 98, 99], "goal": [5, 107], "track": [5, 7, 14, 15, 84, 90, 91, 98, 99, 100], "intermedi": [5, 9, 92], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 92, 95, 96, 97, 100], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 93, 96, 97, 98, 99, 102, 103, 104], "hug": [5, 10, 13, 93], "face": [5, 10, 13, 17, 93, 98, 103], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 93, 96, 99, 100, 102, 104], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 95, 96, 97, 99, 102, 103, 109], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 91, 92, 95, 96, 100, 102, 103, 104], "path": [5, 13, 38, 41, 42, 70, 89, 91, 99, 104], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 93, 98, 99, 100, 102, 103, 105, 107, 109], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 91, 92, 94, 98, 99, 100, 101, 102, 105], "txt": [5, 13, 109], "csv": [5, 13, 87, 88, 95, 96, 107], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 103], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 92, 96, 101, 102, 105], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 103], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 91, 92, 94, 98, 99, 101, 102, 103, 104, 106, 108], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 97, 107], "pil": [5, 93], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 92, 93, 99, 101, 103, 108], "load_dataset": [5, 13, 93], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 90], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 98, 100, 104, 108, 109], "empti": [5, 13, 47, 62, 92, 97, 99, 103], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 107], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 107], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 103, 104, 107, 108, 109], "common": [5, 10, 14, 17, 92, 94, 97, 98, 99, 100, 103, 104, 108], "real": [5, 17, 84, 91, 92, 99, 100, 102, 107, 108], "world": [5, 17, 84, 91, 92, 99, 100, 102, 107, 108], "interact": [5, 17, 96, 99], "thereof": [5, 17], "insight": [5, 17, 70, 102], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 91, 92, 93, 95, 96, 97, 99, 102, 103, 105, 107, 109], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 93, 95, 96, 99, 100, 103, 105, 107, 108], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 93, 95, 96, 100, 103, 104], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 93, 95, 96, 100, 103], "squar": [5, 57, 74, 98, 107], "csr": [5, 52, 97], "evenli": 5, "omit": [5, 69, 70, 93, 97, 104], "itself": [5, 33, 38, 42, 52, 97, 104], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 92, 95, 98, 100, 102, 106, 107, 108, 109], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 103, 109], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 96, 103, 104, 109], "ascend": [5, 37, 63, 93, 100], "segment": [5, 76, 78, 79, 101], "reflect": [5, 10, 52, 87, 88, 95, 96, 102, 104, 105, 107], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 95], "illustr": [5, 97], "todens": 5, "second": [5, 49, 57, 70, 72, 91, 95, 99, 100, 109], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 91, 97, 100, 107], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 97, 99, 102, 109], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 96, 97, 100, 107, 108, 109], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 98, 107, 109], "random_st": [5, 87, 89, 90, 91, 92, 93, 97, 100, 103, 105], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 107], "comprehens": [5, 84, 93, 103, 107], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 97], "mode": [5, 12, 19, 38, 41, 42, 105], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 97], "toarrai": [5, 52, 97], "NOT": [5, 41, 96], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 92], "suppos": [5, 10, 67, 87, 88, 105, 107], "who": [5, 69, 87, 95, 97, 100, 109], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 91, 97, 99], "clean_learning_kwarg": [5, 10, 11, 24, 31, 99, 107], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 100], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 92, 95, 96, 99, 100, 103, 107, 109], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 107, 108, 109], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 105, 107, 108, 109], "suffer": [5, 10, 14, 23, 64, 72, 83, 97, 109], "onc": [5, 23, 37, 38, 42, 87, 90, 91, 99, 100, 103, 104], "familiar": [5, 97], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 109], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 104, 105, 109], "compar": [5, 62, 71, 82, 91, 92, 95, 97, 100, 104], "issue_summari": [5, 7, 10, 14, 90, 91, 97], "With": [5, 9, 10, 41, 88, 96, 99, 100, 102, 107, 108, 109], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 93, 102, 107], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 93, 95, 96, 100, 104], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 97], "wherea": [5, 10, 57, 64, 87, 88, 106], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 91, 92, 97, 100, 101, 107], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 100, 107], "global": [5, 7, 10, 23, 38, 42, 98], "non_iid": [5, 10, 11, 15, 27, 92, 93, 95, 96, 97, 100], "hypothesi": [5, 97], "iid": [5, 7, 9, 27, 95, 100], "never": [5, 89, 100, 103, 105, 106], "someth": [5, 7, 10, 38, 42, 72, 104], "123": [5, 90, 91, 92], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 107], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 93, 95, 96, 100], "focu": [5, 10, 14, 96, 97, 108, 109], "full": [5, 10, 14, 41, 61, 70, 90, 93, 109], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 108], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 91, 92, 93, 95, 96, 97, 100], "get_issue_summari": [5, 10, 14, 90, 92, 97], "get_info": [5, 14, 92, 96, 97, 98], "yet": [5, 18, 28, 61, 98, 102], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 91], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 91, 93], "load": [5, 13, 41, 70, 93, 98, 99, 100, 104, 105, 108, 109], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 91, 93, 96, 99], "overwrit": [5, 91], "separ": [5, 37, 49, 66, 91, 92, 93, 97, 99, 104, 106], "static": 5, "rememb": [5, 96, 99, 100], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 91, 97, 98, 108, 109], "ident": [5, 10, 23, 57, 90, 96, 97], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 98, 102, 107], "walk": 7, "alongsid": [7, 38, 42, 91, 99], "pre": [7, 8, 10, 38, 42, 91, 92, 107], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 93, 99], "issue_manager_factori": [7, 15, 91], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109], "thing": [7, 42, 88, 97, 100, 107], "next": [7, 62, 84, 87, 88, 89, 90, 93, 95, 96, 97, 99, 102, 104, 107, 109], "dummi": 7, "randint": [7, 32, 49, 90, 91, 92, 97, 99], "mark": [7, 10, 85, 104, 105, 107], "regard": [7, 92, 100], "rand": [7, 49, 52, 90, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "whole": [7, 10, 27, 38, 42, 92, 97], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 91], "popul": [7, 92, 96], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 104], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 90, 97, 99, 103], "intermediate_arg": 7, "min": [7, 49, 69, 82, 91, 99, 105], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 38, 42, 53, 76, 82, 96, 97, 99], "easili": [7, 47, 85, 87, 88, 89, 90, 92, 95, 96, 100, 102, 103, 105, 106, 107, 108], "hard": [7, 42, 98, 105], "sai": [7, 10, 38, 42, 97, 103, 108], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 95, 96, 97, 99, 100, 102, 105], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 90, 92, 93, 95, 96, 99, 100, 108], "won": [7, 38, 42, 91, 92, 99, 103], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 91], "instanti": [7, 17, 41, 61, 71, 88, 89, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 93, 95, 96, 100], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 104, 105, 107, 108, 109], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "169312": 7, "17": [7, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 98, 104, 109], "dbscan": [8, 10, 32, 99], "hdbscan": [8, 99], "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 91, 92, 95, 96, 99, 100, 103, 107], "sensit": [8, 10, 55, 97], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 97, 99], "your_data": 8, "get_pred_prob": [8, 90], "n_cluster": [8, 32, 97, 99], "cluster_id": [8, 10, 11, 32, 97, 99], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 92, 93, 95, 96, 97, 99, 100], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 97, 99, 106], "nondefault": 9, "Near": [9, 99], "imbal": [9, 22, 66, 71, 72, 92], "null": [9, 11, 15, 22, 92, 93, 96, 100], "togeth": [9, 10, 47, 88, 91, 92, 93, 95, 96, 100, 107, 109], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 92, 93, 95, 96, 97, 99, 102, 103, 107, 108, 109], "prerequisit": 9, "basic": [9, 42, 61, 95, 96, 97, 105], "fulli": [9, 10, 38, 42, 61, 99], "platform": [9, 10, 84, 93, 95, 96, 99], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 107, 108, 109], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 95, 99, 100, 107, 108], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 99, 100], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 93, 95, 96, 99, 103, 105, 108, 109], "fix": [9, 10, 62, 88, 90, 96, 97, 100, 107], "scientist": [9, 10], "million": [9, 10, 109], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 101, 102, 103, 105, 107, 109], "suggest": [9, 10, 37, 62, 63, 69, 88, 93, 96, 99, 107], "power": [9, 10, 93, 95, 96, 98, 100, 109], "automl": [9, 10, 84, 99], "system": [9, 10, 89, 90, 93, 95, 96, 108], "foundat": [9, 10, 84, 97], "improv": [9, 10, 62, 87, 88, 92, 93, 98, 99, 100, 107, 108], "click": [9, 10, 89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "tune": [9, 10, 88, 89, 96, 98, 105], "serv": [9, 10, 14, 17, 102], "auto": [9, 10, 87, 88, 90, 92, 98, 99, 107], "free": [9, 10, 84, 89, 92, 93, 95, 96, 99, 100], "page": [10, 92, 99, 100], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104], "why": [10, 90, 96], "matter": [10, 37, 63, 88, 96], "didn": [10, 97], "plu": [10, 107], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 93, 95, 96, 97, 99, 100], "class_imbal": [10, 11, 15, 21, 92, 93, 95, 96, 97, 100], "data_valu": [10, 11, 15, 22, 97], "No": [10, 11, 87, 88, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 109], "issue_scor": 10, "atyp": [10, 71, 91, 92, 93, 95, 96, 100, 105], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 91, 92, 95, 96, 99, 106, 107], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89, 90], "expertis": 10, "interpret": [10, 98, 99, 100, 103, 107], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 93, 95, 96, 97, 100, 104, 107], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 93, 95, 96, 100, 107], "appear": [10, 37, 48, 63, 64, 67, 75, 92, 93, 95, 96, 97, 107, 108], "now": [10, 41, 85, 87, 88, 89, 90, 92, 97, 102, 104, 105, 107, 109], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 99, 100, 101], "hamper": [10, 93, 98], "analyt": [10, 84, 97, 99, 102], "lead": [10, 69, 72, 93, 97, 104], "draw": [10, 90, 91, 92], "conclus": [10, 96], "let": [10, 38, 42, 71, 72, 87, 88, 89, 90, 92, 93, 95, 96, 99, 102, 103, 104, 105, 107, 108, 109], "sort_valu": [10, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 107], "head": [10, 87, 88, 89, 92, 93, 95, 96, 97, 98, 100, 102, 107], "97": [10, 87, 98, 99, 100, 104, 107, 109], "064045": 10, "58": [10, 87, 92, 97, 98, 100, 104], "680894": 10, "41": [10, 97, 98, 104, 107], "746043": 10, "794894": 10, "98": [10, 98, 99, 107], "802911": 10, "give": [10, 49, 72, 100, 102, 108], "li": [10, 71], "especi": [10, 87, 88, 90, 93, 97, 99, 107], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 105, 107], "rare": [10, 44, 70, 90, 91, 92, 93, 95, 96, 99, 100], "anomal": [10, 72, 90, 91, 92, 93, 95, 96, 100], "articl": [10, 41, 99], "blog": 10, "unexpect": [10, 38, 42, 96], "consequ": 10, "inspect": [10, 88, 89, 90, 92, 93, 100, 104, 107], "011562": 10, "62": [10, 97, 100, 104, 107], "019657": 10, "22": [10, 89, 90, 91, 93, 97, 98, 99, 100, 103, 104, 109], "035243": 10, "040907": 10, "42": [10, 49, 96, 97, 98, 104, 109], "056865": 10, "smaller": [10, 71, 90, 103, 104], "extrem": [10, 91, 92, 93, 95, 96, 97, 99, 100], "record": [10, 38, 42, 89, 95, 107], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 95, 96, 97, 99, 100, 103, 107, 109], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 100], "nearli": [10, 23, 92, 93, 95, 96], "awar": [10, 85, 100], "presenc": [10, 52, 54, 100], "36": [10, 97, 98, 109], "066009": 10, "80": [10, 39, 87, 95, 103, 107], "003906": 10, "093245": 10, "005599": 10, "27": [10, 90, 95, 97, 98, 100, 104, 109], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 103, 107], "signific": [10, 95, 96, 100], "violat": [10, 95, 96, 97, 100], "assumpt": [10, 95, 96, 97, 100], "changepoint": [10, 95, 96, 100], "shift": [10, 52, 54, 95, 96, 100], "drift": [10, 92, 95, 97, 100], "autocorrel": [10, 95, 96, 100], "almost": [10, 95, 96, 100], "adjac": [10, 52, 95, 96, 100], "tend": [10, 37, 47, 95, 96, 100, 108, 109], "sequenti": [10, 38, 42, 61, 93], "pai": [10, 96], "attent": [10, 97], "realli": [10, 88, 96, 102, 108], "mere": 10, "highlight": [10, 79, 83, 90, 91, 92, 95, 97, 108], "necessarili": [10, 62, 70, 96, 100], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 92, 96, 99, 100, 104], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 95, 96, 97, 98, 99, 100, 106, 109], "x1": [10, 67, 70, 104], "x2": [10, 67, 70, 104], "10th": 10, "100th": 10, "90": [10, 82, 87, 95, 100, 106, 107], "similarli": [10, 38, 42, 91, 93, 95, 99, 104], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 102], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 93, 96, 99, 102, 104], "scenario": [10, 52, 54, 72, 90, 91, 92], "underli": [10, 43, 54, 71, 80, 82, 109], "stem": [10, 71, 105], "evolv": 10, "influenc": 10, "act": [10, 69, 91], "accordingli": [10, 33, 52], "emploi": [10, 103, 105], "partit": [10, 106], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 90, 93, 95, 96], "problem": [10, 33, 41, 49, 79, 84, 91, 92, 93, 96, 99], "deploy": [10, 87, 88, 100, 107], "overlook": [10, 69, 104], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 95, 96, 100, 106, 109], "diagnos": [10, 92, 99], "24": [10, 89, 90, 97, 98, 100, 102, 104, 107], "681458": 10, "37": [10, 91, 97, 98], "804582": 10, "64": [10, 42, 87, 93, 95, 97, 100, 104], "810646": 10, "815691": 10, "78": [10, 87, 95, 98, 100, 104, 107], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 90, 99], "rarest": [10, 92], "q": [10, 104], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 104], "smote": 10, "asymmetr": [10, 37], "28": [10, 93, 96, 97, 98, 100, 102, 109], "75": [10, 49, 90, 91, 92, 97, 98, 102, 103, 104, 107, 109], "33": [10, 38, 42, 97, 98, 104, 109], "68": [10, 87, 98, 100, 104], "excess": [10, 93], "dark": [10, 108], "bright": [10, 109], "blurri": [10, 93], "lack": [10, 61, 97], "unusu": [10, 104, 105], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 92, 93, 95, 96, 101], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 92, 97, 107, 108], "tabular": [10, 84, 86, 91, 92, 94, 97, 99, 102], "categor": [10, 71, 86, 87, 91, 92, 94, 99, 107], "encod": [10, 50, 70, 76, 79, 87, 88, 95, 96, 99, 107, 108], "71": [10, 97, 98, 100, 104, 107], "70": [10, 82, 95, 97], "69": [10, 100, 107], "subgroup": [10, 97], "wors": [10, 97, 102], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 90, 99, 104, 107], "pattern": [10, 97], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 99], "quantif": 10, "39": [10, 88, 89, 91, 93, 96, 97, 98, 99, 104, 107, 108, 109], "32": [10, 89, 91, 97, 98, 102, 104], "valuabl": [10, 19, 97], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 92, 95, 96, 98, 100, 102, 103, 104, 105, 106, 107, 109], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 105], "outsid": [10, 99, 103], "outlierissuemanag": [10, 15, 22, 29, 91], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 104, 107, 108], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 93, 95, 96, 97, 102, 106, 108], "mandatori": [10, 93], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 93, 98, 104, 108], "29": [10, 90, 93, 97, 98, 102, 103, 104, 108, 109], "low_inform": [10, 93], "odd_aspect_ratio": [10, 93], "35": [10, 90, 91, 97, 98, 102, 103, 104, 109], "odd_siz": [10, 93], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "is_outlier_issu": [11, 90, 91, 92, 93, 95, 96, 97, 100], "outlier_scor": [11, 29, 90, 91, 92, 93, 95, 96, 97, 100, 105], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100], "near_duplicate_scor": [11, 20, 91, 92, 93, 95, 96, 97, 99, 100], "near_duplicate_set": [11, 20, 22, 91, 92, 93, 95, 96, 99, 100], "is_non_iid_issu": [11, 92, 95, 96, 97, 100], "non_iid_scor": [11, 27, 92, 95, 96, 97, 100], "is_class_imbalance_issu": [11, 92, 97], "class_imbalance_scor": [11, 21, 92, 97], "is_underperforming_group_issu": [11, 92, 97], "underperforming_group_scor": [11, 32, 92, 97], "is_null_issu": [11, 92, 97], "null_scor": [11, 28, 92, 97], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 19, 97], "studio": [12, 84, 92, 93, 95, 96, 99], "data_issu": [12, 16, 17, 34, 91], "issue_find": [12, 16, 97], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 93, 102], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 93], "dataissu": [14, 16, 17, 34], "central": [14, 109], "repositori": [14, 93], "strategi": [14, 49, 97, 99], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 93, 99], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 91], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 97, 100, 104, 108, 109], "creation": [17, 42, 97], "execut": [17, 38, 42, 91, 93, 99, 104], "coordin": [17, 67, 69, 70, 104, 109], "At": [17, 70, 99], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 93, 98, 99, 100, 102, 103], "25": [19, 27, 38, 49, 55, 90, 92, 93, 97, 98, 100, 102, 103, 104, 109], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 93, 99, 100, 102, 103], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 96, 105], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 87, 89, 91, 93, 97, 98, 100, 103], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 100, 109], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 90, 91, 92, 93, 96, 100, 105], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "set_knn_graph": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 108], "priori": [23, 100], "abstract": [23, 33], "applic": [24, 62, 99, 100, 102, 109], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 107], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 104, 108], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 95, 97, 107], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 93, 97, 104, 105, 109], "superclass": 28, "arbitrari": [28, 37, 78, 82, 91, 105, 107], "prompt": 28, "address": [28, 88, 91, 92, 96, 99], "enabl": [28, 42, 54], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 109], "50": [32, 42, 90, 97, 99, 100, 102, 104, 105, 107], "keepdim": [32, 99], "signifi": 32, "absenc": 32, "find_issues_kwarg": 32, "int64": [32, 89, 102], "npt": 32, "int_": 32, "id": [32, 62, 91, 93, 97, 99, 102], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 105, 109], "content": [33, 71, 89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "fetch": [33, 41, 89, 92, 99], "datset": 34, "exclud": [34, 43, 79, 83, 91, 99, 109], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91, 92], "continu": [35, 61, 87, 88, 93, 96, 99, 102, 104, 107, 109], "binari": [35, 49, 57, 64, 66, 100, 109], "simultan": [35, 107], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 91, 92], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 107, 108, 109], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 93, 98, 104, 106, 108], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 92, 93, 95, 96, 102, 104, 105, 107, 109], "modifi": [37, 38, 41, 42, 52, 54, 57, 99, 100], "rank_classes_by_label_qu": [37, 92], "merg": [37, 52, 56, 84, 98, 99, 109], "find_overlapping_class": [37, 99, 100], "problemat": [37, 63, 79, 83, 89, 104, 109], "unnorm": [37, 63, 100], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 91, 92, 93, 95, 96, 99, 100, 102, 103, 104, 106, 107, 108, 109], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 107], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 106, 107], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 100], "cv": [37, 49, 87, 89, 90, 91, 92, 95, 97, 100, 102], "df": [37, 57, 83, 89, 97, 99], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 100, 106], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 98, 108, 109], "clearli": [37, 72, 93, 104, 108], "num": [37, 63, 98, 100], "overlap": [37, 84, 98, 99, 100], "ontolog": 37, "publish": [37, 109], "therefor": [37, 72, 97], "vehicl": [37, 98], "truck": [37, 98, 105, 108], "intuit": [37, 63, 90], "car": [37, 98, 104, 108], "frequent": [37, 62, 97, 99, 107], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 98, 99, 105, 106, 109], "cat": [37, 57, 63, 65, 98, 99, 105, 106], "captur": [37, 89, 104, 105, 108], "co": [37, 38, 39, 93], "noisy_label": [37, 90, 91, 92, 103], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 100], "half": [37, 38, 40, 42, 63, 98, 109], "health_scor": [37, 63], "classes_by_label_qu": [37, 92], "cnn": [38, 40, 42, 93], "cifar": [38, 39, 98, 105], "teach": [38, 39], "bhanml": 38, "blob": [38, 97], "master": [38, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 93, 95, 96, 99, 100, 102, 105, 106, 108, 109], "forward": [38, 39, 40, 42, 93, 102], "overridden": [38, 42], "although": [38, 42, 71, 87, 95], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 99, 102, 103, 104, 106, 109], "hook": [38, 42, 98], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 109], "nn": [38, 39, 42, 52, 93], "init": [38, 42, 100], "no_grad": [38, 42, 93, 105], "init_weight": [38, 42], "linear": [38, 42, 88, 93, 96], "fill_": [38, 42], "net": [38, 42, 89, 93, 98], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 93], "tensor": [38, 39, 42, 88, 89, 93, 96, 105], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 105], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 93], "move": [38, 42, 49, 85, 98], "cuda": [38, 40, 42, 89, 93], "devic": [38, 42, 89, 93], "gpu": [38, 42, 88, 89, 96], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 92, 95, 97, 99, 103, 106, 107], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 93, 103, 105], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 91, 97, 98, 102, 105, 109], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 97, 105, 107], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 96], "resolv": [38, 42, 90, 109], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 93, 97, 108], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 93], "break": [38, 42, 93, 104], "pickl": [38, 42, 104], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 93], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105, 108, 109], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 90, 98, 104, 109], "diagram": [38, 42, 106], "degre": [38, 42], "queri": [38, 42, 52, 54, 92, 93, 97, 99, 103], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 92, 98, 99, 100, 103, 104, 109], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 97, 102], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 91, 93, 97, 99, 100, 102, 104, 105], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 109], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 96, 99], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 95], "fire": [38, 42, 98], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 91, 92], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 93, 95, 107], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 96], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 93, 99], "design": [38, 42, 52, 90], "ordereddict": [38, 42], "detach": [38, 42, 93], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 99], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 96, 98], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 96], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 93], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 104], "noisili": [39, 100], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 93], "decim": [39, 57], "forget": [39, 49, 109], "rate_schedul": 39, "epoch": [39, 40, 42, 93, 99], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 97, 99], "250": [39, 91, 92, 100, 104], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 93, 96, 100], "train_load": [39, 42], "model1": [39, 100], "optimizer1": 39, "model2": [39, 100], "optimizer2": 39, "dataload": [39, 93, 105], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 97, 109], "wish": [40, 60, 105, 108, 109], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 99], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 108, 109], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 90, 93, 99, 105, 108], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 93], "loader": [40, 42, 93], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 99], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 99, 100], "conveni": [41, 54, 87, 88, 89, 96], "script": 41, "labels_fil": [41, 99], "pred_probs_fil": [41, 99], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 108], "read": [41, 46, 92, 99, 100, 105, 109], "zarr": [41, 99], "memmap": [41, 108], "pythonspe": 41, "mmap": [41, 99], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 99], "yourfil": 41, "npy": [41, 98, 99, 108], "mmap_mod": [41, 108], "tip": [41, 44, 61, 99], "save_arrai": 41, "your_arrai": 41, "disk": [41, 98, 99], "npz": [41, 109], "maxim": [41, 62, 76, 78, 108], "multiprocess": [41, 44, 64, 76, 78, 93, 99], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 104], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 91, 99, 104, 105], "store_result": 41, "becom": [41, 97, 105], "verifi": [41, 54, 99, 102, 105], "long": [41, 62, 71, 102], "enough": [41, 57, 97, 99], "chunk": [41, 106], "ram": [41, 98], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 99], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 96, 99, 105], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 99, 100, 102], "seen": [41, 90, 99, 105, 109], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 100, 104], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 93], "update_num_issu": 41, "arr": [41, 99], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 99, 105], "mnist": [42, 84, 89, 98], "handwritten": 42, "digit": [42, 89, 98], "last": [42, 49, 67, 70, 90, 91, 92, 99, 102, 104, 109], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 97, 100, 103, 104, 105], "templat": 42, "flexibli": 42, "among": [42, 62, 100], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 105], "train_label": [42, 88, 105], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 96], "token_classif": [43, 56, 80, 82, 83, 99], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 99, 103], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 100], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 96, 99], "seem": [44, 100, 103], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 100], "predicted_neq_given": [44, 64, 100], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 99], "too": [44, 49, 52, 71, 92, 93, 99, 104], "thread": [44, 64], "window": [44, 89, 98], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 99], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 100], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 100], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 103], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 103], "onehot2int": [45, 50, 103], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 109], "get_sent": [45, 56, 109], "filter_sent": [45, 56, 109], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 102], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 97], "behav": 46, "unnecessari": [46, 99], "slightli": [46, 87, 88, 90], "interv": [46, 49, 105], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 102, 108, 109], "increas": [47, 55, 69, 71, 72, 89, 91, 97, 99, 102, 103, 109], "dot": [47, 82, 99], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 95, 99, 103, 105, 107], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 102], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 98], "check_consensus_label_class": 48, "consensus_label": [48, 62, 102], "consensus_method": [48, 62], "consensu": [48, 62, 84, 101, 109], "establish": [48, 61, 88, 107], "compute_soft_cross_entropi": 48, "soft": [48, 98], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 99], "fine_search_s": [48, 74, 99], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 97, 98, 99, 105, 108], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 105], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 98], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 92, 97, 100, 103, 107], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 95, 96, 100, 109], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 109], "success": 49, "previou": [49, 52, 93, 95, 99, 104], "discount": 49, "s_ema": 49, "175": [49, 93, 100, 104], "underflow": 49, "nan": [49, 62, 87, 95, 97, 102, 107], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 97], "n_label": 49, "worst": [49, 102], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 93], "onevsrestclassifi": [49, 103], "randomforestclassifi": [49, 100, 103], "n_split": [49, 92, 93, 103], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 95, 98, 99, 107, 108], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 92, 96, 104, 105, 107], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 99], "manner": [52, 66, 87, 88, 97, 102, 107], "701": 52, "900": [52, 87, 95, 107], "436": 52, "000": [52, 88, 93, 96, 98, 109], "idea": [52, 72, 90, 104], "dens": [52, 61, 97], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 103], "vari": [52, 69, 92], "exact_duplicate_set": 52, "main": [52, 62, 90], "front": [52, 98], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 92, 99, 108], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 95, 97], "slower": 53, "decid": [53, 62, 88, 96, 98, 102, 107, 109], "predefin": 53, "met": [53, 109], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91, 92], "That": [53, 100, 103], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 93, 95, 96, 99, 100], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "scaling_factor": 55, "exp": [55, 71, 72, 91], "dt": 55, "right": [55, 67, 70, 88, 96, 103, 104, 105], "strength": [55, 70, 97], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 98], "thumb": 55, "ood_features_scor": [55, 71, 105], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 91, 99, 102], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 99, 109], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 93, 95, 97, 109], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 92, 95, 97, 100, 103, 105, 107, 108], "red": [56, 70, 90, 91, 92, 97, 98, 100, 103, 104, 105, 108], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 95, 99, 100, 107], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 90, 93, 105], "versu": [57, 100], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 96, 100], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 92, 97, 100, 103, 105], "short_titl": 57, "round_plac": 57, "pretti": [57, 90, 100], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 95, 96, 102, 105, 108], "allow_shuffl": 57, "turn": [57, 84, 104], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 90, 93, 98, 99, 100, 102, 103, 104, 105, 109], "bottom": [57, 67, 70, 97, 104], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 90, 95, 96, 97, 100, 109], "jupyt": [57, 89, 90, 91, 92, 93, 98, 99, 100, 102, 103, 105, 107, 109], "notebook": [57, 62, 89, 90, 92, 98, 99, 100, 102, 103, 104, 108, 109], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 103], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 109], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 96, 105], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 100, 102, 103], "get_label_quality_multiannot": [62, 102], "vote": 62, "crowdsourc": [62, 84, 102], "dawid": [62, 102], "skene": [62, 102], "analog": [62, 90, 98, 102], "chosen": [62, 72, 99, 102], "crowdlab": [62, 102], "unlabel": [62, 93, 95, 96, 102, 105, 108], "get_active_learning_scor": [62, 102], "activelab": [62, 102], "priorit": [62, 69, 104, 108, 109], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 95, 100, 102, 107], "majority_vot": 62, "broken": [62, 70, 98, 107], "highest": [62, 70, 91, 93, 106], "0th": 62, "consensus_quality_scor": [62, 102], "annotator_agr": [62, 102], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 98], "agreement": [62, 102], "agre": 62, "prevent": [62, 99], "overconfid": [62, 106], "detailed_label_qu": [62, 102], "annotator_stat": [62, 102], "model_weight": 62, "annotator_weight": 62, "warn": [62, 91, 92, 93, 95, 96, 97, 99, 100], "labels_info": 62, "num_annot": [62, 102], "deriv": [62, 102], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 102], "num_examples_label": [62, 102], "agreement_with_consensu": [62, 102], "worst_class": [62, 102], "trustworthi": [62, 102, 107], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 107], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 91, 102], "get_majority_vote_label": [62, 102], "event": 62, "lastli": [62, 95], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89, 97], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 103], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 97], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 93, 100], "anim": [65, 105], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 98, 104], "object_detect": [67, 69, 70, 104], "return_indices_ranked_by_scor": [67, 104], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 97, 104, 108, 109], "bbox": [67, 70, 104], "image_nam": [67, 70], "y1": [67, 70, 104], "y2": [67, 70, 104], "later": [67, 70, 71, 88, 109], "corner": [67, 70, 104], "xyxi": [67, 70, 104], "io": [67, 70, 89, 97, 98], "keras_cv": [67, 70], "bounding_box": [67, 70, 104], "detectron": [67, 70, 104], "detectron2": [67, 70, 104], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 93, 107, 109], "draw_box": [67, 70], "mmdetect": [67, 70, 104], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 92], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 104, 108, 109], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 104], "bounding_box_size_distribut": [68, 70, 104], "class_label_distribut": [68, 70, 104], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 99], "chose": [69, 102, 104], "imperfectli": [69, 104], "dirti": [69, 72, 75, 107], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 95, 96, 99], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 108], "discov": [70, 92, 97, 109], "abnorm": [70, 93, 104], "auxiliari": [70, 105, 108], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 92, 97, 100, 103, 105, 107, 108], "sorted_idx": [70, 105], "class_to_show": 70, "hidden": [70, 90, 105], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 93, 97, 100, 103, 105, 107], "matplotlib": [70, 79, 90, 91, 92, 93, 97, 100, 103, 104, 105, 107], "pyplot": [70, 79, 90, 91, 92, 93, 97, 100, 103, 105, 107], "prediction_threshold": 70, "overlai": [70, 104], "figsiz": [70, 90, 91, 92, 93, 97, 100, 103, 105], "save_path": [70, 104], "blue": [70, 98, 100, 104], "overlaid": 70, "side": [70, 98, 104], "figur": [70, 97, 100, 103, 105, 107], "extens": [70, 100, 102], "png": [70, 104], "pdf": [70, 71], "svg": 70, "num_proc": [70, 93], "intersect": [70, 99], "tp": 70, "fp": 70, "ground": [70, 98, 100, 102, 107], "truth": [70, 100, 102, 107], "bias": [70, 97], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 95, 98, 100, 107], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 105], "behind": [71, 100], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 99], "least_confid": 71, "sum_": 71, "log": [71, 72, 85, 97], "softmax": [71, 78, 82, 93], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 105], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 96, 105], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 91, 92, 95, 96, 105, 106], "order_label_issu": [72, 85], "whichev": [72, 106], "argsort": [72, 88, 93, 96, 100, 104, 105, 107], "max_": 72, "get_label_quality_ensemble_scor": [72, 99, 100], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 98], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 96], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 105], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 96], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 107], "linearregress": [74, 99, 107], "y_with_nois": 74, "n_boot": [74, 99], "include_aleatoric_uncertainti": [74, 99], "sole": [74, 87, 91, 102, 105], "bootstrap": [74, 99, 107], "resampl": [74, 89, 99], "epistem": [74, 99, 105, 107], "aleator": [74, 99, 107], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 99], "fine": [74, 88, 89, 96, 105], "grain": 74, "grid": 74, "varianc": [74, 100], "epistemic_uncertainti": 74, "residu": [74, 75, 99], "deviat": [74, 104, 107], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 92, 93, 98, 99, 102, 104, 105, 107], "aka": [75, 89, 100, 104, 107, 109], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 101], "pixel": [76, 78, 79, 93, 105, 108], "h": [76, 78, 79, 108], "height": [76, 78, 79, 108], "w": [76, 78, 79, 108], "width": [76, 78, 79, 108], "labels_one_hot": [76, 79, 108], "stream": [76, 90, 105, 109], "downsampl": [76, 78, 108], "shrink": [76, 78], "divis": [76, 78, 91], "common_label_issu": [77, 79, 81, 83, 108, 109], "filter_by_class": [77, 79, 108], "segmant": [78, 79], "num_pixel_issu": [78, 108], "product": [78, 93, 97, 99], "pixel_scor": [78, 108], "enter": 79, "legend": [79, 90, 91, 92, 97, 103, 104, 107, 108], "colormap": 79, "background": [79, 97], "person": [79, 99, 104, 108, 109], "ambigu": [79, 83, 88, 89, 96, 98, 100, 109], "systemat": [79, 83, 102], "misunderstood": [79, 83], "issues_df": [79, 93], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 109], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 109], "converg": 82, "toward": [82, 97], "_softmin_sentence_scor": 82, "sentence_scor": [82, 109], "token_info": 82, "02": [82, 91, 92, 97, 100, 104], "03": [82, 95, 97, 98, 100, 104, 109], "04": [82, 95, 97, 104], "08": [82, 97, 100, 104, 107, 109], "commonli": [83, 85, 91, 92, 103, 109], "But": [83, 96, 100, 107, 109], "restrict": [83, 99], "reliabl": [84, 87, 89, 97, 99, 102, 108], "thousand": 84, "imagenet": [84, 98], "popular": [84, 102, 104], "centric": [84, 93, 95, 96, 101], "minut": [84, 87, 88, 89, 95, 96, 98, 102, 103, 104, 107, 108, 109], "conda": 84, "feature_embed": [84, 105], "Then": [84, 87, 88, 93, 99], "your_dataset": [84, 89, 91, 92, 93, 95, 96, 99], "column_name_of_label": [84, 89, 91, 92, 93, 95, 96], "plagu": [84, 92], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 92], "sklearn_compatible_model": 84, "framework": [84, 103, 104], "complianc": 84, "tag": [84, 103, 109], "sequenc": 84, "recognit": [84, 89, 99, 109], "train_data": [84, 87, 88, 105, 107], "gotten": 84, "test_data": [84, 87, 88, 90, 100, 103, 105, 107], "deal": [84, 92, 97], "tutori": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "feel": [84, 89, 92, 99], "ask": [84, 99], "slack": [84, 99], "project": [84, 107], "welcom": 84, "commun": [84, 99], "guidelin": [84, 104], "piec": 84, "smart": [84, 93, 95, 96, 99], "edit": [84, 99], "easier": [84, 97, 100], "unreli": [84, 87, 89, 95, 96], "link": [84, 89, 98, 104], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 95], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 95, 98, 109], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 100], "research": [85, 100], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 105, 107, 108, 109], "sql": [87, 95], "databas": [87, 95], "excel": [87, 95], "parquet": [87, 95], "student": [87, 95, 107, 109], "grade": [87, 95, 107], "exam": [87, 95, 107], "letter": [87, 95, 109], "hundr": [87, 95], "mistak": [87, 88, 93, 95, 96], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107], "preprocess": [87, 88, 92, 95, 97, 105, 107], "standardscal": [87, 95, 105], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 92, 105], "accuracy_scor": [87, 88, 89, 96, 100], "grades_data": [87, 95], "read_csv": [87, 88, 95, 96, 97, 107], "demo": [87, 92, 95, 103], "stud_id": [87, 95], "exam_1": [87, 95, 107], "exam_2": [87, 95, 107], "exam_3": [87, 95, 107], "letter_grad": [87, 95], "f48f73": [87, 95], "53": [87, 90, 91, 92, 95, 97, 98, 103, 104], "00": [87, 91, 92, 95, 97, 98, 105, 109], "77": [87, 91, 92, 95, 104], "0bd4e7": [87, 95], "81": [87, 95, 96, 104, 107, 109], "great": [87, 90, 95, 98], "particip": [87, 95], "cb9d7a": [87, 95], "61": [87, 95, 97, 100, 104, 107], "94": [87, 95, 98, 100, 104, 107], "9acca4": [87, 95], "48": [87, 95, 97, 98, 100, 104], "x_raw": [87, 95], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 107], "x_encod": [87, 95], "get_dummi": [87, 95, 107], "drop_first": [87, 95], "numeric_featur": [87, 95], "scaler": [87, 95, 105], "x_process": [87, 95], "fit_transform": [87, 95, 97], "bring": [87, 88, 93, 95, 96, 102, 107], "byod": [87, 88, 93, 95, 96, 102, 107], "tress": 87, "held": [87, 89, 95, 96, 98, 104, 105, 106], "straightforward": [87, 89, 95], "benefit": [87, 89, 106, 108], "num_crossval_fold": [87, 89, 95, 102], "tabl": [87, 95, 98, 102], "212": [87, 100], "review": [87, 88, 92, 95, 96, 98, 99, 100, 104, 107, 108, 109], "iloc": [87, 88, 89, 95, 96, 107], "92": [87, 91, 100, 104], "93": [87, 98, 104, 107, 109], "827": 87, "99": [87, 97, 98, 100], "86": [87, 92, 93, 95, 100, 104, 107], "74": [87, 97, 104, 107], "637": [87, 95], "79": [87, 98, 104], "65": [87, 91, 97, 104], "cheat": 87, "0pt": 87, "120": [87, 91, 92], "233": 87, "83": [87, 100, 104, 107, 109], "76": [87, 90, 100, 103, 104, 107], "suspici": [87, 95], "carefulli": [87, 93, 95, 96], "examin": [87, 90, 91, 92, 95, 104], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91, 92], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 107], "14": [87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 99, 107], "trust": [87, 88, 89, 99, 100, 102, 106, 107], "effort": [87, 88, 107], "intent": [88, 96], "servic": [88, 96, 99], "onlin": [88, 96], "bank": [88, 96, 98], "banking77": [88, 96], "oo": [88, 96], "categori": [88, 93, 96, 97], "shortlist": [88, 96, 107], "scope": [88, 96], "logist": [88, 90, 91, 92, 96, 102, 105], "probabilit": [88, 89], "drop": [88, 95, 97, 99, 102, 107], "earlier": [88, 109], "sentence_transform": [88, 96], "sentencetransform": [88, 96], "payment": [88, 96], "cancel_transf": [88, 96], "transfer": [88, 96], "fund": [88, 96], "cancel": [88, 96], "transact": [88, 96], "my": [88, 96], "revert": [88, 96], "morn": [88, 96], "realis": [88, 96], "yesterdai": [88, 96], "rent": [88, 96], "tomorrow": [88, 96], "raw_text": [88, 96], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "card_payment_fee_charg": [88, 96], "supported_cards_and_curr": [88, 96], "lost_or_stolen_phon": [88, 96], "card_about_to_expir": [88, 96], "beneficiary_not_allow": [88, 96], "getting_spare_card": [88, 96], "apple_pay_or_google_pai": [88, 96], "change_pin": [88, 96], "visa_or_mastercard": [88, 96], "card": [88, 96, 98], "utter": [88, 96], "encond": 88, "test_label": [88, 100, 103, 105], "suit": [88, 96, 97, 98, 99], "electra": [88, 96], "discrimin": [88, 96], "googl": [88, 90, 96], "train_text": 88, "test_text": 88, "home": [88, 91, 92, 96, 97, 98], "runner": [88, 91, 92, 96, 97], "google_electra": [88, 96], "pool": [88, 96, 99, 105], "opt": [88, 89, 92, 93, 95, 96, 97, 100], "hostedtoolcach": [88, 89, 92, 93, 95, 96, 97, 100], "x64": [88, 89, 92, 93, 95, 96, 97, 100], "lib": [88, 89, 92, 93, 95, 96, 97, 100], "python3": [88, 89, 92, 93, 95, 96, 97, 100], "site": [88, 89, 92, 93, 95, 96, 97, 100], "_util": [88, 96], "831": [88, 96], "userwarn": [88, 89, 91, 92, 96, 97], "typedstorag": [88, 96], "untypedstorag": [88, 96], "untyped_storag": [88, 96], "fget": [88, 96], "__get__": [88, 96], "owner": [88, 96], "leverag": [88, 89, 96, 99, 100, 102], "computation": [88, 89, 96], "intens": [88, 89, 96], "400": [88, 90, 96], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 107], "lowest_quality_label": [88, 89, 96, 100, 107], "to_numpi": [88, 96, 97, 99, 107], "44": [88, 97, 98, 103, 104], "646": 88, "390": 88, "628": 88, "121": [88, 90, 100], "702": 88, "863": [88, 89], "135": 88, "337": [88, 104], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 96], "cash": [88, 96], "holidai": [88, 96], "sent": [88, 96, 109], "mine": [88, 96], "expir": [88, 96], "fight": 88, "hors": [88, 98, 105], "duck": [88, 98], "me": [88, 96, 97], "whoever": [88, 96], "consum": [88, 107], "18": [88, 89, 90, 96, 97, 98, 99, 100, 104, 105, 107, 108], "baseline_model": [88, 107], "87": [88, 92, 93, 104, 107], "acceler": [88, 107], "19": [88, 89, 90, 93, 96, 97, 98, 99, 100, 104, 105, 107, 108], "89": [88, 90, 91, 95, 104, 107], "spoken": 89, "500": [89, 105, 109], "english": [89, 98], "pronunci": 89, "wav": 89, "huggingfac": [89, 91, 92, 93, 99], "voxceleb": 89, "speech": [89, 109], "your_pred_prob": [89, 90, 91, 92, 95, 96], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 95, 97, 100, 102], "command": 89, "wget": [89, 104, 108, 109], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 109], "v1": 89, "tar": [89, 105], "gz": [89, 105], "mkdir": [89, 109], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 90, 93, 97, 99], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "pulldown": [89, 90, 91, 92, 93, 98, 100, 102, 103, 105, 107, 109], "colab": [89, 90, 91, 92, 93, 98, 99, 100, 102, 103, 105, 107, 109], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 98, 99], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 97], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 93], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 93], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 93], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 91, 97, 98, 99, 100, 104, 107, 109], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 90, 93, 97, 98, 100, 104, 107], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 99], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 93, 95, 96, 100], "lt": [89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 105], "gt": [89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 109], "9976": 89, "986": 89, "002161": 89, "176": [89, 98, 100, 103], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 96], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 100], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 105], "load_ext": 90, "autoreload": 90, "ve": [90, 98, 99, 100, 102, 104], "prove": 90, "monitor": [90, 98], "ran": 90, "data_monitor": 90, "your_datalab": 90, "new_data_batch": 90, "your_label": 90, "get_your_label": 90, "your_featur": [90, 96], "get_featur": 90, "websit": [90, 98], "todo": 90, "get_ipython": 90, "c749e9575af0de223ec1ca267e44104056818e4c": 90, "cmd": 90, "dep": 90, "dependencies_test": 90, "missing_depend": 90, "__import__": 90, "importerror": 90, "sep": [90, 97, 109], "npleas": 90, "toi": [90, 91, 92, 93, 97, 98, 100, 102], "mid": [90, 91, 92], "workflow": [90, 94, 101, 107], "unseen": 90, "inf": [90, 91, 92], "bins_map": [90, 91, 92], "create_data": [90, 91, 92], "800": 90, "y_bin": [90, 91, 92], "y_i": [90, 91, 92], "y_bin_idx": [90, 91, 92], "y_train": [90, 91, 92, 100, 107], "y_test": [90, 91, 92, 100, 107], "y_train_idx": [90, 91, 92], "y_test_idx": [90, 91, 92], "slide": [90, 91, 92, 98], "frame": [90, 91, 92], "x_out": [90, 91, 92], "tini": [90, 91, 92], "concaten": [90, 91, 92, 99, 106], "y_out": [90, 91, 92], "y_out_bin": [90, 91, 92], "y_out_bin_idx": [90, 91, 92], "exact_duplicate_idx": [90, 91, 92], "x_duplic": [90, 91, 92], "y_duplic": [90, 91, 92], "y_duplicate_idx": [90, 91, 92], "noisy_labels_idx": [90, 91, 92, 103], "train_x": 90, "test_x": 90, "train_y_tru": 90, "test_y_tru": 90, "train_i": 90, "test_i": 90, "train_y_idx": 90, "test_y_idx": 90, "scatter": [90, 91, 92, 97, 100, 103, 107], "black": [90, 91, 92, 98, 107], "cyan": [90, 91, 92], "plot_data": [90, 91, 92, 97, 100, 103, 107], "fig": [90, 91, 92, 93, 98, 105, 107], "ax": [90, 91, 92, 93, 97, 105, 107], "subplot": [90, 91, 92, 93, 105], "set_titl": [90, 91, 92, 93, 105], "set_xlabel": [90, 91, 92], "x_1": [90, 91, 92], "fontsiz": [90, 91, 92, 93, 97, 100, 103], "set_ylabel": [90, 91, 92], "x_2": [90, 91, 92], "set_xlim": [90, 91, 92], "set_ylim": [90, 91, 92], "linestyl": [90, 91, 92], "circl": [90, 91, 92, 100, 103], "misclassifi": [90, 91, 92], "zip": [90, 91, 92, 93, 104, 109], "label_err": [90, 91, 92], "180": [90, 91, 92, 104], "marker": [90, 91, 92], "facecolor": [90, 91, 92, 97], "edgecolor": [90, 91, 92, 97], "linewidth": [90, 91, 92, 97, 105], "title_fontproperti": [90, 91, 92], "semibold": [90, 91, 92], "first_legend": [90, 91, 92], "align": [90, 91, 92], "markerscal": 90, "second_legend": [90, 91, 92], "46": [90, 95, 97, 98, 100, 104], "gca": [90, 91, 92], "add_artist": [90, 91, 92], "tight_layout": [90, 91, 92, 97], "ideal": [90, 91, 92], "simplic": [90, 97, 103], "327": [90, 104], "9297": 90, "000124": 90, "259": 90, "000725": 90, "269": 90, "000794": 90, "002061": 90, "125": [90, 91], "002908": 90, "fly": [90, 98], "feed": [90, 99], "simul": 90, "tqdm": [90, 93], "sleep": [90, 98], "generate_stream": 90, "sleep_tim": 90, "desc": 90, "singleton_stream": 90, "seamless": [90, 99], "singleton": 90, "batched_stream": 90, "processed_singleton": 90, "suggested_label": [90, 96], "250997": 90, "285757": 90, "43": [90, 91, 97, 98, 100, 104], "120906": 90, "principl": 90, "processed_batch": 90, "51": [90, 91, 92, 95, 97, 98, 100, 104], "002748": 90, "189996": 90, "093505": 90, "037250": 90, "149": [90, 104], "076397": 90, "154": 90, "294010": 90, "160": [90, 96, 107], "073622": 90, "166": [90, 93], "140832": 90, "167": [90, 98, 100, 104], "041743": 90, "181": 90, "169429": 90, "127304": 90, "235": [90, 104], "090310": 90, "254": [90, 98, 104], "183343": 90, "256": [90, 98, 99, 104], "048720": 90, "263": [90, 103, 104], "138820": 90, "292": 90, "239609": 90, "295": [90, 104], "022075": 90, "306": 90, "103040": 90, "343": 90, "234755": 90, "354": 90, "001612": 90, "359": 90, "068359": 90, "367": [90, 107], "015793": 90, "368": 90, "029022": 90, "391": 90, "106761": 90, "troublesom": 90, "623844": 90, "812647": 90, "816854": 90, "661968": 90, "632244": 90, "395": 90, "474599": 90, "396": 90, "653901": 90, "397": 90, "584554": 90, "398": 90, "817287": 90, "399": 90, "881545": 90, "183": 90, "937927": 90, "309": 90, "939505": 90, "133": 90, "947290": 90, "177": 90, "952187": 90, "314": [90, 104], "997293": 90, "655501": 90, "3603": 90, "173": [90, 104], "000330": 90, "000626": 90, "296": 90, "002004": 90, "304": 90, "165496": 90, "275": [90, 103], "179811": 90, "001317": 90, "005943": 90, "001426": 90, "320": [90, 104], "186355": 90, "349": 90, "187305": 90, "393": 90, "169838": 90, "185770": 90, "369889": 90, "285297": 90, "406162": 90, "516543": 90, "440142": 90, "476283": 90, "382757": 90, "466786": 90, "522078": 90, "276298": 90, "328181": 90, "409633": 90, "281425": 90, "518102": 90, "360596": 90, "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "dup": [91, 92], "45": [91, 92, 97, 98, 100, 104], "remaind": 91, "modal": [91, 92, 99, 102], "132": [91, 92, 100, 104], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98], "014828": 91, "107": [91, 92, 100, 103], "021241": 91, "026407": 91, "notic": [91, 100, 102, 104], "3558": [91, 92], "126": [91, 92, 100, 104], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 108], "000000e": [91, 92], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 100, 104, 107], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 103, 108, 109], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "348": 91, "378": 91, "357": 91, "34": [91, 97, 98, 100, 102, 104, 109], "54": [91, 97, 98, 100, 104], "039122": 91, "044598": 91, "105": [91, 104], "105196": 91, "133654": 91, "168033": 91, "101107": 91, "183382": 91, "109": [91, 98, 104], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 104, 109], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 104], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 100, 104, 109], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 102, 104], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100], "_split": 92, "776": 92, "thoroughli": 92, "904": 92, "_base": [92, 93, 95, 96, 97, 100], "246": [92, 93, 95, 96, 97, 100, 104, 109], "efficiencywarn": [92, 93, 95, 96, 97, 100], "sort_graph_by_row_valu": [92, 93, 95, 96, 97, 100], "warn_when_not_sort": [92, 93, 95, 96, 97, 100], "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "901562": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 109], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 100], "worri": [92, 96], "critic": 92, "60": [93, 97, 100, 107], "torchvis": [93, 105], "tensordataset": 93, "stratifiedkfold": [93, 103], "autonotebook": 93, "math": 93, "fashion_mnist": 93, "1486": 93, "futurewarn": 93, "hf": 93, "messag": 93, "trust_remote_cod": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 103, 105], "super": [93, 95, 96], "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 105], "energi": 93, "trainload": [93, 105], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 107], "acc": [93, 100], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 109], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "838": [93, 107], "329": [93, 104], "88": [93, 98, 99, 100, 103, 104, 107], "195": 93, "624": 93, "493": 93, "060": 93, "018": [93, 98], "330": [93, 104], "505": 93, "862": 93, "476": 93, "340": 93, "951": 93, "328": [93, 104], "310": 93, "680": 93, "reorder": 93, "hstack": [93, 99, 100, 102], "vision": 93, "grayscal": 93, "max_preval": 93, "7714": 93, "3772": 93, "3585": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 104, 109], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 105, 106], "21282": 93, "000016": 93, "53564": 93, "000018": 93, "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 109], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "ncol": [93, 105], "nrow": [93, 105], "ceil": 93, "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 105], "cmap": [93, 97, 107], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 103, 104, 105, 106, 108], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 104, 108], "dark_scor": 93, "dark_issues_df": 93, "is_dark_issu": 93, "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": 93, "lowinfo_issu": 93, "low_information_scor": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 102, 107], "xgboost": [95, 99, 107], "think": [95, 96, 99, 103, 108, 109], "nonzero": 95, "358": 95, "941": 95, "294": [95, 104], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": 95, "000104": 95, "723": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": 95, "185": [95, 98, 104, 109], "187": [95, 98], "898": 95, "0014": [95, 98], "595": 95, "702427": 95, "147": [95, 100, 104], "711186": 95, "157": [95, 100], "721394": 95, "771": 95, "731979": 95, "740335": 95, "0014153602099278074": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 103, 104, 107], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 107], "96": [95, 97, 98, 100, 103, 104, 107], "style": [95, 97, 108], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "unintend": [95, 96], "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 103], "perhap": [95, 100, 102], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "dive": [96, 97], "text_embed": 96, "data_dict": [96, 100, 102], "85": [96, 104], "38": [96, 97, 98, 104], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "095724": 96, "148": 96, "006237": 96, "546": 96, "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "0000": [96, 98, 100], "313": [96, 104], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 102, 104], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 109], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 100], "strongli": 96, "p_valu": 96, "benign": 96, "curat": 96, "bigger": 97, "make_classif": 97, "5000": [97, 105], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 104], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "5000x5000": 97, "50000": 97, "116": 97, "523": 97, "991400": 97, "356958": 97, "362": 97, "619565": 97, "108": [97, 104], "500000": 97, "651929": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 104, 105], "third": 97, "parti": [97, 109], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "500140": 97, "500233": 97, "500186": 97, "1068": 97, "500047": 97, "1069": 97, "1070": 97, "1071": 97, "500373": 97, "1072": 97, "1073": 97, "seaborn": 97, "sn": 97, "distinguish": 97, "histplot": 97, "hue": [97, 107], "stack": 97, "logarithm": 97, "yscale": 97, "xlabel": 97, "ylabel": [97, 105], "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 105], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": [97, 99], "param_grid": 97, "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "270508": 97, "tab10": 97, "domain": 97, "knowledg": [97, 100], "dataset_tsv": 97, "ag": [97, 107], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100], "california": 97, "59": [97, 98, 104], "63": [97, 100, 104, 107], "47": [97, 98, 104], "stringio": 97, "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "coolwarm": 97, "colorbar": [97, 107], "strong": 97, "evid": 97, "inter": 97, "mitig": 97, "risk": 97, "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 109], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98], "3467": 97, "67": [97, 98, 104, 107], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 104, 107], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 102], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 102, 103, 107], "null_issu": 97, "833333": 97, "sorted_indic": [97, 104], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 107], "highlight_null_valu": 97, "val": [97, 100], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "refin": 98, "instruct": 98, "studi": [98, 104], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 109], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 109], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 104], "axolotl": 98, "bullfrog": 98, "tree": 98, "frog": [98, 105], "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 109], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 105], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 109], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "retriev": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 109], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 109], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 108], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 109], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 104], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 108], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 104], "carousel": 98, "tool": [98, 100, 102], "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 109], "chain": 98, "fenc": [98, 108], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 105], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 108], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 100], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 104], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 109], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 108], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 108], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 109], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 109], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 108], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 109], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": 98, "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 108], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 104, 108], "sign": [98, 108, 109], "dust": 98, "jacket": [98, 104], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 105], "automobil": [98, 105], "deer": [98, 105], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 109], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 108], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 108], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 104], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 107], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 104], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 109], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 108], "misc": [98, 109], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 109], "talk": [98, 109], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "capit": 98, "29780": 98, "780": 98, "medic": [98, 109], "doctor": 98, "359223": 98, "640777": 98, "184": [98, 100], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 104], "252": 98, "112": 98, "253": [98, 104], "022989": 98, "049505": 98, "190": [98, 100, 104], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "020": [98, 100], "013092": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 104], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 100], "188": [98, 100, 103], "189": [98, 100], "snippet": 99, "nlp": [99, 109], "mind": [99, 100], "alphanumer": 99, "facilit": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "from_dict": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 104], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 100], "game": 99, "speedup": [99, 105], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 100, 109], "successfulli": 99, "virtuou": [99, 102], "cycl": [99, 102], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 100], "true_error": [99, 100, 103], "101": [99, 104], "102": [99, 103, 104], "104": [99, 100, 104], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100], "max_depth": [99, 100], "magnitud": 99, "coeffici": [99, 107], "optin": 99, "environ": [99, 100], "rerun": [99, 100], "cell": [99, 100], "unabl": [99, 100], "render": [99, 100], "nbviewer": [99, 100], "cleanlearninginot": [99, 100], "fittedcleanlearn": [99, 100], "linearregressionlinearregress": 99, "n_init": 99, "continuous_column": 99, "categorical_column": 99, "data_df": 99, "feature_a": 99, "feature_b": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": 99, "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 105], "kept": 99, "ids_to_remove_seri": 99, "tmp": 99, "ipykernel_7910": 99, "1995098996": 99, "deprecationwarn": 99, "dataframegroupbi": 99, "include_group": 99, "silenc": 99, "assist": 99, "streamlin": 99, "ux": 99, "agpl": 99, "compani": 99, "commerci": 99, "alter": 99, "email": 99, "team": 99, "discuss": 99, "anywher": 99, "profession": 99, "expert": 99, "depth": 100, "survei": [100, 109], "scienc": 100, "multivariate_norm": [100, 102, 103], "make_data": [100, 102], "cov": [100, 102, 103], "avg_trac": [100, 103], "py_tru": 100, "noise_matrix_tru": 100, "noise_marix": 100, "s_test": 100, "noisy_test_label": 100, "purpl": 100, "namespac": 100, "exec": 100, "markerfacecolor": [100, 103], "markeredgecolor": [100, 103, 107], "markers": [100, 103, 107], "markeredgewidth": [100, 103, 107], "realist": 100, "7560": 100, "637318e": 100, "896262e": 100, "548391e": 100, "923417e": 100, "375075e": 100, "3454": 100, "014051": 100, "020451": 100, "249": [100, 104], "042594": 100, "043859": 100, "045954": 100, "6120": 100, "023714": 100, "007136": 100, "119": [100, 104], "107266": 100, "103": [100, 104], "033738": 100, "238": [100, 104], "119505": 100, "236": [100, 104], "037843": 100, "222": 100, "614915": 100, "122": [100, 104], "624422": 100, "625965": 100, "626079": 100, "118": 100, "627675": 100, "695223": 100, "323529": 100, "523015": 100, "013720": 100, "675727": 100, "646521": 100, "anyth": 100, "enhanc": [100, 102, 104], "magic": 100, "liter": 100, "identif": 100, "x27": 100, "logisticregressionlogisticregress": 100, "ever": 100, "092": 100, "040": 100, "024": 100, "004": 100, "surpris": 100, "1705": 100, "01936": 100, "ton": 100, "yourfavoritemodel1": 100, "merged_label": 100, "merged_test_label": 100, "newli": [100, 102], "yourfavoritemodel2": 100, "yourfavoritemodel3": 100, "cl3": 100, "takeawai": 100, "my_test_pred_prob": 100, "my_test_pr": 100, "issues_test": 100, "corrected_test_label": 100, "pretend": 100, "cl_test_pr": 100, "fairli": 100, "label_acc": 100, "percentag": 100, "offset": 100, "nquestion": 100, "overestim": 100, "answer": 100, "experienc": 100, "prioiri": 100, "known": 100, "versatil": 100, "label_issues_indic": 100, "213": [100, 104], "218": [100, 104], "152": 100, "197": [100, 104], "196": [100, 104], "170": 100, "214": 100, "164": [100, 103], "198": [100, 104], "191": [100, 104], "117": [100, 107], "206": [100, 104], "115": [100, 104], "193": [100, 109], "194": 100, "201": [100, 104], "174": 100, "163": 100, "150": [100, 102, 104], "169": 100, "151": [100, 104], "168": 100, "precision_scor": 100, "recall_scor": 100, "f1_score": 100, "true_label_issu": 100, "filter_by_list": 100, "718750": [100, 102], "807018": 100, "912": 100, "733333": 100, "800000": 100, "721311": 100, "792793": 100, "908": 100, "676923": 100, "765217": 100, "892": 100, "567901": 100, "702290": 100, "844": 100, "gaug": 100, "label_issues_count": 100, "155": [100, 104], "156": 100, "172": [100, 103], "easiest": 100, "modular": 100, "penalti": 100, "l2": 100, "model3": 100, "n_estim": 100, "cv_pred_probs_1": 100, "cv_pred_probs_2": 100, "cv_pred_probs_3": 100, "label_quality_scores_best": 100, "cv_pred_probs_ensembl": 100, "label_quality_scores_bett": 100, "superior": [100, 106], "timm": 101, "glad": 102, "multiannotator_label": 102, "300": [102, 109], "noisier": 102, "111": [102, 107], "local_data": [102, 103], "true_labels_train": [102, 103], "noise_matrix_bett": 102, "noise_matrix_wors": 102, "transpos": [102, 105], "zfill": 102, "row_na_check": 102, "notna": 102, "reset_index": 102, "a0001": 102, "a0002": 102, "a0003": 102, "a0004": 102, "a0005": 102, "a0006": 102, "a0007": 102, "a0008": 102, "a0009": 102, "a0010": 102, "a0041": 102, "a0042": 102, "a0043": 102, "a0044": 102, "a0045": 102, "a0046": 102, "a0047": 102, "a0048": 102, "a0049": 102, "a0050": 102, "na": 102, "60856743": 102, "41693214": 102, "40908785": 102, "87147629": 102, "64941785": 102, "10774851": 102, "0524466": 102, "71853246": 102, "37169848": 102, "66031048": 102, "multiannotator_util": 102, "crude": 102, "straight": 102, "majority_vote_label": 102, "736118": 102, "757751": 102, "782232": 102, "715565": 102, "824256": 102, "quality_annotator_a0001": 102, "quality_annotator_a0002": 102, "quality_annotator_a0003": 102, "quality_annotator_a0004": 102, "quality_annotator_a0005": 102, "quality_annotator_a0006": 102, "quality_annotator_a0007": 102, "quality_annotator_a0008": 102, "quality_annotator_a0009": 102, "quality_annotator_a0010": 102, "quality_annotator_a0041": 102, "quality_annotator_a0042": 102, "quality_annotator_a0043": 102, "quality_annotator_a0044": 102, "quality_annotator_a0045": 102, "quality_annotator_a0046": 102, "quality_annotator_a0047": 102, "quality_annotator_a0048": 102, "quality_annotator_a0049": 102, "quality_annotator_a0050": 102, "070564": 102, "216078": 102, "119188": 102, "alongisd": 102, "244981": 102, "208333": 102, "295979": 102, "294118": 102, "324197": 102, "310345": 102, "355316": 102, "346154": 102, "439732": 102, "480000": 102, "a0031": 102, "523205": 102, "580645": 102, "a0034": 102, "535313": 102, "607143": 102, "a0021": 102, "606999": 102, "a0015": 102, "609526": 102, "678571": 102, "a0011": 102, "621103": 102, "692308": 102, "improved_consensus_label": 102, "majority_vote_accuraci": 102, "cleanlab_label_accuraci": 102, "8581081081081081": 102, "9797297297297297": 102, "besid": 102, "sorted_consensus_quality_scor": 102, "worst_qual": 102, "better_qu": 102, "worst_quality_accuraci": 102, "better_quality_accuraci": 102, "9893238434163701": 102, "improved_pred_prob": 102, "treat": [102, 103, 107, 109], "analzi": 102, "copyright": 103, "advertis": 103, "violenc": 103, "nsfw": 103, "celeba": 103, "make_multilabel_data": 103, "boxes_coordin": 103, "box_multilabel": 103, "make_multi": 103, "bx1": 103, "by1": 103, "bx2": 103, "by2": 103, "label_list": 103, "ur": 103, "upper": 103, "inidx": 103, "logical_and": 103, "inv_d": 103, "labels_idx": 103, "true_labels_test": 103, "dict_unique_label": 103, "get_color_arrai": 103, "dcolor": 103, "aa4400": 103, "55227f": 103, "55a100": 103, "00ff00": 103, "007f7f": 103, "386b55": 103, "0000ff": 103, "y_onehot": 103, "single_class_label": 103, "stratifi": [103, 106], "kf": 103, "train_index": 103, "test_index": 103, "clf_cv": 103, "x_train_cv": 103, "x_test_cv": 103, "y_train_cv": 103, "y_test_cv": 103, "y_pred_cv": 103, "saw": 103, "num_to_displai": 103, "09": [103, 104, 107], "267": 103, "225": 103, "171": 103, "234": 103, "165": 103, "227": [103, 104], "262": [103, 104], "266": [103, 104], "139": 103, "143": [103, 104], "216": [103, 104, 109], "265": 103, "159": [103, 104], "despit": [103, 109], "suspect": 103, "888": 103, "8224": 103, "9632": 103, "968": 103, "6512": 103, "0444": 103, "774": 103, "labels_binary_format": 103, "labels_list_format": 103, "surround": 104, "scene": 104, "coco": 104, "everydai": 104, "has_label_issu": 104, "nc": [104, 108, 109], "s3": [104, 108, 109], "amazonaw": [104, 108, 109], "objectdetectionbenchmark": 104, "tutorial_obj": 104, "pkl": 104, "example_imag": 104, "unzip": [104, 109], "_separate_label": 104, "_separate_predict": 104, "begin": 104, "image_path": 104, "rb": 104, "image_to_visu": 104, "seg_map": 104, "334": 104, "bboxes_ignor": 104, "290": 104, "286": 104, "285": 104, "224": 104, "231": 104, "293": 104, "289": 104, "282": 104, "281": 104, "271": 104, "280": 104, "277": 104, "279": 104, "287": 104, "299": 104, "276": 104, "307": 104, "321": 104, "326": 104, "333": 104, "261": 104, "319": 104, "257": 104, "283": 104, "243": 104, "303": 104, "316": 104, "247": 104, "323": 104, "226": 104, "228": 104, "232": 104, "219": 104, "239": 104, "240": 104, "209": 104, "242": 104, "202": 104, "230": 104, "215": 104, "220": 104, "229": 104, "217": 104, "237": 104, "207": 104, "204": 104, "84": [104, 107], "205": 104, "223": 104, "153": 104, "140": 104, "124": 104, "268": 104, "273": 104, "284": 104, "110": 104, "136": 104, "145": 104, "297": 104, "317": 104, "192": 104, "332": 104, "324": 104, "203": [104, 109], "199": 104, "291": 104, "000000481413": 104, "jpg": 104, "42398": 104, "44503": 104, "29968": 104, "336": 104, "21005": 104, "9978472": 104, "forgot": 104, "drew": 104, "label_issue_idx": 104, "num_examples_to_show": 104, "138": 104, "candid": 104, "97489622": 104, "70610878": 104, "98764951": 104, "88899237": 104, "99085805": 104, "issue_idx": 104, "95569726e": 104, "03354841e": 104, "57510169e": 104, "58447666e": 104, "39755858e": 104, "issue_to_visu": 104, "000000009483": 104, "95569726168054e": 104, "addition": [104, 108], "visibl": 104, "missmatch": 104, "likelei": 104, "agnost": 104, "vaidat": 104, "inconsist": 104, "000000395701": 104, "033548411774308e": 104, "armchair": 104, "tv": 104, "000000154004": 104, "38300759625496356": 104, "foreground": 104, "000000448410": 104, "0008575101690203273": 104, "crowd": 104, "alon": 104, "resembl": [104, 105], "000000499768": 104, "9748962231208227": 104, "000000521141": 104, "8889923658893665": 104, "000000143931": 104, "9876495074395956": 104, "bonu": 104, "uncov": 104, "irregular": 104, "anomali": 104, "object_detection_util": 104, "calculate_bounding_box_area": 104, "num_imgs_to_show": 104, "lab_object_count": 104, "pred_object_count": 104, "000000430073": 104, "000000183709": 104, "000000189475": 104, "label_norm": 104, "pred_norm": 104, "area": [104, 108], "lab_area": 104, "pred_area": 104, "lab_area_mean": 104, "lab_area_std": 104, "max_deviation_valu": 104, "max_deviation_class": 104, "deviation_valu": 104, "deviation_class": 104, "mean_area": 104, "std_area": 104, "class_area": 104, "deviations_awai": 104, "max_deviation_index": 104, "num_imgs_to_show_per_class": 104, "class_num": 104, "000000422886": 104, "000000341828": 104, "000000461009": 104, "train_feature_embed": 105, "ood_train_feature_scor": 105, "test_feature_embed": 105, "ood_test_feature_scor": 105, "ood_train_predictions_scor": 105, "train_pred_prob": 105, "ood_test_predictions_scor": 105, "test_pred_prob": 105, "pylab": 105, "rcparam": 105, "baggingclassifi": 105, "therebi": 105, "rescal": 105, "transform_norm": 105, "totensor": 105, "root": 105, "animal_class": 105, "non_animal_class": 105, "animal_idx": 105, "test_idx": 105, "toronto": 105, "edu": 105, "kriz": 105, "170498071": 105, "109826666": 105, "14it": 105, "plot_imag": 105, "visualize_outli": 105, "txt_class": 105, "img": [105, 107], "npimg": 105, "show_label": 105, "data_subset": 105, "resnet50": 105, "corpu": 105, "2048": 105, "embed_imag": 105, "create_model": 105, "strang": 105, "odd": 105, "train_ood_features_scor": 105, "top_train_ood_features_idx": 105, "fun": 105, "negat": 105, "homogen": 105, "bottom_train_ood_features_idx": 105, "test_ood_features_scor": 105, "top_ood_features_idx": 105, "inevit": 105, "trade": 105, "5th": 105, "percentil": 105, "fifth_percentil": 105, "plt_rang": 105, "hist": 105, "train_outlier_scor": 105, "axvlin": 105, "test_outlier_scor": 105, "ood_features_indic": 105, "revisit": 105, "return_invers": 105, "train_feature_embeddings_sc": 105, "test_feature_embeddings_sc": 105, "train_pred_label": 105, "9702": 105, "train_ood_predictions_scor": 105, "test_ood_predictions_scor": 105, "lost": 105, "unsuit": 106, "ok": [106, 109], "convention": 106, "aforement": 106, "hypothet": 106, "contrast": 106, "tradit": 106, "disjoint": 106, "out_of_sample_pred_probs_for_a": 106, "out_of_sample_pred_probs_for_b": 106, "out_of_sample_pred_probs_for_c": 106, "out_of_sample_pred_prob": 106, "price": 107, "incom": 107, "sensor": 107, "histgradientboostingregressor": 107, "r2_score": 107, "student_grades_r": 107, "final_scor": 107, "true_final_scor": 107, "homework": 107, "3d": 107, "mpl_toolkit": 107, "mplot3d": 107, "axes3d": 107, "errors_idx": 107, "add_subplot": 107, "z": 107, "errors_mask": 107, "feature_column": 107, "predicted_column": 107, "x_train_raw": 107, "x_test_raw": 107, "randomforestregressor": 107, "385101": 107, "499503": 107, "698255": 107, "776647": 107, "109373": 107, "170547": 107, "481096": 107, "984759": 107, "645270": 107, "795928": 107, "141": 107, "659": 107, "318": 107, "305": 107, "560": 107, "657": 107, "688": 107, "view_datapoint": 107, "preds_og": 107, "r2_og": 107, "found_label_issu": 107, "preds_cl": 107, "r2_cl": 107, "926": 107, "favorit": 107, "968627e": 107, "228799": 107, "646674e": 107, "402962": 107, "323818e": 107, "952758": 107, "422144e": 107, "456908": 107, "465815e": 107, "753968": 107, "791186e": 107, "110719": 107, "485156e": 107, "670640": 107, "225300e": 107, "749976": 107, "499679e": 107, "947007": 107, "067882e": 107, "648396": 107, "synthia": 108, "imagesegment": 108, "given_mask": 108, "predicted_mask": 108, "set_printopt": [108, 109], "sky": 108, "sidewalk": 108, "veget": 108, "terrain": 108, "rider": 108, "pred_probs_filepath": 108, "1088": 108, "1920": 108, "label_filepath": 108, "synthia_class": 108, "maunal": 108, "100000": 108, "244800": 108, "leftmost": 108, "middl": [108, 109], "infact": 108, "rightmost": 108, "discrep": 108, "3263230": 108, "783381": 108, "275110": 108, "255917": 108, "78225": 108, "55990": 108, "54315": 108, "33591": 108, "24645": 108, "21054": 108, "15045": 108, "14171": 108, "13832": 108, "13498": 108, "11490": 108, "9164": 108, "8769": 108, "6999": 108, "6031": 108, "5011": 108, "mistakenli": 108, "class_issu": 108, "aim": [108, 109], "domin": 108, "bunch": 109, "conll": 109, "2003": 109, "love": 109, "n_i": 109, "optional_list_of_ordered_class_nam": 109, "deepai": 109, "conll2003": 109, "rm": 109, "tokenclassif": 109, "2400": 109, "52e0": 109, "1a00": 109, "1067": 109, "connect": 109, "443": 109, "await": 109, "982975": 109, "960k": 109, "959": 109, "94k": 109, "kb": 109, "mb": 109, "directori": 109, "inflat": 109, "182": 109, "17045998": 109, "16m": 109, "octet": 109, "26m": 109, "bert": 109, "read_npz": 109, "filepath": 109, "corrsespond": 109, "iob2": 109, "given_ent": 109, "entity_map": 109, "readfil": 109, "startswith": 109, "docstart": 109, "isalpha": 109, "isupp": 109, "indices_to_preview": 109, "nsentenc": 109, "eu": 109, "reject": 109, "boycott": 109, "british": 109, "lamb": 109, "00030412": 109, "00023826": 109, "99936208": 109, "00007009": 109, "00002545": 109, "99998795": 109, "00000401": 109, "00000218": 109, "00000455": 109, "00000131": 109, "00000749": 109, "99996115": 109, "00001371": 109, "0000087": 109, "00000895": 109, "99998936": 109, "00000382": 109, "00000178": 109, "00000366": 109, "00000137": 109, "99999101": 109, "00000266": 109, "00000174": 109, "0000035": 109, "00000109": 109, "99998768": 109, "00000482": 109, "00000202": 109, "00000438": 109, "0000011": 109, "00000465": 109, "99996392": 109, "00001105": 109, "0000116": 109, "00000878": 109, "99998671": 109, "00000364": 109, "00000213": 109, "00000472": 109, "00000281": 109, "99999073": 109, "00000211": 109, "00000159": 109, "00000442": 109, "00000115": 109, "peter": 109, "blackburn": 109, "00000358": 109, "00000529": 109, "99995623": 109, "0000129": 109, "0000024": 109, "00001812": 109, "99994141": 109, "00001645": 109, "00002162": 109, "brussel": 109, "1996": 109, "00001172": 109, "00000821": 109, "00004661": 109, "0000618": 109, "99987167": 109, "99999061": 109, "00000201": 109, "00000195": 109, "00000408": 109, "00000135": 109, "2254": 109, "2907": 109, "19392": 109, "9962": 109, "8904": 109, "19303": 109, "12918": 109, "9256": 109, "11855": 109, "18392": 109, "20426": 109, "19402": 109, "14744": 109, "19371": 109, "4645": 109, "10331": 109, "9430": 109, "6143": 109, "18367": 109, "12914": 109, "todai": 109, "weather": 109, "march": 109, "scalfaro": 109, "northern": 109, "himself": 109, "said": 109, "germani": 109, "nastja": 109, "rysich": 109, "north": 109, "spla": 109, "fought": 109, "khartoum": 109, "govern": 109, "south": 109, "1983": 109, "autonomi": 109, "animist": 109, "region": 109, "moslem": 109, "arabis": 109, "mayor": 109, "antonio": 109, "gonzalez": 109, "garcia": 109, "revolutionari": 109, "wednesdai": 109, "troop": 109, "raid": 109, "farm": 109, "stole": 109, "rape": 109, "women": 109, "spring": 109, "chg": 109, "hrw": 109, "12pct": 109, "princ": 109, "photo": 109, "moment": 109, "spokeswoman": 109, "rainier": 109, "told": 109, "reuter": 109, "danila": 109, "carib": 109, "w224": 109, "equip": 109, "radiomet": 109, "earn": 109, "19996": 109, "london": 109, "denom": 109, "sale": 109, "uk": 109, "jp": 109, "fr": 109, "maccabi": 109, "hapoel": 109, "haifa": 109, "tel": 109, "aviv": 109, "hospit": 109, "rever": 109, "roman": 109, "cathol": 109, "nun": 109, "admit": 109, "calcutta": 109, "week": 109, "ago": 109, "fever": 109, "vomit": 109, "allianc": 109, "embattl": 109, "kabul": 109, "salang": 109, "highwai": 109, "mondai": 109, "tuesdai": 109, "suprem": 109, "council": 109, "led": 109, "jumbish": 109, "milli": 109, "movement": 109, "warlord": 109, "abdul": 109, "rashid": 109, "dostum": 109, "dollar": 109, "exchang": 109, "3570": 109, "12049": 109, "born": 109, "1937": 109, "provinc": 109, "anhui": 109, "dai": 109, "came": 109, "shanghai": 109, "citi": 109, "prolif": 109, "author": 109, "teacher": 109, "chines": 109, "16764": 109, "1990": 109, "historian": 109, "alan": 109, "john": 109, "percival": 109, "taylor": 109, "di": 109, "20446": 109, "pace": 109, "bowler": 109, "ian": 109, "harvei": 109, "claim": 109, "victoria": 109, "15514": 109, "cotti": 109, "osc": 109, "foreign": 109, "minist": 109, "7525": 109, "sultan": 109, "specter": 109, "crown": 109, "abdullah": 109, "defenc": 109, "aviat": 109, "jeddah": 109, "saudi": 109, "agenc": 109, "2288": 109, "hi": 109, "customari": 109, "outfit": 109, "champion": 109, "damp": 109, "scalp": 109, "canada": 109, "reign": 109, "olymp": 109, "donovan": 109, "bailei": 109, "1992": 109, "linford": 109, "christi": 109, "britain": 109, "1984": 109, "1988": 109, "carl": 109, "lewi": 109, "ambigi": 109, "punctuat": 109, "chicago": 109, "digest": 109, "philadelphia": 109, "usda": 109, "york": 109, "token_issu": 109, "471": 109, "kean": 109, "year": 109, "contract": 109, "manchest": 109, "19072": 109, "societi": 109, "bite": 109, "deliv": 109, "19910": 109, "father": 109, "clarenc": 109, "woolmer": 109, "renam": 109, "uttar": 109, "pradesh": 109, "india": 109, "ranji": 109, "trophi": 109, "nation": 109, "championship": 109, "captain": 109, "1949": 109, "15658": 109, "19879": 109, "iii": 109, "brian": 109, "shimer": 109, "randi": 109, "jone": 109, "19104": 109}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 3, 1, "", "set_knn_graph"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 93, 95, 96, 99, 100, 103, 109], "count": [3, 100], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 103], "creat": [7, 90, 91, 92, 100, 102], "your": [7, 84, 91, 92, 96, 97, 99, 100], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 108, 109], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 97], "intermedi": 7, "advanc": [7, 91], "us": [7, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 100], "custom": [9, 91], "cleanlab": [9, 10, 84, 87, 88, 89, 93, 95, 96, 99, 100, 102, 103, 104, 105, 107, 108, 109], "studio": [9, 10], "easi": [9, 10, 84, 93, 95, 96], "mode": [9, 10, 84, 93, 95, 96], "can": [10, 90, 92, 98, 99, 100, 102], "detect": [10, 89, 92, 93, 95, 96, 97, 99, 100, 104, 105], "estim": [10, 100, 102, 103], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 102, 103, 104, 107, 108, 109], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 90, 93, 95, 96, 103, 105], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 20, 92, 93, 95, 96, 99, 103], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 97, 100, 108], "imbal": [10, 21, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 105], "specif": [10, 22, 108], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 97], "paramet": [10, 100], "get": [12, 90, 91, 92, 102, 103, 104, 108, 109], "start": [12, 98], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 99, 100], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 99, 107], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 105, 107, 108, 109], "underperforming_group": 32, "model_output": 33, "report": [34, 93], "dataset": [37, 63, 84, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 103, 104, 105, 107, 108, 109], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 100], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 91], "token_classification_util": 56, "util": 57, "valid": [58, 93, 106], "fasttext": 59, "model": [60, 84, 87, 88, 89, 93, 95, 96, 99, 100, 102, 103, 104, 105, 107], "kera": 61, "multiannot": [62, 102], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 100], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 90, 92, 99, 100], "segment": [77, 108], "token_classif": [81, 109], "open": [84, 99], "sourc": [84, 99], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 107, 108, 109], "instal": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "2": [84, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 107, 108, 109], "common": [84, 85, 109], "3": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 105, 107, 108, 109], "handl": [84, 99], "error": [84, 88, 93, 99, 100, 102, 103, 104, 107, 108, 109], "train": [84, 87, 88, 89, 97, 99, 105, 107], "robust": [84, 87, 88, 100, 107], "noisi": [84, 87, 88, 100, 107], "4": [84, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 104, 105, 107], "curat": 84, "fix": [84, 99], "level": [84, 98, 100, 109], "5": [84, 87, 89, 90, 92, 93, 95, 97, 100, 102, 107], "improv": [84, 102], "via": [84, 100, 102], "mani": [84, 100], "other": [84, 102, 104, 107], "techniqu": 84, "contribut": 84, "how": [85, 99, 100, 102, 103, 109], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 92, 100, 107], "pre": [85, 89, 97, 99, 105], "function": [85, 91], "name": 85, "chang": 85, "modul": [85, 100], "new": [85, 90], "remov": 85, "argument": [85, 91], "variabl": 85, "cleanlearn": [86, 99, 100], "tutori": [86, 94, 98, 101], "structur": 87, "tabular": [87, 95], "requir": [87, 88, 90, 91, 92, 93, 95, 96, 102, 103, 104, 105, 107, 108, 109], "depend": [87, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 102, 103, 104, 105, 107, 108, 109], "load": [87, 88, 89, 90, 91, 92, 95, 96, 97, 107], "process": [87, 95, 105, 107], "select": [87, 95], "comput": [87, 89, 93, 95, 96, 97, 99, 102, 106], "out": [87, 89, 90, 91, 92, 93, 95, 96, 102, 106], "sampl": [87, 89, 90, 91, 92, 93, 95, 96, 102, 106], "predict": [87, 89, 90, 91, 92, 93, 95, 96, 97, 102, 103, 104, 106], "probabl": [87, 89, 90, 91, 92, 93, 95, 96, 97, 102, 106], "more": [87, 88, 90, 92, 100, 107], "text": [88, 96, 97, 109], "format": [88, 96, 99, 103, 104], "defin": [88, 93, 96, 97, 107], "potenti": [88, 102, 107], "an": [89, 93, 99], "audio": 89, "import": [89, 90, 91, 92, 93, 98, 100, 102], "them": [89, 98, 100], "speechbrain": 89, "featur": [89, 93, 105], "fit": 89, "linear": 89, "datamonitor": 90, "leverag": 90, "statist": [90, 102], "audit": [90, 91, 92], "skip": [90, 92, 98, 100, 102], "detail": [90, 92, 98, 100, 102], "classifi": [90, 91, 92, 97], "6": [90, 97, 100], "about": [90, 92], "addit": [90, 92], "7": [90, 93, 100], "8": [90, 98, 100], "look": 90, "both": 90, "workflow": [91, 97, 100], "instanti": 91, "object": [91, 104], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "all": [92, 100], "kind": [92, 104], "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 106], "fold": [93, 106], "cross": [93, 106], "embed": [93, 105], "view": 93, "most": [93, 109], "like": 93, "exampl": [93, 99, 100, 105], "sever": 93, "set": [93, 100], "dark": 93, "top": [93, 108], "low": 93, "numer": 95, "categor": [95, 97], "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 103], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "identifi": [97, 99, 104], "explan": 97, "vector": 97, "perform": 97, "visual": [97, 100, 104, 105, 108], "score": [97, 100, 102, 103, 104, 108, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 100, 106], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 102], "sort": 97, "understand": 98, "evalu": 98, "health": [98, 100], "popular": 98, "faq": 99, "what": [99, 100, 106], "do": [99, 100], "infer": 99, "correct": 99, "ha": 99, "flag": 99, "should": 99, "v": 99, "test": [99, 100, 105], "big": 99, "limit": 99, "memori": 99, "why": 99, "isn": 99, "t": 99, "work": [99, 100, 102, 109], "me": 99, "differ": [99, 104], "clean": [99, 100], "final": 99, "hyperparamet": 99, "tune": 99, "onli": 99, "one": [99, 100, 103, 108], "doe": [99, 102, 109], "take": 99, "so": 99, "long": 99, "when": [99, 100], "run": 99, "licens": 99, "under": 99, "answer": 99, "question": 99, "The": 100, "centric": 100, "ai": 100, "machin": 100, "find_label_issu": 100, "line": 100, "code": 100, "twenti": 100, "lowest": 100, "qualiti": [100, 102, 103, 104, 108, 109], "see": 100, "now": 100, "let": 100, "": 100, "happen": 100, "we": 100, "merg": 100, "seafoam": 100, "green": 100, "yellow": 100, "too": 100, "you": 100, "re": 100, "One": 100, "rule": 100, "overal": [100, 108], "accur": 100, "thi": 100, "directli": 100, "fulli": 100, "character": 100, "nois": 100, "matrix": [100, 103], "joint": 100, "prior": 100, "true": 100, "distribut": 100, "flip": 100, "rate": 100, "ani": 100, "again": 100, "support": 100, "lot": 100, "method": 100, "filter_bi": 100, "automat": 100, "everi": 100, "uniqu": 100, "num_label_issu": 100, "threshold": 100, "found": 100, "Not": 100, "sure": 100, "ensembl": 100, "multipl": [100, 102], "predictor": 100, "consensu": 102, "annot": 102, "major": 102, "vote": 102, "better": 102, "compar": 102, "inspect": 102, "retrain": 102, "further": 102, "multi": 103, "beyond": 103, "mislabel": [103, 108, 109], "given": 103, "hot": 103, "binari": 103, "without": 103, "applic": 103, "real": 103, "download": [104, 108, 109], "objectlab": 104, "exploratori": 104, "analysi": 104, "pytorch": 105, "timm": 105, "cifar10": 105, "some": 105, "pred_prob": [105, 108, 109], "wai": 107, "semant": 108, "which": 108, "ar": 108, "commonli": 108, "focus": 108, "token": 109, "word": 109, "sentenc": 109, "contain": 109, "particular": 109}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [93, "Easy-Mode"], [95, "Easy-Mode"], [96, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [107, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [107, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [107, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[90, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [102, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"], [92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[90, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[90, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[90, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[90, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [100, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[100, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[100, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[100, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[100, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[100, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[100, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[100, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[100, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[100, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[100, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[100, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[100, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[100, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[100, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[100, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[100, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[100, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[100, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[100, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[100, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[100, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[100, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[101, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[102, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[102, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[102, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[102, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[102, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[102, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[102, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[102, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[102, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[103, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[103, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[103, "2.-Format-data,-labels,-and-model-predictions"], [104, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[103, "3.-Use-cleanlab-to-find-label-issues"], [104, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[103, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[103, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[103, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[103, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[103, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[104, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[104, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[104, "Get-label-quality-scores"], [108, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[104, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[104, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[104, "Other-uses-of-visualize"]], "Exploratory data analysis": [[104, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[105, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[105, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[105, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[105, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[105, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[105, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[106, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[106, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[106, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[107, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[107, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[107, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[108, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[108, "2.-Get-data,-labels,-and-pred_probs"], [109, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[108, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[108, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[108, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[109, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[109, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[109, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[109, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[109, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 609d31207..ff90509fe 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:44.446466Z", - "iopub.status.busy": "2024-06-13T18:21:44.446295Z", - "iopub.status.idle": "2024-06-13T18:21:45.686437Z", - "shell.execute_reply": "2024-06-13T18:21:45.685801Z" + "iopub.execute_input": "2024-06-14T00:16:35.102776Z", + "iopub.status.busy": "2024-06-14T00:16:35.102607Z", + "iopub.status.idle": "2024-06-14T00:16:36.367224Z", + "shell.execute_reply": "2024-06-14T00:16:36.366563Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.689093Z", - "iopub.status.busy": "2024-06-13T18:21:45.688801Z", - "iopub.status.idle": "2024-06-13T18:21:45.707625Z", - "shell.execute_reply": "2024-06-13T18:21:45.707085Z" + "iopub.execute_input": "2024-06-14T00:16:36.370397Z", + "iopub.status.busy": "2024-06-14T00:16:36.369735Z", + "iopub.status.idle": "2024-06-14T00:16:36.389330Z", + "shell.execute_reply": "2024-06-14T00:16:36.388796Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.709963Z", - "iopub.status.busy": "2024-06-13T18:21:45.709612Z", - "iopub.status.idle": "2024-06-13T18:21:45.880864Z", - "shell.execute_reply": "2024-06-13T18:21:45.880310Z" + "iopub.execute_input": "2024-06-14T00:16:36.392026Z", + "iopub.status.busy": "2024-06-14T00:16:36.391500Z", + "iopub.status.idle": "2024-06-14T00:16:36.626524Z", + "shell.execute_reply": "2024-06-14T00:16:36.625916Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.912284Z", - "iopub.status.busy": "2024-06-13T18:21:45.911831Z", - "iopub.status.idle": "2024-06-13T18:21:45.915729Z", - "shell.execute_reply": "2024-06-13T18:21:45.915266Z" + "iopub.execute_input": "2024-06-14T00:16:36.657354Z", + "iopub.status.busy": "2024-06-14T00:16:36.656861Z", + "iopub.status.idle": "2024-06-14T00:16:36.660828Z", + "shell.execute_reply": "2024-06-14T00:16:36.660317Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.917850Z", - "iopub.status.busy": "2024-06-13T18:21:45.917512Z", - "iopub.status.idle": "2024-06-13T18:21:45.925712Z", - "shell.execute_reply": "2024-06-13T18:21:45.925300Z" + "iopub.execute_input": "2024-06-14T00:16:36.662889Z", + "iopub.status.busy": "2024-06-14T00:16:36.662710Z", + "iopub.status.idle": "2024-06-14T00:16:36.671428Z", + "shell.execute_reply": "2024-06-14T00:16:36.670838Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.927911Z", - "iopub.status.busy": "2024-06-13T18:21:45.927592Z", - "iopub.status.idle": "2024-06-13T18:21:45.930065Z", - "shell.execute_reply": "2024-06-13T18:21:45.929642Z" + "iopub.execute_input": "2024-06-14T00:16:36.673814Z", + "iopub.status.busy": "2024-06-14T00:16:36.673616Z", + "iopub.status.idle": "2024-06-14T00:16:36.676392Z", + "shell.execute_reply": "2024-06-14T00:16:36.675941Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:45.932090Z", - "iopub.status.busy": "2024-06-13T18:21:45.931759Z", - "iopub.status.idle": "2024-06-13T18:21:46.461706Z", - "shell.execute_reply": "2024-06-13T18:21:46.461165Z" + "iopub.execute_input": "2024-06-14T00:16:36.678451Z", + "iopub.status.busy": "2024-06-14T00:16:36.678052Z", + "iopub.status.idle": "2024-06-14T00:16:37.201770Z", + "shell.execute_reply": "2024-06-14T00:16:37.201197Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:46.464224Z", - "iopub.status.busy": "2024-06-13T18:21:46.463855Z", - "iopub.status.idle": "2024-06-13T18:21:48.129673Z", - "shell.execute_reply": "2024-06-13T18:21:48.128977Z" + "iopub.execute_input": "2024-06-14T00:16:37.204126Z", + "iopub.status.busy": "2024-06-14T00:16:37.203935Z", + "iopub.status.idle": "2024-06-14T00:16:38.949183Z", + "shell.execute_reply": "2024-06-14T00:16:38.948545Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.132549Z", - "iopub.status.busy": "2024-06-13T18:21:48.131840Z", - "iopub.status.idle": "2024-06-13T18:21:48.141925Z", - "shell.execute_reply": "2024-06-13T18:21:48.141418Z" + "iopub.execute_input": "2024-06-14T00:16:38.951734Z", + "iopub.status.busy": "2024-06-14T00:16:38.951171Z", + "iopub.status.idle": "2024-06-14T00:16:38.961167Z", + "shell.execute_reply": "2024-06-14T00:16:38.960660Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.143991Z", - "iopub.status.busy": "2024-06-13T18:21:48.143676Z", - "iopub.status.idle": "2024-06-13T18:21:48.147703Z", - "shell.execute_reply": "2024-06-13T18:21:48.147259Z" + "iopub.execute_input": "2024-06-14T00:16:38.963247Z", + "iopub.status.busy": "2024-06-14T00:16:38.962939Z", + "iopub.status.idle": "2024-06-14T00:16:38.967202Z", + "shell.execute_reply": "2024-06-14T00:16:38.966760Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.149715Z", - "iopub.status.busy": "2024-06-13T18:21:48.149389Z", - "iopub.status.idle": "2024-06-13T18:21:48.156519Z", - "shell.execute_reply": "2024-06-13T18:21:48.155966Z" + "iopub.execute_input": "2024-06-14T00:16:38.969238Z", + "iopub.status.busy": "2024-06-14T00:16:38.968905Z", + "iopub.status.idle": "2024-06-14T00:16:38.975988Z", + "shell.execute_reply": "2024-06-14T00:16:38.975557Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.158532Z", - "iopub.status.busy": "2024-06-13T18:21:48.158158Z", - "iopub.status.idle": "2024-06-13T18:21:48.271142Z", - "shell.execute_reply": "2024-06-13T18:21:48.270566Z" + "iopub.execute_input": "2024-06-14T00:16:38.977991Z", + "iopub.status.busy": "2024-06-14T00:16:38.977634Z", + "iopub.status.idle": "2024-06-14T00:16:39.091919Z", + "shell.execute_reply": "2024-06-14T00:16:39.091342Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.273443Z", - "iopub.status.busy": "2024-06-13T18:21:48.273042Z", - "iopub.status.idle": "2024-06-13T18:21:48.275951Z", - "shell.execute_reply": "2024-06-13T18:21:48.275426Z" + "iopub.execute_input": "2024-06-14T00:16:39.093925Z", + "iopub.status.busy": "2024-06-14T00:16:39.093747Z", + "iopub.status.idle": "2024-06-14T00:16:39.096634Z", + "shell.execute_reply": "2024-06-14T00:16:39.096182Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:48.277990Z", - "iopub.status.busy": "2024-06-13T18:21:48.277687Z", - "iopub.status.idle": "2024-06-13T18:21:50.344321Z", - "shell.execute_reply": "2024-06-13T18:21:50.343524Z" + "iopub.execute_input": "2024-06-14T00:16:39.098393Z", + "iopub.status.busy": "2024-06-14T00:16:39.098225Z", + "iopub.status.idle": "2024-06-14T00:16:41.120718Z", + "shell.execute_reply": "2024-06-14T00:16:41.120010Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:50.347493Z", - "iopub.status.busy": "2024-06-13T18:21:50.346863Z", - "iopub.status.idle": "2024-06-13T18:21:50.359183Z", - "shell.execute_reply": "2024-06-13T18:21:50.358611Z" + "iopub.execute_input": "2024-06-14T00:16:41.123876Z", + "iopub.status.busy": "2024-06-14T00:16:41.123090Z", + "iopub.status.idle": "2024-06-14T00:16:41.135100Z", + "shell.execute_reply": "2024-06-14T00:16:41.134531Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:50.361456Z", - "iopub.status.busy": "2024-06-13T18:21:50.361126Z", - "iopub.status.idle": "2024-06-13T18:21:50.439475Z", - "shell.execute_reply": "2024-06-13T18:21:50.438951Z" + "iopub.execute_input": "2024-06-14T00:16:41.137227Z", + "iopub.status.busy": "2024-06-14T00:16:41.137042Z", + "iopub.status.idle": "2024-06-14T00:16:41.168646Z", + "shell.execute_reply": "2024-06-14T00:16:41.168192Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index df4da643c..250f0b448 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -808,7 +808,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'getting_spare_card'}
+Classes: {'card_payment_fee_charged', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'change_pin', 'cancel_transfer', 'visa_or_mastercard'}
 

Let’s print the first example in the train set.

@@ -871,43 +871,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1206,7 +1206,7 @@

4. Train a more robust model from noisy labels -{"state": {"304f1eda16c148eb8f63606fb07ed4c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19e2f079dc5743668bae2260ac3af90d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0e3fd3eaf6e64452a08ad1a2033c21ca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_304f1eda16c148eb8f63606fb07ed4c5", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_19e2f079dc5743668bae2260ac3af90d", "tabbable": null, "tooltip": null, "value": 391.0}}, "58fc6d101be44449bf3ee94d5f32ac85": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ccfdbde10daf4ae39800026e34b10f77": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7fd2e8bfca8a4ed3b02c2e0655b36a97": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58fc6d101be44449bf3ee94d5f32ac85", "placeholder": "\u200b", "style": "IPY_MODEL_ccfdbde10daf4ae39800026e34b10f77", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "5f7613a258b743e789456182d684523f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3ffb128452c4a368de0cf1b4262157d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1d3ffa700f2a45bcb4fd4e77c4613624": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5f7613a258b743e789456182d684523f", "placeholder": "\u200b", "style": "IPY_MODEL_f3ffb128452c4a368de0cf1b4262157d", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200742.4kB/s]"}}, "cf4915e49f904e078e0bde9832a1e353": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89a29616bde94a579adb8d1626c620f7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7fd2e8bfca8a4ed3b02c2e0655b36a97", "IPY_MODEL_0e3fd3eaf6e64452a08ad1a2033c21ca", "IPY_MODEL_1d3ffa700f2a45bcb4fd4e77c4613624"], "layout": "IPY_MODEL_cf4915e49f904e078e0bde9832a1e353", "tabbable": null, "tooltip": null}}, "83de765eb3b04d9384a52cbeae018192": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26f219ea88db465c8d44ff7895ab0d47": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6e3c959fcc4a42c689ea230a60871ff1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_83de765eb3b04d9384a52cbeae018192", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_26f219ea88db465c8d44ff7895ab0d47", "tabbable": null, "tooltip": null, "value": 2211.0}}, "28e1b644bcdf4877962e8bc56c42ff2d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3a2066a99c53429792294f28c0cbd9a0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "758f9e53f68a498e8c24312a480840f9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_28e1b644bcdf4877962e8bc56c42ff2d", "placeholder": "\u200b", "style": "IPY_MODEL_3a2066a99c53429792294f28c0cbd9a0", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "9530e5bbf0da41e6a5f111745419e218": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5821a9a7acc84e89a3d69f33dc7c81a8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "999f7a3bf1f945bba896579b6a8f948f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9530e5bbf0da41e6a5f111745419e218", "placeholder": "\u200b", "style": "IPY_MODEL_5821a9a7acc84e89a3d69f33dc7c81a8", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007378kB/s]"}}, "b350a582360f481696bd9606de4eb2fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8c757beb7fd43c18a196a8f910b18c6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_758f9e53f68a498e8c24312a480840f9", "IPY_MODEL_6e3c959fcc4a42c689ea230a60871ff1", "IPY_MODEL_999f7a3bf1f945bba896579b6a8f948f"], "layout": "IPY_MODEL_b350a582360f481696bd9606de4eb2fb", "tabbable": null, "tooltip": null}}, "b53e20cd5324432bb7fe5f311ad7ce4e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8314a83f9ff45b382cc7352d5953636": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "96f8781a0dca4aa8be36021972819130": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b53e20cd5324432bb7fe5f311ad7ce4e", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e8314a83f9ff45b382cc7352d5953636", "tabbable": null, "tooltip": null, "value": 665.0}}, "72a0d59cd7a94872829aa9ef43cbc920": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0021b3089b64ef69706d41507a8b91a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "68af76c492ab41b0a681bb40d307f066": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72a0d59cd7a94872829aa9ef43cbc920", "placeholder": "\u200b", "style": "IPY_MODEL_b0021b3089b64ef69706d41507a8b91a", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "51ce7c4b02e34b6b8db650fee5e0bf76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f95b272ca8694c169de914b047b40b5d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0226197bc48452da508b762130d8516": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_51ce7c4b02e34b6b8db650fee5e0bf76", "placeholder": "\u200b", "style": "IPY_MODEL_f95b272ca8694c169de914b047b40b5d", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007112kB/s]"}}, "ff1a18da5cd344d0ae6ed974fc5b6668": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c5f4a388b3b941adbaa7ba6326374031": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68af76c492ab41b0a681bb40d307f066", "IPY_MODEL_96f8781a0dca4aa8be36021972819130", "IPY_MODEL_c0226197bc48452da508b762130d8516"], "layout": "IPY_MODEL_ff1a18da5cd344d0ae6ed974fc5b6668", "tabbable": null, "tooltip": null}}, "0915eccf7f2440cba62abbcdc2271dad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2dc66d420704243a0738191f131facd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a6dd0e939a694e01883ce10db6326fb2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0915eccf7f2440cba62abbcdc2271dad", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f2dc66d420704243a0738191f131facd", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "5c500b1cbcab4350a404dd79cd3d3b99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3ef8f21bb7004e9f9a72b4496216f388": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0d1e8fe76b9648049e1e32f175cdefe0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5c500b1cbcab4350a404dd79cd3d3b99", "placeholder": "\u200b", "style": "IPY_MODEL_3ef8f21bb7004e9f9a72b4496216f388", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "e7b6196949654362b1d6df86f46a5348": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b4e940f7113481d85a489023a3ecfe7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c0f8b3eba8f4a5b8677585908779c44": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7b6196949654362b1d6df86f46a5348", "placeholder": "\u200b", "style": "IPY_MODEL_4b4e940f7113481d85a489023a3ecfe7", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007241MB/s]"}}, "85fcd7e09800416aae1f71cb9381ff30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d584aedf982f4788bd1c1ff03a283e55": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0d1e8fe76b9648049e1e32f175cdefe0", "IPY_MODEL_a6dd0e939a694e01883ce10db6326fb2", "IPY_MODEL_3c0f8b3eba8f4a5b8677585908779c44"], "layout": "IPY_MODEL_85fcd7e09800416aae1f71cb9381ff30", "tabbable": null, "tooltip": null}}, "dd035097454a4cecbee2fe1182adde74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "449b5fecb692428788da9d3e4c7799a7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4ed60800fca44d518826aa80a83f0d67": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dd035097454a4cecbee2fe1182adde74", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_449b5fecb692428788da9d3e4c7799a7", "tabbable": null, "tooltip": null, "value": 466062.0}}, "ed10c085e9514b438d6d6ccd4bf253d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4379279278f548d896fb87a5fe5b746f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "feffe57a99a0465690c71e9842979ac7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ed10c085e9514b438d6d6ccd4bf253d6", "placeholder": "\u200b", "style": "IPY_MODEL_4379279278f548d896fb87a5fe5b746f", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "9826d59097ae4896a075e4df12a3c8e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d4043e1d6754b9b9729e8a59c4c69d8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "95802575c2ae4d379af9f3656e679a77": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9826d59097ae4896a075e4df12a3c8e8", "placeholder": "\u200b", "style": "IPY_MODEL_4d4043e1d6754b9b9729e8a59c4c69d8", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20074.34MB/s]"}}, "345d0bae432443118f4646f8776d538d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dd42363c65e44be49bed5e16bd5bfbdb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_feffe57a99a0465690c71e9842979ac7", "IPY_MODEL_4ed60800fca44d518826aa80a83f0d67", "IPY_MODEL_95802575c2ae4d379af9f3656e679a77"], "layout": "IPY_MODEL_345d0bae432443118f4646f8776d538d", "tabbable": null, "tooltip": null}}, "a392b245bdf548c2aec9ee195c2a950c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "15aa5565c591472cbf81818c96a6d5bb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2a7f63aeecfb408d8632e6c22465fe50": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a392b245bdf548c2aec9ee195c2a950c", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_15aa5565c591472cbf81818c96a6d5bb", "tabbable": null, "tooltip": null, "value": 48.0}}, "9f0b48690f9c4563b1e9429ab7533420": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06c724843d86401292792aaa30b64020": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "db15ead67eb34e2ebb47a8ea7a7d569a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f0b48690f9c4563b1e9429ab7533420", "placeholder": "\u200b", "style": "IPY_MODEL_06c724843d86401292792aaa30b64020", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "dfe7b6e71faa4500a20bb9e5f425c203": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d75ff2ba3ca045e6ba5105cd49a2ce75": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "384311e4b7b24c43a430c7ff085f98c9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dfe7b6e71faa4500a20bb9e5f425c203", "placeholder": "\u200b", "style": "IPY_MODEL_d75ff2ba3ca045e6ba5105cd49a2ce75", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.39kB/s]"}}, "0d9cfcf583f44c629da274a38906b32a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6103bb2eacb748469a940416af67da40": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_db15ead67eb34e2ebb47a8ea7a7d569a", "IPY_MODEL_2a7f63aeecfb408d8632e6c22465fe50", "IPY_MODEL_384311e4b7b24c43a430c7ff085f98c9"], "layout": "IPY_MODEL_0d9cfcf583f44c629da274a38906b32a", "tabbable": null, "tooltip": null}}, "7e70d6f213bb452488e29435609ee2d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2153098059814befb06bbc93fe9a97e7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8302a3ccd10b4d8ea3a7cd2e607c7fe2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7e70d6f213bb452488e29435609ee2d3", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2153098059814befb06bbc93fe9a97e7", "tabbable": null, "tooltip": null, "value": 231508.0}}, "7dab156d2780448da0503a9b7e7267df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "29a42523208748fd98121c510d37b190": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c95bd6ed519940babd3ba871acc307b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7dab156d2780448da0503a9b7e7267df", "placeholder": "\u200b", "style": "IPY_MODEL_29a42523208748fd98121c510d37b190", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "07a4e7d0c1834cb6830289017bc05cc3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2604e4cda1734a8694eea8d49064ce5a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53b0d2af5149411d94a93eb52551fcea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_07a4e7d0c1834cb6830289017bc05cc3", "placeholder": "\u200b", "style": "IPY_MODEL_2604e4cda1734a8694eea8d49064ce5a", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200725.0MB/s]"}}, "890aeeec41a5468fb4925fc0ea9440f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c36c086bded54572ad779113ee541eea": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c95bd6ed519940babd3ba871acc307b0", "IPY_MODEL_8302a3ccd10b4d8ea3a7cd2e607c7fe2", "IPY_MODEL_53b0d2af5149411d94a93eb52551fcea"], "layout": "IPY_MODEL_890aeeec41a5468fb4925fc0ea9440f4", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"634f7e4ecf0a477e9bc3927ea23c2300": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "510979737fa64f6a9185b72528bab456": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "92d13c93ec3347349a43c3856bcd56f3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_634f7e4ecf0a477e9bc3927ea23c2300", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_510979737fa64f6a9185b72528bab456", "tabbable": null, "tooltip": null, "value": 391.0}}, "32577e389af443438208118eb7377807": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fd24115d6134759af8bdad760e976d8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "423ebee759034858904232bf5f536772": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32577e389af443438208118eb7377807", "placeholder": "\u200b", "style": "IPY_MODEL_1fd24115d6134759af8bdad760e976d8", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "e4bb5f66cdab4e418fb04f459e9f7130": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2f84d3734804a1ab316156aa1a7c14d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eab9a05151654c03a28aaad0e39d31e5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e4bb5f66cdab4e418fb04f459e9f7130", "placeholder": "\u200b", "style": "IPY_MODEL_b2f84d3734804a1ab316156aa1a7c14d", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200762.7kB/s]"}}, "4493c470e240442db44c7f6c71df5dbc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e113f5d111d6444d98179aa0948e256a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_423ebee759034858904232bf5f536772", "IPY_MODEL_92d13c93ec3347349a43c3856bcd56f3", "IPY_MODEL_eab9a05151654c03a28aaad0e39d31e5"], "layout": "IPY_MODEL_4493c470e240442db44c7f6c71df5dbc", "tabbable": null, "tooltip": null}}, "d394dda8b98a46ec9306372d401e36c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5b4c0a5470b49e5aa6e01784d3e0f66": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8c90fa29ef3b4cb9b3287545751940ae": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d394dda8b98a46ec9306372d401e36c7", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b5b4c0a5470b49e5aa6e01784d3e0f66", "tabbable": null, "tooltip": null, "value": 2211.0}}, "3b81bfed69294a02b3e452450bf33cb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53aa28bd59b14351bc52d87f3467bbdd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f9a09c560c2a4f82a8af86c1ab20f9c3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3b81bfed69294a02b3e452450bf33cb3", "placeholder": "\u200b", "style": "IPY_MODEL_53aa28bd59b14351bc52d87f3467bbdd", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "ec132e991cd0421791c6fb51e54e9211": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2eb223ab0852412ca2da1711cf480c7b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0015bc7e91634f7f9b3f678cfce37e8e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ec132e991cd0421791c6fb51e54e9211", "placeholder": "\u200b", "style": "IPY_MODEL_2eb223ab0852412ca2da1711cf480c7b", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007386kB/s]"}}, "fc82d8cd699e4c7a8cac5db4ccedd0c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac4d8d83e38c457da6b39758bab16610": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f9a09c560c2a4f82a8af86c1ab20f9c3", "IPY_MODEL_8c90fa29ef3b4cb9b3287545751940ae", "IPY_MODEL_0015bc7e91634f7f9b3f678cfce37e8e"], "layout": "IPY_MODEL_fc82d8cd699e4c7a8cac5db4ccedd0c3", "tabbable": null, "tooltip": null}}, "0c65144726234495b1e2424bfdbe42dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41e240f623f74156906703ad3c830b4e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "76b1105c524e4c95821b18dd10270d6c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c65144726234495b1e2424bfdbe42dc", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_41e240f623f74156906703ad3c830b4e", "tabbable": null, "tooltip": null, "value": 665.0}}, "f835c1e565b44583911348ee493969d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2aafe95a5124e85b5c0aabe982d9fe8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b6952671e6e4af38ebc195c57c98390": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f835c1e565b44583911348ee493969d0", "placeholder": "\u200b", "style": "IPY_MODEL_c2aafe95a5124e85b5c0aabe982d9fe8", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "26866f38b46c4fbe8e5f186b89cef8b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70f2fd35702d45fe80084d581f973157": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2f942d31b8fe4add8ac62a92d745b5af": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_26866f38b46c4fbe8e5f186b89cef8b9", "placeholder": "\u200b", "style": "IPY_MODEL_70f2fd35702d45fe80084d581f973157", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007112kB/s]"}}, "127b88a1ef9f426fb32225e9cb20adbd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7489924975f4416af61f5d5655b562d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7b6952671e6e4af38ebc195c57c98390", "IPY_MODEL_76b1105c524e4c95821b18dd10270d6c", "IPY_MODEL_2f942d31b8fe4add8ac62a92d745b5af"], "layout": "IPY_MODEL_127b88a1ef9f426fb32225e9cb20adbd", "tabbable": null, "tooltip": null}}, "f9b9eded2f9741d9b1ae92b5ff845b74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d5b38fc442747789c0c4132e3a54dcd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1e9bc931375e4b0588b82f7cac05b6eb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9b9eded2f9741d9b1ae92b5ff845b74", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1d5b38fc442747789c0c4132e3a54dcd", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "97c3f89f639b470582663d39387a0e5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44b4facc3eff433296405e0cead6cf6b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a125d8b8c16c4b53817e61e02ea59b9e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_97c3f89f639b470582663d39387a0e5b", "placeholder": "\u200b", "style": "IPY_MODEL_44b4facc3eff433296405e0cead6cf6b", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "76cc3096920144069d0aadc6f4755dbb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03c72d9f975a49ceb1543f2f70c28427": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f1517c994a994396bd34f71559512a31": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_76cc3096920144069d0aadc6f4755dbb", "placeholder": "\u200b", "style": "IPY_MODEL_03c72d9f975a49ceb1543f2f70c28427", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200731.9MB/s]"}}, "c9e3b3321c304cc9a69ee2102e3b8bb8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a79ea7294ad0416baab0dcd40c7a3b96": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a125d8b8c16c4b53817e61e02ea59b9e", "IPY_MODEL_1e9bc931375e4b0588b82f7cac05b6eb", "IPY_MODEL_f1517c994a994396bd34f71559512a31"], "layout": "IPY_MODEL_c9e3b3321c304cc9a69ee2102e3b8bb8", "tabbable": null, "tooltip": null}}, "f0681e417d204571ad93b8784c857f8a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "31c8282842d345e4ab52116521d9cafd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "68c9ecf61665485dba761c00db9f52f9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f0681e417d204571ad93b8784c857f8a", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_31c8282842d345e4ab52116521d9cafd", "tabbable": null, "tooltip": null, "value": 466062.0}}, "988a3179c63147be9dcf9698918a210a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc41f3a8890b44f396f6d5e552e6110d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d36d53cb159449d9a2c1bee733d8af47": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_988a3179c63147be9dcf9698918a210a", "placeholder": "\u200b", "style": "IPY_MODEL_bc41f3a8890b44f396f6d5e552e6110d", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "56e0dccc437a4d2ea8bb618731a52530": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60246563bec04a288e443d042b033587": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "47ddcc786da644998b195975e893ac3b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56e0dccc437a4d2ea8bb618731a52530", "placeholder": "\u200b", "style": "IPY_MODEL_60246563bec04a288e443d042b033587", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200723.4MB/s]"}}, "1996e0d8e853404baec6b267edf30cf7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e5bb8d5844324089ac770f470702eda3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d36d53cb159449d9a2c1bee733d8af47", "IPY_MODEL_68c9ecf61665485dba761c00db9f52f9", "IPY_MODEL_47ddcc786da644998b195975e893ac3b"], "layout": "IPY_MODEL_1996e0d8e853404baec6b267edf30cf7", "tabbable": null, "tooltip": null}}, "bf92e88f3f0d445e93027d35cfb4a756": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "181134befe2849ebb555197e214dc531": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d85c97b6e3574a09b4bfdfb9d1d816a1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bf92e88f3f0d445e93027d35cfb4a756", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_181134befe2849ebb555197e214dc531", "tabbable": null, "tooltip": null, "value": 48.0}}, "8c114b094b2c416a8e752c7d1aa77bef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "05112a6096dc4b6992511c3e169aa821": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4bfa8a1e3e1c4f26a7847431f614e75d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c114b094b2c416a8e752c7d1aa77bef", "placeholder": "\u200b", "style": "IPY_MODEL_05112a6096dc4b6992511c3e169aa821", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "511f80ec74cc4edeafb6e65f4bdcb6c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "edc4790944c0413e8df52df30282110b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "37d80b7f58c34f7a9c783fdc47a1f4a1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_511f80ec74cc4edeafb6e65f4bdcb6c8", "placeholder": "\u200b", "style": "IPY_MODEL_edc4790944c0413e8df52df30282110b", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.32kB/s]"}}, "eeebdd15c615415eb8be9a40c2d6328e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "62e526cceeee40a582a8477c2069264c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4bfa8a1e3e1c4f26a7847431f614e75d", "IPY_MODEL_d85c97b6e3574a09b4bfdfb9d1d816a1", "IPY_MODEL_37d80b7f58c34f7a9c783fdc47a1f4a1"], "layout": "IPY_MODEL_eeebdd15c615415eb8be9a40c2d6328e", "tabbable": null, "tooltip": null}}, "15a50dc87af543188449977797dc8737": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ddb486e950c49fb9f7a74e8b9495419": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bfd0cd1a60cc4851bee1b6c9dfff425b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15a50dc87af543188449977797dc8737", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2ddb486e950c49fb9f7a74e8b9495419", "tabbable": null, "tooltip": null, "value": 231508.0}}, "d2a95f19397c43abbbd2b9be93984244": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4c05cdb97fd46e1904cc54264e62459": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "54545e76698f48e1af1c8cbf42b8d099": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d2a95f19397c43abbbd2b9be93984244", "placeholder": "\u200b", "style": "IPY_MODEL_a4c05cdb97fd46e1904cc54264e62459", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "a4249e39308242c1bae44b681f1b50f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a94dd7164024ca4b962caeab918464a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "754a913b376a47ddbf7f9e3f1ac20369": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a4249e39308242c1bae44b681f1b50f9", "placeholder": "\u200b", "style": "IPY_MODEL_4a94dd7164024ca4b962caeab918464a", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200734.8MB/s]"}}, "5928055c57be47f4beaaa4b6222ed8a2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9cf2070823924dcf92a725c5f310b852": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_54545e76698f48e1af1c8cbf42b8d099", "IPY_MODEL_bfd0cd1a60cc4851bee1b6c9dfff425b", "IPY_MODEL_754a913b376a47ddbf7f9e3f1ac20369"], "layout": "IPY_MODEL_5928055c57be47f4beaaa4b6222ed8a2", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index fc4fd930e..816bb204d 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:53.349069Z", - "iopub.status.busy": "2024-06-13T18:21:53.348887Z", - "iopub.status.idle": "2024-06-13T18:21:56.766258Z", - "shell.execute_reply": "2024-06-13T18:21:56.765677Z" + "iopub.execute_input": "2024-06-14T00:16:45.162695Z", + "iopub.status.busy": "2024-06-14T00:16:45.162281Z", + "iopub.status.idle": "2024-06-14T00:16:48.258885Z", + "shell.execute_reply": "2024-06-14T00:16:48.258283Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.769016Z", - "iopub.status.busy": "2024-06-13T18:21:56.768599Z", - "iopub.status.idle": "2024-06-13T18:21:56.771941Z", - "shell.execute_reply": "2024-06-13T18:21:56.771507Z" + "iopub.execute_input": "2024-06-14T00:16:48.261476Z", + "iopub.status.busy": "2024-06-14T00:16:48.261152Z", + "iopub.status.idle": "2024-06-14T00:16:48.264538Z", + "shell.execute_reply": "2024-06-14T00:16:48.264097Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.774034Z", - "iopub.status.busy": "2024-06-13T18:21:56.773643Z", - "iopub.status.idle": "2024-06-13T18:21:56.776767Z", - "shell.execute_reply": "2024-06-13T18:21:56.776243Z" + "iopub.execute_input": "2024-06-14T00:16:48.266679Z", + "iopub.status.busy": "2024-06-14T00:16:48.266276Z", + "iopub.status.idle": "2024-06-14T00:16:48.269340Z", + "shell.execute_reply": "2024-06-14T00:16:48.268893Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.778889Z", - "iopub.status.busy": "2024-06-13T18:21:56.778480Z", - "iopub.status.idle": "2024-06-13T18:21:56.846746Z", - "shell.execute_reply": "2024-06-13T18:21:56.846182Z" + "iopub.execute_input": "2024-06-14T00:16:48.271244Z", + "iopub.status.busy": "2024-06-14T00:16:48.271069Z", + "iopub.status.idle": "2024-06-14T00:16:48.304367Z", + "shell.execute_reply": "2024-06-14T00:16:48.303838Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.849082Z", - "iopub.status.busy": "2024-06-13T18:21:56.848651Z", - "iopub.status.idle": "2024-06-13T18:21:56.852424Z", - "shell.execute_reply": "2024-06-13T18:21:56.851841Z" + "iopub.execute_input": "2024-06-14T00:16:48.306482Z", + "iopub.status.busy": "2024-06-14T00:16:48.306139Z", + "iopub.status.idle": "2024-06-14T00:16:48.309749Z", + "shell.execute_reply": "2024-06-14T00:16:48.309179Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.854664Z", - "iopub.status.busy": "2024-06-13T18:21:56.854215Z", - "iopub.status.idle": "2024-06-13T18:21:56.857528Z", - "shell.execute_reply": "2024-06-13T18:21:56.857084Z" + "iopub.execute_input": "2024-06-14T00:16:48.311782Z", + "iopub.status.busy": "2024-06-14T00:16:48.311456Z", + "iopub.status.idle": "2024-06-14T00:16:48.314925Z", + "shell.execute_reply": "2024-06-14T00:16:48.314465Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'getting_spare_card'}\n" + "Classes: {'card_payment_fee_charged', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'change_pin', 'cancel_transfer', 'visa_or_mastercard'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.859663Z", - "iopub.status.busy": "2024-06-13T18:21:56.859334Z", - "iopub.status.idle": "2024-06-13T18:21:56.862455Z", - "shell.execute_reply": "2024-06-13T18:21:56.861945Z" + "iopub.execute_input": "2024-06-14T00:16:48.316969Z", + "iopub.status.busy": "2024-06-14T00:16:48.316591Z", + "iopub.status.idle": "2024-06-14T00:16:48.319828Z", + "shell.execute_reply": "2024-06-14T00:16:48.319280Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.864701Z", - "iopub.status.busy": "2024-06-13T18:21:56.864281Z", - "iopub.status.idle": "2024-06-13T18:21:56.867587Z", - "shell.execute_reply": "2024-06-13T18:21:56.867135Z" + "iopub.execute_input": "2024-06-14T00:16:48.321992Z", + "iopub.status.busy": "2024-06-14T00:16:48.321656Z", + "iopub.status.idle": "2024-06-14T00:16:48.325046Z", + "shell.execute_reply": "2024-06-14T00:16:48.324462Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:21:56.869701Z", - "iopub.status.busy": "2024-06-13T18:21:56.869278Z", - "iopub.status.idle": "2024-06-13T18:22:01.330144Z", - "shell.execute_reply": "2024-06-13T18:22:01.329578Z" + "iopub.execute_input": "2024-06-14T00:16:48.327100Z", + "iopub.status.busy": "2024-06-14T00:16:48.326776Z", + "iopub.status.idle": "2024-06-14T00:16:54.189165Z", + "shell.execute_reply": "2024-06-14T00:16:54.188516Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "89a29616bde94a579adb8d1626c620f7", + "model_id": "e113f5d111d6444d98179aa0948e256a", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8c757beb7fd43c18a196a8f910b18c6", + "model_id": "ac4d8d83e38c457da6b39758bab16610", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c5f4a388b3b941adbaa7ba6326374031", + "model_id": "f7489924975f4416af61f5d5655b562d", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d584aedf982f4788bd1c1ff03a283e55", + "model_id": "a79ea7294ad0416baab0dcd40c7a3b96", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd42363c65e44be49bed5e16bd5bfbdb", + "model_id": "e5bb8d5844324089ac770f470702eda3", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6103bb2eacb748469a940416af67da40", + "model_id": "62e526cceeee40a582a8477c2069264c", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c36c086bded54572ad779113ee541eea", + "model_id": "9cf2070823924dcf92a725c5f310b852", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:01.332759Z", - "iopub.status.busy": "2024-06-13T18:22:01.332554Z", - "iopub.status.idle": "2024-06-13T18:22:01.335507Z", - "shell.execute_reply": "2024-06-13T18:22:01.334977Z" + "iopub.execute_input": "2024-06-14T00:16:54.191918Z", + "iopub.status.busy": "2024-06-14T00:16:54.191704Z", + "iopub.status.idle": "2024-06-14T00:16:54.194576Z", + "shell.execute_reply": "2024-06-14T00:16:54.194092Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:01.337656Z", - "iopub.status.busy": "2024-06-13T18:22:01.337263Z", - "iopub.status.idle": "2024-06-13T18:22:01.340086Z", - "shell.execute_reply": "2024-06-13T18:22:01.339528Z" + "iopub.execute_input": "2024-06-14T00:16:54.196462Z", + "iopub.status.busy": "2024-06-14T00:16:54.196291Z", + "iopub.status.idle": "2024-06-14T00:16:54.198887Z", + "shell.execute_reply": "2024-06-14T00:16:54.198447Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:01.342142Z", - "iopub.status.busy": "2024-06-13T18:22:01.341756Z", - "iopub.status.idle": "2024-06-13T18:22:03.601315Z", - "shell.execute_reply": "2024-06-13T18:22:03.600684Z" + "iopub.execute_input": "2024-06-14T00:16:54.200705Z", + "iopub.status.busy": "2024-06-14T00:16:54.200536Z", + "iopub.status.idle": "2024-06-14T00:16:56.506255Z", + "shell.execute_reply": "2024-06-14T00:16:56.505540Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.604543Z", - "iopub.status.busy": "2024-06-13T18:22:03.603720Z", - "iopub.status.idle": "2024-06-13T18:22:03.611540Z", - "shell.execute_reply": "2024-06-13T18:22:03.611084Z" + "iopub.execute_input": "2024-06-14T00:16:56.509370Z", + "iopub.status.busy": "2024-06-14T00:16:56.508656Z", + "iopub.status.idle": "2024-06-14T00:16:56.516875Z", + "shell.execute_reply": "2024-06-14T00:16:56.516278Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.613612Z", - "iopub.status.busy": "2024-06-13T18:22:03.613341Z", - "iopub.status.idle": "2024-06-13T18:22:03.617176Z", - "shell.execute_reply": "2024-06-13T18:22:03.616716Z" + "iopub.execute_input": "2024-06-14T00:16:56.519102Z", + "iopub.status.busy": "2024-06-14T00:16:56.518763Z", + "iopub.status.idle": "2024-06-14T00:16:56.523268Z", + "shell.execute_reply": "2024-06-14T00:16:56.522694Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.619138Z", - "iopub.status.busy": "2024-06-13T18:22:03.618810Z", - "iopub.status.idle": "2024-06-13T18:22:03.622149Z", - "shell.execute_reply": "2024-06-13T18:22:03.621704Z" + "iopub.execute_input": "2024-06-14T00:16:56.525484Z", + "iopub.status.busy": "2024-06-14T00:16:56.525053Z", + "iopub.status.idle": "2024-06-14T00:16:56.528316Z", + "shell.execute_reply": "2024-06-14T00:16:56.527860Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.624319Z", - "iopub.status.busy": "2024-06-13T18:22:03.623849Z", - "iopub.status.idle": "2024-06-13T18:22:03.626846Z", - "shell.execute_reply": "2024-06-13T18:22:03.626411Z" + "iopub.execute_input": "2024-06-14T00:16:56.530483Z", + "iopub.status.busy": "2024-06-14T00:16:56.530147Z", + "iopub.status.idle": "2024-06-14T00:16:56.533125Z", + "shell.execute_reply": "2024-06-14T00:16:56.532682Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.628835Z", - "iopub.status.busy": "2024-06-13T18:22:03.628511Z", - "iopub.status.idle": "2024-06-13T18:22:03.635848Z", - "shell.execute_reply": "2024-06-13T18:22:03.635380Z" + "iopub.execute_input": "2024-06-14T00:16:56.535213Z", + "iopub.status.busy": "2024-06-14T00:16:56.534950Z", + "iopub.status.idle": "2024-06-14T00:16:56.542784Z", + "shell.execute_reply": "2024-06-14T00:16:56.542284Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.637942Z", - "iopub.status.busy": "2024-06-13T18:22:03.637616Z", - "iopub.status.idle": "2024-06-13T18:22:03.861617Z", - "shell.execute_reply": "2024-06-13T18:22:03.861034Z" + "iopub.execute_input": "2024-06-14T00:16:56.544784Z", + "iopub.status.busy": "2024-06-14T00:16:56.544606Z", + "iopub.status.idle": "2024-06-14T00:16:56.767981Z", + "shell.execute_reply": "2024-06-14T00:16:56.767397Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:03.865128Z", - "iopub.status.busy": "2024-06-13T18:22:03.864185Z", - "iopub.status.idle": "2024-06-13T18:22:04.041976Z", - "shell.execute_reply": "2024-06-13T18:22:04.041445Z" + "iopub.execute_input": "2024-06-14T00:16:56.770660Z", + "iopub.status.busy": "2024-06-14T00:16:56.770259Z", + "iopub.status.idle": "2024-06-14T00:16:56.967481Z", + "shell.execute_reply": "2024-06-14T00:16:56.966935Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:04.045815Z", - "iopub.status.busy": "2024-06-13T18:22:04.044882Z", - "iopub.status.idle": "2024-06-13T18:22:04.049806Z", - "shell.execute_reply": "2024-06-13T18:22:04.049308Z" + "iopub.execute_input": "2024-06-14T00:16:56.970170Z", + "iopub.status.busy": "2024-06-14T00:16:56.969766Z", + "iopub.status.idle": "2024-06-14T00:16:56.973702Z", + "shell.execute_reply": "2024-06-14T00:16:56.973191Z" }, "nbsphinx": "hidden" }, @@ -1113,7 +1113,48 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06c724843d86401292792aaa30b64020": { + "0015bc7e91634f7f9b3f678cfce37e8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec132e991cd0421791c6fb51e54e9211", + "placeholder": "​", + "style": "IPY_MODEL_2eb223ab0852412ca2da1711cf480c7b", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 386kB/s]" + } + }, + "03c72d9f975a49ceb1543f2f70c28427": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "05112a6096dc4b6992511c3e169aa821": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1131,7 +1172,7 @@ "text_color": null } }, - "07a4e7d0c1834cb6830289017bc05cc3": { + "0c65144726234495b1e2424bfdbe42dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1184,7 +1225,7 @@ "width": null } }, - "0915eccf7f2440cba62abbcdc2271dad": { + "127b88a1ef9f426fb32225e9cb20adbd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1237,30 +1278,7 @@ "width": null } }, - "0d1e8fe76b9648049e1e32f175cdefe0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c500b1cbcab4350a404dd79cd3d3b99", - "placeholder": "​", - "style": "IPY_MODEL_3ef8f21bb7004e9f9a72b4496216f388", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "0d9cfcf583f44c629da274a38906b32a": { + "15a50dc87af543188449977797dc8737": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1313,49 +1331,76 @@ "width": null } }, - "0e3fd3eaf6e64452a08ad1a2033c21ca": { + "181134befe2849ebb555197e214dc531": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_304f1eda16c148eb8f63606fb07ed4c5", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19e2f079dc5743668bae2260ac3af90d", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "15aa5565c591472cbf81818c96a6d5bb": { - "model_module": "@jupyter-widgets/controls", + "1996e0d8e853404baec6b267edf30cf7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "19e2f079dc5743668bae2260ac3af90d": { + "1d5b38fc442747789c0c4132e3a54dcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1371,46 +1416,33 @@ "description_width": "" } }, - "1d3ffa700f2a45bcb4fd4e77c4613624": { + "1e9bc931375e4b0588b82f7cac05b6eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f7613a258b743e789456182d684523f", - "placeholder": "​", - "style": "IPY_MODEL_f3ffb128452c4a368de0cf1b4262157d", + "layout": "IPY_MODEL_f9b9eded2f9741d9b1ae92b5ff845b74", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1d5b38fc442747789c0c4132e3a54dcd", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 42.4kB/s]" - } - }, - "2153098059814befb06bbc93fe9a97e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 54245363.0 } }, - "2604e4cda1734a8694eea8d49064ce5a": { + "1fd24115d6134759af8bdad760e976d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1428,23 +1460,7 @@ "text_color": null } }, - "26f219ea88db465c8d44ff7895ab0d47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "28e1b644bcdf4877962e8bc56c42ff2d": { + "26866f38b46c4fbe8e5f186b89cef8b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1497,7 +1513,23 @@ "width": null } }, - "29a42523208748fd98121c510d37b190": { + "2ddb486e950c49fb9f7a74e8b9495419": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2eb223ab0852412ca2da1711cf480c7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1515,33 +1547,46 @@ "text_color": null } }, - "2a7f63aeecfb408d8632e6c22465fe50": { + "2f942d31b8fe4add8ac62a92d745b5af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a392b245bdf548c2aec9ee195c2a950c", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15aa5565c591472cbf81818c96a6d5bb", + "layout": "IPY_MODEL_26866f38b46c4fbe8e5f186b89cef8b9", + "placeholder": "​", + "style": "IPY_MODEL_70f2fd35702d45fe80084d581f973157", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": " 665/665 [00:00<00:00, 112kB/s]" + } + }, + "31c8282842d345e4ab52116521d9cafd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "304f1eda16c148eb8f63606fb07ed4c5": { + "32577e389af443438208118eb7377807": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1594,7 +1639,30 @@ "width": null } }, - "345d0bae432443118f4646f8776d538d": { + "37d80b7f58c34f7a9c783fdc47a1f4a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_511f80ec74cc4edeafb6e65f4bdcb6c8", + "placeholder": "​", + "style": "IPY_MODEL_edc4790944c0413e8df52df30282110b", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.32kB/s]" + } + }, + "3b81bfed69294a02b3e452450bf33cb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1647,7 +1715,23 @@ "width": null } }, - "384311e4b7b24c43a430c7ff085f98c9": { + "41e240f623f74156906703ad3c830b4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "423ebee759034858904232bf5f536772": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1662,33 +1746,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dfe7b6e71faa4500a20bb9e5f425c203", + "layout": "IPY_MODEL_32577e389af443438208118eb7377807", "placeholder": "​", - "style": "IPY_MODEL_d75ff2ba3ca045e6ba5105cd49a2ce75", + "style": "IPY_MODEL_1fd24115d6134759af8bdad760e976d8", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.39kB/s]" + "value": ".gitattributes: 100%" } }, - "3a2066a99c53429792294f28c0cbd9a0": { - "model_module": "@jupyter-widgets/controls", + "4493c470e240442db44c7f6c71df5dbc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "44b4facc3eff433296405e0cead6cf6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, - "3c0f8b3eba8f4a5b8677585908779c44": { + "47ddcc786da644998b195975e893ac3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1703,15 +1840,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e7b6196949654362b1d6df86f46a5348", + "layout": "IPY_MODEL_56e0dccc437a4d2ea8bb618731a52530", "placeholder": "​", - "style": "IPY_MODEL_4b4e940f7113481d85a489023a3ecfe7", + "style": "IPY_MODEL_60246563bec04a288e443d042b033587", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 241MB/s]" + "value": " 466k/466k [00:00<00:00, 23.4MB/s]" } }, - "3ef8f21bb7004e9f9a72b4496216f388": { + "4a94dd7164024ca4b962caeab918464a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1729,25 +1866,30 @@ "text_color": null } }, - "4379279278f548d896fb87a5fe5b746f": { + "4bfa8a1e3e1c4f26a7847431f614e75d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c114b094b2c416a8e752c7d1aa77bef", + "placeholder": "​", + "style": "IPY_MODEL_05112a6096dc4b6992511c3e169aa821", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "449b5fecb692428788da9d3e4c7799a7": { + "510979737fa64f6a9185b72528bab456": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1763,69 +1905,7 @@ "description_width": "" } }, - "4b4e940f7113481d85a489023a3ecfe7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4d4043e1d6754b9b9729e8a59c4c69d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4ed60800fca44d518826aa80a83f0d67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dd035097454a4cecbee2fe1182adde74", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_449b5fecb692428788da9d3e4c7799a7", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "51ce7c4b02e34b6b8db650fee5e0bf76": { + "511f80ec74cc4edeafb6e65f4bdcb6c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1878,7 +1958,25 @@ "width": null } }, - "53b0d2af5149411d94a93eb52551fcea": { + "53aa28bd59b14351bc52d87f3467bbdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "54545e76698f48e1af1c8cbf42b8d099": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1893,33 +1991,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_07a4e7d0c1834cb6830289017bc05cc3", + "layout": "IPY_MODEL_d2a95f19397c43abbbd2b9be93984244", "placeholder": "​", - "style": "IPY_MODEL_2604e4cda1734a8694eea8d49064ce5a", + "style": "IPY_MODEL_a4c05cdb97fd46e1904cc54264e62459", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 25.0MB/s]" - } - }, - "5821a9a7acc84e89a3d69f33dc7c81a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "vocab.txt: 100%" } }, - "58fc6d101be44449bf3ee94d5f32ac85": { + "56e0dccc437a4d2ea8bb618731a52530": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1972,7 +2052,7 @@ "width": null } }, - "5c500b1cbcab4350a404dd79cd3d3b99": { + "5928055c57be47f4beaaa4b6222ed8a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2025,7 +2105,49 @@ "width": null } }, - "5f7613a258b743e789456182d684523f": { + "60246563bec04a288e443d042b033587": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "62e526cceeee40a582a8477c2069264c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4bfa8a1e3e1c4f26a7847431f614e75d", + "IPY_MODEL_d85c97b6e3574a09b4bfdfb9d1d816a1", + "IPY_MODEL_37d80b7f58c34f7a9c783fdc47a1f4a1" + ], + "layout": "IPY_MODEL_eeebdd15c615415eb8be9a40c2d6328e", + "tabbable": null, + "tooltip": null + } + }, + "634f7e4ecf0a477e9bc3927ea23c2300": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,31 +2200,51 @@ "width": null } }, - "6103bb2eacb748469a940416af67da40": { + "68c9ecf61665485dba761c00db9f52f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_db15ead67eb34e2ebb47a8ea7a7d569a", - "IPY_MODEL_2a7f63aeecfb408d8632e6c22465fe50", - "IPY_MODEL_384311e4b7b24c43a430c7ff085f98c9" - ], - "layout": "IPY_MODEL_0d9cfcf583f44c629da274a38906b32a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0681e417d204571ad93b8784c857f8a", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_31c8282842d345e4ab52116521d9cafd", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 466062.0 + } + }, + "70f2fd35702d45fe80084d581f973157": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "68af76c492ab41b0a681bb40d307f066": { + "754a913b376a47ddbf7f9e3f1ac20369": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2117,15 +2259,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_72a0d59cd7a94872829aa9ef43cbc920", + "layout": "IPY_MODEL_a4249e39308242c1bae44b681f1b50f9", "placeholder": "​", - "style": "IPY_MODEL_b0021b3089b64ef69706d41507a8b91a", + "style": "IPY_MODEL_4a94dd7164024ca4b962caeab918464a", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 232k/232k [00:00<00:00, 34.8MB/s]" } }, - "6e3c959fcc4a42c689ea230a60871ff1": { + "76b1105c524e4c95821b18dd10270d6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2141,17 +2283,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_83de765eb3b04d9384a52cbeae018192", - "max": 2211.0, + "layout": "IPY_MODEL_0c65144726234495b1e2424bfdbe42dc", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_26f219ea88db465c8d44ff7895ab0d47", + "style": "IPY_MODEL_41e240f623f74156906703ad3c830b4e", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 665.0 } }, - "72a0d59cd7a94872829aa9ef43cbc920": { + "76cc3096920144069d0aadc6f4755dbb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2204,7 +2346,7 @@ "width": null } }, - "758f9e53f68a498e8c24312a480840f9": { + "7b6952671e6e4af38ebc195c57c98390": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2219,15 +2361,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_28e1b644bcdf4877962e8bc56c42ff2d", + "layout": "IPY_MODEL_f835c1e565b44583911348ee493969d0", "placeholder": "​", - "style": "IPY_MODEL_3a2066a99c53429792294f28c0cbd9a0", + "style": "IPY_MODEL_c2aafe95a5124e85b5c0aabe982d9fe8", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": "config.json: 100%" } }, - "7dab156d2780448da0503a9b7e7267df": { + "8c114b094b2c416a8e752c7d1aa77bef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,83 +2422,33 @@ "width": null } }, - "7e70d6f213bb452488e29435609ee2d3": { - "model_module": "@jupyter-widgets/base", + "8c90fa29ef3b4cb9b3287545751940ae": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7fd2e8bfca8a4ed3b02c2e0655b36a97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58fc6d101be44449bf3ee94d5f32ac85", - "placeholder": "​", - "style": "IPY_MODEL_ccfdbde10daf4ae39800026e34b10f77", + "layout": "IPY_MODEL_d394dda8b98a46ec9306372d401e36c7", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b5b4c0a5470b49e5aa6e01784d3e0f66", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": 2211.0 } }, - "8302a3ccd10b4d8ea3a7cd2e607c7fe2": { + "92d13c93ec3347349a43c3856bcd56f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2372,17 +2464,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7e70d6f213bb452488e29435609ee2d3", - "max": 231508.0, + "layout": "IPY_MODEL_634f7e4ecf0a477e9bc3927ea23c2300", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2153098059814befb06bbc93fe9a97e7", + "style": "IPY_MODEL_510979737fa64f6a9185b72528bab456", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 391.0 } }, - "83de765eb3b04d9384a52cbeae018192": { + "97c3f89f639b470582663d39387a0e5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2435,7 +2527,7 @@ "width": null } }, - "85fcd7e09800416aae1f71cb9381ff30": { + "988a3179c63147be9dcf9698918a210a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2488,7 +2580,54 @@ "width": null } }, - "890aeeec41a5468fb4925fc0ea9440f4": { + "9cf2070823924dcf92a725c5f310b852": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_54545e76698f48e1af1c8cbf42b8d099", + "IPY_MODEL_bfd0cd1a60cc4851bee1b6c9dfff425b", + "IPY_MODEL_754a913b376a47ddbf7f9e3f1ac20369" + ], + "layout": "IPY_MODEL_5928055c57be47f4beaaa4b6222ed8a2", + "tabbable": null, + "tooltip": null + } + }, + "a125d8b8c16c4b53817e61e02ea59b9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97c3f89f639b470582663d39387a0e5b", + "placeholder": "​", + "style": "IPY_MODEL_44b4facc3eff433296405e0cead6cf6b", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "a4249e39308242c1bae44b681f1b50f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2541,7 +2680,25 @@ "width": null } }, - "89a29616bde94a579adb8d1626c620f7": { + "a4c05cdb97fd46e1904cc54264e62459": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a79ea7294ad0416baab0dcd40c7a3b96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2556,118 +2713,92 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7fd2e8bfca8a4ed3b02c2e0655b36a97", - "IPY_MODEL_0e3fd3eaf6e64452a08ad1a2033c21ca", - "IPY_MODEL_1d3ffa700f2a45bcb4fd4e77c4613624" + "IPY_MODEL_a125d8b8c16c4b53817e61e02ea59b9e", + "IPY_MODEL_1e9bc931375e4b0588b82f7cac05b6eb", + "IPY_MODEL_f1517c994a994396bd34f71559512a31" ], - "layout": "IPY_MODEL_cf4915e49f904e078e0bde9832a1e353", + "layout": "IPY_MODEL_c9e3b3321c304cc9a69ee2102e3b8bb8", "tabbable": null, "tooltip": null } }, - "9530e5bbf0da41e6a5f111745419e218": { - "model_module": "@jupyter-widgets/base", + "ac4d8d83e38c457da6b39758bab16610": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f9a09c560c2a4f82a8af86c1ab20f9c3", + "IPY_MODEL_8c90fa29ef3b4cb9b3287545751940ae", + "IPY_MODEL_0015bc7e91634f7f9b3f678cfce37e8e" + ], + "layout": "IPY_MODEL_fc82d8cd699e4c7a8cac5db4ccedd0c3", + "tabbable": null, + "tooltip": null + } + }, + "b2f84d3734804a1ab316156aa1a7c14d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "95802575c2ae4d379af9f3656e679a77": { + "b5b4c0a5470b49e5aa6e01784d3e0f66": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9826d59097ae4896a075e4df12a3c8e8", - "placeholder": "​", - "style": "IPY_MODEL_4d4043e1d6754b9b9729e8a59c4c69d8", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 4.34MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "96f8781a0dca4aa8be36021972819130": { + "bc41f3a8890b44f396f6d5e552e6110d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b53e20cd5324432bb7fe5f311ad7ce4e", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e8314a83f9ff45b382cc7352d5953636", - "tabbable": null, - "tooltip": null, - "value": 665.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9826d59097ae4896a075e4df12a3c8e8": { + "bf92e88f3f0d445e93027d35cfb4a756": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2720,83 +2851,51 @@ "width": null } }, - "999f7a3bf1f945bba896579b6a8f948f": { + "bfd0cd1a60cc4851bee1b6c9dfff425b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9530e5bbf0da41e6a5f111745419e218", - "placeholder": "​", - "style": "IPY_MODEL_5821a9a7acc84e89a3d69f33dc7c81a8", + "layout": "IPY_MODEL_15a50dc87af543188449977797dc8737", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2ddb486e950c49fb9f7a74e8b9495419", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 378kB/s]" + "value": 231508.0 } }, - "9f0b48690f9c4563b1e9429ab7533420": { - "model_module": "@jupyter-widgets/base", + "c2aafe95a5124e85b5c0aabe982d9fe8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a392b245bdf548c2aec9ee195c2a950c": { + "c9e3b3321c304cc9a69ee2102e3b8bb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2835,65 +2934,21 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a6dd0e939a694e01883ce10db6326fb2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0915eccf7f2440cba62abbcdc2271dad", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f2dc66d420704243a0738191f131facd", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "b0021b3089b64ef69706d41507a8b91a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b350a582360f481696bd9606de4eb2fb": { + "d2a95f19397c43abbbd2b9be93984244": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2946,7 +3001,30 @@ "width": null } }, - "b53e20cd5324432bb7fe5f311ad7ce4e": { + "d36d53cb159449d9a2c1bee733d8af47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_988a3179c63147be9dcf9698918a210a", + "placeholder": "​", + "style": "IPY_MODEL_bc41f3a8890b44f396f6d5e552e6110d", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "d394dda8b98a46ec9306372d401e36c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2999,54 +3077,33 @@ "width": null } }, - "c0226197bc48452da508b762130d8516": { + "d85c97b6e3574a09b4bfdfb9d1d816a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_51ce7c4b02e34b6b8db650fee5e0bf76", - "placeholder": "​", - "style": "IPY_MODEL_f95b272ca8694c169de914b047b40b5d", + "layout": "IPY_MODEL_bf92e88f3f0d445e93027d35cfb4a756", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_181134befe2849ebb555197e214dc531", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 112kB/s]" - } - }, - "c36c086bded54572ad779113ee541eea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c95bd6ed519940babd3ba871acc307b0", - "IPY_MODEL_8302a3ccd10b4d8ea3a7cd2e607c7fe2", - "IPY_MODEL_53b0d2af5149411d94a93eb52551fcea" - ], - "layout": "IPY_MODEL_890aeeec41a5468fb4925fc0ea9440f4", - "tabbable": null, - "tooltip": null + "value": 48.0 } }, - "c5f4a388b3b941adbaa7ba6326374031": { + "e113f5d111d6444d98179aa0948e256a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3061,57 +3118,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_68af76c492ab41b0a681bb40d307f066", - "IPY_MODEL_96f8781a0dca4aa8be36021972819130", - "IPY_MODEL_c0226197bc48452da508b762130d8516" + "IPY_MODEL_423ebee759034858904232bf5f536772", + "IPY_MODEL_92d13c93ec3347349a43c3856bcd56f3", + "IPY_MODEL_eab9a05151654c03a28aaad0e39d31e5" ], - "layout": "IPY_MODEL_ff1a18da5cd344d0ae6ed974fc5b6668", + "layout": "IPY_MODEL_4493c470e240442db44c7f6c71df5dbc", "tabbable": null, "tooltip": null } }, - "c95bd6ed519940babd3ba871acc307b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7dab156d2780448da0503a9b7e7267df", - "placeholder": "​", - "style": "IPY_MODEL_29a42523208748fd98121c510d37b190", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "ccfdbde10daf4ae39800026e34b10f77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cf4915e49f904e078e0bde9832a1e353": { + "e4bb5f66cdab4e418fb04f459e9f7130": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3164,7 +3180,7 @@ "width": null } }, - "d584aedf982f4788bd1c1ff03a283e55": { + "e5bb8d5844324089ac770f470702eda3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3179,34 +3195,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0d1e8fe76b9648049e1e32f175cdefe0", - "IPY_MODEL_a6dd0e939a694e01883ce10db6326fb2", - "IPY_MODEL_3c0f8b3eba8f4a5b8677585908779c44" + "IPY_MODEL_d36d53cb159449d9a2c1bee733d8af47", + "IPY_MODEL_68c9ecf61665485dba761c00db9f52f9", + "IPY_MODEL_47ddcc786da644998b195975e893ac3b" ], - "layout": "IPY_MODEL_85fcd7e09800416aae1f71cb9381ff30", + "layout": "IPY_MODEL_1996e0d8e853404baec6b267edf30cf7", "tabbable": null, "tooltip": null } }, - "d75ff2ba3ca045e6ba5105cd49a2ce75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "db15ead67eb34e2ebb47a8ea7a7d569a": { + "eab9a05151654c03a28aaad0e39d31e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3221,15 +3219,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9f0b48690f9c4563b1e9429ab7533420", + "layout": "IPY_MODEL_e4bb5f66cdab4e418fb04f459e9f7130", "placeholder": "​", - "style": "IPY_MODEL_06c724843d86401292792aaa30b64020", + "style": "IPY_MODEL_b2f84d3734804a1ab316156aa1a7c14d", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 391/391 [00:00<00:00, 62.7kB/s]" } }, - "dd035097454a4cecbee2fe1182adde74": { + "ec132e991cd0421791c6fb51e54e9211": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3282,31 +3280,25 @@ "width": null } }, - "dd42363c65e44be49bed5e16bd5bfbdb": { + "edc4790944c0413e8df52df30282110b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_feffe57a99a0465690c71e9842979ac7", - "IPY_MODEL_4ed60800fca44d518826aa80a83f0d67", - "IPY_MODEL_95802575c2ae4d379af9f3656e679a77" - ], - "layout": "IPY_MODEL_345d0bae432443118f4646f8776d538d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "dfe7b6e71faa4500a20bb9e5f425c203": { + "eeebdd15c615415eb8be9a40c2d6328e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3359,7 +3351,7 @@ "width": null } }, - "e7b6196949654362b1d6df86f46a5348": { + "f0681e417d204571ad93b8784c857f8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3412,23 +3404,30 @@ "width": null } }, - "e8314a83f9ff45b382cc7352d5953636": { + "f1517c994a994396bd34f71559512a31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76cc3096920144069d0aadc6f4755dbb", + "placeholder": "​", + "style": "IPY_MODEL_03c72d9f975a49ceb1543f2f70c28427", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:01<00:00, 31.9MB/s]" } }, - "e8c757beb7fd43c18a196a8f910b18c6": { + "f7489924975f4416af61f5d5655b562d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3443,16 +3442,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_758f9e53f68a498e8c24312a480840f9", - "IPY_MODEL_6e3c959fcc4a42c689ea230a60871ff1", - "IPY_MODEL_999f7a3bf1f945bba896579b6a8f948f" + "IPY_MODEL_7b6952671e6e4af38ebc195c57c98390", + "IPY_MODEL_76b1105c524e4c95821b18dd10270d6c", + "IPY_MODEL_2f942d31b8fe4add8ac62a92d745b5af" ], - "layout": "IPY_MODEL_b350a582360f481696bd9606de4eb2fb", + "layout": "IPY_MODEL_127b88a1ef9f426fb32225e9cb20adbd", "tabbable": null, "tooltip": null } }, - "ed10c085e9514b438d6d6ccd4bf253d6": { + "f835c1e565b44583911348ee493969d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3505,59 +3504,7 @@ "width": null } }, - "f2dc66d420704243a0738191f131facd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f3ffb128452c4a368de0cf1b4262157d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f95b272ca8694c169de914b047b40b5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "feffe57a99a0465690c71e9842979ac7": { + "f9a09c560c2a4f82a8af86c1ab20f9c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3572,15 +3519,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed10c085e9514b438d6d6ccd4bf253d6", + "layout": "IPY_MODEL_3b81bfed69294a02b3e452450bf33cb3", "placeholder": "​", - "style": "IPY_MODEL_4379279278f548d896fb87a5fe5b746f", + "style": "IPY_MODEL_53aa28bd59b14351bc52d87f3467bbdd", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": "README.md: 100%" + } + }, + "f9b9eded2f9741d9b1ae92b5ff845b74": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ff1a18da5cd344d0ae6ed974fc5b6668": { + "fc82d8cd699e4c7a8cac5db4ccedd0c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 5a73ed9ee..461517f07 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1348,7 +1348,7 @@

5. Use cleanlab to find label issues -{"state": {"130c522cf9de40f4ac92754b6190d2cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "915beea47d184c989e868b1b3fbb18f4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e1699196b24c40de956824283f65ce04": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_130c522cf9de40f4ac92754b6190d2cd", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_915beea47d184c989e868b1b3fbb18f4", "tabbable": null, "tooltip": null, "value": 2041.0}}, "19d5ba8653894fdf91d5e7737b00d22f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38f73950f0b2483984b2c52fbfc33fa0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e435c4cf6c1d493c8a53201d0fd2564f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_19d5ba8653894fdf91d5e7737b00d22f", "placeholder": "\u200b", "style": "IPY_MODEL_38f73950f0b2483984b2c52fbfc33fa0", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "a5bae75c38a74e49b02f9d2550022983": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c56abf2bb624aad952666ec0cb06d1a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f4aac3d64d8c46a9955501657c9b658c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a5bae75c38a74e49b02f9d2550022983", "placeholder": "\u200b", "style": "IPY_MODEL_8c56abf2bb624aad952666ec0cb06d1a", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007490kB/s]"}}, "8dda6fe752b24aa8bf822e9564fecb13": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7199ce63e02644699a50db9401c5a8bc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e435c4cf6c1d493c8a53201d0fd2564f", "IPY_MODEL_e1699196b24c40de956824283f65ce04", "IPY_MODEL_f4aac3d64d8c46a9955501657c9b658c"], "layout": "IPY_MODEL_8dda6fe752b24aa8bf822e9564fecb13", "tabbable": null, "tooltip": null}}, "4289413ed1f3437799576c029e105a8a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "291772dd08904344964877a8689f3ac1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "df2d3ac8ba464754a15c87d2a2aff21c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4289413ed1f3437799576c029e105a8a", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_291772dd08904344964877a8689f3ac1", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "6438cfc59b0a4551b5ea6f5fa7ee2b55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7d5d806971d24ceb82cdb51cd330eb65": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "844c80f92d9f4181823a5dd898ef9f7f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6438cfc59b0a4551b5ea6f5fa7ee2b55", "placeholder": "\u200b", "style": "IPY_MODEL_7d5d806971d24ceb82cdb51cd330eb65", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "15197c6fed684dc29e6af9b64024430d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2431bff6596c4cd9b2a4e0a2d61c530c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4bfcd2779bf1488c8a8679e37ef5df65": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15197c6fed684dc29e6af9b64024430d", "placeholder": "\u200b", "style": "IPY_MODEL_2431bff6596c4cd9b2a4e0a2d61c530c", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007203MB/s]"}}, "9be80958325b44509d35ded14f351657": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b4ed508d2fd4aa5a6b7db88f9fc4439": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_844c80f92d9f4181823a5dd898ef9f7f", "IPY_MODEL_df2d3ac8ba464754a15c87d2a2aff21c", "IPY_MODEL_4bfcd2779bf1488c8a8679e37ef5df65"], "layout": "IPY_MODEL_9be80958325b44509d35ded14f351657", "tabbable": null, "tooltip": null}}, "ddfb6301bea14d1e84ba9b4ebd7e3371": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "774d925e3f2d4091b634daa979b6581e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4da158336ca1492280244bca089d2fcf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ddfb6301bea14d1e84ba9b4ebd7e3371", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_774d925e3f2d4091b634daa979b6581e", "tabbable": null, "tooltip": null, "value": 3201.0}}, "761bb4df403b4744a96d28a20e1f13b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d812fb2694d347deb1eaf075f6199608": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ffbb575da0e44e23b40187c7bd8b6596": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_761bb4df403b4744a96d28a20e1f13b1", "placeholder": "\u200b", "style": "IPY_MODEL_d812fb2694d347deb1eaf075f6199608", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "f786259934684201a10fd4e447c05047": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f90ea53897f455fb156545ff7469bea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bf09b30e0d3f4522bb9624f3fec5f8a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f786259934684201a10fd4e447c05047", "placeholder": "\u200b", "style": "IPY_MODEL_8f90ea53897f455fb156545ff7469bea", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u200714.2kB/s]"}}, "ae854acc0bff4783bb318d52e5f085d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "551dfbf7707540f0b6412868fada53e9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ffbb575da0e44e23b40187c7bd8b6596", "IPY_MODEL_4da158336ca1492280244bca089d2fcf", "IPY_MODEL_bf09b30e0d3f4522bb9624f3fec5f8a2"], "layout": "IPY_MODEL_ae854acc0bff4783bb318d52e5f085d6", "tabbable": null, "tooltip": null}}, "1aa5223478e94472ab31dc5676e1e4a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c208402e150c450e997644316d660574": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "15f88ea20e114c26a6d052aa053684cc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1aa5223478e94472ab31dc5676e1e4a7", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c208402e150c450e997644316d660574", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "3e4a2fc52718432280f5f292abf0bb9f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70fd5df3d1584b598c67bd4f2eccbd17": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "96fdf58bd8944e0e8a4c6895138315e7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3e4a2fc52718432280f5f292abf0bb9f", "placeholder": "\u200b", "style": "IPY_MODEL_70fd5df3d1584b598c67bd4f2eccbd17", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "39d8f21da7c947b58878f4a50c33a1c2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "495aa7e30d1847b4bc03f2c539208db0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ba658f46cfc549e4a65d5d3c3c395130": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_39d8f21da7c947b58878f4a50c33a1c2", "placeholder": "\u200b", "style": "IPY_MODEL_495aa7e30d1847b4bc03f2c539208db0", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007150MB/s]"}}, "b64482117e4d4595a54e905b421aeb27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed5cb1a3a84545419e6177e49f3a08d7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_96fdf58bd8944e0e8a4c6895138315e7", "IPY_MODEL_15f88ea20e114c26a6d052aa053684cc", "IPY_MODEL_ba658f46cfc549e4a65d5d3c3c395130"], "layout": "IPY_MODEL_b64482117e4d4595a54e905b421aeb27", "tabbable": null, "tooltip": null}}, "0e6cff9c13364fbf9188bc8ed9570dfe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a334f4cb35e4ee5afbac7cc6063dc7a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "15eef3bc3cb84f9e8cf6b521589d4ed2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0e6cff9c13364fbf9188bc8ed9570dfe", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5a334f4cb35e4ee5afbac7cc6063dc7a", "tabbable": null, "tooltip": null, "value": 128619.0}}, "ff04469994fe43588e35ff413d36d84f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bfad5d6457064c60bad64e108880ebff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "16b957adb748495c8f843617b5c1c95e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff04469994fe43588e35ff413d36d84f", "placeholder": "\u200b", "style": "IPY_MODEL_bfad5d6457064c60bad64e108880ebff", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "a7f2888a4d0d4c98ab61fed5012681f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cfc704dd7d5745248a343629104c3b79": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "84f741f66798418186ba90846f2b6c79": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a7f2888a4d0d4c98ab61fed5012681f6", "placeholder": "\u200b", "style": "IPY_MODEL_cfc704dd7d5745248a343629104c3b79", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200710.5MB/s]"}}, "172803a5acf34268bbfb95b6230a1f16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9bab60f3a264953b441b080a504e204": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_16b957adb748495c8f843617b5c1c95e", "IPY_MODEL_15eef3bc3cb84f9e8cf6b521589d4ed2", "IPY_MODEL_84f741f66798418186ba90846f2b6c79"], "layout": "IPY_MODEL_172803a5acf34268bbfb95b6230a1f16", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"4a18eea0b3ee4b22889acc4216b9f537": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "272caefd758042709a3f8bd67d1f6dfd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "54e58c26f02b42e39b2f3f027788e688": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a18eea0b3ee4b22889acc4216b9f537", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_272caefd758042709a3f8bd67d1f6dfd", "tabbable": null, "tooltip": null, "value": 2041.0}}, "12aca159806146a4af975df430437cde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e64b09bf0a344ff1b5391edbe1e26160": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "779ab53f84364921a89a86019fc55c33": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_12aca159806146a4af975df430437cde", "placeholder": "\u200b", "style": "IPY_MODEL_e64b09bf0a344ff1b5391edbe1e26160", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "cf94497ef2a34f5ebac150c27ee21545": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "859ef03643e94d62aba7ee90f12360b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ea8fc958ac764717af568a7ad6193c06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf94497ef2a34f5ebac150c27ee21545", "placeholder": "\u200b", "style": "IPY_MODEL_859ef03643e94d62aba7ee90f12360b9", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007476kB/s]"}}, "0c5a717783524e799fe00012c4808898": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "559ce94d479c44128c0617d73e3840a4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_779ab53f84364921a89a86019fc55c33", "IPY_MODEL_54e58c26f02b42e39b2f3f027788e688", "IPY_MODEL_ea8fc958ac764717af568a7ad6193c06"], "layout": "IPY_MODEL_0c5a717783524e799fe00012c4808898", "tabbable": null, "tooltip": null}}, "9a462f409c7d44379e9242ab654c0d76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47540f3bc87a4a2099a431a8e86a5613": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4e6ebbf588be443d810e1636093ddcec": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9a462f409c7d44379e9242ab654c0d76", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_47540f3bc87a4a2099a431a8e86a5613", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "92eb4bfab7354c04b4ad4cf5062076df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a40cadb3f064fbc8236ecd4b9a40de5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c2df9eea38404515b97c32652d7b884b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_92eb4bfab7354c04b4ad4cf5062076df", "placeholder": "\u200b", "style": "IPY_MODEL_2a40cadb3f064fbc8236ecd4b9a40de5", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "e1494eee470f4b2286066bbcff458a2c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35133f64bd704635803c2bb4a9fdcde1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "58c68625a51740c2b3532df8814fc567": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e1494eee470f4b2286066bbcff458a2c", "placeholder": "\u200b", "style": "IPY_MODEL_35133f64bd704635803c2bb4a9fdcde1", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200730.6MB/s]"}}, "049fc237b5604097b936619a022dcef0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26a08a01edc840fdbf0fc669d332e966": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c2df9eea38404515b97c32652d7b884b", "IPY_MODEL_4e6ebbf588be443d810e1636093ddcec", "IPY_MODEL_58c68625a51740c2b3532df8814fc567"], "layout": "IPY_MODEL_049fc237b5604097b936619a022dcef0", "tabbable": null, "tooltip": null}}, "82c84c4fc7034fa5862359013ad4c985": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b39b926e7f47453c889e772829230a97": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "22462da2556548cc97fdfffaa9df09bf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_82c84c4fc7034fa5862359013ad4c985", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b39b926e7f47453c889e772829230a97", "tabbable": null, "tooltip": null, "value": 3201.0}}, "bf49502611ba49a397de19605da7550e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca3fa2e09bb64003865cbfb4308803f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "74c86e44676b4eb189a415af718be86f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bf49502611ba49a397de19605da7550e", "placeholder": "\u200b", "style": "IPY_MODEL_ca3fa2e09bb64003865cbfb4308803f0", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "b13ce02574ad435a8bbf0260d2f6a8ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13f4f188f95c47ab9320fc789b24c86c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "61ba8ceb51ba4ba3a01c72dd9932d866": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b13ce02574ad435a8bbf0260d2f6a8ed", "placeholder": "\u200b", "style": "IPY_MODEL_13f4f188f95c47ab9320fc789b24c86c", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007839kB/s]"}}, "e5adc1ec15a54e5eaf0bfa3dab004f14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "80cb1f1cefe44a4c9d6dc8382490d21b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_74c86e44676b4eb189a415af718be86f", "IPY_MODEL_22462da2556548cc97fdfffaa9df09bf", "IPY_MODEL_61ba8ceb51ba4ba3a01c72dd9932d866"], "layout": "IPY_MODEL_e5adc1ec15a54e5eaf0bfa3dab004f14", "tabbable": null, "tooltip": null}}, "ba9d61fc2a5a410d944eb91e9dcf5a0f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0bb29db854e34b7b8204b554cd997f29": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "acabb809d8ed487a9816fc9839a6c5fd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ba9d61fc2a5a410d944eb91e9dcf5a0f", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0bb29db854e34b7b8204b554cd997f29", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "4970f56bd214401faeec877e4c626ba1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "21e054ee16204a2ea9d138fdd06febbc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1f7a16de96c74854bba19433b3cb1f4a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4970f56bd214401faeec877e4c626ba1", "placeholder": "\u200b", "style": "IPY_MODEL_21e054ee16204a2ea9d138fdd06febbc", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "1e0492b89ec04f4da62069600a4b6049": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4450546991d4b42af0822f453b55996": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b828666b72f04ef89c2797cb7addcd3e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1e0492b89ec04f4da62069600a4b6049", "placeholder": "\u200b", "style": "IPY_MODEL_b4450546991d4b42af0822f453b55996", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200748.0MB/s]"}}, "1db2118a850a49ad8f86d22268e3d544": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5168a705b2314d658bdbaaa89386ddc8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1f7a16de96c74854bba19433b3cb1f4a", "IPY_MODEL_acabb809d8ed487a9816fc9839a6c5fd", "IPY_MODEL_b828666b72f04ef89c2797cb7addcd3e"], "layout": "IPY_MODEL_1db2118a850a49ad8f86d22268e3d544", "tabbable": null, "tooltip": null}}, "1f22ab5c9c0546f4867105f7926647d5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7517e16e60534f379b8d6c502ba22449": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8d9696f9111c4bc28e65bdb9ceb4bc54": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f22ab5c9c0546f4867105f7926647d5", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7517e16e60534f379b8d6c502ba22449", "tabbable": null, "tooltip": null, "value": 128619.0}}, "5257844331e34f2cbe0041b95a5cc8b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "432343ad04c24ac293b82ca705f4bfb9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9360de93990243adba0e99e98272eabf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5257844331e34f2cbe0041b95a5cc8b8", "placeholder": "\u200b", "style": "IPY_MODEL_432343ad04c24ac293b82ca705f4bfb9", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "9db82fd51e2e4fed9b33f37367503967": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1cb741f673484f3789660f4cc7df7182": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e745c6f9e0974eb497903a433d7fd972": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9db82fd51e2e4fed9b33f37367503967", "placeholder": "\u200b", "style": "IPY_MODEL_1cb741f673484f3789660f4cc7df7182", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200720.0MB/s]"}}, "3d47639a1fe1481593c844e53b0cabbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2840cececad49699fbc2c57ff6d7452": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9360de93990243adba0e99e98272eabf", "IPY_MODEL_8d9696f9111c4bc28e65bdb9ceb4bc54", "IPY_MODEL_e745c6f9e0974eb497903a433d7fd972"], "layout": "IPY_MODEL_3d47639a1fe1481593c844e53b0cabbe", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 11653057e..cc30a9966 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:07.196563Z", - "iopub.status.busy": "2024-06-13T18:22:07.196039Z", - "iopub.status.idle": "2024-06-13T18:22:14.112556Z", - "shell.execute_reply": "2024-06-13T18:22:14.111910Z" + "iopub.execute_input": "2024-06-14T00:17:01.289276Z", + "iopub.status.busy": "2024-06-14T00:17:01.288792Z", + "iopub.status.idle": "2024-06-14T00:17:06.403193Z", + "shell.execute_reply": "2024-06-14T00:17:06.402532Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:14.115493Z", - "iopub.status.busy": "2024-06-13T18:22:14.114968Z", - "iopub.status.idle": "2024-06-13T18:22:14.118130Z", - "shell.execute_reply": "2024-06-13T18:22:14.117688Z" + "iopub.execute_input": "2024-06-14T00:17:06.406313Z", + "iopub.status.busy": "2024-06-14T00:17:06.405767Z", + "iopub.status.idle": "2024-06-14T00:17:06.408993Z", + "shell.execute_reply": "2024-06-14T00:17:06.408538Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:14.120144Z", - "iopub.status.busy": "2024-06-13T18:22:14.119788Z", - "iopub.status.idle": "2024-06-13T18:22:14.124288Z", - "shell.execute_reply": "2024-06-13T18:22:14.123807Z" + "iopub.execute_input": "2024-06-14T00:17:06.411145Z", + "iopub.status.busy": "2024-06-14T00:17:06.410812Z", + "iopub.status.idle": "2024-06-14T00:17:06.415745Z", + "shell.execute_reply": "2024-06-14T00:17:06.415173Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:14.126288Z", - "iopub.status.busy": "2024-06-13T18:22:14.125979Z", - "iopub.status.idle": "2024-06-13T18:22:15.655949Z", - "shell.execute_reply": "2024-06-13T18:22:15.655288Z" + "iopub.execute_input": "2024-06-14T00:17:06.418044Z", + "iopub.status.busy": "2024-06-14T00:17:06.417726Z", + "iopub.status.idle": "2024-06-14T00:17:08.050915Z", + "shell.execute_reply": "2024-06-14T00:17:08.050181Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:15.658656Z", - "iopub.status.busy": "2024-06-13T18:22:15.658271Z", - "iopub.status.idle": "2024-06-13T18:22:15.669053Z", - "shell.execute_reply": "2024-06-13T18:22:15.668589Z" + "iopub.execute_input": "2024-06-14T00:17:08.053460Z", + "iopub.status.busy": "2024-06-14T00:17:08.053223Z", + "iopub.status.idle": "2024-06-14T00:17:08.063793Z", + "shell.execute_reply": "2024-06-14T00:17:08.063234Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:15.671192Z", - "iopub.status.busy": "2024-06-13T18:22:15.670906Z", - "iopub.status.idle": "2024-06-13T18:22:15.676181Z", - "shell.execute_reply": "2024-06-13T18:22:15.675707Z" + "iopub.execute_input": "2024-06-14T00:17:08.066149Z", + "iopub.status.busy": "2024-06-14T00:17:08.065855Z", + "iopub.status.idle": "2024-06-14T00:17:08.071436Z", + "shell.execute_reply": "2024-06-14T00:17:08.070971Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:15.678127Z", - "iopub.status.busy": "2024-06-13T18:22:15.677856Z", - "iopub.status.idle": "2024-06-13T18:22:16.181475Z", - "shell.execute_reply": "2024-06-13T18:22:16.180932Z" + "iopub.execute_input": "2024-06-14T00:17:08.073595Z", + "iopub.status.busy": "2024-06-14T00:17:08.073262Z", + "iopub.status.idle": "2024-06-14T00:17:08.539051Z", + "shell.execute_reply": "2024-06-14T00:17:08.538476Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:16.183815Z", - "iopub.status.busy": "2024-06-13T18:22:16.183448Z", - "iopub.status.idle": "2024-06-13T18:22:17.076266Z", - "shell.execute_reply": "2024-06-13T18:22:17.075643Z" + "iopub.execute_input": "2024-06-14T00:17:08.541347Z", + "iopub.status.busy": "2024-06-14T00:17:08.540959Z", + "iopub.status.idle": "2024-06-14T00:17:10.124125Z", + "shell.execute_reply": "2024-06-14T00:17:10.123609Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:17.078873Z", - "iopub.status.busy": "2024-06-13T18:22:17.078536Z", - "iopub.status.idle": "2024-06-13T18:22:17.096552Z", - "shell.execute_reply": "2024-06-13T18:22:17.096064Z" + "iopub.execute_input": "2024-06-14T00:17:10.126608Z", + "iopub.status.busy": "2024-06-14T00:17:10.126407Z", + "iopub.status.idle": "2024-06-14T00:17:10.146074Z", + "shell.execute_reply": "2024-06-14T00:17:10.145537Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:17.098731Z", - "iopub.status.busy": "2024-06-13T18:22:17.098301Z", - "iopub.status.idle": "2024-06-13T18:22:17.101559Z", - "shell.execute_reply": "2024-06-13T18:22:17.101029Z" + "iopub.execute_input": "2024-06-14T00:17:10.148118Z", + "iopub.status.busy": "2024-06-14T00:17:10.147930Z", + "iopub.status.idle": "2024-06-14T00:17:10.151246Z", + "shell.execute_reply": "2024-06-14T00:17:10.150765Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:17.103571Z", - "iopub.status.busy": "2024-06-13T18:22:17.103195Z", - "iopub.status.idle": "2024-06-13T18:22:31.927625Z", - "shell.execute_reply": "2024-06-13T18:22:31.926993Z" + "iopub.execute_input": "2024-06-14T00:17:10.153474Z", + "iopub.status.busy": "2024-06-14T00:17:10.153116Z", + "iopub.status.idle": "2024-06-14T00:17:25.884957Z", + "shell.execute_reply": "2024-06-14T00:17:25.884418Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:31.930382Z", - "iopub.status.busy": "2024-06-13T18:22:31.929971Z", - "iopub.status.idle": "2024-06-13T18:22:31.933687Z", - "shell.execute_reply": "2024-06-13T18:22:31.933130Z" + "iopub.execute_input": "2024-06-14T00:17:25.887851Z", + "iopub.status.busy": "2024-06-14T00:17:25.887326Z", + "iopub.status.idle": "2024-06-14T00:17:25.891147Z", + "shell.execute_reply": "2024-06-14T00:17:25.890696Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:31.935815Z", - "iopub.status.busy": "2024-06-13T18:22:31.935479Z", - "iopub.status.idle": "2024-06-13T18:22:32.625447Z", - "shell.execute_reply": "2024-06-13T18:22:32.624830Z" + "iopub.execute_input": "2024-06-14T00:17:25.893147Z", + "iopub.status.busy": "2024-06-14T00:17:25.892890Z", + "iopub.status.idle": "2024-06-14T00:17:26.608700Z", + "shell.execute_reply": "2024-06-14T00:17:26.608081Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.628290Z", - "iopub.status.busy": "2024-06-13T18:22:32.628062Z", - "iopub.status.idle": "2024-06-13T18:22:32.632761Z", - "shell.execute_reply": "2024-06-13T18:22:32.632230Z" + "iopub.execute_input": "2024-06-14T00:17:26.612120Z", + "iopub.status.busy": "2024-06-14T00:17:26.611624Z", + "iopub.status.idle": "2024-06-14T00:17:26.618075Z", + "shell.execute_reply": "2024-06-14T00:17:26.617519Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.636034Z", - "iopub.status.busy": "2024-06-13T18:22:32.635120Z", - "iopub.status.idle": "2024-06-13T18:22:32.730942Z", - "shell.execute_reply": "2024-06-13T18:22:32.730385Z" + "iopub.execute_input": "2024-06-14T00:17:26.621596Z", + "iopub.status.busy": "2024-06-14T00:17:26.620583Z", + "iopub.status.idle": "2024-06-14T00:17:26.716625Z", + "shell.execute_reply": "2024-06-14T00:17:26.715970Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.733286Z", - "iopub.status.busy": "2024-06-13T18:22:32.732906Z", - "iopub.status.idle": "2024-06-13T18:22:32.745436Z", - "shell.execute_reply": "2024-06-13T18:22:32.744969Z" + "iopub.execute_input": "2024-06-14T00:17:26.718896Z", + "iopub.status.busy": "2024-06-14T00:17:26.718701Z", + "iopub.status.idle": "2024-06-14T00:17:26.731123Z", + "shell.execute_reply": "2024-06-14T00:17:26.730647Z" }, "scrolled": true }, @@ -880,10 +880,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.747532Z", - "iopub.status.busy": "2024-06-13T18:22:32.747193Z", - "iopub.status.idle": "2024-06-13T18:22:32.755008Z", - "shell.execute_reply": "2024-06-13T18:22:32.754454Z" + "iopub.execute_input": "2024-06-14T00:17:26.733182Z", + "iopub.status.busy": "2024-06-14T00:17:26.732848Z", + "iopub.status.idle": "2024-06-14T00:17:26.740863Z", + "shell.execute_reply": "2024-06-14T00:17:26.740385Z" } }, "outputs": [ @@ -987,10 +987,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.757159Z", - "iopub.status.busy": "2024-06-13T18:22:32.756812Z", - "iopub.status.idle": "2024-06-13T18:22:32.760990Z", - "shell.execute_reply": "2024-06-13T18:22:32.760455Z" + "iopub.execute_input": "2024-06-14T00:17:26.742882Z", + "iopub.status.busy": "2024-06-14T00:17:26.742620Z", + "iopub.status.idle": "2024-06-14T00:17:26.746690Z", + "shell.execute_reply": "2024-06-14T00:17:26.746139Z" } }, "outputs": [ @@ -1028,10 +1028,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.763138Z", - "iopub.status.busy": "2024-06-13T18:22:32.762750Z", - "iopub.status.idle": "2024-06-13T18:22:32.768655Z", - "shell.execute_reply": "2024-06-13T18:22:32.768100Z" + "iopub.execute_input": "2024-06-14T00:17:26.748730Z", + "iopub.status.busy": "2024-06-14T00:17:26.748395Z", + "iopub.status.idle": "2024-06-14T00:17:26.754459Z", + "shell.execute_reply": "2024-06-14T00:17:26.753879Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1158,10 +1158,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.770732Z", - "iopub.status.busy": "2024-06-13T18:22:32.770398Z", - "iopub.status.idle": "2024-06-13T18:22:32.885235Z", - "shell.execute_reply": "2024-06-13T18:22:32.884652Z" + "iopub.execute_input": "2024-06-14T00:17:26.756577Z", + "iopub.status.busy": "2024-06-14T00:17:26.756264Z", + "iopub.status.idle": "2024-06-14T00:17:26.868280Z", + "shell.execute_reply": "2024-06-14T00:17:26.867709Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1215,10 +1215,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.887631Z", - "iopub.status.busy": "2024-06-13T18:22:32.887282Z", - "iopub.status.idle": "2024-06-13T18:22:32.993937Z", - "shell.execute_reply": "2024-06-13T18:22:32.993431Z" + "iopub.execute_input": "2024-06-14T00:17:26.870482Z", + "iopub.status.busy": "2024-06-14T00:17:26.870268Z", + "iopub.status.idle": "2024-06-14T00:17:26.974709Z", + "shell.execute_reply": "2024-06-14T00:17:26.974206Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1263,10 +1263,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-06-13T18:22:32.996112Z", - "iopub.status.busy": "2024-06-13T18:22:32.995776Z", - "iopub.status.idle": "2024-06-13T18:22:33.100291Z", - "shell.execute_reply": "2024-06-13T18:22:33.099688Z" + "iopub.execute_input": "2024-06-14T00:17:26.976882Z", + "iopub.status.busy": "2024-06-14T00:17:26.976471Z", + "iopub.status.idle": "2024-06-14T00:17:27.080302Z", + "shell.execute_reply": "2024-06-14T00:17:27.079721Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1307,10 +1307,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:33.102486Z", - "iopub.status.busy": "2024-06-13T18:22:33.102219Z", - "iopub.status.idle": "2024-06-13T18:22:33.207139Z", - "shell.execute_reply": "2024-06-13T18:22:33.206536Z" + "iopub.execute_input": "2024-06-14T00:17:27.082334Z", + "iopub.status.busy": "2024-06-14T00:17:27.082120Z", + "iopub.status.idle": "2024-06-14T00:17:27.186369Z", + "shell.execute_reply": "2024-06-14T00:17:27.185875Z" } }, "outputs": [ @@ -1358,10 +1358,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:33.209457Z", - "iopub.status.busy": "2024-06-13T18:22:33.209131Z", - "iopub.status.idle": "2024-06-13T18:22:33.212269Z", - "shell.execute_reply": "2024-06-13T18:22:33.211797Z" + "iopub.execute_input": "2024-06-14T00:17:27.188652Z", + "iopub.status.busy": "2024-06-14T00:17:27.188237Z", + "iopub.status.idle": "2024-06-14T00:17:27.191622Z", + "shell.execute_reply": "2024-06-14T00:17:27.191046Z" }, "nbsphinx": "hidden" }, @@ -1402,7 +1402,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0e6cff9c13364fbf9188bc8ed9570dfe": { + "049fc237b5604097b936619a022dcef0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,7 +1455,23 @@ "width": null } }, - "130c522cf9de40f4ac92754b6190d2cd": { + "0bb29db854e34b7b8204b554cd997f29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0c5a717783524e799fe00012c4808898": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,7 +1524,7 @@ "width": null } }, - "15197c6fed684dc29e6af9b64024430d": { + "12aca159806146a4af975df430437cde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1561,82 +1577,43 @@ "width": null } }, - "15eef3bc3cb84f9e8cf6b521589d4ed2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e6cff9c13364fbf9188bc8ed9570dfe", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5a334f4cb35e4ee5afbac7cc6063dc7a", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "15f88ea20e114c26a6d052aa053684cc": { + "13f4f188f95c47ab9320fc789b24c86c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1aa5223478e94472ab31dc5676e1e4a7", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c208402e150c450e997644316d660574", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "16b957adb748495c8f843617b5c1c95e": { + "1cb741f673484f3789660f4cc7df7182": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff04469994fe43588e35ff413d36d84f", - "placeholder": "​", - "style": "IPY_MODEL_bfad5d6457064c60bad64e108880ebff", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "172803a5acf34268bbfb95b6230a1f16": { + "1db2118a850a49ad8f86d22268e3d544": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1689,7 +1666,7 @@ "width": null } }, - "19d5ba8653894fdf91d5e7737b00d22f": { + "1e0492b89ec04f4da62069600a4b6049": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1742,7 +1719,7 @@ "width": null } }, - "1aa5223478e94472ab31dc5676e1e4a7": { + "1f22ab5c9c0546f4867105f7926647d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1795,7 +1772,30 @@ "width": null } }, - "2431bff6596c4cd9b2a4e0a2d61c530c": { + "1f7a16de96c74854bba19433b3cb1f4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4970f56bd214401faeec877e4c626ba1", + "placeholder": "​", + "style": "IPY_MODEL_21e054ee16204a2ea9d138fdd06febbc", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "21e054ee16204a2ea9d138fdd06febbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1813,7 +1813,57 @@ "text_color": null } }, - "291772dd08904344964877a8689f3ac1": { + "22462da2556548cc97fdfffaa9df09bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_82c84c4fc7034fa5862359013ad4c985", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b39b926e7f47453c889e772829230a97", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "26a08a01edc840fdbf0fc669d332e966": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c2df9eea38404515b97c32652d7b884b", + "IPY_MODEL_4e6ebbf588be443d810e1636093ddcec", + "IPY_MODEL_58c68625a51740c2b3532df8814fc567" + ], + "layout": "IPY_MODEL_049fc237b5604097b936619a022dcef0", + "tabbable": null, + "tooltip": null + } + }, + "272caefd758042709a3f8bd67d1f6dfd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1829,7 +1879,25 @@ "description_width": "" } }, - "38f73950f0b2483984b2c52fbfc33fa0": { + "2a40cadb3f064fbc8236ecd4b9a40de5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "35133f64bd704635803c2bb4a9fdcde1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1847,7 +1915,7 @@ "text_color": null } }, - "39d8f21da7c947b58878f4a50c33a1c2": { + "3d47639a1fe1481593c844e53b0cabbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1900,31 +1968,41 @@ "width": null } }, - "3b4ed508d2fd4aa5a6b7db88f9fc4439": { + "432343ad04c24ac293b82ca705f4bfb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_844c80f92d9f4181823a5dd898ef9f7f", - "IPY_MODEL_df2d3ac8ba464754a15c87d2a2aff21c", - "IPY_MODEL_4bfcd2779bf1488c8a8679e37ef5df65" - ], - "layout": "IPY_MODEL_9be80958325b44509d35ded14f351657", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3e4a2fc52718432280f5f292abf0bb9f": { + "47540f3bc87a4a2099a431a8e86a5613": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4970f56bd214401faeec877e4c626ba1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1977,7 +2055,7 @@ "width": null } }, - "4289413ed1f3437799576c029e105a8a": { + "4a18eea0b3ee4b22889acc4216b9f537": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2030,48 +2108,7 @@ "width": null } }, - "495aa7e30d1847b4bc03f2c539208db0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4bfcd2779bf1488c8a8679e37ef5df65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15197c6fed684dc29e6af9b64024430d", - "placeholder": "​", - "style": "IPY_MODEL_2431bff6596c4cd9b2a4e0a2d61c530c", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 203MB/s]" - } - }, - "4da158336ca1492280244bca089d2fcf": { + "4e6ebbf588be443d810e1636093ddcec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2087,17 +2124,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ddfb6301bea14d1e84ba9b4ebd7e3371", - "max": 3201.0, + "layout": "IPY_MODEL_9a462f409c7d44379e9242ab654c0d76", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_774d925e3f2d4091b634daa979b6581e", + "style": "IPY_MODEL_47540f3bc87a4a2099a431a8e86a5613", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 16887676.0 } }, - "551dfbf7707540f0b6412868fada53e9": { + "5168a705b2314d658bdbaaa89386ddc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2112,32 +2149,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ffbb575da0e44e23b40187c7bd8b6596", - "IPY_MODEL_4da158336ca1492280244bca089d2fcf", - "IPY_MODEL_bf09b30e0d3f4522bb9624f3fec5f8a2" + "IPY_MODEL_1f7a16de96c74854bba19433b3cb1f4a", + "IPY_MODEL_acabb809d8ed487a9816fc9839a6c5fd", + "IPY_MODEL_b828666b72f04ef89c2797cb7addcd3e" ], - "layout": "IPY_MODEL_ae854acc0bff4783bb318d52e5f085d6", + "layout": "IPY_MODEL_1db2118a850a49ad8f86d22268e3d544", "tabbable": null, "tooltip": null } }, - "5a334f4cb35e4ee5afbac7cc6063dc7a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6438cfc59b0a4551b5ea6f5fa7ee2b55": { + "5257844331e34f2cbe0041b95a5cc8b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2190,25 +2211,33 @@ "width": null } }, - "70fd5df3d1584b598c67bd4f2eccbd17": { + "54e58c26f02b42e39b2f3f027788e688": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a18eea0b3ee4b22889acc4216b9f537", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_272caefd758042709a3f8bd67d1f6dfd", + "tabbable": null, + "tooltip": null, + "value": 2041.0 } }, - "7199ce63e02644699a50db9401c5a8bc": { + "559ce94d479c44128c0617d73e3840a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2223,103 +2252,62 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e435c4cf6c1d493c8a53201d0fd2564f", - "IPY_MODEL_e1699196b24c40de956824283f65ce04", - "IPY_MODEL_f4aac3d64d8c46a9955501657c9b658c" + "IPY_MODEL_779ab53f84364921a89a86019fc55c33", + "IPY_MODEL_54e58c26f02b42e39b2f3f027788e688", + "IPY_MODEL_ea8fc958ac764717af568a7ad6193c06" ], - "layout": "IPY_MODEL_8dda6fe752b24aa8bf822e9564fecb13", + "layout": "IPY_MODEL_0c5a717783524e799fe00012c4808898", "tabbable": null, "tooltip": null } }, - "761bb4df403b4744a96d28a20e1f13b1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "774d925e3f2d4091b634daa979b6581e": { + "58c68625a51740c2b3532df8814fc567": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e1494eee470f4b2286066bbcff458a2c", + "placeholder": "​", + "style": "IPY_MODEL_35133f64bd704635803c2bb4a9fdcde1", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 30.6MB/s]" } }, - "7d5d806971d24ceb82cdb51cd330eb65": { + "61ba8ceb51ba4ba3a01c72dd9932d866": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b13ce02574ad435a8bbf0260d2f6a8ed", + "placeholder": "​", + "style": "IPY_MODEL_13f4f188f95c47ab9320fc789b24c86c", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 839kB/s]" } }, - "844c80f92d9f4181823a5dd898ef9f7f": { + "74c86e44676b4eb189a415af718be86f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2334,15 +2322,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6438cfc59b0a4551b5ea6f5fa7ee2b55", + "layout": "IPY_MODEL_bf49502611ba49a397de19605da7550e", "placeholder": "​", - "style": "IPY_MODEL_7d5d806971d24ceb82cdb51cd330eb65", + "style": "IPY_MODEL_ca3fa2e09bb64003865cbfb4308803f0", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "7517e16e60534f379b8d6c502ba22449": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "84f741f66798418186ba90846f2b6c79": { + "779ab53f84364921a89a86019fc55c33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2357,33 +2361,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a7f2888a4d0d4c98ab61fed5012681f6", + "layout": "IPY_MODEL_12aca159806146a4af975df430437cde", "placeholder": "​", - "style": "IPY_MODEL_cfc704dd7d5745248a343629104c3b79", + "style": "IPY_MODEL_e64b09bf0a344ff1b5391edbe1e26160", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 10.5MB/s]" + "value": "hyperparams.yaml: 100%" } }, - "8c56abf2bb624aad952666ec0cb06d1a": { + "80cb1f1cefe44a4c9d6dc8382490d21b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_74c86e44676b4eb189a415af718be86f", + "IPY_MODEL_22462da2556548cc97fdfffaa9df09bf", + "IPY_MODEL_61ba8ceb51ba4ba3a01c72dd9932d866" + ], + "layout": "IPY_MODEL_e5adc1ec15a54e5eaf0bfa3dab004f14", + "tabbable": null, + "tooltip": null } }, - "8dda6fe752b24aa8bf822e9564fecb13": { + "82c84c4fc7034fa5862359013ad4c985": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2436,7 +2446,7 @@ "width": null } }, - "8f90ea53897f455fb156545ff7469bea": { + "859ef03643e94d62aba7ee90f12360b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2454,23 +2464,86 @@ "text_color": null } }, - "915beea47d184c989e868b1b3fbb18f4": { + "8d9696f9111c4bc28e65bdb9ceb4bc54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f22ab5c9c0546f4867105f7926647d5", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7517e16e60534f379b8d6c502ba22449", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "92eb4bfab7354c04b4ad4cf5062076df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "96fdf58bd8944e0e8a4c6895138315e7": { + "9360de93990243adba0e99e98272eabf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2485,15 +2558,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e4a2fc52718432280f5f292abf0bb9f", + "layout": "IPY_MODEL_5257844331e34f2cbe0041b95a5cc8b8", "placeholder": "​", - "style": "IPY_MODEL_70fd5df3d1584b598c67bd4f2eccbd17", + "style": "IPY_MODEL_432343ad04c24ac293b82ca705f4bfb9", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": "label_encoder.txt: 100%" } }, - "9be80958325b44509d35ded14f351657": { + "9a462f409c7d44379e9242ab654c0d76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2546,7 +2619,7 @@ "width": null } }, - "a5bae75c38a74e49b02f9d2550022983": { + "9db82fd51e2e4fed9b33f37367503967": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2599,7 +2672,33 @@ "width": null } }, - "a7f2888a4d0d4c98ab61fed5012681f6": { + "acabb809d8ed487a9816fc9839a6c5fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba9d61fc2a5a410d944eb91e9dcf5a0f", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0bb29db854e34b7b8204b554cd997f29", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "b13ce02574ad435a8bbf0260d2f6a8ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2652,7 +2751,64 @@ "width": null } }, - "ae854acc0bff4783bb318d52e5f085d6": { + "b39b926e7f47453c889e772829230a97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b4450546991d4b42af0822f453b55996": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b828666b72f04ef89c2797cb7addcd3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e0492b89ec04f4da62069600a4b6049", + "placeholder": "​", + "style": "IPY_MODEL_b4450546991d4b42af0822f453b55996", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 48.0MB/s]" + } + }, + "ba9d61fc2a5a410d944eb91e9dcf5a0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2705,7 +2861,7 @@ "width": null } }, - "b64482117e4d4595a54e905b421aeb27": { + "bf49502611ba49a397de19605da7550e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2758,7 +2914,7 @@ "width": null } }, - "ba658f46cfc549e4a65d5d3c3c395130": { + "c2df9eea38404515b97c32652d7b884b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2773,114 +2929,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_39d8f21da7c947b58878f4a50c33a1c2", + "layout": "IPY_MODEL_92eb4bfab7354c04b4ad4cf5062076df", "placeholder": "​", - "style": "IPY_MODEL_495aa7e30d1847b4bc03f2c539208db0", + "style": "IPY_MODEL_2a40cadb3f064fbc8236ecd4b9a40de5", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 150MB/s]" - } - }, - "bf09b30e0d3f4522bb9624f3fec5f8a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f786259934684201a10fd4e447c05047", - "placeholder": "​", - "style": "IPY_MODEL_8f90ea53897f455fb156545ff7469bea", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 14.2kB/s]" - } - }, - "bfad5d6457064c60bad64e108880ebff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c208402e150c450e997644316d660574": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c9bab60f3a264953b441b080a504e204": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16b957adb748495c8f843617b5c1c95e", - "IPY_MODEL_15eef3bc3cb84f9e8cf6b521589d4ed2", - "IPY_MODEL_84f741f66798418186ba90846f2b6c79" - ], - "layout": "IPY_MODEL_172803a5acf34268bbfb95b6230a1f16", - "tabbable": null, - "tooltip": null - } - }, - "cfc704dd7d5745248a343629104c3b79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "embedding_model.ckpt: 100%" } }, - "d812fb2694d347deb1eaf075f6199608": { + "ca3fa2e09bb64003865cbfb4308803f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2898,7 +2955,7 @@ "text_color": null } }, - "ddfb6301bea14d1e84ba9b4ebd7e3371": { + "cf94497ef2a34f5ebac150c27ee21545": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2951,82 +3008,7 @@ "width": null } }, - "df2d3ac8ba464754a15c87d2a2aff21c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4289413ed1f3437799576c029e105a8a", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_291772dd08904344964877a8689f3ac1", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "e1699196b24c40de956824283f65ce04": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_130c522cf9de40f4ac92754b6190d2cd", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_915beea47d184c989e868b1b3fbb18f4", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "e435c4cf6c1d493c8a53201d0fd2564f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d5ba8653894fdf91d5e7737b00d22f", - "placeholder": "​", - "style": "IPY_MODEL_38f73950f0b2483984b2c52fbfc33fa0", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "ed5cb1a3a84545419e6177e49f3a08d7": { + "d2840cececad49699fbc2c57ff6d7452": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3041,39 +3023,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_96fdf58bd8944e0e8a4c6895138315e7", - "IPY_MODEL_15f88ea20e114c26a6d052aa053684cc", - "IPY_MODEL_ba658f46cfc549e4a65d5d3c3c395130" + "IPY_MODEL_9360de93990243adba0e99e98272eabf", + "IPY_MODEL_8d9696f9111c4bc28e65bdb9ceb4bc54", + "IPY_MODEL_e745c6f9e0974eb497903a433d7fd972" ], - "layout": "IPY_MODEL_b64482117e4d4595a54e905b421aeb27", + "layout": "IPY_MODEL_3d47639a1fe1481593c844e53b0cabbe", "tabbable": null, "tooltip": null } }, - "f4aac3d64d8c46a9955501657c9b658c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a5bae75c38a74e49b02f9d2550022983", - "placeholder": "​", - "style": "IPY_MODEL_8c56abf2bb624aad952666ec0cb06d1a", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 490kB/s]" - } - }, - "f786259934684201a10fd4e447c05047": { + "e1494eee470f4b2286066bbcff458a2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3126,7 +3085,7 @@ "width": null } }, - "ff04469994fe43588e35ff413d36d84f": { + "e5adc1ec15a54e5eaf0bfa3dab004f14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3179,7 +3138,25 @@ "width": null } }, - "ffbb575da0e44e23b40187c7bd8b6596": { + "e64b09bf0a344ff1b5391edbe1e26160": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e745c6f9e0974eb497903a433d7fd972": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3194,12 +3171,35 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_761bb4df403b4744a96d28a20e1f13b1", + "layout": "IPY_MODEL_9db82fd51e2e4fed9b33f37367503967", "placeholder": "​", - "style": "IPY_MODEL_d812fb2694d347deb1eaf075f6199608", + "style": "IPY_MODEL_1cb741f673484f3789660f4cc7df7182", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": " 129k/129k [00:00<00:00, 20.0MB/s]" + } + }, + "ea8fc958ac764717af568a7ad6193c06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf94497ef2a34f5ebac150c27ee21545", + "placeholder": "​", + "style": "IPY_MODEL_859ef03643e94d62aba7ee90f12360b9", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" } } }, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index 54c38b6b7..ce21cff58 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -696,7 +696,7 @@

1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44 + %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1184,7 +1184,7 @@

5. Use DataMonitor to find issues in new data

-
+
@@ -1933,7 +1933,7 @@

8. Looking for both label issues and outliers -{"state": {"f5afacb27efc4abe925acc1dbb8f6d2c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cff9951557da403796934d61ae755f06": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ca46e6772a4b4896b28ce1bee03e90ae": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f5afacb27efc4abe925acc1dbb8f6d2c", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cff9951557da403796934d61ae755f06", "tabbable": null, "tooltip": null, "value": 50.0}}, "99edcdc334354151ae1671a678a27570": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "102ea76a23a84c6595628ba8e0b6d412": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4539ac03270840949603846cfff65068": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_99edcdc334354151ae1671a678a27570", "placeholder": "\u200b", "style": "IPY_MODEL_102ea76a23a84c6595628ba8e0b6d412", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "38dbc29c0b194c18a1fb3de8c8bc373f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8f88b72191744db0b3e1f7a49f0544bd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4e3e561045394b9fb687be561f909e31": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_38dbc29c0b194c18a1fb3de8c8bc373f", "placeholder": "\u200b", "style": "IPY_MODEL_8f88b72191744db0b3e1f7a49f0544bd", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.86it/s]"}}, "26e30fd773804c929d1ad4997c06a01b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e155721fcc9474885d252e622f5129c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4539ac03270840949603846cfff65068", "IPY_MODEL_ca46e6772a4b4896b28ce1bee03e90ae", "IPY_MODEL_4e3e561045394b9fb687be561f909e31"], "layout": "IPY_MODEL_26e30fd773804c929d1ad4997c06a01b", "tabbable": null, "tooltip": null}}, "43c43d563f174199abf97b37e9c80a1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64eddbaa26854d0d85000f3b4a4c55fa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0a96fdf2b8b744ee91dd8d828825b1a1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_43c43d563f174199abf97b37e9c80a1e", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_64eddbaa26854d0d85000f3b4a4c55fa", "tabbable": null, "tooltip": null, "value": 7.0}}, "da9f41f70b764fe7a3e5f3e75c25a921": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f61a9e58a5c4b5ba540d88381cac667": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ae6f9d5ec6934555b1de197bd9374be7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da9f41f70b764fe7a3e5f3e75c25a921", "placeholder": "\u200b", "style": "IPY_MODEL_7f61a9e58a5c4b5ba540d88381cac667", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "49b9881793fc43c7b3e269be0249debf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "448b0b23f9d14e108c2183edc8c85746": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "027ee2cf0c244bbe82d896d2c6d45fb5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_49b9881793fc43c7b3e269be0249debf", "placeholder": "\u200b", "style": "IPY_MODEL_448b0b23f9d14e108c2183edc8c85746", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "a503f5644f324b13829adfdf0c42fc68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "02f2137bffe34409859676b4022f4c63": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ae6f9d5ec6934555b1de197bd9374be7", "IPY_MODEL_0a96fdf2b8b744ee91dd8d828825b1a1", "IPY_MODEL_027ee2cf0c244bbe82d896d2c6d45fb5"], "layout": "IPY_MODEL_a503f5644f324b13829adfdf0c42fc68", "tabbable": null, "tooltip": null}}, "70ca7b9038f94435b08127a5d3144fca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3ece56d55b041e3a3ee2d3ef62cbdac": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "73395eea60474d60889bb6527be5a188": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70ca7b9038f94435b08127a5d3144fca", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c3ece56d55b041e3a3ee2d3ef62cbdac", "tabbable": null, "tooltip": null, "value": 50.0}}, "e4c57afd2d05435d944d295289226f27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6830acf7aeb44380a1ea3951201619c8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "26c220d238264957965e393a2fe2aa5e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e4c57afd2d05435d944d295289226f27", "placeholder": "\u200b", "style": "IPY_MODEL_6830acf7aeb44380a1ea3951201619c8", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "ec62ef62743a4ba483cc919868a07290": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2a6cd3c9dff44fd9b5e4e0d9d0d2fdd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4e52a677dc6d49e7b534de63dadc113a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ec62ef62743a4ba483cc919868a07290", "placeholder": "\u200b", "style": "IPY_MODEL_d2a6cd3c9dff44fd9b5e4e0d9d0d2fdd", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.79it/s]"}}, "7ec355310bfd4bb582547a6a8e38b294": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "51cdc48742e448a3a16617004036b215": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_26c220d238264957965e393a2fe2aa5e", "IPY_MODEL_73395eea60474d60889bb6527be5a188", "IPY_MODEL_4e52a677dc6d49e7b534de63dadc113a"], "layout": "IPY_MODEL_7ec355310bfd4bb582547a6a8e38b294", "tabbable": null, "tooltip": null}}, "4151c73fda664b4a8ddb2556216147c2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e146a9852ee64af99289bc502dd68f91": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1c12aec4f2b6402fafa1f95c4a7f5010": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4151c73fda664b4a8ddb2556216147c2", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e146a9852ee64af99289bc502dd68f91", "tabbable": null, "tooltip": null, "value": 7.0}}, "c48101272bcb441aaff126eaf956bbff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e9882c39a0e46efbc2e04db6174c6f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1ffeea764a1545d8b16876783d0fbc52": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c48101272bcb441aaff126eaf956bbff", "placeholder": "\u200b", "style": "IPY_MODEL_5e9882c39a0e46efbc2e04db6174c6f6", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "8bf62851738342c6bca51cd59c2caa45": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8ebed8620b8446e93e3cb295d8c2493": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bd4447ab16c94540acd1bd86134b086b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8bf62851738342c6bca51cd59c2caa45", "placeholder": "\u200b", "style": "IPY_MODEL_a8ebed8620b8446e93e3cb295d8c2493", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "c06cd2f71e3c4b349a5cb094d5db96ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a76b0a9b5434a0abd3980129de891b3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1ffeea764a1545d8b16876783d0fbc52", "IPY_MODEL_1c12aec4f2b6402fafa1f95c4a7f5010", "IPY_MODEL_bd4447ab16c94540acd1bd86134b086b"], "layout": "IPY_MODEL_c06cd2f71e3c4b349a5cb094d5db96ae", "tabbable": null, "tooltip": null}}, "1c7a9d82e9534a3daec49aa2709535f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44fa733fc310439994ad1e0ca1b982fe": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e083eef43696473e8139430985ed229b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c7a9d82e9534a3daec49aa2709535f0", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_44fa733fc310439994ad1e0ca1b982fe", "tabbable": null, "tooltip": null, "value": 50.0}}, "9613bbdb2dd449c08bc01c0d1cb2217c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19d7ed71b048467d838dfc2c97910051": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e8eee715770f45b295df4ffa84d2608f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9613bbdb2dd449c08bc01c0d1cb2217c", "placeholder": "\u200b", "style": "IPY_MODEL_19d7ed71b048467d838dfc2c97910051", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "8648267303b64209a6db138d29df5e4a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6602a7b4119b4aff853b6fa0b664d947": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c38648ac8e4340299319fe3b6feee970": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8648267303b64209a6db138d29df5e4a", "placeholder": "\u200b", "style": "IPY_MODEL_6602a7b4119b4aff853b6fa0b664d947", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.74it/s]"}}, "afccf65013da4edd818f372363efb55c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eda514a8c8274628875bda061064c9bd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e8eee715770f45b295df4ffa84d2608f", "IPY_MODEL_e083eef43696473e8139430985ed229b", "IPY_MODEL_c38648ac8e4340299319fe3b6feee970"], "layout": "IPY_MODEL_afccf65013da4edd818f372363efb55c", "tabbable": null, "tooltip": null}}, "162c5f5c61b84c82978365dcff6f4020": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ad97b845a20459388c0937815b811e0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aaa3eb19f15b4bfb881a957d0214a182": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_162c5f5c61b84c82978365dcff6f4020", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2ad97b845a20459388c0937815b811e0", "tabbable": null, "tooltip": null, "value": 7.0}}, "c56ab6e5e7fd408f95438c827705d083": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b305188cea7c48439a4ffebd4f8956a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8d6e1f77af6c45119aba326234002134": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c56ab6e5e7fd408f95438c827705d083", "placeholder": "\u200b", "style": "IPY_MODEL_b305188cea7c48439a4ffebd4f8956a4", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "3cc7ea8dc3344181a462765f15bf5b89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52fc04baee224401b54e000fc50c99bd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d26f02fd63a1401b8809a0bf7feeab2b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3cc7ea8dc3344181a462765f15bf5b89", "placeholder": "\u200b", "style": "IPY_MODEL_52fc04baee224401b54e000fc50c99bd", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "5e23af02695345cd8145e29e6f11e2d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f60b4c5f8294befa2ae7b9c319ecf23": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8d6e1f77af6c45119aba326234002134", "IPY_MODEL_aaa3eb19f15b4bfb881a957d0214a182", "IPY_MODEL_d26f02fd63a1401b8809a0bf7feeab2b"], "layout": "IPY_MODEL_5e23af02695345cd8145e29e6f11e2d4", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"dd528df4f8364cf189aff7b3b4c6cc0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "87faf0443d8a41199a973bb50d2e18e4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4823285543054255bfc4a2076dfb1090": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dd528df4f8364cf189aff7b3b4c6cc0a", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_87faf0443d8a41199a973bb50d2e18e4", "tabbable": null, "tooltip": null, "value": 50.0}}, "90a96a607d204d89af09cc6331729c65": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e0e82dcfdd64151b441dd9bc466ae67": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a81fccc1d0974b48a0fed97207d44fe8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_90a96a607d204d89af09cc6331729c65", "placeholder": "\u200b", "style": "IPY_MODEL_7e0e82dcfdd64151b441dd9bc466ae67", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "bb5fdc09f53c415dab01e7db5e36ca20": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73ed20769f924434b75f109f346607ee": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8150e8488c9545dc954e47fc59d9ec9f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb5fdc09f53c415dab01e7db5e36ca20", "placeholder": "\u200b", "style": "IPY_MODEL_73ed20769f924434b75f109f346607ee", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.86it/s]"}}, "d819cbb015d149f1b2d0bde4edf08ac3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af3c9926cfbe41799e7720f657b418c7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a81fccc1d0974b48a0fed97207d44fe8", "IPY_MODEL_4823285543054255bfc4a2076dfb1090", "IPY_MODEL_8150e8488c9545dc954e47fc59d9ec9f"], "layout": "IPY_MODEL_d819cbb015d149f1b2d0bde4edf08ac3", "tabbable": null, "tooltip": null}}, "5da7305f7dbc4720ba13d22abe2a3df7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9a16b84534349bc8d8c66d65e029b0e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fba7e04e257741bdbe79b70262853c69": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5da7305f7dbc4720ba13d22abe2a3df7", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f9a16b84534349bc8d8c66d65e029b0e", "tabbable": null, "tooltip": null, "value": 7.0}}, "b0452a5bd7724709a7183635c5e408b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e09300f2b9774d8e90dcbb4970b76721": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c3d2c3ccf902411688a9dbd2c8933428": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b0452a5bd7724709a7183635c5e408b6", "placeholder": "\u200b", "style": "IPY_MODEL_e09300f2b9774d8e90dcbb4970b76721", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "ab5b2671a50f4eba81b5d29f525735d7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e92dd244e824b46a1c52ea44cba333d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "583f932db19445818da1db82118e1dca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab5b2671a50f4eba81b5d29f525735d7", "placeholder": "\u200b", "style": "IPY_MODEL_1e92dd244e824b46a1c52ea44cba333d", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "06c69d48973a468db203c242950ad690": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c905ff0a515748b2882ff279d6825f91": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c3d2c3ccf902411688a9dbd2c8933428", "IPY_MODEL_fba7e04e257741bdbe79b70262853c69", "IPY_MODEL_583f932db19445818da1db82118e1dca"], "layout": "IPY_MODEL_06c69d48973a468db203c242950ad690", "tabbable": null, "tooltip": null}}, "6544bf6ee5344bbfb4793e4b6057deee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b5c86a86e594ec58a959585374e67cf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3b6e90804bbb4dc1ac263c325b4787af": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6544bf6ee5344bbfb4793e4b6057deee", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6b5c86a86e594ec58a959585374e67cf", "tabbable": null, "tooltip": null, "value": 50.0}}, "ae842be536a74541a0c3a55ddf8a5cb1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "407cf46e56f94d0caf3d4729acc5692f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "08858a6fc3f344fc8404fb03cc7ddf9f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ae842be536a74541a0c3a55ddf8a5cb1", "placeholder": "\u200b", "style": "IPY_MODEL_407cf46e56f94d0caf3d4729acc5692f", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "71235f4ab4144fb58d20c27b3c8b51f2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3102e98c61a6489783b0269c3514d8a5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "096a5e714eee4874a49ca26e5597ca9f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71235f4ab4144fb58d20c27b3c8b51f2", "placeholder": "\u200b", "style": "IPY_MODEL_3102e98c61a6489783b0269c3514d8a5", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.78it/s]"}}, "45b647211ee64bb8b2b1e82b121c6041": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "241c2db461cd4830bf37c0bf3865ebaa": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_08858a6fc3f344fc8404fb03cc7ddf9f", "IPY_MODEL_3b6e90804bbb4dc1ac263c325b4787af", "IPY_MODEL_096a5e714eee4874a49ca26e5597ca9f"], "layout": "IPY_MODEL_45b647211ee64bb8b2b1e82b121c6041", "tabbable": null, "tooltip": null}}, "8f77b835d52d468598e452547031e53a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2e83fa6a60943a6be6d017f0a792585": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "487477967d28446aa21b181e22851d23": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f77b835d52d468598e452547031e53a", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e2e83fa6a60943a6be6d017f0a792585", "tabbable": null, "tooltip": null, "value": 7.0}}, "a1cd1d47270f4401bb27252e34320173": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30b477ffebff4e608c64c2edb926e665": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "40b2ef021b654a17868665460e59d553": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a1cd1d47270f4401bb27252e34320173", "placeholder": "\u200b", "style": "IPY_MODEL_30b477ffebff4e608c64c2edb926e665", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "936683bd163f457eb9709ab59dc45f68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a1aad77d500f4b7bbdbdf5d50727b621": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "52b9f13089ac4436bdf2935aca874153": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_936683bd163f457eb9709ab59dc45f68", "placeholder": "\u200b", "style": "IPY_MODEL_a1aad77d500f4b7bbdbdf5d50727b621", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "5755db67209b4886bedfb6c91105fcc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d98b02b0b64a4352a52b1fb2a06fa798": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_40b2ef021b654a17868665460e59d553", "IPY_MODEL_487477967d28446aa21b181e22851d23", "IPY_MODEL_52b9f13089ac4436bdf2935aca874153"], "layout": "IPY_MODEL_5755db67209b4886bedfb6c91105fcc4", "tabbable": null, "tooltip": null}}, "302f871ed70b4e45bcc21a616093a562": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7263fc171154a11b042187ba86a1512": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "70905837b13840ba837bc8243a7688cf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_302f871ed70b4e45bcc21a616093a562", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e7263fc171154a11b042187ba86a1512", "tabbable": null, "tooltip": null, "value": 50.0}}, "442780b7002b40e78a38a5e56efbc364": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb0ce3c5b47a474f824353b1dc5fe5df": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2be17b4b5adb402abacba17470175b68": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_442780b7002b40e78a38a5e56efbc364", "placeholder": "\u200b", "style": "IPY_MODEL_bb0ce3c5b47a474f824353b1dc5fe5df", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "1827938a16834ee7b95ec4311f0524b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4738d841b3b740ba919afa2f70d5dca6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3409580436d44c0e92b9a61762a45ff8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1827938a16834ee7b95ec4311f0524b9", "placeholder": "\u200b", "style": "IPY_MODEL_4738d841b3b740ba919afa2f70d5dca6", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.74it/s]"}}, "e80083c9cca44de19c3162df95e08a62": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "930d293ba91546b8a628364a1ac1c691": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2be17b4b5adb402abacba17470175b68", "IPY_MODEL_70905837b13840ba837bc8243a7688cf", "IPY_MODEL_3409580436d44c0e92b9a61762a45ff8"], "layout": "IPY_MODEL_e80083c9cca44de19c3162df95e08a62", "tabbable": null, "tooltip": null}}, "e3e66aa278f04488b16a3a1ff04a79b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "92e2e9396b4c4f308030b1a5ae2f21a3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f6ab54b1c3624e21963f46022233678c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e3e66aa278f04488b16a3a1ff04a79b1", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_92e2e9396b4c4f308030b1a5ae2f21a3", "tabbable": null, "tooltip": null, "value": 7.0}}, "e05c8604f8a5417298a1f4d190247ee3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd68c2b6adb547dba8e1197318b4d191": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c318bab061cf41d7bf4f26d8b654763b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e05c8604f8a5417298a1f4d190247ee3", "placeholder": "\u200b", "style": "IPY_MODEL_cd68c2b6adb547dba8e1197318b4d191", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "e3566741fcf74408812d8c1fc4a7d6d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "10e5f1412fe3445bb2c392ebd6c4eacc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "81fa5610238442c6aa240ce9eb222b16": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e3566741fcf74408812d8c1fc4a7d6d4", "placeholder": "\u200b", "style": "IPY_MODEL_10e5f1412fe3445bb2c392ebd6c4eacc", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "c3fdc27918854845b627213eb3665c0f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b03cf3b41bf146c9837eeb0db067f3d8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c318bab061cf41d7bf4f26d8b654763b", "IPY_MODEL_f6ab54b1c3624e21963f46022233678c", "IPY_MODEL_81fa5610238442c6aa240ce9eb222b16"], "layout": "IPY_MODEL_c3fdc27918854845b627213eb3665c0f", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index 452bdad07..dd03aa2fe 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:37.420344Z", - "iopub.status.busy": "2024-06-13T18:22:37.420171Z", - "iopub.status.idle": "2024-06-13T18:22:37.431092Z", - "shell.execute_reply": "2024-06-13T18:22:37.430565Z" + "iopub.execute_input": "2024-06-14T00:17:31.839397Z", + "iopub.status.busy": "2024-06-14T00:17:31.839227Z", + "iopub.status.idle": "2024-06-14T00:17:31.850050Z", + "shell.execute_reply": "2024-06-14T00:17:31.849616Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:37.433379Z", - "iopub.status.busy": "2024-06-13T18:22:37.433075Z", - "iopub.status.idle": "2024-06-13T18:22:38.659460Z", - "shell.execute_reply": "2024-06-13T18:22:38.658898Z" + "iopub.execute_input": "2024-06-14T00:17:31.852197Z", + "iopub.status.busy": "2024-06-14T00:17:31.851875Z", + "iopub.status.idle": "2024-06-14T00:17:33.079477Z", + "shell.execute_reply": "2024-06-14T00:17:33.078900Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.662117Z", - "iopub.status.busy": "2024-06-13T18:22:38.661650Z", - "iopub.status.idle": "2024-06-13T18:22:38.680318Z", - "shell.execute_reply": "2024-06-13T18:22:38.679847Z" + "iopub.execute_input": "2024-06-14T00:17:33.082262Z", + "iopub.status.busy": "2024-06-14T00:17:33.081776Z", + "iopub.status.idle": "2024-06-14T00:17:33.100692Z", + "shell.execute_reply": "2024-06-14T00:17:33.100156Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.682642Z", - "iopub.status.busy": "2024-06-13T18:22:38.682318Z", - "iopub.status.idle": "2024-06-13T18:22:38.702576Z", - "shell.execute_reply": "2024-06-13T18:22:38.701983Z" + "iopub.execute_input": "2024-06-14T00:17:33.103062Z", + "iopub.status.busy": "2024-06-14T00:17:33.102755Z", + "iopub.status.idle": "2024-06-14T00:17:33.123038Z", + "shell.execute_reply": "2024-06-14T00:17:33.122520Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.705151Z", - "iopub.status.busy": "2024-06-13T18:22:38.704804Z", - "iopub.status.idle": "2024-06-13T18:22:38.721925Z", - "shell.execute_reply": "2024-06-13T18:22:38.721454Z" + "iopub.execute_input": "2024-06-14T00:17:33.125128Z", + "iopub.status.busy": "2024-06-14T00:17:33.124945Z", + "iopub.status.idle": "2024-06-14T00:17:33.141155Z", + "shell.execute_reply": "2024-06-14T00:17:33.140606Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.724298Z", - "iopub.status.busy": "2024-06-13T18:22:38.723937Z", - "iopub.status.idle": "2024-06-13T18:22:38.739305Z", - "shell.execute_reply": "2024-06-13T18:22:38.738831Z" + "iopub.execute_input": "2024-06-14T00:17:33.143459Z", + "iopub.status.busy": "2024-06-14T00:17:33.142986Z", + "iopub.status.idle": "2024-06-14T00:17:33.158151Z", + "shell.execute_reply": "2024-06-14T00:17:33.157556Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.741746Z", - "iopub.status.busy": "2024-06-13T18:22:38.741326Z", - "iopub.status.idle": "2024-06-13T18:22:38.941463Z", - "shell.execute_reply": "2024-06-13T18:22:38.940915Z" + "iopub.execute_input": "2024-06-14T00:17:33.160225Z", + "iopub.status.busy": "2024-06-14T00:17:33.160050Z", + "iopub.status.idle": "2024-06-14T00:17:33.354159Z", + "shell.execute_reply": "2024-06-14T00:17:33.353598Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:38.943766Z", - "iopub.status.busy": "2024-06-13T18:22:38.943570Z", - "iopub.status.idle": "2024-06-13T18:22:39.308179Z", - "shell.execute_reply": "2024-06-13T18:22:39.307537Z" + "iopub.execute_input": "2024-06-14T00:17:33.356457Z", + "iopub.status.busy": "2024-06-14T00:17:33.356266Z", + "iopub.status.idle": "2024-06-14T00:17:33.674701Z", + "shell.execute_reply": "2024-06-14T00:17:33.674108Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:39.310462Z", - "iopub.status.busy": "2024-06-13T18:22:39.310125Z", - "iopub.status.idle": "2024-06-13T18:22:39.347673Z", - "shell.execute_reply": "2024-06-13T18:22:39.347074Z" + "iopub.execute_input": "2024-06-14T00:17:33.677033Z", + "iopub.status.busy": "2024-06-14T00:17:33.676832Z", + "iopub.status.idle": "2024-06-14T00:17:33.716185Z", + "shell.execute_reply": "2024-06-14T00:17:33.715559Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:39.350338Z", - "iopub.status.busy": "2024-06-13T18:22:39.349993Z", - "iopub.status.idle": "2024-06-13T18:22:41.058756Z", - "shell.execute_reply": "2024-06-13T18:22:41.058146Z" + "iopub.execute_input": "2024-06-14T00:17:33.718813Z", + "iopub.status.busy": "2024-06-14T00:17:33.718468Z", + "iopub.status.idle": "2024-06-14T00:17:35.462480Z", + "shell.execute_reply": "2024-06-14T00:17:35.461920Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:41.061244Z", - "iopub.status.busy": "2024-06-13T18:22:41.060758Z", - "iopub.status.idle": "2024-06-13T18:22:41.089201Z", - "shell.execute_reply": "2024-06-13T18:22:41.088763Z" + "iopub.execute_input": "2024-06-14T00:17:35.464948Z", + "iopub.status.busy": "2024-06-14T00:17:35.464506Z", + "iopub.status.idle": "2024-06-14T00:17:35.493853Z", + "shell.execute_reply": "2024-06-14T00:17:35.493228Z" } }, "outputs": [], @@ -706,10 +706,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:41.091502Z", - "iopub.status.busy": "2024-06-13T18:22:41.091169Z", - "iopub.status.idle": "2024-06-13T18:22:41.124662Z", - "shell.execute_reply": "2024-06-13T18:22:41.124172Z" + "iopub.execute_input": "2024-06-14T00:17:35.496490Z", + "iopub.status.busy": "2024-06-14T00:17:35.496150Z", + "iopub.status.idle": "2024-06-14T00:17:35.529714Z", + "shell.execute_reply": "2024-06-14T00:17:35.529212Z" } }, "outputs": [], @@ -746,17 +746,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:41.127211Z", - "iopub.status.busy": "2024-06-13T18:22:41.126850Z", - "iopub.status.idle": "2024-06-13T18:22:46.237072Z", - "shell.execute_reply": "2024-06-13T18:22:46.236488Z" + "iopub.execute_input": "2024-06-14T00:17:35.532027Z", + "iopub.status.busy": "2024-06-14T00:17:35.531683Z", + "iopub.status.idle": "2024-06-14T00:17:40.644858Z", + "shell.execute_reply": "2024-06-14T00:17:40.644258Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e155721fcc9474885d252e622f5129c", + "model_id": "af3c9926cfbe41799e7720f657b418c7", "version_major": 2, "version_minor": 0 }, @@ -816,17 +816,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:46.239395Z", - "iopub.status.busy": "2024-06-13T18:22:46.239200Z", - "iopub.status.idle": "2024-06-13T18:22:51.567056Z", - "shell.execute_reply": "2024-06-13T18:22:51.566473Z" + "iopub.execute_input": "2024-06-14T00:17:40.647123Z", + "iopub.status.busy": "2024-06-14T00:17:40.646777Z", + "iopub.status.idle": "2024-06-14T00:17:45.970828Z", + "shell.execute_reply": "2024-06-14T00:17:45.970248Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "02f2137bffe34409859676b4022f4c63", + "model_id": "c905ff0a515748b2882ff279d6825f91", "version_major": 2, "version_minor": 0 }, @@ -954,10 +954,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.570082Z", - "iopub.status.busy": "2024-06-13T18:22:51.569725Z", - "iopub.status.idle": "2024-06-13T18:22:51.605338Z", - "shell.execute_reply": "2024-06-13T18:22:51.604879Z" + "iopub.execute_input": "2024-06-14T00:17:45.972931Z", + "iopub.status.busy": "2024-06-14T00:17:45.972751Z", + "iopub.status.idle": "2024-06-14T00:17:46.008366Z", + "shell.execute_reply": "2024-06-14T00:17:46.007888Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.607507Z", - "iopub.status.busy": "2024-06-13T18:22:51.607110Z", - "iopub.status.idle": "2024-06-13T18:22:51.638254Z", - "shell.execute_reply": "2024-06-13T18:22:51.637704Z" + "iopub.execute_input": "2024-06-14T00:17:46.010530Z", + "iopub.status.busy": "2024-06-14T00:17:46.010113Z", + "iopub.status.idle": "2024-06-14T00:17:46.039604Z", + "shell.execute_reply": "2024-06-14T00:17:46.039092Z" } }, "outputs": [ @@ -1263,10 +1263,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.640292Z", - "iopub.status.busy": "2024-06-13T18:22:51.640106Z", - "iopub.status.idle": "2024-06-13T18:22:51.685638Z", - "shell.execute_reply": "2024-06-13T18:22:51.685140Z" + "iopub.execute_input": "2024-06-14T00:17:46.041700Z", + "iopub.status.busy": "2024-06-14T00:17:46.041523Z", + "iopub.status.idle": "2024-06-14T00:17:46.087095Z", + "shell.execute_reply": "2024-06-14T00:17:46.086568Z" } }, "outputs": [ @@ -1324,10 +1324,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.687636Z", - "iopub.status.busy": "2024-06-13T18:22:51.687451Z", - "iopub.status.idle": "2024-06-13T18:22:51.714303Z", - "shell.execute_reply": "2024-06-13T18:22:51.713837Z" + "iopub.execute_input": "2024-06-14T00:17:46.089242Z", + "iopub.status.busy": "2024-06-14T00:17:46.088922Z", + "iopub.status.idle": "2024-06-14T00:17:46.115710Z", + "shell.execute_reply": "2024-06-14T00:17:46.115153Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.716610Z", - "iopub.status.busy": "2024-06-13T18:22:51.716421Z", - "iopub.status.idle": "2024-06-13T18:22:51.744745Z", - "shell.execute_reply": "2024-06-13T18:22:51.744258Z" + "iopub.execute_input": "2024-06-14T00:17:46.118213Z", + "iopub.status.busy": "2024-06-14T00:17:46.117881Z", + "iopub.status.idle": "2024-06-14T00:17:46.145350Z", + "shell.execute_reply": "2024-06-14T00:17:46.144891Z" } }, "outputs": [], @@ -1373,17 +1373,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:22:51.747012Z", - "iopub.status.busy": "2024-06-13T18:22:51.746827Z", - "iopub.status.idle": "2024-06-13T18:23:02.174933Z", - "shell.execute_reply": "2024-06-13T18:23:02.174312Z" + "iopub.execute_input": "2024-06-14T00:17:46.147640Z", + "iopub.status.busy": "2024-06-14T00:17:46.147287Z", + "iopub.status.idle": "2024-06-14T00:17:56.582243Z", + "shell.execute_reply": "2024-06-14T00:17:56.581585Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "51cdc48742e448a3a16617004036b215", + "model_id": "241c2db461cd4830bf37c0bf3865ebaa", "version_major": 2, "version_minor": 0 }, @@ -1407,7 +1407,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a76b0a9b5434a0abd3980129de891b3", + "model_id": "d98b02b0b64a4352a52b1fb2a06fa798", "version_major": 2, "version_minor": 0 }, @@ -1473,10 +1473,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:02.177564Z", - "iopub.status.busy": "2024-06-13T18:23:02.177381Z", - "iopub.status.idle": "2024-06-13T18:23:02.261027Z", - "shell.execute_reply": "2024-06-13T18:23:02.260407Z" + "iopub.execute_input": "2024-06-14T00:17:56.584698Z", + "iopub.status.busy": "2024-06-14T00:17:56.584344Z", + "iopub.status.idle": "2024-06-14T00:17:56.676285Z", + "shell.execute_reply": "2024-06-14T00:17:56.675620Z" } }, "outputs": [ @@ -1561,10 +1561,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:02.263454Z", - "iopub.status.busy": "2024-06-13T18:23:02.263113Z", - "iopub.status.idle": "2024-06-13T18:23:02.293327Z", - "shell.execute_reply": "2024-06-13T18:23:02.292846Z" + "iopub.execute_input": "2024-06-14T00:17:56.678493Z", + "iopub.status.busy": "2024-06-14T00:17:56.678294Z", + "iopub.status.idle": "2024-06-14T00:17:56.711426Z", + "shell.execute_reply": "2024-06-14T00:17:56.710921Z" } }, "outputs": [], @@ -1577,10 +1577,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:02.295624Z", - "iopub.status.busy": "2024-06-13T18:23:02.295161Z", - "iopub.status.idle": "2024-06-13T18:23:02.322611Z", - "shell.execute_reply": "2024-06-13T18:23:02.322061Z" + "iopub.execute_input": "2024-06-14T00:17:56.713957Z", + "iopub.status.busy": "2024-06-14T00:17:56.713587Z", + "iopub.status.idle": "2024-06-14T00:17:56.744323Z", + "shell.execute_reply": "2024-06-14T00:17:56.743678Z" } }, "outputs": [], @@ -1609,17 +1609,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:02.324749Z", - "iopub.status.busy": "2024-06-13T18:23:02.324435Z", - "iopub.status.idle": "2024-06-13T18:23:12.799500Z", - "shell.execute_reply": "2024-06-13T18:23:12.798880Z" + "iopub.execute_input": "2024-06-14T00:17:56.747201Z", + "iopub.status.busy": "2024-06-14T00:17:56.746776Z", + "iopub.status.idle": "2024-06-14T00:18:07.235530Z", + "shell.execute_reply": "2024-06-14T00:18:07.234999Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eda514a8c8274628875bda061064c9bd", + "model_id": "930d293ba91546b8a628364a1ac1c691", "version_major": 2, "version_minor": 0 }, @@ -1673,7 +1673,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f60b4c5f8294befa2ae7b9c319ecf23", + "model_id": "b03cf3b41bf146c9837eeb0db067f3d8", "version_major": 2, "version_minor": 0 }, @@ -1791,10 +1791,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:12.802172Z", - "iopub.status.busy": "2024-06-13T18:23:12.801988Z", - "iopub.status.idle": "2024-06-13T18:23:12.831705Z", - "shell.execute_reply": "2024-06-13T18:23:12.831148Z" + "iopub.execute_input": "2024-06-14T00:18:07.238422Z", + "iopub.status.busy": "2024-06-14T00:18:07.238242Z", + "iopub.status.idle": "2024-06-14T00:18:07.268800Z", + "shell.execute_reply": "2024-06-14T00:18:07.268274Z" } }, "outputs": [ @@ -1878,80 +1878,106 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "027ee2cf0c244bbe82d896d2c6d45fb5": { - "model_module": "@jupyter-widgets/controls", + "06c69d48973a468db203c242950ad690": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49b9881793fc43c7b3e269be0249debf", - "placeholder": "​", - "style": "IPY_MODEL_448b0b23f9d14e108c2183edc8c85746", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "02f2137bffe34409859676b4022f4c63": { + "08858a6fc3f344fc8404fb03cc7ddf9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ae6f9d5ec6934555b1de197bd9374be7", - "IPY_MODEL_0a96fdf2b8b744ee91dd8d828825b1a1", - "IPY_MODEL_027ee2cf0c244bbe82d896d2c6d45fb5" - ], - "layout": "IPY_MODEL_a503f5644f324b13829adfdf0c42fc68", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ae842be536a74541a0c3a55ddf8a5cb1", + "placeholder": "​", + "style": "IPY_MODEL_407cf46e56f94d0caf3d4729acc5692f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "0a96fdf2b8b744ee91dd8d828825b1a1": { + "096a5e714eee4874a49ca26e5597ca9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_43c43d563f174199abf97b37e9c80a1e", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64eddbaa26854d0d85000f3b4a4c55fa", + "layout": "IPY_MODEL_71235f4ab4144fb58d20c27b3c8b51f2", + "placeholder": "​", + "style": "IPY_MODEL_3102e98c61a6489783b0269c3514d8a5", "tabbable": null, "tooltip": null, - "value": 7.0 + "value": " 50/50 [00:05<00:00,  9.78it/s]" } }, - "102ea76a23a84c6595628ba8e0b6d412": { + "10e5f1412fe3445bb2c392ebd6c4eacc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1969,7 +1995,7 @@ "text_color": null } }, - "162c5f5c61b84c82978365dcff6f4020": { + "1827938a16834ee7b95ec4311f0524b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2022,7 +2048,7 @@ "width": null } }, - "19d7ed71b048467d838dfc2c97910051": { + "1e92dd244e824b46a1c52ea44cba333d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2040,33 +2066,54 @@ "text_color": null } }, - "1c12aec4f2b6402fafa1f95c4a7f5010": { + "241c2db461cd4830bf37c0bf3865ebaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_08858a6fc3f344fc8404fb03cc7ddf9f", + "IPY_MODEL_3b6e90804bbb4dc1ac263c325b4787af", + "IPY_MODEL_096a5e714eee4874a49ca26e5597ca9f" + ], + "layout": "IPY_MODEL_45b647211ee64bb8b2b1e82b121c6041", + "tabbable": null, + "tooltip": null + } + }, + "2be17b4b5adb402abacba17470175b68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4151c73fda664b4a8ddb2556216147c2", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e146a9852ee64af99289bc502dd68f91", + "layout": "IPY_MODEL_442780b7002b40e78a38a5e56efbc364", + "placeholder": "​", + "style": "IPY_MODEL_bb0ce3c5b47a474f824353b1dc5fe5df", "tabbable": null, "tooltip": null, - "value": 7.0 + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "1c7a9d82e9534a3daec49aa2709535f0": { + "302f871ed70b4e45bcc21a616093a562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2119,30 +2166,43 @@ "width": null } }, - "1ffeea764a1545d8b16876783d0fbc52": { + "30b477ffebff4e608c64c2edb926e665": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c48101272bcb441aaff126eaf956bbff", - "placeholder": "​", - "style": "IPY_MODEL_5e9882c39a0e46efbc2e04db6174c6f6", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3102e98c61a6489783b0269c3514d8a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "26c220d238264957965e393a2fe2aa5e": { + "3409580436d44c0e92b9a61762a45ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2157,108 +2217,82 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e4c57afd2d05435d944d295289226f27", + "layout": "IPY_MODEL_1827938a16834ee7b95ec4311f0524b9", "placeholder": "​", - "style": "IPY_MODEL_6830acf7aeb44380a1ea3951201619c8", + "style": "IPY_MODEL_4738d841b3b740ba919afa2f70d5dca6", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "value": " 50/50 [00:05<00:00,  9.74it/s]" } }, - "26e30fd773804c929d1ad4997c06a01b": { - "model_module": "@jupyter-widgets/base", + "3b6e90804bbb4dc1ac263c325b4787af": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6544bf6ee5344bbfb4793e4b6057deee", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b5c86a86e594ec58a959585374e67cf", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "2ad97b845a20459388c0937815b811e0": { + "407cf46e56f94d0caf3d4729acc5692f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2f60b4c5f8294befa2ae7b9c319ecf23": { + "40b2ef021b654a17868665460e59d553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8d6e1f77af6c45119aba326234002134", - "IPY_MODEL_aaa3eb19f15b4bfb881a957d0214a182", - "IPY_MODEL_d26f02fd63a1401b8809a0bf7feeab2b" - ], - "layout": "IPY_MODEL_5e23af02695345cd8145e29e6f11e2d4", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1cd1d47270f4401bb27252e34320173", + "placeholder": "​", + "style": "IPY_MODEL_30b477ffebff4e608c64c2edb926e665", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "38dbc29c0b194c18a1fb3de8c8bc373f": { + "442780b7002b40e78a38a5e56efbc364": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2311,7 +2345,7 @@ "width": null } }, - "3cc7ea8dc3344181a462765f15bf5b89": { + "45b647211ee64bb8b2b1e82b121c6041": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2364,7 +2398,100 @@ "width": null } }, - "4151c73fda664b4a8ddb2556216147c2": { + "4738d841b3b740ba919afa2f70d5dca6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4823285543054255bfc4a2076dfb1090": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd528df4f8364cf189aff7b3b4c6cc0a", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_87faf0443d8a41199a973bb50d2e18e4", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "487477967d28446aa21b181e22851d23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f77b835d52d468598e452547031e53a", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e2e83fa6a60943a6be6d017f0a792585", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "52b9f13089ac4436bdf2935aca874153": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_936683bd163f457eb9709ab59dc45f68", + "placeholder": "​", + "style": "IPY_MODEL_a1aad77d500f4b7bbdbdf5d50727b621", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.33it/s]" + } + }, + "5755db67209b4886bedfb6c91105fcc4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2417,7 +2544,30 @@ "width": null } }, - "43c43d563f174199abf97b37e9c80a1e": { + "583f932db19445818da1db82118e1dca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab5b2671a50f4eba81b5d29f525735d7", + "placeholder": "​", + "style": "IPY_MODEL_1e92dd244e824b46a1c52ea44cba333d", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "5da7305f7dbc4720ba13d22abe2a3df7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2470,64 +2620,7 @@ "width": null } }, - "448b0b23f9d14e108c2183edc8c85746": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "44fa733fc310439994ad1e0ca1b982fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4539ac03270840949603846cfff65068": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_99edcdc334354151ae1671a678a27570", - "placeholder": "​", - "style": "IPY_MODEL_102ea76a23a84c6595628ba8e0b6d412", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "49b9881793fc43c7b3e269be0249debf": { + "6544bf6ee5344bbfb4793e4b6057deee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2580,119 +2673,49 @@ "width": null } }, - "4a76b0a9b5434a0abd3980129de891b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1ffeea764a1545d8b16876783d0fbc52", - "IPY_MODEL_1c12aec4f2b6402fafa1f95c4a7f5010", - "IPY_MODEL_bd4447ab16c94540acd1bd86134b086b" - ], - "layout": "IPY_MODEL_c06cd2f71e3c4b349a5cb094d5db96ae", - "tabbable": null, - "tooltip": null - } - }, - "4e3e561045394b9fb687be561f909e31": { + "6b5c86a86e594ec58a959585374e67cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_38dbc29c0b194c18a1fb3de8c8bc373f", - "placeholder": "​", - "style": "IPY_MODEL_8f88b72191744db0b3e1f7a49f0544bd", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.86it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4e52a677dc6d49e7b534de63dadc113a": { + "70905837b13840ba837bc8243a7688cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec62ef62743a4ba483cc919868a07290", - "placeholder": "​", - "style": "IPY_MODEL_d2a6cd3c9dff44fd9b5e4e0d9d0d2fdd", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.79it/s]" - } - }, - "51cdc48742e448a3a16617004036b215": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26c220d238264957965e393a2fe2aa5e", - "IPY_MODEL_73395eea60474d60889bb6527be5a188", - "IPY_MODEL_4e52a677dc6d49e7b534de63dadc113a" - ], - "layout": "IPY_MODEL_7ec355310bfd4bb582547a6a8e38b294", - "tabbable": null, - "tooltip": null - } - }, - "52fc04baee224401b54e000fc50c99bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_302f871ed70b4e45bcc21a616093a562", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e7263fc171154a11b042187ba86a1512", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "5e23af02695345cd8145e29e6f11e2d4": { + "71235f4ab4144fb58d20c27b3c8b51f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2745,7 +2768,7 @@ "width": null } }, - "5e9882c39a0e46efbc2e04db6174c6f6": { + "73ed20769f924434b75f109f346607ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2763,59 +2786,87 @@ "text_color": null } }, - "64eddbaa26854d0d85000f3b4a4c55fa": { + "7e0e82dcfdd64151b441dd9bc466ae67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6602a7b4119b4aff853b6fa0b664d947": { + "8150e8488c9545dc954e47fc59d9ec9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bb5fdc09f53c415dab01e7db5e36ca20", + "placeholder": "​", + "style": "IPY_MODEL_73ed20769f924434b75f109f346607ee", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.86it/s]" } }, - "6830acf7aeb44380a1ea3951201619c8": { + "81fa5610238442c6aa240ce9eb222b16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3566741fcf74408812d8c1fc4a7d6d4", + "placeholder": "​", + "style": "IPY_MODEL_10e5f1412fe3445bb2c392ebd6c4eacc", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "87faf0443d8a41199a973bb50d2e18e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "70ca7b9038f94435b08127a5d3144fca": { + "8f77b835d52d468598e452547031e53a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2868,33 +2919,7 @@ "width": null } }, - "73395eea60474d60889bb6527be5a188": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_70ca7b9038f94435b08127a5d3144fca", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c3ece56d55b041e3a3ee2d3ef62cbdac", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "7ec355310bfd4bb582547a6a8e38b294": { + "90a96a607d204d89af09cc6331729c65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2947,25 +2972,47 @@ "width": null } }, - "7f61a9e58a5c4b5ba540d88381cac667": { + "92e2e9396b4c4f308030b1a5ae2f21a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "930d293ba91546b8a628364a1ac1c691": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2be17b4b5adb402abacba17470175b68", + "IPY_MODEL_70905837b13840ba837bc8243a7688cf", + "IPY_MODEL_3409580436d44c0e92b9a61762a45ff8" + ], + "layout": "IPY_MODEL_e80083c9cca44de19c3162df95e08a62", + "tabbable": null, + "tooltip": null } }, - "8648267303b64209a6db138d29df5e4a": { + "936683bd163f457eb9709ab59dc45f68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3018,7 +3065,25 @@ "width": null } }, - "8bf62851738342c6bca51cd59c2caa45": { + "a1aad77d500f4b7bbdbdf5d50727b621": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1cd1d47270f4401bb27252e34320173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3071,7 +3136,7 @@ "width": null } }, - "8d6e1f77af6c45119aba326234002134": { + "a81fccc1d0974b48a0fed97207d44fe8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3086,57 +3151,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c56ab6e5e7fd408f95438c827705d083", + "layout": "IPY_MODEL_90a96a607d204d89af09cc6331729c65", "placeholder": "​", - "style": "IPY_MODEL_b305188cea7c48439a4ffebd4f8956a4", + "style": "IPY_MODEL_7e0e82dcfdd64151b441dd9bc466ae67", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "8e155721fcc9474885d252e622f5129c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4539ac03270840949603846cfff65068", - "IPY_MODEL_ca46e6772a4b4896b28ce1bee03e90ae", - "IPY_MODEL_4e3e561045394b9fb687be561f909e31" - ], - "layout": "IPY_MODEL_26e30fd773804c929d1ad4997c06a01b", - "tabbable": null, - "tooltip": null - } - }, - "8f88b72191744db0b3e1f7a49f0544bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "9613bbdb2dd449c08bc01c0d1cb2217c": { + "ab5b2671a50f4eba81b5d29f525735d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3189,7 +3212,7 @@ "width": null } }, - "99edcdc334354151ae1671a678a27570": { + "ae842be536a74541a0c3a55ddf8a5cb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3242,7 +3265,55 @@ "width": null } }, - "a503f5644f324b13829adfdf0c42fc68": { + "af3c9926cfbe41799e7720f657b418c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a81fccc1d0974b48a0fed97207d44fe8", + "IPY_MODEL_4823285543054255bfc4a2076dfb1090", + "IPY_MODEL_8150e8488c9545dc954e47fc59d9ec9f" + ], + "layout": "IPY_MODEL_d819cbb015d149f1b2d0bde4edf08ac3", + "tabbable": null, + "tooltip": null + } + }, + "b03cf3b41bf146c9837eeb0db067f3d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c318bab061cf41d7bf4f26d8b654763b", + "IPY_MODEL_f6ab54b1c3624e21963f46022233678c", + "IPY_MODEL_81fa5610238442c6aa240ce9eb222b16" + ], + "layout": "IPY_MODEL_c3fdc27918854845b627213eb3665c0f", + "tabbable": null, + "tooltip": null + } + }, + "b0452a5bd7724709a7183635c5e408b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3295,7 +3366,7 @@ "width": null } }, - "a8ebed8620b8446e93e3cb295d8c2493": { + "bb0ce3c5b47a474f824353b1dc5fe5df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3313,56 +3384,7 @@ "text_color": null } }, - "aaa3eb19f15b4bfb881a957d0214a182": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_162c5f5c61b84c82978365dcff6f4020", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2ad97b845a20459388c0937815b811e0", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "ae6f9d5ec6934555b1de197bd9374be7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da9f41f70b764fe7a3e5f3e75c25a921", - "placeholder": "​", - "style": "IPY_MODEL_7f61a9e58a5c4b5ba540d88381cac667", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "afccf65013da4edd818f372363efb55c": { + "bb5fdc09f53c415dab01e7db5e36ca20": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3415,25 +3437,30 @@ "width": null } }, - "b305188cea7c48439a4ffebd4f8956a4": { + "c318bab061cf41d7bf4f26d8b654763b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e05c8604f8a5417298a1f4d190247ee3", + "placeholder": "​", + "style": "IPY_MODEL_cd68c2b6adb547dba8e1197318b4d191", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "bd4447ab16c94540acd1bd86134b086b": { + "c3d2c3ccf902411688a9dbd2c8933428": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3448,15 +3475,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8bf62851738342c6bca51cd59c2caa45", + "layout": "IPY_MODEL_b0452a5bd7724709a7183635c5e408b6", "placeholder": "​", - "style": "IPY_MODEL_a8ebed8620b8446e93e3cb295d8c2493", + "style": "IPY_MODEL_e09300f2b9774d8e90dcbb4970b76721", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "c06cd2f71e3c4b349a5cb094d5db96ae": { + "c3fdc27918854845b627213eb3665c0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3509,46 +3536,49 @@ "width": null } }, - "c38648ac8e4340299319fe3b6feee970": { + "c905ff0a515748b2882ff279d6825f91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8648267303b64209a6db138d29df5e4a", - "placeholder": "​", - "style": "IPY_MODEL_6602a7b4119b4aff853b6fa0b664d947", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c3d2c3ccf902411688a9dbd2c8933428", + "IPY_MODEL_fba7e04e257741bdbe79b70262853c69", + "IPY_MODEL_583f932db19445818da1db82118e1dca" + ], + "layout": "IPY_MODEL_06c69d48973a468db203c242950ad690", "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.74it/s]" + "tooltip": null } }, - "c3ece56d55b041e3a3ee2d3ef62cbdac": { + "cd68c2b6adb547dba8e1197318b4d191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c48101272bcb441aaff126eaf956bbff": { + "d819cbb015d149f1b2d0bde4edf08ac3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3601,7 +3631,31 @@ "width": null } }, - "c56ab6e5e7fd408f95438c827705d083": { + "d98b02b0b64a4352a52b1fb2a06fa798": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_40b2ef021b654a17868665460e59d553", + "IPY_MODEL_487477967d28446aa21b181e22851d23", + "IPY_MODEL_52b9f13089ac4436bdf2935aca874153" + ], + "layout": "IPY_MODEL_5755db67209b4886bedfb6c91105fcc4", + "tabbable": null, + "tooltip": null + } + }, + "dd528df4f8364cf189aff7b3b4c6cc0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3654,90 +3708,7 @@ "width": null } }, - "ca46e6772a4b4896b28ce1bee03e90ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f5afacb27efc4abe925acc1dbb8f6d2c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cff9951557da403796934d61ae755f06", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "cff9951557da403796934d61ae755f06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d26f02fd63a1401b8809a0bf7feeab2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3cc7ea8dc3344181a462765f15bf5b89", - "placeholder": "​", - "style": "IPY_MODEL_52fc04baee224401b54e000fc50c99bd", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" - } - }, - "d2a6cd3c9dff44fd9b5e4e0d9d0d2fdd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "da9f41f70b764fe7a3e5f3e75c25a921": { + "e05c8604f8a5417298a1f4d190247ee3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3790,33 +3761,25 @@ "width": null } }, - "e083eef43696473e8139430985ed229b": { + "e09300f2b9774d8e90dcbb4970b76721": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c7a9d82e9534a3daec49aa2709535f0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44fa733fc310439994ad1e0ca1b982fe", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e146a9852ee64af99289bc502dd68f91": { + "e2e83fa6a60943a6be6d017f0a792585": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3832,7 +3795,7 @@ "description_width": "" } }, - "e4c57afd2d05435d944d295289226f27": { + "e3566741fcf74408812d8c1fc4a7d6d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3885,30 +3848,7 @@ "width": null } }, - "e8eee715770f45b295df4ffa84d2608f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9613bbdb2dd449c08bc01c0d1cb2217c", - "placeholder": "​", - "style": "IPY_MODEL_19d7ed71b048467d838dfc2c97910051", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "ec62ef62743a4ba483cc919868a07290": { + "e3e66aa278f04488b16a3a1ff04a79b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3961,31 +3901,23 @@ "width": null } }, - "eda514a8c8274628875bda061064c9bd": { + "e7263fc171154a11b042187ba86a1512": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8eee715770f45b295df4ffa84d2608f", - "IPY_MODEL_e083eef43696473e8139430985ed229b", - "IPY_MODEL_c38648ac8e4340299319fe3b6feee970" - ], - "layout": "IPY_MODEL_afccf65013da4edd818f372363efb55c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f5afacb27efc4abe925acc1dbb8f6d2c": { + "e80083c9cca44de19c3162df95e08a62": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4037,6 +3969,74 @@ "visibility": null, "width": null } + }, + "f6ab54b1c3624e21963f46022233678c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3e66aa278f04488b16a3a1ff04a79b1", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_92e2e9396b4c4f308030b1a5ae2f21a3", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "f9a16b84534349bc8d8c66d65e029b0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fba7e04e257741bdbe79b70262853c69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5da7305f7dbc4720ba13d22abe2a3df7", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f9a16b84534349bc8d8c66d65e029b0e", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 686418754..0a3a231ae 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1297,7 +1297,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1572,7 +1572,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"9672d221fe914bb38b30dab8784f3d35": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4928e6b237ca425ba34e854683edc684": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9c44a87f1b6f4edaa81455c57b86e749": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9672d221fe914bb38b30dab8784f3d35", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4928e6b237ca425ba34e854683edc684", "tabbable": null, "tooltip": null, "value": 132.0}}, "12f0b198cb35478c9c2a393378c87ed0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0bbd873ad6ae493e9f5b98b629279938": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7fbc6991eb3348ceb76c0bf9dcde86ce": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_12f0b198cb35478c9c2a393378c87ed0", "placeholder": "\u200b", "style": "IPY_MODEL_0bbd873ad6ae493e9f5b98b629279938", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "1cc35bb00a544e468b00216cfca99ac6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eca3f053fb054eca9a322802018e37e6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a1e38b0cf3e647ccb77c9301eb10566a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1cc35bb00a544e468b00216cfca99ac6", "placeholder": "\u200b", "style": "IPY_MODEL_eca3f053fb054eca9a322802018e37e6", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712564.35\u2007examples/s]"}}, "9b0914a61ca44f55a0e1ee08776e0653": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c86b68a04781440abde2e6a483a13b97": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7fbc6991eb3348ceb76c0bf9dcde86ce", "IPY_MODEL_9c44a87f1b6f4edaa81455c57b86e749", "IPY_MODEL_a1e38b0cf3e647ccb77c9301eb10566a"], "layout": "IPY_MODEL_9b0914a61ca44f55a0e1ee08776e0653", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"731cf8d717ca4fd9b73b1549cbaa624b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab2656823fad4264946d966650d4bdc4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "95f16b6c107f4497a1a9529c046b2806": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_731cf8d717ca4fd9b73b1549cbaa624b", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ab2656823fad4264946d966650d4bdc4", "tabbable": null, "tooltip": null, "value": 132.0}}, "3c4e9bebc84845b58f6c27a5c27ebb80": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa8acfc8790b411182e1e24f47542887": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "86f5507978a44bd1b21acebb2e59dabb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c4e9bebc84845b58f6c27a5c27ebb80", "placeholder": "\u200b", "style": "IPY_MODEL_aa8acfc8790b411182e1e24f47542887", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "f8e37a3b0b2e4b32998dde62afa1d03d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3d834c085f848f3b38a2225117fb6a7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc85edeb35504a76804314f4c1f8cdee": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f8e37a3b0b2e4b32998dde62afa1d03d", "placeholder": "\u200b", "style": "IPY_MODEL_c3d834c085f848f3b38a2225117fb6a7", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713277.57\u2007examples/s]"}}, "2bed0b3fb37648cfa29eaaeb73e2258b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61b21c179030414d84a173eb52b09517": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_86f5507978a44bd1b21acebb2e59dabb", "IPY_MODEL_95f16b6c107f4497a1a9529c046b2806", "IPY_MODEL_dc85edeb35504a76804314f4c1f8cdee"], "layout": "IPY_MODEL_2bed0b3fb37648cfa29eaaeb73e2258b", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 91fe9a5a9..08a99a10e 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:15.430767Z", - "iopub.status.busy": "2024-06-13T18:23:15.430364Z", - "iopub.status.idle": "2024-06-13T18:23:16.611818Z", - "shell.execute_reply": "2024-06-13T18:23:16.611199Z" + "iopub.execute_input": "2024-06-14T00:18:09.746768Z", + "iopub.status.busy": "2024-06-14T00:18:09.746577Z", + "iopub.status.idle": "2024-06-14T00:18:10.952864Z", + "shell.execute_reply": "2024-06-14T00:18:10.952251Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.614616Z", - "iopub.status.busy": "2024-06-13T18:23:16.614190Z", - "iopub.status.idle": "2024-06-13T18:23:16.617176Z", - "shell.execute_reply": "2024-06-13T18:23:16.616736Z" + "iopub.execute_input": "2024-06-14T00:18:10.955816Z", + "iopub.status.busy": "2024-06-14T00:18:10.955310Z", + "iopub.status.idle": "2024-06-14T00:18:10.958401Z", + "shell.execute_reply": "2024-06-14T00:18:10.957959Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.619382Z", - "iopub.status.busy": "2024-06-13T18:23:16.619076Z", - "iopub.status.idle": "2024-06-13T18:23:16.627528Z", - "shell.execute_reply": "2024-06-13T18:23:16.627085Z" + "iopub.execute_input": "2024-06-14T00:18:10.960566Z", + "iopub.status.busy": "2024-06-14T00:18:10.960248Z", + "iopub.status.idle": "2024-06-14T00:18:10.969195Z", + "shell.execute_reply": "2024-06-14T00:18:10.968610Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.629659Z", - "iopub.status.busy": "2024-06-13T18:23:16.629273Z", - "iopub.status.idle": "2024-06-13T18:23:16.634367Z", - "shell.execute_reply": "2024-06-13T18:23:16.633817Z" + "iopub.execute_input": "2024-06-14T00:18:10.971378Z", + "iopub.status.busy": "2024-06-14T00:18:10.971036Z", + "iopub.status.idle": "2024-06-14T00:18:10.976441Z", + "shell.execute_reply": "2024-06-14T00:18:10.975843Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.636461Z", - "iopub.status.busy": "2024-06-13T18:23:16.636139Z", - "iopub.status.idle": "2024-06-13T18:23:16.824614Z", - "shell.execute_reply": "2024-06-13T18:23:16.823981Z" + "iopub.execute_input": "2024-06-14T00:18:10.978862Z", + "iopub.status.busy": "2024-06-14T00:18:10.978323Z", + "iopub.status.idle": "2024-06-14T00:18:11.169841Z", + "shell.execute_reply": "2024-06-14T00:18:11.169195Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:16.827268Z", - "iopub.status.busy": "2024-06-13T18:23:16.826871Z", - "iopub.status.idle": "2024-06-13T18:23:17.198642Z", - "shell.execute_reply": "2024-06-13T18:23:17.198077Z" + "iopub.execute_input": "2024-06-14T00:18:11.172293Z", + "iopub.status.busy": "2024-06-14T00:18:11.172071Z", + "iopub.status.idle": "2024-06-14T00:18:11.553712Z", + "shell.execute_reply": "2024-06-14T00:18:11.553097Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:17.200792Z", - "iopub.status.busy": "2024-06-13T18:23:17.200510Z", - "iopub.status.idle": "2024-06-13T18:23:17.224200Z", - "shell.execute_reply": "2024-06-13T18:23:17.223697Z" + "iopub.execute_input": "2024-06-14T00:18:11.555917Z", + "iopub.status.busy": "2024-06-14T00:18:11.555717Z", + "iopub.status.idle": "2024-06-14T00:18:11.579398Z", + "shell.execute_reply": "2024-06-14T00:18:11.578913Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:17.226842Z", - "iopub.status.busy": "2024-06-13T18:23:17.226231Z", - "iopub.status.idle": "2024-06-13T18:23:17.237882Z", - "shell.execute_reply": "2024-06-13T18:23:17.237434Z" + "iopub.execute_input": "2024-06-14T00:18:11.581769Z", + "iopub.status.busy": "2024-06-14T00:18:11.581548Z", + "iopub.status.idle": "2024-06-14T00:18:11.593475Z", + "shell.execute_reply": "2024-06-14T00:18:11.592959Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:17.240116Z", - "iopub.status.busy": "2024-06-13T18:23:17.239759Z", - "iopub.status.idle": "2024-06-13T18:23:18.925230Z", - "shell.execute_reply": "2024-06-13T18:23:18.924563Z" + "iopub.execute_input": "2024-06-14T00:18:11.595660Z", + "iopub.status.busy": "2024-06-14T00:18:11.595446Z", + "iopub.status.idle": "2024-06-14T00:18:13.341928Z", + "shell.execute_reply": "2024-06-14T00:18:13.341336Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:18.927917Z", - "iopub.status.busy": "2024-06-13T18:23:18.927449Z", - "iopub.status.idle": "2024-06-13T18:23:18.950415Z", - "shell.execute_reply": "2024-06-13T18:23:18.949816Z" + "iopub.execute_input": "2024-06-14T00:18:13.344417Z", + "iopub.status.busy": "2024-06-14T00:18:13.343873Z", + "iopub.status.idle": "2024-06-14T00:18:13.365914Z", + "shell.execute_reply": "2024-06-14T00:18:13.365340Z" } }, "outputs": [ @@ -831,10 +831,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:18.952889Z", - "iopub.status.busy": "2024-06-13T18:23:18.952555Z", - "iopub.status.idle": "2024-06-13T18:23:18.974048Z", - "shell.execute_reply": "2024-06-13T18:23:18.973444Z" + "iopub.execute_input": "2024-06-14T00:18:13.367986Z", + "iopub.status.busy": "2024-06-14T00:18:13.367601Z", + "iopub.status.idle": "2024-06-14T00:18:13.387728Z", + "shell.execute_reply": "2024-06-14T00:18:13.387151Z" } }, "outputs": [ @@ -951,10 +951,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:18.976283Z", - "iopub.status.busy": "2024-06-13T18:23:18.975858Z", - "iopub.status.idle": "2024-06-13T18:23:18.990818Z", - "shell.execute_reply": "2024-06-13T18:23:18.990333Z" + "iopub.execute_input": "2024-06-14T00:18:13.389923Z", + "iopub.status.busy": "2024-06-14T00:18:13.389578Z", + "iopub.status.idle": "2024-06-14T00:18:13.404098Z", + "shell.execute_reply": "2024-06-14T00:18:13.403652Z" } }, "outputs": [ @@ -1089,17 +1089,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:18.993067Z", - "iopub.status.busy": "2024-06-13T18:23:18.992630Z", - "iopub.status.idle": "2024-06-13T18:23:19.012949Z", - "shell.execute_reply": "2024-06-13T18:23:19.012337Z" + "iopub.execute_input": "2024-06-14T00:18:13.406263Z", + "iopub.status.busy": "2024-06-14T00:18:13.405919Z", + "iopub.status.idle": "2024-06-14T00:18:13.425101Z", + "shell.execute_reply": "2024-06-14T00:18:13.424534Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c86b68a04781440abde2e6a483a13b97", + "model_id": "61b21c179030414d84a173eb52b09517", "version_major": 2, "version_minor": 0 }, @@ -1135,10 +1135,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:19.015142Z", - "iopub.status.busy": "2024-06-13T18:23:19.014810Z", - "iopub.status.idle": "2024-06-13T18:23:19.030336Z", - "shell.execute_reply": "2024-06-13T18:23:19.029832Z" + "iopub.execute_input": "2024-06-14T00:18:13.427177Z", + "iopub.status.busy": "2024-06-14T00:18:13.426889Z", + "iopub.status.idle": "2024-06-14T00:18:13.441816Z", + "shell.execute_reply": "2024-06-14T00:18:13.441231Z" } }, "outputs": [ @@ -1261,10 +1261,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:19.032487Z", - "iopub.status.busy": "2024-06-13T18:23:19.032196Z", - "iopub.status.idle": "2024-06-13T18:23:19.038230Z", - "shell.execute_reply": "2024-06-13T18:23:19.037674Z" + "iopub.execute_input": "2024-06-14T00:18:13.443921Z", + "iopub.status.busy": "2024-06-14T00:18:13.443640Z", + "iopub.status.idle": "2024-06-14T00:18:13.449509Z", + "shell.execute_reply": "2024-06-14T00:18:13.448977Z" } }, "outputs": [], @@ -1321,10 +1321,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:19.040500Z", - "iopub.status.busy": "2024-06-13T18:23:19.040114Z", - "iopub.status.idle": "2024-06-13T18:23:19.059068Z", - "shell.execute_reply": "2024-06-13T18:23:19.058506Z" + "iopub.execute_input": "2024-06-14T00:18:13.451536Z", + "iopub.status.busy": "2024-06-14T00:18:13.451247Z", + "iopub.status.idle": "2024-06-14T00:18:13.469036Z", + "shell.execute_reply": "2024-06-14T00:18:13.468547Z" } }, "outputs": [ @@ -1461,25 +1461,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0bbd873ad6ae493e9f5b98b629279938": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12f0b198cb35478c9c2a393378c87ed0": { + "2bed0b3fb37648cfa29eaaeb73e2258b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1532,7 +1514,7 @@ "width": null } }, - "1cc35bb00a544e468b00216cfca99ac6": { + "3c4e9bebc84845b58f6c27a5c27ebb80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1585,46 +1567,31 @@ "width": null } }, - "4928e6b237ca425ba34e854683edc684": { + "61b21c179030414d84a173eb52b09517": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7fbc6991eb3348ceb76c0bf9dcde86ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_12f0b198cb35478c9c2a393378c87ed0", - "placeholder": "​", - "style": "IPY_MODEL_0bbd873ad6ae493e9f5b98b629279938", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_86f5507978a44bd1b21acebb2e59dabb", + "IPY_MODEL_95f16b6c107f4497a1a9529c046b2806", + "IPY_MODEL_dc85edeb35504a76804314f4c1f8cdee" + ], + "layout": "IPY_MODEL_2bed0b3fb37648cfa29eaaeb73e2258b", "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "tooltip": null } }, - "9672d221fe914bb38b30dab8784f3d35": { + "731cf8d717ca4fd9b73b1549cbaa624b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1677,60 +1644,30 @@ "width": null } }, - "9b0914a61ca44f55a0e1ee08776e0653": { - "model_module": "@jupyter-widgets/base", + "86f5507978a44bd1b21acebb2e59dabb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3c4e9bebc84845b58f6c27a5c27ebb80", + "placeholder": "​", + "style": "IPY_MODEL_aa8acfc8790b411182e1e24f47542887", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "9c44a87f1b6f4edaa81455c57b86e749": { + "95f16b6c107f4497a1a9529c046b2806": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1746,64 +1683,51 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9672d221fe914bb38b30dab8784f3d35", + "layout": "IPY_MODEL_731cf8d717ca4fd9b73b1549cbaa624b", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4928e6b237ca425ba34e854683edc684", + "style": "IPY_MODEL_ab2656823fad4264946d966650d4bdc4", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "a1e38b0cf3e647ccb77c9301eb10566a": { + "aa8acfc8790b411182e1e24f47542887": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1cc35bb00a544e468b00216cfca99ac6", - "placeholder": "​", - "style": "IPY_MODEL_eca3f053fb054eca9a322802018e37e6", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12564.35 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c86b68a04781440abde2e6a483a13b97": { + "ab2656823fad4264946d966650d4bdc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7fbc6991eb3348ceb76c0bf9dcde86ce", - "IPY_MODEL_9c44a87f1b6f4edaa81455c57b86e749", - "IPY_MODEL_a1e38b0cf3e647ccb77c9301eb10566a" - ], - "layout": "IPY_MODEL_9b0914a61ca44f55a0e1ee08776e0653", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eca3f053fb054eca9a322802018e37e6": { + "c3d834c085f848f3b38a2225117fb6a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1820,6 +1744,82 @@ "font_size": null, "text_color": null } + }, + "dc85edeb35504a76804314f4c1f8cdee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8e37a3b0b2e4b32998dde62afa1d03d", + "placeholder": "​", + "style": "IPY_MODEL_c3d834c085f848f3b38a2225117fb6a7", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13277.57 examples/s]" + } + }, + "f8e37a3b0b2e4b32998dde62afa1d03d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 45d43726f..77d302562 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:21.667849Z", - "iopub.status.busy": "2024-06-13T18:23:21.667367Z", - "iopub.status.idle": "2024-06-13T18:23:22.865827Z", - "shell.execute_reply": "2024-06-13T18:23:22.865205Z" + "iopub.execute_input": "2024-06-14T00:18:16.425189Z", + "iopub.status.busy": "2024-06-14T00:18:16.424825Z", + "iopub.status.idle": "2024-06-14T00:18:17.645689Z", + "shell.execute_reply": "2024-06-14T00:18:17.645142Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:22.868648Z", - "iopub.status.busy": "2024-06-13T18:23:22.868229Z", - "iopub.status.idle": "2024-06-13T18:23:22.871311Z", - "shell.execute_reply": "2024-06-13T18:23:22.870873Z" + "iopub.execute_input": "2024-06-14T00:18:17.648403Z", + "iopub.status.busy": "2024-06-14T00:18:17.647970Z", + "iopub.status.idle": "2024-06-14T00:18:17.651087Z", + "shell.execute_reply": "2024-06-14T00:18:17.650540Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:22.873516Z", - "iopub.status.busy": "2024-06-13T18:23:22.873197Z", - "iopub.status.idle": "2024-06-13T18:23:22.882207Z", - "shell.execute_reply": "2024-06-13T18:23:22.881746Z" + "iopub.execute_input": "2024-06-14T00:18:17.653178Z", + "iopub.status.busy": "2024-06-14T00:18:17.652861Z", + "iopub.status.idle": "2024-06-14T00:18:17.661891Z", + "shell.execute_reply": "2024-06-14T00:18:17.661319Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:22.884128Z", - "iopub.status.busy": "2024-06-13T18:23:22.883838Z", - "iopub.status.idle": "2024-06-13T18:23:22.888409Z", - "shell.execute_reply": "2024-06-13T18:23:22.887984Z" + "iopub.execute_input": "2024-06-14T00:18:17.663954Z", + "iopub.status.busy": "2024-06-14T00:18:17.663668Z", + "iopub.status.idle": "2024-06-14T00:18:17.668856Z", + "shell.execute_reply": "2024-06-14T00:18:17.668300Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:22.890520Z", - "iopub.status.busy": "2024-06-13T18:23:22.890129Z", - "iopub.status.idle": "2024-06-13T18:23:23.075325Z", - "shell.execute_reply": "2024-06-13T18:23:23.074813Z" + "iopub.execute_input": "2024-06-14T00:18:17.670934Z", + "iopub.status.busy": "2024-06-14T00:18:17.670610Z", + "iopub.status.idle": "2024-06-14T00:18:17.857869Z", + "shell.execute_reply": "2024-06-14T00:18:17.857222Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:23.077767Z", - "iopub.status.busy": "2024-06-13T18:23:23.077565Z", - "iopub.status.idle": "2024-06-13T18:23:23.453755Z", - "shell.execute_reply": "2024-06-13T18:23:23.453172Z" + "iopub.execute_input": "2024-06-14T00:18:17.860356Z", + "iopub.status.busy": "2024-06-14T00:18:17.860163Z", + "iopub.status.idle": "2024-06-14T00:18:18.228866Z", + "shell.execute_reply": "2024-06-14T00:18:18.228294Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:23.456091Z", - "iopub.status.busy": "2024-06-13T18:23:23.455731Z", - "iopub.status.idle": "2024-06-13T18:23:23.458493Z", - "shell.execute_reply": "2024-06-13T18:23:23.458048Z" + "iopub.execute_input": "2024-06-14T00:18:18.231198Z", + "iopub.status.busy": "2024-06-14T00:18:18.230763Z", + "iopub.status.idle": "2024-06-14T00:18:18.233641Z", + "shell.execute_reply": "2024-06-14T00:18:18.233104Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:23.460685Z", - "iopub.status.busy": "2024-06-13T18:23:23.460374Z", - "iopub.status.idle": "2024-06-13T18:23:23.496482Z", - "shell.execute_reply": "2024-06-13T18:23:23.495866Z" + "iopub.execute_input": "2024-06-14T00:18:18.235607Z", + "iopub.status.busy": "2024-06-14T00:18:18.235303Z", + "iopub.status.idle": "2024-06-14T00:18:18.270224Z", + "shell.execute_reply": "2024-06-14T00:18:18.269584Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:23.498982Z", - "iopub.status.busy": "2024-06-13T18:23:23.498606Z", - "iopub.status.idle": "2024-06-13T18:23:25.223619Z", - "shell.execute_reply": "2024-06-13T18:23:25.222928Z" + "iopub.execute_input": "2024-06-14T00:18:18.272374Z", + "iopub.status.busy": "2024-06-14T00:18:18.272040Z", + "iopub.status.idle": "2024-06-14T00:18:20.044172Z", + "shell.execute_reply": "2024-06-14T00:18:20.043436Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.226003Z", - "iopub.status.busy": "2024-06-13T18:23:25.225669Z", - "iopub.status.idle": "2024-06-13T18:23:25.244901Z", - "shell.execute_reply": "2024-06-13T18:23:25.244346Z" + "iopub.execute_input": "2024-06-14T00:18:20.046914Z", + "iopub.status.busy": "2024-06-14T00:18:20.046312Z", + "iopub.status.idle": "2024-06-14T00:18:20.066681Z", + "shell.execute_reply": "2024-06-14T00:18:20.066166Z" } }, "outputs": [ @@ -847,10 +847,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.247139Z", - "iopub.status.busy": "2024-06-13T18:23:25.246829Z", - "iopub.status.idle": "2024-06-13T18:23:25.253261Z", - "shell.execute_reply": "2024-06-13T18:23:25.252839Z" + "iopub.execute_input": "2024-06-14T00:18:20.068986Z", + "iopub.status.busy": "2024-06-14T00:18:20.068624Z", + "iopub.status.idle": "2024-06-14T00:18:20.075541Z", + "shell.execute_reply": "2024-06-14T00:18:20.075028Z" } }, "outputs": [ @@ -961,10 +961,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.255123Z", - "iopub.status.busy": "2024-06-13T18:23:25.254945Z", - "iopub.status.idle": "2024-06-13T18:23:25.260794Z", - "shell.execute_reply": "2024-06-13T18:23:25.260276Z" + "iopub.execute_input": "2024-06-14T00:18:20.077638Z", + "iopub.status.busy": "2024-06-14T00:18:20.077355Z", + "iopub.status.idle": "2024-06-14T00:18:20.083371Z", + "shell.execute_reply": "2024-06-14T00:18:20.082900Z" } }, "outputs": [ @@ -1031,10 +1031,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.262893Z", - "iopub.status.busy": "2024-06-13T18:23:25.262485Z", - "iopub.status.idle": "2024-06-13T18:23:25.272957Z", - "shell.execute_reply": "2024-06-13T18:23:25.272422Z" + "iopub.execute_input": "2024-06-14T00:18:20.085490Z", + "iopub.status.busy": "2024-06-14T00:18:20.085145Z", + "iopub.status.idle": "2024-06-14T00:18:20.095763Z", + "shell.execute_reply": "2024-06-14T00:18:20.095306Z" } }, "outputs": [ @@ -1226,10 +1226,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.274976Z", - "iopub.status.busy": "2024-06-13T18:23:25.274680Z", - "iopub.status.idle": "2024-06-13T18:23:25.283891Z", - "shell.execute_reply": "2024-06-13T18:23:25.283372Z" + "iopub.execute_input": "2024-06-14T00:18:20.097855Z", + "iopub.status.busy": "2024-06-14T00:18:20.097511Z", + "iopub.status.idle": "2024-06-14T00:18:20.106536Z", + "shell.execute_reply": "2024-06-14T00:18:20.105975Z" } }, "outputs": [ @@ -1345,10 +1345,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.286121Z", - "iopub.status.busy": "2024-06-13T18:23:25.285703Z", - "iopub.status.idle": "2024-06-13T18:23:25.292791Z", - "shell.execute_reply": "2024-06-13T18:23:25.292244Z" + "iopub.execute_input": "2024-06-14T00:18:20.108515Z", + "iopub.status.busy": "2024-06-14T00:18:20.108339Z", + "iopub.status.idle": "2024-06-14T00:18:20.115737Z", + "shell.execute_reply": "2024-06-14T00:18:20.115167Z" }, "scrolled": true }, @@ -1473,10 +1473,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.294884Z", - "iopub.status.busy": "2024-06-13T18:23:25.294470Z", - "iopub.status.idle": "2024-06-13T18:23:25.304096Z", - "shell.execute_reply": "2024-06-13T18:23:25.303544Z" + "iopub.execute_input": "2024-06-14T00:18:20.117954Z", + "iopub.status.busy": "2024-06-14T00:18:20.117545Z", + "iopub.status.idle": "2024-06-14T00:18:20.127922Z", + "shell.execute_reply": "2024-06-14T00:18:20.127430Z" } }, "outputs": [ @@ -1579,10 +1579,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:25.306234Z", - "iopub.status.busy": "2024-06-13T18:23:25.305827Z", - "iopub.status.idle": "2024-06-13T18:23:25.317934Z", - "shell.execute_reply": "2024-06-13T18:23:25.317373Z" + "iopub.execute_input": "2024-06-14T00:18:20.130124Z", + "iopub.status.busy": "2024-06-14T00:18:20.129782Z", + "iopub.status.idle": "2024-06-14T00:18:20.142026Z", + "shell.execute_reply": "2024-06-14T00:18:20.141552Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index a7332f35a..7ba45ccf1 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -729,49 +729,49 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1084,7 +1084,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1116,7 +1116,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1148,7 +1148,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2071,35 +2071,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2127,7 +2127,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 354fc4567..1d9f2b5a9 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:27.969954Z", - "iopub.status.busy": "2024-06-13T18:23:27.969778Z", - "iopub.status.idle": "2024-06-13T18:23:30.884415Z", - "shell.execute_reply": "2024-06-13T18:23:30.883646Z" + "iopub.execute_input": "2024-06-14T00:18:22.951894Z", + "iopub.status.busy": "2024-06-14T00:18:22.951417Z", + "iopub.status.idle": "2024-06-14T00:18:25.901373Z", + "shell.execute_reply": "2024-06-14T00:18:25.900723Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:30.887579Z", - "iopub.status.busy": "2024-06-13T18:23:30.886861Z", - "iopub.status.idle": "2024-06-13T18:23:30.891989Z", - "shell.execute_reply": "2024-06-13T18:23:30.891396Z" + "iopub.execute_input": "2024-06-14T00:18:25.904175Z", + "iopub.status.busy": "2024-06-14T00:18:25.903848Z", + "iopub.status.idle": "2024-06-14T00:18:25.907796Z", + "shell.execute_reply": "2024-06-14T00:18:25.907326Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:30.894459Z", - "iopub.status.busy": "2024-06-13T18:23:30.894016Z", - "iopub.status.idle": "2024-06-13T18:23:50.861088Z", - "shell.execute_reply": "2024-06-13T18:23:50.860515Z" + "iopub.execute_input": "2024-06-14T00:18:25.909962Z", + "iopub.status.busy": "2024-06-14T00:18:25.909620Z", + "iopub.status.idle": "2024-06-14T00:18:36.794453Z", + "shell.execute_reply": "2024-06-14T00:18:36.793951Z" } }, "outputs": [ @@ -172,7 +172,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e9f4cce5ae224f93a5b80a19ccbb04a9", + "model_id": "1ee131dda41d4a5abf71f783e7cc48a0", "version_major": 2, "version_minor": 0 }, @@ -186,7 +186,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "759d78e08c824405bbe8746ddbfbc1c3", + "model_id": "d73213875ad74216bf0d0a81d14bd1d3", "version_major": 2, "version_minor": 0 }, @@ -200,7 +200,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "385563d79152405193b8ddd5fcc77e0a", + "model_id": "15b1ef3bed814b2698d221b31db8c797", "version_major": 2, "version_minor": 0 }, @@ -214,7 +214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "82823a5ceaf9423dbdd8d54dddb2c7a6", + "model_id": "de636abade924ea8bc76c1bff06498af", "version_major": 2, "version_minor": 0 }, @@ -228,7 +228,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf2511624c2a4778bc836f290acedf8b", + "model_id": "c502cbfcb20042b496aab97e7dff0338", "version_major": 2, "version_minor": 0 }, @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c7eaef39a414d45bdced17678d5f2f3", + "model_id": "6baddd7f88844b9fa3d1ea84d9b8f4c5", "version_major": 2, "version_minor": 0 }, @@ -256,7 +256,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "745b7366dbb64c2daf84c029de3688bd", + "model_id": "e02ac76f211c452fa47443c8fe5a66fa", "version_major": 2, "version_minor": 0 }, @@ -270,7 +270,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8df15e8710f842479f05326569119ec8", + "model_id": "944bc13775bc43f9b5195a84db492404", "version_major": 2, "version_minor": 0 }, @@ -312,10 +312,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:50.863251Z", - "iopub.status.busy": "2024-06-13T18:23:50.863037Z", - "iopub.status.idle": "2024-06-13T18:23:50.866878Z", - "shell.execute_reply": "2024-06-13T18:23:50.866443Z" + "iopub.execute_input": "2024-06-14T00:18:36.796820Z", + "iopub.status.busy": "2024-06-14T00:18:36.796385Z", + "iopub.status.idle": "2024-06-14T00:18:36.800363Z", + "shell.execute_reply": "2024-06-14T00:18:36.799816Z" } }, "outputs": [ @@ -340,17 +340,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:23:50.868998Z", - "iopub.status.busy": "2024-06-13T18:23:50.868816Z", - "iopub.status.idle": "2024-06-13T18:24:02.112754Z", - "shell.execute_reply": "2024-06-13T18:24:02.112111Z" + "iopub.execute_input": "2024-06-14T00:18:36.802496Z", + "iopub.status.busy": "2024-06-14T00:18:36.802096Z", + "iopub.status.idle": "2024-06-14T00:18:48.280589Z", + "shell.execute_reply": "2024-06-14T00:18:48.280033Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e6e7b8be4c634d7c9456a02023a3facc", + "model_id": "6090aaf8150b44059029d2d920b6c28f", "version_major": 2, "version_minor": 0 }, @@ -388,10 +388,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:02.115570Z", - "iopub.status.busy": "2024-06-13T18:24:02.115119Z", - "iopub.status.idle": "2024-06-13T18:24:21.056382Z", - "shell.execute_reply": "2024-06-13T18:24:21.055738Z" + "iopub.execute_input": "2024-06-14T00:18:48.283245Z", + "iopub.status.busy": "2024-06-14T00:18:48.282939Z", + "iopub.status.idle": "2024-06-14T00:19:07.022616Z", + "shell.execute_reply": "2024-06-14T00:19:07.021971Z" } }, "outputs": [], @@ -424,10 +424,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.059343Z", - "iopub.status.busy": "2024-06-13T18:24:21.058955Z", - "iopub.status.idle": "2024-06-13T18:24:21.063686Z", - "shell.execute_reply": "2024-06-13T18:24:21.063239Z" + "iopub.execute_input": "2024-06-14T00:19:07.025397Z", + "iopub.status.busy": "2024-06-14T00:19:07.025062Z", + "iopub.status.idle": "2024-06-14T00:19:07.029948Z", + "shell.execute_reply": "2024-06-14T00:19:07.029402Z" } }, "outputs": [], @@ -465,10 +465,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.065705Z", - "iopub.status.busy": "2024-06-13T18:24:21.065382Z", - "iopub.status.idle": "2024-06-13T18:24:21.069541Z", - "shell.execute_reply": "2024-06-13T18:24:21.069126Z" + "iopub.execute_input": "2024-06-14T00:19:07.031952Z", + "iopub.status.busy": "2024-06-14T00:19:07.031771Z", + "iopub.status.idle": "2024-06-14T00:19:07.035929Z", + "shell.execute_reply": "2024-06-14T00:19:07.035527Z" }, "nbsphinx": "hidden" }, @@ -605,10 +605,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.071702Z", - "iopub.status.busy": "2024-06-13T18:24:21.071195Z", - "iopub.status.idle": "2024-06-13T18:24:21.080034Z", - "shell.execute_reply": "2024-06-13T18:24:21.079501Z" + "iopub.execute_input": "2024-06-14T00:19:07.037773Z", + "iopub.status.busy": "2024-06-14T00:19:07.037582Z", + "iopub.status.idle": "2024-06-14T00:19:07.046492Z", + "shell.execute_reply": "2024-06-14T00:19:07.046034Z" }, "nbsphinx": "hidden" }, @@ -733,10 +733,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.082075Z", - "iopub.status.busy": "2024-06-13T18:24:21.081901Z", - "iopub.status.idle": "2024-06-13T18:24:21.108865Z", - "shell.execute_reply": "2024-06-13T18:24:21.108294Z" + "iopub.execute_input": "2024-06-14T00:19:07.048349Z", + "iopub.status.busy": "2024-06-14T00:19:07.048178Z", + "iopub.status.idle": "2024-06-14T00:19:07.075367Z", + "shell.execute_reply": "2024-06-14T00:19:07.074746Z" } }, "outputs": [], @@ -773,10 +773,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:21.111096Z", - "iopub.status.busy": "2024-06-13T18:24:21.110795Z", - "iopub.status.idle": "2024-06-13T18:24:54.007832Z", - "shell.execute_reply": "2024-06-13T18:24:54.007184Z" + "iopub.execute_input": "2024-06-14T00:19:07.077826Z", + "iopub.status.busy": "2024-06-14T00:19:07.077459Z", + "iopub.status.idle": "2024-06-14T00:19:40.346737Z", + "shell.execute_reply": "2024-06-14T00:19:40.346096Z" } }, "outputs": [ @@ -792,21 +792,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.819\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.838\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.519\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.624\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2fdd69f96954463490403bc82cba45e2", + "model_id": "33a3000ed6594bf7b6f38f302093cdd3", "version_major": 2, "version_minor": 0 }, @@ -827,7 +827,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "53c571a3a3e6480b87ae02c4703c6c98", + "model_id": "5460e9c61e374fef8cf751db7a3ebbcb", "version_major": 2, "version_minor": 0 }, @@ -850,21 +850,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.005\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.018\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.589\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.862\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9be18dcff7494e939c53941df53f0871", + "model_id": "584249182a514d5aaeda8f1622a4d8a2", "version_major": 2, "version_minor": 0 }, @@ -885,7 +885,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "da75209458cd4d829d58a3543863fb93", + "model_id": "33592263eb514630bb35720f102d8618", "version_major": 2, "version_minor": 0 }, @@ -908,21 +908,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.978\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.951\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.481\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.680\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d5b12008f99d455c966fa2e14fe5f154", + "model_id": "fe280fc7af794d66911aa8d37a5a9a22", "version_major": 2, "version_minor": 0 }, @@ -943,7 +943,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aaede45da5534b61881b204536652752", + "model_id": "2cb2a83a46194afe8f70770bcf582ccb", "version_major": 2, "version_minor": 0 }, @@ -1022,10 +1022,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:54.010361Z", - "iopub.status.busy": "2024-06-13T18:24:54.010125Z", - "iopub.status.idle": "2024-06-13T18:24:54.024225Z", - "shell.execute_reply": "2024-06-13T18:24:54.023671Z" + "iopub.execute_input": "2024-06-14T00:19:40.349130Z", + "iopub.status.busy": "2024-06-14T00:19:40.348885Z", + "iopub.status.idle": "2024-06-14T00:19:40.363093Z", + "shell.execute_reply": "2024-06-14T00:19:40.362634Z" } }, "outputs": [], @@ -1050,10 +1050,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:54.026441Z", - "iopub.status.busy": "2024-06-13T18:24:54.026142Z", - "iopub.status.idle": "2024-06-13T18:24:54.494147Z", - "shell.execute_reply": "2024-06-13T18:24:54.493582Z" + "iopub.execute_input": "2024-06-14T00:19:40.365498Z", + "iopub.status.busy": "2024-06-14T00:19:40.365051Z", + "iopub.status.idle": "2024-06-14T00:19:40.853319Z", + "shell.execute_reply": "2024-06-14T00:19:40.852717Z" } }, "outputs": [], @@ -1073,10 +1073,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:24:54.496674Z", - "iopub.status.busy": "2024-06-13T18:24:54.496365Z", - "iopub.status.idle": "2024-06-13T18:28:20.318441Z", - "shell.execute_reply": "2024-06-13T18:28:20.317795Z" + "iopub.execute_input": "2024-06-14T00:19:40.856035Z", + "iopub.status.busy": "2024-06-14T00:19:40.855603Z", + "iopub.status.idle": "2024-06-14T00:23:10.603771Z", + "shell.execute_reply": "2024-06-14T00:23:10.603194Z" } }, "outputs": [ @@ -1124,7 +1124,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf43deff8d6f44328677d9cd944ab999", + "model_id": "9966542321eb42f7b958a6114ba286a0", "version_major": 2, "version_minor": 0 }, @@ -1163,10 +1163,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.320847Z", - "iopub.status.busy": "2024-06-13T18:28:20.320428Z", - "iopub.status.idle": "2024-06-13T18:28:20.775137Z", - "shell.execute_reply": "2024-06-13T18:28:20.774589Z" + "iopub.execute_input": "2024-06-14T00:23:10.606354Z", + "iopub.status.busy": "2024-06-14T00:23:10.605778Z", + "iopub.status.idle": "2024-06-14T00:23:11.064625Z", + "shell.execute_reply": "2024-06-14T00:23:11.064061Z" } }, "outputs": [ @@ -1312,10 +1312,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.777850Z", - "iopub.status.busy": "2024-06-13T18:28:20.777334Z", - "iopub.status.idle": "2024-06-13T18:28:20.839490Z", - "shell.execute_reply": "2024-06-13T18:28:20.838973Z" + "iopub.execute_input": "2024-06-14T00:23:11.067560Z", + "iopub.status.busy": "2024-06-14T00:23:11.067036Z", + "iopub.status.idle": "2024-06-14T00:23:11.131124Z", + "shell.execute_reply": "2024-06-14T00:23:11.130554Z" } }, "outputs": [ @@ -1419,10 +1419,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.841735Z", - "iopub.status.busy": "2024-06-13T18:28:20.841332Z", - "iopub.status.idle": "2024-06-13T18:28:20.850254Z", - "shell.execute_reply": "2024-06-13T18:28:20.849702Z" + "iopub.execute_input": "2024-06-14T00:23:11.133778Z", + "iopub.status.busy": "2024-06-14T00:23:11.133375Z", + "iopub.status.idle": "2024-06-14T00:23:11.142588Z", + "shell.execute_reply": "2024-06-14T00:23:11.142035Z" } }, "outputs": [ @@ -1552,10 +1552,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.852278Z", - "iopub.status.busy": "2024-06-13T18:28:20.851931Z", - "iopub.status.idle": "2024-06-13T18:28:20.857915Z", - "shell.execute_reply": "2024-06-13T18:28:20.857349Z" + "iopub.execute_input": "2024-06-14T00:23:11.144686Z", + "iopub.status.busy": "2024-06-14T00:23:11.144284Z", + "iopub.status.idle": "2024-06-14T00:23:11.149149Z", + "shell.execute_reply": "2024-06-14T00:23:11.148684Z" }, "nbsphinx": "hidden" }, @@ -1601,10 +1601,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:20.860018Z", - "iopub.status.busy": "2024-06-13T18:28:20.859702Z", - "iopub.status.idle": "2024-06-13T18:28:21.366649Z", - "shell.execute_reply": "2024-06-13T18:28:21.366082Z" + "iopub.execute_input": "2024-06-14T00:23:11.150953Z", + "iopub.status.busy": "2024-06-14T00:23:11.150783Z", + "iopub.status.idle": "2024-06-14T00:23:11.652330Z", + "shell.execute_reply": "2024-06-14T00:23:11.651700Z" } }, "outputs": [ @@ -1639,10 +1639,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.369041Z", - "iopub.status.busy": "2024-06-13T18:28:21.368702Z", - "iopub.status.idle": "2024-06-13T18:28:21.377158Z", - "shell.execute_reply": "2024-06-13T18:28:21.376635Z" + "iopub.execute_input": "2024-06-14T00:23:11.654447Z", + "iopub.status.busy": "2024-06-14T00:23:11.654245Z", + "iopub.status.idle": "2024-06-14T00:23:11.663297Z", + "shell.execute_reply": "2024-06-14T00:23:11.662737Z" } }, "outputs": [ @@ -1809,10 +1809,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.379280Z", - "iopub.status.busy": "2024-06-13T18:28:21.378960Z", - "iopub.status.idle": "2024-06-13T18:28:21.385957Z", - "shell.execute_reply": "2024-06-13T18:28:21.385515Z" + "iopub.execute_input": "2024-06-14T00:23:11.665344Z", + "iopub.status.busy": "2024-06-14T00:23:11.665158Z", + "iopub.status.idle": "2024-06-14T00:23:11.672583Z", + "shell.execute_reply": "2024-06-14T00:23:11.672114Z" }, "nbsphinx": "hidden" }, @@ -1888,10 +1888,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.387951Z", - "iopub.status.busy": "2024-06-13T18:28:21.387643Z", - "iopub.status.idle": "2024-06-13T18:28:21.859421Z", - "shell.execute_reply": "2024-06-13T18:28:21.858831Z" + "iopub.execute_input": "2024-06-14T00:23:11.674460Z", + "iopub.status.busy": "2024-06-14T00:23:11.674278Z", + "iopub.status.idle": "2024-06-14T00:23:12.146975Z", + "shell.execute_reply": "2024-06-14T00:23:12.146339Z" } }, "outputs": [ @@ -1928,10 +1928,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.861630Z", - "iopub.status.busy": "2024-06-13T18:28:21.861322Z", - "iopub.status.idle": "2024-06-13T18:28:21.876648Z", - "shell.execute_reply": "2024-06-13T18:28:21.876090Z" + "iopub.execute_input": "2024-06-14T00:23:12.149806Z", + "iopub.status.busy": "2024-06-14T00:23:12.149400Z", + "iopub.status.idle": "2024-06-14T00:23:12.171208Z", + "shell.execute_reply": "2024-06-14T00:23:12.170602Z" } }, "outputs": [ @@ -2088,10 +2088,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.878920Z", - "iopub.status.busy": "2024-06-13T18:28:21.878509Z", - "iopub.status.idle": "2024-06-13T18:28:21.884047Z", - "shell.execute_reply": "2024-06-13T18:28:21.883571Z" + "iopub.execute_input": "2024-06-14T00:23:12.173668Z", + "iopub.status.busy": "2024-06-14T00:23:12.173289Z", + "iopub.status.idle": "2024-06-14T00:23:12.179233Z", + "shell.execute_reply": "2024-06-14T00:23:12.178742Z" }, "nbsphinx": "hidden" }, @@ -2136,10 +2136,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:21.886058Z", - "iopub.status.busy": "2024-06-13T18:28:21.885741Z", - "iopub.status.idle": "2024-06-13T18:28:22.355000Z", - "shell.execute_reply": "2024-06-13T18:28:22.354461Z" + "iopub.execute_input": "2024-06-14T00:23:12.181349Z", + "iopub.status.busy": "2024-06-14T00:23:12.181007Z", + "iopub.status.idle": "2024-06-14T00:23:12.670175Z", + "shell.execute_reply": "2024-06-14T00:23:12.669493Z" } }, "outputs": [ @@ -2221,10 +2221,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.357504Z", - "iopub.status.busy": "2024-06-13T18:28:22.357301Z", - "iopub.status.idle": "2024-06-13T18:28:22.366573Z", - "shell.execute_reply": "2024-06-13T18:28:22.366013Z" + "iopub.execute_input": "2024-06-14T00:23:12.673189Z", + "iopub.status.busy": "2024-06-14T00:23:12.672942Z", + "iopub.status.idle": "2024-06-14T00:23:12.683878Z", + "shell.execute_reply": "2024-06-14T00:23:12.683262Z" } }, "outputs": [ @@ -2352,10 +2352,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.369144Z", - "iopub.status.busy": "2024-06-13T18:28:22.368947Z", - "iopub.status.idle": "2024-06-13T18:28:22.374685Z", - "shell.execute_reply": "2024-06-13T18:28:22.374121Z" + "iopub.execute_input": "2024-06-14T00:23:12.686798Z", + "iopub.status.busy": "2024-06-14T00:23:12.686383Z", + "iopub.status.idle": "2024-06-14T00:23:12.692814Z", + "shell.execute_reply": "2024-06-14T00:23:12.692190Z" }, "nbsphinx": "hidden" }, @@ -2392,10 +2392,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.377067Z", - "iopub.status.busy": "2024-06-13T18:28:22.376873Z", - "iopub.status.idle": "2024-06-13T18:28:22.872568Z", - "shell.execute_reply": "2024-06-13T18:28:22.871951Z" + "iopub.execute_input": "2024-06-14T00:23:12.695452Z", + "iopub.status.busy": "2024-06-14T00:23:12.695211Z", + "iopub.status.idle": "2024-06-14T00:23:13.276855Z", + "shell.execute_reply": "2024-06-14T00:23:13.276228Z" } }, "outputs": [ @@ -2437,10 +2437,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.874684Z", - "iopub.status.busy": "2024-06-13T18:28:22.874505Z", - "iopub.status.idle": "2024-06-13T18:28:22.882498Z", - "shell.execute_reply": "2024-06-13T18:28:22.882079Z" + "iopub.execute_input": "2024-06-14T00:23:13.279046Z", + "iopub.status.busy": "2024-06-14T00:23:13.278860Z", + "iopub.status.idle": "2024-06-14T00:23:13.287441Z", + "shell.execute_reply": "2024-06-14T00:23:13.286973Z" } }, "outputs": [ @@ -2465,47 +2465,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2526,10 +2526,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:22.884564Z", - "iopub.status.busy": "2024-06-13T18:28:22.884255Z", - "iopub.status.idle": "2024-06-13T18:28:23.082663Z", - "shell.execute_reply": "2024-06-13T18:28:23.082076Z" + "iopub.execute_input": "2024-06-14T00:23:13.289388Z", + "iopub.status.busy": "2024-06-14T00:23:13.289211Z", + "iopub.status.idle": "2024-06-14T00:23:13.461882Z", + "shell.execute_reply": "2024-06-14T00:23:13.461280Z" } }, "outputs": [ @@ -2569,10 +2569,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:23.085063Z", - "iopub.status.busy": "2024-06-13T18:28:23.084725Z", - "iopub.status.idle": "2024-06-13T18:28:23.089384Z", - "shell.execute_reply": "2024-06-13T18:28:23.088941Z" + "iopub.execute_input": "2024-06-14T00:23:13.464189Z", + "iopub.status.busy": "2024-06-14T00:23:13.463764Z", + "iopub.status.idle": "2024-06-14T00:23:13.468377Z", + "shell.execute_reply": "2024-06-14T00:23:13.467894Z" }, "nbsphinx": "hidden" }, @@ -2609,7 +2609,130 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "011e1c405e3a487bb6cd4db6269dabaf": { + "000f51896196443c9f695cbb14d857cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39cbff9c77594902ac1b336a55f05db5", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_491a8e08d9ee49ef90656a55ac982d4e", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "02b3ab1c99f54ef3925d5e044cc8f184": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa06f921c76f40189c687a3f781b29aa", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc95859b7c574b2bb9d6244f9a032f2a", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "0321d07b59324f6da681cafe18318797": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0445168202e84bd987a8c99bbaa42154": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04c9d61b124843488d6c8485d3276cf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2662,7 +2785,7 @@ "width": null } }, - "0127201b714d436eaeadac20dceecb5c": { + "06c9466df0c44e909952c44e64700f34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2677,33 +2800,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_27398c396b2548d9a159143ce575cdd6", + "layout": "IPY_MODEL_a9da5b0e5e484eaba9bb8e2dd7a3620b", "placeholder": "​", - "style": "IPY_MODEL_8ee1e100ba224c86971a4eb5c2aa8d2c", + "style": "IPY_MODEL_809cef9781a34951bd88663cc8461e2b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.83it/s]" - } - }, - "02744ca1e8454e48bde1845bfe448428": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Downloading data: 100%" } }, - "031ba280948b4100b7f66a834088d319": { + "06feb365096443a6afc34cd47e0ce44a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2756,7 +2861,7 @@ "width": null } }, - "03302e2436184c00bf4112e516e9a069": { + "074ef5d49e1b43a789322b593f76170e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2771,113 +2876,125 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6e28af39d0e0449b86fb861e46caf297", + "layout": "IPY_MODEL_91fa85e0a2f04ca190bae9f341b1bdef", "placeholder": "​", - "style": "IPY_MODEL_c69f5486f5854cdc9b0f28f343dc5cbb", + "style": "IPY_MODEL_2bdfe30cf5784be3ba9ebf94b3ef6368", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 63.17it/s]" } }, - "0486167697834cbfb7031daef4c202a4": { + "0838d93a38da446fa5babd7cfbccea4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_946ae0b4ccb44762a01989bba335fed2", - "placeholder": "​", - "style": "IPY_MODEL_50321cbbe67d4c51924a23c58e9ae983", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "055f310ad17942a195bb466d23c3b972": { + "09106c1b90dc4eb085f5f605736acb94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a5e89613a9ef4d60af510371acaae248", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f7334dfe237e4e7f9b2835e84059e0a1", + "layout": "IPY_MODEL_f74bae4636c84e44a721b635741423a3", + "placeholder": "​", + "style": "IPY_MODEL_d6d73ba68a06438fa862d7e105099af4", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Map (num_proc=4): 100%" } }, - "05d23d732cc649158da39cae536db0b8": { - "model_module": "@jupyter-widgets/controls", + "09b5225d46a341c0bbaffca3110244dd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f783743818724180b7f32fc5790faed2", - "placeholder": "​", - "style": "IPY_MODEL_a0c4a73bbcdc41fa8f881db96483a666", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0887279366d947918a2859b5000c3142": { + "0c867e0cc02547b083b9135cd8ac51f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_40e2cec84288490ea94550d4701ac922", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c2c2c15028944865b0e3c7803228d0aa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0fb820347f364c79ba9ef78c5ca1da2d": { + "0e2c5d9d844044d483fb12d45f0ba447": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2895,7 +3012,7 @@ "text_color": null } }, - "100059655a4b4d11b2e4b02133955b21": { + "0f9c12350af541d48cb128f8707cf8d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2913,25 +3030,23 @@ "text_color": null } }, - "110c7268e08143bfb0bf9bb6a831308d": { + "11d0a7d94195419780e6813f5d09e9f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "12395429544748b9ae9539173c4e28de": { + "14b011f3d58b45019e4c8d194743e726": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2946,41 +3061,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82c9a984fa4a45d6bbef34980ab6cc9b", + "layout": "IPY_MODEL_9417954b1e6a4ea997a82279df1c1e06", "placeholder": "​", - "style": "IPY_MODEL_e2358f94bd824cb297783cbce5bd4b6d", + "style": "IPY_MODEL_2f3ac0cd144940acadf4f4c4ee2a021a", "tabbable": null, "tooltip": null, "value": "100%" } }, - "14fb0bfb489048289623514f4c431a3e": { + "15b1ef3bed814b2698d221b31db8c797": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e87f6146964a4d0b8eb91e61b43a17fd", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_49823216ca6949e5a14b61cd123ee7e8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_06c9466df0c44e909952c44e64700f34", + "IPY_MODEL_bdf6bc67142548d6b578370fa647bf61", + "IPY_MODEL_2f979b7cad2b4d6e8a64b5ecc40adf6c" + ], + "layout": "IPY_MODEL_60c8a5975d844ab8b11b4600e7eac41d", "tabbable": null, - "tooltip": null, - "value": 8845.0 + "tooltip": null } }, - "16244a9faef744f7a1f8ebc93c498cb3": { + "15b2884c3ebe43d9b97793956a82ff7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3033,82 +3146,7 @@ "width": null } }, - "171462d98af24358a5961b04c9b74604": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce85d6a5941844bb979d569eee20cec8", - "placeholder": "​", - "style": "IPY_MODEL_e508a8da39c24fd88425f7c7260a2470", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8672.48 examples/s]" - } - }, - "187b5884ecb54bf48c15186faab99e02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8dd9f155917f4571a7ce9acde49d0e5a", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9490a9b9bdd24394a12824ed76bc8a05", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "18bab8a142254c219cd8b1f4a5772397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf145e78e7c44335849bfe2731b76547", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44d69a1bdf4f4884859553b7fb83131a", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "190c1eeccee04fd2bb6a6c9b72dc1038": { + "18e9578262f94f698121d43e99dd82d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3161,25 +3199,60 @@ "width": null } }, - "196b795a1e9b497db76e66252b9eefa2": { - "model_module": "@jupyter-widgets/controls", + "1b972aee47154e24a633dd4afcce07bb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1bccdd768eb9423db31eb1aea279ce94": { + "1c603154a9444624a9173aae824a8387": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3232,30 +3305,7 @@ "width": null } }, - "1cfc9524b7a24cdbb7e8f0e2d2d568a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc1a2da537ce4bb5911e830c1b271c69", - "placeholder": "​", - "style": "IPY_MODEL_2dc07d6525ea431e87ab9f81e0b66622", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "1dcfbde1b2e24c5f9c238e501811a342": { + "1e083f03e45740369b9c816e94c17c7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3308,7 +3358,7 @@ "width": null } }, - "1ec163f519174e658357ad372ba5c630": { + "1e547fdab21842a3a820b8cfc8107067": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3361,7 +3411,7 @@ "width": null } }, - "20c8f73e92d2495bb274955e092d539c": { + "1e87658a42504ce4b3575fd1ea760a2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3379,7 +3429,47 @@ "text_color": null } }, - "258a85ded32444efb41a85839c269873": { + "1ee131dda41d4a5abf71f783e7cc48a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e1e5f72e17845ce8e2ce7eb2812f21b", + "IPY_MODEL_000f51896196443c9f695cbb14d857cd", + "IPY_MODEL_30acba55f7104d72b4cf84be0a775cd0" + ], + "layout": "IPY_MODEL_9c5c89be5849407e958b709b927463b7", + "tabbable": null, + "tooltip": null + } + }, + "2026c613a85740ac9f350f0587f79473": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "29887663f048431b82be1858f43767e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3432,7 +3522,65 @@ "width": null } }, - "27398c396b2548d9a159143ce575cdd6": { + "2b7405d95f1a40f3b4a3714ff881243e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2bdfe30cf5784be3ba9ebf94b3ef6368": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2cb2a83a46194afe8f70770bcf582ccb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c11ffc22a8844386af101099ad307235", + "IPY_MODEL_6b37c615fe9e4a17ab3210fec9f293a8", + "IPY_MODEL_30b6fd6af0e94eabb6bbdc5849d080b1" + ], + "layout": "IPY_MODEL_1e083f03e45740369b9c816e94c17c7f", + "tabbable": null, + "tooltip": null + } + }, + "2cf5b64d8e274727afa2e967216d5823": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3485,7 +3633,7 @@ "width": null } }, - "27f324cbc4a04172a48a9afff95019c7": { + "2e96200f404c48e4a508630b21ca59aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3538,91 +3686,14 @@ "width": null } }, - "28ccc81cdae14256b911f7294cdbf8a0": { + "2f3ac0cd144940acadf4f4c4ee2a021a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_85ea5d5292d0441b8ae5ffa8f288b8f6", - "IPY_MODEL_187b5884ecb54bf48c15186faab99e02", - "IPY_MODEL_45b3e59d32ed454bb407cd63a1a1bfc2" - ], - "layout": "IPY_MODEL_d42a0fef40af4deb82ef3e72a10e8d7d", - "tabbable": null, - "tooltip": null - } - }, - "2ce8a4e687914f688c1fe339a120d37e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2dc07d6525ea431e87ab9f81e0b66622": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3633,31 +3704,30 @@ "text_color": null } }, - "2fdd69f96954463490403bc82cba45e2": { + "2f979b7cad2b4d6e8a64b5ecc40adf6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6e05d7a3ce5444fc9fc185c7cefb7bfb", - "IPY_MODEL_e9f41dad882341c69e15673ba734984b", - "IPY_MODEL_fb4c67cbf0b64f5aa774cf47171d88d2" - ], - "layout": "IPY_MODEL_736e4c44e03a4e058853275f160e4869", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_18e9578262f94f698121d43e99dd82d9", + "placeholder": "​", + "style": "IPY_MODEL_4a9cfcaefb4d43eca0252678d899d971", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 118MB/s]" } }, - "31fed1d7091d4d4583d2c3c572eeac5e": { + "3077a3fdcc2a4e449725168230ce8fbe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3675,23 +3745,30 @@ "text_color": null } }, - "32798c5dacb74eab8aae5f6ac9ee796e": { + "30acba55f7104d72b4cf84be0a775cd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_81c92cbe85a64e0dae661e38ac134935", + "placeholder": "​", + "style": "IPY_MODEL_3077a3fdcc2a4e449725168230ce8fbe", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 586kB/s]" } }, - "373774c569f4410195997abcc6ad3963": { + "30b6fd6af0e94eabb6bbdc5849d080b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3706,15 +3783,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4891d350edf24c798609f0b9928b5070", + "layout": "IPY_MODEL_d1a5c9e7b59a44a8a410c2d4bd592db6", "placeholder": "​", - "style": "IPY_MODEL_56c3894d38584313b981ca981f1f0023", + "style": "IPY_MODEL_9583fea99f244c53b350c8a2a83db01e", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5959.13 examples/s]" + "value": " 40/40 [00:00<00:00, 67.34it/s]" } }, - "385563d79152405193b8ddd5fcc77e0a": { + "33592263eb514630bb35720f102d8618": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3729,57 +3806,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_59025fcd0836440cbb0c7a3cc76d5043", - "IPY_MODEL_ae026b12c92849d5bd39572928ad683d", - "IPY_MODEL_5b1361e0e7fb4ec0aefd77ac19b58177" + "IPY_MODEL_40a4f47b13704e6e9113395309f9cb0b", + "IPY_MODEL_7b28e55b99c64c719152ced290022060", + "IPY_MODEL_b3082ca8e24944d8a9afe85efb6c2e97" ], - "layout": "IPY_MODEL_5e68e43e8bc84e98aa7848081512647f", + "layout": "IPY_MODEL_3e629d3e6a4c4606b65b4ee034f1c813", "tabbable": null, "tooltip": null } }, - "38e8901d59a242a7a78f904b7290ded1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "39f79d0861b8408eb576872d24d086b6": { + "33a3000ed6594bf7b6f38f302093cdd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ddd12c4562a4a6bb710906c16680943", - "placeholder": "​", - "style": "IPY_MODEL_8486651bed1f4017b1c7d57e069f8a3f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_14b011f3d58b45019e4c8d194743e726", + "IPY_MODEL_7f12c2a169084ac584c4d5d42290c2ae", + "IPY_MODEL_4e1d27532d5445dda4478fecf2f54572" + ], + "layout": "IPY_MODEL_532659a862c046cc962c62df200b203c", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "3be96dde9d6847bea2d8924f31c32778": { + "35aeaa207d8b4315a53e9ccc136d7c99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3832,7 +3892,7 @@ "width": null } }, - "3c31735201f94e48b675a2a27622dee7": { + "36409ce50f734cb1a6fbc6c16c409f54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3885,7 +3945,30 @@ "width": null } }, - "3e5176ff8340418d88424cacf1b110d5": { + "37271d07367147f4be0852aeaf55f7cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fe34629a39544206b7f24e16ba979dac", + "placeholder": "​", + "style": "IPY_MODEL_0f9c12350af541d48cb128f8707cf8d3", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "372d87500ea844ad9c334c4038a5de46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3903,7 +3986,7 @@ "text_color": null } }, - "3eeef52bf4544c6aaaaf0bf5433c63d5": { + "39cbff9c77594902ac1b336a55f05db5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3956,7 +4039,25 @@ "width": null } }, - "3f30b8a9d870425481b7d11fd5b128fe": { + "3b53ea05cced4f95ad3692b5dad66669": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3b6d1e0aeda744baa73455a128e7cac0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4009,7 +4110,33 @@ "width": null } }, - "3f966dd8d8b242469965478fdc13d63b": { + "3bab6a019ed34b06adda1f21a50d9487": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d7f0cb2a73fd46379721cf57c08cd319", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b4cab1f0ee6349b08c9ea92b8876b105", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "3c2a8efd20a4418b96f345c922e370c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4024,15 +4151,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a356232b26645178f647be6f1e2d699", + "layout": "IPY_MODEL_8319119647e04033b0206a42648258f1", "placeholder": "​", - "style": "IPY_MODEL_9b2e77ad12b34f9088fd97aac97718de", + "style": "IPY_MODEL_0838d93a38da446fa5babd7cfbccea4b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.18it/s]" + "value": "100%" + } + }, + "3e344010573d4a2b970fcadcaaf1143b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2f500af341144c0a3cf7871b79f7b61", + "placeholder": "​", + "style": "IPY_MODEL_6da3f0a20b1d4b79b31b85715311aeee", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.46it/s]" + } + }, + "3e529136e4ef4a42b8e93f739db5d154": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e3279b4ee474f9cae543a3659a1b8c3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c867e0cc02547b083b9135cd8ac51f2", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "40e2cec84288490ea94550d4701ac922": { + "3e629d3e6a4c4606b65b4ee034f1c813": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4085,76 +4261,30 @@ "width": null } }, - "420c839a26384dc5889ea20b50aa064e": { - "model_module": "@jupyter-widgets/base", + "40a4f47b13704e6e9113395309f9cb0b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "44d69a1bdf4f4884859553b7fb83131a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_36409ce50f734cb1a6fbc6c16c409f54", + "placeholder": "​", + "style": "IPY_MODEL_b1869063dcf24d67ad31856aef1dc659", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "45b3e59d32ed454bb407cd63a1a1bfc2": { + "46c9eb3ff7cd477ab56d83cd7dc1507e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4169,15 +4299,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_011e1c405e3a487bb6cd4db6269dabaf", + "layout": "IPY_MODEL_cc90930abb3f4f7f88e60548b044cc9e", "placeholder": "​", - "style": "IPY_MODEL_e4f41606a6914a85a45ef33edd7e734c", + "style": "IPY_MODEL_f425c905ba994524966c845289425320", "tabbable": null, "tooltip": null, - "value": " 4/4 [00:00<00:00, 1190.13it/s]" + "value": "Downloading readme: 100%" } }, - "4772ae3590184806856c23495a6d5fb1": { + "486c8450634840abac68df8d0982f86e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4230,7 +4360,23 @@ "width": null } }, - "4853e3bc55ad4fc5817a0174845fb700": { + "491a8e08d9ee49ef90656a55ac982d4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4a9cfcaefb4d43eca0252678d899d971": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4248,7 +4394,23 @@ "text_color": null } }, - "4891d350edf24c798609f0b9928b5070": { + "4bfd698030ae4c27b1fae44eadbc2370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4c3ddf93f1bc418c8c4d117df4802636": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4301,7 +4463,7 @@ "width": null } }, - "48da0e7bbb134052bcf38fe2d2386ef9": { + "4d105525e96449bb8723e4a3a6e422de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4354,23 +4516,30 @@ "width": null } }, - "49823216ca6949e5a14b61cd123ee7e8": { + "4e1d27532d5445dda4478fecf2f54572": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4c3ddf93f1bc418c8c4d117df4802636", + "placeholder": "​", + "style": "IPY_MODEL_a544040b92ca479e96afc733a38b2542", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.48it/s]" } }, - "499f31a9a65d49d99d2e7cea0d9d65a0": { + "4eda81d164454150a984ec786c637c79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4385,15 +4554,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_258a85ded32444efb41a85839c269873", + "layout": "IPY_MODEL_1c603154a9444624a9173aae824a8387", "placeholder": "​", - "style": "IPY_MODEL_38e8901d59a242a7a78f904b7290ded1", + "style": "IPY_MODEL_3b53ea05cced4f95ad3692b5dad66669", "tabbable": null, "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 619kB/s]" + "value": " 60000/60000 [00:07<00:00, 8716.44 examples/s]" } }, - "4fb7aac9b0e94c8fa3c52feebef9c46c": { + "514d2734602646f3b7b9bc57cd59c08c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4446,7 +4615,7 @@ "width": null } }, - "4fc26b2a19f84b129f4775ce0945ded5": { + "5299f45022f948ee9f393f0723ded761": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4464,25 +4633,60 @@ "text_color": null } }, - "50321cbbe67d4c51924a23c58e9ae983": { - "model_module": "@jupyter-widgets/controls", + "52a4c80fd0304eba81bc227cce43e285": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "50497ec5c80e44358b57db251c24387c": { + "532659a862c046cc962c62df200b203c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4535,46 +4739,31 @@ "width": null } }, - "51a3f5b510c94a16b839c2271267ccd1": { + "5460e9c61e374fef8cf751db7a3ebbcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e77fe9166b7843cd869d9a01fc8db7cc", - "placeholder": "​", - "style": "IPY_MODEL_a2eb003071a143059b9b0390a394eb4a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a0899edd79a453ca74c9dee92cfc546", + "IPY_MODEL_c5f977ef161c49eab8ca610fc2c1665f", + "IPY_MODEL_f9c2e28d91d2414ea49fd9522f8baaf6" + ], + "layout": "IPY_MODEL_acc4bccb9ed94206a99b3c0cb5d3518c", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.66it/s]" - } - }, - "52daf431b0a94628ba07879a297b0935": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "53c571a3a3e6480b87ae02c4703c6c98": { + "584249182a514d5aaeda8f1622a4d8a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4589,16 +4778,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_df05021fb6014b5fb00e86de8cbc5040", - "IPY_MODEL_7c463c80c1ef4d0e884f3805ef6eed6b", - "IPY_MODEL_51a3f5b510c94a16b839c2271267ccd1" + "IPY_MODEL_78b9fb091ca34d8bb1c6679ef5f9dafa", + "IPY_MODEL_3e529136e4ef4a42b8e93f739db5d154", + "IPY_MODEL_074ef5d49e1b43a789322b593f76170e" ], - "layout": "IPY_MODEL_190c1eeccee04fd2bb6a6c9b72dc1038", + "layout": "IPY_MODEL_c5ecb31d2e7b4e67a569229a1d7126da", "tabbable": null, "tooltip": null } }, - "53df56998d414e0fb40f239bbc4cd05b": { + "59668d38fe1b46fd966c97d3f1adc0d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4651,69 +4840,23 @@ "width": null } }, - "546d6472476a408db47ac78880209e25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_16244a9faef744f7a1f8ebc93c498cb3", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_71a4a89670674acd8e36794dd960bda5", - "tabbable": null, - "tooltip": null, - "value": 4833.0 - } - }, - "54de94abab13425c9eb83dca42b7ab08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "56c3894d38584313b981ca981f1f0023": { + "5c52fa7390d241c7ab1368e90de0d289": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "57b68fd51b664f71b708a03754a68baf": { + "5d0c2a951f1948a596b3437f78c38cfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4729,111 +4872,16 @@ "description_width": "" } }, - "59025fcd0836440cbb0c7a3cc76d5043": { - "model_module": "@jupyter-widgets/controls", + "5e3279b4ee474f9cae543a3659a1b8c3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f318fe5a17094397885ed4b5d5d443a8", - "placeholder": "​", - "style": "IPY_MODEL_54de94abab13425c9eb83dca42b7ab08", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "5aad96c8587b4663a593ea6088d92cd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_944e1e1d04094a4e8ff97089ee27d050", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_52daf431b0a94628ba07879a297b0935", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "5b1361e0e7fb4ec0aefd77ac19b58177": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_420c839a26384dc5889ea20b50aa064e", - "placeholder": "​", - "style": "IPY_MODEL_0fb820347f364c79ba9ef78c5ca1da2d", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:07<00:00, 3.52MB/s]" - } - }, - "5b7605ae7b0743be88ddec218178e9f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86021858fcc44db9b65cce430695ebe9", - "placeholder": "​", - "style": "IPY_MODEL_fb08d1be0f1f4522bf0962f5c3e0a3ae", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 54.33it/s]" - } - }, - "5e68e43e8bc84e98aa7848081512647f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -4877,7 +4925,31 @@ "width": null } }, - "5e8f52f10ea34bebac052bbccb949668": { + "6090aaf8150b44059029d2d920b6c28f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_09106c1b90dc4eb085f5f605736acb94", + "IPY_MODEL_95690eae1fd64b069f2d46ea99ed1e04", + "IPY_MODEL_ac7cb49d7e014221add7b56c181c0eee" + ], + "layout": "IPY_MODEL_514d2734602646f3b7b9bc57cd59c08c", + "tabbable": null, + "tooltip": null + } + }, + "60c8a5975d844ab8b11b4600e7eac41d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4930,23 +5002,43 @@ "width": null } }, - "6293c2fff3b94a64818b0f332c7e90f2": { + "6229bac9f5f24f3b992ea6e2e124e473": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "62bbe5d8a2ac428ba7c4afd7bc2cc947": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6470ece4ed814117a6e5b1b514808db8": { + "64ade2f788414e54a4962dcf947d79f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4961,15 +5053,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f8309841ad434c54ade8bf2d179d62ac", + "layout": "IPY_MODEL_0445168202e84bd987a8c99bbaa42154", "placeholder": "​", - "style": "IPY_MODEL_20c8f73e92d2495bb274955e092d539c", + "style": "IPY_MODEL_a75ec49d939949b4aba0c0dcda5ec1e7", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 6.49MB/s]" + "value": " 60000/60000 [00:38<00:00, 1505.40it/s]" } }, - "685c28d1ea8c436b879c775672150d98": { + "67c7c88e2fc74d2c893b8233ce6047ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4984,15 +5076,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_acf3a46e5bb4448e8e3cf1f98131ac03", + "layout": "IPY_MODEL_e79b262ba0714f71991d5aa27ef737f5", "placeholder": "​", - "style": "IPY_MODEL_110c7268e08143bfb0bf9bb6a831308d", + "style": "IPY_MODEL_a8dcce467f684437bdd88f30992a529a", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 10000/10000 [00:01<00:00, 8416.24 examples/s]" } }, - "6e05d7a3ce5444fc9fc185c7cefb7bfb": { + "6a0899edd79a453ca74c9dee92cfc546": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5007,68 +5099,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4772ae3590184806856c23495a6d5fb1", + "layout": "IPY_MODEL_29887663f048431b82be1858f43767e8", "placeholder": "​", - "style": "IPY_MODEL_31fed1d7091d4d4583d2c3c572eeac5e", + "style": "IPY_MODEL_7ca9c9f9ace24ed697596027f69fe80d", "tabbable": null, "tooltip": null, "value": "100%" } }, - "6e28af39d0e0449b86fb861e46caf297": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "71810b974ac5406c96228c3bf1a9a2b4": { + "6b37c615fe9e4a17ab3210fec9f293a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5084,33 +5123,105 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_031ba280948b4100b7f66a834088d319", + "layout": "IPY_MODEL_52a4c80fd0304eba81bc227cce43e285", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9569f75dc5b8477abf5aae0210adc4fa", + "style": "IPY_MODEL_d733b613944e4e75b6618e5374ed9c98", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "71a4a89670674acd8e36794dd960bda5": { + "6b780f0e064b41bba8a06a7f135ebc1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b697f4d096cf424bb6d2a25ca2a750eb", + "placeholder": "​", + "style": "IPY_MODEL_e7283eea272d41f5bd1005878f97a57e", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1223.63it/s]" + } + }, + "6baddd7f88844b9fa3d1ea84d9b8f4c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f1f4b23497004a979ad4edbb22a83db1", + "IPY_MODEL_940d995970d94bbb80a50785cd164a0a", + "IPY_MODEL_e4817a1d5aeb484d83832c29b2a72272" + ], + "layout": "IPY_MODEL_b524b89d52eb438f904142f942771f9c", + "tabbable": null, + "tooltip": null + } + }, + "6da3f0a20b1d4b79b31b85715311aeee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7582e2bbc15d4784a7fcd1cf876b75f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba5ac5ec14bc451889b43a9e0bd0a11a", + "placeholder": "​", + "style": "IPY_MODEL_de707fb7fc114ccc9af0cd6d0e6a9204", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "736e4c44e03a4e058853275f160e4869": { + "76456cf6d81e47f2af4b70c2990d00ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5163,7 +5274,7 @@ "width": null } }, - "742365443e36450f819b04b24e41e98b": { + "768c64fd4b4548b4bd4bd6b308987029": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5216,96 +5327,135 @@ "width": null } }, - "745b7366dbb64c2daf84c029de3688bd": { + "78b9fb091ca34d8bb1c6679ef5f9dafa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_05d23d732cc649158da39cae536db0b8", - "IPY_MODEL_055f310ad17942a195bb466d23c3b972", - "IPY_MODEL_171462d98af24358a5961b04c9b74604" - ], - "layout": "IPY_MODEL_7836bce9530c4eb3ab99f462a04475e1", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a28aa8d2cf4049c2868e8a01d547da26", + "placeholder": "​", + "style": "IPY_MODEL_b65c63d6a5df43b58beded2082ebde3d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "759d78e08c824405bbe8746ddbfbc1c3": { - "model_module": "@jupyter-widgets/controls", + "7adb5c5d93654fc1ab43e73608f0769f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_685c28d1ea8c436b879c775672150d98", - "IPY_MODEL_14fb0bfb489048289623514f4c431a3e", - "IPY_MODEL_9873ba06e34e4a47a706d7a3bb5c81d1" - ], - "layout": "IPY_MODEL_50497ec5c80e44358b57db251c24387c", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7686ddc55ca942d09f5a6aba850cd0f4": { + "7ae417819f1346658e838efdc886696f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_768c64fd4b4548b4bd4bd6b308987029", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b7405d95f1a40f3b4a3714ff881243e", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "76f9273b67624d7f9704e27b6b3db40a": { + "7b28e55b99c64c719152ced290022060": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_98a06d21f9e9497dbd96f228223ae5d9", - "placeholder": "​", - "style": "IPY_MODEL_8a4b9023d2e146b2aa334211a615d74b", + "layout": "IPY_MODEL_3b6d1e0aeda744baa73455a128e7cac0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bb15e0200382433ab6115997e77b3b05", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 859kB/s]" + "value": 40.0 } }, - "7836bce9530c4eb3ab99f462a04475e1": { + "7c1214c0cb704ee8b59146966c29f7ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5358,7 +5508,69 @@ "width": null } }, - "783799c6f0bb4b3ab94155acebc59f10": { + "7ca9c9f9ace24ed697596027f69fe80d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f12c2a169084ac584c4d5d42290c2ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_86f4617dbe29439e863bb84c65c91950", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_96832e8ed78747308e49ab249abd8b5a", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "809cef9781a34951bd88663cc8461e2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "81c92cbe85a64e0dae661e38ac134935": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5411,7 +5623,7 @@ "width": null } }, - "7ad48d85c5e24005aa51d677c09d99ac": { + "82ea75491d10401aa18be4f1e9268abd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5429,30 +5641,7 @@ "text_color": null } }, - "7ad7c9a18ca54e8599f65da863c69ea1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a1da1d84c4b476c823feb701fe4b911", - "placeholder": "​", - "style": "IPY_MODEL_196b795a1e9b497db76e66252b9eefa2", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1705.05it/s]" - } - }, - "7c463c80c1ef4d0e884f3805ef6eed6b": { + "82f0f61acf50476d9c6439a0e0c55b03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5468,17 +5657,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b9541f63da674ed3848054b726fe49e7", - "max": 40.0, + "layout": "IPY_MODEL_bcaa266b153e40bc99699e89a26a0bdb", + "max": 8845.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_32798c5dacb74eab8aae5f6ac9ee796e", + "style": "IPY_MODEL_11d0a7d94195419780e6813f5d09e9f4", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 8845.0 } }, - "7ddd12c4562a4a6bb710906c16680943": { + "8319119647e04033b0206a42648258f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5531,31 +5720,60 @@ "width": null } }, - "82823a5ceaf9423dbdd8d54dddb2c7a6": { - "model_module": "@jupyter-widgets/controls", + "84078cae32a94ce48ac65771b0cdc09e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e5aee9aa5b354cd6a663791ae5721dd1", - "IPY_MODEL_f1cf7a9c8a2f4c038813a09ada1577fd", - "IPY_MODEL_d201e1f4e00f4c16b4d27f14807b962e" - ], - "layout": "IPY_MODEL_d4753c4e63aa46828fc2fdefd66e9d1b", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "82c9a984fa4a45d6bbef34980ab6cc9b": { + "86f4617dbe29439e863bb84c65c91950": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5608,7 +5826,7 @@ "width": null } }, - "82d93159d97f4bf3a1efaed6610dba7e": { + "8e1e5f72e17845ce8e2ce7eb2812f21b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5623,15 +5841,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5e8f52f10ea34bebac052bbccb949668", + "layout": "IPY_MODEL_59668d38fe1b46fd966c97d3f1adc0d7", "placeholder": "​", - "style": "IPY_MODEL_7686ddc55ca942d09f5a6aba850cd0f4", + "style": "IPY_MODEL_f99f70494c0341a3b500895b4abdb988", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8681.29 examples/s]" + "value": "Downloading builder script: 100%" } }, - "8486651bed1f4017b1c7d57e069f8a3f": { + "8e363e8ddbd54765aa1928f693697c06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5649,7 +5867,7 @@ "text_color": null } }, - "84f88bfb9f804d76b3e63053be87517a": { + "91fa85e0a2f04ca190bae9f341b1bdef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5702,30 +5920,33 @@ "width": null } }, - "85ea5d5292d0441b8ae5ffa8f288b8f6": { + "93f10fc6f0574ecc9ef9244a593ecb49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_84f88bfb9f804d76b3e63053be87517a", - "placeholder": "​", - "style": "IPY_MODEL_7ad48d85c5e24005aa51d677c09d99ac", + "layout": "IPY_MODEL_7c1214c0cb704ee8b59146966c29f7ba", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d8e72a2ced5c48fda8f8dc1c6cc39bef", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": 4.0 } }, - "86021858fcc44db9b65cce430695ebe9": { + "9406c4e963b740bc8e493dc9ac2fc95f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5778,28 +5999,54 @@ "width": null } }, - "873f6734dcfb4bf3be536b78ce9a36c6": { - "model_module": "@jupyter-widgets/base", + "940d995970d94bbb80a50785cd164a0a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7adb5c5d93654fc1ab43e73608f0769f", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c52fa7390d241c7ab1368e90de0d289", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "9417954b1e6a4ea997a82279df1c1e06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, @@ -5831,7 +6078,115 @@ "width": null } }, - "8a1da1d84c4b476c823feb701fe4b911": { + "944bc13775bc43f9b5195a84db492404": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f99bd7e8707047409f0b50e53975b852", + "IPY_MODEL_a74d77af5dbf4b8f85aff11267b96e21", + "IPY_MODEL_67c7c88e2fc74d2c893b8233ce6047ad" + ], + "layout": "IPY_MODEL_f74f023dbac342a4a3f53f0532b6b2b6", + "tabbable": null, + "tooltip": null + } + }, + "95690eae1fd64b069f2d46ea99ed1e04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9bb76d70987b4a618a5e587aceea745d", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f758b5dcdfd94a5081ce30faeaf2ad14", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "9583fea99f244c53b350c8a2a83db01e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "96832e8ed78747308e49ab249abd8b5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9966542321eb42f7b958a6114ba286a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c2a8efd20a4418b96f345c922e370c7", + "IPY_MODEL_7ae417819f1346658e838efdc886696f", + "IPY_MODEL_64ade2f788414e54a4962dcf947d79f9" + ], + "layout": "IPY_MODEL_bc1db211ff334a49abfea262dfa089f7", + "tabbable": null, + "tooltip": null + } + }, + "9bb76d70987b4a618a5e587aceea745d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5884,7 +6239,7 @@ "width": null } }, - "8a356232b26645178f647be6f1e2d699": { + "9c5c89be5849407e958b709b927463b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5937,51 +6292,7 @@ "width": null } }, - "8a4b9023d2e146b2aa334211a615d74b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8b2d4a8bea734a84a61b894fdce0a5df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e5c9e48ceef94e2d803b080a03e69231", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fdd71d2ec9544d78a91224b72724e54f", - "tabbable": null, - "tooltip": null, - "value": 4422102.0 - } - }, - "8c7eaef39a414d45bdced17678d5f2f3": { + "a00494c4e4ce4302957d0fbc13992a21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5996,16 +6307,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_39f79d0861b8408eb576872d24d086b6", - "IPY_MODEL_18bab8a142254c219cd8b1f4a5772397", - "IPY_MODEL_76f9273b67624d7f9704e27b6b3db40a" + "IPY_MODEL_7582e2bbc15d4784a7fcd1cf876b75f0", + "IPY_MODEL_93f10fc6f0574ecc9ef9244a593ecb49", + "IPY_MODEL_6b780f0e064b41bba8a06a7f135ebc1a" ], - "layout": "IPY_MODEL_3c31735201f94e48b675a2a27622dee7", + "layout": "IPY_MODEL_d279182f67ef4b33bbd38615c3e18109", "tabbable": null, "tooltip": null } }, - "8dd9f155917f4571a7ce9acde49d0e5a": { + "a14a32c0511b476bbcb4eb4baab411a2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a28aa8d2cf4049c2868e8a01d547da26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6058,31 +6422,30 @@ "width": null } }, - "8df15e8710f842479f05326569119ec8": { + "a347919eb8db46719f804141ae71294c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc6efd362b3d40b7a2459be242fdac57", - "IPY_MODEL_ef0d0c57ff11419f88dc5a80cf6f145f", - "IPY_MODEL_82d93159d97f4bf3a1efaed6610dba7e" - ], - "layout": "IPY_MODEL_1bccdd768eb9423db31eb1aea279ce94", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15b2884c3ebe43d9b97793956a82ff7a", + "placeholder": "​", + "style": "IPY_MODEL_d29037f79ec1449fb9ae77739c5beb4c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 99.8MB/s]" } }, - "8ee1e100ba224c86971a4eb5c2aa8d2c": { + "a544040b92ca479e96afc733a38b2542": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6100,7 +6463,7 @@ "text_color": null } }, - "8ff5163deb5a46f1a798f0c447bb66bc": { + "a74d77af5dbf4b8f85aff11267b96e21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6116,17 +6479,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_933ba0c6cebe44259ca771eb59652a64", - "max": 60000.0, + "layout": "IPY_MODEL_486c8450634840abac68df8d0982f86e", + "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_da822ce7d4844a02b7a83a908d6ac39d", + "style": "IPY_MODEL_c289066ee5fe48278ccef4590891130a", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 10000.0 } }, - "91e2cb0cc83d4e8e8d5c95580d720455": { + "a75ec49d939949b4aba0c0dcda5ec1e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6144,30 +6507,25 @@ "text_color": null } }, - "9334c7f0c80745ec92aba94b367913e9": { + "a8dcce467f684437bdd88f30992a529a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ce8a4e687914f688c1fe339a120d37e", - "placeholder": "​", - "style": "IPY_MODEL_d70de9168a15409988fa73fe4fd9f932", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "933ba0c6cebe44259ca771eb59652a64": { + "a9da5b0e5e484eaba9bb8e2dd7a3620b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6220,7 +6578,7 @@ "width": null } }, - "934b338bf0644e88b98751581aacb27a": { + "ac7cb49d7e014221add7b56c181c0eee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6235,15 +6593,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bac3c6a0ec8b43718060802d7c2114ae", + "layout": "IPY_MODEL_cf13889632e34436b517a1f8a062e0e4", "placeholder": "​", - "style": "IPY_MODEL_4853e3bc55ad4fc5817a0174845fb700", + "style": "IPY_MODEL_8e363e8ddbd54765aa1928f693697c06", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 54.35it/s]" + "value": " 60000/60000 [00:11<00:00, 6507.94 examples/s]" } }, - "944e1e1d04094a4e8ff97089ee27d050": { + "acc4bccb9ed94206a99b3c0cb5d3518c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6296,7 +6654,7 @@ "width": null } }, - "946ae0b4ccb44762a01989bba335fed2": { + "af1edd54576f4760b58d9a74f514f7c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6349,39 +6707,43 @@ "width": null } }, - "9490a9b9bdd24394a12824ed76bc8a05": { + "b0e9a5aae2bb4bee85bab1838bff06b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9569f75dc5b8477abf5aae0210adc4fa": { + "b1869063dcf24d67ad31856aef1dc659": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9873ba06e34e4a47a706d7a3bb5c81d1": { + "b3082ca8e24944d8a9afe85efb6c2e97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6396,15 +6758,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f30b8a9d870425481b7d11fd5b128fe", + "layout": "IPY_MODEL_f8047790d7c5408d9ace2e8ae2a8be39", "placeholder": "​", - "style": "IPY_MODEL_91e2cb0cc83d4e8e8d5c95580d720455", + "style": "IPY_MODEL_0e2c5d9d844044d483fb12d45f0ba447", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.42MB/s]" + "value": " 40/40 [00:00<00:00, 64.49it/s]" + } + }, + "b4cab1f0ee6349b08c9ea92b8876b105": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "98a06d21f9e9497dbd96f228223ae5d9": { + "b524b89d52eb438f904142f942771f9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6457,7 +6835,25 @@ "width": null } }, - "9a931db84c9949fb910e747936c33cb0": { + "b65c63d6a5df43b58beded2082ebde3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b697f4d096cf424bb6d2a25ca2a750eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6510,124 +6906,7 @@ "width": null } }, - "9a984e22ab1c4c008c21c51301be8576": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9ac8275e5feb48c88901ff6957e27821": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_783799c6f0bb4b3ab94155acebc59f10", - "placeholder": "​", - "style": "IPY_MODEL_02744ca1e8454e48bde1845bfe448428", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "9b2e77ad12b34f9088fd97aac97718de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9be18dcff7494e939c53941df53f0871": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_03302e2436184c00bf4112e516e9a069", - "IPY_MODEL_e8056d945fb848f9b33f6c6e4f9d3e1f", - "IPY_MODEL_3f966dd8d8b242469965478fdc13d63b" - ], - "layout": "IPY_MODEL_873f6734dcfb4bf3be536b78ce9a36c6", - "tabbable": null, - "tooltip": null - } - }, - "a01cc5bbd9224afdb8c560889a3e96da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a0c4a73bbcdc41fa8f881db96483a666": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a19bee29c83a4b148f5ff7b8a8518f38": { + "ba5ac5ec14bc451889b43a9e0bd0a11a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6680,7 +6959,23 @@ "width": null } }, - "a2ae0a31904443769c4d293f49edfe75": { + "bb15e0200382433ab6115997e77b3b05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bc1db211ff334a49abfea262dfa089f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6733,7 +7028,7 @@ "width": null } }, - "a2e080fe09244d67a81b3a35650583fc": { + "bcaa266b153e40bc99699e89a26a0bdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6786,7 +7081,33 @@ "width": null } }, - "a2eb003071a143059b9b0390a394eb4a": { + "bdf6bc67142548d6b578370fa647bf61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_84078cae32a94ce48ac65771b0cdc09e", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d0c2a951f1948a596b3437f78c38cfb", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 + } + }, + "bea986622eb049729843684d300dd516": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6804,7 +7125,69 @@ "text_color": null } }, - "a5e89613a9ef4d60af510371acaae248": { + "c11ffc22a8844386af101099ad307235": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76456cf6d81e47f2af4b70c2990d00ce", + "placeholder": "​", + "style": "IPY_MODEL_372d87500ea844ad9c334c4038a5de46", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "c289066ee5fe48278ccef4590891130a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c2fc2bcf7d594cb8b13abe28ebd12237": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbd1ed79923949c4aae8f6e0e38bf619", + "placeholder": "​", + "style": "IPY_MODEL_1e87658a42504ce4b3575fd1ea760a2a", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "c38d17ba1e91481ba0a5df257be8b41b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6857,7 +7240,7 @@ "width": null } }, - "aaede45da5534b61881b204536652752": { + "c502cbfcb20042b496aab97e7dff0338": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6872,21 +7255,44 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0486167697834cbfb7031daef4c202a4", - "IPY_MODEL_5aad96c8587b4663a593ea6088d92cd3", - "IPY_MODEL_0127201b714d436eaeadac20dceecb5c" + "IPY_MODEL_c54e83ca222449f488a45d0ea889941c", + "IPY_MODEL_f7ea7f75b5e94d5992ed5713a8b6aa43", + "IPY_MODEL_a347919eb8db46719f804141ae71294c" ], - "layout": "IPY_MODEL_3eeef52bf4544c6aaaaf0bf5433c63d5", + "layout": "IPY_MODEL_c5db8bc0291144c6b2f76279d7dec09c", "tabbable": null, "tooltip": null } }, - "acf3a46e5bb4448e8e3cf1f98131ac03": { - "model_module": "@jupyter-widgets/base", + "c54e83ca222449f488a45d0ea889941c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec4c8f1871e746038c22dcd78c7d6dc8", + "placeholder": "​", + "style": "IPY_MODEL_62bbe5d8a2ac428ba7c4afd7bc2cc947", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "c5db8bc0291144c6b2f76279d7dec09c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -6934,51 +7340,7 @@ "width": null } }, - "ae026b12c92849d5bd39572928ad683d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf47b5535f2346d28b89cc90d9210536", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6293c2fff3b94a64818b0f332c7e90f2", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "b036f89410c24342941ba7cd9a14888a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b307087dec614a23bf0ca47f5392a715": { + "c5ecb31d2e7b4e67a569229a1d7126da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7031,7 +7393,7 @@ "width": null } }, - "b67c746e1c0f483b8fb9a0d6874bde25": { + "c5f977ef161c49eab8ca610fc2c1665f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7047,17 +7409,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a2e080fe09244d67a81b3a35650583fc", + "layout": "IPY_MODEL_09b5225d46a341c0bbaffca3110244dd", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9a984e22ab1c4c008c21c51301be8576", + "style": "IPY_MODEL_4bfd698030ae4c27b1fae44eadbc2370", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "b9541f63da674ed3848054b726fe49e7": { + "cbd1ed79923949c4aae8f6e0e38bf619": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7110,7 +7472,7 @@ "width": null } }, - "bac3c6a0ec8b43718060802d7c2114ae": { + "cc90930abb3f4f7f88e60548b044cc9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7163,7 +7525,49 @@ "width": null } }, - "bc1a2da537ce4bb5911e830c1b271c69": { + "cc95859b7c574b2bb9d6244f9a032f2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cf0f828d9523419c8ab60d6ec4329aa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4d105525e96449bb8723e4a3a6e422de", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2026c613a85740ac9f350f0587f79473", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "cf13889632e34436b517a1f8a062e0e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7216,7 +7620,7 @@ "width": null } }, - "bf145e78e7c44335849bfe2731b76547": { + "d1a5c9e7b59a44a8a410c2d4bd592db6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7269,55 +7673,7 @@ "width": null } }, - "bf2511624c2a4778bc836f290acedf8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1cfc9524b7a24cdbb7e8f0e2d2d568a0", - "IPY_MODEL_8b2d4a8bea734a84a61b894fdce0a5df", - "IPY_MODEL_6470ece4ed814117a6e5b1b514808db8" - ], - "layout": "IPY_MODEL_fd5751582c0a4fd1a5278821527d3156", - "tabbable": null, - "tooltip": null - } - }, - "bf43deff8d6f44328677d9cd944ab999": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc1d95708e6c44d0b808eaf13dbc5e72", - "IPY_MODEL_8ff5163deb5a46f1a798f0c447bb66bc", - "IPY_MODEL_7ad7c9a18ca54e8599f65da863c69ea1" - ], - "layout": "IPY_MODEL_742365443e36450f819b04b24e41e98b", - "tabbable": null, - "tooltip": null - } - }, - "bf47b5535f2346d28b89cc90d9210536": { + "d279182f67ef4b33bbd38615c3e18109": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7370,39 +7726,25 @@ "width": null } }, - "bf70343c851049b695bb344693e150a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c2c2c15028944865b0e3c7803228d0aa": { + "d29037f79ec1449fb9ae77739c5beb4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c69f5486f5854cdc9b0f28f343dc5cbb": { + "d6d73ba68a06438fa862d7e105099af4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7420,30 +7762,47 @@ "text_color": null } }, - "c92922f6dcba4f028e88d18869237688": { + "d73213875ad74216bf0d0a81d14bd1d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d979554ee4e64ec6ab9f3d2a5c5efb8f", - "placeholder": "​", - "style": "IPY_MODEL_4fc26b2a19f84b129f4775ce0945ded5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_46c9eb3ff7cd477ab56d83cd7dc1507e", + "IPY_MODEL_82f0f61acf50476d9c6439a0e0c55b03", + "IPY_MODEL_ede95459c0314d9f92ffebfa58091d0c" + ], + "layout": "IPY_MODEL_af1edd54576f4760b58d9a74f514f7c8", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null + } + }, + "d733b613944e4e75b6618e5374ed9c98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ce85d6a5941844bb979d569eee20cec8": { + "d7f0cb2a73fd46379721cf57c08cd319": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7496,7 +7855,7 @@ "width": null } }, - "d201e1f4e00f4c16b4d27f14807b962e": { + "d81e03c48bae4f46b68b672d5fe5ba6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7511,152 +7870,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53df56998d414e0fb40f239bbc4cd05b", + "layout": "IPY_MODEL_2e96200f404c48e4a508630b21ca59aa", "placeholder": "​", - "style": "IPY_MODEL_a01cc5bbd9224afdb8c560889a3e96da", + "style": "IPY_MODEL_b0e9a5aae2bb4bee85bab1838bff06b5", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 1.52MB/s]" + "value": "Downloading data: 100%" } }, - "d42a0fef40af4deb82ef3e72a10e8d7d": { - "model_module": "@jupyter-widgets/base", + "d8e72a2ced5c48fda8f8dc1c6cc39bef": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d4753c4e63aa46828fc2fdefd66e9d1b": { - "model_module": "@jupyter-widgets/base", + "dc28142388c542ffaaded35e8407a154": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d5b12008f99d455c966fa2e14fe5f154": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_12395429544748b9ae9539173c4e28de", - "IPY_MODEL_b67c746e1c0f483b8fb9a0d6874bde25", - "IPY_MODEL_934b338bf0644e88b98751581aacb27a" - ], - "layout": "IPY_MODEL_fbf3aa1585aa48ac856dd426c1259b1c", - "tabbable": null, - "tooltip": null - } - }, - "d6dcf373f0df43f29287b2c60241cdb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -7667,78 +7912,7 @@ "text_color": null } }, - "d70de9168a15409988fa73fe4fd9f932": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d979554ee4e64ec6ab9f3d2a5c5efb8f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "da75209458cd4d829d58a3543863fb93": { + "de636abade924ea8bc76c1bff06498af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7753,125 +7927,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c92922f6dcba4f028e88d18869237688", - "IPY_MODEL_71810b974ac5406c96228c3bf1a9a2b4", - "IPY_MODEL_5b7605ae7b0743be88ddec218178e9f2" + "IPY_MODEL_d81e03c48bae4f46b68b672d5fe5ba6c", + "IPY_MODEL_02b3ab1c99f54ef3925d5e044cc8f184", + "IPY_MODEL_f070cb60991549639017073137468357" ], - "layout": "IPY_MODEL_48da0e7bbb134052bcf38fe2d2386ef9", + "layout": "IPY_MODEL_a14a32c0511b476bbcb4eb4baab411a2", "tabbable": null, "tooltip": null } }, - "da822ce7d4844a02b7a83a908d6ac39d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "db79d0f62aa04d6b8eb00119ae4b9e51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "df05021fb6014b5fb00e86de8cbc5040": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f563dde9529f40a4838fd749dbb3dc7d", - "placeholder": "​", - "style": "IPY_MODEL_100059655a4b4d11b2e4b02133955b21", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "e20f61f6ffe34bae933bcfe43be75b50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e2358f94bd824cb297783cbce5bd4b6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e4f41606a6914a85a45ef33edd7e734c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e508a8da39c24fd88425f7c7260a2470": { + "de707fb7fc114ccc9af0cd6d0e6a9204": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7889,83 +7954,7 @@ "text_color": null } }, - "e5aee9aa5b354cd6a663791ae5721dd1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a931db84c9949fb910e747936c33cb0", - "placeholder": "​", - "style": "IPY_MODEL_d6dcf373f0df43f29287b2c60241cdb0", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "e5c9e48ceef94e2d803b080a03e69231": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e6e7b8be4c634d7c9456a02023a3facc": { + "e02ac76f211c452fa47443c8fe5a66fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7980,95 +7969,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9334c7f0c80745ec92aba94b367913e9", - "IPY_MODEL_0887279366d947918a2859b5000c3142", - "IPY_MODEL_373774c569f4410195997abcc6ad3963" + "IPY_MODEL_c2fc2bcf7d594cb8b13abe28ebd12237", + "IPY_MODEL_cf0f828d9523419c8ab60d6ec4329aa2", + "IPY_MODEL_4eda81d164454150a984ec786c637c79" ], - "layout": "IPY_MODEL_a2ae0a31904443769c4d293f49edfe75", + "layout": "IPY_MODEL_04c9d61b124843488d6c8485d3276cf3", "tabbable": null, "tooltip": null } }, - "e77fe9166b7843cd869d9a01fc8db7cc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e8056d945fb848f9b33f6c6e4f9d3e1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1dcfbde1b2e24c5f9c238e501811a342", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f4dc3576e46b40058f18c613354b5841", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "e87f6146964a4d0b8eb91e61b43a17fd": { + "e2f500af341144c0a3cf7871b79f7b61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8121,109 +8031,48 @@ "width": null } }, - "e9f41dad882341c69e15673ba734984b": { + "e4817a1d5aeb484d83832c29b2a72272": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f423567591fb4ee6990bac72ff64527d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_57b68fd51b664f71b708a03754a68baf", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "e9f4cce5ae224f93a5b80a19ccbb04a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ac8275e5feb48c88901ff6957e27821", - "IPY_MODEL_546d6472476a408db47ac78880209e25", - "IPY_MODEL_499f31a9a65d49d99d2e7cea0d9d65a0" - ], - "layout": "IPY_MODEL_4fb7aac9b0e94c8fa3c52feebef9c46c", - "tabbable": null, - "tooltip": null - } - }, - "ef0d0c57ff11419f88dc5a80cf6f145f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ec163f519174e658357ad372ba5c630", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bf70343c851049b695bb344693e150a1", + "layout": "IPY_MODEL_f2998cb69287422e8a9af2e58836f92c", + "placeholder": "​", + "style": "IPY_MODEL_82ea75491d10401aa18be4f1e9268abd", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": " 5.15k/5.15k [00:00<00:00, 811kB/s]" } }, - "f1cf7a9c8a2f4c038813a09ada1577fd": { + "e7283eea272d41f5bd1005878f97a57e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b307087dec614a23bf0ca47f5392a715", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db79d0f62aa04d6b8eb00119ae4b9e51", - "tabbable": null, - "tooltip": null, - "value": 29515.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f318fe5a17094397885ed4b5d5d443a8": { + "e79b262ba0714f71991d5aa27ef737f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8276,7 +8125,7 @@ "width": null } }, - "f423567591fb4ee6990bac72ff64527d": { + "ec4c8f1871e746038c22dcd78c7d6dc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8329,23 +8178,76 @@ "width": null } }, - "f4dc3576e46b40058f18c613354b5841": { + "ede95459c0314d9f92ffebfa58091d0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c38d17ba1e91481ba0a5df257be8b41b", + "placeholder": "​", + "style": "IPY_MODEL_5299f45022f948ee9f393f0723ded761", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.58MB/s]" + } + }, + "f070cb60991549639017073137468357": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9406c4e963b740bc8e493dc9ac2fc95f", + "placeholder": "​", + "style": "IPY_MODEL_dc28142388c542ffaaded35e8407a154", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.45MB/s]" + } + }, + "f1f4b23497004a979ad4edbb22a83db1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2cf5b64d8e274727afa2e967216d5823", + "placeholder": "​", + "style": "IPY_MODEL_6229bac9f5f24f3b992ea6e2e124e473", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "f563dde9529f40a4838fd749dbb3dc7d": { + "f2998cb69287422e8a9af2e58836f92c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8398,7 +8300,25 @@ "width": null } }, - "f7334dfe237e4e7f9b2835e84059e0a1": { + "f425c905ba994524966c845289425320": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f488ec34ec9147fcb7e87a3b43494e7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -8414,7 +8334,7 @@ "description_width": "" } }, - "f783743818724180b7f32fc5790faed2": { + "f74bae4636c84e44a721b635741423a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8467,7 +8387,7 @@ "width": null } }, - "f8309841ad434c54ade8bf2d179d62ac": { + "f74f023dbac342a4a3f53f0532b6b2b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8520,48 +8440,49 @@ "width": null } }, - "fb08d1be0f1f4522bf0962f5c3e0a3ae": { + "f758b5dcdfd94a5081ce30faeaf2ad14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "fb4c67cbf0b64f5aa774cf47171d88d2": { + "f7ea7f75b5e94d5992ed5713a8b6aa43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a19bee29c83a4b148f5ff7b8a8518f38", - "placeholder": "​", - "style": "IPY_MODEL_b036f89410c24342941ba7cd9a14888a", + "layout": "IPY_MODEL_1e547fdab21842a3a820b8cfc8107067", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f488ec34ec9147fcb7e87a3b43494e7d", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.84it/s]" + "value": 4422102.0 } }, - "fbf3aa1585aa48ac856dd426c1259b1c": { + "f8047790d7c5408d9ace2e8ae2a8be39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8614,7 +8535,7 @@ "width": null } }, - "fc1d95708e6c44d0b808eaf13dbc5e72": { + "f99bd7e8707047409f0b50e53975b852": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8629,15 +8550,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_27f324cbc4a04172a48a9afff95019c7", + "layout": "IPY_MODEL_1b972aee47154e24a633dd4afcce07bb", "placeholder": "​", - "style": "IPY_MODEL_e20f61f6ffe34bae933bcfe43be75b50", + "style": "IPY_MODEL_bea986622eb049729843684d300dd516", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Generating test split: 100%" + } + }, + "f99f70494c0341a3b500895b4abdb988": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fc6efd362b3d40b7a2459be242fdac57": { + "f9c2e28d91d2414ea49fd9522f8baaf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8652,15 +8591,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3be96dde9d6847bea2d8924f31c32778", + "layout": "IPY_MODEL_06feb365096443a6afc34cd47e0ce44a", "placeholder": "​", - "style": "IPY_MODEL_3e5176ff8340418d88424cacf1b110d5", + "style": "IPY_MODEL_0321d07b59324f6da681cafe18318797", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 40/40 [00:00<00:00, 63.12it/s]" } }, - "fd5751582c0a4fd1a5278821527d3156": { + "fa06f921c76f40189c687a3f781b29aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8713,20 +8652,81 @@ "width": null } }, - "fdd71d2ec9544d78a91224b72724e54f": { + "fe280fc7af794d66911aa8d37a5a9a22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37271d07367147f4be0852aeaf55f7cd", + "IPY_MODEL_3bab6a019ed34b06adda1f21a50d9487", + "IPY_MODEL_3e344010573d4a2b970fcadcaaf1143b" + ], + "layout": "IPY_MODEL_35aeaa207d8b4315a53e9ccc136d7c99", + "tabbable": null, + "tooltip": null + } + }, + "fe34629a39544206b7f24e16ba979dac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 622cbbc92..f5d1b5193 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:26.770421Z", - "iopub.status.busy": "2024-06-13T18:28:26.770244Z", - "iopub.status.idle": "2024-06-13T18:28:27.910509Z", - "shell.execute_reply": "2024-06-13T18:28:27.909879Z" + "iopub.execute_input": "2024-06-14T00:23:17.215009Z", + "iopub.status.busy": "2024-06-14T00:23:17.214828Z", + "iopub.status.idle": "2024-06-14T00:23:18.364639Z", + "shell.execute_reply": "2024-06-14T00:23:18.364024Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.913265Z", - "iopub.status.busy": "2024-06-13T18:28:27.912960Z", - "iopub.status.idle": "2024-06-13T18:28:27.932962Z", - "shell.execute_reply": "2024-06-13T18:28:27.932465Z" + "iopub.execute_input": "2024-06-14T00:23:18.367392Z", + "iopub.status.busy": "2024-06-14T00:23:18.367102Z", + "iopub.status.idle": "2024-06-14T00:23:18.386160Z", + "shell.execute_reply": "2024-06-14T00:23:18.385637Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.935912Z", - "iopub.status.busy": "2024-06-13T18:28:27.935457Z", - "iopub.status.idle": "2024-06-13T18:28:27.976491Z", - "shell.execute_reply": "2024-06-13T18:28:27.975890Z" + "iopub.execute_input": "2024-06-14T00:23:18.388849Z", + "iopub.status.busy": "2024-06-14T00:23:18.388307Z", + "iopub.status.idle": "2024-06-14T00:23:18.412558Z", + "shell.execute_reply": "2024-06-14T00:23:18.411992Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.978696Z", - "iopub.status.busy": "2024-06-13T18:28:27.978370Z", - "iopub.status.idle": "2024-06-13T18:28:27.981972Z", - "shell.execute_reply": "2024-06-13T18:28:27.981428Z" + "iopub.execute_input": "2024-06-14T00:23:18.414714Z", + "iopub.status.busy": "2024-06-14T00:23:18.414531Z", + "iopub.status.idle": "2024-06-14T00:23:18.418185Z", + "shell.execute_reply": "2024-06-14T00:23:18.417749Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.983973Z", - "iopub.status.busy": "2024-06-13T18:28:27.983665Z", - "iopub.status.idle": "2024-06-13T18:28:27.991715Z", - "shell.execute_reply": "2024-06-13T18:28:27.991170Z" + "iopub.execute_input": "2024-06-14T00:23:18.420267Z", + "iopub.status.busy": "2024-06-14T00:23:18.419955Z", + "iopub.status.idle": "2024-06-14T00:23:18.427953Z", + "shell.execute_reply": "2024-06-14T00:23:18.427541Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.994077Z", - "iopub.status.busy": "2024-06-13T18:28:27.993754Z", - "iopub.status.idle": "2024-06-13T18:28:27.996274Z", - "shell.execute_reply": "2024-06-13T18:28:27.995815Z" + "iopub.execute_input": "2024-06-14T00:23:18.430063Z", + "iopub.status.busy": "2024-06-14T00:23:18.429737Z", + "iopub.status.idle": "2024-06-14T00:23:18.432325Z", + "shell.execute_reply": "2024-06-14T00:23:18.431868Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:27.998153Z", - "iopub.status.busy": "2024-06-13T18:28:27.997891Z", - "iopub.status.idle": "2024-06-13T18:28:31.016966Z", - "shell.execute_reply": "2024-06-13T18:28:31.016420Z" + "iopub.execute_input": "2024-06-14T00:23:18.434326Z", + "iopub.status.busy": "2024-06-14T00:23:18.434032Z", + "iopub.status.idle": "2024-06-14T00:23:21.444210Z", + "shell.execute_reply": "2024-06-14T00:23:21.443570Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:31.019578Z", - "iopub.status.busy": "2024-06-13T18:28:31.019374Z", - "iopub.status.idle": "2024-06-13T18:28:31.028946Z", - "shell.execute_reply": "2024-06-13T18:28:31.028507Z" + "iopub.execute_input": "2024-06-14T00:23:21.447078Z", + "iopub.status.busy": "2024-06-14T00:23:21.446878Z", + "iopub.status.idle": "2024-06-14T00:23:21.456246Z", + "shell.execute_reply": "2024-06-14T00:23:21.455786Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:31.030842Z", - "iopub.status.busy": "2024-06-13T18:28:31.030663Z", - "iopub.status.idle": "2024-06-13T18:28:32.779042Z", - "shell.execute_reply": "2024-06-13T18:28:32.778442Z" + "iopub.execute_input": "2024-06-14T00:23:21.458287Z", + "iopub.status.busy": "2024-06-14T00:23:21.458109Z", + "iopub.status.idle": "2024-06-14T00:23:23.341274Z", + "shell.execute_reply": "2024-06-14T00:23:23.340671Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.781905Z", - "iopub.status.busy": "2024-06-13T18:28:32.781391Z", - "iopub.status.idle": "2024-06-13T18:28:32.804446Z", - "shell.execute_reply": "2024-06-13T18:28:32.803944Z" + "iopub.execute_input": "2024-06-14T00:23:23.344241Z", + "iopub.status.busy": "2024-06-14T00:23:23.343663Z", + "iopub.status.idle": "2024-06-14T00:23:23.368009Z", + "shell.execute_reply": "2024-06-14T00:23:23.367478Z" }, "scrolled": true }, @@ -617,10 +617,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.806930Z", - "iopub.status.busy": "2024-06-13T18:28:32.806386Z", - "iopub.status.idle": "2024-06-13T18:28:32.815633Z", - "shell.execute_reply": "2024-06-13T18:28:32.815159Z" + "iopub.execute_input": "2024-06-14T00:23:23.370678Z", + "iopub.status.busy": "2024-06-14T00:23:23.370285Z", + "iopub.status.idle": "2024-06-14T00:23:23.379984Z", + "shell.execute_reply": "2024-06-14T00:23:23.379464Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.818072Z", - "iopub.status.busy": "2024-06-13T18:28:32.817533Z", - "iopub.status.idle": "2024-06-13T18:28:32.828315Z", - "shell.execute_reply": "2024-06-13T18:28:32.827811Z" + "iopub.execute_input": "2024-06-14T00:23:23.382581Z", + "iopub.status.busy": "2024-06-14T00:23:23.382187Z", + "iopub.status.idle": "2024-06-14T00:23:23.393612Z", + "shell.execute_reply": "2024-06-14T00:23:23.393103Z" } }, "outputs": [ @@ -856,10 +856,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.830701Z", - "iopub.status.busy": "2024-06-13T18:28:32.830314Z", - "iopub.status.idle": "2024-06-13T18:28:32.839044Z", - "shell.execute_reply": "2024-06-13T18:28:32.838666Z" + "iopub.execute_input": "2024-06-14T00:23:23.396245Z", + "iopub.status.busy": "2024-06-14T00:23:23.395857Z", + "iopub.status.idle": "2024-06-14T00:23:23.404240Z", + "shell.execute_reply": "2024-06-14T00:23:23.403810Z" } }, "outputs": [ @@ -973,10 +973,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.840982Z", - "iopub.status.busy": "2024-06-13T18:28:32.840540Z", - "iopub.status.idle": "2024-06-13T18:28:32.848584Z", - "shell.execute_reply": "2024-06-13T18:28:32.848191Z" + "iopub.execute_input": "2024-06-14T00:23:23.406288Z", + "iopub.status.busy": "2024-06-14T00:23:23.406103Z", + "iopub.status.idle": "2024-06-14T00:23:23.415321Z", + "shell.execute_reply": "2024-06-14T00:23:23.414831Z" } }, "outputs": [ @@ -1087,10 +1087,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.850489Z", - "iopub.status.busy": "2024-06-13T18:28:32.850051Z", - "iopub.status.idle": "2024-06-13T18:28:32.856960Z", - "shell.execute_reply": "2024-06-13T18:28:32.856579Z" + "iopub.execute_input": "2024-06-14T00:23:23.417651Z", + "iopub.status.busy": "2024-06-14T00:23:23.417232Z", + "iopub.status.idle": "2024-06-14T00:23:23.425396Z", + "shell.execute_reply": "2024-06-14T00:23:23.424822Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.858886Z", - "iopub.status.busy": "2024-06-13T18:28:32.858446Z", - "iopub.status.idle": "2024-06-13T18:28:32.865457Z", - "shell.execute_reply": "2024-06-13T18:28:32.864899Z" + "iopub.execute_input": "2024-06-14T00:23:23.427638Z", + "iopub.status.busy": "2024-06-14T00:23:23.427308Z", + "iopub.status.idle": "2024-06-14T00:23:23.435158Z", + "shell.execute_reply": "2024-06-14T00:23:23.434668Z" } }, "outputs": [ @@ -1308,10 +1308,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:32.867653Z", - "iopub.status.busy": "2024-06-13T18:28:32.867265Z", - "iopub.status.idle": "2024-06-13T18:28:32.875655Z", - "shell.execute_reply": "2024-06-13T18:28:32.875093Z" + "iopub.execute_input": "2024-06-14T00:23:23.437530Z", + "iopub.status.busy": "2024-06-14T00:23:23.437174Z", + "iopub.status.idle": "2024-06-14T00:23:23.446128Z", + "shell.execute_reply": "2024-06-14T00:23:23.445609Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index ceaba7f2f..0a480a61d 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -782,7 +782,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_payment_fee_charged', 'apple_pay_or_google_pay', 'change_pin', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies'}
+Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'apple_pay_or_google_pay', 'change_pin', 'supported_cards_and_currencies', 'cancel_transfer'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index b41598c4e..a5b1f31ff 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:35.494932Z", - "iopub.status.busy": "2024-06-13T18:28:35.494754Z", - "iopub.status.idle": "2024-06-13T18:28:38.225515Z", - "shell.execute_reply": "2024-06-13T18:28:38.224926Z" + "iopub.execute_input": "2024-06-14T00:23:26.426660Z", + "iopub.status.busy": "2024-06-14T00:23:26.426484Z", + "iopub.status.idle": "2024-06-14T00:23:29.333875Z", + "shell.execute_reply": "2024-06-14T00:23:29.333186Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.228170Z", - "iopub.status.busy": "2024-06-13T18:28:38.227830Z", - "iopub.status.idle": "2024-06-13T18:28:38.231088Z", - "shell.execute_reply": "2024-06-13T18:28:38.230658Z" + "iopub.execute_input": "2024-06-14T00:23:29.336704Z", + "iopub.status.busy": "2024-06-14T00:23:29.336344Z", + "iopub.status.idle": "2024-06-14T00:23:29.339965Z", + "shell.execute_reply": "2024-06-14T00:23:29.339477Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.233283Z", - "iopub.status.busy": "2024-06-13T18:28:38.232947Z", - "iopub.status.idle": "2024-06-13T18:28:38.235936Z", - "shell.execute_reply": "2024-06-13T18:28:38.235509Z" + "iopub.execute_input": "2024-06-14T00:23:29.342240Z", + "iopub.status.busy": "2024-06-14T00:23:29.341795Z", + "iopub.status.idle": "2024-06-14T00:23:29.345149Z", + "shell.execute_reply": "2024-06-14T00:23:29.344678Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.238184Z", - "iopub.status.busy": "2024-06-13T18:28:38.237753Z", - "iopub.status.idle": "2024-06-13T18:28:38.279855Z", - "shell.execute_reply": "2024-06-13T18:28:38.279322Z" + "iopub.execute_input": "2024-06-14T00:23:29.347354Z", + "iopub.status.busy": "2024-06-14T00:23:29.346935Z", + "iopub.status.idle": "2024-06-14T00:23:29.369308Z", + "shell.execute_reply": "2024-06-14T00:23:29.368737Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.281983Z", - "iopub.status.busy": "2024-06-13T18:28:38.281783Z", - "iopub.status.idle": "2024-06-13T18:28:38.285634Z", - "shell.execute_reply": "2024-06-13T18:28:38.285133Z" + "iopub.execute_input": "2024-06-14T00:23:29.371529Z", + "iopub.status.busy": "2024-06-14T00:23:29.371328Z", + "iopub.status.idle": "2024-06-14T00:23:29.375296Z", + "shell.execute_reply": "2024-06-14T00:23:29.374748Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'apple_pay_or_google_pay', 'change_pin', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'supported_cards_and_currencies'}\n" + "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'apple_pay_or_google_pay', 'change_pin', 'supported_cards_and_currencies', 'cancel_transfer'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.287866Z", - "iopub.status.busy": "2024-06-13T18:28:38.287518Z", - "iopub.status.idle": "2024-06-13T18:28:38.290632Z", - "shell.execute_reply": "2024-06-13T18:28:38.290100Z" + "iopub.execute_input": "2024-06-14T00:23:29.377403Z", + "iopub.status.busy": "2024-06-14T00:23:29.377213Z", + "iopub.status.idle": "2024-06-14T00:23:29.380495Z", + "shell.execute_reply": "2024-06-14T00:23:29.379939Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:38.292858Z", - "iopub.status.busy": "2024-06-13T18:28:38.292527Z", - "iopub.status.idle": "2024-06-13T18:28:42.021573Z", - "shell.execute_reply": "2024-06-13T18:28:42.021004Z" + "iopub.execute_input": "2024-06-14T00:23:29.382617Z", + "iopub.status.busy": "2024-06-14T00:23:29.382436Z", + "iopub.status.idle": "2024-06-14T00:23:33.102395Z", + "shell.execute_reply": "2024-06-14T00:23:33.101746Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:42.024191Z", - "iopub.status.busy": "2024-06-13T18:28:42.023967Z", - "iopub.status.idle": "2024-06-13T18:28:42.915684Z", - "shell.execute_reply": "2024-06-13T18:28:42.915096Z" + "iopub.execute_input": "2024-06-14T00:23:33.105336Z", + "iopub.status.busy": "2024-06-14T00:23:33.104961Z", + "iopub.status.idle": "2024-06-14T00:23:33.976761Z", + "shell.execute_reply": "2024-06-14T00:23:33.976174Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:42.918648Z", - "iopub.status.busy": "2024-06-13T18:28:42.918254Z", - "iopub.status.idle": "2024-06-13T18:28:42.921196Z", - "shell.execute_reply": "2024-06-13T18:28:42.920705Z" + "iopub.execute_input": "2024-06-14T00:23:33.980560Z", + "iopub.status.busy": "2024-06-14T00:23:33.979620Z", + "iopub.status.idle": "2024-06-14T00:23:33.983667Z", + "shell.execute_reply": "2024-06-14T00:23:33.983182Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:42.923540Z", - "iopub.status.busy": "2024-06-13T18:28:42.923156Z", - "iopub.status.idle": "2024-06-13T18:28:44.500944Z", - "shell.execute_reply": "2024-06-13T18:28:44.500333Z" + "iopub.execute_input": "2024-06-14T00:23:33.987150Z", + "iopub.status.busy": "2024-06-14T00:23:33.986223Z", + "iopub.status.idle": "2024-06-14T00:23:35.661805Z", + "shell.execute_reply": "2024-06-14T00:23:35.661023Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.503883Z", - "iopub.status.busy": "2024-06-13T18:28:44.503278Z", - "iopub.status.idle": "2024-06-13T18:28:44.526637Z", - "shell.execute_reply": "2024-06-13T18:28:44.526135Z" + "iopub.execute_input": "2024-06-14T00:23:35.665669Z", + "iopub.status.busy": "2024-06-14T00:23:35.664354Z", + "iopub.status.idle": "2024-06-14T00:23:35.690398Z", + "shell.execute_reply": "2024-06-14T00:23:35.689880Z" }, "scrolled": true }, @@ -671,10 +671,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.529014Z", - "iopub.status.busy": "2024-06-13T18:28:44.528639Z", - "iopub.status.idle": "2024-06-13T18:28:44.538023Z", - "shell.execute_reply": "2024-06-13T18:28:44.537545Z" + "iopub.execute_input": "2024-06-14T00:23:35.694095Z", + "iopub.status.busy": "2024-06-14T00:23:35.693148Z", + "iopub.status.idle": "2024-06-14T00:23:35.704086Z", + "shell.execute_reply": "2024-06-14T00:23:35.703690Z" }, "scrolled": true }, @@ -784,10 +784,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.540397Z", - "iopub.status.busy": "2024-06-13T18:28:44.540007Z", - "iopub.status.idle": "2024-06-13T18:28:44.544432Z", - "shell.execute_reply": "2024-06-13T18:28:44.543936Z" + "iopub.execute_input": "2024-06-14T00:23:35.706901Z", + "iopub.status.busy": "2024-06-14T00:23:35.706172Z", + "iopub.status.idle": "2024-06-14T00:23:35.711108Z", + "shell.execute_reply": "2024-06-14T00:23:35.710686Z" } }, "outputs": [ @@ -825,10 +825,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.546345Z", - "iopub.status.busy": "2024-06-13T18:28:44.546076Z", - "iopub.status.idle": "2024-06-13T18:28:44.552370Z", - "shell.execute_reply": "2024-06-13T18:28:44.551901Z" + "iopub.execute_input": "2024-06-14T00:23:35.713293Z", + "iopub.status.busy": "2024-06-14T00:23:35.712845Z", + "iopub.status.idle": "2024-06-14T00:23:35.719912Z", + "shell.execute_reply": "2024-06-14T00:23:35.719364Z" } }, "outputs": [ @@ -945,10 +945,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.554350Z", - "iopub.status.busy": "2024-06-13T18:28:44.554010Z", - "iopub.status.idle": "2024-06-13T18:28:44.560448Z", - "shell.execute_reply": "2024-06-13T18:28:44.560003Z" + "iopub.execute_input": "2024-06-14T00:23:35.721952Z", + "iopub.status.busy": "2024-06-14T00:23:35.721634Z", + "iopub.status.idle": "2024-06-14T00:23:35.728059Z", + "shell.execute_reply": "2024-06-14T00:23:35.727512Z" } }, "outputs": [ @@ -1031,10 +1031,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.562393Z", - "iopub.status.busy": "2024-06-13T18:28:44.562069Z", - "iopub.status.idle": "2024-06-13T18:28:44.567691Z", - "shell.execute_reply": "2024-06-13T18:28:44.567201Z" + "iopub.execute_input": "2024-06-14T00:23:35.729815Z", + "iopub.status.busy": "2024-06-14T00:23:35.729643Z", + "iopub.status.idle": "2024-06-14T00:23:35.735346Z", + "shell.execute_reply": "2024-06-14T00:23:35.734811Z" } }, "outputs": [ @@ -1142,10 +1142,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.569706Z", - "iopub.status.busy": "2024-06-13T18:28:44.569380Z", - "iopub.status.idle": "2024-06-13T18:28:44.577734Z", - "shell.execute_reply": "2024-06-13T18:28:44.577264Z" + "iopub.execute_input": "2024-06-14T00:23:35.737489Z", + "iopub.status.busy": "2024-06-14T00:23:35.737089Z", + "iopub.status.idle": "2024-06-14T00:23:35.745473Z", + "shell.execute_reply": "2024-06-14T00:23:35.745003Z" } }, "outputs": [ @@ -1256,10 +1256,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.579614Z", - "iopub.status.busy": "2024-06-13T18:28:44.579435Z", - "iopub.status.idle": "2024-06-13T18:28:44.585021Z", - "shell.execute_reply": "2024-06-13T18:28:44.584562Z" + "iopub.execute_input": "2024-06-14T00:23:35.747355Z", + "iopub.status.busy": "2024-06-14T00:23:35.747177Z", + "iopub.status.idle": "2024-06-14T00:23:35.752635Z", + "shell.execute_reply": "2024-06-14T00:23:35.752093Z" } }, "outputs": [ @@ -1327,10 +1327,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.586873Z", - "iopub.status.busy": "2024-06-13T18:28:44.586697Z", - "iopub.status.idle": "2024-06-13T18:28:44.591997Z", - "shell.execute_reply": "2024-06-13T18:28:44.591529Z" + "iopub.execute_input": "2024-06-14T00:23:35.754654Z", + "iopub.status.busy": "2024-06-14T00:23:35.754333Z", + "iopub.status.idle": "2024-06-14T00:23:35.759718Z", + "shell.execute_reply": "2024-06-14T00:23:35.759179Z" } }, "outputs": [ @@ -1409,10 +1409,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.594215Z", - "iopub.status.busy": "2024-06-13T18:28:44.593806Z", - "iopub.status.idle": "2024-06-13T18:28:44.597358Z", - "shell.execute_reply": "2024-06-13T18:28:44.596916Z" + "iopub.execute_input": "2024-06-14T00:23:35.761736Z", + "iopub.status.busy": "2024-06-14T00:23:35.761395Z", + "iopub.status.idle": "2024-06-14T00:23:35.765518Z", + "shell.execute_reply": "2024-06-14T00:23:35.765060Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:44.599364Z", - "iopub.status.busy": "2024-06-13T18:28:44.599034Z", - "iopub.status.idle": "2024-06-13T18:28:44.604135Z", - "shell.execute_reply": "2024-06-13T18:28:44.603644Z" + "iopub.execute_input": "2024-06-14T00:23:35.767608Z", + "iopub.status.busy": "2024-06-14T00:23:35.767280Z", + "iopub.status.idle": "2024-06-14T00:23:35.772272Z", + "shell.execute_reply": "2024-06-14T00:23:35.771839Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 1beafe2f4..63f89fa2d 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -888,7 +888,7 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index d4c38ca10..ecf6d2a3e 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:48.810322Z", - "iopub.status.busy": "2024-06-13T18:28:48.810151Z", - "iopub.status.idle": "2024-06-13T18:28:49.236728Z", - "shell.execute_reply": "2024-06-13T18:28:49.236099Z" + "iopub.execute_input": "2024-06-14T00:23:39.101254Z", + "iopub.status.busy": "2024-06-14T00:23:39.101094Z", + "iopub.status.idle": "2024-06-14T00:23:39.529965Z", + "shell.execute_reply": "2024-06-14T00:23:39.529437Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:49.239437Z", - "iopub.status.busy": "2024-06-13T18:28:49.239038Z", - "iopub.status.idle": "2024-06-13T18:28:49.372700Z", - "shell.execute_reply": "2024-06-13T18:28:49.372097Z" + "iopub.execute_input": "2024-06-14T00:23:39.532708Z", + "iopub.status.busy": "2024-06-14T00:23:39.532210Z", + "iopub.status.idle": "2024-06-14T00:23:39.664883Z", + "shell.execute_reply": "2024-06-14T00:23:39.664295Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:49.375327Z", - "iopub.status.busy": "2024-06-13T18:28:49.374790Z", - "iopub.status.idle": "2024-06-13T18:28:49.397811Z", - "shell.execute_reply": "2024-06-13T18:28:49.397191Z" + "iopub.execute_input": "2024-06-14T00:23:39.667286Z", + "iopub.status.busy": "2024-06-14T00:23:39.666882Z", + "iopub.status.idle": "2024-06-14T00:23:39.690237Z", + "shell.execute_reply": "2024-06-14T00:23:39.689633Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:49.400442Z", - "iopub.status.busy": "2024-06-13T18:28:49.399960Z", - "iopub.status.idle": "2024-06-13T18:28:51.887633Z", - "shell.execute_reply": "2024-06-13T18:28:51.886980Z" + "iopub.execute_input": "2024-06-14T00:23:39.693015Z", + "iopub.status.busy": "2024-06-14T00:23:39.692524Z", + "iopub.status.idle": "2024-06-14T00:23:42.216120Z", + "shell.execute_reply": "2024-06-14T00:23:42.215470Z" } }, "outputs": [ @@ -296,7 +296,7 @@ " \n", " 2\n", " outlier\n", - " 0.356959\n", + " 0.356958\n", " 362\n", " \n", " \n", @@ -331,7 +331,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356959 362\n", + "2 outlier 0.356958 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -716,10 +716,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:28:51.890183Z", - "iopub.status.busy": "2024-06-13T18:28:51.889836Z", - "iopub.status.idle": "2024-06-13T18:29:00.073413Z", - "shell.execute_reply": "2024-06-13T18:29:00.072833Z" + "iopub.execute_input": "2024-06-14T00:23:42.218867Z", + "iopub.status.busy": "2024-06-14T00:23:42.218243Z", + "iopub.status.idle": "2024-06-14T00:23:50.142965Z", + "shell.execute_reply": "2024-06-14T00:23:50.142466Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:00.075634Z", - "iopub.status.busy": "2024-06-13T18:29:00.075287Z", - "iopub.status.idle": "2024-06-13T18:29:00.219063Z", - "shell.execute_reply": "2024-06-13T18:29:00.218570Z" + "iopub.execute_input": "2024-06-14T00:23:50.145182Z", + "iopub.status.busy": "2024-06-14T00:23:50.144839Z", + "iopub.status.idle": "2024-06-14T00:23:50.292667Z", + "shell.execute_reply": "2024-06-14T00:23:50.292143Z" } }, "outputs": [], @@ -854,10 +854,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:00.221604Z", - "iopub.status.busy": "2024-06-13T18:29:00.221192Z", - "iopub.status.idle": "2024-06-13T18:29:01.572354Z", - "shell.execute_reply": "2024-06-13T18:29:01.571758Z" + "iopub.execute_input": "2024-06-14T00:23:50.295277Z", + "iopub.status.busy": "2024-06-14T00:23:50.294923Z", + "iopub.status.idle": "2024-06-14T00:23:51.637178Z", + "shell.execute_reply": "2024-06-14T00:23:51.636624Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:01.574616Z", - "iopub.status.busy": "2024-06-13T18:29:01.574202Z", - "iopub.status.idle": "2024-06-13T18:29:02.418662Z", - "shell.execute_reply": "2024-06-13T18:29:02.418050Z" + "iopub.execute_input": "2024-06-14T00:23:51.639519Z", + "iopub.status.busy": "2024-06-14T00:23:51.639078Z", + "iopub.status.idle": "2024-06-14T00:23:52.521154Z", + "shell.execute_reply": "2024-06-14T00:23:52.520594Z" } }, "outputs": [ @@ -1095,10 +1095,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.421098Z", - "iopub.status.busy": "2024-06-13T18:29:02.420715Z", - "iopub.status.idle": "2024-06-13T18:29:02.430227Z", - "shell.execute_reply": "2024-06-13T18:29:02.429697Z" + "iopub.execute_input": "2024-06-14T00:23:52.523753Z", + "iopub.status.busy": "2024-06-14T00:23:52.523146Z", + "iopub.status.idle": "2024-06-14T00:23:52.532299Z", + "shell.execute_reply": "2024-06-14T00:23:52.531850Z" } }, "outputs": [], @@ -1128,10 +1128,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.432242Z", - "iopub.status.busy": "2024-06-13T18:29:02.432047Z", - "iopub.status.idle": "2024-06-13T18:29:02.464139Z", - "shell.execute_reply": "2024-06-13T18:29:02.463680Z" + "iopub.execute_input": "2024-06-14T00:23:52.534502Z", + "iopub.status.busy": "2024-06-14T00:23:52.534095Z", + "iopub.status.idle": "2024-06-14T00:23:52.555328Z", + "shell.execute_reply": "2024-06-14T00:23:52.554797Z" } }, "outputs": [], @@ -1159,10 +1159,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.466168Z", - "iopub.status.busy": "2024-06-13T18:29:02.465988Z", - "iopub.status.idle": "2024-06-13T18:29:02.662637Z", - "shell.execute_reply": "2024-06-13T18:29:02.662012Z" + "iopub.execute_input": "2024-06-14T00:23:52.557540Z", + "iopub.status.busy": "2024-06-14T00:23:52.557232Z", + "iopub.status.idle": "2024-06-14T00:23:52.777000Z", + "shell.execute_reply": "2024-06-14T00:23:52.776448Z" } }, "outputs": [], @@ -1202,10 +1202,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.665583Z", - "iopub.status.busy": "2024-06-13T18:29:02.665135Z", - "iopub.status.idle": "2024-06-13T18:29:02.683864Z", - "shell.execute_reply": "2024-06-13T18:29:02.683295Z" + "iopub.execute_input": "2024-06-14T00:23:52.779602Z", + "iopub.status.busy": "2024-06-14T00:23:52.779376Z", + "iopub.status.idle": "2024-06-14T00:23:52.800798Z", + "shell.execute_reply": "2024-06-14T00:23:52.800210Z" } }, "outputs": [ @@ -1403,10 +1403,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.686290Z", - "iopub.status.busy": "2024-06-13T18:29:02.685844Z", - "iopub.status.idle": "2024-06-13T18:29:02.831920Z", - "shell.execute_reply": "2024-06-13T18:29:02.831300Z" + "iopub.execute_input": "2024-06-14T00:23:52.803371Z", + "iopub.status.busy": "2024-06-14T00:23:52.802964Z", + "iopub.status.idle": "2024-06-14T00:23:52.971559Z", + "shell.execute_reply": "2024-06-14T00:23:52.971012Z" } }, "outputs": [ @@ -1473,10 +1473,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.834256Z", - "iopub.status.busy": "2024-06-13T18:29:02.834052Z", - "iopub.status.idle": "2024-06-13T18:29:02.845053Z", - "shell.execute_reply": "2024-06-13T18:29:02.844480Z" + "iopub.execute_input": "2024-06-14T00:23:52.973966Z", + "iopub.status.busy": "2024-06-14T00:23:52.973621Z", + "iopub.status.idle": "2024-06-14T00:23:52.983905Z", + "shell.execute_reply": "2024-06-14T00:23:52.983359Z" } }, "outputs": [ @@ -1742,10 +1742,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.847006Z", - "iopub.status.busy": "2024-06-13T18:29:02.846824Z", - "iopub.status.idle": "2024-06-13T18:29:02.856697Z", - "shell.execute_reply": "2024-06-13T18:29:02.856237Z" + "iopub.execute_input": "2024-06-14T00:23:52.985899Z", + "iopub.status.busy": "2024-06-14T00:23:52.985558Z", + "iopub.status.idle": "2024-06-14T00:23:52.994971Z", + "shell.execute_reply": "2024-06-14T00:23:52.994547Z" } }, "outputs": [ @@ -1932,10 +1932,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.858597Z", - "iopub.status.busy": "2024-06-13T18:29:02.858422Z", - "iopub.status.idle": "2024-06-13T18:29:02.885907Z", - "shell.execute_reply": "2024-06-13T18:29:02.885315Z" + "iopub.execute_input": "2024-06-14T00:23:52.996957Z", + "iopub.status.busy": "2024-06-14T00:23:52.996630Z", + "iopub.status.idle": "2024-06-14T00:23:53.036349Z", + "shell.execute_reply": "2024-06-14T00:23:53.035789Z" } }, "outputs": [], @@ -1969,10 +1969,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.888294Z", - "iopub.status.busy": "2024-06-13T18:29:02.888113Z", - "iopub.status.idle": "2024-06-13T18:29:02.890998Z", - "shell.execute_reply": "2024-06-13T18:29:02.890443Z" + "iopub.execute_input": "2024-06-14T00:23:53.038520Z", + "iopub.status.busy": "2024-06-14T00:23:53.038213Z", + "iopub.status.idle": "2024-06-14T00:23:53.040935Z", + "shell.execute_reply": "2024-06-14T00:23:53.040403Z" } }, "outputs": [], @@ -1994,10 +1994,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.892972Z", - "iopub.status.busy": "2024-06-13T18:29:02.892795Z", - "iopub.status.idle": "2024-06-13T18:29:02.912354Z", - "shell.execute_reply": "2024-06-13T18:29:02.911746Z" + "iopub.execute_input": "2024-06-14T00:23:53.043065Z", + "iopub.status.busy": "2024-06-14T00:23:53.042740Z", + "iopub.status.idle": "2024-06-14T00:23:53.061957Z", + "shell.execute_reply": "2024-06-14T00:23:53.061479Z" } }, "outputs": [ @@ -2155,10 +2155,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.914733Z", - "iopub.status.busy": "2024-06-13T18:29:02.914377Z", - "iopub.status.idle": "2024-06-13T18:29:02.918762Z", - "shell.execute_reply": "2024-06-13T18:29:02.918189Z" + "iopub.execute_input": "2024-06-14T00:23:53.063997Z", + "iopub.status.busy": "2024-06-14T00:23:53.063693Z", + "iopub.status.idle": "2024-06-14T00:23:53.067984Z", + "shell.execute_reply": "2024-06-14T00:23:53.067456Z" } }, "outputs": [], @@ -2191,10 +2191,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.920610Z", - "iopub.status.busy": "2024-06-13T18:29:02.920438Z", - "iopub.status.idle": "2024-06-13T18:29:02.948785Z", - "shell.execute_reply": "2024-06-13T18:29:02.948294Z" + "iopub.execute_input": "2024-06-14T00:23:53.070027Z", + "iopub.status.busy": "2024-06-14T00:23:53.069719Z", + "iopub.status.idle": "2024-06-14T00:23:53.097724Z", + "shell.execute_reply": "2024-06-14T00:23:53.097328Z" } }, "outputs": [ @@ -2340,10 +2340,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:02.951033Z", - "iopub.status.busy": "2024-06-13T18:29:02.950688Z", - "iopub.status.idle": "2024-06-13T18:29:03.320697Z", - "shell.execute_reply": "2024-06-13T18:29:03.320120Z" + "iopub.execute_input": "2024-06-14T00:23:53.099752Z", + "iopub.status.busy": "2024-06-14T00:23:53.099429Z", + "iopub.status.idle": "2024-06-14T00:23:53.471711Z", + "shell.execute_reply": "2024-06-14T00:23:53.471117Z" } }, "outputs": [ @@ -2410,10 +2410,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.322997Z", - "iopub.status.busy": "2024-06-13T18:29:03.322642Z", - "iopub.status.idle": "2024-06-13T18:29:03.325973Z", - "shell.execute_reply": "2024-06-13T18:29:03.325504Z" + "iopub.execute_input": "2024-06-14T00:23:53.473903Z", + "iopub.status.busy": "2024-06-14T00:23:53.473579Z", + "iopub.status.idle": "2024-06-14T00:23:53.476805Z", + "shell.execute_reply": "2024-06-14T00:23:53.476270Z" } }, "outputs": [ @@ -2464,10 +2464,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.328240Z", - "iopub.status.busy": "2024-06-13T18:29:03.327826Z", - "iopub.status.idle": "2024-06-13T18:29:03.341063Z", - "shell.execute_reply": "2024-06-13T18:29:03.340510Z" + "iopub.execute_input": "2024-06-14T00:23:53.478879Z", + "iopub.status.busy": "2024-06-14T00:23:53.478551Z", + "iopub.status.idle": "2024-06-14T00:23:53.491638Z", + "shell.execute_reply": "2024-06-14T00:23:53.491167Z" } }, "outputs": [ @@ -2746,10 +2746,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.343146Z", - "iopub.status.busy": "2024-06-13T18:29:03.342968Z", - "iopub.status.idle": "2024-06-13T18:29:03.356960Z", - "shell.execute_reply": "2024-06-13T18:29:03.356378Z" + "iopub.execute_input": "2024-06-14T00:23:53.493591Z", + "iopub.status.busy": "2024-06-14T00:23:53.493266Z", + "iopub.status.idle": "2024-06-14T00:23:53.506506Z", + "shell.execute_reply": "2024-06-14T00:23:53.506059Z" } }, "outputs": [ @@ -3016,10 +3016,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.359084Z", - "iopub.status.busy": "2024-06-13T18:29:03.358893Z", - "iopub.status.idle": "2024-06-13T18:29:03.368869Z", - "shell.execute_reply": "2024-06-13T18:29:03.368433Z" + "iopub.execute_input": "2024-06-14T00:23:53.508671Z", + "iopub.status.busy": "2024-06-14T00:23:53.508229Z", + "iopub.status.idle": "2024-06-14T00:23:53.518094Z", + "shell.execute_reply": "2024-06-14T00:23:53.517648Z" } }, "outputs": [], @@ -3044,10 +3044,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.370864Z", - "iopub.status.busy": "2024-06-13T18:29:03.370686Z", - "iopub.status.idle": "2024-06-13T18:29:03.380683Z", - "shell.execute_reply": "2024-06-13T18:29:03.380098Z" + "iopub.execute_input": "2024-06-14T00:23:53.520248Z", + "iopub.status.busy": "2024-06-14T00:23:53.519825Z", + "iopub.status.idle": "2024-06-14T00:23:53.529309Z", + "shell.execute_reply": "2024-06-14T00:23:53.528831Z" } }, "outputs": [ @@ -3219,10 +3219,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.382863Z", - "iopub.status.busy": "2024-06-13T18:29:03.382463Z", - "iopub.status.idle": "2024-06-13T18:29:03.386295Z", - "shell.execute_reply": "2024-06-13T18:29:03.385835Z" + "iopub.execute_input": "2024-06-14T00:23:53.531319Z", + "iopub.status.busy": "2024-06-14T00:23:53.531025Z", + "iopub.status.idle": "2024-06-14T00:23:53.534642Z", + "shell.execute_reply": "2024-06-14T00:23:53.534199Z" } }, "outputs": [], @@ -3254,10 +3254,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.388450Z", - "iopub.status.busy": "2024-06-13T18:29:03.388121Z", - "iopub.status.idle": "2024-06-13T18:29:03.441077Z", - "shell.execute_reply": "2024-06-13T18:29:03.440479Z" + "iopub.execute_input": "2024-06-14T00:23:53.536715Z", + "iopub.status.busy": "2024-06-14T00:23:53.536425Z", + "iopub.status.idle": "2024-06-14T00:23:53.587543Z", + "shell.execute_reply": "2024-06-14T00:23:53.586984Z" } }, "outputs": [ @@ -3265,230 +3265,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3564,10 +3564,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.443543Z", - "iopub.status.busy": "2024-06-13T18:29:03.443131Z", - "iopub.status.idle": "2024-06-13T18:29:03.448891Z", - "shell.execute_reply": "2024-06-13T18:29:03.448446Z" + "iopub.execute_input": "2024-06-14T00:23:53.590168Z", + "iopub.status.busy": "2024-06-14T00:23:53.589538Z", + "iopub.status.idle": "2024-06-14T00:23:53.595593Z", + "shell.execute_reply": "2024-06-14T00:23:53.595125Z" } }, "outputs": [], @@ -3606,10 +3606,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.450994Z", - "iopub.status.busy": "2024-06-13T18:29:03.450544Z", - "iopub.status.idle": "2024-06-13T18:29:03.461968Z", - "shell.execute_reply": "2024-06-13T18:29:03.461423Z" + "iopub.execute_input": "2024-06-14T00:23:53.597822Z", + "iopub.status.busy": "2024-06-14T00:23:53.597339Z", + "iopub.status.idle": "2024-06-14T00:23:53.609364Z", + "shell.execute_reply": "2024-06-14T00:23:53.608758Z" } }, "outputs": [ @@ -3645,10 +3645,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.464045Z", - "iopub.status.busy": "2024-06-13T18:29:03.463710Z", - "iopub.status.idle": "2024-06-13T18:29:03.653451Z", - "shell.execute_reply": "2024-06-13T18:29:03.652842Z" + "iopub.execute_input": "2024-06-14T00:23:53.611735Z", + "iopub.status.busy": "2024-06-14T00:23:53.611307Z", + "iopub.status.idle": "2024-06-14T00:23:53.831564Z", + "shell.execute_reply": "2024-06-14T00:23:53.830938Z" } }, "outputs": [ @@ -3700,10 +3700,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:03.656092Z", - "iopub.status.busy": "2024-06-13T18:29:03.655607Z", - "iopub.status.idle": "2024-06-13T18:29:03.663862Z", - "shell.execute_reply": "2024-06-13T18:29:03.663283Z" + "iopub.execute_input": "2024-06-14T00:23:53.833965Z", + "iopub.status.busy": "2024-06-14T00:23:53.833466Z", + "iopub.status.idle": "2024-06-14T00:23:53.841493Z", + "shell.execute_reply": "2024-06-14T00:23:53.841007Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 5be2c242e..f6cc4f941 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:06.800712Z", - "iopub.status.busy": "2024-06-13T18:29:06.800356Z", - "iopub.status.idle": "2024-06-13T18:29:07.946534Z", - "shell.execute_reply": "2024-06-13T18:29:07.945964Z" + "iopub.execute_input": "2024-06-14T00:23:57.221134Z", + "iopub.status.busy": "2024-06-14T00:23:57.220733Z", + "iopub.status.idle": "2024-06-14T00:23:58.343641Z", + "shell.execute_reply": "2024-06-14T00:23:58.343061Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:07.949273Z", - "iopub.status.busy": "2024-06-13T18:29:07.948725Z", - "iopub.status.idle": "2024-06-13T18:29:07.951733Z", - "shell.execute_reply": "2024-06-13T18:29:07.951263Z" + "iopub.execute_input": "2024-06-14T00:23:58.346240Z", + "iopub.status.busy": "2024-06-14T00:23:58.345974Z", + "iopub.status.idle": "2024-06-14T00:23:58.348707Z", + "shell.execute_reply": "2024-06-14T00:23:58.348271Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:07.954045Z", - "iopub.status.busy": "2024-06-13T18:29:07.953867Z", - "iopub.status.idle": "2024-06-13T18:29:07.966485Z", - "shell.execute_reply": "2024-06-13T18:29:07.966034Z" + "iopub.execute_input": "2024-06-14T00:23:58.351014Z", + "iopub.status.busy": "2024-06-14T00:23:58.350685Z", + "iopub.status.idle": "2024-06-14T00:23:58.362766Z", + "shell.execute_reply": "2024-06-14T00:23:58.362250Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:07.968412Z", - "iopub.status.busy": "2024-06-13T18:29:07.968232Z", - "iopub.status.idle": "2024-06-13T18:29:12.961681Z", - "shell.execute_reply": "2024-06-13T18:29:12.961199Z" + "iopub.execute_input": "2024-06-14T00:23:58.364682Z", + "iopub.status.busy": "2024-06-14T00:23:58.364510Z", + "iopub.status.idle": "2024-06-14T00:24:02.100766Z", + "shell.execute_reply": "2024-06-14T00:24:02.100187Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,13 +694,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index b15385642..5386e2485 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -822,13 +822,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1773,7 +1773,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 79f1af61e..988506189 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:15.240860Z", - "iopub.status.busy": "2024-06-13T18:29:15.240447Z", - "iopub.status.idle": "2024-06-13T18:29:16.384353Z", - "shell.execute_reply": "2024-06-13T18:29:16.383694Z" + "iopub.execute_input": "2024-06-14T00:24:04.042644Z", + "iopub.status.busy": "2024-06-14T00:24:04.042160Z", + "iopub.status.idle": "2024-06-14T00:24:05.140924Z", + "shell.execute_reply": "2024-06-14T00:24:05.140354Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:16.386968Z", - "iopub.status.busy": "2024-06-13T18:29:16.386668Z", - "iopub.status.idle": "2024-06-13T18:29:16.390133Z", - "shell.execute_reply": "2024-06-13T18:29:16.389583Z" + "iopub.execute_input": "2024-06-14T00:24:05.143834Z", + "iopub.status.busy": "2024-06-14T00:24:05.143380Z", + "iopub.status.idle": "2024-06-14T00:24:05.146605Z", + "shell.execute_reply": "2024-06-14T00:24:05.146154Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:16.392357Z", - "iopub.status.busy": "2024-06-13T18:29:16.391889Z", - "iopub.status.idle": "2024-06-13T18:29:19.468226Z", - "shell.execute_reply": "2024-06-13T18:29:19.467438Z" + "iopub.execute_input": "2024-06-14T00:24:05.148740Z", + "iopub.status.busy": "2024-06-14T00:24:05.148310Z", + "iopub.status.idle": "2024-06-14T00:24:08.089242Z", + "shell.execute_reply": "2024-06-14T00:24:08.088575Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.471268Z", - "iopub.status.busy": "2024-06-13T18:29:19.470698Z", - "iopub.status.idle": "2024-06-13T18:29:19.505916Z", - "shell.execute_reply": "2024-06-13T18:29:19.505316Z" + "iopub.execute_input": "2024-06-14T00:24:08.092480Z", + "iopub.status.busy": "2024-06-14T00:24:08.091803Z", + "iopub.status.idle": "2024-06-14T00:24:08.126229Z", + "shell.execute_reply": "2024-06-14T00:24:08.125476Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.508740Z", - "iopub.status.busy": "2024-06-13T18:29:19.508346Z", - "iopub.status.idle": "2024-06-13T18:29:19.541943Z", - "shell.execute_reply": "2024-06-13T18:29:19.541331Z" + "iopub.execute_input": "2024-06-14T00:24:08.128987Z", + "iopub.status.busy": "2024-06-14T00:24:08.128545Z", + "iopub.status.idle": "2024-06-14T00:24:08.154937Z", + "shell.execute_reply": "2024-06-14T00:24:08.154239Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.544632Z", - "iopub.status.busy": "2024-06-13T18:29:19.544325Z", - "iopub.status.idle": "2024-06-13T18:29:19.547296Z", - "shell.execute_reply": "2024-06-13T18:29:19.546858Z" + "iopub.execute_input": "2024-06-14T00:24:08.157494Z", + "iopub.status.busy": "2024-06-14T00:24:08.157260Z", + "iopub.status.idle": "2024-06-14T00:24:08.160350Z", + "shell.execute_reply": "2024-06-14T00:24:08.159818Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.549339Z", - "iopub.status.busy": "2024-06-13T18:29:19.549012Z", - "iopub.status.idle": "2024-06-13T18:29:19.551527Z", - "shell.execute_reply": "2024-06-13T18:29:19.551099Z" + "iopub.execute_input": "2024-06-14T00:24:08.162410Z", + "iopub.status.busy": "2024-06-14T00:24:08.161992Z", + "iopub.status.idle": "2024-06-14T00:24:08.164611Z", + "shell.execute_reply": "2024-06-14T00:24:08.164162Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.553610Z", - "iopub.status.busy": "2024-06-13T18:29:19.553339Z", - "iopub.status.idle": "2024-06-13T18:29:19.576688Z", - "shell.execute_reply": "2024-06-13T18:29:19.576106Z" + "iopub.execute_input": "2024-06-14T00:24:08.166881Z", + "iopub.status.busy": "2024-06-14T00:24:08.166422Z", + "iopub.status.idle": "2024-06-14T00:24:08.190557Z", + "shell.execute_reply": "2024-06-14T00:24:08.190016Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9ea1e33b89cd4f6d8dea308e197a4ca0", + "model_id": "802031e2f68847f982e3f2b4d625d3ea", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "daaf1aba8aa94491abe37130b32c40fb", + "model_id": "9f8deaf7b18248f793dd47fecf106fa7", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.583103Z", - "iopub.status.busy": "2024-06-13T18:29:19.582789Z", - "iopub.status.idle": "2024-06-13T18:29:19.589377Z", - "shell.execute_reply": "2024-06-13T18:29:19.588822Z" + "iopub.execute_input": "2024-06-14T00:24:08.196532Z", + "iopub.status.busy": "2024-06-14T00:24:08.196238Z", + "iopub.status.idle": "2024-06-14T00:24:08.202633Z", + "shell.execute_reply": "2024-06-14T00:24:08.202212Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.591493Z", - "iopub.status.busy": "2024-06-13T18:29:19.591167Z", - "iopub.status.idle": "2024-06-13T18:29:19.594701Z", - "shell.execute_reply": "2024-06-13T18:29:19.594162Z" + "iopub.execute_input": "2024-06-14T00:24:08.204532Z", + "iopub.status.busy": "2024-06-14T00:24:08.204243Z", + "iopub.status.idle": "2024-06-14T00:24:08.207684Z", + "shell.execute_reply": "2024-06-14T00:24:08.207159Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.596967Z", - "iopub.status.busy": "2024-06-13T18:29:19.596576Z", - "iopub.status.idle": "2024-06-13T18:29:19.602864Z", - "shell.execute_reply": "2024-06-13T18:29:19.602398Z" + "iopub.execute_input": "2024-06-14T00:24:08.209736Z", + "iopub.status.busy": "2024-06-14T00:24:08.209304Z", + "iopub.status.idle": "2024-06-14T00:24:08.215488Z", + "shell.execute_reply": "2024-06-14T00:24:08.215023Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.604843Z", - "iopub.status.busy": "2024-06-13T18:29:19.604513Z", - "iopub.status.idle": "2024-06-13T18:29:19.639897Z", - "shell.execute_reply": "2024-06-13T18:29:19.639310Z" + "iopub.execute_input": "2024-06-14T00:24:08.217432Z", + "iopub.status.busy": "2024-06-14T00:24:08.217126Z", + "iopub.status.idle": "2024-06-14T00:24:08.250652Z", + "shell.execute_reply": "2024-06-14T00:24:08.250057Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.642567Z", - "iopub.status.busy": "2024-06-13T18:29:19.642123Z", - "iopub.status.idle": "2024-06-13T18:29:19.677395Z", - "shell.execute_reply": "2024-06-13T18:29:19.676668Z" + "iopub.execute_input": "2024-06-14T00:24:08.253365Z", + "iopub.status.busy": "2024-06-14T00:24:08.252931Z", + "iopub.status.idle": "2024-06-14T00:24:08.284883Z", + "shell.execute_reply": "2024-06-14T00:24:08.284201Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.680308Z", - "iopub.status.busy": "2024-06-13T18:29:19.680041Z", - "iopub.status.idle": "2024-06-13T18:29:19.803527Z", - "shell.execute_reply": "2024-06-13T18:29:19.802887Z" + "iopub.execute_input": "2024-06-14T00:24:08.287611Z", + "iopub.status.busy": "2024-06-14T00:24:08.287384Z", + "iopub.status.idle": "2024-06-14T00:24:08.408016Z", + "shell.execute_reply": "2024-06-14T00:24:08.407384Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:19.806340Z", - "iopub.status.busy": "2024-06-13T18:29:19.805600Z", - "iopub.status.idle": "2024-06-13T18:29:22.893170Z", - "shell.execute_reply": "2024-06-13T18:29:22.892601Z" + "iopub.execute_input": "2024-06-14T00:24:08.410681Z", + "iopub.status.busy": "2024-06-14T00:24:08.410113Z", + "iopub.status.idle": "2024-06-14T00:24:11.435259Z", + "shell.execute_reply": "2024-06-14T00:24:11.434597Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:22.895562Z", - "iopub.status.busy": "2024-06-13T18:29:22.895198Z", - "iopub.status.idle": "2024-06-13T18:29:22.952881Z", - "shell.execute_reply": "2024-06-13T18:29:22.952325Z" + "iopub.execute_input": "2024-06-14T00:24:11.437659Z", + "iopub.status.busy": "2024-06-14T00:24:11.437463Z", + "iopub.status.idle": "2024-06-14T00:24:11.498831Z", + "shell.execute_reply": "2024-06-14T00:24:11.498233Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:22.955079Z", - "iopub.status.busy": "2024-06-13T18:29:22.954758Z", - "iopub.status.idle": "2024-06-13T18:29:22.995749Z", - "shell.execute_reply": "2024-06-13T18:29:22.995168Z" + "iopub.execute_input": "2024-06-14T00:24:11.500917Z", + "iopub.status.busy": "2024-06-14T00:24:11.500609Z", + "iopub.status.idle": "2024-06-14T00:24:11.540754Z", + "shell.execute_reply": "2024-06-14T00:24:11.540177Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "222c1687", + "id": "aef058d0", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "af9835c3", + "id": "11cfdf53", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "34ad4f96", + "id": "8498a251", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:22.997999Z", - "iopub.status.busy": "2024-06-13T18:29:22.997601Z", - "iopub.status.idle": "2024-06-13T18:29:23.091957Z", - "shell.execute_reply": "2024-06-13T18:29:23.091429Z" + "iopub.execute_input": "2024-06-14T00:24:11.543023Z", + "iopub.status.busy": "2024-06-14T00:24:11.542702Z", + "iopub.status.idle": "2024-06-14T00:24:11.631026Z", + "shell.execute_reply": "2024-06-14T00:24:11.630502Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "31238303", + "id": "652c9db7", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "8f9f9d9b", + "id": "9f53afbe", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:23.094370Z", - "iopub.status.busy": "2024-06-13T18:29:23.094125Z", - "iopub.status.idle": "2024-06-13T18:29:23.163941Z", - "shell.execute_reply": "2024-06-13T18:29:23.163438Z" + "iopub.execute_input": "2024-06-14T00:24:11.633528Z", + "iopub.status.busy": "2024-06-14T00:24:11.633294Z", + "iopub.status.idle": "2024-06-14T00:24:11.696152Z", + "shell.execute_reply": "2024-06-14T00:24:11.695602Z" } }, "outputs": [ @@ -1438,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "8e350dde", + "id": "2bdcc5cc", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1449,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "dd6a1bb7", + "id": "fc2ad715", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:23.166782Z", - "iopub.status.busy": "2024-06-13T18:29:23.166450Z", - "iopub.status.idle": "2024-06-13T18:29:23.173774Z", - "shell.execute_reply": "2024-06-13T18:29:23.173369Z" + "iopub.execute_input": "2024-06-14T00:24:11.698768Z", + "iopub.status.busy": "2024-06-14T00:24:11.698300Z", + "iopub.status.idle": "2024-06-14T00:24:11.707551Z", + "shell.execute_reply": "2024-06-14T00:24:11.707083Z" } }, "outputs": [], @@ -1557,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "36c30bcc", + "id": "1b38b50f", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1572,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "840bf5e1", + "id": "2d7f570a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:23.175775Z", - "iopub.status.busy": "2024-06-13T18:29:23.175369Z", - "iopub.status.idle": "2024-06-13T18:29:23.193970Z", - "shell.execute_reply": "2024-06-13T18:29:23.193390Z" + "iopub.execute_input": "2024-06-14T00:24:11.709611Z", + "iopub.status.busy": "2024-06-14T00:24:11.709301Z", + "iopub.status.idle": "2024-06-14T00:24:11.727979Z", + "shell.execute_reply": "2024-06-14T00:24:11.727444Z" } }, "outputs": [ @@ -1586,7 +1586,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding near_duplicate issues ...\n", + "Finding near_duplicate issues ..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "\n", "Audit complete. 3 issues found in the dataset.\n" ] @@ -1595,7 +1602,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7918/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7910/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1629,13 +1636,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "7d1a6875", + "id": "9e6db6b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:23.195975Z", - "iopub.status.busy": "2024-06-13T18:29:23.195800Z", - "iopub.status.idle": "2024-06-13T18:29:23.198968Z", - "shell.execute_reply": "2024-06-13T18:29:23.198454Z" + "iopub.execute_input": "2024-06-14T00:24:11.730024Z", + "iopub.status.busy": "2024-06-14T00:24:11.729866Z", + "iopub.status.idle": "2024-06-14T00:24:11.733505Z", + "shell.execute_reply": "2024-06-14T00:24:11.733089Z" } }, "outputs": [ @@ -1730,60 +1737,66 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "005dc0fc26de4e32a6765dc6a6ec9d40": { - "model_module": "@jupyter-widgets/base", + "2106fdb30fac4ad88f1641333e9fb156": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e7758f2d38c432db621bf8579ee92f6", + "placeholder": "​", + "style": "IPY_MODEL_24218dc20a7b46a29e0d3d5792f7a70d", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1661373.68it/s]" + } + }, + "24218dc20a7b46a29e0d3d5792f7a70d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "40fc756d62284274997de8fd4bef1a89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "139b655d93874856bf86a00efd4ddfd0": { + "410455c05835405eb00db806e4798ef9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1836,7 +1849,23 @@ "width": null } }, - "26e3efb335f94029a8a0942d3f14ab77": { + "46f040889d8c4d91a5770aa907ce3c4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4e3966e206e342f49153565cf397c2af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1889,46 +1918,7 @@ "width": null } }, - "3080c4b358ac4f56bc5ada9868be7dfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_005dc0fc26de4e32a6765dc6a6ec9d40", - "placeholder": "​", - "style": "IPY_MODEL_52ba4c088b91429096dcf08b713b1041", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1572431.58it/s]" - } - }, - "42ef4fd6ad144b85982db28a3744a67b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "52ba4c088b91429096dcf08b713b1041": { + "4e43e54457d44d16b7012febae0ec625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1946,23 +1936,7 @@ "text_color": null } }, - "53bddd624ef94ffc998a6b56ce26802e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "56037d09ff294f7da99541c1d9995c7c": { + "5a4311cd34324b2ab825d22429f65fab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2015,7 +1989,7 @@ "width": null } }, - "62b72d6fc05a4a188177f4611a122257": { + "7cd55b0cd5184fd295ca5442d000f65b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2068,92 +2042,7 @@ "width": null } }, - "68d1f7cfc0ee4f8bb5d23d935af368bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7d513cafe9a7477baffc476380f7f3ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_139b655d93874856bf86a00efd4ddfd0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42ef4fd6ad144b85982db28a3744a67b", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "8b241bab36c4416fbf031eed934c99e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b1d33a0bfce94c76923032f9e851fa71", - "placeholder": "​", - "style": "IPY_MODEL_68d1f7cfc0ee4f8bb5d23d935af368bb", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1135713.63it/s]" - } - }, - "98d642600edf4f07885e1cf46096e201": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9ea1e33b89cd4f6d8dea308e197a4ca0": { + "802031e2f68847f982e3f2b4d625d3ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2168,16 +2057,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_acaa08d7cc964e36b6d60ecd5b053e92", - "IPY_MODEL_ef6ceebf7ddd4c43a0660c06d35de1e3", - "IPY_MODEL_8b241bab36c4416fbf031eed934c99e3" + "IPY_MODEL_99116c9a10164fe38bb939608f05f279", + "IPY_MODEL_d94d2e86792e4ea4a46e165e167ea3fd", + "IPY_MODEL_b851827878cc47a8b469a14afd6273aa" ], - "layout": "IPY_MODEL_62b72d6fc05a4a188177f4611a122257", + "layout": "IPY_MODEL_ffa7179852944715b693e86ee15ed2aa", "tabbable": null, "tooltip": null } }, - "a8b6e03e08964cf688e5cbe291bb78ee": { + "89176b0677b54ad5a5e2d068211279d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2230,30 +2119,25 @@ "width": null } }, - "acaa08d7cc964e36b6d60ecd5b053e92": { + "8dbb43a4a64c4dbaaf119413f3ac8539": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e9b9667e29b84609a0b7317179d17472", - "placeholder": "​", - "style": "IPY_MODEL_98d642600edf4f07885e1cf46096e201", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b1d33a0bfce94c76923032f9e851fa71": { + "8e7758f2d38c432db621bf8579ee92f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2306,7 +2190,7 @@ "width": null } }, - "c64eb8d0b2944d8ca26f2e5a40cc021d": { + "99116c9a10164fe38bb939608f05f279": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2321,15 +2205,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_26e3efb335f94029a8a0942d3f14ab77", + "layout": "IPY_MODEL_b0171109241c4a32be48a99db42e1afb", "placeholder": "​", - "style": "IPY_MODEL_f8a72a5f66e844c085dfc455bde9fcdd", + "style": "IPY_MODEL_40fc756d62284274997de8fd4bef1a89", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": "number of examples processed for estimating thresholds: " } }, - "daaf1aba8aa94491abe37130b32c40fb": { + "9f8deaf7b18248f793dd47fecf106fa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2344,16 +2228,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c64eb8d0b2944d8ca26f2e5a40cc021d", - "IPY_MODEL_7d513cafe9a7477baffc476380f7f3ba", - "IPY_MODEL_3080c4b358ac4f56bc5ada9868be7dfd" + "IPY_MODEL_b990ab240fd14a62ae5e45ae13fdb8f7", + "IPY_MODEL_d20d92ba03694e74b75198bfeb43258b", + "IPY_MODEL_2106fdb30fac4ad88f1641333e9fb156" ], - "layout": "IPY_MODEL_a8b6e03e08964cf688e5cbe291bb78ee", + "layout": "IPY_MODEL_4e3966e206e342f49153565cf397c2af", "tabbable": null, "tooltip": null } }, - "e9b9667e29b84609a0b7317179d17472": { + "b0171109241c4a32be48a99db42e1afb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2406,7 +2290,69 @@ "width": null } }, - "ef6ceebf7ddd4c43a0660c06d35de1e3": { + "b19a3ba716d74930b77aecfe99f64f71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b851827878cc47a8b469a14afd6273aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_410455c05835405eb00db806e4798ef9", + "placeholder": "​", + "style": "IPY_MODEL_4e43e54457d44d16b7012febae0ec625", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1075186.88it/s]" + } + }, + "b990ab240fd14a62ae5e45ae13fdb8f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7cd55b0cd5184fd295ca5442d000f65b", + "placeholder": "​", + "style": "IPY_MODEL_8dbb43a4a64c4dbaaf119413f3ac8539", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "d20d92ba03694e74b75198bfeb43258b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2422,32 +2368,93 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_56037d09ff294f7da99541c1d9995c7c", + "layout": "IPY_MODEL_89176b0677b54ad5a5e2d068211279d4", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_53bddd624ef94ffc998a6b56ce26802e", + "style": "IPY_MODEL_46f040889d8c4d91a5770aa907ce3c4e", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "f8a72a5f66e844c085dfc455bde9fcdd": { + "d94d2e86792e4ea4a46e165e167ea3fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5a4311cd34324b2ab825d22429f65fab", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b19a3ba716d74930b77aecfe99f64f71", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "ffa7179852944715b693e86ee15ed2aa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index fdca46287..edb54b671 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:26.583346Z", - "iopub.status.busy": "2024-06-13T18:29:26.583186Z", - "iopub.status.idle": "2024-06-13T18:29:27.799421Z", - "shell.execute_reply": "2024-06-13T18:29:27.798861Z" + "iopub.execute_input": "2024-06-14T00:24:14.913783Z", + "iopub.status.busy": "2024-06-14T00:24:14.913593Z", + "iopub.status.idle": "2024-06-14T00:24:16.060176Z", + "shell.execute_reply": "2024-06-14T00:24:16.059552Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:27.802016Z", - "iopub.status.busy": "2024-06-13T18:29:27.801573Z", - "iopub.status.idle": "2024-06-13T18:29:27.987860Z", - "shell.execute_reply": "2024-06-13T18:29:27.987333Z" + "iopub.execute_input": "2024-06-14T00:24:16.063049Z", + "iopub.status.busy": "2024-06-14T00:24:16.062554Z", + "iopub.status.idle": "2024-06-14T00:24:16.237307Z", + "shell.execute_reply": "2024-06-14T00:24:16.236743Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:27.990464Z", - "iopub.status.busy": "2024-06-13T18:29:27.990259Z", - "iopub.status.idle": "2024-06-13T18:29:28.002483Z", - "shell.execute_reply": "2024-06-13T18:29:28.001900Z" + "iopub.execute_input": "2024-06-14T00:24:16.239715Z", + "iopub.status.busy": "2024-06-14T00:24:16.239530Z", + "iopub.status.idle": "2024-06-14T00:24:16.250660Z", + "shell.execute_reply": "2024-06-14T00:24:16.250226Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:28.004651Z", - "iopub.status.busy": "2024-06-13T18:29:28.004455Z", - "iopub.status.idle": "2024-06-13T18:29:28.238936Z", - "shell.execute_reply": "2024-06-13T18:29:28.238326Z" + "iopub.execute_input": "2024-06-14T00:24:16.252750Z", + "iopub.status.busy": "2024-06-14T00:24:16.252355Z", + "iopub.status.idle": "2024-06-14T00:24:16.483083Z", + "shell.execute_reply": "2024-06-14T00:24:16.482509Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:28.241479Z", - "iopub.status.busy": "2024-06-13T18:29:28.241068Z", - "iopub.status.idle": "2024-06-13T18:29:28.267639Z", - "shell.execute_reply": "2024-06-13T18:29:28.267172Z" + "iopub.execute_input": "2024-06-14T00:24:16.485402Z", + "iopub.status.busy": "2024-06-14T00:24:16.485062Z", + "iopub.status.idle": "2024-06-14T00:24:16.510364Z", + "shell.execute_reply": "2024-06-14T00:24:16.509918Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:28.269780Z", - "iopub.status.busy": "2024-06-13T18:29:28.269594Z", - "iopub.status.idle": "2024-06-13T18:29:29.991902Z", - "shell.execute_reply": "2024-06-13T18:29:29.991276Z" + "iopub.execute_input": "2024-06-14T00:24:16.512321Z", + "iopub.status.busy": "2024-06-14T00:24:16.512139Z", + "iopub.status.idle": "2024-06-14T00:24:18.143922Z", + "shell.execute_reply": "2024-06-14T00:24:18.143221Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:29.994563Z", - "iopub.status.busy": "2024-06-13T18:29:29.993949Z", - "iopub.status.idle": "2024-06-13T18:29:30.012281Z", - "shell.execute_reply": "2024-06-13T18:29:30.011691Z" + "iopub.execute_input": "2024-06-14T00:24:18.146275Z", + "iopub.status.busy": "2024-06-14T00:24:18.145923Z", + "iopub.status.idle": "2024-06-14T00:24:18.164339Z", + "shell.execute_reply": "2024-06-14T00:24:18.163802Z" }, "scrolled": true }, @@ -616,10 +616,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:30.014412Z", - "iopub.status.busy": "2024-06-13T18:29:30.014089Z", - "iopub.status.idle": "2024-06-13T18:29:31.447124Z", - "shell.execute_reply": "2024-06-13T18:29:31.446533Z" + "iopub.execute_input": "2024-06-14T00:24:18.166470Z", + "iopub.status.busy": "2024-06-14T00:24:18.166105Z", + "iopub.status.idle": "2024-06-14T00:24:19.544814Z", + "shell.execute_reply": "2024-06-14T00:24:19.544251Z" }, "id": "AaHC5MRKjruT" }, @@ -738,10 +738,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.450003Z", - "iopub.status.busy": "2024-06-13T18:29:31.449223Z", - "iopub.status.idle": "2024-06-13T18:29:31.462850Z", - "shell.execute_reply": "2024-06-13T18:29:31.462310Z" + "iopub.execute_input": "2024-06-14T00:24:19.547672Z", + "iopub.status.busy": "2024-06-14T00:24:19.546992Z", + "iopub.status.idle": "2024-06-14T00:24:19.560873Z", + "shell.execute_reply": "2024-06-14T00:24:19.560426Z" }, "id": "Wy27rvyhjruU" }, @@ -790,10 +790,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.464980Z", - "iopub.status.busy": "2024-06-13T18:29:31.464592Z", - "iopub.status.idle": "2024-06-13T18:29:31.539196Z", - "shell.execute_reply": "2024-06-13T18:29:31.538572Z" + "iopub.execute_input": "2024-06-14T00:24:19.562878Z", + "iopub.status.busy": "2024-06-14T00:24:19.562570Z", + "iopub.status.idle": "2024-06-14T00:24:19.634911Z", + "shell.execute_reply": "2024-06-14T00:24:19.634312Z" }, "id": "Db8YHnyVjruU" }, @@ -900,10 +900,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.541665Z", - "iopub.status.busy": "2024-06-13T18:29:31.541248Z", - "iopub.status.idle": "2024-06-13T18:29:31.759710Z", - "shell.execute_reply": "2024-06-13T18:29:31.759127Z" + "iopub.execute_input": "2024-06-14T00:24:19.637109Z", + "iopub.status.busy": "2024-06-14T00:24:19.636886Z", + "iopub.status.idle": "2024-06-14T00:24:19.851572Z", + "shell.execute_reply": "2024-06-14T00:24:19.850982Z" }, "id": "iJqAHuS2jruV" }, @@ -940,10 +940,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.762168Z", - "iopub.status.busy": "2024-06-13T18:29:31.761733Z", - "iopub.status.idle": "2024-06-13T18:29:31.779276Z", - "shell.execute_reply": "2024-06-13T18:29:31.778808Z" + "iopub.execute_input": "2024-06-14T00:24:19.853932Z", + "iopub.status.busy": "2024-06-14T00:24:19.853552Z", + "iopub.status.idle": "2024-06-14T00:24:19.870366Z", + "shell.execute_reply": "2024-06-14T00:24:19.869819Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1409,10 +1409,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.781534Z", - "iopub.status.busy": "2024-06-13T18:29:31.781200Z", - "iopub.status.idle": "2024-06-13T18:29:31.791084Z", - "shell.execute_reply": "2024-06-13T18:29:31.790627Z" + "iopub.execute_input": "2024-06-14T00:24:19.872346Z", + "iopub.status.busy": "2024-06-14T00:24:19.872158Z", + "iopub.status.idle": "2024-06-14T00:24:19.882186Z", + "shell.execute_reply": "2024-06-14T00:24:19.881756Z" }, "id": "0lonvOYvjruV" }, @@ -1559,10 +1559,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.793371Z", - "iopub.status.busy": "2024-06-13T18:29:31.793029Z", - "iopub.status.idle": "2024-06-13T18:29:31.884168Z", - "shell.execute_reply": "2024-06-13T18:29:31.883487Z" + "iopub.execute_input": "2024-06-14T00:24:19.884142Z", + "iopub.status.busy": "2024-06-14T00:24:19.883968Z", + "iopub.status.idle": "2024-06-14T00:24:19.968121Z", + "shell.execute_reply": "2024-06-14T00:24:19.967535Z" }, "id": "MfqTCa3kjruV" }, @@ -1643,10 +1643,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:31.887306Z", - "iopub.status.busy": "2024-06-13T18:29:31.886795Z", - "iopub.status.idle": "2024-06-13T18:29:32.023092Z", - "shell.execute_reply": "2024-06-13T18:29:32.022452Z" + "iopub.execute_input": "2024-06-14T00:24:19.970470Z", + "iopub.status.busy": "2024-06-14T00:24:19.970219Z", + "iopub.status.idle": "2024-06-14T00:24:20.097080Z", + "shell.execute_reply": "2024-06-14T00:24:20.096456Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1706,10 +1706,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.025855Z", - "iopub.status.busy": "2024-06-13T18:29:32.025393Z", - "iopub.status.idle": "2024-06-13T18:29:32.029435Z", - "shell.execute_reply": "2024-06-13T18:29:32.028972Z" + "iopub.execute_input": "2024-06-14T00:24:20.099419Z", + "iopub.status.busy": "2024-06-14T00:24:20.099188Z", + "iopub.status.idle": "2024-06-14T00:24:20.103298Z", + "shell.execute_reply": "2024-06-14T00:24:20.102846Z" }, "id": "0rXP3ZPWjruW" }, @@ -1747,10 +1747,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.031432Z", - "iopub.status.busy": "2024-06-13T18:29:32.031109Z", - "iopub.status.idle": "2024-06-13T18:29:32.034987Z", - "shell.execute_reply": "2024-06-13T18:29:32.034529Z" + "iopub.execute_input": "2024-06-14T00:24:20.105262Z", + "iopub.status.busy": "2024-06-14T00:24:20.104942Z", + "iopub.status.idle": "2024-06-14T00:24:20.108769Z", + "shell.execute_reply": "2024-06-14T00:24:20.108327Z" }, "id": "-iRPe8KXjruW" }, @@ -1805,10 +1805,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.037039Z", - "iopub.status.busy": "2024-06-13T18:29:32.036740Z", - "iopub.status.idle": "2024-06-13T18:29:32.074964Z", - "shell.execute_reply": "2024-06-13T18:29:32.074379Z" + "iopub.execute_input": "2024-06-14T00:24:20.111058Z", + "iopub.status.busy": "2024-06-14T00:24:20.110546Z", + "iopub.status.idle": "2024-06-14T00:24:20.146626Z", + "shell.execute_reply": "2024-06-14T00:24:20.146097Z" }, "id": "ZpipUliyjruW" }, @@ -1859,10 +1859,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.077222Z", - "iopub.status.busy": "2024-06-13T18:29:32.076899Z", - "iopub.status.idle": "2024-06-13T18:29:32.120372Z", - "shell.execute_reply": "2024-06-13T18:29:32.119753Z" + "iopub.execute_input": "2024-06-14T00:24:20.148596Z", + "iopub.status.busy": "2024-06-14T00:24:20.148309Z", + "iopub.status.idle": "2024-06-14T00:24:20.189307Z", + "shell.execute_reply": "2024-06-14T00:24:20.188773Z" }, "id": "SLq-3q4xjruX" }, @@ -1931,10 +1931,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.122579Z", - "iopub.status.busy": "2024-06-13T18:29:32.122257Z", - "iopub.status.idle": "2024-06-13T18:29:32.216827Z", - "shell.execute_reply": "2024-06-13T18:29:32.216212Z" + "iopub.execute_input": "2024-06-14T00:24:20.191360Z", + "iopub.status.busy": "2024-06-14T00:24:20.190967Z", + "iopub.status.idle": "2024-06-14T00:24:20.281050Z", + "shell.execute_reply": "2024-06-14T00:24:20.280364Z" }, "id": "g5LHhhuqFbXK" }, @@ -1966,10 +1966,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.219365Z", - "iopub.status.busy": "2024-06-13T18:29:32.219137Z", - "iopub.status.idle": "2024-06-13T18:29:32.310700Z", - "shell.execute_reply": "2024-06-13T18:29:32.310066Z" + "iopub.execute_input": "2024-06-14T00:24:20.284046Z", + "iopub.status.busy": "2024-06-14T00:24:20.283583Z", + "iopub.status.idle": "2024-06-14T00:24:20.370452Z", + "shell.execute_reply": "2024-06-14T00:24:20.369905Z" }, "id": "p7w8F8ezBcet" }, @@ -2026,10 +2026,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.313017Z", - "iopub.status.busy": "2024-06-13T18:29:32.312788Z", - "iopub.status.idle": "2024-06-13T18:29:32.525519Z", - "shell.execute_reply": "2024-06-13T18:29:32.524922Z" + "iopub.execute_input": "2024-06-14T00:24:20.372673Z", + "iopub.status.busy": "2024-06-14T00:24:20.372432Z", + "iopub.status.idle": "2024-06-14T00:24:20.580106Z", + "shell.execute_reply": "2024-06-14T00:24:20.579505Z" }, "id": "WETRL74tE_sU" }, @@ -2064,10 +2064,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.527951Z", - "iopub.status.busy": "2024-06-13T18:29:32.527502Z", - "iopub.status.idle": "2024-06-13T18:29:32.718210Z", - "shell.execute_reply": "2024-06-13T18:29:32.717679Z" + "iopub.execute_input": "2024-06-14T00:24:20.582345Z", + "iopub.status.busy": "2024-06-14T00:24:20.582162Z", + "iopub.status.idle": "2024-06-14T00:24:20.747639Z", + "shell.execute_reply": "2024-06-14T00:24:20.747115Z" }, "id": "kCfdx2gOLmXS" }, @@ -2229,10 +2229,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.720527Z", - "iopub.status.busy": "2024-06-13T18:29:32.720331Z", - "iopub.status.idle": "2024-06-13T18:29:32.726515Z", - "shell.execute_reply": "2024-06-13T18:29:32.726001Z" + "iopub.execute_input": "2024-06-14T00:24:20.750179Z", + "iopub.status.busy": "2024-06-14T00:24:20.749657Z", + "iopub.status.idle": "2024-06-14T00:24:20.755778Z", + "shell.execute_reply": "2024-06-14T00:24:20.755358Z" }, "id": "-uogYRWFYnuu" }, @@ -2286,10 +2286,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.728479Z", - "iopub.status.busy": "2024-06-13T18:29:32.728207Z", - "iopub.status.idle": "2024-06-13T18:29:32.950162Z", - "shell.execute_reply": "2024-06-13T18:29:32.949566Z" + "iopub.execute_input": "2024-06-14T00:24:20.757634Z", + "iopub.status.busy": "2024-06-14T00:24:20.757463Z", + "iopub.status.idle": "2024-06-14T00:24:20.968491Z", + "shell.execute_reply": "2024-06-14T00:24:20.967921Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2336,10 +2336,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:32.952512Z", - "iopub.status.busy": "2024-06-13T18:29:32.952145Z", - "iopub.status.idle": "2024-06-13T18:29:34.030294Z", - "shell.execute_reply": "2024-06-13T18:29:34.029656Z" + "iopub.execute_input": "2024-06-14T00:24:20.970563Z", + "iopub.status.busy": "2024-06-14T00:24:20.970384Z", + "iopub.status.idle": "2024-06-14T00:24:22.020206Z", + "shell.execute_reply": "2024-06-14T00:24:22.019659Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 7fb9d8ac9..077fe02d8 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:37.440969Z", - "iopub.status.busy": "2024-06-13T18:29:37.440789Z", - "iopub.status.idle": "2024-06-13T18:29:38.583138Z", - "shell.execute_reply": "2024-06-13T18:29:38.582576Z" + "iopub.execute_input": "2024-06-14T00:24:25.221902Z", + "iopub.status.busy": "2024-06-14T00:24:25.221698Z", + "iopub.status.idle": "2024-06-14T00:24:26.321602Z", + "shell.execute_reply": "2024-06-14T00:24:26.321030Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.586001Z", - "iopub.status.busy": "2024-06-13T18:29:38.585518Z", - "iopub.status.idle": "2024-06-13T18:29:38.588557Z", - "shell.execute_reply": "2024-06-13T18:29:38.588111Z" + "iopub.execute_input": "2024-06-14T00:24:26.324196Z", + "iopub.status.busy": "2024-06-14T00:24:26.323765Z", + "iopub.status.idle": "2024-06-14T00:24:26.326860Z", + "shell.execute_reply": "2024-06-14T00:24:26.326406Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.590790Z", - "iopub.status.busy": "2024-06-13T18:29:38.590429Z", - "iopub.status.idle": "2024-06-13T18:29:38.599298Z", - "shell.execute_reply": "2024-06-13T18:29:38.598749Z" + "iopub.execute_input": "2024-06-14T00:24:26.328965Z", + "iopub.status.busy": "2024-06-14T00:24:26.328651Z", + "iopub.status.idle": "2024-06-14T00:24:26.337167Z", + "shell.execute_reply": "2024-06-14T00:24:26.336716Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.601562Z", - "iopub.status.busy": "2024-06-13T18:29:38.601178Z", - "iopub.status.idle": "2024-06-13T18:29:38.648831Z", - "shell.execute_reply": "2024-06-13T18:29:38.648343Z" + "iopub.execute_input": "2024-06-14T00:24:26.339164Z", + "iopub.status.busy": "2024-06-14T00:24:26.338837Z", + "iopub.status.idle": "2024-06-14T00:24:26.386371Z", + "shell.execute_reply": "2024-06-14T00:24:26.385928Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.651142Z", - "iopub.status.busy": "2024-06-13T18:29:38.650814Z", - "iopub.status.idle": "2024-06-13T18:29:38.667918Z", - "shell.execute_reply": "2024-06-13T18:29:38.667401Z" + "iopub.execute_input": "2024-06-14T00:24:26.388438Z", + "iopub.status.busy": "2024-06-14T00:24:26.388124Z", + "iopub.status.idle": "2024-06-14T00:24:26.404738Z", + "shell.execute_reply": "2024-06-14T00:24:26.404301Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.670098Z", - "iopub.status.busy": "2024-06-13T18:29:38.669693Z", - "iopub.status.idle": "2024-06-13T18:29:38.673640Z", - "shell.execute_reply": "2024-06-13T18:29:38.673117Z" + "iopub.execute_input": "2024-06-14T00:24:26.406834Z", + "iopub.status.busy": "2024-06-14T00:24:26.406420Z", + "iopub.status.idle": "2024-06-14T00:24:26.410296Z", + "shell.execute_reply": "2024-06-14T00:24:26.409736Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.675829Z", - "iopub.status.busy": "2024-06-13T18:29:38.675455Z", - "iopub.status.idle": "2024-06-13T18:29:38.691653Z", - "shell.execute_reply": "2024-06-13T18:29:38.691239Z" + "iopub.execute_input": "2024-06-14T00:24:26.412382Z", + "iopub.status.busy": "2024-06-14T00:24:26.412004Z", + "iopub.status.idle": "2024-06-14T00:24:26.428471Z", + "shell.execute_reply": "2024-06-14T00:24:26.427924Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.693720Z", - "iopub.status.busy": "2024-06-13T18:29:38.693384Z", - "iopub.status.idle": "2024-06-13T18:29:38.719476Z", - "shell.execute_reply": "2024-06-13T18:29:38.719048Z" + "iopub.execute_input": "2024-06-14T00:24:26.430731Z", + "iopub.status.busy": "2024-06-14T00:24:26.430422Z", + "iopub.status.idle": "2024-06-14T00:24:26.456532Z", + "shell.execute_reply": "2024-06-14T00:24:26.455950Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:38.721617Z", - "iopub.status.busy": "2024-06-13T18:29:38.721313Z", - "iopub.status.idle": "2024-06-13T18:29:40.457892Z", - "shell.execute_reply": "2024-06-13T18:29:40.457312Z" + "iopub.execute_input": "2024-06-14T00:24:26.458938Z", + "iopub.status.busy": "2024-06-14T00:24:26.458515Z", + "iopub.status.idle": "2024-06-14T00:24:28.160613Z", + "shell.execute_reply": "2024-06-14T00:24:28.160037Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.460638Z", - "iopub.status.busy": "2024-06-13T18:29:40.460275Z", - "iopub.status.idle": "2024-06-13T18:29:40.467215Z", - "shell.execute_reply": "2024-06-13T18:29:40.466652Z" + "iopub.execute_input": "2024-06-14T00:24:28.163228Z", + "iopub.status.busy": "2024-06-14T00:24:28.162806Z", + "iopub.status.idle": "2024-06-14T00:24:28.169617Z", + "shell.execute_reply": "2024-06-14T00:24:28.169169Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.469359Z", - "iopub.status.busy": "2024-06-13T18:29:40.468940Z", - "iopub.status.idle": "2024-06-13T18:29:40.481697Z", - "shell.execute_reply": "2024-06-13T18:29:40.481155Z" + "iopub.execute_input": "2024-06-14T00:24:28.171637Z", + "iopub.status.busy": "2024-06-14T00:24:28.171308Z", + "iopub.status.idle": "2024-06-14T00:24:28.186169Z", + "shell.execute_reply": "2024-06-14T00:24:28.185646Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.483723Z", - "iopub.status.busy": "2024-06-13T18:29:40.483428Z", - "iopub.status.idle": "2024-06-13T18:29:40.489774Z", - "shell.execute_reply": "2024-06-13T18:29:40.489244Z" + "iopub.execute_input": "2024-06-14T00:24:28.188280Z", + "iopub.status.busy": "2024-06-14T00:24:28.187947Z", + "iopub.status.idle": "2024-06-14T00:24:28.194454Z", + "shell.execute_reply": "2024-06-14T00:24:28.194008Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.491908Z", - "iopub.status.busy": "2024-06-13T18:29:40.491444Z", - "iopub.status.idle": "2024-06-13T18:29:40.494277Z", - "shell.execute_reply": "2024-06-13T18:29:40.493737Z" + "iopub.execute_input": "2024-06-14T00:24:28.196460Z", + "iopub.status.busy": "2024-06-14T00:24:28.196134Z", + "iopub.status.idle": "2024-06-14T00:24:28.198862Z", + "shell.execute_reply": "2024-06-14T00:24:28.198307Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.496405Z", - "iopub.status.busy": "2024-06-13T18:29:40.496103Z", - "iopub.status.idle": "2024-06-13T18:29:40.499473Z", - "shell.execute_reply": "2024-06-13T18:29:40.499015Z" + "iopub.execute_input": "2024-06-14T00:24:28.200773Z", + "iopub.status.busy": "2024-06-14T00:24:28.200484Z", + "iopub.status.idle": "2024-06-14T00:24:28.203853Z", + "shell.execute_reply": "2024-06-14T00:24:28.203396Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.501505Z", - "iopub.status.busy": "2024-06-13T18:29:40.501194Z", - "iopub.status.idle": "2024-06-13T18:29:40.504037Z", - "shell.execute_reply": "2024-06-13T18:29:40.503482Z" + "iopub.execute_input": "2024-06-14T00:24:28.205784Z", + "iopub.status.busy": "2024-06-14T00:24:28.205598Z", + "iopub.status.idle": "2024-06-14T00:24:28.208116Z", + "shell.execute_reply": "2024-06-14T00:24:28.207697Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.506034Z", - "iopub.status.busy": "2024-06-13T18:29:40.505665Z", - "iopub.status.idle": "2024-06-13T18:29:40.509706Z", - "shell.execute_reply": "2024-06-13T18:29:40.509175Z" + "iopub.execute_input": "2024-06-14T00:24:28.210158Z", + "iopub.status.busy": "2024-06-14T00:24:28.209843Z", + "iopub.status.idle": "2024-06-14T00:24:28.214216Z", + "shell.execute_reply": "2024-06-14T00:24:28.213649Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.511847Z", - "iopub.status.busy": "2024-06-13T18:29:40.511430Z", - "iopub.status.idle": "2024-06-13T18:29:40.540453Z", - "shell.execute_reply": "2024-06-13T18:29:40.539863Z" + "iopub.execute_input": "2024-06-14T00:24:28.216084Z", + "iopub.status.busy": "2024-06-14T00:24:28.215916Z", + "iopub.status.idle": "2024-06-14T00:24:28.244437Z", + "shell.execute_reply": "2024-06-14T00:24:28.243987Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:40.542620Z", - "iopub.status.busy": "2024-06-13T18:29:40.542301Z", - "iopub.status.idle": "2024-06-13T18:29:40.547020Z", - "shell.execute_reply": "2024-06-13T18:29:40.546583Z" + "iopub.execute_input": "2024-06-14T00:24:28.246368Z", + "iopub.status.busy": "2024-06-14T00:24:28.246198Z", + "iopub.status.idle": "2024-06-14T00:24:28.250854Z", + "shell.execute_reply": "2024-06-14T00:24:28.250420Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 09252aea4..e64e7dec9 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:43.353643Z", - "iopub.status.busy": "2024-06-13T18:29:43.353286Z", - "iopub.status.idle": "2024-06-13T18:29:44.574294Z", - "shell.execute_reply": "2024-06-13T18:29:44.573664Z" + "iopub.execute_input": "2024-06-14T00:24:30.897477Z", + "iopub.status.busy": "2024-06-14T00:24:30.897010Z", + "iopub.status.idle": "2024-06-14T00:24:32.028085Z", + "shell.execute_reply": "2024-06-14T00:24:32.027537Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:44.577545Z", - "iopub.status.busy": "2024-06-13T18:29:44.577130Z", - "iopub.status.idle": "2024-06-13T18:29:44.777115Z", - "shell.execute_reply": "2024-06-13T18:29:44.776474Z" + "iopub.execute_input": "2024-06-14T00:24:32.030698Z", + "iopub.status.busy": "2024-06-14T00:24:32.030295Z", + "iopub.status.idle": "2024-06-14T00:24:32.223090Z", + "shell.execute_reply": "2024-06-14T00:24:32.222439Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:44.780047Z", - "iopub.status.busy": "2024-06-13T18:29:44.779543Z", - "iopub.status.idle": "2024-06-13T18:29:44.793466Z", - "shell.execute_reply": "2024-06-13T18:29:44.792882Z" + "iopub.execute_input": "2024-06-14T00:24:32.226031Z", + "iopub.status.busy": "2024-06-14T00:24:32.225498Z", + "iopub.status.idle": "2024-06-14T00:24:32.238493Z", + "shell.execute_reply": "2024-06-14T00:24:32.238034Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:44.795632Z", - "iopub.status.busy": "2024-06-13T18:29:44.795302Z", - "iopub.status.idle": "2024-06-13T18:29:47.483288Z", - "shell.execute_reply": "2024-06-13T18:29:47.482762Z" + "iopub.execute_input": "2024-06-14T00:24:32.240446Z", + "iopub.status.busy": "2024-06-14T00:24:32.240264Z", + "iopub.status.idle": "2024-06-14T00:24:34.858596Z", + "shell.execute_reply": "2024-06-14T00:24:34.858092Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:47.485692Z", - "iopub.status.busy": "2024-06-13T18:29:47.485238Z", - "iopub.status.idle": "2024-06-13T18:29:48.839646Z", - "shell.execute_reply": "2024-06-13T18:29:48.839072Z" + "iopub.execute_input": "2024-06-14T00:24:34.860912Z", + "iopub.status.busy": "2024-06-14T00:24:34.860509Z", + "iopub.status.idle": "2024-06-14T00:24:36.188478Z", + "shell.execute_reply": "2024-06-14T00:24:36.187853Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:48.842016Z", - "iopub.status.busy": "2024-06-13T18:29:48.841816Z", - "iopub.status.idle": "2024-06-13T18:29:48.846037Z", - "shell.execute_reply": "2024-06-13T18:29:48.845566Z" + "iopub.execute_input": "2024-06-14T00:24:36.191133Z", + "iopub.status.busy": "2024-06-14T00:24:36.190723Z", + "iopub.status.idle": "2024-06-14T00:24:36.194670Z", + "shell.execute_reply": "2024-06-14T00:24:36.194110Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:48.848144Z", - "iopub.status.busy": "2024-06-13T18:29:48.847815Z", - "iopub.status.idle": "2024-06-13T18:29:50.704644Z", - "shell.execute_reply": "2024-06-13T18:29:50.703942Z" + "iopub.execute_input": "2024-06-14T00:24:36.196670Z", + "iopub.status.busy": "2024-06-14T00:24:36.196341Z", + "iopub.status.idle": "2024-06-14T00:24:37.933461Z", + "shell.execute_reply": "2024-06-14T00:24:37.932903Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:50.707210Z", - "iopub.status.busy": "2024-06-13T18:29:50.706833Z", - "iopub.status.idle": "2024-06-13T18:29:50.715096Z", - "shell.execute_reply": "2024-06-13T18:29:50.714606Z" + "iopub.execute_input": "2024-06-14T00:24:37.935997Z", + "iopub.status.busy": "2024-06-14T00:24:37.935595Z", + "iopub.status.idle": "2024-06-14T00:24:37.943365Z", + "shell.execute_reply": "2024-06-14T00:24:37.942886Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:50.717050Z", - "iopub.status.busy": "2024-06-13T18:29:50.716873Z", - "iopub.status.idle": "2024-06-13T18:29:53.301382Z", - "shell.execute_reply": "2024-06-13T18:29:53.300856Z" + "iopub.execute_input": "2024-06-14T00:24:37.945300Z", + "iopub.status.busy": "2024-06-14T00:24:37.945044Z", + "iopub.status.idle": "2024-06-14T00:24:40.534797Z", + "shell.execute_reply": "2024-06-14T00:24:40.534195Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:53.303579Z", - "iopub.status.busy": "2024-06-13T18:29:53.303373Z", - "iopub.status.idle": "2024-06-13T18:29:53.307014Z", - "shell.execute_reply": "2024-06-13T18:29:53.306488Z" + "iopub.execute_input": "2024-06-14T00:24:40.536994Z", + "iopub.status.busy": "2024-06-14T00:24:40.536650Z", + "iopub.status.idle": "2024-06-14T00:24:40.540045Z", + "shell.execute_reply": "2024-06-14T00:24:40.539525Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:53.309179Z", - "iopub.status.busy": "2024-06-13T18:29:53.308778Z", - "iopub.status.idle": "2024-06-13T18:29:53.312332Z", - "shell.execute_reply": "2024-06-13T18:29:53.311786Z" + "iopub.execute_input": "2024-06-14T00:24:40.542087Z", + "iopub.status.busy": "2024-06-14T00:24:40.541760Z", + "iopub.status.idle": "2024-06-14T00:24:40.545186Z", + "shell.execute_reply": "2024-06-14T00:24:40.544732Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:53.314367Z", - "iopub.status.busy": "2024-06-13T18:29:53.314075Z", - "iopub.status.idle": "2024-06-13T18:29:53.317229Z", - "shell.execute_reply": "2024-06-13T18:29:53.316673Z" + "iopub.execute_input": "2024-06-14T00:24:40.547130Z", + "iopub.status.busy": "2024-06-14T00:24:40.546811Z", + "iopub.status.idle": "2024-06-14T00:24:40.549964Z", + "shell.execute_reply": "2024-06-14T00:24:40.549398Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 888352347..66b599714 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:55.811501Z", - "iopub.status.busy": "2024-06-13T18:29:55.811327Z", - "iopub.status.idle": "2024-06-13T18:29:56.996025Z", - "shell.execute_reply": "2024-06-13T18:29:56.995423Z" + "iopub.execute_input": "2024-06-14T00:24:42.926320Z", + "iopub.status.busy": "2024-06-14T00:24:42.925972Z", + "iopub.status.idle": "2024-06-14T00:24:44.069118Z", + "shell.execute_reply": "2024-06-14T00:24:44.068519Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:56.998652Z", - "iopub.status.busy": "2024-06-13T18:29:56.998361Z", - "iopub.status.idle": "2024-06-13T18:29:58.329872Z", - "shell.execute_reply": "2024-06-13T18:29:58.329181Z" + "iopub.execute_input": "2024-06-14T00:24:44.071740Z", + "iopub.status.busy": "2024-06-14T00:24:44.071494Z", + "iopub.status.idle": "2024-06-14T00:24:45.220737Z", + "shell.execute_reply": "2024-06-14T00:24:45.220051Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.332344Z", - "iopub.status.busy": "2024-06-13T18:29:58.332148Z", - "iopub.status.idle": "2024-06-13T18:29:58.335282Z", - "shell.execute_reply": "2024-06-13T18:29:58.334843Z" + "iopub.execute_input": "2024-06-14T00:24:45.223345Z", + "iopub.status.busy": "2024-06-14T00:24:45.223129Z", + "iopub.status.idle": "2024-06-14T00:24:45.226683Z", + "shell.execute_reply": "2024-06-14T00:24:45.226207Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.337442Z", - "iopub.status.busy": "2024-06-13T18:29:58.337105Z", - "iopub.status.idle": "2024-06-13T18:29:58.343657Z", - "shell.execute_reply": "2024-06-13T18:29:58.343212Z" + "iopub.execute_input": "2024-06-14T00:24:45.228821Z", + "iopub.status.busy": "2024-06-14T00:24:45.228396Z", + "iopub.status.idle": "2024-06-14T00:24:45.234979Z", + "shell.execute_reply": "2024-06-14T00:24:45.234557Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.345689Z", - "iopub.status.busy": "2024-06-13T18:29:58.345414Z", - "iopub.status.idle": "2024-06-13T18:29:58.834945Z", - "shell.execute_reply": "2024-06-13T18:29:58.834347Z" + "iopub.execute_input": "2024-06-14T00:24:45.237078Z", + "iopub.status.busy": "2024-06-14T00:24:45.236665Z", + "iopub.status.idle": "2024-06-14T00:24:45.726517Z", + "shell.execute_reply": "2024-06-14T00:24:45.725903Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.837978Z", - "iopub.status.busy": "2024-06-13T18:29:58.837618Z", - "iopub.status.idle": "2024-06-13T18:29:58.842965Z", - "shell.execute_reply": "2024-06-13T18:29:58.842410Z" + "iopub.execute_input": "2024-06-14T00:24:45.728946Z", + "iopub.status.busy": "2024-06-14T00:24:45.728592Z", + "iopub.status.idle": "2024-06-14T00:24:45.734110Z", + "shell.execute_reply": "2024-06-14T00:24:45.733639Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.845045Z", - "iopub.status.busy": "2024-06-13T18:29:58.844634Z", - "iopub.status.idle": "2024-06-13T18:29:58.848604Z", - "shell.execute_reply": "2024-06-13T18:29:58.848037Z" + "iopub.execute_input": "2024-06-14T00:24:45.736082Z", + "iopub.status.busy": "2024-06-14T00:24:45.735744Z", + "iopub.status.idle": "2024-06-14T00:24:45.739665Z", + "shell.execute_reply": "2024-06-14T00:24:45.739219Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:58.850768Z", - "iopub.status.busy": "2024-06-13T18:29:58.850466Z", - "iopub.status.idle": "2024-06-13T18:29:59.755567Z", - "shell.execute_reply": "2024-06-13T18:29:59.755009Z" + "iopub.execute_input": "2024-06-14T00:24:45.741784Z", + "iopub.status.busy": "2024-06-14T00:24:45.741445Z", + "iopub.status.idle": "2024-06-14T00:24:46.593513Z", + "shell.execute_reply": "2024-06-14T00:24:46.592892Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:59.757902Z", - "iopub.status.busy": "2024-06-13T18:29:59.757703Z", - "iopub.status.idle": "2024-06-13T18:29:59.978821Z", - "shell.execute_reply": "2024-06-13T18:29:59.978328Z" + "iopub.execute_input": "2024-06-14T00:24:46.595825Z", + "iopub.status.busy": "2024-06-14T00:24:46.595611Z", + "iopub.status.idle": "2024-06-14T00:24:46.825680Z", + "shell.execute_reply": "2024-06-14T00:24:46.825213Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:59.981057Z", - "iopub.status.busy": "2024-06-13T18:29:59.980715Z", - "iopub.status.idle": "2024-06-13T18:29:59.985048Z", - "shell.execute_reply": "2024-06-13T18:29:59.984479Z" + "iopub.execute_input": "2024-06-14T00:24:46.827710Z", + "iopub.status.busy": "2024-06-14T00:24:46.827521Z", + "iopub.status.idle": "2024-06-14T00:24:46.831897Z", + "shell.execute_reply": "2024-06-14T00:24:46.831340Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:29:59.987166Z", - "iopub.status.busy": "2024-06-13T18:29:59.986705Z", - "iopub.status.idle": "2024-06-13T18:30:00.454266Z", - "shell.execute_reply": "2024-06-13T18:30:00.453605Z" + "iopub.execute_input": "2024-06-14T00:24:46.834049Z", + "iopub.status.busy": "2024-06-14T00:24:46.833726Z", + "iopub.status.idle": "2024-06-14T00:24:47.289065Z", + "shell.execute_reply": "2024-06-14T00:24:47.288441Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:00.457576Z", - "iopub.status.busy": "2024-06-13T18:30:00.457184Z", - "iopub.status.idle": "2024-06-13T18:30:00.790609Z", - "shell.execute_reply": "2024-06-13T18:30:00.790005Z" + "iopub.execute_input": "2024-06-14T00:24:47.292391Z", + "iopub.status.busy": "2024-06-14T00:24:47.292016Z", + "iopub.status.idle": "2024-06-14T00:24:47.629057Z", + "shell.execute_reply": "2024-06-14T00:24:47.628471Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:00.793040Z", - "iopub.status.busy": "2024-06-13T18:30:00.792628Z", - "iopub.status.idle": "2024-06-13T18:30:01.157408Z", - "shell.execute_reply": "2024-06-13T18:30:01.156853Z" + "iopub.execute_input": "2024-06-14T00:24:47.631994Z", + "iopub.status.busy": "2024-06-14T00:24:47.631620Z", + "iopub.status.idle": "2024-06-14T00:24:47.969577Z", + "shell.execute_reply": "2024-06-14T00:24:47.968977Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:01.160112Z", - "iopub.status.busy": "2024-06-13T18:30:01.159751Z", - "iopub.status.idle": "2024-06-13T18:30:01.602908Z", - "shell.execute_reply": "2024-06-13T18:30:01.602344Z" + "iopub.execute_input": "2024-06-14T00:24:47.972695Z", + "iopub.status.busy": "2024-06-14T00:24:47.972260Z", + "iopub.status.idle": "2024-06-14T00:24:48.413648Z", + "shell.execute_reply": "2024-06-14T00:24:48.413066Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:01.607171Z", - "iopub.status.busy": "2024-06-13T18:30:01.606869Z", - "iopub.status.idle": "2024-06-13T18:30:02.061239Z", - "shell.execute_reply": "2024-06-13T18:30:02.060632Z" + "iopub.execute_input": "2024-06-14T00:24:48.418012Z", + "iopub.status.busy": "2024-06-14T00:24:48.417609Z", + "iopub.status.idle": "2024-06-14T00:24:48.870046Z", + "shell.execute_reply": "2024-06-14T00:24:48.869376Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:02.064488Z", - "iopub.status.busy": "2024-06-13T18:30:02.064100Z", - "iopub.status.idle": "2024-06-13T18:30:02.280511Z", - "shell.execute_reply": "2024-06-13T18:30:02.279861Z" + "iopub.execute_input": "2024-06-14T00:24:48.873324Z", + "iopub.status.busy": "2024-06-14T00:24:48.872940Z", + "iopub.status.idle": "2024-06-14T00:24:49.066877Z", + "shell.execute_reply": "2024-06-14T00:24:49.066254Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:02.282794Z", - "iopub.status.busy": "2024-06-13T18:30:02.282466Z", - "iopub.status.idle": "2024-06-13T18:30:02.482430Z", - "shell.execute_reply": "2024-06-13T18:30:02.481886Z" + "iopub.execute_input": "2024-06-14T00:24:49.069340Z", + "iopub.status.busy": "2024-06-14T00:24:49.069147Z", + "iopub.status.idle": "2024-06-14T00:24:49.252363Z", + "shell.execute_reply": "2024-06-14T00:24:49.251770Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:02.485080Z", - "iopub.status.busy": "2024-06-13T18:30:02.484701Z", - "iopub.status.idle": "2024-06-13T18:30:02.487652Z", - "shell.execute_reply": "2024-06-13T18:30:02.487207Z" + "iopub.execute_input": "2024-06-14T00:24:49.254849Z", + "iopub.status.busy": "2024-06-14T00:24:49.254485Z", + "iopub.status.idle": "2024-06-14T00:24:49.257933Z", + "shell.execute_reply": "2024-06-14T00:24:49.257505Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:02.489704Z", - "iopub.status.busy": "2024-06-13T18:30:02.489381Z", - "iopub.status.idle": "2024-06-13T18:30:03.405395Z", - "shell.execute_reply": "2024-06-13T18:30:03.404866Z" + "iopub.execute_input": "2024-06-14T00:24:49.259690Z", + "iopub.status.busy": "2024-06-14T00:24:49.259519Z", + "iopub.status.idle": "2024-06-14T00:24:50.198920Z", + "shell.execute_reply": "2024-06-14T00:24:50.198321Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:03.407640Z", - "iopub.status.busy": "2024-06-13T18:30:03.407316Z", - "iopub.status.idle": "2024-06-13T18:30:03.567557Z", - "shell.execute_reply": "2024-06-13T18:30:03.567038Z" + "iopub.execute_input": "2024-06-14T00:24:50.201951Z", + "iopub.status.busy": "2024-06-14T00:24:50.201537Z", + "iopub.status.idle": "2024-06-14T00:24:50.347011Z", + "shell.execute_reply": "2024-06-14T00:24:50.346463Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:03.569801Z", - "iopub.status.busy": "2024-06-13T18:30:03.569474Z", - "iopub.status.idle": "2024-06-13T18:30:03.717506Z", - "shell.execute_reply": "2024-06-13T18:30:03.716934Z" + "iopub.execute_input": "2024-06-14T00:24:50.349324Z", + "iopub.status.busy": "2024-06-14T00:24:50.348974Z", + "iopub.status.idle": "2024-06-14T00:24:50.488386Z", + "shell.execute_reply": "2024-06-14T00:24:50.487875Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:03.719678Z", - "iopub.status.busy": "2024-06-13T18:30:03.719333Z", - "iopub.status.idle": "2024-06-13T18:30:04.487525Z", - "shell.execute_reply": "2024-06-13T18:30:04.486972Z" + "iopub.execute_input": "2024-06-14T00:24:50.490992Z", + "iopub.status.busy": "2024-06-14T00:24:50.490588Z", + "iopub.status.idle": "2024-06-14T00:24:51.257398Z", + "shell.execute_reply": "2024-06-14T00:24:51.256809Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:04.489789Z", - "iopub.status.busy": "2024-06-13T18:30:04.489443Z", - "iopub.status.idle": "2024-06-13T18:30:04.492942Z", - "shell.execute_reply": "2024-06-13T18:30:04.492497Z" + "iopub.execute_input": "2024-06-14T00:24:51.259836Z", + "iopub.status.busy": "2024-06-14T00:24:51.259465Z", + "iopub.status.idle": "2024-06-14T00:24:51.263155Z", + "shell.execute_reply": "2024-06-14T00:24:51.262717Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 2fbf1de1b..4a94a04a3 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -771,7 +771,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:01<00:00, 104055673.22it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 109826666.14it/s]
 
-
+
@@ -1115,7 +1115,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index a2249bb68..fe1ffe26e 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:06.806861Z", - "iopub.status.busy": "2024-06-13T18:30:06.806511Z", - "iopub.status.idle": "2024-06-13T18:30:09.610809Z", - "shell.execute_reply": "2024-06-13T18:30:09.610253Z" + "iopub.execute_input": "2024-06-14T00:24:53.422019Z", + "iopub.status.busy": "2024-06-14T00:24:53.421585Z", + "iopub.status.idle": "2024-06-14T00:24:56.183112Z", + "shell.execute_reply": "2024-06-14T00:24:56.182545Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:09.613404Z", - "iopub.status.busy": "2024-06-13T18:30:09.613108Z", - "iopub.status.idle": "2024-06-13T18:30:09.946924Z", - "shell.execute_reply": "2024-06-13T18:30:09.946370Z" + "iopub.execute_input": "2024-06-14T00:24:56.186005Z", + "iopub.status.busy": "2024-06-14T00:24:56.185437Z", + "iopub.status.idle": "2024-06-14T00:24:56.514322Z", + "shell.execute_reply": "2024-06-14T00:24:56.513737Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:09.949568Z", - "iopub.status.busy": "2024-06-13T18:30:09.949093Z", - "iopub.status.idle": "2024-06-13T18:30:09.953137Z", - "shell.execute_reply": "2024-06-13T18:30:09.952713Z" + "iopub.execute_input": "2024-06-14T00:24:56.517231Z", + "iopub.status.busy": "2024-06-14T00:24:56.516677Z", + "iopub.status.idle": "2024-06-14T00:24:56.521145Z", + "shell.execute_reply": "2024-06-14T00:24:56.520717Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:09.955066Z", - "iopub.status.busy": "2024-06-13T18:30:09.954891Z", - "iopub.status.idle": "2024-06-13T18:30:14.437726Z", - "shell.execute_reply": "2024-06-13T18:30:14.437138Z" + "iopub.execute_input": "2024-06-14T00:24:56.523335Z", + "iopub.status.busy": "2024-06-14T00:24:56.522897Z", + "iopub.status.idle": "2024-06-14T00:25:00.661311Z", + "shell.execute_reply": "2024-06-14T00:25:00.660725Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 851968/170498071 [00:00<00:22, 7505845.17it/s]" + " 1%| | 1802240/170498071 [00:00<00:09, 18016704.14it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8617984/170498071 [00:00<00:03, 46592768.27it/s]" + " 8%|▊ | 13402112/170498071 [00:00<00:02, 75623349.02it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 19136512/170498071 [00:00<00:02, 72503876.07it/s]" + " 15%|█▍ | 24903680/170498071 [00:00<00:01, 93539606.21it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 30539776/170498071 [00:00<00:01, 88534497.30it/s]" + " 22%|██▏ | 36700160/170498071 [00:00<00:01, 103142953.74it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 41910272/170498071 [00:00<00:01, 97487057.13it/s]" + " 28%|██▊ | 48332800/170498071 [00:00<00:01, 107813977.20it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 53248000/170498071 [00:00<00:01, 102831280.07it/s]" + " 35%|███▌ | 60030976/170498071 [00:00<00:00, 110893500.78it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 64618496/170498071 [00:00<00:00, 106322699.83it/s]" + " 42%|████▏ | 71565312/170498071 [00:00<00:00, 112289943.52it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 76087296/170498071 [00:00<00:00, 108899246.12it/s]" + " 49%|████▉ | 83263488/170498071 [00:00<00:00, 113771599.90it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87457792/170498071 [00:00<00:00, 110330394.92it/s]" + " 56%|█████▌ | 94863360/170498071 [00:00<00:00, 114377772.38it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98828288/170498071 [00:01<00:00, 111336949.28it/s]" + " 62%|██████▏ | 106496000/170498071 [00:01<00:00, 114916505.11it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110329856/170498071 [00:01<00:00, 112417372.77it/s]" + " 69%|██████▉ | 118161408/170498071 [00:01<00:00, 115433366.37it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 121929728/170498071 [00:01<00:00, 113477079.55it/s]" + " 76%|███████▌ | 129761280/170498071 [00:01<00:00, 115526545.23it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 133464064/170498071 [00:01<00:00, 113959996.99it/s]" + " 83%|████████▎ | 141393920/170498071 [00:01<00:00, 115751506.39it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 144965632/170498071 [00:01<00:00, 114162107.08it/s]" + " 90%|████████▉ | 153026560/170498071 [00:01<00:00, 115880597.95it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 156467200/170498071 [00:01<00:00, 114396418.93it/s]" + " 97%|█████████▋| 164659200/170498071 [00:01<00:00, 115964933.55it/s]" ] }, { @@ -372,15 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 167936000/170498071 [00:01<00:00, 114327029.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 104055673.22it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 109826666.14it/s]" ] }, { @@ -498,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:14.440345Z", - "iopub.status.busy": "2024-06-13T18:30:14.439866Z", - "iopub.status.idle": "2024-06-13T18:30:14.444966Z", - "shell.execute_reply": "2024-06-13T18:30:14.444420Z" + "iopub.execute_input": "2024-06-14T00:25:00.663439Z", + "iopub.status.busy": "2024-06-14T00:25:00.663258Z", + "iopub.status.idle": "2024-06-14T00:25:00.667817Z", + "shell.execute_reply": "2024-06-14T00:25:00.667381Z" }, "nbsphinx": "hidden" }, @@ -552,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:14.447077Z", - "iopub.status.busy": "2024-06-13T18:30:14.446767Z", - "iopub.status.idle": "2024-06-13T18:30:14.969015Z", - "shell.execute_reply": "2024-06-13T18:30:14.968491Z" + "iopub.execute_input": "2024-06-14T00:25:00.669768Z", + "iopub.status.busy": "2024-06-14T00:25:00.669566Z", + "iopub.status.idle": "2024-06-14T00:25:01.209043Z", + "shell.execute_reply": "2024-06-14T00:25:01.208432Z" } }, "outputs": [ @@ -588,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:14.971303Z", - "iopub.status.busy": "2024-06-13T18:30:14.970976Z", - "iopub.status.idle": "2024-06-13T18:30:15.492426Z", - "shell.execute_reply": "2024-06-13T18:30:15.491832Z" + "iopub.execute_input": "2024-06-14T00:25:01.211270Z", + "iopub.status.busy": "2024-06-14T00:25:01.211083Z", + "iopub.status.idle": "2024-06-14T00:25:01.707145Z", + "shell.execute_reply": "2024-06-14T00:25:01.706563Z" } }, "outputs": [ @@ -629,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:15.494644Z", - "iopub.status.busy": "2024-06-13T18:30:15.494281Z", - "iopub.status.idle": "2024-06-13T18:30:15.497844Z", - "shell.execute_reply": "2024-06-13T18:30:15.497389Z" + "iopub.execute_input": "2024-06-14T00:25:01.709523Z", + "iopub.status.busy": "2024-06-14T00:25:01.709161Z", + "iopub.status.idle": "2024-06-14T00:25:01.712585Z", + "shell.execute_reply": "2024-06-14T00:25:01.712153Z" } }, "outputs": [], @@ -655,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:15.499724Z", - "iopub.status.busy": "2024-06-13T18:30:15.499424Z", - "iopub.status.idle": "2024-06-13T18:30:28.020003Z", - "shell.execute_reply": "2024-06-13T18:30:28.019421Z" + "iopub.execute_input": "2024-06-14T00:25:01.714533Z", + "iopub.status.busy": "2024-06-14T00:25:01.714273Z", + "iopub.status.idle": "2024-06-14T00:25:14.170847Z", + "shell.execute_reply": "2024-06-14T00:25:14.170282Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "28d0e408cda44fae96e334ff5722f1aa", + "model_id": "af7e1c9834464f1ebe1f6e698f5ade1e", "version_major": 2, "version_minor": 0 }, @@ -724,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:28.022367Z", - "iopub.status.busy": "2024-06-13T18:30:28.021996Z", - "iopub.status.idle": "2024-06-13T18:30:30.141044Z", - "shell.execute_reply": "2024-06-13T18:30:30.140489Z" + "iopub.execute_input": "2024-06-14T00:25:14.173121Z", + "iopub.status.busy": "2024-06-14T00:25:14.172921Z", + "iopub.status.idle": "2024-06-14T00:25:16.259682Z", + "shell.execute_reply": "2024-06-14T00:25:16.259154Z" } }, "outputs": [ @@ -771,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:30.143301Z", - "iopub.status.busy": "2024-06-13T18:30:30.142940Z", - "iopub.status.idle": "2024-06-13T18:30:30.374088Z", - "shell.execute_reply": "2024-06-13T18:30:30.373403Z" + "iopub.execute_input": "2024-06-14T00:25:16.262045Z", + "iopub.status.busy": "2024-06-14T00:25:16.261630Z", + "iopub.status.idle": "2024-06-14T00:25:16.500213Z", + "shell.execute_reply": "2024-06-14T00:25:16.499678Z" } }, "outputs": [ @@ -810,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:30.376511Z", - "iopub.status.busy": "2024-06-13T18:30:30.376323Z", - "iopub.status.idle": "2024-06-13T18:30:31.029670Z", - "shell.execute_reply": "2024-06-13T18:30:31.029069Z" + "iopub.execute_input": "2024-06-14T00:25:16.502735Z", + "iopub.status.busy": "2024-06-14T00:25:16.502292Z", + "iopub.status.idle": "2024-06-14T00:25:17.170475Z", + "shell.execute_reply": "2024-06-14T00:25:17.169919Z" } }, "outputs": [ @@ -863,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:31.032050Z", - "iopub.status.busy": "2024-06-13T18:30:31.031866Z", - "iopub.status.idle": "2024-06-13T18:30:31.328149Z", - "shell.execute_reply": "2024-06-13T18:30:31.327537Z" + "iopub.execute_input": "2024-06-14T00:25:17.173317Z", + "iopub.status.busy": "2024-06-14T00:25:17.173013Z", + "iopub.status.idle": "2024-06-14T00:25:17.507092Z", + "shell.execute_reply": "2024-06-14T00:25:17.506631Z" } }, "outputs": [ @@ -914,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:31.330418Z", - "iopub.status.busy": "2024-06-13T18:30:31.330234Z", - "iopub.status.idle": "2024-06-13T18:30:31.564448Z", - "shell.execute_reply": "2024-06-13T18:30:31.563851Z" + "iopub.execute_input": "2024-06-14T00:25:17.509066Z", + "iopub.status.busy": "2024-06-14T00:25:17.508892Z", + "iopub.status.idle": "2024-06-14T00:25:17.748886Z", + "shell.execute_reply": "2024-06-14T00:25:17.748311Z" } }, "outputs": [ @@ -973,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:31.567120Z", - "iopub.status.busy": "2024-06-13T18:30:31.566695Z", - "iopub.status.idle": "2024-06-13T18:30:31.646009Z", - "shell.execute_reply": "2024-06-13T18:30:31.645371Z" + "iopub.execute_input": "2024-06-14T00:25:17.751555Z", + "iopub.status.busy": "2024-06-14T00:25:17.751187Z", + "iopub.status.idle": "2024-06-14T00:25:17.847448Z", + "shell.execute_reply": "2024-06-14T00:25:17.846910Z" } }, "outputs": [], @@ -997,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:31.648611Z", - "iopub.status.busy": "2024-06-13T18:30:31.648290Z", - "iopub.status.idle": "2024-06-13T18:30:42.038302Z", - "shell.execute_reply": "2024-06-13T18:30:42.037657Z" + "iopub.execute_input": "2024-06-14T00:25:17.849701Z", + "iopub.status.busy": "2024-06-14T00:25:17.849525Z", + "iopub.status.idle": "2024-06-14T00:25:28.131894Z", + "shell.execute_reply": "2024-06-14T00:25:28.131254Z" } }, "outputs": [ @@ -1037,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:42.040756Z", - "iopub.status.busy": "2024-06-13T18:30:42.040545Z", - "iopub.status.idle": "2024-06-13T18:30:43.788960Z", - "shell.execute_reply": "2024-06-13T18:30:43.788389Z" + "iopub.execute_input": "2024-06-14T00:25:28.134164Z", + "iopub.status.busy": "2024-06-14T00:25:28.133918Z", + "iopub.status.idle": "2024-06-14T00:25:29.827691Z", + "shell.execute_reply": "2024-06-14T00:25:29.827085Z" } }, "outputs": [ @@ -1071,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:43.791567Z", - "iopub.status.busy": "2024-06-13T18:30:43.791038Z", - "iopub.status.idle": "2024-06-13T18:30:43.998971Z", - "shell.execute_reply": "2024-06-13T18:30:43.998473Z" + "iopub.execute_input": "2024-06-14T00:25:29.830604Z", + "iopub.status.busy": "2024-06-14T00:25:29.830017Z", + "iopub.status.idle": "2024-06-14T00:25:30.033033Z", + "shell.execute_reply": "2024-06-14T00:25:30.032428Z" } }, "outputs": [], @@ -1088,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:44.001352Z", - "iopub.status.busy": "2024-06-13T18:30:44.001162Z", - "iopub.status.idle": "2024-06-13T18:30:44.004407Z", - "shell.execute_reply": "2024-06-13T18:30:44.003938Z" + "iopub.execute_input": "2024-06-14T00:25:30.035452Z", + "iopub.status.busy": "2024-06-14T00:25:30.035240Z", + "iopub.status.idle": "2024-06-14T00:25:30.038420Z", + "shell.execute_reply": "2024-06-14T00:25:30.037895Z" } }, "outputs": [], @@ -1113,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:44.006396Z", - "iopub.status.busy": "2024-06-13T18:30:44.006071Z", - "iopub.status.idle": "2024-06-13T18:30:44.014187Z", - "shell.execute_reply": "2024-06-13T18:30:44.013760Z" + "iopub.execute_input": "2024-06-14T00:25:30.040399Z", + "iopub.status.busy": "2024-06-14T00:25:30.040103Z", + "iopub.status.idle": "2024-06-14T00:25:30.047957Z", + "shell.execute_reply": "2024-06-14T00:25:30.047548Z" }, "nbsphinx": "hidden" }, @@ -1161,80 +1153,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "28d0e408cda44fae96e334ff5722f1aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_346aa5bc826248a5a926072fe2c82246", - "IPY_MODEL_3b24036feeb5438aaa6c02ed11ec900e", - "IPY_MODEL_b093c1d8eefc4ee88658564be60bc4b7" - ], - "layout": "IPY_MODEL_96516d2a0e1944e287358cadafe3a4b2", - "tabbable": null, - "tooltip": null - } - }, - "346aa5bc826248a5a926072fe2c82246": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fd5932ca7243458bbd414302c29cd1b0", - "placeholder": "​", - "style": "IPY_MODEL_e77e9e31299440a79893a737847ece38", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "3b24036feeb5438aaa6c02ed11ec900e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9ed5ec1b57b4c59acc407e4618397ff", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e87bc35dcff049d09f7f83d1e0f54b7d", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "8332ec13ae16440fa7bc486776b77771": { + "296e3cb31039415b8c83a473292b1d58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1287,7 +1206,25 @@ "width": null } }, - "96516d2a0e1944e287358cadafe3a4b2": { + "2ee2ceb4124d4345b6f2b015f8c1a1ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "36ac74a0eacd4b858466704e1d51f13f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1340,30 +1277,67 @@ "width": null } }, - "b093c1d8eefc4ee88658564be60bc4b7": { + "3e35e16a78dc439d86092529bd64a610": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8332ec13ae16440fa7bc486776b77771", - "placeholder": "​", - "style": "IPY_MODEL_e957713cf0054a5a9f08425e1d3233b6", + "layout": "IPY_MODEL_88b46623ee654134a3ad913f83f3dc56", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_803061e630f248e393a2e3a639de40c7", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 284MB/s]" + "value": 102469840.0 } }, - "d9ed5ec1b57b4c59acc407e4618397ff": { + "803061e630f248e393a2e3a639de40c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8500e6e8b43e47878e79e46568e9766e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "88b46623ee654134a3ad913f83f3dc56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1416,59 +1390,31 @@ "width": null } }, - "e77e9e31299440a79893a737847ece38": { + "af7e1c9834464f1ebe1f6e698f5ade1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e87bc35dcff049d09f7f83d1e0f54b7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e957713cf0054a5a9f08425e1d3233b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f34a4e42901c48969d9c228410ab22e0", + "IPY_MODEL_3e35e16a78dc439d86092529bd64a610", + "IPY_MODEL_f27ec3c201124e028532be64f872d69e" + ], + "layout": "IPY_MODEL_c9ab25d5f8974b92aafb42312352ad0d", + "tabbable": null, + "tooltip": null } }, - "fd5932ca7243458bbd414302c29cd1b0": { + "c9ab25d5f8974b92aafb42312352ad0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1520,6 +1466,52 @@ "visibility": null, "width": null } + }, + "f27ec3c201124e028532be64f872d69e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_36ac74a0eacd4b858466704e1d51f13f", + "placeholder": "​", + "style": "IPY_MODEL_2ee2ceb4124d4345b6f2b015f8c1a1ef", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 262MB/s]" + } + }, + "f34a4e42901c48969d9c228410ab22e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_296e3cb31039415b8c83a473292b1d58", + "placeholder": "​", + "style": "IPY_MODEL_8500e6e8b43e47878e79e46568e9766e", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index a495c8c0c..d0abe52eb 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:48.252986Z", - "iopub.status.busy": "2024-06-13T18:30:48.252813Z", - "iopub.status.idle": "2024-06-13T18:30:49.457686Z", - "shell.execute_reply": "2024-06-13T18:30:49.457186Z" + "iopub.execute_input": "2024-06-14T00:25:34.365071Z", + "iopub.status.busy": "2024-06-14T00:25:34.364917Z", + "iopub.status.idle": "2024-06-14T00:25:35.502849Z", + "shell.execute_reply": "2024-06-14T00:25:35.502227Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.460560Z", - "iopub.status.busy": "2024-06-13T18:30:49.459892Z", - "iopub.status.idle": "2024-06-13T18:30:49.477884Z", - "shell.execute_reply": "2024-06-13T18:30:49.477425Z" + "iopub.execute_input": "2024-06-14T00:25:35.505533Z", + "iopub.status.busy": "2024-06-14T00:25:35.505179Z", + "iopub.status.idle": "2024-06-14T00:25:35.522180Z", + "shell.execute_reply": "2024-06-14T00:25:35.521728Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.480246Z", - "iopub.status.busy": "2024-06-13T18:30:49.479768Z", - "iopub.status.idle": "2024-06-13T18:30:49.482917Z", - "shell.execute_reply": "2024-06-13T18:30:49.482464Z" + "iopub.execute_input": "2024-06-14T00:25:35.524180Z", + "iopub.status.busy": "2024-06-14T00:25:35.523788Z", + "iopub.status.idle": "2024-06-14T00:25:35.526887Z", + "shell.execute_reply": "2024-06-14T00:25:35.526329Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.485089Z", - "iopub.status.busy": "2024-06-13T18:30:49.484694Z", - "iopub.status.idle": "2024-06-13T18:30:49.585345Z", - "shell.execute_reply": "2024-06-13T18:30:49.584764Z" + "iopub.execute_input": "2024-06-14T00:25:35.528980Z", + "iopub.status.busy": "2024-06-14T00:25:35.528661Z", + "iopub.status.idle": "2024-06-14T00:25:35.603446Z", + "shell.execute_reply": "2024-06-14T00:25:35.602906Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.587712Z", - "iopub.status.busy": "2024-06-13T18:30:49.587363Z", - "iopub.status.idle": "2024-06-13T18:30:49.770480Z", - "shell.execute_reply": "2024-06-13T18:30:49.769914Z" + "iopub.execute_input": "2024-06-14T00:25:35.605637Z", + "iopub.status.busy": "2024-06-14T00:25:35.605312Z", + "iopub.status.idle": "2024-06-14T00:25:35.785176Z", + "shell.execute_reply": "2024-06-14T00:25:35.784554Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.773158Z", - "iopub.status.busy": "2024-06-13T18:30:49.772795Z", - "iopub.status.idle": "2024-06-13T18:30:49.986578Z", - "shell.execute_reply": "2024-06-13T18:30:49.986009Z" + "iopub.execute_input": "2024-06-14T00:25:35.788106Z", + "iopub.status.busy": "2024-06-14T00:25:35.787574Z", + "iopub.status.idle": "2024-06-14T00:25:35.995635Z", + "shell.execute_reply": "2024-06-14T00:25:35.995045Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.988847Z", - "iopub.status.busy": "2024-06-13T18:30:49.988500Z", - "iopub.status.idle": "2024-06-13T18:30:49.993003Z", - "shell.execute_reply": "2024-06-13T18:30:49.992529Z" + "iopub.execute_input": "2024-06-14T00:25:35.997814Z", + "iopub.status.busy": "2024-06-14T00:25:35.997590Z", + "iopub.status.idle": "2024-06-14T00:25:36.002632Z", + "shell.execute_reply": "2024-06-14T00:25:36.002193Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:49.995082Z", - "iopub.status.busy": "2024-06-13T18:30:49.994751Z", - "iopub.status.idle": "2024-06-13T18:30:50.001826Z", - "shell.execute_reply": "2024-06-13T18:30:50.001402Z" + "iopub.execute_input": "2024-06-14T00:25:36.004632Z", + "iopub.status.busy": "2024-06-14T00:25:36.004304Z", + "iopub.status.idle": "2024-06-14T00:25:36.010125Z", + "shell.execute_reply": "2024-06-14T00:25:36.009568Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:50.003825Z", - "iopub.status.busy": "2024-06-13T18:30:50.003569Z", - "iopub.status.idle": "2024-06-13T18:30:50.006414Z", - "shell.execute_reply": "2024-06-13T18:30:50.005946Z" + "iopub.execute_input": "2024-06-14T00:25:36.012277Z", + "iopub.status.busy": "2024-06-14T00:25:36.011953Z", + "iopub.status.idle": "2024-06-14T00:25:36.014446Z", + "shell.execute_reply": "2024-06-14T00:25:36.014015Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:50.008232Z", - "iopub.status.busy": "2024-06-13T18:30:50.008042Z", - "iopub.status.idle": "2024-06-13T18:30:58.322325Z", - "shell.execute_reply": "2024-06-13T18:30:58.321665Z" + "iopub.execute_input": "2024-06-14T00:25:36.016382Z", + "iopub.status.busy": "2024-06-14T00:25:36.016060Z", + "iopub.status.idle": "2024-06-14T00:25:44.158868Z", + "shell.execute_reply": "2024-06-14T00:25:44.158208Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.325320Z", - "iopub.status.busy": "2024-06-13T18:30:58.324683Z", - "iopub.status.idle": "2024-06-13T18:30:58.332206Z", - "shell.execute_reply": "2024-06-13T18:30:58.331715Z" + "iopub.execute_input": "2024-06-14T00:25:44.161762Z", + "iopub.status.busy": "2024-06-14T00:25:44.161307Z", + "iopub.status.idle": "2024-06-14T00:25:44.168537Z", + "shell.execute_reply": "2024-06-14T00:25:44.168084Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.334286Z", - "iopub.status.busy": "2024-06-13T18:30:58.333895Z", - "iopub.status.idle": "2024-06-13T18:30:58.337476Z", - "shell.execute_reply": "2024-06-13T18:30:58.337050Z" + "iopub.execute_input": "2024-06-14T00:25:44.170593Z", + "iopub.status.busy": "2024-06-14T00:25:44.170286Z", + "iopub.status.idle": "2024-06-14T00:25:44.173864Z", + "shell.execute_reply": "2024-06-14T00:25:44.173406Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.339455Z", - "iopub.status.busy": "2024-06-13T18:30:58.339137Z", - "iopub.status.idle": "2024-06-13T18:30:58.342221Z", - "shell.execute_reply": "2024-06-13T18:30:58.341738Z" + "iopub.execute_input": "2024-06-14T00:25:44.175819Z", + "iopub.status.busy": "2024-06-14T00:25:44.175523Z", + "iopub.status.idle": "2024-06-14T00:25:44.178852Z", + "shell.execute_reply": "2024-06-14T00:25:44.178418Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.344281Z", - "iopub.status.busy": "2024-06-13T18:30:58.343946Z", - "iopub.status.idle": "2024-06-13T18:30:58.346851Z", - "shell.execute_reply": "2024-06-13T18:30:58.346423Z" + "iopub.execute_input": "2024-06-14T00:25:44.180779Z", + "iopub.status.busy": "2024-06-14T00:25:44.180606Z", + "iopub.status.idle": "2024-06-14T00:25:44.183534Z", + "shell.execute_reply": "2024-06-14T00:25:44.183112Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.348832Z", - "iopub.status.busy": "2024-06-13T18:30:58.348521Z", - "iopub.status.idle": "2024-06-13T18:30:58.356118Z", - "shell.execute_reply": "2024-06-13T18:30:58.355677Z" + "iopub.execute_input": "2024-06-14T00:25:44.185389Z", + "iopub.status.busy": "2024-06-14T00:25:44.185216Z", + "iopub.status.idle": "2024-06-14T00:25:44.192979Z", + "shell.execute_reply": "2024-06-14T00:25:44.192557Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.358137Z", - "iopub.status.busy": "2024-06-13T18:30:58.357822Z", - "iopub.status.idle": "2024-06-13T18:30:58.360291Z", - "shell.execute_reply": "2024-06-13T18:30:58.359857Z" + "iopub.execute_input": "2024-06-14T00:25:44.194853Z", + "iopub.status.busy": "2024-06-14T00:25:44.194680Z", + "iopub.status.idle": "2024-06-14T00:25:44.197299Z", + "shell.execute_reply": "2024-06-14T00:25:44.196844Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.362307Z", - "iopub.status.busy": "2024-06-13T18:30:58.362003Z", - "iopub.status.idle": "2024-06-13T18:30:58.484332Z", - "shell.execute_reply": "2024-06-13T18:30:58.483803Z" + "iopub.execute_input": "2024-06-14T00:25:44.199302Z", + "iopub.status.busy": "2024-06-14T00:25:44.198971Z", + "iopub.status.idle": "2024-06-14T00:25:44.317167Z", + "shell.execute_reply": "2024-06-14T00:25:44.316617Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.486661Z", - "iopub.status.busy": "2024-06-13T18:30:58.486283Z", - "iopub.status.idle": "2024-06-13T18:30:58.591974Z", - "shell.execute_reply": "2024-06-13T18:30:58.591386Z" + "iopub.execute_input": "2024-06-14T00:25:44.319362Z", + "iopub.status.busy": "2024-06-14T00:25:44.319041Z", + "iopub.status.idle": "2024-06-14T00:25:44.423214Z", + "shell.execute_reply": "2024-06-14T00:25:44.422657Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:58.594331Z", - "iopub.status.busy": "2024-06-13T18:30:58.594148Z", - "iopub.status.idle": "2024-06-13T18:30:59.083499Z", - "shell.execute_reply": "2024-06-13T18:30:59.082972Z" + "iopub.execute_input": "2024-06-14T00:25:44.425414Z", + "iopub.status.busy": "2024-06-14T00:25:44.425103Z", + "iopub.status.idle": "2024-06-14T00:25:44.914346Z", + "shell.execute_reply": "2024-06-14T00:25:44.913727Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:59.086096Z", - "iopub.status.busy": "2024-06-13T18:30:59.085717Z", - "iopub.status.idle": "2024-06-13T18:30:59.162329Z", - "shell.execute_reply": "2024-06-13T18:30:59.161687Z" + "iopub.execute_input": "2024-06-14T00:25:44.916864Z", + "iopub.status.busy": "2024-06-14T00:25:44.916439Z", + "iopub.status.idle": "2024-06-14T00:25:44.987223Z", + "shell.execute_reply": "2024-06-14T00:25:44.986693Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:59.164356Z", - "iopub.status.busy": "2024-06-13T18:30:59.164177Z", - "iopub.status.idle": "2024-06-13T18:30:59.172855Z", - "shell.execute_reply": "2024-06-13T18:30:59.172423Z" + "iopub.execute_input": "2024-06-14T00:25:44.989536Z", + "iopub.status.busy": "2024-06-14T00:25:44.989204Z", + "iopub.status.idle": "2024-06-14T00:25:44.997742Z", + "shell.execute_reply": "2024-06-14T00:25:44.997248Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:59.174881Z", - "iopub.status.busy": "2024-06-13T18:30:59.174590Z", - "iopub.status.idle": "2024-06-13T18:30:59.177235Z", - "shell.execute_reply": "2024-06-13T18:30:59.176778Z" + "iopub.execute_input": "2024-06-14T00:25:44.999607Z", + "iopub.status.busy": "2024-06-14T00:25:44.999434Z", + "iopub.status.idle": "2024-06-14T00:25:45.002002Z", + "shell.execute_reply": "2024-06-14T00:25:45.001550Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:30:59.179127Z", - "iopub.status.busy": "2024-06-13T18:30:59.178952Z", - "iopub.status.idle": "2024-06-13T18:31:04.701418Z", - "shell.execute_reply": "2024-06-13T18:31:04.700823Z" + "iopub.execute_input": "2024-06-14T00:25:45.004006Z", + "iopub.status.busy": "2024-06-14T00:25:45.003693Z", + "iopub.status.idle": "2024-06-14T00:25:50.327887Z", + "shell.execute_reply": "2024-06-14T00:25:50.327366Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:31:04.703750Z", - "iopub.status.busy": "2024-06-13T18:31:04.703565Z", - "iopub.status.idle": "2024-06-13T18:31:04.712582Z", - "shell.execute_reply": "2024-06-13T18:31:04.712023Z" + "iopub.execute_input": "2024-06-14T00:25:50.330130Z", + "iopub.status.busy": "2024-06-14T00:25:50.329940Z", + "iopub.status.idle": "2024-06-14T00:25:50.338690Z", + "shell.execute_reply": "2024-06-14T00:25:50.338145Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:31:04.714691Z", - "iopub.status.busy": "2024-06-13T18:31:04.714515Z", - "iopub.status.idle": "2024-06-13T18:31:04.779472Z", - "shell.execute_reply": "2024-06-13T18:31:04.778838Z" + "iopub.execute_input": "2024-06-14T00:25:50.340875Z", + "iopub.status.busy": "2024-06-14T00:25:50.340560Z", + "iopub.status.idle": "2024-06-14T00:25:50.407866Z", + "shell.execute_reply": "2024-06-14T00:25:50.407330Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index f2715ccac..3790b78c0 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -791,13 +791,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1187,7 +1187,7 @@

Get label quality scores -{"state": {"7b2e41cdcf7048fc9d7f7c9e57509ad4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07a27617b4cb463c800dfcb35f1dc300": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7bb5b09be0ad45b2bd3b0ad578949d13": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b2e41cdcf7048fc9d7f7c9e57509ad4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_07a27617b4cb463c800dfcb35f1dc300", "tabbable": null, "tooltip": null, "value": 30.0}}, "e766070c2a274c7e9727c840de2d4622": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3327a8dafe624e288c3a755d1fe586ec": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7c78b1d0b9cf4847983f32c4f362ae5d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e766070c2a274c7e9727c840de2d4622", "placeholder": "\u200b", "style": "IPY_MODEL_3327a8dafe624e288c3a755d1fe586ec", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "34c27c586b6e4b2ea09c0458b78e5676": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "558f5b24bbed46d49edf45532366ba73": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "35e31fdda4fd4bb3b2d499c72da190ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_34c27c586b6e4b2ea09c0458b78e5676", "placeholder": "\u200b", "style": "IPY_MODEL_558f5b24bbed46d49edf45532366ba73", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007736.27it/s]"}}, "a556d3a498ff4604ba0a106882210600": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7aed56d2b6d64b3699d9bbaf95b219be": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7c78b1d0b9cf4847983f32c4f362ae5d", "IPY_MODEL_7bb5b09be0ad45b2bd3b0ad578949d13", "IPY_MODEL_35e31fdda4fd4bb3b2d499c72da190ea"], "layout": "IPY_MODEL_a556d3a498ff4604ba0a106882210600", "tabbable": null, "tooltip": null}}, "44f616d2fe1e450599c4b20e3adad6f2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8685eea0977c4a138f06e0f7fc8f2f15": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "180223668e954deeaa713c9d013cad6d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_44f616d2fe1e450599c4b20e3adad6f2", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8685eea0977c4a138f06e0f7fc8f2f15", "tabbable": null, "tooltip": null, "value": 30.0}}, "821337f5dcf44c3d8436d9138290eb53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ccc49eb7d294ea29e7c17326644e344": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b6081a1f51d4884b8793dd3b58c0232": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_821337f5dcf44c3d8436d9138290eb53", "placeholder": "\u200b", "style": "IPY_MODEL_2ccc49eb7d294ea29e7c17326644e344", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "2429df20a0424175883d2dcbc3deca89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a9dcc453905e4466ae19b0d35707c5f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dfa6c4ab3ab2423a805dc6978a1ae114": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2429df20a0424175883d2dcbc3deca89", "placeholder": "\u200b", "style": "IPY_MODEL_a9dcc453905e4466ae19b0d35707c5f0", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.33it/s]"}}, "7747f3148c8842ce82e53bc96072f536": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8103c78f7dc5416f8ab88f30ac8ec3b7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6b6081a1f51d4884b8793dd3b58c0232", "IPY_MODEL_180223668e954deeaa713c9d013cad6d", "IPY_MODEL_dfa6c4ab3ab2423a805dc6978a1ae114"], "layout": "IPY_MODEL_7747f3148c8842ce82e53bc96072f536", "tabbable": null, "tooltip": null}}, "ace18bbc5c014fdcaeb868209f3a3255": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "242d42f339d34124b0c45612de0d9236": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b177f340d4a14ee89820acf6fdd9b86e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ace18bbc5c014fdcaeb868209f3a3255", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_242d42f339d34124b0c45612de0d9236", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "dea3b61689a244708b5d4312b7a52605": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "850a549641524b448419ca15180f5c04": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b44b21c09f2841a79a576e8128d68709": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dea3b61689a244708b5d4312b7a52605", "placeholder": "\u200b", "style": "IPY_MODEL_850a549641524b448419ca15180f5c04", "tabbable": null, "tooltip": null, "value": "100%"}}, "a40c5f3cca9d4ccd9bfa4edf609566ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "957b3b8943754954a65071269c773939": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f011968278e48b28c69e1b9c619bbe3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a40c5f3cca9d4ccd9bfa4edf609566ce", "placeholder": "\u200b", "style": "IPY_MODEL_957b3b8943754954a65071269c773939", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007155101.82it/s]"}}, "3ad92e7e3d8c4780a8f4bcf6a23b3ddb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b4a7eb981184d8681dd2c90e06a608f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b44b21c09f2841a79a576e8128d68709", "IPY_MODEL_b177f340d4a14ee89820acf6fdd9b86e", "IPY_MODEL_7f011968278e48b28c69e1b9c619bbe3"], "layout": "IPY_MODEL_3ad92e7e3d8c4780a8f4bcf6a23b3ddb", "tabbable": null, "tooltip": null}}, "7278332ec0ef43778ac6336086220ad0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20fe4044742d4168966ed35085b22f4d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "09885c3733c94f47b1125b4634e9521a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7278332ec0ef43778ac6336086220ad0", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_20fe4044742d4168966ed35085b22f4d", "tabbable": null, "tooltip": null, "value": 30.0}}, "3c4bec27189c42478074b65f18ac6e19": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "780493d3a70749c7a154e6ed3e35c462": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8b81630b7cfc485c9aef92d75cff495a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c4bec27189c42478074b65f18ac6e19", "placeholder": "\u200b", "style": "IPY_MODEL_780493d3a70749c7a154e6ed3e35c462", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "e3d0a97220b543719dab4ef99b68dcba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47528177d2c543edb024ffb8b6bc1998": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b561c3bd6770467d93e1d30dbc992e18": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e3d0a97220b543719dab4ef99b68dcba", "placeholder": "\u200b", "style": "IPY_MODEL_47528177d2c543edb024ffb8b6bc1998", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.50it/s]"}}, "1266599ab03844328fb529e55c7c5fac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "855b23d9bc934ddd97bbee4b55793645": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8b81630b7cfc485c9aef92d75cff495a", "IPY_MODEL_09885c3733c94f47b1125b4634e9521a", "IPY_MODEL_b561c3bd6770467d93e1d30dbc992e18"], "layout": "IPY_MODEL_1266599ab03844328fb529e55c7c5fac", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"24bc796586994297bea0ccc4ed55e657": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30c0cf2a5a0141e080fd662e0cb56aaf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a9bdb34214f6431aa123433e93721d82": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_24bc796586994297bea0ccc4ed55e657", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_30c0cf2a5a0141e080fd662e0cb56aaf", "tabbable": null, "tooltip": null, "value": 30.0}}, "ed056681a76042b1860b846c89d27382": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a24505594ee2402a8d205d1257ba22c9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f3052f32a2ec4a0ea2b74a0af0145a23": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ed056681a76042b1860b846c89d27382", "placeholder": "\u200b", "style": "IPY_MODEL_a24505594ee2402a8d205d1257ba22c9", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "170f627a5cca461e9c670c931f6de055": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b894bc36f24d4abea64f2b3a70023d8d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "601ca9fed097447e99bd6efefc9fc491": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_170f627a5cca461e9c670c931f6de055", "placeholder": "\u200b", "style": "IPY_MODEL_b894bc36f24d4abea64f2b3a70023d8d", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007788.25it/s]"}}, "39936a4a72ff4f55967ba78e085b262c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ef11db34b8c2499695a63ddf4f3a568f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f3052f32a2ec4a0ea2b74a0af0145a23", "IPY_MODEL_a9bdb34214f6431aa123433e93721d82", "IPY_MODEL_601ca9fed097447e99bd6efefc9fc491"], "layout": "IPY_MODEL_39936a4a72ff4f55967ba78e085b262c", "tabbable": null, "tooltip": null}}, "63fb187240a54b5daba3fa4abd693311": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "feca83a3cb614b578074893f537289f1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "32485e464c024c12825ec5f39fbd2992": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63fb187240a54b5daba3fa4abd693311", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_feca83a3cb614b578074893f537289f1", "tabbable": null, "tooltip": null, "value": 30.0}}, "9d6fc01e5c5049ebaefb6fa4a5b3e275": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "49ef48ccbc87493f8b87ca4e6aa14ca8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3f52d4290b4d4dbca271fa575b69660c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d6fc01e5c5049ebaefb6fa4a5b3e275", "placeholder": "\u200b", "style": "IPY_MODEL_49ef48ccbc87493f8b87ca4e6aa14ca8", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "843d8ab0fc8c4d0aa3b1fdd287698822": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0bd9abd61f7942adad107605ffc7dc75": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b256da8983d54af2b9e4ceef31968851": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_843d8ab0fc8c4d0aa3b1fdd287698822", "placeholder": "\u200b", "style": "IPY_MODEL_0bd9abd61f7942adad107605ffc7dc75", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.45it/s]"}}, "abc6e5aaeb644735877c7c01113ee577": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b302d86875e4982802c79e79e9e24c0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3f52d4290b4d4dbca271fa575b69660c", "IPY_MODEL_32485e464c024c12825ec5f39fbd2992", "IPY_MODEL_b256da8983d54af2b9e4ceef31968851"], "layout": "IPY_MODEL_abc6e5aaeb644735877c7c01113ee577", "tabbable": null, "tooltip": null}}, "4e9240a76e864ba9a089cc396ddb4168": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bce2a72b4c3a401999f495cd4a606232": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "641f30bef40c4c68a906ec9a86e0fa07": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4e9240a76e864ba9a089cc396ddb4168", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bce2a72b4c3a401999f495cd4a606232", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "f3dcc2f4de32472fa2584c92a14f6bf0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee1af936a30f4cda9d271f4e74535fc2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c7bd9485cd934ce3b171fb2e7abc72b1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3dcc2f4de32472fa2584c92a14f6bf0", "placeholder": "\u200b", "style": "IPY_MODEL_ee1af936a30f4cda9d271f4e74535fc2", "tabbable": null, "tooltip": null, "value": "100%"}}, "5eaa94684cb747c3a28ea9ba6dbca293": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f427f83296a442888e487519580d4e8e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "80a9c340deb946e9bcd4f63b4d3b4b38": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5eaa94684cb747c3a28ea9ba6dbca293", "placeholder": "\u200b", "style": "IPY_MODEL_f427f83296a442888e487519580d4e8e", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007155572.68it/s]"}}, "5572a4d0e40142079ddc616f042bfb75": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e5cceaa133fb416e9526d4f96306e9f0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c7bd9485cd934ce3b171fb2e7abc72b1", "IPY_MODEL_641f30bef40c4c68a906ec9a86e0fa07", "IPY_MODEL_80a9c340deb946e9bcd4f63b4d3b4b38"], "layout": "IPY_MODEL_5572a4d0e40142079ddc616f042bfb75", "tabbable": null, "tooltip": null}}, "faaec56bb79145bbb3f8a98d43a8186c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af15bc39af8e4001972e48bbb8ff470b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3468c156337a43f8b50846d6445f8617": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_faaec56bb79145bbb3f8a98d43a8186c", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_af15bc39af8e4001972e48bbb8ff470b", "tabbable": null, "tooltip": null, "value": 30.0}}, "60fbd9e8e3a840a590d9972691918b53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60eabac5eb734ad49b38574fa0a1bc01": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6d8cdcb377c6446c8f7bebda7f81d883": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_60fbd9e8e3a840a590d9972691918b53", "placeholder": "\u200b", "style": "IPY_MODEL_60eabac5eb734ad49b38574fa0a1bc01", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "120f9c7fc27740d2afdd5ab48aa4533e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03bfdb95af0843c8aece717b904e8056": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a28cd6c1fb4e413aa958757028592739": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_120f9c7fc27740d2afdd5ab48aa4533e", "placeholder": "\u200b", "style": "IPY_MODEL_03bfdb95af0843c8aece717b904e8056", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.88it/s]"}}, "cf87bf590796485b83f3cb3695526c25": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99bedd76990941cd911acb7c1cb195ca": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6d8cdcb377c6446c8f7bebda7f81d883", "IPY_MODEL_3468c156337a43f8b50846d6445f8617", "IPY_MODEL_a28cd6c1fb4e413aa958757028592739"], "layout": "IPY_MODEL_cf87bf590796485b83f3cb3695526c25", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 23431d142..0d29b1672 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:31:07.571637Z", - "iopub.status.busy": "2024-06-13T18:31:07.571212Z", - "iopub.status.idle": "2024-06-13T18:31:09.320694Z", - "shell.execute_reply": "2024-06-13T18:31:09.319933Z" + "iopub.execute_input": "2024-06-14T00:25:53.064367Z", + "iopub.status.busy": "2024-06-14T00:25:53.064185Z", + "iopub.status.idle": "2024-06-14T00:25:54.955631Z", + "shell.execute_reply": "2024-06-14T00:25:54.954984Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:31:09.323468Z", - "iopub.status.busy": "2024-06-13T18:31:09.323229Z", - "iopub.status.idle": "2024-06-13T18:32:13.037408Z", - "shell.execute_reply": "2024-06-13T18:32:13.036754Z" + "iopub.execute_input": "2024-06-14T00:25:54.958032Z", + "iopub.status.busy": "2024-06-14T00:25:54.957807Z", + "iopub.status.idle": "2024-06-14T00:26:57.666795Z", + "shell.execute_reply": "2024-06-14T00:26:57.666153Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:13.039928Z", - "iopub.status.busy": "2024-06-13T18:32:13.039545Z", - "iopub.status.idle": "2024-06-13T18:32:14.160396Z", - "shell.execute_reply": "2024-06-13T18:32:14.159743Z" + "iopub.execute_input": "2024-06-14T00:26:57.669311Z", + "iopub.status.busy": "2024-06-14T00:26:57.668891Z", + "iopub.status.idle": "2024-06-14T00:26:58.764113Z", + "shell.execute_reply": "2024-06-14T00:26:58.763505Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.163038Z", - "iopub.status.busy": "2024-06-13T18:32:14.162579Z", - "iopub.status.idle": "2024-06-13T18:32:14.165948Z", - "shell.execute_reply": "2024-06-13T18:32:14.165406Z" + "iopub.execute_input": "2024-06-14T00:26:58.766809Z", + "iopub.status.busy": "2024-06-14T00:26:58.766386Z", + "iopub.status.idle": "2024-06-14T00:26:58.769494Z", + "shell.execute_reply": "2024-06-14T00:26:58.769055Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.168155Z", - "iopub.status.busy": "2024-06-13T18:32:14.167808Z", - "iopub.status.idle": "2024-06-13T18:32:14.171638Z", - "shell.execute_reply": "2024-06-13T18:32:14.171119Z" + "iopub.execute_input": "2024-06-14T00:26:58.771636Z", + "iopub.status.busy": "2024-06-14T00:26:58.771312Z", + "iopub.status.idle": "2024-06-14T00:26:58.775114Z", + "shell.execute_reply": "2024-06-14T00:26:58.774668Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.173816Z", - "iopub.status.busy": "2024-06-13T18:32:14.173424Z", - "iopub.status.idle": "2024-06-13T18:32:14.176950Z", - "shell.execute_reply": "2024-06-13T18:32:14.176426Z" + "iopub.execute_input": "2024-06-14T00:26:58.777093Z", + "iopub.status.busy": "2024-06-14T00:26:58.776781Z", + "iopub.status.idle": "2024-06-14T00:26:58.780441Z", + "shell.execute_reply": "2024-06-14T00:26:58.779894Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.179024Z", - "iopub.status.busy": "2024-06-13T18:32:14.178651Z", - "iopub.status.idle": "2024-06-13T18:32:14.181489Z", - "shell.execute_reply": "2024-06-13T18:32:14.180989Z" + "iopub.execute_input": "2024-06-14T00:26:58.782266Z", + "iopub.status.busy": "2024-06-14T00:26:58.782092Z", + "iopub.status.idle": "2024-06-14T00:26:58.784805Z", + "shell.execute_reply": "2024-06-14T00:26:58.784373Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:14.183616Z", - "iopub.status.busy": "2024-06-13T18:32:14.183210Z", - "iopub.status.idle": "2024-06-13T18:32:48.262578Z", - "shell.execute_reply": "2024-06-13T18:32:48.261961Z" + "iopub.execute_input": "2024-06-14T00:26:58.786970Z", + "iopub.status.busy": "2024-06-14T00:26:58.786585Z", + "iopub.status.idle": "2024-06-14T00:27:32.147723Z", + "shell.execute_reply": "2024-06-14T00:27:32.147054Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7aed56d2b6d64b3699d9bbaf95b219be", + "model_id": "ef11db34b8c2499695a63ddf4f3a568f", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8103c78f7dc5416f8ab88f30ac8ec3b7", + "model_id": "9b302d86875e4982802c79e79e9e24c0", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:48.265344Z", - "iopub.status.busy": "2024-06-13T18:32:48.264945Z", - "iopub.status.idle": "2024-06-13T18:32:48.946571Z", - "shell.execute_reply": "2024-06-13T18:32:48.946019Z" + "iopub.execute_input": "2024-06-14T00:27:32.150281Z", + "iopub.status.busy": "2024-06-14T00:27:32.149970Z", + "iopub.status.idle": "2024-06-14T00:27:32.813149Z", + "shell.execute_reply": "2024-06-14T00:27:32.812657Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:48.949086Z", - "iopub.status.busy": "2024-06-13T18:32:48.948614Z", - "iopub.status.idle": "2024-06-13T18:32:51.719038Z", - "shell.execute_reply": "2024-06-13T18:32:51.718438Z" + "iopub.execute_input": "2024-06-14T00:27:32.815580Z", + "iopub.status.busy": "2024-06-14T00:27:32.815137Z", + "iopub.status.idle": "2024-06-14T00:27:35.575530Z", + "shell.execute_reply": "2024-06-14T00:27:35.574951Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:32:51.721392Z", - "iopub.status.busy": "2024-06-13T18:32:51.720982Z", - "iopub.status.idle": "2024-06-13T18:33:24.182817Z", - "shell.execute_reply": "2024-06-13T18:33:24.182357Z" + "iopub.execute_input": "2024-06-14T00:27:35.577755Z", + "iopub.status.busy": "2024-06-14T00:27:35.577391Z", + "iopub.status.idle": "2024-06-14T00:28:08.108981Z", + "shell.execute_reply": "2024-06-14T00:28:08.108506Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b4a7eb981184d8681dd2c90e06a608f", + "model_id": "e5cceaa133fb416e9526d4f96306e9f0", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:24.185101Z", - "iopub.status.busy": "2024-06-13T18:33:24.184687Z", - "iopub.status.idle": "2024-06-13T18:33:38.608667Z", - "shell.execute_reply": "2024-06-13T18:33:38.608024Z" + "iopub.execute_input": "2024-06-14T00:28:08.111224Z", + "iopub.status.busy": "2024-06-14T00:28:08.110896Z", + "iopub.status.idle": "2024-06-14T00:28:22.450853Z", + "shell.execute_reply": "2024-06-14T00:28:22.450280Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:38.611468Z", - "iopub.status.busy": "2024-06-13T18:33:38.611017Z", - "iopub.status.idle": "2024-06-13T18:33:42.396373Z", - "shell.execute_reply": "2024-06-13T18:33:42.395781Z" + "iopub.execute_input": "2024-06-14T00:28:22.453315Z", + "iopub.status.busy": "2024-06-14T00:28:22.453010Z", + "iopub.status.idle": "2024-06-14T00:28:26.231134Z", + "shell.execute_reply": "2024-06-14T00:28:26.230625Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:42.398511Z", - "iopub.status.busy": "2024-06-13T18:33:42.398317Z", - "iopub.status.idle": "2024-06-13T18:33:43.874082Z", - "shell.execute_reply": "2024-06-13T18:33:43.873526Z" + "iopub.execute_input": "2024-06-14T00:28:26.233357Z", + "iopub.status.busy": "2024-06-14T00:28:26.233047Z", + "iopub.status.idle": "2024-06-14T00:28:27.617536Z", + "shell.execute_reply": "2024-06-14T00:28:27.616972Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "855b23d9bc934ddd97bbee4b55793645", + "model_id": "99bedd76990941cd911acb7c1cb195ca", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:43.876478Z", - "iopub.status.busy": "2024-06-13T18:33:43.876274Z", - "iopub.status.idle": "2024-06-13T18:33:43.904560Z", - "shell.execute_reply": "2024-06-13T18:33:43.903963Z" + "iopub.execute_input": "2024-06-14T00:28:27.619732Z", + "iopub.status.busy": "2024-06-14T00:28:27.619515Z", + "iopub.status.idle": "2024-06-14T00:28:27.648639Z", + "shell.execute_reply": "2024-06-14T00:28:27.647996Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:43.907034Z", - "iopub.status.busy": "2024-06-13T18:33:43.906831Z", - "iopub.status.idle": "2024-06-13T18:33:50.006739Z", - "shell.execute_reply": "2024-06-13T18:33:50.006165Z" + "iopub.execute_input": "2024-06-14T00:28:27.651112Z", + "iopub.status.busy": "2024-06-14T00:28:27.650917Z", + "iopub.status.idle": "2024-06-14T00:28:33.755625Z", + "shell.execute_reply": "2024-06-14T00:28:33.755125Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:50.008917Z", - "iopub.status.busy": "2024-06-13T18:33:50.008723Z", - "iopub.status.idle": "2024-06-13T18:33:50.064849Z", - "shell.execute_reply": "2024-06-13T18:33:50.064325Z" + "iopub.execute_input": "2024-06-14T00:28:33.757947Z", + "iopub.status.busy": "2024-06-14T00:28:33.757591Z", + "iopub.status.idle": "2024-06-14T00:28:33.814205Z", + "shell.execute_reply": "2024-06-14T00:28:33.813644Z" }, "nbsphinx": "hidden" }, @@ -1038,49 +1038,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07a27617b4cb463c800dfcb35f1dc300": { + "03bfdb95af0843c8aece717b904e8056": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "09885c3733c94f47b1125b4634e9521a": { + "0bd9abd61f7942adad107605ffc7dc75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7278332ec0ef43778ac6336086220ad0", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_20fe4044742d4168966ed35085b22f4d", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1266599ab03844328fb529e55c7c5fac": { + "120f9c7fc27740d2afdd5ab48aa4533e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1133,49 +1127,60 @@ "width": null } }, - "180223668e954deeaa713c9d013cad6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44f616d2fe1e450599c4b20e3adad6f2", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8685eea0977c4a138f06e0f7fc8f2f15", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "20fe4044742d4168966ed35085b22f4d": { - "model_module": "@jupyter-widgets/controls", + "170f627a5cca461e9c670c931f6de055": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2429df20a0424175883d2dcbc3deca89": { + "24bc796586994297bea0ccc4ed55e657": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1228,7 +1233,7 @@ "width": null } }, - "242d42f339d34124b0c45612de0d9236": { + "30c0cf2a5a0141e080fd662e0cb56aaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1244,67 +1249,59 @@ "description_width": "" } }, - "2b4a7eb981184d8681dd2c90e06a608f": { + "32485e464c024c12825ec5f39fbd2992": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b44b21c09f2841a79a576e8128d68709", - "IPY_MODEL_b177f340d4a14ee89820acf6fdd9b86e", - "IPY_MODEL_7f011968278e48b28c69e1b9c619bbe3" - ], - "layout": "IPY_MODEL_3ad92e7e3d8c4780a8f4bcf6a23b3ddb", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63fb187240a54b5daba3fa4abd693311", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_feca83a3cb614b578074893f537289f1", "tabbable": null, - "tooltip": null - } - }, - "2ccc49eb7d294ea29e7c17326644e344": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 30.0 } }, - "3327a8dafe624e288c3a755d1fe586ec": { + "3468c156337a43f8b50846d6445f8617": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_faaec56bb79145bbb3f8a98d43a8186c", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_af15bc39af8e4001972e48bbb8ff470b", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "34c27c586b6e4b2ea09c0458b78e5676": { + "39936a4a72ff4f55967ba78e085b262c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1357,7 +1354,7 @@ "width": null } }, - "35e31fdda4fd4bb3b2d499c72da190ea": { + "3f52d4290b4d4dbca271fa575b69660c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1372,15 +1369,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_34c27c586b6e4b2ea09c0458b78e5676", + "layout": "IPY_MODEL_9d6fc01e5c5049ebaefb6fa4a5b3e275", "placeholder": "​", - "style": "IPY_MODEL_558f5b24bbed46d49edf45532366ba73", + "style": "IPY_MODEL_49ef48ccbc87493f8b87ca4e6aa14ca8", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 736.27it/s]" + "value": "number of examples processed for checking labels: 100%" + } + }, + "49ef48ccbc87493f8b87ca4e6aa14ca8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3ad92e7e3d8c4780a8f4bcf6a23b3ddb": { + "4e9240a76e864ba9a089cc396ddb4168": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1433,7 +1448,7 @@ "width": null } }, - "3c4bec27189c42478074b65f18ac6e19": { + "5572a4d0e40142079ddc616f042bfb75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1486,7 +1501,7 @@ "width": null } }, - "44f616d2fe1e450599c4b20e3adad6f2": { + "5eaa94684cb747c3a28ea9ba6dbca293": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1539,25 +1554,30 @@ "width": null } }, - "47528177d2c543edb024ffb8b6bc1998": { + "601ca9fed097447e99bd6efefc9fc491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_170f627a5cca461e9c670c931f6de055", + "placeholder": "​", + "style": "IPY_MODEL_b894bc36f24d4abea64f2b3a70023d8d", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 788.25it/s]" } }, - "558f5b24bbed46d49edf45532366ba73": { + "60eabac5eb734ad49b38574fa0a1bc01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1575,30 +1595,7 @@ "text_color": null } }, - "6b6081a1f51d4884b8793dd3b58c0232": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_821337f5dcf44c3d8436d9138290eb53", - "placeholder": "​", - "style": "IPY_MODEL_2ccc49eb7d294ea29e7c17326644e344", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "7278332ec0ef43778ac6336086220ad0": { + "60fbd9e8e3a840a590d9972691918b53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1651,7 +1648,7 @@ "width": null } }, - "7747f3148c8842ce82e53bc96072f536": { + "63fb187240a54b5daba3fa4abd693311": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1704,49 +1701,79 @@ "width": null } }, - "780493d3a70749c7a154e6ed3e35c462": { + "641f30bef40c4c68a906ec9a86e0fa07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4e9240a76e864ba9a089cc396ddb4168", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bce2a72b4c3a401999f495cd4a606232", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 } }, - "7aed56d2b6d64b3699d9bbaf95b219be": { + "6d8cdcb377c6446c8f7bebda7f81d883": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7c78b1d0b9cf4847983f32c4f362ae5d", - "IPY_MODEL_7bb5b09be0ad45b2bd3b0ad578949d13", - "IPY_MODEL_35e31fdda4fd4bb3b2d499c72da190ea" - ], - "layout": "IPY_MODEL_a556d3a498ff4604ba0a106882210600", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60fbd9e8e3a840a590d9972691918b53", + "placeholder": "​", + "style": "IPY_MODEL_60eabac5eb734ad49b38574fa0a1bc01", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "7b2e41cdcf7048fc9d7f7c9e57509ad4": { + "80a9c340deb946e9bcd4f63b4d3b4b38": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5eaa94684cb747c3a28ea9ba6dbca293", + "placeholder": "​", + "style": "IPY_MODEL_f427f83296a442888e487519580d4e8e", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 155572.68it/s]" + } + }, + "843d8ab0fc8c4d0aa3b1fdd287698822": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1799,79 +1826,31 @@ "width": null } }, - "7bb5b09be0ad45b2bd3b0ad578949d13": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b2e41cdcf7048fc9d7f7c9e57509ad4", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07a27617b4cb463c800dfcb35f1dc300", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "7c78b1d0b9cf4847983f32c4f362ae5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e766070c2a274c7e9727c840de2d4622", - "placeholder": "​", - "style": "IPY_MODEL_3327a8dafe624e288c3a755d1fe586ec", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "7f011968278e48b28c69e1b9c619bbe3": { + "99bedd76990941cd911acb7c1cb195ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a40c5f3cca9d4ccd9bfa4edf609566ce", - "placeholder": "​", - "style": "IPY_MODEL_957b3b8943754954a65071269c773939", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d8cdcb377c6446c8f7bebda7f81d883", + "IPY_MODEL_3468c156337a43f8b50846d6445f8617", + "IPY_MODEL_a28cd6c1fb4e413aa958757028592739" + ], + "layout": "IPY_MODEL_cf87bf590796485b83f3cb3695526c25", "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 155101.82it/s]" + "tooltip": null } }, - "8103c78f7dc5416f8ab88f30ac8ec3b7": { + "9b302d86875e4982802c79e79e9e24c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1886,16 +1865,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6b6081a1f51d4884b8793dd3b58c0232", - "IPY_MODEL_180223668e954deeaa713c9d013cad6d", - "IPY_MODEL_dfa6c4ab3ab2423a805dc6978a1ae114" + "IPY_MODEL_3f52d4290b4d4dbca271fa575b69660c", + "IPY_MODEL_32485e464c024c12825ec5f39fbd2992", + "IPY_MODEL_b256da8983d54af2b9e4ceef31968851" ], - "layout": "IPY_MODEL_7747f3148c8842ce82e53bc96072f536", + "layout": "IPY_MODEL_abc6e5aaeb644735877c7c01113ee577", "tabbable": null, "tooltip": null } }, - "821337f5dcf44c3d8436d9138290eb53": { + "9d6fc01e5c5049ebaefb6fa4a5b3e275": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1948,7 +1927,7 @@ "width": null } }, - "850a549641524b448419ca15180f5c04": { + "a24505594ee2402a8d205d1257ba22c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1966,47 +1945,7 @@ "text_color": null } }, - "855b23d9bc934ddd97bbee4b55793645": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8b81630b7cfc485c9aef92d75cff495a", - "IPY_MODEL_09885c3733c94f47b1125b4634e9521a", - "IPY_MODEL_b561c3bd6770467d93e1d30dbc992e18" - ], - "layout": "IPY_MODEL_1266599ab03844328fb529e55c7c5fac", - "tabbable": null, - "tooltip": null - } - }, - "8685eea0977c4a138f06e0f7fc8f2f15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8b81630b7cfc485c9aef92d75cff495a": { + "a28cd6c1fb4e413aa958757028592739": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2021,33 +1960,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3c4bec27189c42478074b65f18ac6e19", + "layout": "IPY_MODEL_120f9c7fc27740d2afdd5ab48aa4533e", "placeholder": "​", - "style": "IPY_MODEL_780493d3a70749c7a154e6ed3e35c462", + "style": "IPY_MODEL_03bfdb95af0843c8aece717b904e8056", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:01<00:00, 21.88it/s]" } }, - "957b3b8943754954a65071269c773939": { + "a9bdb34214f6431aa123433e93721d82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24bc796586994297bea0ccc4ed55e657", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_30c0cf2a5a0141e080fd662e0cb56aaf", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "a40c5f3cca9d4ccd9bfa4edf609566ce": { + "abc6e5aaeb644735877c7c01113ee577": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2100,7 +2047,103 @@ "width": null } }, - "a556d3a498ff4604ba0a106882210600": { + "af15bc39af8e4001972e48bbb8ff470b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b256da8983d54af2b9e4ceef31968851": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_843d8ab0fc8c4d0aa3b1fdd287698822", + "placeholder": "​", + "style": "IPY_MODEL_0bd9abd61f7942adad107605ffc7dc75", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.45it/s]" + } + }, + "b894bc36f24d4abea64f2b3a70023d8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bce2a72b4c3a401999f495cd4a606232": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c7bd9485cd934ce3b171fb2e7abc72b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f3dcc2f4de32472fa2584c92a14f6bf0", + "placeholder": "​", + "style": "IPY_MODEL_ee1af936a30f4cda9d271f4e74535fc2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "cf87bf590796485b83f3cb3695526c25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2153,25 +2196,31 @@ "width": null } }, - "a9dcc453905e4466ae19b0d35707c5f0": { + "e5cceaa133fb416e9526d4f96306e9f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7bd9485cd934ce3b171fb2e7abc72b1", + "IPY_MODEL_641f30bef40c4c68a906ec9a86e0fa07", + "IPY_MODEL_80a9c340deb946e9bcd4f63b4d3b4b38" + ], + "layout": "IPY_MODEL_5572a4d0e40142079ddc616f042bfb75", + "tabbable": null, + "tooltip": null } }, - "ace18bbc5c014fdcaeb868209f3a3255": { + "ed056681a76042b1860b846c89d27382": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2224,56 +2273,49 @@ "width": null } }, - "b177f340d4a14ee89820acf6fdd9b86e": { + "ee1af936a30f4cda9d271f4e74535fc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ace18bbc5c014fdcaeb868209f3a3255", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_242d42f339d34124b0c45612de0d9236", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b44b21c09f2841a79a576e8128d68709": { + "ef11db34b8c2499695a63ddf4f3a568f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dea3b61689a244708b5d4312b7a52605", - "placeholder": "​", - "style": "IPY_MODEL_850a549641524b448419ca15180f5c04", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f3052f32a2ec4a0ea2b74a0af0145a23", + "IPY_MODEL_a9bdb34214f6431aa123433e93721d82", + "IPY_MODEL_601ca9fed097447e99bd6efefc9fc491" + ], + "layout": "IPY_MODEL_39936a4a72ff4f55967ba78e085b262c", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "b561c3bd6770467d93e1d30dbc992e18": { + "f3052f32a2ec4a0ea2b74a0af0145a23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2288,15 +2330,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e3d0a97220b543719dab4ef99b68dcba", + "layout": "IPY_MODEL_ed056681a76042b1860b846c89d27382", "placeholder": "​", - "style": "IPY_MODEL_47528177d2c543edb024ffb8b6bc1998", + "style": "IPY_MODEL_a24505594ee2402a8d205d1257ba22c9", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.50it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "dea3b61689a244708b5d4312b7a52605": { + "f3dcc2f4de32472fa2584c92a14f6bf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2349,30 +2391,25 @@ "width": null } }, - "dfa6c4ab3ab2423a805dc6978a1ae114": { + "f427f83296a442888e487519580d4e8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2429df20a0424175883d2dcbc3deca89", - "placeholder": "​", - "style": "IPY_MODEL_a9dcc453905e4466ae19b0d35707c5f0", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.33it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e3d0a97220b543719dab4ef99b68dcba": { + "faaec56bb79145bbb3f8a98d43a8186c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,57 +2462,20 @@ "width": null } }, - "e766070c2a274c7e9727c840de2d4622": { - "model_module": "@jupyter-widgets/base", + "feca83a3cb614b578074893f537289f1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 4387aa09d..de431813b 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -701,16 +701,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 872907eaa..9cdf523b0 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:52.309486Z", - "iopub.status.busy": "2024-06-13T18:33:52.309310Z", - "iopub.status.idle": "2024-06-13T18:33:53.720194Z", - "shell.execute_reply": "2024-06-13T18:33:53.719496Z" + "iopub.execute_input": "2024-06-14T00:28:35.971931Z", + "iopub.status.busy": "2024-06-14T00:28:35.971468Z", + "iopub.status.idle": "2024-06-14T00:28:37.103504Z", + "shell.execute_reply": "2024-06-14T00:28:37.103002Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-13 18:33:52-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-06-14 00:28:35-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,15 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::845:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "185.93.1.246, 2400:52e0:1a00::1067:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.246|:443... connected.\r\n" ] }, { @@ -129,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 6.05MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-06-13 18:33:52 (6.05 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-06-14 00:28:36 (6.49 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,23 +137,16 @@ " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", " inflating: data/train.txt \r\n", - " inflating: data/valid.txt " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n" + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-06-13 18:33:53-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.133.25, 52.217.112.1, 54.231.131.17, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.133.25|:443... connected.\r\n", + "--2024-06-14 00:28:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.33.97, 52.216.52.185, 52.216.36.193, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.33.97|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -181,10 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 96%[==================> ] 15.71M 38.4MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 39.6MB/s in 0.4s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", "\r\n", - "2024-06-13 18:33:53 (39.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-06-14 00:28:36 (203 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -201,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:53.722822Z", - "iopub.status.busy": "2024-06-13T18:33:53.722624Z", - "iopub.status.idle": "2024-06-13T18:33:55.029228Z", - "shell.execute_reply": "2024-06-13T18:33:55.028730Z" + "iopub.execute_input": "2024-06-14T00:28:37.105895Z", + "iopub.status.busy": "2024-06-14T00:28:37.105531Z", + "iopub.status.idle": "2024-06-14T00:28:38.321150Z", + "shell.execute_reply": "2024-06-14T00:28:38.320629Z" }, "nbsphinx": "hidden" }, @@ -215,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@70ae424689a9a31f90dee9e9570685540e995e44\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c749e9575af0de223ec1ca267e44104056818e4c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -241,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:55.031864Z", - "iopub.status.busy": "2024-06-13T18:33:55.031392Z", - "iopub.status.idle": "2024-06-13T18:33:55.035029Z", - "shell.execute_reply": "2024-06-13T18:33:55.034497Z" + "iopub.execute_input": "2024-06-14T00:28:38.323695Z", + "iopub.status.busy": "2024-06-14T00:28:38.323277Z", + "iopub.status.idle": "2024-06-14T00:28:38.326753Z", + "shell.execute_reply": "2024-06-14T00:28:38.326272Z" } }, "outputs": [], @@ -294,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:55.037130Z", - "iopub.status.busy": "2024-06-13T18:33:55.036748Z", - "iopub.status.idle": "2024-06-13T18:33:55.039836Z", - "shell.execute_reply": "2024-06-13T18:33:55.039288Z" + "iopub.execute_input": "2024-06-14T00:28:38.328721Z", + "iopub.status.busy": "2024-06-14T00:28:38.328409Z", + "iopub.status.idle": "2024-06-14T00:28:38.331360Z", + "shell.execute_reply": "2024-06-14T00:28:38.330938Z" }, "nbsphinx": "hidden" }, @@ -315,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:33:55.041839Z", - "iopub.status.busy": "2024-06-13T18:33:55.041419Z", - "iopub.status.idle": "2024-06-13T18:34:03.952944Z", - "shell.execute_reply": "2024-06-13T18:34:03.952460Z" + "iopub.execute_input": "2024-06-14T00:28:38.333257Z", + "iopub.status.busy": "2024-06-14T00:28:38.332910Z", + "iopub.status.idle": "2024-06-14T00:28:47.046580Z", + "shell.execute_reply": "2024-06-14T00:28:47.046028Z" } }, "outputs": [], @@ -392,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:03.955457Z", - "iopub.status.busy": "2024-06-13T18:34:03.955169Z", - "iopub.status.idle": "2024-06-13T18:34:03.960746Z", - "shell.execute_reply": "2024-06-13T18:34:03.960235Z" + "iopub.execute_input": "2024-06-14T00:28:47.049048Z", + "iopub.status.busy": "2024-06-14T00:28:47.048699Z", + "iopub.status.idle": "2024-06-14T00:28:47.054330Z", + "shell.execute_reply": "2024-06-14T00:28:47.053864Z" }, "nbsphinx": "hidden" }, @@ -435,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:03.962713Z", - "iopub.status.busy": "2024-06-13T18:34:03.962386Z", - "iopub.status.idle": "2024-06-13T18:34:04.308689Z", - "shell.execute_reply": "2024-06-13T18:34:04.308132Z" + "iopub.execute_input": "2024-06-14T00:28:47.056198Z", + "iopub.status.busy": "2024-06-14T00:28:47.055946Z", + "iopub.status.idle": "2024-06-14T00:28:47.391996Z", + "shell.execute_reply": "2024-06-14T00:28:47.391464Z" } }, "outputs": [], @@ -475,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:04.311151Z", - "iopub.status.busy": "2024-06-13T18:34:04.310804Z", - "iopub.status.idle": "2024-06-13T18:34:04.315289Z", - "shell.execute_reply": "2024-06-13T18:34:04.314813Z" + "iopub.execute_input": "2024-06-14T00:28:47.394377Z", + "iopub.status.busy": "2024-06-14T00:28:47.393978Z", + "iopub.status.idle": "2024-06-14T00:28:47.398421Z", + "shell.execute_reply": "2024-06-14T00:28:47.397870Z" } }, "outputs": [ @@ -550,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:04.317247Z", - "iopub.status.busy": "2024-06-13T18:34:04.316920Z", - "iopub.status.idle": "2024-06-13T18:34:06.651367Z", - "shell.execute_reply": "2024-06-13T18:34:06.650683Z" + "iopub.execute_input": "2024-06-14T00:28:47.400541Z", + "iopub.status.busy": "2024-06-14T00:28:47.400253Z", + "iopub.status.idle": "2024-06-14T00:28:49.663343Z", + "shell.execute_reply": "2024-06-14T00:28:49.662655Z" } }, "outputs": [], @@ -575,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.654380Z", - "iopub.status.busy": "2024-06-13T18:34:06.653629Z", - "iopub.status.idle": "2024-06-13T18:34:06.657823Z", - "shell.execute_reply": "2024-06-13T18:34:06.657340Z" + "iopub.execute_input": "2024-06-14T00:28:49.666473Z", + "iopub.status.busy": "2024-06-14T00:28:49.665725Z", + "iopub.status.idle": "2024-06-14T00:28:49.669864Z", + "shell.execute_reply": "2024-06-14T00:28:49.669380Z" } }, "outputs": [ @@ -614,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.659826Z", - "iopub.status.busy": "2024-06-13T18:34:06.659500Z", - "iopub.status.idle": "2024-06-13T18:34:06.664548Z", - "shell.execute_reply": "2024-06-13T18:34:06.663997Z" + "iopub.execute_input": "2024-06-14T00:28:49.671966Z", + "iopub.status.busy": "2024-06-14T00:28:49.671663Z", + "iopub.status.idle": "2024-06-14T00:28:49.676633Z", + "shell.execute_reply": "2024-06-14T00:28:49.676112Z" } }, "outputs": [ @@ -795,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.666632Z", - "iopub.status.busy": "2024-06-13T18:34:06.666311Z", - "iopub.status.idle": "2024-06-13T18:34:06.692017Z", - "shell.execute_reply": "2024-06-13T18:34:06.691585Z" + "iopub.execute_input": "2024-06-14T00:28:49.678592Z", + "iopub.status.busy": "2024-06-14T00:28:49.678328Z", + "iopub.status.idle": "2024-06-14T00:28:49.704133Z", + "shell.execute_reply": "2024-06-14T00:28:49.703584Z" } }, "outputs": [ @@ -900,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.694213Z", - "iopub.status.busy": "2024-06-13T18:34:06.693893Z", - "iopub.status.idle": "2024-06-13T18:34:06.698196Z", - "shell.execute_reply": "2024-06-13T18:34:06.697686Z" + "iopub.execute_input": "2024-06-14T00:28:49.706239Z", + "iopub.status.busy": "2024-06-14T00:28:49.706068Z", + "iopub.status.idle": "2024-06-14T00:28:49.710394Z", + "shell.execute_reply": "2024-06-14T00:28:49.709920Z" } }, "outputs": [ @@ -977,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:06.700179Z", - "iopub.status.busy": "2024-06-13T18:34:06.699872Z", - "iopub.status.idle": "2024-06-13T18:34:08.088769Z", - "shell.execute_reply": "2024-06-13T18:34:08.088169Z" + "iopub.execute_input": "2024-06-14T00:28:49.712383Z", + "iopub.status.busy": "2024-06-14T00:28:49.712092Z", + "iopub.status.idle": "2024-06-14T00:28:51.077199Z", + "shell.execute_reply": "2024-06-14T00:28:51.076595Z" } }, "outputs": [ @@ -1152,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-06-13T18:34:08.091045Z", - "iopub.status.busy": "2024-06-13T18:34:08.090855Z", - "iopub.status.idle": "2024-06-13T18:34:08.095098Z", - "shell.execute_reply": "2024-06-13T18:34:08.094640Z" + "iopub.execute_input": "2024-06-14T00:28:51.079278Z", + "iopub.status.busy": "2024-06-14T00:28:51.079087Z", + "iopub.status.idle": "2024-06-14T00:28:51.082992Z", + "shell.execute_reply": "2024-06-14T00:28:51.082581Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 98d21e4f6..f16b2786a 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.5", - commit_hash: "70ae424689a9a31f90dee9e9570685540e995e44", + commit_hash: "c749e9575af0de223ec1ca267e44104056818e4c", }; \ No newline at end of file