diff --git a/master/.buildinfo b/master/.buildinfo index f930016d0..09ac73dea 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: b4407d63d236faf6851915523c3d29b6 +config: 81095c8d2627180010760fe2bacaa397 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 443b2ea6d..c33766ea5 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index bb81d3696..f55457011 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index a8b81eec1..98e4b2e3b 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index cec05f4e0..7d19a6b9c 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 850f2ab5b..61cc2037b 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 31ebcdf8a..b6b40ed71 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 2249c9869..977773b7a 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index df1ec6e46..f2c6ab502 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 3dd45c029..45349bafa 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 0a877e18d..ffefbabb5 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index a5509d249..60165d3bc 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 11d3c02ca..e95d24320 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 2beca80ee..239aa3c21 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index b4350c556..9e117f42d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 4fcc5b22c..487c8d9a7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 24552d14d..ed40905a4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 420c6fc77..3084f400e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index f390c17f7..bc97854bd 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index c8b3a99d9..8b4362768 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index dd308bb3d..18444f042 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 8b3b79597..1e70e7c9d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 422243640..96472f20b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index d38562688..267a36fa4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index f91738826..68a15cb1a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 27133379b..8c82a7f6f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index dd6565d2d..61029a5ed 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index cc7c3ba99..6852e5141 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 6f6cf810a..28757f3fc 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index abcec836f..a03d1c92d 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index f31535737..e0d352666 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 46e353f8d..a99242581 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 9df79acb6..207e09214 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 48483e676..bf71fbf59 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 9c991d080..eb3a043a5 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index ba29b542d..3c2fd0b50 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 932bdeed6..90a0fc668 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index c9f4dbf51..80415654d 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 4b00159b8..4553bc187 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 292a47b0d..7e908ab5f 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 384b907e1..263535512 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 1baa2ed84..c999fd0b3 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 2c4bcea2f..6b4c78567 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index f4670e9b8..abe13ca7b 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 75838b269..c7a1bb700 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 4a7059dc0..015cb2c7a 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index a833786cd..d67ce4a16 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 00088f44b..63a665a4e 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 4f3ae53a5..478f3e5c2 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index deed20e61..800bebb36 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index b0e8bd3a1..37b2b5206 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index f60b94a6a..c81873c5e 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 17ee20c1a..d86610dbe 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 0280f9b3b..4bf4e7164 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index f1c092d2a..77faa240d 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 0bb1a98af..dc94218e5 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 3e433d136..d80bc6b25 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 647e38548..571095be0 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index b7211083d..2a1ca0285 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index fd6ca5dba..d60ba9bc7 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 21832f915..89e3df367 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index fae459fce..048aa4a04 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index db240a091..c82a0310d 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 916626323..be644a4f1 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index cb101b507..ae976ac8c 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 293cd34fe..2861cffc6 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index dcf8bf1af..20e8dbdfe 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 1279ebe67..bf7ef6ac8 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 873a04d06..904356899 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 5586a97f2..74d522232 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 44b309fa6..9cdbcbc8c 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index c6f31f24a..f30382e28 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index d1eb223e3..5d8d25a7d 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 3f54e6852..99967b0ce 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index ec44f5d62..814927842 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index 066a9ceb6..015740e61 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:37.968603Z", - "iopub.status.busy": "2023-12-28T10:49:37.968073Z", - "iopub.status.idle": "2023-12-28T10:49:41.247886Z", - "shell.execute_reply": "2023-12-28T10:49:41.247199Z" + "iopub.execute_input": "2024-01-02T16:42:27.655009Z", + "iopub.status.busy": "2024-01-02T16:42:27.654799Z", + "iopub.status.idle": "2024-01-02T16:42:30.993613Z", + "shell.execute_reply": "2024-01-02T16:42:30.992971Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:41.251136Z", - "iopub.status.busy": "2023-12-28T10:49:41.250759Z", - "iopub.status.idle": "2023-12-28T10:49:41.254222Z", - "shell.execute_reply": "2023-12-28T10:49:41.253705Z" + "iopub.execute_input": "2024-01-02T16:42:30.996941Z", + "iopub.status.busy": "2024-01-02T16:42:30.996304Z", + "iopub.status.idle": "2024-01-02T16:42:30.999846Z", + "shell.execute_reply": "2024-01-02T16:42:30.999274Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:41.256387Z", - "iopub.status.busy": "2023-12-28T10:49:41.256195Z", - "iopub.status.idle": "2023-12-28T10:49:41.261260Z", - "shell.execute_reply": "2023-12-28T10:49:41.260774Z" + "iopub.execute_input": "2024-01-02T16:42:31.002378Z", + "iopub.status.busy": "2024-01-02T16:42:31.001938Z", + "iopub.status.idle": "2024-01-02T16:42:31.007046Z", + "shell.execute_reply": "2024-01-02T16:42:31.006568Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-28T10:49:41.263804Z", - "iopub.status.busy": "2023-12-28T10:49:41.263321Z", - "iopub.status.idle": "2023-12-28T10:49:42.833923Z", - "shell.execute_reply": "2023-12-28T10:49:42.833149Z" + "iopub.execute_input": "2024-01-02T16:42:31.009477Z", + "iopub.status.busy": "2024-01-02T16:42:31.009069Z", + "iopub.status.idle": "2024-01-02T16:42:32.646804Z", + "shell.execute_reply": "2024-01-02T16:42:32.645951Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-28T10:49:42.836978Z", - "iopub.status.busy": "2023-12-28T10:49:42.836556Z", - "iopub.status.idle": "2023-12-28T10:49:42.848880Z", - "shell.execute_reply": "2023-12-28T10:49:42.848236Z" + "iopub.execute_input": "2024-01-02T16:42:32.650212Z", + "iopub.status.busy": "2024-01-02T16:42:32.649705Z", + "iopub.status.idle": "2024-01-02T16:42:32.662157Z", + "shell.execute_reply": "2024-01-02T16:42:32.661493Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:42.882023Z", - "iopub.status.busy": "2023-12-28T10:49:42.881541Z", - "iopub.status.idle": "2023-12-28T10:49:42.887474Z", - "shell.execute_reply": "2023-12-28T10:49:42.886916Z" + "iopub.execute_input": "2024-01-02T16:42:32.694746Z", + "iopub.status.busy": "2024-01-02T16:42:32.694276Z", + "iopub.status.idle": "2024-01-02T16:42:32.700229Z", + "shell.execute_reply": "2024-01-02T16:42:32.699602Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-28T10:49:42.890058Z", - "iopub.status.busy": "2023-12-28T10:49:42.889601Z", - "iopub.status.idle": "2023-12-28T10:49:43.603575Z", - "shell.execute_reply": "2023-12-28T10:49:43.602915Z" + "iopub.execute_input": "2024-01-02T16:42:32.702997Z", + "iopub.status.busy": "2024-01-02T16:42:32.702522Z", + "iopub.status.idle": "2024-01-02T16:42:33.443249Z", + "shell.execute_reply": "2024-01-02T16:42:33.442619Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:43.606262Z", - "iopub.status.busy": "2023-12-28T10:49:43.605871Z", - "iopub.status.idle": "2023-12-28T10:49:44.155731Z", - "shell.execute_reply": "2023-12-28T10:49:44.155132Z" + "iopub.execute_input": "2024-01-02T16:42:33.445911Z", + "iopub.status.busy": "2024-01-02T16:42:33.445481Z", + "iopub.status.idle": "2024-01-02T16:42:34.287425Z", + "shell.execute_reply": "2024-01-02T16:42:34.286795Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2023-12-28T10:49:44.158650Z", - "iopub.status.busy": "2023-12-28T10:49:44.158414Z", - "iopub.status.idle": "2023-12-28T10:49:44.183087Z", - "shell.execute_reply": "2023-12-28T10:49:44.182440Z" + "iopub.execute_input": "2024-01-02T16:42:34.290342Z", + "iopub.status.busy": "2024-01-02T16:42:34.289962Z", + "iopub.status.idle": "2024-01-02T16:42:34.312682Z", + "shell.execute_reply": "2024-01-02T16:42:34.312152Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:44.185879Z", - "iopub.status.busy": "2023-12-28T10:49:44.185512Z", - "iopub.status.idle": "2023-12-28T10:49:44.189005Z", - "shell.execute_reply": "2023-12-28T10:49:44.188387Z" + "iopub.execute_input": "2024-01-02T16:42:34.315167Z", + "iopub.status.busy": "2024-01-02T16:42:34.314793Z", + "iopub.status.idle": "2024-01-02T16:42:34.318141Z", + "shell.execute_reply": "2024-01-02T16:42:34.317614Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:44.191401Z", - "iopub.status.busy": "2023-12-28T10:49:44.191195Z", - "iopub.status.idle": "2023-12-28T10:50:03.391225Z", - "shell.execute_reply": "2023-12-28T10:50:03.390522Z" + "iopub.execute_input": "2024-01-02T16:42:34.320385Z", + "iopub.status.busy": "2024-01-02T16:42:34.320034Z", + "iopub.status.idle": "2024-01-02T16:42:53.303371Z", + "shell.execute_reply": "2024-01-02T16:42:53.302681Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:03.394361Z", - "iopub.status.busy": "2023-12-28T10:50:03.394155Z", - "iopub.status.idle": "2023-12-28T10:50:03.398891Z", - "shell.execute_reply": "2023-12-28T10:50:03.398368Z" + "iopub.execute_input": "2024-01-02T16:42:53.306931Z", + "iopub.status.busy": "2024-01-02T16:42:53.306520Z", + "iopub.status.idle": "2024-01-02T16:42:53.311354Z", + "shell.execute_reply": "2024-01-02T16:42:53.310768Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:03.401189Z", - "iopub.status.busy": "2023-12-28T10:50:03.400996Z", - "iopub.status.idle": "2023-12-28T10:50:08.938865Z", - "shell.execute_reply": "2023-12-28T10:50:08.938132Z" + "iopub.execute_input": "2024-01-02T16:42:53.314000Z", + "iopub.status.busy": "2024-01-02T16:42:53.313578Z", + "iopub.status.idle": "2024-01-02T16:42:58.869258Z", + "shell.execute_reply": "2024-01-02T16:42:58.868544Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:08.943596Z", - "iopub.status.busy": "2023-12-28T10:50:08.942230Z", - "iopub.status.idle": "2023-12-28T10:50:08.950322Z", - "shell.execute_reply": "2023-12-28T10:50:08.949715Z" + "iopub.execute_input": "2024-01-02T16:42:58.872743Z", + "iopub.status.busy": "2024-01-02T16:42:58.872378Z", + "iopub.status.idle": "2024-01-02T16:42:58.878472Z", + "shell.execute_reply": "2024-01-02T16:42:58.877818Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:08.954876Z", - "iopub.status.busy": "2023-12-28T10:50:08.953573Z", - "iopub.status.idle": "2023-12-28T10:50:09.060592Z", - "shell.execute_reply": "2023-12-28T10:50:09.059756Z" + "iopub.execute_input": "2024-01-02T16:42:58.882057Z", + "iopub.status.busy": "2024-01-02T16:42:58.881797Z", + "iopub.status.idle": "2024-01-02T16:42:58.987900Z", + "shell.execute_reply": "2024-01-02T16:42:58.987100Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.063401Z", - "iopub.status.busy": "2023-12-28T10:50:09.062951Z", - "iopub.status.idle": "2023-12-28T10:50:09.073340Z", - "shell.execute_reply": "2023-12-28T10:50:09.072785Z" + "iopub.execute_input": "2024-01-02T16:42:58.991077Z", + "iopub.status.busy": "2024-01-02T16:42:58.990445Z", + "iopub.status.idle": "2024-01-02T16:42:59.000419Z", + "shell.execute_reply": "2024-01-02T16:42:58.999876Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.075862Z", - "iopub.status.busy": "2023-12-28T10:50:09.075472Z", - "iopub.status.idle": "2023-12-28T10:50:09.083854Z", - "shell.execute_reply": "2023-12-28T10:50:09.083205Z" + "iopub.execute_input": "2024-01-02T16:42:59.002804Z", + "iopub.status.busy": "2024-01-02T16:42:59.002585Z", + "iopub.status.idle": "2024-01-02T16:42:59.011368Z", + "shell.execute_reply": "2024-01-02T16:42:59.010819Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.086497Z", - "iopub.status.busy": "2023-12-28T10:50:09.086109Z", - "iopub.status.idle": "2023-12-28T10:50:09.090772Z", - "shell.execute_reply": "2023-12-28T10:50:09.090154Z" + "iopub.execute_input": "2024-01-02T16:42:59.013793Z", + "iopub.status.busy": "2024-01-02T16:42:59.013584Z", + "iopub.status.idle": "2024-01-02T16:42:59.018718Z", + "shell.execute_reply": "2024-01-02T16:42:59.018177Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.093175Z", - "iopub.status.busy": "2023-12-28T10:50:09.092800Z", - "iopub.status.idle": "2023-12-28T10:50:09.098848Z", - "shell.execute_reply": "2023-12-28T10:50:09.098313Z" + "iopub.execute_input": "2024-01-02T16:42:59.021014Z", + "iopub.status.busy": "2024-01-02T16:42:59.020813Z", + "iopub.status.idle": "2024-01-02T16:42:59.027483Z", + "shell.execute_reply": "2024-01-02T16:42:59.026933Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.101451Z", - "iopub.status.busy": "2023-12-28T10:50:09.101044Z", - "iopub.status.idle": "2023-12-28T10:50:09.215829Z", - "shell.execute_reply": "2023-12-28T10:50:09.215205Z" + "iopub.execute_input": "2024-01-02T16:42:59.030039Z", + "iopub.status.busy": "2024-01-02T16:42:59.029810Z", + "iopub.status.idle": "2024-01-02T16:42:59.147564Z", + "shell.execute_reply": "2024-01-02T16:42:59.146890Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.218431Z", - "iopub.status.busy": "2023-12-28T10:50:09.218053Z", - "iopub.status.idle": "2023-12-28T10:50:09.325661Z", - "shell.execute_reply": "2023-12-28T10:50:09.324962Z" + "iopub.execute_input": "2024-01-02T16:42:59.150592Z", + "iopub.status.busy": "2024-01-02T16:42:59.150096Z", + "iopub.status.idle": "2024-01-02T16:42:59.262500Z", + "shell.execute_reply": "2024-01-02T16:42:59.261779Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.328263Z", - "iopub.status.busy": "2023-12-28T10:50:09.327856Z", - "iopub.status.idle": "2023-12-28T10:50:09.436418Z", - "shell.execute_reply": "2023-12-28T10:50:09.435722Z" + "iopub.execute_input": "2024-01-02T16:42:59.265187Z", + "iopub.status.busy": "2024-01-02T16:42:59.264844Z", + "iopub.status.idle": "2024-01-02T16:42:59.374141Z", + "shell.execute_reply": "2024-01-02T16:42:59.373468Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.439135Z", - "iopub.status.busy": "2023-12-28T10:50:09.438746Z", - "iopub.status.idle": "2023-12-28T10:50:09.546764Z", - "shell.execute_reply": "2023-12-28T10:50:09.546104Z" + "iopub.execute_input": "2024-01-02T16:42:59.376846Z", + "iopub.status.busy": "2024-01-02T16:42:59.376511Z", + "iopub.status.idle": "2024-01-02T16:42:59.489951Z", + "shell.execute_reply": "2024-01-02T16:42:59.489279Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.549298Z", - "iopub.status.busy": "2023-12-28T10:50:09.549087Z", - "iopub.status.idle": "2023-12-28T10:50:09.552778Z", - "shell.execute_reply": "2023-12-28T10:50:09.552230Z" + "iopub.execute_input": "2024-01-02T16:42:59.492637Z", + "iopub.status.busy": "2024-01-02T16:42:59.492165Z", + "iopub.status.idle": "2024-01-02T16:42:59.495759Z", + "shell.execute_reply": "2024-01-02T16:42:59.495225Z" }, "nbsphinx": "hidden" }, @@ -1377,7 +1377,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0053385b8d0949c392857b68c25c20df": { + "0087ef5a32144b6c8bec34e9845b3464": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1429,7 +1429,65 @@ "width": null } }, - "083a7719dc494f76957e51bc9144a7c1": { + "035872182c9143ad8f86a89acc899334": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_455d24315ae947cc8f2b0ba6388499b4", + "placeholder": "​", + "style": "IPY_MODEL_44eff4de8493449e8a1eab525d8b2a71", + "value": " 15.9M/15.9M [00:00<00:00, 322MB/s]" + } + }, + "13fe3515fa2f4b0b9f901f4f9357b3c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f9412dd6609c4c359154bcdfdd0acbe3", + "IPY_MODEL_59a5497f2eb84d2a9da51e49ceeb98f3", + "IPY_MODEL_b812c970fae941f287f8a4f8c76f6ac6" + ], + "layout": "IPY_MODEL_e83ff9e0dab744e1b2bb2a9db4c3abdf" + } + }, + "157048c06e264f86bda3ef419060a06c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1e0ea345b83745549cb6416c44dd86e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1481,29 +1539,28 @@ "width": null } }, - "0b41fab769e945ff8579771955e47a7e": { + "23061bab7caf4050b58f287fc3ec33a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_68b89f6726bf4eca8cd7bf2a7d8f6c65", - "IPY_MODEL_f365411cd1444832b8012041bb95907b", - "IPY_MODEL_421f8744d6194e20a660a55aa540c912" - ], - "layout": "IPY_MODEL_fbf7075cd01c4b6f929393fcfc8d68b8" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4f31d78cc76a44d2878b81f03b3d02ea", + "placeholder": "​", + "style": "IPY_MODEL_9292b15e9b844d9a9c91dc007dd50283", + "value": "embedding_model.ckpt: 100%" } }, - "16512d5656144c5eb40a6c62d4966fe3": { + "233dc78cbaf5429783458584eef59a3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1555,44 +1612,49 @@ "width": null } }, - "17bd9f3b6c4b4783beadd9210d45501f": { + "2642d234ac3d4ccd9d2eaef41f7d78cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_87729e672c2d4ce2ba6a81b9da22e94f", - "IPY_MODEL_f3d936ca3c6e4573a2920e5c4c15ac6c", - "IPY_MODEL_e797666dfb5147acbc966d774965f0d4" - ], - "layout": "IPY_MODEL_79732b67a74d4267977a5c093caa7000" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc1f9fd001904744ae71a86d00427563", + "placeholder": "​", + "style": "IPY_MODEL_6678305566c64527be48b5e006018f7c", + "value": "label_encoder.txt: 100%" } }, - "186e084f99e84f7c8fd0b51cedb9f974": { + "2b5886d457e74a0895122c12a89d948e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a273dc0e93a1499b88571d2c39f7b31c", + "placeholder": "​", + "style": "IPY_MODEL_335f99df41e04f3182b16e23f6f63c44", + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "1a066142dce2413c9639bc8d8d30d658": { + "2d5f0e761ca44ddb9eba68d96cbd3514": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1608,7 +1670,7 @@ "description_width": "" } }, - "1f9f80b63e324c639867795266559d9c": { + "2dc84d5400314013bc99a05b1d35be1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1660,7 +1722,22 @@ "width": null } }, - "2dd4d023cf954d5cab921299018cb173": { + "335f99df41e04f3182b16e23f6f63c44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "337643ebaec0449aa9e3ae4146e1a9e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1712,68 +1789,7 @@ "width": null } }, - "2e3cdb0c7aba412bb0586c941f9ead84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "33582bcb8ede4407b485d42e36541e59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a12a4826c9084fdf86733da3675f8037", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b32901c5ee514d50ac8e6f5122ffa7eb", - "value": 3201.0 - } - }, - "421f8744d6194e20a660a55aa540c912": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2dd4d023cf954d5cab921299018cb173", - "placeholder": "​", - "style": "IPY_MODEL_ce46fde3101a4ee2bc65b97db93c7035", - "value": " 15.9M/15.9M [00:00<00:00, 345MB/s]" - } - }, - "4b84dadd3a044e088fd65bfb0664432b": { + "35df409f12924faabc452ed61e5ffa88": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1825,53 +1841,22 @@ "width": null } }, - "524846c05ee748419d3a5fcec0fe74a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f6e6e81be61947d1a3570d3762b32cb0", - "IPY_MODEL_5afd1de248dc4457b2648126d12212ac", - "IPY_MODEL_b34f459edf974edbae73845ec97afd01" - ], - "layout": "IPY_MODEL_a7bdb9d0c5454dab99da16dac727cfdb" - } - }, - "5afd1de248dc4457b2648126d12212ac": { + "44eff4de8493449e8a1eab525d8b2a71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0053385b8d0949c392857b68c25c20df", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_63685b0fb8fe4a31a64c83c9ef236e26", - "value": 128619.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "5efae04d3267437abfd1419b0114ca8b": { + "455d24315ae947cc8f2b0ba6388499b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1923,23 +1908,7 @@ "width": null } }, - "63685b0fb8fe4a31a64c83c9ef236e26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "68b89f6726bf4eca8cd7bf2a7d8f6c65": { + "4983d8113c63419f93ff80c4d6a5d5c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1954,43 +1923,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f22ef6b831894f3e83dba951bc27b73c", + "layout": "IPY_MODEL_1e0ea345b83745549cb6416c44dd86e6", "placeholder": "​", - "style": "IPY_MODEL_99050cbe69404e6f954be1e0ce084d7c", - "value": "classifier.ckpt: 100%" - } - }, - "68ec5a0d5997405a82e27be239693ac0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "71ae6f7f46ca41b8b1d29c43bd426598": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_9897f25c10154a29aa042fad42a78591", + "value": " 16.9M/16.9M [00:00<00:00, 158MB/s]" } }, - "73d02e4bcd8a419dbe0265e83aa6c1f0": { + "4f31d78cc76a44d2878b81f03b3d02ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2042,59 +1981,53 @@ "width": null } }, - "79732b67a74d4267977a5c093caa7000": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "59a5497f2eb84d2a9da51e49ceeb98f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_233dc78cbaf5429783458584eef59a3d", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bcccb7c786e14c64a02d7b9b9e59311d", + "value": 2041.0 + } + }, + "60c8340290db4347ab6f65ce3ca4d11c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_23061bab7caf4050b58f287fc3ec33a6", + "IPY_MODEL_92f62436bcd944f78efc7babcce019da", + "IPY_MODEL_4983d8113c63419f93ff80c4d6a5d5c3" + ], + "layout": "IPY_MODEL_fa6b2eb20ebf44718d7f3d8903fc8fc4" } }, - "7f22531a00764a7b97a7ae5cd2f285f7": { + "6426df38855443bb838b7a3bec6790fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2146,7 +2079,22 @@ "width": null } }, - "809ad3c5936148cbb415f950203ffb18": { + "6678305566c64527be48b5e006018f7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "687feb5310c2488ca4eb14ca4c8f2ad5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2161,35 +2109,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ccdcf0da3c724ee292bdf16fa4322cf4", - "IPY_MODEL_f0a87417b61b4d1ea5297d2c42ed9cae", - "IPY_MODEL_c01f650e1b91421398db09bd11b85534" + "IPY_MODEL_2b5886d457e74a0895122c12a89d948e", + "IPY_MODEL_adb86bfca83d45c6b1b1c371d9da559b", + "IPY_MODEL_9fa1f2883ea94f4faa2641df8ceb21b8" ], - "layout": "IPY_MODEL_16512d5656144c5eb40a6c62d4966fe3" + "layout": "IPY_MODEL_0087ef5a32144b6c8bec34e9845b3464" } }, - "843fb19da7f548398dc0377674cd1268": { + "739db12d623e4c43a91791914b371fee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_083a7719dc494f76957e51bc9144a7c1", - "placeholder": "​", - "style": "IPY_MODEL_f2ff2ef250af428cab639d6bab14a562", - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "87729e672c2d4ce2ba6a81b9da22e94f": { + "872dfdc1dc2c451fa785679707d3e254": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2204,13 +2147,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5efae04d3267437abfd1419b0114ca8b", + "layout": "IPY_MODEL_35df409f12924faabc452ed61e5ffa88", "placeholder": "​", - "style": "IPY_MODEL_bc61a30b92484d8990aa7b71bf342f82", - "value": "hyperparams.yaml: 100%" + "style": "IPY_MODEL_9be07746a74e46438b53389a78c20bb2", + "value": " 129k/129k [00:00<00:00, 2.74MB/s]" } }, - "87b9d9fd92514a929ab030bde176967f": { + "9037c8328d8040b4897bf11f9e592aec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2262,7 +2205,46 @@ "width": null } }, - "99050cbe69404e6f954be1e0ce084d7c": { + "9292b15e9b844d9a9c91dc007dd50283": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "92f62436bcd944f78efc7babcce019da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d0f0a981495d45728f277fb082ec264e", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_739db12d623e4c43a91791914b371fee", + "value": 16887676.0 + } + }, + "93fae6dec60d4a8098b79425198753d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2277,7 +2259,7 @@ "description_width": "" } }, - "a12a4826c9084fdf86733da3675f8037": { + "9600d17d803c4304a3c07d93fdd021a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2329,7 +2311,111 @@ "width": null } }, - "a7bdb9d0c5454dab99da16dac727cfdb": { + "9897f25c10154a29aa042fad42a78591": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a21c591eb3d4b80b61b6d311ccdbde1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2642d234ac3d4ccd9d2eaef41f7d78cd", + "IPY_MODEL_c6616e9e2c484e6688962d7adfc41915", + "IPY_MODEL_872dfdc1dc2c451fa785679707d3e254" + ], + "layout": "IPY_MODEL_2dc84d5400314013bc99a05b1d35be1e" + } + }, + "9be07746a74e46438b53389a78c20bb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c14092589eb40d1b823a51b799c5e9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9fa1f2883ea94f4faa2641df8ceb21b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9600d17d803c4304a3c07d93fdd021a2", + "placeholder": "​", + "style": "IPY_MODEL_93fae6dec60d4a8098b79425198753d8", + "value": " 3.20k/3.20k [00:00<00:00, 576kB/s]" + } + }, + "a077719fd7e742b09418f746b303c129": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a273dc0e93a1499b88571d2c39f7b31c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2381,7 +2467,7 @@ "width": null } }, - "ab46063ba5884c25bbb67861e9df900e": { + "a8c5961711a0447d849d893377535e47": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2433,163 +2519,147 @@ "width": null } }, - "b32901c5ee514d50ac8e6f5122ffa7eb": { + "ad453df3073a41bb87c6e11612f47065": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "b34f459edf974edbae73845ec97afd01": { + "adb86bfca83d45c6b1b1c371d9da559b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b3feb573217b4162bb80e913db68a16f", - "placeholder": "​", - "style": "IPY_MODEL_71ae6f7f46ca41b8b1d29c43bd426598", - "value": " 129k/129k [00:00<00:00, 13.1MB/s]" + "layout": "IPY_MODEL_e264c0d7bd7c411d9dc4b82b9cbe3531", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d5f0e761ca44ddb9eba68d96cbd3514", + "value": 3201.0 } }, - "b3feb573217b4162bb80e913db68a16f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "af075ffd2f734c8b8d8ed1beba3080e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6426df38855443bb838b7a3bec6790fd", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cabb6cdd891b4c3aa4203c6f62b574bb", + "value": 15856877.0 } }, - "b493c78b58574866a742de0b1549eecb": { + "b812c970fae941f287f8a4f8c76f6ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_337643ebaec0449aa9e3ae4146e1a9e4", + "placeholder": "​", + "style": "IPY_MODEL_9c14092589eb40d1b823a51b799c5e9a", + "value": " 2.04k/2.04k [00:00<00:00, 339kB/s]" } }, - "ba113e57ee6b45be85187c3b3c1aa630": { + "bcccb7c786e14c64a02d7b9b9e59311d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "bc61a30b92484d8990aa7b71bf342f82": { + "c6616e9e2c484e6688962d7adfc41915": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_edc9dafcaf924ab2a2c54829dd7fc370", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a077719fd7e742b09418f746b303c129", + "value": 128619.0 } }, - "c01f650e1b91421398db09bd11b85534": { + "cabb6cdd891b4c3aa4203c6f62b574bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7f22531a00764a7b97a7ae5cd2f285f7", - "placeholder": "​", - "style": "IPY_MODEL_186e084f99e84f7c8fd0b51cedb9f974", - "value": " 16.9M/16.9M [00:00<00:00, 275MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c6f71b2028154d16a58578947d83cc27": { + "cc1f9fd001904744ae71a86d00427563": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2641,58 +2711,7 @@ "width": null } }, - "ccdcf0da3c724ee292bdf16fa4322cf4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_87b9d9fd92514a929ab030bde176967f", - "placeholder": "​", - "style": "IPY_MODEL_ce13c544ce7e432ea69d60307d7153b7", - "value": "embedding_model.ckpt: 100%" - } - }, - "ce13c544ce7e432ea69d60307d7153b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ce46fde3101a4ee2bc65b97db93c7035": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dadd7d7c758b4d1f994208614b9d3193": { + "d0f0a981495d45728f277fb082ec264e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2744,28 +2763,7 @@ "width": null } }, - "e31a4b36cd5e41bd9171cf531ef604bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dadd7d7c758b4d1f994208614b9d3193", - "placeholder": "​", - "style": "IPY_MODEL_eee78ec5c4aa43f7add70a3f3dd1ccd8", - "value": " 3.20k/3.20k [00:00<00:00, 541kB/s]" - } - }, - "e66a327a542a46e58c9e673750803fb2": { + "e264c0d7bd7c411d9dc4b82b9cbe3531": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2817,28 +2815,7 @@ "width": null } }, - "e797666dfb5147acbc966d774965f0d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1f9f80b63e324c639867795266559d9c", - "placeholder": "​", - "style": "IPY_MODEL_68ec5a0d5997405a82e27be239693ac0", - "value": " 2.04k/2.04k [00:00<00:00, 345kB/s]" - } - }, - "ea89448c7a7b4f93bbb2b073cceb6f7e": { + "e61a2386a81f4f6085910c2cbd0e42af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2853,53 +2830,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_843fb19da7f548398dc0377674cd1268", - "IPY_MODEL_33582bcb8ede4407b485d42e36541e59", - "IPY_MODEL_e31a4b36cd5e41bd9171cf531ef604bc" + "IPY_MODEL_ee8cce41c67943d692e45df5672e1eaf", + "IPY_MODEL_af075ffd2f734c8b8d8ed1beba3080e9", + "IPY_MODEL_035872182c9143ad8f86a89acc899334" ], - "layout": "IPY_MODEL_ab46063ba5884c25bbb67861e9df900e" + "layout": "IPY_MODEL_fe2b9a79029841e980ca44eab24ef5f9" } }, - "eee78ec5c4aa43f7add70a3f3dd1ccd8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f0a87417b61b4d1ea5297d2c42ed9cae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e66a327a542a46e58c9e673750803fb2", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e3cdb0c7aba412bb0586c941f9ead84", - "value": 16887676.0 - } - }, - "f22ef6b831894f3e83dba951bc27b73c": { + "e83ff9e0dab744e1b2bb2a9db4c3abdf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2951,70 +2889,80 @@ "width": null } }, - "f2ff2ef250af428cab639d6bab14a562": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "edc9dafcaf924ab2a2c54829dd7fc370": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f365411cd1444832b8012041bb95907b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4b84dadd3a044e088fd65bfb0664432b", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b493c78b58574866a742de0b1549eecb", - "value": 15856877.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f3d936ca3c6e4573a2920e5c4c15ac6c": { + "ee8cce41c67943d692e45df5672e1eaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c6f71b2028154d16a58578947d83cc27", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a066142dce2413c9639bc8d8d30d658", - "value": 2041.0 + "layout": "IPY_MODEL_a8c5961711a0447d849d893377535e47", + "placeholder": "​", + "style": "IPY_MODEL_ad453df3073a41bb87c6e11612f47065", + "value": "classifier.ckpt: 100%" } }, - "f6e6e81be61947d1a3570d3762b32cb0": { + "f9412dd6609c4c359154bcdfdd0acbe3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3029,13 +2977,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_73d02e4bcd8a419dbe0265e83aa6c1f0", + "layout": "IPY_MODEL_9037c8328d8040b4897bf11f9e592aec", "placeholder": "​", - "style": "IPY_MODEL_ba113e57ee6b45be85187c3b3c1aa630", - "value": "label_encoder.txt: 100%" + "style": "IPY_MODEL_157048c06e264f86bda3ef419060a06c", + "value": "hyperparams.yaml: 100%" + } + }, + "fa6b2eb20ebf44718d7f3d8903fc8fc4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fbf7075cd01c4b6f929393fcfc8d68b8": { + "fe2b9a79029841e980ca44eab24ef5f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 4526a8399..ecb2cffcb 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:15.143831Z", - "iopub.status.busy": "2023-12-28T10:50:15.143643Z", - "iopub.status.idle": "2023-12-28T10:50:16.225589Z", - "shell.execute_reply": "2023-12-28T10:50:16.224921Z" + "iopub.execute_input": "2024-01-02T16:43:04.926980Z", + "iopub.status.busy": "2024-01-02T16:43:04.926484Z", + "iopub.status.idle": "2024-01-02T16:43:06.013759Z", + "shell.execute_reply": "2024-01-02T16:43:06.013067Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.228524Z", - "iopub.status.busy": "2023-12-28T10:50:16.228242Z", - "iopub.status.idle": "2023-12-28T10:50:16.231362Z", - "shell.execute_reply": "2023-12-28T10:50:16.230794Z" + "iopub.execute_input": "2024-01-02T16:43:06.016851Z", + "iopub.status.busy": "2024-01-02T16:43:06.016545Z", + "iopub.status.idle": "2024-01-02T16:43:06.019887Z", + "shell.execute_reply": "2024-01-02T16:43:06.019295Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.233889Z", - "iopub.status.busy": "2023-12-28T10:50:16.233478Z", - "iopub.status.idle": "2023-12-28T10:50:16.242734Z", - "shell.execute_reply": "2023-12-28T10:50:16.242149Z" + "iopub.execute_input": "2024-01-02T16:43:06.022336Z", + "iopub.status.busy": "2024-01-02T16:43:06.021997Z", + "iopub.status.idle": "2024-01-02T16:43:06.031289Z", + "shell.execute_reply": "2024-01-02T16:43:06.030678Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.245105Z", - "iopub.status.busy": "2023-12-28T10:50:16.244739Z", - "iopub.status.idle": "2023-12-28T10:50:16.249707Z", - "shell.execute_reply": "2023-12-28T10:50:16.249227Z" + "iopub.execute_input": "2024-01-02T16:43:06.033592Z", + "iopub.status.busy": "2024-01-02T16:43:06.033248Z", + "iopub.status.idle": "2024-01-02T16:43:06.038438Z", + "shell.execute_reply": "2024-01-02T16:43:06.037916Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.252278Z", - "iopub.status.busy": "2023-12-28T10:50:16.251909Z", - "iopub.status.idle": "2023-12-28T10:50:16.525316Z", - "shell.execute_reply": "2023-12-28T10:50:16.524688Z" + "iopub.execute_input": "2024-01-02T16:43:06.040816Z", + "iopub.status.busy": "2024-01-02T16:43:06.040615Z", + "iopub.status.idle": "2024-01-02T16:43:06.323660Z", + "shell.execute_reply": "2024-01-02T16:43:06.323026Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.528184Z", - "iopub.status.busy": "2023-12-28T10:50:16.527851Z", - "iopub.status.idle": "2023-12-28T10:50:16.838734Z", - "shell.execute_reply": "2023-12-28T10:50:16.838066Z" + "iopub.execute_input": "2024-01-02T16:43:06.326553Z", + "iopub.status.busy": "2024-01-02T16:43:06.326323Z", + "iopub.status.idle": "2024-01-02T16:43:06.698597Z", + "shell.execute_reply": "2024-01-02T16:43:06.697906Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.841418Z", - "iopub.status.busy": "2023-12-28T10:50:16.841034Z", - "iopub.status.idle": "2023-12-28T10:50:16.865849Z", - "shell.execute_reply": "2023-12-28T10:50:16.865312Z" + "iopub.execute_input": "2024-01-02T16:43:06.701335Z", + "iopub.status.busy": "2024-01-02T16:43:06.700921Z", + "iopub.status.idle": "2024-01-02T16:43:06.726434Z", + "shell.execute_reply": "2024-01-02T16:43:06.725786Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.868637Z", - "iopub.status.busy": "2023-12-28T10:50:16.868251Z", - "iopub.status.idle": "2023-12-28T10:50:16.880006Z", - "shell.execute_reply": "2023-12-28T10:50:16.879381Z" + "iopub.execute_input": "2024-01-02T16:43:06.729295Z", + "iopub.status.busy": "2024-01-02T16:43:06.728817Z", + "iopub.status.idle": "2024-01-02T16:43:06.740870Z", + "shell.execute_reply": "2024-01-02T16:43:06.740224Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.882551Z", - "iopub.status.busy": "2023-12-28T10:50:16.882060Z", - "iopub.status.idle": "2023-12-28T10:50:18.165561Z", - "shell.execute_reply": "2023-12-28T10:50:18.164811Z" + "iopub.execute_input": "2024-01-02T16:43:06.743725Z", + "iopub.status.busy": "2024-01-02T16:43:06.743356Z", + "iopub.status.idle": "2024-01-02T16:43:08.041298Z", + "shell.execute_reply": "2024-01-02T16:43:08.040623Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.168547Z", - "iopub.status.busy": "2023-12-28T10:50:18.167995Z", - "iopub.status.idle": "2023-12-28T10:50:18.190487Z", - "shell.execute_reply": "2023-12-28T10:50:18.189870Z" + "iopub.execute_input": "2024-01-02T16:43:08.044353Z", + "iopub.status.busy": "2024-01-02T16:43:08.043895Z", + "iopub.status.idle": "2024-01-02T16:43:08.068172Z", + "shell.execute_reply": "2024-01-02T16:43:08.067547Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.193008Z", - "iopub.status.busy": "2023-12-28T10:50:18.192629Z", - "iopub.status.idle": "2023-12-28T10:50:18.213206Z", - "shell.execute_reply": "2023-12-28T10:50:18.212525Z" + "iopub.execute_input": "2024-01-02T16:43:08.070855Z", + "iopub.status.busy": "2024-01-02T16:43:08.070461Z", + "iopub.status.idle": "2024-01-02T16:43:08.091981Z", + "shell.execute_reply": "2024-01-02T16:43:08.091312Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:297: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:297: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:327: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.215885Z", - "iopub.status.busy": "2023-12-28T10:50:18.215443Z", - "iopub.status.idle": "2023-12-28T10:50:18.230713Z", - "shell.execute_reply": "2023-12-28T10:50:18.230077Z" + "iopub.execute_input": "2024-01-02T16:43:08.094876Z", + "iopub.status.busy": "2024-01-02T16:43:08.094479Z", + "iopub.status.idle": "2024-01-02T16:43:08.109093Z", + "shell.execute_reply": "2024-01-02T16:43:08.108576Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.233476Z", - "iopub.status.busy": "2023-12-28T10:50:18.233097Z", - "iopub.status.idle": "2023-12-28T10:50:18.256097Z", - "shell.execute_reply": "2023-12-28T10:50:18.255392Z" + "iopub.execute_input": "2024-01-02T16:43:08.111744Z", + "iopub.status.busy": "2024-01-02T16:43:08.111369Z", + "iopub.status.idle": "2024-01-02T16:43:08.133931Z", + "shell.execute_reply": "2024-01-02T16:43:08.133269Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "90124a1816fc4b2398ba329fa7593bf7", + "model_id": "0bf73f39809642ee8f09fa8160e6e0bf", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.259768Z", - "iopub.status.busy": "2023-12-28T10:50:18.259350Z", - "iopub.status.idle": "2023-12-28T10:50:18.274323Z", - "shell.execute_reply": "2023-12-28T10:50:18.273773Z" + "iopub.execute_input": "2024-01-02T16:43:08.137034Z", + "iopub.status.busy": "2024-01-02T16:43:08.136658Z", + "iopub.status.idle": "2024-01-02T16:43:08.151983Z", + "shell.execute_reply": "2024-01-02T16:43:08.151457Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.276936Z", - "iopub.status.busy": "2023-12-28T10:50:18.276560Z", - "iopub.status.idle": "2023-12-28T10:50:18.282972Z", - "shell.execute_reply": "2023-12-28T10:50:18.282455Z" + "iopub.execute_input": "2024-01-02T16:43:08.154411Z", + "iopub.status.busy": "2024-01-02T16:43:08.154107Z", + "iopub.status.idle": "2024-01-02T16:43:08.160430Z", + "shell.execute_reply": "2024-01-02T16:43:08.159900Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.285438Z", - "iopub.status.busy": "2023-12-28T10:50:18.285073Z", - "iopub.status.idle": "2023-12-28T10:50:18.303533Z", - "shell.execute_reply": "2023-12-28T10:50:18.302873Z" + "iopub.execute_input": "2024-01-02T16:43:08.162892Z", + "iopub.status.busy": "2024-01-02T16:43:08.162546Z", + "iopub.status.idle": "2024-01-02T16:43:08.182474Z", + "shell.execute_reply": "2024-01-02T16:43:08.181772Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06525292aee94ad1afbcfb7c80b2ebbd": { + "0237fcfb7df84d0a961faa9a854f084f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1482,61 +1482,7 @@ "width": null } }, - "280f82f911c94cafadfe5bf5271dccba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4f90956440a74660be102e72c0aa965a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb29499f69f646f8bc306688277aeef3", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bcc5a228aa7f4c13b9c3eb05ee9c8253", - "value": 132.0 - } - }, - "4fee7a574ae348a69a21b2fc3f9464dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8ca67813159948e49694d112e74187ea": { + "0578f53af7da451f8c89f12173cafe24": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1588,7 +1534,7 @@ "width": null } }, - "90124a1816fc4b2398ba329fa7593bf7": { + "0bf73f39809642ee8f09fa8160e6e0bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1603,35 +1549,54 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_946dd7c3ac5649fab11b9e9dc559d2bc", - "IPY_MODEL_4f90956440a74660be102e72c0aa965a", - "IPY_MODEL_c232c102c5c9462980c0a1422e8a29e9" + "IPY_MODEL_c9aaa30b92dc44babad0d9b527b76f8a", + "IPY_MODEL_407f8338b2f645aa8b506f4d61a1f029", + "IPY_MODEL_b96082c6094c46369d251561152ad7df" ], - "layout": "IPY_MODEL_06525292aee94ad1afbcfb7c80b2ebbd" + "layout": "IPY_MODEL_0237fcfb7df84d0a961faa9a854f084f" } }, - "946dd7c3ac5649fab11b9e9dc559d2bc": { + "405c56b73c8c46a4adf63a66299367b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "407f8338b2f645aa8b506f4d61a1f029": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8ca67813159948e49694d112e74187ea", - "placeholder": "​", - "style": "IPY_MODEL_4fee7a574ae348a69a21b2fc3f9464dd", - "value": "Saving the dataset (1/1 shards): 100%" + "layout": "IPY_MODEL_b581c1a21f8b40e8aaaca850551394c9", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_405c56b73c8c46a4adf63a66299367b4", + "value": 132.0 } }, - "9da51a1f1257499e856f6e00deced49e": { + "91ba1022deff4d149a7fe3f7ebd1640f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1683,44 +1648,7 @@ "width": null } }, - "bcc5a228aa7f4c13b9c3eb05ee9c8253": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c232c102c5c9462980c0a1422e8a29e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9da51a1f1257499e856f6e00deced49e", - "placeholder": "​", - "style": "IPY_MODEL_280f82f911c94cafadfe5bf5271dccba", - "value": " 132/132 [00:00<00:00, 11010.86 examples/s]" - } - }, - "cb29499f69f646f8bc306688277aeef3": { + "b581c1a21f8b40e8aaaca850551394c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1771,6 +1699,78 @@ "visibility": null, "width": null } + }, + "b96082c6094c46369d251561152ad7df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91ba1022deff4d149a7fe3f7ebd1640f", + "placeholder": "​", + "style": "IPY_MODEL_b9645894b0b74beaa339a6bbe4ac7b36", + "value": " 132/132 [00:00<00:00, 10363.48 examples/s]" + } + }, + "b9645894b0b74beaa339a6bbe4ac7b36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c53585d57b384f76b68b110915b25a5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c9aaa30b92dc44babad0d9b527b76f8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0578f53af7da451f8c89f12173cafe24", + "placeholder": "​", + "style": "IPY_MODEL_c53585d57b384f76b68b110915b25a5c", + "value": "Saving the dataset (1/1 shards): 100%" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 556eafb73..646c2392e 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:23.127399Z", - "iopub.status.busy": "2023-12-28T10:50:23.127207Z", - "iopub.status.idle": "2023-12-28T10:50:24.210804Z", - "shell.execute_reply": "2023-12-28T10:50:24.210190Z" + "iopub.execute_input": "2024-01-02T16:43:12.910070Z", + "iopub.status.busy": "2024-01-02T16:43:12.909888Z", + "iopub.status.idle": "2024-01-02T16:43:14.014787Z", + "shell.execute_reply": "2024-01-02T16:43:14.014141Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.213824Z", - "iopub.status.busy": "2023-12-28T10:50:24.213271Z", - "iopub.status.idle": "2023-12-28T10:50:24.216530Z", - "shell.execute_reply": "2023-12-28T10:50:24.216010Z" + "iopub.execute_input": "2024-01-02T16:43:14.017798Z", + "iopub.status.busy": "2024-01-02T16:43:14.017277Z", + "iopub.status.idle": "2024-01-02T16:43:14.020596Z", + "shell.execute_reply": "2024-01-02T16:43:14.020083Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.219198Z", - "iopub.status.busy": "2023-12-28T10:50:24.218823Z", - "iopub.status.idle": "2023-12-28T10:50:24.228723Z", - "shell.execute_reply": "2023-12-28T10:50:24.228181Z" + "iopub.execute_input": "2024-01-02T16:43:14.023239Z", + "iopub.status.busy": "2024-01-02T16:43:14.022887Z", + "iopub.status.idle": "2024-01-02T16:43:14.033253Z", + "shell.execute_reply": "2024-01-02T16:43:14.032704Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.231046Z", - "iopub.status.busy": "2023-12-28T10:50:24.230672Z", - "iopub.status.idle": "2023-12-28T10:50:24.235453Z", - "shell.execute_reply": "2023-12-28T10:50:24.234975Z" + "iopub.execute_input": "2024-01-02T16:43:14.036036Z", + "iopub.status.busy": "2024-01-02T16:43:14.035558Z", + "iopub.status.idle": "2024-01-02T16:43:14.040586Z", + "shell.execute_reply": "2024-01-02T16:43:14.039956Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.237950Z", - "iopub.status.busy": "2023-12-28T10:50:24.237536Z", - "iopub.status.idle": "2023-12-28T10:50:24.512859Z", - "shell.execute_reply": "2023-12-28T10:50:24.512246Z" + "iopub.execute_input": "2024-01-02T16:43:14.043211Z", + "iopub.status.busy": "2024-01-02T16:43:14.043005Z", + "iopub.status.idle": "2024-01-02T16:43:14.323675Z", + "shell.execute_reply": "2024-01-02T16:43:14.323039Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.515846Z", - "iopub.status.busy": "2023-12-28T10:50:24.515415Z", - "iopub.status.idle": "2023-12-28T10:50:24.888437Z", - "shell.execute_reply": "2023-12-28T10:50:24.887708Z" + "iopub.execute_input": "2024-01-02T16:43:14.326611Z", + "iopub.status.busy": "2024-01-02T16:43:14.326227Z", + "iopub.status.idle": "2024-01-02T16:43:14.698981Z", + "shell.execute_reply": "2024-01-02T16:43:14.698288Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.891202Z", - "iopub.status.busy": "2023-12-28T10:50:24.890750Z", - "iopub.status.idle": "2023-12-28T10:50:24.893821Z", - "shell.execute_reply": "2023-12-28T10:50:24.893238Z" + "iopub.execute_input": "2024-01-02T16:43:14.701623Z", + "iopub.status.busy": "2024-01-02T16:43:14.701415Z", + "iopub.status.idle": "2024-01-02T16:43:14.704308Z", + "shell.execute_reply": "2024-01-02T16:43:14.703756Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.896308Z", - "iopub.status.busy": "2023-12-28T10:50:24.895918Z", - "iopub.status.idle": "2023-12-28T10:50:24.934585Z", - "shell.execute_reply": "2023-12-28T10:50:24.933888Z" + "iopub.execute_input": "2024-01-02T16:43:14.706734Z", + "iopub.status.busy": "2024-01-02T16:43:14.706532Z", + "iopub.status.idle": "2024-01-02T16:43:14.745069Z", + "shell.execute_reply": "2024-01-02T16:43:14.744459Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.937574Z", - "iopub.status.busy": "2023-12-28T10:50:24.936861Z", - "iopub.status.idle": "2023-12-28T10:50:26.251582Z", - "shell.execute_reply": "2023-12-28T10:50:26.250822Z" + "iopub.execute_input": "2024-01-02T16:43:14.747628Z", + "iopub.status.busy": "2024-01-02T16:43:14.747226Z", + "iopub.status.idle": "2024-01-02T16:43:16.079434Z", + "shell.execute_reply": "2024-01-02T16:43:16.078668Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.254711Z", - "iopub.status.busy": "2023-12-28T10:50:26.254201Z", - "iopub.status.idle": "2023-12-28T10:50:26.275060Z", - "shell.execute_reply": "2023-12-28T10:50:26.274446Z" + "iopub.execute_input": "2024-01-02T16:43:16.082391Z", + "iopub.status.busy": "2024-01-02T16:43:16.081860Z", + "iopub.status.idle": "2024-01-02T16:43:16.101229Z", + "shell.execute_reply": "2024-01-02T16:43:16.100650Z" } }, "outputs": [ @@ -855,10 +855,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.277595Z", - "iopub.status.busy": "2023-12-28T10:50:26.277217Z", - "iopub.status.idle": "2023-12-28T10:50:26.284148Z", - "shell.execute_reply": "2023-12-28T10:50:26.283553Z" + "iopub.execute_input": "2024-01-02T16:43:16.103832Z", + "iopub.status.busy": "2024-01-02T16:43:16.103518Z", + "iopub.status.idle": "2024-01-02T16:43:16.111043Z", + "shell.execute_reply": "2024-01-02T16:43:16.110390Z" } }, "outputs": [ @@ -955,10 +955,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.286524Z", - "iopub.status.busy": "2023-12-28T10:50:26.286144Z", - "iopub.status.idle": "2023-12-28T10:50:26.293526Z", - "shell.execute_reply": "2023-12-28T10:50:26.292892Z" + "iopub.execute_input": "2024-01-02T16:43:16.113360Z", + "iopub.status.busy": "2024-01-02T16:43:16.113149Z", + "iopub.status.idle": "2024-01-02T16:43:16.120923Z", + "shell.execute_reply": "2024-01-02T16:43:16.120283Z" } }, "outputs": [ @@ -1025,10 +1025,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.296120Z", - "iopub.status.busy": "2023-12-28T10:50:26.295707Z", - "iopub.status.idle": "2023-12-28T10:50:26.305261Z", - "shell.execute_reply": "2023-12-28T10:50:26.304626Z" + "iopub.execute_input": "2024-01-02T16:43:16.123402Z", + "iopub.status.busy": "2024-01-02T16:43:16.123195Z", + "iopub.status.idle": "2024-01-02T16:43:16.133393Z", + "shell.execute_reply": "2024-01-02T16:43:16.132855Z" } }, "outputs": [ @@ -1182,10 +1182,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.307771Z", - "iopub.status.busy": "2023-12-28T10:50:26.307345Z", - "iopub.status.idle": "2023-12-28T10:50:26.317022Z", - "shell.execute_reply": "2023-12-28T10:50:26.316381Z" + "iopub.execute_input": "2024-01-02T16:43:16.135617Z", + "iopub.status.busy": "2024-01-02T16:43:16.135416Z", + "iopub.status.idle": "2024-01-02T16:43:16.145516Z", + "shell.execute_reply": "2024-01-02T16:43:16.144985Z" } }, "outputs": [ @@ -1301,10 +1301,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.319568Z", - "iopub.status.busy": "2023-12-28T10:50:26.319187Z", - "iopub.status.idle": "2023-12-28T10:50:26.326878Z", - "shell.execute_reply": "2023-12-28T10:50:26.326246Z" + "iopub.execute_input": "2024-01-02T16:43:16.147717Z", + "iopub.status.busy": "2024-01-02T16:43:16.147522Z", + "iopub.status.idle": "2024-01-02T16:43:16.155043Z", + "shell.execute_reply": "2024-01-02T16:43:16.154462Z" }, "scrolled": true }, @@ -1429,10 +1429,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.329366Z", - "iopub.status.busy": "2023-12-28T10:50:26.328932Z", - "iopub.status.idle": "2023-12-28T10:50:26.339254Z", - "shell.execute_reply": "2023-12-28T10:50:26.338626Z" + "iopub.execute_input": "2024-01-02T16:43:16.157338Z", + "iopub.status.busy": "2024-01-02T16:43:16.157139Z", + "iopub.status.idle": "2024-01-02T16:43:16.167394Z", + "shell.execute_reply": "2024-01-02T16:43:16.166761Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 2b26df229..bc4240224 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:31.441284Z", - "iopub.status.busy": "2023-12-28T10:50:31.441088Z", - "iopub.status.idle": "2023-12-28T10:50:32.477040Z", - "shell.execute_reply": "2023-12-28T10:50:32.476406Z" + "iopub.execute_input": "2024-01-02T16:43:20.948874Z", + "iopub.status.busy": "2024-01-02T16:43:20.948322Z", + "iopub.status.idle": "2024-01-02T16:43:21.979951Z", + "shell.execute_reply": "2024-01-02T16:43:21.979340Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.480062Z", - "iopub.status.busy": "2023-12-28T10:50:32.479560Z", - "iopub.status.idle": "2023-12-28T10:50:32.496295Z", - "shell.execute_reply": "2023-12-28T10:50:32.495689Z" + "iopub.execute_input": "2024-01-02T16:43:21.982910Z", + "iopub.status.busy": "2024-01-02T16:43:21.982428Z", + "iopub.status.idle": "2024-01-02T16:43:21.999057Z", + "shell.execute_reply": "2024-01-02T16:43:21.998569Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.499063Z", - "iopub.status.busy": "2023-12-28T10:50:32.498709Z", - "iopub.status.idle": "2023-12-28T10:50:32.616178Z", - "shell.execute_reply": "2023-12-28T10:50:32.615497Z" + "iopub.execute_input": "2024-01-02T16:43:22.001488Z", + "iopub.status.busy": "2024-01-02T16:43:22.001280Z", + "iopub.status.idle": "2024-01-02T16:43:22.209088Z", + "shell.execute_reply": "2024-01-02T16:43:22.208493Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.618746Z", - "iopub.status.busy": "2023-12-28T10:50:32.618413Z", - "iopub.status.idle": "2023-12-28T10:50:32.622202Z", - "shell.execute_reply": "2023-12-28T10:50:32.621676Z" + "iopub.execute_input": "2024-01-02T16:43:22.211461Z", + "iopub.status.busy": "2024-01-02T16:43:22.211256Z", + "iopub.status.idle": "2024-01-02T16:43:22.215053Z", + "shell.execute_reply": "2024-01-02T16:43:22.214550Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.624399Z", - "iopub.status.busy": "2023-12-28T10:50:32.624200Z", - "iopub.status.idle": "2023-12-28T10:50:32.632440Z", - "shell.execute_reply": "2023-12-28T10:50:32.631798Z" + "iopub.execute_input": "2024-01-02T16:43:22.217526Z", + "iopub.status.busy": "2024-01-02T16:43:22.217167Z", + "iopub.status.idle": "2024-01-02T16:43:22.224971Z", + "shell.execute_reply": "2024-01-02T16:43:22.224471Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.635046Z", - "iopub.status.busy": "2023-12-28T10:50:32.634851Z", - "iopub.status.idle": "2023-12-28T10:50:32.637733Z", - "shell.execute_reply": "2023-12-28T10:50:32.637210Z" + "iopub.execute_input": "2024-01-02T16:43:22.227490Z", + "iopub.status.busy": "2024-01-02T16:43:22.227117Z", + "iopub.status.idle": "2024-01-02T16:43:22.229922Z", + "shell.execute_reply": "2024-01-02T16:43:22.229380Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.639906Z", - "iopub.status.busy": "2023-12-28T10:50:32.639711Z", - "iopub.status.idle": "2023-12-28T10:50:36.211594Z", - "shell.execute_reply": "2023-12-28T10:50:36.210955Z" + "iopub.execute_input": "2024-01-02T16:43:22.232312Z", + "iopub.status.busy": "2024-01-02T16:43:22.231945Z", + "iopub.status.idle": "2024-01-02T16:43:25.922257Z", + "shell.execute_reply": "2024-01-02T16:43:25.921533Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:36.215028Z", - "iopub.status.busy": "2023-12-28T10:50:36.214564Z", - "iopub.status.idle": "2023-12-28T10:50:36.224889Z", - "shell.execute_reply": "2023-12-28T10:50:36.224389Z" + "iopub.execute_input": "2024-01-02T16:43:25.925625Z", + "iopub.status.busy": "2024-01-02T16:43:25.925143Z", + "iopub.status.idle": "2024-01-02T16:43:25.934900Z", + "shell.execute_reply": "2024-01-02T16:43:25.934264Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:36.227489Z", - "iopub.status.busy": "2023-12-28T10:50:36.227110Z", - "iopub.status.idle": "2023-12-28T10:50:37.592670Z", - "shell.execute_reply": "2023-12-28T10:50:37.591938Z" + "iopub.execute_input": "2024-01-02T16:43:25.937602Z", + "iopub.status.busy": "2024-01-02T16:43:25.937082Z", + "iopub.status.idle": "2024-01-02T16:43:27.292747Z", + "shell.execute_reply": "2024-01-02T16:43:27.291971Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.596195Z", - "iopub.status.busy": "2023-12-28T10:50:37.595493Z", - "iopub.status.idle": "2023-12-28T10:50:37.620177Z", - "shell.execute_reply": "2023-12-28T10:50:37.619548Z" + "iopub.execute_input": "2024-01-02T16:43:27.297304Z", + "iopub.status.busy": "2024-01-02T16:43:27.295918Z", + "iopub.status.idle": "2024-01-02T16:43:27.322952Z", + "shell.execute_reply": "2024-01-02T16:43:27.322336Z" }, "scrolled": true }, @@ -595,11 +595,11 @@ "\n", "Examples representing most severe instances of this issue:\n", " is_class_imbalance_issue class_imbalance_score\n", - "0 False 1.0\n", - "619 False 1.0\n", - "620 False 1.0\n", - "621 False 1.0\n", - "622 False 1.0\n" + "393 False 0.156217\n", + "391 False 0.156217\n", + "806 False 0.156217\n", + "805 False 0.156217\n", + "156 False 0.156217\n" ] } ], @@ -621,10 +621,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.623337Z", - "iopub.status.busy": "2023-12-28T10:50:37.622874Z", - "iopub.status.idle": "2023-12-28T10:50:37.633631Z", - "shell.execute_reply": "2023-12-28T10:50:37.633012Z" + "iopub.execute_input": "2024-01-02T16:43:27.327379Z", + "iopub.status.busy": "2024-01-02T16:43:27.326244Z", + "iopub.status.idle": "2024-01-02T16:43:27.338918Z", + "shell.execute_reply": "2024-01-02T16:43:27.338323Z" } }, "outputs": [ @@ -728,10 +728,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.636687Z", - "iopub.status.busy": "2023-12-28T10:50:37.636248Z", - "iopub.status.idle": "2023-12-28T10:50:37.649137Z", - "shell.execute_reply": "2023-12-28T10:50:37.648498Z" + "iopub.execute_input": "2024-01-02T16:43:27.343212Z", + "iopub.status.busy": "2024-01-02T16:43:27.342071Z", + "iopub.status.idle": "2024-01-02T16:43:27.356605Z", + "shell.execute_reply": "2024-01-02T16:43:27.356004Z" } }, "outputs": [ @@ -860,10 +860,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.652394Z", - "iopub.status.busy": "2023-12-28T10:50:37.651968Z", - "iopub.status.idle": "2023-12-28T10:50:37.663000Z", - "shell.execute_reply": "2023-12-28T10:50:37.662379Z" + "iopub.execute_input": "2024-01-02T16:43:27.360952Z", + "iopub.status.busy": "2024-01-02T16:43:27.359817Z", + "iopub.status.idle": "2024-01-02T16:43:27.372494Z", + "shell.execute_reply": "2024-01-02T16:43:27.371883Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.667123Z", - "iopub.status.busy": "2023-12-28T10:50:37.665984Z", - "iopub.status.idle": "2023-12-28T10:50:37.681083Z", - "shell.execute_reply": "2023-12-28T10:50:37.680350Z" + "iopub.execute_input": "2024-01-02T16:43:27.376830Z", + "iopub.status.busy": "2024-01-02T16:43:27.375700Z", + "iopub.status.idle": "2024-01-02T16:43:27.387239Z", + "shell.execute_reply": "2024-01-02T16:43:27.386752Z" } }, "outputs": [ @@ -1091,10 +1091,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.683973Z", - "iopub.status.busy": "2023-12-28T10:50:37.683587Z", - "iopub.status.idle": "2023-12-28T10:50:37.692321Z", - "shell.execute_reply": "2023-12-28T10:50:37.691583Z" + "iopub.execute_input": "2024-01-02T16:43:27.390068Z", + "iopub.status.busy": "2024-01-02T16:43:27.389674Z", + "iopub.status.idle": "2024-01-02T16:43:27.397684Z", + "shell.execute_reply": "2024-01-02T16:43:27.397154Z" } }, "outputs": [ @@ -1178,10 +1178,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.694815Z", - "iopub.status.busy": "2023-12-28T10:50:37.694435Z", - "iopub.status.idle": "2023-12-28T10:50:37.701429Z", - "shell.execute_reply": "2023-12-28T10:50:37.700802Z" + "iopub.execute_input": "2024-01-02T16:43:27.400276Z", + "iopub.status.busy": "2024-01-02T16:43:27.399787Z", + "iopub.status.idle": "2024-01-02T16:43:27.406739Z", + "shell.execute_reply": "2024-01-02T16:43:27.406110Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.704030Z", - "iopub.status.busy": "2023-12-28T10:50:37.703659Z", - "iopub.status.idle": "2023-12-28T10:50:37.710668Z", - "shell.execute_reply": "2023-12-28T10:50:37.710146Z" + "iopub.execute_input": "2024-01-02T16:43:27.409417Z", + "iopub.status.busy": "2024-01-02T16:43:27.409027Z", + "iopub.status.idle": "2024-01-02T16:43:27.415905Z", + "shell.execute_reply": "2024-01-02T16:43:27.415281Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 71524e6c1..df25d3811 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:42.296308Z", - "iopub.status.busy": "2023-12-28T10:50:42.295684Z", - "iopub.status.idle": "2023-12-28T10:50:44.808313Z", - "shell.execute_reply": "2023-12-28T10:50:44.807639Z" + "iopub.execute_input": "2024-01-02T16:43:32.130627Z", + "iopub.status.busy": "2024-01-02T16:43:32.130344Z", + "iopub.status.idle": "2024-01-02T16:43:34.442750Z", + "shell.execute_reply": "2024-01-02T16:43:34.442185Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6026f80c546045ba90baf2862e01385f", + "model_id": "032575598b4e473292addfff7238dfa1", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.811256Z", - "iopub.status.busy": "2023-12-28T10:50:44.810826Z", - "iopub.status.idle": "2023-12-28T10:50:44.814274Z", - "shell.execute_reply": "2023-12-28T10:50:44.813736Z" + "iopub.execute_input": "2024-01-02T16:43:34.445733Z", + "iopub.status.busy": "2024-01-02T16:43:34.445233Z", + "iopub.status.idle": "2024-01-02T16:43:34.448635Z", + "shell.execute_reply": "2024-01-02T16:43:34.448077Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.816672Z", - "iopub.status.busy": "2023-12-28T10:50:44.816355Z", - "iopub.status.idle": "2023-12-28T10:50:44.819588Z", - "shell.execute_reply": "2023-12-28T10:50:44.819072Z" + "iopub.execute_input": "2024-01-02T16:43:34.451209Z", + "iopub.status.busy": "2024-01-02T16:43:34.450761Z", + "iopub.status.idle": "2024-01-02T16:43:34.454043Z", + "shell.execute_reply": "2024-01-02T16:43:34.453455Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.821895Z", - "iopub.status.busy": "2023-12-28T10:50:44.821594Z", - "iopub.status.idle": "2023-12-28T10:50:44.855877Z", - "shell.execute_reply": "2023-12-28T10:50:44.855303Z" + "iopub.execute_input": "2024-01-02T16:43:34.456329Z", + "iopub.status.busy": "2024-01-02T16:43:34.456027Z", + "iopub.status.idle": "2024-01-02T16:43:34.540440Z", + "shell.execute_reply": "2024-01-02T16:43:34.539823Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.858326Z", - "iopub.status.busy": "2023-12-28T10:50:44.858017Z", - "iopub.status.idle": "2023-12-28T10:50:44.862431Z", - "shell.execute_reply": "2023-12-28T10:50:44.861892Z" + "iopub.execute_input": "2024-01-02T16:43:34.543030Z", + "iopub.status.busy": "2024-01-02T16:43:34.542554Z", + "iopub.status.idle": "2024-01-02T16:43:34.547162Z", + "shell.execute_reply": "2024-01-02T16:43:34.546619Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'change_pin', 'lost_or_stolen_phone'}\n" + "Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.865000Z", - "iopub.status.busy": "2023-12-28T10:50:44.864591Z", - "iopub.status.idle": "2023-12-28T10:50:44.868468Z", - "shell.execute_reply": "2023-12-28T10:50:44.867926Z" + "iopub.execute_input": "2024-01-02T16:43:34.549361Z", + "iopub.status.busy": "2024-01-02T16:43:34.549169Z", + "iopub.status.idle": "2024-01-02T16:43:34.553002Z", + "shell.execute_reply": "2024-01-02T16:43:34.552474Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.871001Z", - "iopub.status.busy": "2023-12-28T10:50:44.870636Z", - "iopub.status.idle": "2023-12-28T10:50:53.857935Z", - "shell.execute_reply": "2023-12-28T10:50:53.857284Z" + "iopub.execute_input": "2024-01-02T16:43:34.555619Z", + "iopub.status.busy": "2024-01-02T16:43:34.555119Z", + "iopub.status.idle": "2024-01-02T16:43:44.089984Z", + "shell.execute_reply": "2024-01-02T16:43:44.089314Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "29bd27e9df334714828cb191caed3549", + "model_id": "cfa8e33b9ba34f9b84f7b2894dcb1cdd", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "188c19db59ae461cb5ab90cc79c1374a", + "model_id": "9be87e374eee4c2cadd9184c312be454", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7bb1e7e05e60454ab46487e0b06e8015", + "model_id": "8bae24cade9a4f9fb9606ed955bcc7d8", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e30203085c184383b15297aff47b5870", + "model_id": "cefe0741da744da1b2967a16480c3466", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8ee68691137f4c98896da1fef213310d", + "model_id": "134a1cda4acb4edab174eb997e37d992", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "886021f191904b33a4371d295ac03dc0", + "model_id": "5a21341e48eb48a5a8cb46237cc6040e", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a308d4d8368044c0b8902a8d75fe15c9", + "model_id": "efbcffcfef5b4247bac1c857e7f07a58", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:53.861261Z", - "iopub.status.busy": "2023-12-28T10:50:53.861000Z", - "iopub.status.idle": "2023-12-28T10:50:55.033789Z", - "shell.execute_reply": "2023-12-28T10:50:55.033107Z" + "iopub.execute_input": "2024-01-02T16:43:44.093238Z", + "iopub.status.busy": "2024-01-02T16:43:44.093010Z", + "iopub.status.idle": "2024-01-02T16:43:45.277162Z", + "shell.execute_reply": "2024-01-02T16:43:45.276455Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:55.037446Z", - "iopub.status.busy": "2023-12-28T10:50:55.037085Z", - "iopub.status.idle": "2023-12-28T10:50:55.040116Z", - "shell.execute_reply": "2023-12-28T10:50:55.039449Z" + "iopub.execute_input": "2024-01-02T16:43:45.280984Z", + "iopub.status.busy": "2024-01-02T16:43:45.280513Z", + "iopub.status.idle": "2024-01-02T16:43:45.285245Z", + "shell.execute_reply": "2024-01-02T16:43:45.284646Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:55.042832Z", - "iopub.status.busy": "2023-12-28T10:50:55.042554Z", - "iopub.status.idle": "2023-12-28T10:50:56.393143Z", - "shell.execute_reply": "2023-12-28T10:50:56.392396Z" + "iopub.execute_input": "2024-01-02T16:43:45.289761Z", + "iopub.status.busy": "2024-01-02T16:43:45.288461Z", + "iopub.status.idle": "2024-01-02T16:43:46.640141Z", + "shell.execute_reply": "2024-01-02T16:43:46.639366Z" }, "scrolled": true }, @@ -639,10 +639,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.398315Z", - "iopub.status.busy": "2023-12-28T10:50:56.396728Z", - "iopub.status.idle": "2023-12-28T10:50:56.425015Z", - "shell.execute_reply": "2023-12-28T10:50:56.424374Z" + "iopub.execute_input": "2024-01-02T16:43:46.643964Z", + "iopub.status.busy": "2024-01-02T16:43:46.643338Z", + "iopub.status.idle": "2024-01-02T16:43:46.668494Z", + "shell.execute_reply": "2024-01-02T16:43:46.667901Z" }, "scrolled": true }, @@ -759,11 +759,11 @@ "\n", "Examples representing most severe instances of this issue:\n", " is_class_imbalance_issue class_imbalance_score\n", - "0 False 1.0\n", - "658 False 1.0\n", - "659 False 1.0\n", - "660 False 1.0\n", - "661 False 1.0\n" + "454 False 0.08\n", + "452 False 0.08\n", + "453 False 0.08\n", + "455 False 0.08\n", + "456 False 0.08\n" ] } ], @@ -785,10 +785,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.429700Z", - "iopub.status.busy": "2023-12-28T10:50:56.428366Z", - "iopub.status.idle": "2023-12-28T10:50:56.442084Z", - "shell.execute_reply": "2023-12-28T10:50:56.441475Z" + "iopub.execute_input": "2024-01-02T16:43:46.671770Z", + "iopub.status.busy": "2024-01-02T16:43:46.671376Z", + "iopub.status.idle": "2024-01-02T16:43:46.681971Z", + "shell.execute_reply": "2024-01-02T16:43:46.681353Z" }, "scrolled": true }, @@ -898,10 +898,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.446739Z", - "iopub.status.busy": "2023-12-28T10:50:56.445420Z", - "iopub.status.idle": "2023-12-28T10:50:56.452586Z", - "shell.execute_reply": "2023-12-28T10:50:56.452098Z" + "iopub.execute_input": "2024-01-02T16:43:46.685258Z", + "iopub.status.busy": "2024-01-02T16:43:46.684870Z", + "iopub.status.idle": "2024-01-02T16:43:46.690275Z", + "shell.execute_reply": "2024-01-02T16:43:46.689673Z" } }, "outputs": [ @@ -939,10 +939,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.455481Z", - "iopub.status.busy": "2023-12-28T10:50:56.455067Z", - "iopub.status.idle": "2023-12-28T10:50:56.462931Z", - "shell.execute_reply": "2023-12-28T10:50:56.462282Z" + "iopub.execute_input": "2024-01-02T16:43:46.693177Z", + "iopub.status.busy": "2024-01-02T16:43:46.692741Z", + "iopub.status.idle": "2024-01-02T16:43:46.700334Z", + "shell.execute_reply": "2024-01-02T16:43:46.699860Z" } }, "outputs": [ @@ -1059,10 +1059,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.465736Z", - "iopub.status.busy": "2023-12-28T10:50:56.465287Z", - "iopub.status.idle": "2023-12-28T10:50:56.472693Z", - "shell.execute_reply": "2023-12-28T10:50:56.472086Z" + "iopub.execute_input": "2024-01-02T16:43:46.702614Z", + "iopub.status.busy": "2024-01-02T16:43:46.702272Z", + "iopub.status.idle": "2024-01-02T16:43:46.708457Z", + "shell.execute_reply": "2024-01-02T16:43:46.707998Z" } }, "outputs": [ @@ -1145,10 +1145,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.475278Z", - "iopub.status.busy": "2023-12-28T10:50:56.474893Z", - "iopub.status.idle": "2023-12-28T10:50:56.482054Z", - "shell.execute_reply": "2023-12-28T10:50:56.481519Z" + "iopub.execute_input": "2024-01-02T16:43:46.710612Z", + "iopub.status.busy": "2024-01-02T16:43:46.710275Z", + "iopub.status.idle": "2024-01-02T16:43:46.715977Z", + "shell.execute_reply": "2024-01-02T16:43:46.715510Z" } }, "outputs": [ @@ -1256,10 +1256,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.484554Z", - "iopub.status.busy": "2023-12-28T10:50:56.484170Z", - "iopub.status.idle": "2023-12-28T10:50:56.493457Z", - "shell.execute_reply": "2023-12-28T10:50:56.492928Z" + "iopub.execute_input": "2024-01-02T16:43:46.718214Z", + "iopub.status.busy": "2024-01-02T16:43:46.717868Z", + "iopub.status.idle": "2024-01-02T16:43:46.726346Z", + "shell.execute_reply": "2024-01-02T16:43:46.725880Z" } }, "outputs": [ @@ -1370,10 +1370,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.495852Z", - "iopub.status.busy": "2023-12-28T10:50:56.495479Z", - "iopub.status.idle": "2023-12-28T10:50:56.501321Z", - "shell.execute_reply": "2023-12-28T10:50:56.500758Z" + "iopub.execute_input": "2024-01-02T16:43:46.728556Z", + "iopub.status.busy": "2024-01-02T16:43:46.728219Z", + "iopub.status.idle": "2024-01-02T16:43:46.733467Z", + "shell.execute_reply": "2024-01-02T16:43:46.733009Z" } }, "outputs": [ @@ -1441,10 +1441,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.503767Z", - "iopub.status.busy": "2023-12-28T10:50:56.503361Z", - "iopub.status.idle": "2023-12-28T10:50:56.509401Z", - "shell.execute_reply": "2023-12-28T10:50:56.508757Z" + "iopub.execute_input": "2024-01-02T16:43:46.735774Z", + "iopub.status.busy": "2024-01-02T16:43:46.735223Z", + "iopub.status.idle": "2024-01-02T16:43:46.741279Z", + "shell.execute_reply": "2024-01-02T16:43:46.740745Z" } }, "outputs": [ @@ -1522,10 +1522,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.511997Z", - "iopub.status.busy": "2023-12-28T10:50:56.511614Z", - "iopub.status.idle": "2023-12-28T10:50:56.517085Z", - "shell.execute_reply": "2023-12-28T10:50:56.516521Z" + "iopub.execute_input": "2024-01-02T16:43:46.743620Z", + "iopub.status.busy": "2024-01-02T16:43:46.743420Z", + "iopub.status.idle": "2024-01-02T16:43:46.749243Z", + "shell.execute_reply": "2024-01-02T16:43:46.748588Z" }, "nbsphinx": "hidden" }, @@ -1561,10 +1561,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.519544Z", - "iopub.status.busy": "2023-12-28T10:50:56.519175Z", - "iopub.status.idle": "2023-12-28T10:50:56.523174Z", - "shell.execute_reply": "2023-12-28T10:50:56.522550Z" + "iopub.execute_input": "2024-01-02T16:43:46.751745Z", + "iopub.status.busy": "2024-01-02T16:43:46.751498Z", + "iopub.status.idle": "2024-01-02T16:43:46.755904Z", + "shell.execute_reply": "2024-01-02T16:43:46.755367Z" } }, "outputs": [ @@ -1618,7 +1618,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "002a3ba42c6f4d21b674649860b6bb8f": { + "00872c50338a4b1eb76079883d76d52a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1670,7 +1670,7 @@ "width": null } }, - "01e2a9e1904e4fd3b8ab0e029fb19423": { + "020920f595fa4115a5c7409d5b8c51e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1722,43 +1722,102 @@ "width": null } }, - "07c2bfa4e96b4691b9a3f82df6fdd6ca": { + "032575598b4e473292addfff7238dfa1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_59f4c423e0754af7b1e3cc1a4fa53016", - "placeholder": "​", - "style": "IPY_MODEL_c423f0c304cc4921b77c3d1ab1914fdb", - "value": "README.md: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a3114c4394e46e1b7ce1495220913db", + "IPY_MODEL_352078d368bd40fba10fbe2f07365998", + "IPY_MODEL_23d4c289cba944d19d2219709e2ec6fa" + ], + "layout": "IPY_MODEL_eaaadabf61ef4df1a6b16c5b9bd3316b" + } + }, + "03edcac73dcc40b8a17fae8bd6b93aec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "082542db1bb140bd99c7ca0e790e7939": { + "06c3e93466e841cdb8f0766e760cb4b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c316145836374f27876f8194d241b65c", + "placeholder": "​", + "style": "IPY_MODEL_c9f956cf1eb7400180959cb85e53b150", + "value": " 29.0/29.0 [00:00<00:00, 3.80kB/s]" } }, - "0966d9b7d5e24713916cc115e44fb7fb": { + "08f47e5fa8db41d58b7ff6bfe3370d47": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1807,25 +1866,31 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "0cb0e29166d84be6bb583a9004da5c42": { + "09194539b33f415eb6243079a5493c34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_979bd28b34ed41f8aba44e5222499d15", + "placeholder": "​", + "style": "IPY_MODEL_a5640826dd44475e821fa74b810eb1a4", + "value": " 232k/232k [00:00<00:00, 5.41MB/s]" } }, - "0ce7d40556744bd4b07afbe2f362a2e3": { + "09839e5f04d7436787998fc1f0c11891": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1877,7 +1942,7 @@ "width": null } }, - "1455c763b56e4f39b88a6414c2355423": { + "0a26c2fdb81e4727987b87ecb38bc533": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1929,150 +1994,7 @@ "width": null } }, - "1612a462a5f347c290efc6b184fad81d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b3ea83bfea984719aad6881d02d15726", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9860b38f8fa640b0b794c7b461f40b8e", - "value": 231508.0 - } - }, - "188c19db59ae461cb5ab90cc79c1374a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07c2bfa4e96b4691b9a3f82df6fdd6ca", - "IPY_MODEL_36cd132150f441d0b9ef3414e99ef5fd", - "IPY_MODEL_abf85ff646214c7b853811d149c094a2" - ], - "layout": "IPY_MODEL_3965c43b7d344e2485e977fb58bffb4f" - } - }, - "258793d030024251a3078230b6b4de71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2906da4b1e354c26940b3597884f7b68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_01e2a9e1904e4fd3b8ab0e029fb19423", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c45d8f06bd66462c823a39d4d862fe48", - "value": 466062.0 - } - }, - "29bd27e9df334714828cb191caed3549": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7dd4da3c549c45ed9fce6579b27530f4", - "IPY_MODEL_f52aa0c0ae654587b9ac91bfbff3f902", - "IPY_MODEL_f15c8b7603b84636b18b6dc61c822809" - ], - "layout": "IPY_MODEL_a76a4b5363954ec8af096601ae1bf519" - } - }, - "2bfe3078b0cc4f1db9e03a00f19b073b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2cc49402c85e4e48ad59581e7ebc948d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_653a5a02c18746348f55fedb9cb64441", - "placeholder": "​", - "style": "IPY_MODEL_decbf2ca27454671bc94d3a3b272b819", - "value": " 466k/466k [00:00<00:00, 6.11MB/s]" - } - }, - "2cfad4c3de7f4876b8e7277537e1bb9d": { + "0a38aad82ac14989a4a9217f3a811d6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2124,22 +2046,7 @@ "width": null } }, - "342e7e5e018c4763889b5e40e408b40b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "361b24cc1b2344759145f8b024b40930": { + "0fa2df8226524d9d8d5b78234f773e8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2154,37 +2061,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3e289c46d5bb48a48c228c595cb9ed06", + "layout": "IPY_MODEL_03edcac73dcc40b8a17fae8bd6b93aec", "placeholder": "​", - "style": "IPY_MODEL_63cfe310a8af436b9beb983d7268434d", - "value": " 232k/232k [00:00<00:00, 11.8MB/s]" + "style": "IPY_MODEL_df34e95d26004ef994b0fce1364a7a43", + "value": " 665/665 [00:00<00:00, 81.8kB/s]" } }, - "36cd132150f441d0b9ef3414e99ef5fd": { + "0fcefde9154b4c99bd494cf6f4543d4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f13687759a0f458ba3800556c1d4502d", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e23c71c5924644438757e783faf26508", - "value": 2211.0 + "layout": "IPY_MODEL_e64e46031cfc4c28af96f771e862a54f", + "placeholder": "​", + "style": "IPY_MODEL_ff41dec3e8d544528ed4122b89c1cc1a", + "value": " 466k/466k [00:00<00:00, 25.4MB/s]" } }, - "3965c43b7d344e2485e977fb58bffb4f": { + "1031454917d647a0b4cfe90beb0830cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2236,74 +2140,29 @@ "width": null } }, - "3d1b163668ee4b41b7ad74d75d2dc71e": { + "134a1cda4acb4edab174eb997e37d992": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3e289c46d5bb48a48c228c595cb9ed06": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4904c252f6964710a37546566c62f010", + "IPY_MODEL_e7b9f584e7734ecc96eef9c869aa866f", + "IPY_MODEL_0fcefde9154b4c99bd494cf6f4543d4a" + ], + "layout": "IPY_MODEL_46d3aa33fc824244b3b76d5eb4d0641e" } }, - "414097937b4f44d298d7822517bbcd23": { + "17a12fa38de743528ce11c50b737ce2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -2319,242 +2178,95 @@ "description_width": "" } }, - "46288b5e4f834b86b2da02b8787d3a18": { + "1d95bc1485a14e32b156a7680ac3765b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_95e07a64f5904b45843138bd367778a5", - "placeholder": "​", - "style": "IPY_MODEL_342e7e5e018c4763889b5e40e408b40b", - "value": "vocab.txt: 100%" - } - }, - "4f91f5d0bd1848c480a38f4dbf27c703": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_3161d3546d3e4867a4f90d42697c4d3e", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_381df575cc04443f8850f5a376171268", + "value": 54245363.0 } }, - "50fa280cff9a4d5882a5db045cf40ff8": { + "1f6cdba4653642b2b283ba5bf58317e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "51edb07e48b3499db5b8bd03abef074a": { + "2100b7eda7a9467e987e6e29f35ab150": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e60717a72163424bb32e1816cff3c885", - "placeholder": "​", - "style": "IPY_MODEL_0cb0e29166d84be6bb583a9004da5c42", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "58a51e9e6f934e80ba32e2d119e41f51": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "59f4c423e0754af7b1e3cc1a4fa53016": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_290788bc416e4895aad25c5a54722fd8", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_25faffe7c8f345b1b119c8293d76de1a", + "value": 29.0 } }, - "6026f80c546045ba90baf2862e01385f": { + "22b09695a81248ef84a9befb859f13b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_65533490e4f24682811aa80ac70ccf1f", - "IPY_MODEL_fa3ab0136e38413986721ab71d6c782c", - "IPY_MODEL_51edb07e48b3499db5b8bd03abef074a" - ], - "layout": "IPY_MODEL_da85687dd9944e3195c03ba5ad6634c2" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9b344d87e044d63b1aeb911dccf6c52", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d6ddcf0e3d9c4420940e7dff92d49558", + "value": 665.0 } }, - "616b1baa8a814f71aaa6754339d8c41b": { + "23d4c289cba944d19d2219709e2ec6fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2569,13 +2281,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_002a3ba42c6f4d21b674649860b6bb8f", + "layout": "IPY_MODEL_00872c50338a4b1eb76079883d76d52a", "placeholder": "​", - "style": "IPY_MODEL_2bfe3078b0cc4f1db9e03a00f19b073b", - "value": "config.json: 100%" + "style": "IPY_MODEL_3859f207e8504fe884329e18f61b651a", + "value": " 0/0 [00:00<?, ?it/s]" } }, - "63cfe310a8af436b9beb983d7268434d": { + "2570298ac39547cabb1eacf559587a8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2590,22 +2302,23 @@ "description_width": "" } }, - "650efd38f38e4610bbf408e72bb11dca": { + "25faffe7c8f345b1b119c8293d76de1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "653a5a02c18746348f55fedb9cb64441": { + "290788bc416e4895aad25c5a54722fd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2657,7 +2370,7 @@ "width": null } }, - "65533490e4f24682811aa80ac70ccf1f": { + "2ce939ae604d4ff49b74657b5177c48e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2672,28 +2385,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1455c763b56e4f39b88a6414c2355423", + "layout": "IPY_MODEL_419c312bbb7b42cca785da2b636fd355", "placeholder": "​", - "style": "IPY_MODEL_3d1b163668ee4b41b7ad74d75d2dc71e", - "value": "" - } - }, - "675b1d5061ee4cab9e4ddcef179c7b28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_9ff2eb9a434c453b9583447e1a2dbeca", + "value": "tokenizer_config.json: 100%" } }, - "6e380842062a4f86a1da5c3620386874": { + "3161d3546d3e4867a4f90d42697c4d3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2742,99 +2440,65 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "76d6c78025ed4fb4accf51226797c8bd": { + "352078d368bd40fba10fbe2f07365998": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_08f47e5fa8db41d58b7ff6bfe3370d47", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_58875ab8a5c3488aacfdc39e4b5676c8", + "value": 0.0 } }, - "79d3bd9b1d24452387ab0be1f5a6101e": { + "381df575cc04443f8850f5a376171268": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7bb1e7e05e60454ab46487e0b06e8015": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_616b1baa8a814f71aaa6754339d8c41b", - "IPY_MODEL_ad2c279439164c91870ca5c5222da96b", - "IPY_MODEL_dcf37c90171448c782e2f524d7912a43" - ], - "layout": "IPY_MODEL_861043b327284c33a90a7914f68a6868" - } - }, - "7dd4da3c549c45ed9fce6579b27530f4": { + "3859f207e8504fe884329e18f61b651a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0966d9b7d5e24713916cc115e44fb7fb", - "placeholder": "​", - "style": "IPY_MODEL_da97121956124c4ab00f9b4f6dd5cd2f", - "value": ".gitattributes: 100%" - } - }, - "806e57cfdd8d43908533f6c8749dfc5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "861043b327284c33a90a7914f68a6868": { + "3bad9e6168634b67ad7431240182d0d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2886,51 +2550,7 @@ "width": null } }, - "886021f191904b33a4371d295ac03dc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b984b1bf0c194d66bb4b4d902bc1e0fe", - "IPY_MODEL_f773b402043d426caffb41dc672d966e", - "IPY_MODEL_e7ed4e54956842e1abcf7d52c4b7cb65" - ], - "layout": "IPY_MODEL_8f180b0650b64cb48614e0e1135798d5" - } - }, - "8ee68691137f4c98896da1fef213310d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eab8ebc83ced49e79d9e70411bc7a4fc", - "IPY_MODEL_2906da4b1e354c26940b3597884f7b68", - "IPY_MODEL_2cc49402c85e4e48ad59581e7ebc948d" - ], - "layout": "IPY_MODEL_bd85665d8c5143279c00bb60adea2639" - } - }, - "8f180b0650b64cb48614e0e1135798d5": { + "419c312bbb7b42cca785da2b636fd355": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2982,7 +2602,22 @@ "width": null } }, - "95e07a64f5904b45843138bd367778a5": { + "45fccd0e53e94a58a9f202b1ef377e8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46d3aa33fc824244b3b76d5eb4d0641e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3034,39 +2669,52 @@ "width": null } }, - "9860b38f8fa640b0b794c7b461f40b8e": { + "4904c252f6964710a37546566c62f010": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9b786c2a321444849e65be50966b1717", + "placeholder": "​", + "style": "IPY_MODEL_edda32825d264c45a43c0cddd935f4fb", + "value": "tokenizer.json: 100%" } }, - "9b97b5f9f21443998985d0d4ff2719b9": { + "4e4725582b7d4c51a27837f8e60e4795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a26c2fdb81e4727987b87ecb38bc533", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_17a12fa38de743528ce11c50b737ce2c", + "value": 391.0 } }, - "9f699baa71f64faf92d047221b5d2709": { + "56da5629abdf42609544500e398f5aaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3118,22 +2766,44 @@ "width": null } }, - "a08ef0e6f74f47d8ab2c891a22141fad": { + "577727eb0f1b47c48279709c3b9a9608": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1031454917d647a0b4cfe90beb0830cc", + "placeholder": "​", + "style": "IPY_MODEL_e88cd21cb2c243bebb5a5a8e1ecb095c", + "value": ".gitattributes: 100%" + } + }, + "58875ab8a5c3488aacfdc39e4b5676c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "a308d4d8368044c0b8902a8d75fe15c9": { + "5a21341e48eb48a5a8cb46237cc6040e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3148,14 +2818,35 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_46288b5e4f834b86b2da02b8787d3a18", - "IPY_MODEL_1612a462a5f347c290efc6b184fad81d", - "IPY_MODEL_361b24cc1b2344759145f8b024b40930" + "IPY_MODEL_2ce939ae604d4ff49b74657b5177c48e", + "IPY_MODEL_2100b7eda7a9467e987e6e29f35ab150", + "IPY_MODEL_06c3e93466e841cdb8f0766e760cb4b9" ], - "layout": "IPY_MODEL_e4b66cd9e5c84cc68b42a33d8d69248d" + "layout": "IPY_MODEL_82aa04caa9f44924bec5d3db501834d6" + } + }, + "611caa81a658462c931147c01308d1e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a38aad82ac14989a4a9217f3a811d6f", + "placeholder": "​", + "style": "IPY_MODEL_f4d9a96d2b3a4ffda14f1ca5b6753fac", + "value": "pytorch_model.bin: 100%" } }, - "a76a4b5363954ec8af096601ae1bf519": { + "66ef85debde64162ae6c512de7c515ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3207,23 +2898,59 @@ "width": null } }, - "a77c831d71a14e4194159194b8de5cec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "6942705f444b47bcb26fa2b03e75680f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a966318b56e54dbe98185eefc1bec3c1": { + "6aab1e9b8d704c299dc28baabf1b6b35": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3275,7 +3002,7 @@ "width": null } }, - "abf85ff646214c7b853811d149c094a2": { + "6b2c89ca673045e6910f473ffcd2a155": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3290,58 +3017,125 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9f699baa71f64faf92d047221b5d2709", + "layout": "IPY_MODEL_7e2ebbcb0d404d869282cebad95ee30d", "placeholder": "​", - "style": "IPY_MODEL_675b1d5061ee4cab9e4ddcef179c7b28", - "value": " 2.21k/2.21k [00:00<00:00, 276kB/s]" + "style": "IPY_MODEL_2570298ac39547cabb1eacf559587a8c", + "value": "vocab.txt: 100%" } }, - "ace80592947c4c4b8577f2b04a6f648f": { + "6c56c66205764ccf916a1e50a15b64b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "727d364de29748c89b359fc9269e8c21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b1c9216294b0463882e8dd83016634ae", - "placeholder": "​", - "style": "IPY_MODEL_082542db1bb140bd99c7ca0e790e7939", - "value": " 54.2M/54.2M [00:00<00:00, 304MB/s]" + "layout": "IPY_MODEL_8e7bf439a8924e5c9e36eac02d23bdb1", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d6cb80492555460883d684e9c4ca11bc", + "value": 231508.0 + } + }, + "72d78ee7c8994847928a783170a0882f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ad2c279439164c91870ca5c5222da96b": { + "7727a3aa392d4e308626c24f2cb24804": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e9f13c6ee67b4bc7a11fa4f92b4e9ef9", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a77c831d71a14e4194159194b8de5cec", - "value": 665.0 + "layout": "IPY_MODEL_9b79eef51bb748e895abcbf600656188", + "placeholder": "​", + "style": "IPY_MODEL_96054d864a4149bfa010505bb1cb6ac7", + "value": " 2.21k/2.21k [00:00<00:00, 271kB/s]" } }, - "b1c9216294b0463882e8dd83016634ae": { + "7ccd9dae7d0e4db5b0e3661287ab260f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3393,7 +3187,7 @@ "width": null } }, - "b3ea83bfea984719aad6881d02d15726": { + "7e2ebbcb0d404d869282cebad95ee30d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3445,28 +3239,7 @@ "width": null } }, - "b984b1bf0c194d66bb4b4d902bc1e0fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c11231a052ff493985580acd5a0529ab", - "placeholder": "​", - "style": "IPY_MODEL_50fa280cff9a4d5882a5db045cf40ff8", - "value": "tokenizer_config.json: 100%" - } - }, - "bd85665d8c5143279c00bb60adea2639": { + "82aa04caa9f44924bec5d3db501834d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3518,7 +3291,50 @@ "width": null } }, - "becb4412c5454df4a0869e76eb093406": { + "8a3114c4394e46e1b7ce1495220913db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7b5f8ee14044146b36ab94719f42e69", + "placeholder": "​", + "style": "IPY_MODEL_c719c33aeb394c7b882ea7afce9a1f79", + "value": "" + } + }, + "8bae24cade9a4f9fb9606ed955bcc7d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_be2f22e6b3854b0c9a41624a878904e2", + "IPY_MODEL_22b09695a81248ef84a9befb859f13b9", + "IPY_MODEL_0fa2df8226524d9d8d5b78234f773e8d" + ], + "layout": "IPY_MODEL_56da5629abdf42609544500e398f5aaa" + } + }, + "8e7bf439a8924e5c9e36eac02d23bdb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3570,7 +3386,22 @@ "width": null } }, - "c11231a052ff493985580acd5a0529ab": { + "96054d864a4149bfa010505bb1cb6ac7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "979bd28b34ed41f8aba44e5222499d15": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3622,62 +3453,7 @@ "width": null } }, - "c423f0c304cc4921b77c3d1ab1914fdb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c45d8f06bd66462c823a39d4d862fe48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c83e58a81a144c7a925fa5df4992a126": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f9e8808c383a4da9846012ddf7516297", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_414097937b4f44d298d7822517bbcd23", - "value": 54245363.0 - } - }, - "ce3a324339fe44c4bee2a4a1b278d1bb": { + "9b786c2a321444849e65be50966b1717": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3729,7 +3505,7 @@ "width": null } }, - "da85687dd9944e3195c03ba5ad6634c2": { + "9b79eef51bb748e895abcbf600656188": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3781,43 +3557,44 @@ "width": null } }, - "da97121956124c4ab00f9b4f6dd5cd2f": { + "9be87e374eee4c2cadd9184c312be454": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c03dd46fef444ca39b07539e939e4f9b", + "IPY_MODEL_ec93e5ab280d446aa1a9adf1d266a1fa", + "IPY_MODEL_7727a3aa392d4e308626c24f2cb24804" + ], + "layout": "IPY_MODEL_020920f595fa4115a5c7409d5b8c51e4" } }, - "dcf37c90171448c782e2f524d7912a43": { + "9c134709d5b1445db6c4dd35221b352a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2cfad4c3de7f4876b8e7277537e1bb9d", - "placeholder": "​", - "style": "IPY_MODEL_650efd38f38e4610bbf408e72bb11dca", - "value": " 665/665 [00:00<00:00, 81.6kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "decbf2ca27454671bc94d3a3b272b819": { + "9ff2eb9a434c453b9583447e1a2dbeca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3832,7 +3609,7 @@ "description_width": "" } }, - "df45180808974725a66cfb7c70093730": { + "a178e4969c0648598019d2eed591912c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3884,7 +3661,7 @@ "width": null } }, - "e23c71c5924644438757e783faf26508": { + "a32f8f2df62f460d8ff9351020ba1726": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3900,29 +3677,95 @@ "description_width": "" } }, - "e30203085c184383b15297aff47b5870": { + "a5640826dd44475e821fa74b810eb1a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a62a499ccde44fd49197c357e5bf6794": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fdc27e75dbc04752b2cc294edefd6439", - "IPY_MODEL_c83e58a81a144c7a925fa5df4992a126", - "IPY_MODEL_ace80592947c4c4b8577f2b04a6f648f" - ], - "layout": "IPY_MODEL_df45180808974725a66cfb7c70093730" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7ccd9dae7d0e4db5b0e3661287ab260f", + "placeholder": "​", + "style": "IPY_MODEL_45fccd0e53e94a58a9f202b1ef377e8f", + "value": " 54.2M/54.2M [00:00<00:00, 294MB/s]" + } + }, + "a7b5f8ee14044146b36ab94719f42e69": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e4b66cd9e5c84cc68b42a33d8d69248d": { + "a9b344d87e044d63b1aeb911dccf6c52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3974,7 +3817,49 @@ "width": null } }, - "e60717a72163424bb32e1816cff3c885": { + "be2f22e6b3854b0c9a41624a878904e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3bad9e6168634b67ad7431240182d0d8", + "placeholder": "​", + "style": "IPY_MODEL_9c134709d5b1445db6c4dd35221b352a", + "value": "config.json: 100%" + } + }, + "c03dd46fef444ca39b07539e939e4f9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_66ef85debde64162ae6c512de7c515ee", + "placeholder": "​", + "style": "IPY_MODEL_6c56c66205764ccf916a1e50a15b64b6", + "value": "README.md: 100%" + } + }, + "c316145836374f27876f8194d241b65c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4026,28 +3911,37 @@ "width": null } }, - "e7ed4e54956842e1abcf7d52c4b7cb65": { + "c719c33aeb394c7b882ea7afce9a1f79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0ce7d40556744bd4b07afbe2f362a2e3", - "placeholder": "​", - "style": "IPY_MODEL_76d6c78025ed4fb4accf51226797c8bd", - "value": " 29.0/29.0 [00:00<00:00, 3.66kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c9f956cf1eb7400180959cb85e53b150": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e9f13c6ee67b4bc7a11fa4f92b4e9ef9": { + "cb66f921283e4958a739e49462cc4a04": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4099,7 +3993,113 @@ "width": null } }, - "eab8ebc83ced49e79d9e70411bc7a4fc": { + "cefe0741da744da1b2967a16480c3466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_611caa81a658462c931147c01308d1e1", + "IPY_MODEL_1d95bc1485a14e32b156a7680ac3765b", + "IPY_MODEL_a62a499ccde44fd49197c357e5bf6794" + ], + "layout": "IPY_MODEL_a178e4969c0648598019d2eed591912c" + } + }, + "cfa8e33b9ba34f9b84f7b2894dcb1cdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_577727eb0f1b47c48279709c3b9a9608", + "IPY_MODEL_4e4725582b7d4c51a27837f8e60e4795", + "IPY_MODEL_e2eefec0360443059b5fb7468a9344b5" + ], + "layout": "IPY_MODEL_09839e5f04d7436787998fc1f0c11891" + } + }, + "d067bae22a7149b0b925bcff92c6c521": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d6cb80492555460883d684e9c4ca11bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d6ddcf0e3d9c4420940e7dff92d49558": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "df34e95d26004ef994b0fce1364a7a43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e2eefec0360443059b5fb7468a9344b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4114,13 +4114,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_becb4412c5454df4a0869e76eb093406", + "layout": "IPY_MODEL_cb66f921283e4958a739e49462cc4a04", "placeholder": "​", - "style": "IPY_MODEL_79d3bd9b1d24452387ab0be1f5a6101e", - "value": "tokenizer.json: 100%" + "style": "IPY_MODEL_d067bae22a7149b0b925bcff92c6c521", + "value": " 391/391 [00:00<00:00, 47.5kB/s]" } }, - "f13687759a0f458ba3800556c1d4502d": { + "e64e46031cfc4c28af96f771e862a54f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4172,44 +4172,7 @@ "width": null } }, - "f15c8b7603b84636b18b6dc61c822809": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_58a51e9e6f934e80ba32e2d119e41f51", - "placeholder": "​", - "style": "IPY_MODEL_258793d030024251a3078230b6b4de71", - "value": " 391/391 [00:00<00:00, 47.6kB/s]" - } - }, - "f2fe20bd6cf34cdf9f60ff919c96b412": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f52aa0c0ae654587b9ac91bfbff3f902": { + "e7b9f584e7734ecc96eef9c869aa866f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4225,39 +4188,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a966318b56e54dbe98185eefc1bec3c1", - "max": 391.0, + "layout": "IPY_MODEL_6aab1e9b8d704c299dc28baabf1b6b35", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f2fe20bd6cf34cdf9f60ff919c96b412", - "value": 391.0 + "style": "IPY_MODEL_a32f8f2df62f460d8ff9351020ba1726", + "value": 466062.0 } }, - "f773b402043d426caffb41dc672d966e": { + "e88cd21cb2c243bebb5a5a8e1ecb095c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ce3a324339fe44c4bee2a4a1b278d1bb", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b97b5f9f21443998985d0d4ff2719b9", - "value": 29.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "f9e8808c383a4da9846012ddf7516297": { + "eaaadabf61ef4df1a6b16c5b9bd3316b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4309,7 +4263,7 @@ "width": null } }, - "fa3ab0136e38413986721ab71d6c782c": { + "ec93e5ab280d446aa1a9adf1d266a1fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4325,33 +4279,79 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6e380842062a4f86a1da5c3620386874", - "max": 1.0, + "layout": "IPY_MODEL_6942705f444b47bcb26fa2b03e75680f", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_806e57cfdd8d43908533f6c8749dfc5e", - "value": 0.0 + "style": "IPY_MODEL_1f6cdba4653642b2b283ba5bf58317e2", + "value": 2211.0 } }, - "fdc27e75dbc04752b2cc294edefd6439": { + "edda32825d264c45a43c0cddd935f4fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "efbcffcfef5b4247bac1c857e7f07a58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4f91f5d0bd1848c480a38f4dbf27c703", - "placeholder": "​", - "style": "IPY_MODEL_a08ef0e6f74f47d8ab2c891a22141fad", - "value": "pytorch_model.bin: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b2c89ca673045e6910f473ffcd2a155", + "IPY_MODEL_727d364de29748c89b359fc9269e8c21", + "IPY_MODEL_09194539b33f415eb6243079a5493c34" + ], + "layout": "IPY_MODEL_72d78ee7c8994847928a783170a0882f" + } + }, + "f4d9a96d2b3a4ffda14f1ca5b6753fac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ff41dec3e8d544528ed4122b89c1cc1a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index e10955479..485b45c09 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:01.530821Z", - "iopub.status.busy": "2023-12-28T10:51:01.530627Z", - "iopub.status.idle": "2023-12-28T10:51:02.560475Z", - "shell.execute_reply": "2023-12-28T10:51:02.559799Z" + "iopub.execute_input": "2024-01-02T16:43:52.409557Z", + "iopub.status.busy": "2024-01-02T16:43:52.409344Z", + "iopub.status.idle": "2024-01-02T16:43:53.435241Z", + "shell.execute_reply": "2024-01-02T16:43:53.434634Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:02.563458Z", - "iopub.status.busy": "2023-12-28T10:51:02.563072Z", - "iopub.status.idle": "2023-12-28T10:51:02.566230Z", - "shell.execute_reply": "2023-12-28T10:51:02.565716Z" + "iopub.execute_input": "2024-01-02T16:43:53.438069Z", + "iopub.status.busy": "2024-01-02T16:43:53.437682Z", + "iopub.status.idle": "2024-01-02T16:43:53.440831Z", + "shell.execute_reply": "2024-01-02T16:43:53.440210Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:02.568610Z", - "iopub.status.busy": "2023-12-28T10:51:02.568409Z", - "iopub.status.idle": "2023-12-28T10:51:02.581349Z", - "shell.execute_reply": "2023-12-28T10:51:02.580808Z" + "iopub.execute_input": "2024-01-02T16:43:53.443461Z", + "iopub.status.busy": "2024-01-02T16:43:53.443001Z", + "iopub.status.idle": "2024-01-02T16:43:53.455868Z", + "shell.execute_reply": "2024-01-02T16:43:53.455358Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:02.584023Z", - "iopub.status.busy": "2023-12-28T10:51:02.583564Z", - "iopub.status.idle": "2023-12-28T10:51:05.294388Z", - "shell.execute_reply": "2023-12-28T10:51:05.293763Z" + "iopub.execute_input": "2024-01-02T16:43:53.458165Z", + "iopub.status.busy": "2024-01-02T16:43:53.457913Z", + "iopub.status.idle": "2024-01-02T16:43:57.414922Z", + "shell.execute_reply": "2024-01-02T16:43:57.414258Z" }, "id": "dhTHOg8Pyv5G" }, @@ -297,7 +297,13 @@ "text": [ "\n", "🎯 Caltech256 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)\n", "\n", @@ -306,13 +312,7 @@ "| for your dataset with 29,780 examples and 256 classes. |\n", "| Note, Cleanlab is not a medical doctor... yet. |\n", "-------------------------------------------------------------\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "Overall Class Quality and Noise across your dataset (below)\n", "------------------------------------------------------------ \n", "\n" @@ -692,7 +692,13 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", @@ -2176,7 +2182,13 @@ "\n", "\n", "🎯 Cifar100_test_set 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 7e5c7c7e5..e9bbb8603 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:10.056653Z", - "iopub.status.busy": "2023-12-28T10:51:10.056431Z", - "iopub.status.idle": "2023-12-28T10:51:11.099227Z", - "shell.execute_reply": "2023-12-28T10:51:11.098513Z" + "iopub.execute_input": "2024-01-02T16:44:01.836132Z", + "iopub.status.busy": "2024-01-02T16:44:01.835524Z", + "iopub.status.idle": "2024-01-02T16:44:02.871925Z", + "shell.execute_reply": "2024-01-02T16:44:02.871308Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:11.102542Z", - "iopub.status.busy": "2023-12-28T10:51:11.102158Z", - "iopub.status.idle": "2023-12-28T10:51:11.105825Z", - "shell.execute_reply": "2023-12-28T10:51:11.105329Z" + "iopub.execute_input": "2024-01-02T16:44:02.875269Z", + "iopub.status.busy": "2024-01-02T16:44:02.874921Z", + "iopub.status.idle": "2024-01-02T16:44:02.878630Z", + "shell.execute_reply": "2024-01-02T16:44:02.878073Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:11.108217Z", - "iopub.status.busy": "2023-12-28T10:51:11.107825Z", - "iopub.status.idle": "2023-12-28T10:51:13.163439Z", - "shell.execute_reply": "2023-12-28T10:51:13.162751Z" + "iopub.execute_input": "2024-01-02T16:44:02.881147Z", + "iopub.status.busy": "2024-01-02T16:44:02.880697Z", + "iopub.status.idle": "2024-01-02T16:44:04.932805Z", + "shell.execute_reply": "2024-01-02T16:44:04.932101Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.167063Z", - "iopub.status.busy": "2023-12-28T10:51:13.166223Z", - "iopub.status.idle": "2023-12-28T10:51:13.206496Z", - "shell.execute_reply": "2023-12-28T10:51:13.205720Z" + "iopub.execute_input": "2024-01-02T16:44:04.936242Z", + "iopub.status.busy": "2024-01-02T16:44:04.935568Z", + "iopub.status.idle": "2024-01-02T16:44:04.977309Z", + "shell.execute_reply": "2024-01-02T16:44:04.976623Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.210014Z", - "iopub.status.busy": "2023-12-28T10:51:13.209470Z", - "iopub.status.idle": "2023-12-28T10:51:13.247629Z", - "shell.execute_reply": "2023-12-28T10:51:13.246963Z" + "iopub.execute_input": "2024-01-02T16:44:04.980707Z", + "iopub.status.busy": "2024-01-02T16:44:04.980148Z", + "iopub.status.idle": "2024-01-02T16:44:05.021253Z", + "shell.execute_reply": "2024-01-02T16:44:05.020568Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.250842Z", - "iopub.status.busy": "2023-12-28T10:51:13.250341Z", - "iopub.status.idle": "2023-12-28T10:51:13.253713Z", - "shell.execute_reply": "2023-12-28T10:51:13.253190Z" + "iopub.execute_input": "2024-01-02T16:44:05.024395Z", + "iopub.status.busy": "2024-01-02T16:44:05.024036Z", + "iopub.status.idle": "2024-01-02T16:44:05.027237Z", + "shell.execute_reply": "2024-01-02T16:44:05.026726Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.256163Z", - "iopub.status.busy": "2023-12-28T10:51:13.255701Z", - "iopub.status.idle": "2023-12-28T10:51:13.258528Z", - "shell.execute_reply": "2023-12-28T10:51:13.258027Z" + "iopub.execute_input": "2024-01-02T16:44:05.029619Z", + "iopub.status.busy": "2024-01-02T16:44:05.029251Z", + "iopub.status.idle": "2024-01-02T16:44:05.032031Z", + "shell.execute_reply": "2024-01-02T16:44:05.031494Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.261300Z", - "iopub.status.busy": "2023-12-28T10:51:13.260854Z", - "iopub.status.idle": "2023-12-28T10:51:13.289328Z", - "shell.execute_reply": "2023-12-28T10:51:13.288681Z" + "iopub.execute_input": "2024-01-02T16:44:05.034600Z", + "iopub.status.busy": "2024-01-02T16:44:05.034101Z", + "iopub.status.idle": "2024-01-02T16:44:05.063683Z", + "shell.execute_reply": "2024-01-02T16:44:05.062966Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0dc7733f6fac484ba4dd969b147cd88c", + "model_id": "d488a45de9614f829dd754c7c7931f9d", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa5ce7bdd5184371a27768440d1591bb", + "model_id": "f8012a98f78442b2a1e0ec66d6d50513", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.297891Z", - "iopub.status.busy": "2023-12-28T10:51:13.297369Z", - "iopub.status.idle": "2023-12-28T10:51:13.304455Z", - "shell.execute_reply": "2023-12-28T10:51:13.303805Z" + "iopub.execute_input": "2024-01-02T16:44:05.071334Z", + "iopub.status.busy": "2024-01-02T16:44:05.071060Z", + "iopub.status.idle": "2024-01-02T16:44:05.078931Z", + "shell.execute_reply": "2024-01-02T16:44:05.078300Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.306816Z", - "iopub.status.busy": "2023-12-28T10:51:13.306473Z", - "iopub.status.idle": "2023-12-28T10:51:13.310237Z", - "shell.execute_reply": "2023-12-28T10:51:13.309611Z" + "iopub.execute_input": "2024-01-02T16:44:05.081522Z", + "iopub.status.busy": "2024-01-02T16:44:05.081066Z", + "iopub.status.idle": "2024-01-02T16:44:05.084947Z", + "shell.execute_reply": "2024-01-02T16:44:05.084327Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.312719Z", - "iopub.status.busy": "2023-12-28T10:51:13.312198Z", - "iopub.status.idle": "2023-12-28T10:51:13.319058Z", - "shell.execute_reply": "2023-12-28T10:51:13.318509Z" + "iopub.execute_input": "2024-01-02T16:44:05.087377Z", + "iopub.status.busy": "2024-01-02T16:44:05.086987Z", + "iopub.status.idle": "2024-01-02T16:44:05.094059Z", + "shell.execute_reply": "2024-01-02T16:44:05.093400Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.321507Z", - "iopub.status.busy": "2023-12-28T10:51:13.321101Z", - "iopub.status.idle": "2023-12-28T10:51:13.362551Z", - "shell.execute_reply": "2023-12-28T10:51:13.361876Z" + "iopub.execute_input": "2024-01-02T16:44:05.096313Z", + "iopub.status.busy": "2024-01-02T16:44:05.096003Z", + "iopub.status.idle": "2024-01-02T16:44:05.144182Z", + "shell.execute_reply": "2024-01-02T16:44:05.143488Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.365681Z", - "iopub.status.busy": "2023-12-28T10:51:13.365269Z", - "iopub.status.idle": "2023-12-28T10:51:13.410609Z", - "shell.execute_reply": "2023-12-28T10:51:13.409837Z" + "iopub.execute_input": "2024-01-02T16:44:05.147224Z", + "iopub.status.busy": "2024-01-02T16:44:05.146876Z", + "iopub.status.idle": "2024-01-02T16:44:05.188244Z", + "shell.execute_reply": "2024-01-02T16:44:05.187562Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.413896Z", - "iopub.status.busy": "2023-12-28T10:51:13.413407Z", - "iopub.status.idle": "2023-12-28T10:51:13.533617Z", - "shell.execute_reply": "2023-12-28T10:51:13.532912Z" + "iopub.execute_input": "2024-01-02T16:44:05.191549Z", + "iopub.status.busy": "2024-01-02T16:44:05.191212Z", + "iopub.status.idle": "2024-01-02T16:44:05.315836Z", + "shell.execute_reply": "2024-01-02T16:44:05.315150Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.536558Z", - "iopub.status.busy": "2023-12-28T10:51:13.536157Z", - "iopub.status.idle": "2023-12-28T10:51:16.057955Z", - "shell.execute_reply": "2023-12-28T10:51:16.057207Z" + "iopub.execute_input": "2024-01-02T16:44:05.318672Z", + "iopub.status.busy": "2024-01-02T16:44:05.318394Z", + "iopub.status.idle": "2024-01-02T16:44:07.862364Z", + "shell.execute_reply": "2024-01-02T16:44:07.861593Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.061086Z", - "iopub.status.busy": "2023-12-28T10:51:16.060657Z", - "iopub.status.idle": "2023-12-28T10:51:16.121695Z", - "shell.execute_reply": "2023-12-28T10:51:16.121025Z" + "iopub.execute_input": "2024-01-02T16:44:07.864976Z", + "iopub.status.busy": "2024-01-02T16:44:07.864750Z", + "iopub.status.idle": "2024-01-02T16:44:07.929221Z", + "shell.execute_reply": "2024-01-02T16:44:07.928549Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "4cd2fecd", + "id": "11e1fe1a", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "81842555", + "id": "45754f3c", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "a8bd4f39", + "id": "69ad04b9", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.124470Z", - "iopub.status.busy": "2023-12-28T10:51:16.124045Z", - "iopub.status.idle": "2023-12-28T10:51:16.236633Z", - "shell.execute_reply": "2023-12-28T10:51:16.235924Z" + "iopub.execute_input": "2024-01-02T16:44:07.931855Z", + "iopub.status.busy": "2024-01-02T16:44:07.931498Z", + "iopub.status.idle": "2024-01-02T16:44:08.044089Z", + "shell.execute_reply": "2024-01-02T16:44:08.043350Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "806f20e9", + "id": "b80e307b", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "0f606bf4", + "id": "a07778a1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.240458Z", - "iopub.status.busy": "2023-12-28T10:51:16.239465Z", - "iopub.status.idle": "2023-12-28T10:51:16.309914Z", - "shell.execute_reply": "2023-12-28T10:51:16.309279Z" + "iopub.execute_input": "2024-01-02T16:44:08.048178Z", + "iopub.status.busy": "2024-01-02T16:44:08.046973Z", + "iopub.status.idle": "2024-01-02T16:44:08.127066Z", + "shell.execute_reply": "2024-01-02T16:44:08.126241Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "b46572c4", + "id": "4d632f0a", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "e42cb388", + "id": "bb89e3e8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.312656Z", - "iopub.status.busy": "2023-12-28T10:51:16.312445Z", - "iopub.status.idle": "2023-12-28T10:51:16.320866Z", - "shell.execute_reply": "2023-12-28T10:51:16.320186Z" + "iopub.execute_input": "2024-01-02T16:44:08.129987Z", + "iopub.status.busy": "2024-01-02T16:44:08.129751Z", + "iopub.status.idle": "2024-01-02T16:44:08.138421Z", + "shell.execute_reply": "2024-01-02T16:44:08.137863Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "ffb7cad6", + "id": "789c4c8c", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "0313e8ec", + "id": "23b042cf", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.323709Z", - "iopub.status.busy": "2023-12-28T10:51:16.323107Z", - "iopub.status.idle": "2023-12-28T10:51:16.342675Z", - "shell.execute_reply": "2023-12-28T10:51:16.342005Z" + "iopub.execute_input": "2024-01-02T16:44:08.140990Z", + "iopub.status.busy": "2024-01-02T16:44:08.140665Z", + "iopub.status.idle": "2024-01-02T16:44:08.162010Z", + "shell.execute_reply": "2024-01-02T16:44:08.161231Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "25d9f5e6", + "id": "a4d04f62", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.345358Z", - "iopub.status.busy": "2023-12-28T10:51:16.344975Z", - "iopub.status.idle": "2023-12-28T10:51:16.349022Z", - "shell.execute_reply": "2023-12-28T10:51:16.348429Z" + "iopub.execute_input": "2024-01-02T16:44:08.164720Z", + "iopub.status.busy": "2024-01-02T16:44:08.164389Z", + "iopub.status.idle": "2024-01-02T16:44:08.168517Z", + "shell.execute_reply": "2024-01-02T16:44:08.167980Z" } }, "outputs": [ @@ -1203,59 +1203,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07dfe5af91a84c728a8a628c11190002": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0dc7733f6fac484ba4dd969b147cd88c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e38334c5ecaa41cb800313b30c6ad845", - "IPY_MODEL_ec931f109a5e4830be6e15b23a2caa8a", - "IPY_MODEL_30316cf420824a829eda8ee3f3f36991" - ], - "layout": "IPY_MODEL_baea8f8c366a4ca6a34381a5e6fb99eb" - } - }, - "2a3410c8e76e4da1a2c1201acdafe8e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2f6d326f28604310a38367ee98fd7fb9": { + "02a9cda90bd24fca8175d8c43eef4909": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1307,28 +1255,7 @@ "width": null } }, - "30316cf420824a829eda8ee3f3f36991": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d9ebc6f9f30b4734a554a85db6ae8861", - "placeholder": "​", - "style": "IPY_MODEL_c45bbedb6a7949b882e184b9bc4d46b9", - "value": " 10000/? [00:00<00:00, 1034379.15it/s]" - } - }, - "3ddcd594710745acaad1e1cc6f149d8a": { + "0b26a491d8c34a0d931670d5928603e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1380,7 +1307,58 @@ "width": null } }, - "55b58ad72a8d46099d3702084a1b182a": { + "2eeea2f7645b4188aedc5f31e15144f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_47e4de9f7c634aab83b30f36f22afe5a", + "placeholder": "​", + "style": "IPY_MODEL_d9920febf823481abf81cd51efec171f", + "value": " 10000/? [00:00<00:00, 913751.91it/s]" + } + }, + "3148dccaefa7441cbc8361a12a0fd8cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "37a9e3c1702f4fb5a5c74358cfc1971f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "45d26c1bc9814e0c951e6344c92aee31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1432,81 +1410,7 @@ "width": null } }, - "62df1f18b44e4d90a0824dbdcec6edf0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "63d2a866773744b9aff15c1767a550dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9556274857844616b2c2abdcb7b93e59", - "placeholder": "​", - "style": "IPY_MODEL_2a3410c8e76e4da1a2c1201acdafe8e0", - "value": " 10000/? [00:00<00:00, 980504.48it/s]" - } - }, - "85188d9282f24a42addc1338023f31f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8dd5a6da291645aeaa639467f94d1774": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3ddcd594710745acaad1e1cc6f149d8a", - "placeholder": "​", - "style": "IPY_MODEL_07dfe5af91a84c728a8a628c11190002", - "value": "number of examples processed for checking labels: " - } - }, - "9556274857844616b2c2abdcb7b93e59": { + "47e4de9f7c634aab83b30f36f22afe5a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1558,7 +1462,7 @@ "width": null } }, - "a3a2eaf1b069458cb5afc716f77e9a4d": { + "5eef3d260b1c48f0a9af95ac534c9261": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1610,29 +1514,7 @@ "width": null } }, - "aa5ce7bdd5184371a27768440d1591bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8dd5a6da291645aeaa639467f94d1774", - "IPY_MODEL_d1cd15e8c98749cc8d09445334cef423", - "IPY_MODEL_63d2a866773744b9aff15c1767a550dc" - ], - "layout": "IPY_MODEL_c0e70cfa3e214daf8c1b1ca5e050ae40" - } - }, - "baea8f8c366a4ca6a34381a5e6fb99eb": { + "6320bb24a64d490c85aa206924dd41ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1684,7 +1566,39 @@ "width": null } }, - "c0e70cfa3e214daf8c1b1ca5e050ae40": { + "67a78d71b09c418bacaa113820259639": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6a3ad8390a4a48c2a689f4a1aec792a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8e3eb4631d924de79ed076260db759f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1736,7 +1650,7 @@ "width": null } }, - "c45bbedb6a7949b882e184b9bc4d46b9": { + "969994746ec14cfabd3d67d9b854d535": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1751,31 +1665,7 @@ "description_width": "" } }, - "d1cd15e8c98749cc8d09445334cef423": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a3a2eaf1b069458cb5afc716f77e9a4d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_85188d9282f24a42addc1338023f31f1", - "value": 50.0 - } - }, - "d9ebc6f9f30b4734a554a85db6ae8861": { + "a2ca91a8edc646b881d822eb3c890f36": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1827,7 +1717,7 @@ "width": null } }, - "e38334c5ecaa41cb800313b30c6ad845": { + "af8f0cbc84314c2dbaf42c0c0e559eb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1842,13 +1732,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2f6d326f28604310a38367ee98fd7fb9", + "layout": "IPY_MODEL_5eef3d260b1c48f0a9af95ac534c9261", "placeholder": "​", - "style": "IPY_MODEL_f6176f13b6394a6da6ffd7d60a6be946", - "value": "number of examples processed for estimating thresholds: " + "style": "IPY_MODEL_969994746ec14cfabd3d67d9b854d535", + "value": "number of examples processed for checking labels: " } }, - "ec931f109a5e4830be6e15b23a2caa8a": { + "bc697095a3a249d5a1c4a81792b4ee30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1864,15 +1754,58 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_55b58ad72a8d46099d3702084a1b182a", + "layout": "IPY_MODEL_a2ca91a8edc646b881d822eb3c890f36", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_62df1f18b44e4d90a0824dbdcec6edf0", + "style": "IPY_MODEL_67a78d71b09c418bacaa113820259639", "value": 50.0 } }, - "f6176f13b6394a6da6ffd7d60a6be946": { + "cf809e3cf7844d18930646c1e4f3784e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0b26a491d8c34a0d931670d5928603e9", + "placeholder": "​", + "style": "IPY_MODEL_3148dccaefa7441cbc8361a12a0fd8cb", + "value": "number of examples processed for estimating thresholds: " + } + }, + "d488a45de9614f829dd754c7c7931f9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf809e3cf7844d18930646c1e4f3784e", + "IPY_MODEL_bc697095a3a249d5a1c4a81792b4ee30", + "IPY_MODEL_2eeea2f7645b4188aedc5f31e15144f3" + ], + "layout": "IPY_MODEL_45d26c1bc9814e0c951e6344c92aee31" + } + }, + "d9920febf823481abf81cd51efec171f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1886,6 +1819,73 @@ "_view_name": "StyleView", "description_width": "" } + }, + "f8012a98f78442b2a1e0ec66d6d50513": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af8f0cbc84314c2dbaf42c0c0e559eb9", + "IPY_MODEL_ff9ffed88a004b62bfb3bd67c09719f6", + "IPY_MODEL_ff51c94d645845d7803e7f0b10c60e8d" + ], + "layout": "IPY_MODEL_8e3eb4631d924de79ed076260db759f0" + } + }, + "ff51c94d645845d7803e7f0b10c60e8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6320bb24a64d490c85aa206924dd41ac", + "placeholder": "​", + "style": "IPY_MODEL_37a9e3c1702f4fb5a5c74358cfc1971f", + "value": " 10000/? [00:00<00:00, 1135191.08it/s]" + } + }, + "ff9ffed88a004b62bfb3bd67c09719f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02a9cda90bd24fca8175d8c43eef4909", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6a3ad8390a4a48c2a689f4a1aec792a4", + "value": 50.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index 2fa48f624..2fa4aaff8 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:21.699842Z", - "iopub.status.busy": "2023-12-28T10:51:21.699465Z", - "iopub.status.idle": "2023-12-28T10:51:23.862154Z", - "shell.execute_reply": "2023-12-28T10:51:23.861540Z" + "iopub.execute_input": "2024-01-02T16:44:13.318315Z", + "iopub.status.busy": "2024-01-02T16:44:13.317856Z", + "iopub.status.idle": "2024-01-02T16:44:15.517012Z", + "shell.execute_reply": "2024-01-02T16:44:15.516379Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:23.865216Z", - "iopub.status.busy": "2023-12-28T10:51:23.864655Z", - "iopub.status.idle": "2023-12-28T10:51:23.868563Z", - "shell.execute_reply": "2023-12-28T10:51:23.867912Z" + "iopub.execute_input": "2024-01-02T16:44:15.520115Z", + "iopub.status.busy": "2024-01-02T16:44:15.519591Z", + "iopub.status.idle": "2024-01-02T16:44:15.523342Z", + "shell.execute_reply": "2024-01-02T16:44:15.522787Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:23.870991Z", - "iopub.status.busy": "2023-12-28T10:51:23.870562Z", - "iopub.status.idle": "2023-12-28T10:51:25.218141Z", - "shell.execute_reply": "2023-12-28T10:51:25.217535Z" + "iopub.execute_input": "2024-01-02T16:44:15.525726Z", + "iopub.status.busy": "2024-01-02T16:44:15.525367Z", + "iopub.status.idle": "2024-01-02T16:44:18.452974Z", + "shell.execute_reply": "2024-01-02T16:44:18.452328Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ef00bbe1818846999730dee959633c30", + "model_id": "bdd8d83d16ce4e48ba972c56b576b84d", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4d6a08f2339f4c438e1d42bf2ca12173", + "model_id": "3aef40a726a7487a997682ee3a6e5826", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6b14d27bd3d45a2bcf6d7b5f8764c86", + "model_id": "e292d7c9b544457998217dfe333664e2", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7c47746dcb1140dbb4cf79d8a6a53b0a", + "model_id": "d26337e7713242faa01dda838af51958", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:25.220827Z", - "iopub.status.busy": "2023-12-28T10:51:25.220363Z", - "iopub.status.idle": "2023-12-28T10:51:25.224557Z", - "shell.execute_reply": "2023-12-28T10:51:25.223934Z" + "iopub.execute_input": "2024-01-02T16:44:18.455560Z", + "iopub.status.busy": "2024-01-02T16:44:18.455197Z", + "iopub.status.idle": "2024-01-02T16:44:18.459152Z", + "shell.execute_reply": "2024-01-02T16:44:18.458645Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:25.227017Z", - "iopub.status.busy": "2023-12-28T10:51:25.226639Z", - "iopub.status.idle": "2023-12-28T10:51:37.539939Z", - "shell.execute_reply": "2023-12-28T10:51:37.539211Z" + "iopub.execute_input": "2024-01-02T16:44:18.461476Z", + "iopub.status.busy": "2024-01-02T16:44:18.461130Z", + "iopub.status.idle": "2024-01-02T16:44:30.629126Z", + "shell.execute_reply": "2024-01-02T16:44:30.628505Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66b99572a6894b269c707cacbf13b4c1", + "model_id": "ab8ea257c1544162ac74cedcd94836b8", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:37.543074Z", - "iopub.status.busy": "2023-12-28T10:51:37.542680Z", - "iopub.status.idle": "2023-12-28T10:51:58.820961Z", - "shell.execute_reply": "2023-12-28T10:51:58.820325Z" + "iopub.execute_input": "2024-01-02T16:44:30.632109Z", + "iopub.status.busy": "2024-01-02T16:44:30.631717Z", + "iopub.status.idle": "2024-01-02T16:44:52.190264Z", + "shell.execute_reply": "2024-01-02T16:44:52.189462Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.824174Z", - "iopub.status.busy": "2023-12-28T10:51:58.823728Z", - "iopub.status.idle": "2023-12-28T10:51:58.829801Z", - "shell.execute_reply": "2023-12-28T10:51:58.829275Z" + "iopub.execute_input": "2024-01-02T16:44:52.193635Z", + "iopub.status.busy": "2024-01-02T16:44:52.193228Z", + "iopub.status.idle": "2024-01-02T16:44:52.199290Z", + "shell.execute_reply": "2024-01-02T16:44:52.198591Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.832003Z", - "iopub.status.busy": "2023-12-28T10:51:58.831791Z", - "iopub.status.idle": "2023-12-28T10:51:58.836036Z", - "shell.execute_reply": "2023-12-28T10:51:58.835417Z" + "iopub.execute_input": "2024-01-02T16:44:52.201991Z", + "iopub.status.busy": "2024-01-02T16:44:52.201536Z", + "iopub.status.idle": "2024-01-02T16:44:52.206383Z", + "shell.execute_reply": "2024-01-02T16:44:52.205819Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.838335Z", - "iopub.status.busy": "2023-12-28T10:51:58.838137Z", - "iopub.status.idle": "2023-12-28T10:51:58.847977Z", - "shell.execute_reply": "2023-12-28T10:51:58.847325Z" + "iopub.execute_input": "2024-01-02T16:44:52.208914Z", + "iopub.status.busy": "2024-01-02T16:44:52.208542Z", + "iopub.status.idle": "2024-01-02T16:44:52.218376Z", + "shell.execute_reply": "2024-01-02T16:44:52.217711Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.850216Z", - "iopub.status.busy": "2023-12-28T10:51:58.850015Z", - "iopub.status.idle": "2023-12-28T10:51:58.877757Z", - "shell.execute_reply": "2023-12-28T10:51:58.877222Z" + "iopub.execute_input": "2024-01-02T16:44:52.220804Z", + "iopub.status.busy": "2024-01-02T16:44:52.220352Z", + "iopub.status.idle": "2024-01-02T16:44:52.250373Z", + "shell.execute_reply": "2024-01-02T16:44:52.249854Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.880248Z", - "iopub.status.busy": "2023-12-28T10:51:58.880005Z", - "iopub.status.idle": "2023-12-28T10:52:31.033894Z", - "shell.execute_reply": "2023-12-28T10:52:31.033222Z" + "iopub.execute_input": "2024-01-02T16:44:52.252797Z", + "iopub.status.busy": "2024-01-02T16:44:52.252420Z", + "iopub.status.idle": "2024-01-02T16:45:23.624499Z", + "shell.execute_reply": "2024-01-02T16:45:23.623642Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.666\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.665\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.712\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.432\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.80it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.04it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.85it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 52.13it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.83it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 61.52it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 64.05it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 64.38it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 68.13it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 69.16it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.34it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.31it/s]" ] }, { @@ -820,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.36it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.54it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.96it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 49.77it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 60.56it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 61.03it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 66.53it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 66.62it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 66.40it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 69.31it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.29it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.12it/s]" ] }, { @@ -882,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.883\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.727\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.678\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.561\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.85it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.31it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.54it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.38it/s]" + " 40%|████ | 16/40 [00:00<00:00, 55.60it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 64.68it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.81it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.37it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 67.55it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.87it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.09it/s]" ] }, { @@ -976,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.90it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.26it/s]" ] }, { @@ -984,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 44.75it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.31it/s]" ] }, { @@ -992,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 57.19it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 52.02it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.70it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 56.71it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.12it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 62.29it/s]" ] }, { @@ -1016,14 +1016,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.82it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 69.03it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\n" + "\r", + "100%|██████████| 40/40 [00:00<00:00, 58.55it/s]" ] }, { @@ -1035,26 +1036,25 @@ ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.860\n" + "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.447\n", - "Computing feature embeddings ...\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.669\n" ] }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "\r", - " 0%| | 0/40 [00:00\n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2614,10 +2614,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:01.847213Z", - "iopub.status.busy": "2023-12-28T10:56:01.846630Z", - "iopub.status.idle": "2023-12-28T10:56:01.853206Z", - "shell.execute_reply": "2023-12-28T10:56:01.852635Z" + "iopub.execute_input": "2024-01-02T16:48:56.478782Z", + "iopub.status.busy": "2024-01-02T16:48:56.478538Z", + "iopub.status.idle": "2024-01-02T16:48:56.485279Z", + "shell.execute_reply": "2024-01-02T16:48:56.484611Z" }, "nbsphinx": "hidden" }, @@ -2654,10 +2654,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:01.856114Z", - "iopub.status.busy": "2023-12-28T10:56:01.855573Z", - "iopub.status.idle": "2023-12-28T10:56:02.059181Z", - "shell.execute_reply": "2023-12-28T10:56:02.058516Z" + "iopub.execute_input": "2024-01-02T16:48:56.488523Z", + "iopub.status.busy": "2024-01-02T16:48:56.488269Z", + "iopub.status.idle": "2024-01-02T16:48:56.695600Z", + "shell.execute_reply": "2024-01-02T16:48:56.694916Z" } }, "outputs": [ @@ -2699,10 +2699,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:02.062080Z", - "iopub.status.busy": "2023-12-28T10:56:02.061666Z", - "iopub.status.idle": "2023-12-28T10:56:02.070670Z", - "shell.execute_reply": "2023-12-28T10:56:02.070039Z" + "iopub.execute_input": "2024-01-02T16:48:56.698633Z", + "iopub.status.busy": "2024-01-02T16:48:56.698078Z", + "iopub.status.idle": "2024-01-02T16:48:56.709634Z", + "shell.execute_reply": "2024-01-02T16:48:56.708930Z" } }, "outputs": [ @@ -2727,47 +2727,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2788,10 +2788,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:02.073041Z", - "iopub.status.busy": "2023-12-28T10:56:02.072839Z", - "iopub.status.idle": "2023-12-28T10:56:02.238265Z", - "shell.execute_reply": "2023-12-28T10:56:02.237583Z" + "iopub.execute_input": "2024-01-02T16:48:56.712327Z", + "iopub.status.busy": "2024-01-02T16:48:56.711896Z", + "iopub.status.idle": "2024-01-02T16:48:56.917398Z", + "shell.execute_reply": "2024-01-02T16:48:56.916721Z" } }, "outputs": [ @@ -2822,10 +2822,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:02.241234Z", - "iopub.status.busy": "2023-12-28T10:56:02.240968Z", - "iopub.status.idle": "2023-12-28T10:56:02.246032Z", - "shell.execute_reply": "2023-12-28T10:56:02.245498Z" + "iopub.execute_input": "2024-01-02T16:48:56.920279Z", + "iopub.status.busy": "2024-01-02T16:48:56.919883Z", + "iopub.status.idle": "2024-01-02T16:48:56.924875Z", + "shell.execute_reply": "2024-01-02T16:48:56.924234Z" }, "nbsphinx": "hidden" }, @@ -2862,22 +2862,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "037533e3506a4a9db931c5ee5310d8eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0a2e35c2d0364ecd99b3552fb95f3158": { + "0084a46c9d7e4b36807b48823efd789c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2929,7 +2914,28 @@ "width": null } }, - "0e1b25214be54a04a986ae8d193de7b6": { + "06c63814bae1457eb141d1bc207b8993": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_691f90e8e3c546fc895b1d0cd686e0aa", + "placeholder": "​", + "style": "IPY_MODEL_ff0d891d4d0547a8bf72adfa5a9448f4", + "value": "Downloading data: 100%" + } + }, + "06f8640a1b2043ec992a791379bcfe4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2981,7 +2987,23 @@ "width": null } }, - "14759363841c473b92f1ff183a30c931": { + "08092c96bdc34e5f9b0cbdc9f1bcf56f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0b8808eb05cf4d469b80ea697d3c0efd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3033,7 +3055,7 @@ "width": null } }, - "1a1db66bec834718a82b95d8e2ede7c5": { + "0dc3f4aa8c8241689bcc703926fcb385": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3085,7 +3107,7 @@ "width": null } }, - "1daef5f644ca438493bcca1dd7869da0": { + "0eee090ebc4b4bc1b2f7b93498eb5a66": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3100,13 +3122,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e9a1eb9feb394f79a7eccaaeeb8592e7", + "layout": "IPY_MODEL_f3608822aa154fa098ba8256974e88bd", "placeholder": "​", - "style": "IPY_MODEL_46ce9be0c5554dd7befb947548fd1a80", - "value": "Generating train split: " + "style": "IPY_MODEL_b660df2b73104c37976425e56f81a28f", + "value": "Map (num_proc=4): 100%" + } + }, + "1389c65d0684462fae24fdb9d027df5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "273ccb68240f4452a4425c0d0d6e5d66": { + "14f59594e791448fb08985949852fc3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3121,50 +3159,89 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d633ad83c7cd4e9197391dc81cd735a2", + "layout": "IPY_MODEL_1a434d1d381343e48b3e2cfc48c6b0bf", "placeholder": "​", - "style": "IPY_MODEL_286f8c4ddb394191b7004962c9d5de04", - "value": " 60000/60000 [00:12<00:00, 6321.63 examples/s]" + "style": "IPY_MODEL_b108f5b2d21b4b29adc6e1cb78399f93", + "value": " 10000/0 [00:00<00:00, 515283.42 examples/s]" } }, - "286f8c4ddb394191b7004962c9d5de04": { + "1760f769aeb246b29e063ffd5f80064e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8a6d75af45b4d9e807068f2581d1c30", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e6d7e1df9af0467194ff9a53b3fc7444", + "value": 30931277.0 } }, - "29644f36ac7643c4b12f830df90a3c65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "19f1b86223924ddabeba38237f2b7fc2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c04e1f6f6d5146eba074a6693a403e0a", - "IPY_MODEL_edc5dc4e84aa4145b0a6602ef0029e7f", - "IPY_MODEL_7a5b7e15665047d188a690e3512c34b9" - ], - "layout": "IPY_MODEL_9af8569a05bc4e65b71661993bffa124" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2ac75d362c4d4e0793f683d4ec0fb37e": { + "1a434d1d381343e48b3e2cfc48c6b0bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3216,22 +3293,75 @@ "width": null } }, - "2c156ba3c74f45899af8bcd138125124": { + "1cc852b932b0485c9e9f22d2f3e92582": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "2f8f43fbc3f441ec996ed4c99c2d038b": { + "1f9defb94a3843dabd5e7e0e98e77e96": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1fa21ad594604bbf9d8970cfa576f67a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3246,243 +3376,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_622ab8bd1eb24a9982dd8053dd962ac8", + "layout": "IPY_MODEL_3941c95303154619b58578a1ff65e595", "placeholder": "​", - "style": "IPY_MODEL_2c156ba3c74f45899af8bcd138125124", - "value": "Generating test split: " + "style": "IPY_MODEL_a4aca255af78468084ef3e4fb3f5efed", + "value": "Generating train split: " } }, - "36e5a0c19adc4dbb8f617103322ae7a4": { + "281f009bdade4018bc23cfa73ce284c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ce37a4915f184bf08e640ffcbcec7c0b", - "placeholder": "​", - "style": "IPY_MODEL_4af652dc1adb40d5bd82ad4694356c2d", - "value": " 5.18M/5.18M [00:00<00:00, 103MB/s]" - } - }, - "3d7705f04e28493d89543b1eaae3be43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3eea06a95b574fa684368b3f710e4ddf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f0a82082ff264607a24328db2ed8046f", - "placeholder": "​", - "style": "IPY_MODEL_9482e57799854291ae3f1370b6df8ba1", - "value": " 30.9M/30.9M [00:00<00:00, 101MB/s]" - } - }, - "41590f323a0445dd99a80ebf0a607121": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "42055436f26f4d22a23bb9c0f3cba0cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "428ad3c068fe496b819856f327c7e0e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6302999e4a3a4669b4b88412e0ca9685", - "placeholder": "​", - "style": "IPY_MODEL_9c084166328743828e1d7cc83f16de79", - "value": "Downloading data: 100%" - } - }, - "46ce9be0c5554dd7befb947548fd1a80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4af652dc1adb40d5bd82ad4694356c2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4d6a08f2339f4c438e1d42bf2ca12173": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bff41dbf2d214467884c050fecb52fc5", - "IPY_MODEL_5cca085d9faf4ee4a94c803663604aec", - "IPY_MODEL_36e5a0c19adc4dbb8f617103322ae7a4" - ], - "layout": "IPY_MODEL_bb930c218f93407ba619107a77d019f1" - } - }, - "4e3b2e2395604440bda582fb532fd397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8de2f42076984fdaa8f63906e27d31d9", + "layout": "IPY_MODEL_06f8640a1b2043ec992a791379bcfe4e", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e3fa13bb55694ae5b76f9b53ca7b5376", + "style": "IPY_MODEL_1cc852b932b0485c9e9f22d2f3e92582", "value": 60000.0 } }, - "57953bca660842cfa9b502e35e14c4de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dbd75684b3f445f2978c7563f62b1c02", - "placeholder": "​", - "style": "IPY_MODEL_41590f323a0445dd99a80ebf0a607121", - "value": " 60000/0 [00:00<00:00, 906337.64 examples/s]" - } - }, - "5cca085d9faf4ee4a94c803663604aec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1a1db66bec834718a82b95d8e2ede7c5", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8faaf72ffd34bb68c49d897cd1a7154", - "value": 5175617.0 - } - }, - "609bee0dd7db46a5a15dddfc14104b6d": { + "2a83bf73f6cb49a894c297eb4386c9c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3531,10 +3455,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "622ab8bd1eb24a9982dd8053dd962ac8": { + "2d2040740633486dbc15bdc76cc9b35c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3586,7 +3510,7 @@ "width": null } }, - "62c69dd53f4e4fcaaadcf89cfd16d9e5": { + "36a0193962984f10b9f30fc8ba224591": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3635,10 +3559,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "6302999e4a3a4669b4b88412e0ca9685": { + "3941c95303154619b58578a1ff65e595": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3690,7 +3614,59 @@ "width": null } }, - "64f12fc1eccb40e691dabed0e253052a": { + "3a10397af8534b289809fd9f34cffa12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3aef40a726a7487a997682ee3a6e5826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_81cb41be12bd4ae997b1f7764525ff8e", + "IPY_MODEL_ccc9e01b27ad4197b41bc1e7b0f66f85", + "IPY_MODEL_759c0d13d2d1402399ac72d54b4f9f0e" + ], + "layout": "IPY_MODEL_f128750b544a4ee4a3f4589b594baa89" + } + }, + "3e2a4c0ddae74e13a2021ce5e714a1c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "470684e2f72a47c8bb16131ca6641ac2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3742,53 +3718,28 @@ "width": null } }, - "65b47325afea4e1cb5027d0e81086147": { + "478826a4b8414ab7b1feb20466e62ebd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_609bee0dd7db46a5a15dddfc14104b6d", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74e4c3c4f34a4ceeb7a73328dcb00640", - "value": 1.0 - } - }, - "66b99572a6894b269c707cacbf13b4c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac6d64b487e048ac89b9674a2d8b7d89", - "IPY_MODEL_4e3b2e2395604440bda582fb532fd397", - "IPY_MODEL_273ccb68240f4452a4425c0d0d6e5d66" - ], - "layout": "IPY_MODEL_7f6f494514c3441da2ba837472c5bdec" + "layout": "IPY_MODEL_0dc3f4aa8c8241689bcc703926fcb385", + "placeholder": "​", + "style": "IPY_MODEL_ef15f1fa0cfd44c78a6592dd49078246", + "value": " 60000/60000 [00:12<00:00, 4033.19 examples/s]" } }, - "6caeb04a6a0a4f6994fab1dd7f9da38d": { + "5cf96142e7774584bdadc1562718a970": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3840,22 +3791,23 @@ "width": null } }, - "6dd311692ffc4923a691eb4943643ca3": { + "651f52ae3e444f03953a477119b11bce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7172bd075ca34d1298c29b0d2df90ccf": { + "691f90e8e3c546fc895b1d0cd686e0aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3907,44 +3859,7 @@ "width": null } }, - "74e4c3c4f34a4ceeb7a73328dcb00640": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a5b7e15665047d188a690e3512c34b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7172bd075ca34d1298c29b0d2df90ccf", - "placeholder": "​", - "style": "IPY_MODEL_9ea66324f81a4c369f3466fb807830e4", - "value": " 60000/60000 [00:35<00:00, 1700.84it/s]" - } - }, - "7c47746dcb1140dbb4cf79d8a6a53b0a": { + "6d8f8bfc0b0a430d875f79a4876cbea8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3959,14 +3874,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2f8f43fbc3f441ec996ed4c99c2d038b", - "IPY_MODEL_65b47325afea4e1cb5027d0e81086147", - "IPY_MODEL_ce169250a1c6449e855719ea19052bf5" + "IPY_MODEL_be5a8f94447e42749262ff299cf80cce", + "IPY_MODEL_b0eedbc2adf6476883bef4f2544e0a0b", + "IPY_MODEL_f3177bf243774120931644bf2f7ba71a" ], - "layout": "IPY_MODEL_0e1b25214be54a04a986ae8d193de7b6" + "layout": "IPY_MODEL_c2fb736b62b14a01859746d9a681e302" } }, - "7cb6af9d65904904b5a44be4f2f09c2c": { + "6e836216b9d4487ba965235031583c88": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4018,7 +3933,28 @@ "width": null } }, - "7f6f494514c3441da2ba837472c5bdec": { + "759c0d13d2d1402399ac72d54b4f9f0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_36a0193962984f10b9f30fc8ba224591", + "placeholder": "​", + "style": "IPY_MODEL_3e2a4c0ddae74e13a2021ce5e714a1c5", + "value": " 5.18M/5.18M [00:00<00:00, 36.8MB/s]" + } + }, + "7add5400a5da409fb9d7c08b05a0ba21": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4067,10 +4003,31 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "7d432e5280c34db5bf91110519486c2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5cf96142e7774584bdadc1562718a970", + "placeholder": "​", + "style": "IPY_MODEL_dcb618d9470340d89aa43b59d3f72457", + "value": "100%" } }, - "8de2f42076984fdaa8f63906e27d31d9": { + "7df7c6173c594905b0c15f7b6de09cef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4119,10 +4076,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "9482e57799854291ae3f1370b6df8ba1": { + "8145a9d46eac42c9b6df1a73c0a939c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4137,7 +4094,52 @@ "description_width": "" } }, - "9af8569a05bc4e65b71661993bffa124": { + "81cb41be12bd4ae997b1f7764525ff8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e610f8b737c645a486d7333f510fe4ad", + "placeholder": "​", + "style": "IPY_MODEL_3a10397af8534b289809fd9f34cffa12", + "value": "Downloading data: 100%" + } + }, + "86bb4802d1044f179dd7689fbee6472d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7add5400a5da409fb9d7c08b05a0ba21", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9500021d4c6845768227c7b5a80cec31", + "value": 1.0 + } + }, + "89d8973b51704e0ca29f84ec52a5ba4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4189,37 +4191,75 @@ "width": null } }, - "9c084166328743828e1d7cc83f16de79": { + "9500021d4c6845768227c7b5a80cec31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "9ea66324f81a4c369f3466fb807830e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "984254e50a7943e084d77ab55e1b75ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a0e14bce408046abbbe0bd3869324180": { + "9ed293197ad2467ca3ab555091ecdaa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4271,29 +4311,37 @@ "width": null } }, - "a6b14d27bd3d45a2bcf6d7b5f8764c86": { + "a4aca255af78468084ef3e4fb3f5efed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1daef5f644ca438493bcca1dd7869da0", - "IPY_MODEL_c3acffca81664f2587e5c2da7ef4b09d", - "IPY_MODEL_57953bca660842cfa9b502e35e14c4de" - ], - "layout": "IPY_MODEL_f41d46f837cd4a0a8cec418a61ef9508" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ac6d64b487e048ac89b9674a2d8b7d89": { + "aa230d667893417ea30900813140092c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ab2bd70697b249fea796fca48455ce88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4308,49 +4356,59 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_14759363841c473b92f1ff183a30c931", + "layout": "IPY_MODEL_984254e50a7943e084d77ab55e1b75ee", "placeholder": "​", - "style": "IPY_MODEL_6dd311692ffc4923a691eb4943643ca3", - "value": "Map (num_proc=4): 100%" + "style": "IPY_MODEL_df9488dd0eb74ab59ba48af227e281c2", + "value": " 60000/0 [00:00<00:00, 815499.46 examples/s]" } }, - "b04b2f332708453883fa56928cfbf40e": { + "ab8ea257c1544162ac74cedcd94836b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0eee090ebc4b4bc1b2f7b93498eb5a66", + "IPY_MODEL_c8aa3f6340f14b74aa43f81c59d5d0c6", + "IPY_MODEL_478826a4b8414ab7b1feb20466e62ebd" + ], + "layout": "IPY_MODEL_19f1b86223924ddabeba38237f2b7fc2" } }, - "b05d2aa8ac5646b98e35ce402b624ecb": { + "b0eedbc2adf6476883bef4f2544e0a0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e87f90bd58124e4eab224d1cec4dd2e4", - "placeholder": "​", - "style": "IPY_MODEL_3d7705f04e28493d89543b1eaae3be43", - "value": " 2/2 [00:00<00:00, 371.44it/s]" + "layout": "IPY_MODEL_2a83bf73f6cb49a894c297eb4386c9c7", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_651f52ae3e444f03953a477119b11bce", + "value": 2.0 } }, - "b2900305d7f84a6da01c50c7177f1548": { + "b108f5b2d21b4b29adc6e1cb78399f93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4365,96 +4423,44 @@ "description_width": "" } }, - "b4e5f808095f4f02bb7ce7ec45ff7a98": { + "b660df2b73104c37976425e56f81a28f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "bb930c218f93407ba619107a77d019f1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bff41dbf2d214467884c050fecb52fc5": { + "bdd8d83d16ce4e48ba972c56b576b84d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c09169500af342eb8463958cc00a7579", - "placeholder": "​", - "style": "IPY_MODEL_b2900305d7f84a6da01c50c7177f1548", - "value": "Downloading data: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_06c63814bae1457eb141d1bc207b8993", + "IPY_MODEL_1760f769aeb246b29e063ffd5f80064e", + "IPY_MODEL_ec2b0ac700f54d8aa2f69ba12899344a" + ], + "layout": "IPY_MODEL_0b8808eb05cf4d469b80ea697d3c0efd" } }, - "c04e1f6f6d5146eba074a6693a403e0a": { + "be5a8f94447e42749262ff299cf80cce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4469,29 +4475,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6caeb04a6a0a4f6994fab1dd7f9da38d", + "layout": "IPY_MODEL_9ed293197ad2467ca3ab555091ecdaa1", "placeholder": "​", - "style": "IPY_MODEL_eaae1350695f4f84b6bbcdb9968d01d2", - "value": "100%" - } - }, - "c0515addf2c94d7a88da0f586fc136d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_8145a9d46eac42c9b6df1a73c0a939c5", + "value": "Computing checksums: 100%" } }, - "c09169500af342eb8463958cc00a7579": { + "c2fb736b62b14a01859746d9a681e302": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4543,31 +4533,7 @@ "width": null } }, - "c3acffca81664f2587e5c2da7ef4b09d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_62c69dd53f4e4fcaaadcf89cfd16d9e5", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42055436f26f4d22a23bb9c0f3cba0cc", - "value": 1.0 - } - }, - "c7b37c7838c14e67b7a02371d6627401": { + "c389564992c542e382f5f71873b9a413": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4619,28 +4585,225 @@ "width": null } }, - "ce169250a1c6449e855719ea19052bf5": { + "c8aa3f6340f14b74aa43f81c59d5d0c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0084a46c9d7e4b36807b48823efd789c", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08092c96bdc34e5f9b0cbdc9f1bcf56f", + "value": 60000.0 + } + }, + "cb2b88424c724c14b0127ce86920d745": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_89d8973b51704e0ca29f84ec52a5ba4c", + "placeholder": "​", + "style": "IPY_MODEL_aa230d667893417ea30900813140092c", + "value": "Generating test split: " + } + }, + "ccc9e01b27ad4197b41bc1e7b0f66f85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e836216b9d4487ba965235031583c88", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1389c65d0684462fae24fdb9d027df5d", + "value": 5175617.0 + } + }, + "d26337e7713242faa01dda838af51958": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb2b88424c724c14b0127ce86920d745", + "IPY_MODEL_86bb4802d1044f179dd7689fbee6472d", + "IPY_MODEL_14f59594e791448fb08985949852fc3b" + ], + "layout": "IPY_MODEL_c389564992c542e382f5f71873b9a413" + } + }, + "d474e11ccac84eb3ae5e7f7f7ef976b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f9defb94a3843dabd5e7e0e98e77e96", + "placeholder": "​", + "style": "IPY_MODEL_e5e94ce25d24403d8cb0e279ee6b06f0", + "value": " 60000/60000 [00:36<00:00, 1650.56it/s]" + } + }, + "d5eb20cb64654ab4bbe4db8de1291651": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dcb618d9470340d89aa43b59d3f72457": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ddcb7ec7c9bb4b79ba420742fd6ff681": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7df7c6173c594905b0c15f7b6de09cef", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f30c07742de24d01ad45ee987fc432ac", + "value": 1.0 + } + }, + "df9488dd0eb74ab59ba48af227e281c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e292d7c9b544457998217dfe333664e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1fa21ad594604bbf9d8970cfa576f67a", + "IPY_MODEL_ddcb7ec7c9bb4b79ba420742fd6ff681", + "IPY_MODEL_ab2bd70697b249fea796fca48455ce88" + ], + "layout": "IPY_MODEL_2d2040740633486dbc15bdc76cc9b35c" + } + }, + "e5e94ce25d24403d8cb0e279ee6b06f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a0e14bce408046abbbe0bd3869324180", - "placeholder": "​", - "style": "IPY_MODEL_b04b2f332708453883fa56928cfbf40e", - "value": " 10000/0 [00:00<00:00, 513435.26 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ce37a4915f184bf08e640ffcbcec7c0b": { + "e610f8b737c645a486d7333f510fe4ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4692,7 +4855,7 @@ "width": null } }, - "d598d0cc8897415e9e7f33f617573f0c": { + "e6d7e1df9af0467194ff9a53b3fc7444": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4708,7 +4871,29 @@ "description_width": "" } }, - "d633ad83c7cd4e9197391dc81cd735a2": { + "e8d9991648f741b8b42d0cd2a79dbd20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d432e5280c34db5bf91110519486c2b", + "IPY_MODEL_281f009bdade4018bc23cfa73ce284c9", + "IPY_MODEL_d474e11ccac84eb3ae5e7f7f7ef976b8" + ], + "layout": "IPY_MODEL_f84000f1236d4ff9a0828bcdfb6805c7" + } + }, + "e913666f50514e48b23970ba7bdb8a54": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4760,23 +4945,7 @@ "width": null } }, - "d8faaf72ffd34bb68c49d897cd1a7154": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d9a14666701b4eaa85397e1540b74476": { + "ec2b0ac700f54d8aa2f69ba12899344a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4791,65 +4960,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_64f12fc1eccb40e691dabed0e253052a", + "layout": "IPY_MODEL_470684e2f72a47c8bb16131ca6641ac2", "placeholder": "​", - "style": "IPY_MODEL_037533e3506a4a9db931c5ee5310d8eb", - "value": "Computing checksums: 100%" + "style": "IPY_MODEL_d5eb20cb64654ab4bbe4db8de1291651", + "value": " 30.9M/30.9M [00:00<00:00, 81.5MB/s]" } }, - "dbd75684b3f445f2978c7563f62b1c02": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "ef15f1fa0cfd44c78a6592dd49078246": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "e1e7d332a6864d698218a7238b481af4": { + "f128750b544a4ee4a3f4589b594baa89": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4901,7 +5033,7 @@ "width": null } }, - "e3fa13bb55694ae5b76f9b53ca7b5376": { + "f30c07742de24d01ad45ee987fc432ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4917,83 +5049,28 @@ "description_width": "" } }, - "e7d02323320f4a44955033b8b1b6d7f2": { + "f3177bf243774120931644bf2f7ba71a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0a2e35c2d0364ecd99b3552fb95f3158", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b4e5f808095f4f02bb7ce7ec45ff7a98", - "value": 2.0 - } - }, - "e87f90bd58124e4eab224d1cec4dd2e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_e913666f50514e48b23970ba7bdb8a54", + "placeholder": "​", + "style": "IPY_MODEL_fbc6469adef845ad9eee1c645cf997dc", + "value": " 2/2 [00:00<00:00, 310.06it/s]" } }, - "e9a1eb9feb394f79a7eccaaeeb8592e7": { + "f3608822aa154fa098ba8256974e88bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5045,68 +5122,7 @@ "width": null } }, - "eaae1350695f4f84b6bbcdb9968d01d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "edc5dc4e84aa4145b0a6602ef0029e7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e1e7d332a6864d698218a7238b481af4", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0515addf2c94d7a88da0f586fc136d9", - "value": 60000.0 - } - }, - "ef00bbe1818846999730dee959633c30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_428ad3c068fe496b819856f327c7e0e1", - "IPY_MODEL_f6f27fefe269477fa839a257e32a476f", - "IPY_MODEL_3eea06a95b574fa684368b3f710e4ddf" - ], - "layout": "IPY_MODEL_c7b37c7838c14e67b7a02371d6627401" - } - }, - "f0a82082ff264607a24328db2ed8046f": { + "f84000f1236d4ff9a0828bcdfb6805c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5158,7 +5174,7 @@ "width": null } }, - "f41d46f837cd4a0a8cec418a61ef9508": { + "f8a6d75af45b4d9e807068f2581d1c30": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5210,50 +5226,34 @@ "width": null } }, - "f6f27fefe269477fa839a257e32a476f": { + "fbc6469adef845ad9eee1c645cf997dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2ac75d362c4d4e0793f683d4ec0fb37e", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d598d0cc8897415e9e7f33f617573f0c", - "value": 30931277.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "fa00b036fdcb4d30939a11eff6edc1dd": { + "ff0d891d4d0547a8bf72adfa5a9448f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d9a14666701b4eaa85397e1540b74476", - "IPY_MODEL_e7d02323320f4a44955033b8b1b6d7f2", - "IPY_MODEL_b05d2aa8ac5646b98e35ce402b624ecb" - ], - "layout": "IPY_MODEL_7cb6af9d65904904b5a44be4f2f09c2c" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 7c241402e..27bb5c9ce 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:08.005401Z", - "iopub.status.busy": "2023-12-28T10:56:08.005203Z", - "iopub.status.idle": "2023-12-28T10:56:09.104869Z", - "shell.execute_reply": "2023-12-28T10:56:09.104175Z" + "iopub.execute_input": "2024-01-02T16:49:03.099988Z", + "iopub.status.busy": "2024-01-02T16:49:03.099806Z", + "iopub.status.idle": "2024-01-02T16:49:04.204503Z", + "shell.execute_reply": "2024-01-02T16:49:04.203806Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.108498Z", - "iopub.status.busy": "2023-12-28T10:56:09.108039Z", - "iopub.status.idle": "2023-12-28T10:56:09.384434Z", - "shell.execute_reply": "2023-12-28T10:56:09.383805Z" + "iopub.execute_input": "2024-01-02T16:49:04.207505Z", + "iopub.status.busy": "2024-01-02T16:49:04.207181Z", + "iopub.status.idle": "2024-01-02T16:49:04.484854Z", + "shell.execute_reply": "2024-01-02T16:49:04.484147Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.387361Z", - "iopub.status.busy": "2023-12-28T10:56:09.386971Z", - "iopub.status.idle": "2023-12-28T10:56:09.400045Z", - "shell.execute_reply": "2023-12-28T10:56:09.399497Z" + "iopub.execute_input": "2024-01-02T16:49:04.488167Z", + "iopub.status.busy": "2024-01-02T16:49:04.487933Z", + "iopub.status.idle": "2024-01-02T16:49:04.500060Z", + "shell.execute_reply": "2024-01-02T16:49:04.499575Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.402580Z", - "iopub.status.busy": "2023-12-28T10:56:09.402169Z", - "iopub.status.idle": "2023-12-28T10:56:09.635326Z", - "shell.execute_reply": "2023-12-28T10:56:09.634639Z" + "iopub.execute_input": "2024-01-02T16:49:04.502648Z", + "iopub.status.busy": "2024-01-02T16:49:04.502226Z", + "iopub.status.idle": "2024-01-02T16:49:04.737163Z", + "shell.execute_reply": "2024-01-02T16:49:04.736448Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.638139Z", - "iopub.status.busy": "2023-12-28T10:56:09.637857Z", - "iopub.status.idle": "2023-12-28T10:56:09.664839Z", - "shell.execute_reply": "2023-12-28T10:56:09.664270Z" + "iopub.execute_input": "2024-01-02T16:49:04.739724Z", + "iopub.status.busy": "2024-01-02T16:49:04.739517Z", + "iopub.status.idle": "2024-01-02T16:49:04.766088Z", + "shell.execute_reply": "2024-01-02T16:49:04.765548Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.667615Z", - "iopub.status.busy": "2023-12-28T10:56:09.667226Z", - "iopub.status.idle": "2023-12-28T10:56:11.004906Z", - "shell.execute_reply": "2023-12-28T10:56:11.004143Z" + "iopub.execute_input": "2024-01-02T16:49:04.768303Z", + "iopub.status.busy": "2024-01-02T16:49:04.768103Z", + "iopub.status.idle": "2024-01-02T16:49:06.111886Z", + "shell.execute_reply": "2024-01-02T16:49:06.111165Z" } }, "outputs": [ @@ -472,10 +472,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:11.008060Z", - "iopub.status.busy": "2023-12-28T10:56:11.007304Z", - "iopub.status.idle": "2023-12-28T10:56:11.027553Z", - "shell.execute_reply": "2023-12-28T10:56:11.026982Z" + "iopub.execute_input": "2024-01-02T16:49:06.114867Z", + "iopub.status.busy": "2024-01-02T16:49:06.114194Z", + "iopub.status.idle": "2024-01-02T16:49:06.134216Z", + "shell.execute_reply": "2024-01-02T16:49:06.133536Z" }, "scrolled": true }, @@ -592,11 +592,11 @@ "\n", "Examples representing most severe instances of this issue:\n", " is_class_imbalance_issue class_imbalance_score\n", - "0 False 1.0\n", - "158 False 1.0\n", - "159 False 1.0\n", - "160 False 1.0\n", - "161 False 1.0\n" + "249 False 0.196\n", + "223 False 0.196\n", + "222 False 0.196\n", + "221 False 0.196\n", + "219 False 0.196\n" ] } ], @@ -618,10 +618,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:11.030095Z", - "iopub.status.busy": "2023-12-28T10:56:11.029710Z", - "iopub.status.idle": "2023-12-28T10:56:11.913655Z", - "shell.execute_reply": "2023-12-28T10:56:11.913003Z" + "iopub.execute_input": "2024-01-02T16:49:06.137258Z", + "iopub.status.busy": "2024-01-02T16:49:06.136710Z", + "iopub.status.idle": "2024-01-02T16:49:07.063487Z", + "shell.execute_reply": "2024-01-02T16:49:07.062735Z" }, "id": "AaHC5MRKjruT" }, @@ -740,10 +740,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:11.916569Z", - "iopub.status.busy": "2023-12-28T10:56:11.916263Z", - "iopub.status.idle": "2023-12-28T10:56:11.931428Z", - "shell.execute_reply": "2023-12-28T10:56:11.930781Z" + "iopub.execute_input": "2024-01-02T16:49:07.066290Z", + "iopub.status.busy": "2024-01-02T16:49:07.065873Z", + "iopub.status.idle": "2024-01-02T16:49:07.081024Z", + "shell.execute_reply": "2024-01-02T16:49:07.080389Z" }, "id": "Wy27rvyhjruU" }, @@ -792,10 +792,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:11.934129Z", - "iopub.status.busy": "2023-12-28T10:56:11.933641Z", - "iopub.status.idle": "2023-12-28T10:56:12.026099Z", - "shell.execute_reply": "2023-12-28T10:56:12.025355Z" + "iopub.execute_input": "2024-01-02T16:49:07.083775Z", + "iopub.status.busy": "2024-01-02T16:49:07.083405Z", + "iopub.status.idle": "2024-01-02T16:49:07.178385Z", + "shell.execute_reply": "2024-01-02T16:49:07.177589Z" }, "id": "Db8YHnyVjruU" }, @@ -902,10 +902,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.028901Z", - "iopub.status.busy": "2023-12-28T10:56:12.028600Z", - "iopub.status.idle": "2023-12-28T10:56:12.235558Z", - "shell.execute_reply": "2023-12-28T10:56:12.234902Z" + "iopub.execute_input": "2024-01-02T16:49:07.181623Z", + "iopub.status.busy": "2024-01-02T16:49:07.181149Z", + "iopub.status.idle": "2024-01-02T16:49:07.388199Z", + "shell.execute_reply": "2024-01-02T16:49:07.387521Z" }, "id": "iJqAHuS2jruV" }, @@ -942,10 +942,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.238379Z", - "iopub.status.busy": "2023-12-28T10:56:12.237963Z", - "iopub.status.idle": "2023-12-28T10:56:12.255773Z", - "shell.execute_reply": "2023-12-28T10:56:12.255196Z" + "iopub.execute_input": "2024-01-02T16:49:07.390894Z", + "iopub.status.busy": "2024-01-02T16:49:07.390532Z", + "iopub.status.idle": "2024-01-02T16:49:07.409277Z", + "shell.execute_reply": "2024-01-02T16:49:07.408710Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1007,10 +1007,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.258303Z", - "iopub.status.busy": "2023-12-28T10:56:12.257976Z", - "iopub.status.idle": "2023-12-28T10:56:12.268655Z", - "shell.execute_reply": "2023-12-28T10:56:12.267960Z" + "iopub.execute_input": "2024-01-02T16:49:07.411893Z", + "iopub.status.busy": "2024-01-02T16:49:07.411499Z", + "iopub.status.idle": "2024-01-02T16:49:07.421691Z", + "shell.execute_reply": "2024-01-02T16:49:07.421181Z" }, "id": "0lonvOYvjruV" }, @@ -1157,10 +1157,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.271013Z", - "iopub.status.busy": "2023-12-28T10:56:12.270799Z", - "iopub.status.idle": "2023-12-28T10:56:12.379361Z", - "shell.execute_reply": "2023-12-28T10:56:12.378656Z" + "iopub.execute_input": "2024-01-02T16:49:07.424216Z", + "iopub.status.busy": "2024-01-02T16:49:07.423827Z", + "iopub.status.idle": "2024-01-02T16:49:07.523611Z", + "shell.execute_reply": "2024-01-02T16:49:07.522880Z" }, "id": "MfqTCa3kjruV" }, @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.382531Z", - "iopub.status.busy": "2023-12-28T10:56:12.382116Z", - "iopub.status.idle": "2023-12-28T10:56:12.546907Z", - "shell.execute_reply": "2023-12-28T10:56:12.546128Z" + "iopub.execute_input": "2024-01-02T16:49:07.526701Z", + "iopub.status.busy": "2024-01-02T16:49:07.526298Z", + "iopub.status.idle": "2024-01-02T16:49:07.689852Z", + "shell.execute_reply": "2024-01-02T16:49:07.689182Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1304,10 +1304,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.549694Z", - "iopub.status.busy": "2023-12-28T10:56:12.549467Z", - "iopub.status.idle": "2023-12-28T10:56:12.553830Z", - "shell.execute_reply": "2023-12-28T10:56:12.553266Z" + "iopub.execute_input": "2024-01-02T16:49:07.692749Z", + "iopub.status.busy": "2024-01-02T16:49:07.692314Z", + "iopub.status.idle": "2024-01-02T16:49:07.696446Z", + "shell.execute_reply": "2024-01-02T16:49:07.695847Z" }, "id": "0rXP3ZPWjruW" }, @@ -1345,10 +1345,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.556434Z", - "iopub.status.busy": "2023-12-28T10:56:12.556052Z", - "iopub.status.idle": "2023-12-28T10:56:12.560535Z", - "shell.execute_reply": "2023-12-28T10:56:12.559891Z" + "iopub.execute_input": "2024-01-02T16:49:07.698889Z", + "iopub.status.busy": "2024-01-02T16:49:07.698512Z", + "iopub.status.idle": "2024-01-02T16:49:07.703612Z", + "shell.execute_reply": "2024-01-02T16:49:07.703078Z" }, "id": "-iRPe8KXjruW" }, @@ -1403,10 +1403,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.563073Z", - "iopub.status.busy": "2023-12-28T10:56:12.562695Z", - "iopub.status.idle": "2023-12-28T10:56:12.604416Z", - "shell.execute_reply": "2023-12-28T10:56:12.603734Z" + "iopub.execute_input": "2024-01-02T16:49:07.706098Z", + "iopub.status.busy": "2024-01-02T16:49:07.705712Z", + "iopub.status.idle": "2024-01-02T16:49:07.745766Z", + "shell.execute_reply": "2024-01-02T16:49:07.745154Z" }, "id": "ZpipUliyjruW" }, @@ -1457,10 +1457,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.607306Z", - "iopub.status.busy": "2023-12-28T10:56:12.606885Z", - "iopub.status.idle": "2023-12-28T10:56:12.656620Z", - "shell.execute_reply": "2023-12-28T10:56:12.655892Z" + "iopub.execute_input": "2024-01-02T16:49:07.748574Z", + "iopub.status.busy": "2024-01-02T16:49:07.748176Z", + "iopub.status.idle": "2024-01-02T16:49:07.795070Z", + "shell.execute_reply": "2024-01-02T16:49:07.794479Z" }, "id": "SLq-3q4xjruX" }, @@ -1529,10 +1529,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.659456Z", - "iopub.status.busy": "2023-12-28T10:56:12.659020Z", - "iopub.status.idle": "2023-12-28T10:56:12.773117Z", - "shell.execute_reply": "2023-12-28T10:56:12.772410Z" + "iopub.execute_input": "2024-01-02T16:49:07.797932Z", + "iopub.status.busy": "2024-01-02T16:49:07.797462Z", + "iopub.status.idle": "2024-01-02T16:49:07.907500Z", + "shell.execute_reply": "2024-01-02T16:49:07.906819Z" }, "id": "g5LHhhuqFbXK" }, @@ -1564,10 +1564,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.776795Z", - "iopub.status.busy": "2023-12-28T10:56:12.776337Z", - "iopub.status.idle": "2023-12-28T10:56:12.895821Z", - "shell.execute_reply": "2023-12-28T10:56:12.895064Z" + "iopub.execute_input": "2024-01-02T16:49:07.910590Z", + "iopub.status.busy": "2024-01-02T16:49:07.910235Z", + "iopub.status.idle": "2024-01-02T16:49:08.030760Z", + "shell.execute_reply": "2024-01-02T16:49:08.030020Z" }, "id": "p7w8F8ezBcet" }, @@ -1624,10 +1624,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.898778Z", - "iopub.status.busy": "2023-12-28T10:56:12.898403Z", - "iopub.status.idle": "2023-12-28T10:56:13.105290Z", - "shell.execute_reply": "2023-12-28T10:56:13.104584Z" + "iopub.execute_input": "2024-01-02T16:49:08.033914Z", + "iopub.status.busy": "2024-01-02T16:49:08.033415Z", + "iopub.status.idle": "2024-01-02T16:49:08.241079Z", + "shell.execute_reply": "2024-01-02T16:49:08.240387Z" }, "id": "WETRL74tE_sU" }, @@ -1662,10 +1662,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:13.108282Z", - "iopub.status.busy": "2023-12-28T10:56:13.107842Z", - "iopub.status.idle": "2023-12-28T10:56:13.366204Z", - "shell.execute_reply": "2023-12-28T10:56:13.365525Z" + "iopub.execute_input": "2024-01-02T16:49:08.243992Z", + "iopub.status.busy": "2024-01-02T16:49:08.243568Z", + "iopub.status.idle": "2024-01-02T16:49:08.476939Z", + "shell.execute_reply": "2024-01-02T16:49:08.476238Z" }, "id": "kCfdx2gOLmXS" }, @@ -1827,10 +1827,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:13.369028Z", - "iopub.status.busy": "2023-12-28T10:56:13.368733Z", - "iopub.status.idle": "2023-12-28T10:56:13.375801Z", - "shell.execute_reply": "2023-12-28T10:56:13.375194Z" + "iopub.execute_input": "2024-01-02T16:49:08.479868Z", + "iopub.status.busy": "2024-01-02T16:49:08.479456Z", + "iopub.status.idle": "2024-01-02T16:49:08.485787Z", + "shell.execute_reply": "2024-01-02T16:49:08.485276Z" }, "id": "-uogYRWFYnuu" }, @@ -1884,10 +1884,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:13.378307Z", - "iopub.status.busy": "2023-12-28T10:56:13.377911Z", - "iopub.status.idle": "2023-12-28T10:56:13.595714Z", - "shell.execute_reply": "2023-12-28T10:56:13.594980Z" + "iopub.execute_input": "2024-01-02T16:49:08.488143Z", + "iopub.status.busy": "2024-01-02T16:49:08.487805Z", + "iopub.status.idle": "2024-01-02T16:49:08.701193Z", + "shell.execute_reply": "2024-01-02T16:49:08.700507Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1934,10 +1934,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:13.598672Z", - "iopub.status.busy": "2023-12-28T10:56:13.598375Z", - "iopub.status.idle": "2023-12-28T10:56:14.668356Z", - "shell.execute_reply": "2023-12-28T10:56:14.667735Z" + "iopub.execute_input": "2024-01-02T16:49:08.704323Z", + "iopub.status.busy": "2024-01-02T16:49:08.703824Z", + "iopub.status.idle": "2024-01-02T16:49:09.770055Z", + "shell.execute_reply": "2024-01-02T16:49:09.769322Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index f2f9fcff3..0fde9c368 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:20.317010Z", - "iopub.status.busy": "2023-12-28T10:56:20.316543Z", - "iopub.status.idle": "2023-12-28T10:56:21.365451Z", - "shell.execute_reply": "2023-12-28T10:56:21.364821Z" + "iopub.execute_input": "2024-01-02T16:49:15.656276Z", + "iopub.status.busy": "2024-01-02T16:49:15.655721Z", + "iopub.status.idle": "2024-01-02T16:49:16.719128Z", + "shell.execute_reply": "2024-01-02T16:49:16.718495Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.368433Z", - "iopub.status.busy": "2023-12-28T10:56:21.368112Z", - "iopub.status.idle": "2023-12-28T10:56:21.371302Z", - "shell.execute_reply": "2023-12-28T10:56:21.370770Z" + "iopub.execute_input": "2024-01-02T16:49:16.722438Z", + "iopub.status.busy": "2024-01-02T16:49:16.721854Z", + "iopub.status.idle": "2024-01-02T16:49:16.725376Z", + "shell.execute_reply": "2024-01-02T16:49:16.724838Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.373881Z", - "iopub.status.busy": "2023-12-28T10:56:21.373435Z", - "iopub.status.idle": "2023-12-28T10:56:21.381738Z", - "shell.execute_reply": "2023-12-28T10:56:21.381217Z" + "iopub.execute_input": "2024-01-02T16:49:16.728086Z", + "iopub.status.busy": "2024-01-02T16:49:16.727618Z", + "iopub.status.idle": "2024-01-02T16:49:16.736481Z", + "shell.execute_reply": "2024-01-02T16:49:16.735906Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.383925Z", - "iopub.status.busy": "2023-12-28T10:56:21.383680Z", - "iopub.status.idle": "2023-12-28T10:56:21.432149Z", - "shell.execute_reply": "2023-12-28T10:56:21.431519Z" + "iopub.execute_input": "2024-01-02T16:49:16.738864Z", + "iopub.status.busy": "2024-01-02T16:49:16.738645Z", + "iopub.status.idle": "2024-01-02T16:49:16.789671Z", + "shell.execute_reply": "2024-01-02T16:49:16.788941Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.434786Z", - "iopub.status.busy": "2023-12-28T10:56:21.434576Z", - "iopub.status.idle": "2023-12-28T10:56:21.454152Z", - "shell.execute_reply": "2023-12-28T10:56:21.453597Z" + "iopub.execute_input": "2024-01-02T16:49:16.792808Z", + "iopub.status.busy": "2024-01-02T16:49:16.792316Z", + "iopub.status.idle": "2024-01-02T16:49:16.812709Z", + "shell.execute_reply": "2024-01-02T16:49:16.812073Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.456716Z", - "iopub.status.busy": "2023-12-28T10:56:21.456331Z", - "iopub.status.idle": "2023-12-28T10:56:21.460558Z", - "shell.execute_reply": "2023-12-28T10:56:21.460054Z" + "iopub.execute_input": "2024-01-02T16:49:16.815434Z", + "iopub.status.busy": "2024-01-02T16:49:16.815026Z", + "iopub.status.idle": "2024-01-02T16:49:16.819447Z", + "shell.execute_reply": "2024-01-02T16:49:16.818793Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.463104Z", - "iopub.status.busy": "2023-12-28T10:56:21.462741Z", - "iopub.status.idle": "2023-12-28T10:56:21.490042Z", - "shell.execute_reply": "2023-12-28T10:56:21.489544Z" + "iopub.execute_input": "2024-01-02T16:49:16.822375Z", + "iopub.status.busy": "2024-01-02T16:49:16.821963Z", + "iopub.status.idle": "2024-01-02T16:49:16.853743Z", + "shell.execute_reply": "2024-01-02T16:49:16.852990Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.492537Z", - "iopub.status.busy": "2023-12-28T10:56:21.492149Z", - "iopub.status.idle": "2023-12-28T10:56:21.519667Z", - "shell.execute_reply": "2023-12-28T10:56:21.519017Z" + "iopub.execute_input": "2024-01-02T16:49:16.856805Z", + "iopub.status.busy": "2024-01-02T16:49:16.856283Z", + "iopub.status.idle": "2024-01-02T16:49:16.885117Z", + "shell.execute_reply": "2024-01-02T16:49:16.884563Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.522529Z", - "iopub.status.busy": "2023-12-28T10:56:21.522116Z", - "iopub.status.idle": "2023-12-28T10:56:22.869140Z", - "shell.execute_reply": "2023-12-28T10:56:22.868507Z" + "iopub.execute_input": "2024-01-02T16:49:16.887914Z", + "iopub.status.busy": "2024-01-02T16:49:16.887413Z", + "iopub.status.idle": "2024-01-02T16:49:18.280131Z", + "shell.execute_reply": "2024-01-02T16:49:18.279377Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.872458Z", - "iopub.status.busy": "2023-12-28T10:56:22.871766Z", - "iopub.status.idle": "2023-12-28T10:56:22.879427Z", - "shell.execute_reply": "2023-12-28T10:56:22.878802Z" + "iopub.execute_input": "2024-01-02T16:49:18.283383Z", + "iopub.status.busy": "2024-01-02T16:49:18.282954Z", + "iopub.status.idle": "2024-01-02T16:49:18.290561Z", + "shell.execute_reply": "2024-01-02T16:49:18.289985Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.881952Z", - "iopub.status.busy": "2023-12-28T10:56:22.881553Z", - "iopub.status.idle": "2023-12-28T10:56:22.895646Z", - "shell.execute_reply": "2023-12-28T10:56:22.895003Z" + "iopub.execute_input": "2024-01-02T16:49:18.293066Z", + "iopub.status.busy": "2024-01-02T16:49:18.292699Z", + "iopub.status.idle": "2024-01-02T16:49:18.307176Z", + "shell.execute_reply": "2024-01-02T16:49:18.306551Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.898286Z", - "iopub.status.busy": "2023-12-28T10:56:22.897797Z", - "iopub.status.idle": "2023-12-28T10:56:22.905442Z", - "shell.execute_reply": "2023-12-28T10:56:22.904830Z" + "iopub.execute_input": "2024-01-02T16:49:18.309728Z", + "iopub.status.busy": "2024-01-02T16:49:18.309267Z", + "iopub.status.idle": "2024-01-02T16:49:18.316485Z", + "shell.execute_reply": "2024-01-02T16:49:18.315870Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.908290Z", - "iopub.status.busy": "2023-12-28T10:56:22.907851Z", - "iopub.status.idle": "2023-12-28T10:56:22.910964Z", - "shell.execute_reply": "2023-12-28T10:56:22.910409Z" + "iopub.execute_input": "2024-01-02T16:49:18.318942Z", + "iopub.status.busy": "2024-01-02T16:49:18.318734Z", + "iopub.status.idle": "2024-01-02T16:49:18.321764Z", + "shell.execute_reply": "2024-01-02T16:49:18.321243Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.913422Z", - "iopub.status.busy": "2023-12-28T10:56:22.912996Z", - "iopub.status.idle": "2023-12-28T10:56:22.917294Z", - "shell.execute_reply": "2023-12-28T10:56:22.916664Z" + "iopub.execute_input": "2024-01-02T16:49:18.324152Z", + "iopub.status.busy": "2024-01-02T16:49:18.323952Z", + "iopub.status.idle": "2024-01-02T16:49:18.327911Z", + "shell.execute_reply": "2024-01-02T16:49:18.327308Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.919835Z", - "iopub.status.busy": "2023-12-28T10:56:22.919372Z", - "iopub.status.idle": "2023-12-28T10:56:22.922384Z", - "shell.execute_reply": "2023-12-28T10:56:22.921765Z" + "iopub.execute_input": "2024-01-02T16:49:18.330362Z", + "iopub.status.busy": "2024-01-02T16:49:18.330161Z", + "iopub.status.idle": "2024-01-02T16:49:18.333179Z", + "shell.execute_reply": "2024-01-02T16:49:18.332535Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.924707Z", - "iopub.status.busy": "2023-12-28T10:56:22.924359Z", - "iopub.status.idle": "2023-12-28T10:56:22.929077Z", - "shell.execute_reply": "2023-12-28T10:56:22.928436Z" + "iopub.execute_input": "2024-01-02T16:49:18.335601Z", + "iopub.status.busy": "2024-01-02T16:49:18.335166Z", + "iopub.status.idle": "2024-01-02T16:49:18.340143Z", + "shell.execute_reply": "2024-01-02T16:49:18.339604Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.931720Z", - "iopub.status.busy": "2023-12-28T10:56:22.931192Z", - "iopub.status.idle": "2023-12-28T10:56:22.966177Z", - "shell.execute_reply": "2023-12-28T10:56:22.965591Z" + "iopub.execute_input": "2024-01-02T16:49:18.342557Z", + "iopub.status.busy": "2024-01-02T16:49:18.342352Z", + "iopub.status.idle": "2024-01-02T16:49:18.378356Z", + "shell.execute_reply": "2024-01-02T16:49:18.377727Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.969108Z", - "iopub.status.busy": "2023-12-28T10:56:22.968630Z", - "iopub.status.idle": "2023-12-28T10:56:22.973963Z", - "shell.execute_reply": "2023-12-28T10:56:22.973316Z" + "iopub.execute_input": "2024-01-02T16:49:18.381562Z", + "iopub.status.busy": "2024-01-02T16:49:18.381140Z", + "iopub.status.idle": "2024-01-02T16:49:18.386482Z", + "shell.execute_reply": "2024-01-02T16:49:18.385875Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 9c743645f..45ea66118 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:28.743768Z", - "iopub.status.busy": "2023-12-28T10:56:28.743253Z", - "iopub.status.idle": "2023-12-28T10:56:29.822734Z", - "shell.execute_reply": "2023-12-28T10:56:29.822141Z" + "iopub.execute_input": "2024-01-02T16:49:23.912100Z", + "iopub.status.busy": "2024-01-02T16:49:23.911897Z", + "iopub.status.idle": "2024-01-02T16:49:25.052575Z", + "shell.execute_reply": "2024-01-02T16:49:25.051857Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:29.825632Z", - "iopub.status.busy": "2023-12-28T10:56:29.825214Z", - "iopub.status.idle": "2023-12-28T10:56:30.117317Z", - "shell.execute_reply": "2023-12-28T10:56:30.116702Z" + "iopub.execute_input": "2024-01-02T16:49:25.055898Z", + "iopub.status.busy": "2024-01-02T16:49:25.055276Z", + "iopub.status.idle": "2024-01-02T16:49:25.355652Z", + "shell.execute_reply": "2024-01-02T16:49:25.355022Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:30.120460Z", - "iopub.status.busy": "2023-12-28T10:56:30.120078Z", - "iopub.status.idle": "2023-12-28T10:56:30.134256Z", - "shell.execute_reply": "2023-12-28T10:56:30.133731Z" + "iopub.execute_input": "2024-01-02T16:49:25.358805Z", + "iopub.status.busy": "2024-01-02T16:49:25.358418Z", + "iopub.status.idle": "2024-01-02T16:49:25.372223Z", + "shell.execute_reply": "2024-01-02T16:49:25.371567Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:30.136827Z", - "iopub.status.busy": "2023-12-28T10:56:30.136451Z", - "iopub.status.idle": "2023-12-28T10:56:32.768294Z", - "shell.execute_reply": "2023-12-28T10:56:32.767601Z" + "iopub.execute_input": "2024-01-02T16:49:25.374973Z", + "iopub.status.busy": "2024-01-02T16:49:25.374505Z", + "iopub.status.idle": "2024-01-02T16:49:28.051077Z", + "shell.execute_reply": "2024-01-02T16:49:28.050398Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:32.771104Z", - "iopub.status.busy": "2023-12-28T10:56:32.770606Z", - "iopub.status.idle": "2023-12-28T10:56:34.327354Z", - "shell.execute_reply": "2023-12-28T10:56:34.326616Z" + "iopub.execute_input": "2024-01-02T16:49:28.053984Z", + "iopub.status.busy": "2024-01-02T16:49:28.053486Z", + "iopub.status.idle": "2024-01-02T16:49:29.610606Z", + "shell.execute_reply": "2024-01-02T16:49:29.609892Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:34.330365Z", - "iopub.status.busy": "2023-12-28T10:56:34.330125Z", - "iopub.status.idle": "2023-12-28T10:56:34.335383Z", - "shell.execute_reply": "2023-12-28T10:56:34.334850Z" + "iopub.execute_input": "2024-01-02T16:49:29.613450Z", + "iopub.status.busy": "2024-01-02T16:49:29.613225Z", + "iopub.status.idle": "2024-01-02T16:49:29.617900Z", + "shell.execute_reply": "2024-01-02T16:49:29.617266Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:34.337697Z", - "iopub.status.busy": "2023-12-28T10:56:34.337500Z", - "iopub.status.idle": "2023-12-28T10:56:35.717872Z", - "shell.execute_reply": "2023-12-28T10:56:35.717184Z" + "iopub.execute_input": "2024-01-02T16:49:29.620246Z", + "iopub.status.busy": "2024-01-02T16:49:29.620040Z", + "iopub.status.idle": "2024-01-02T16:49:31.030594Z", + "shell.execute_reply": "2024-01-02T16:49:31.029797Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:35.721335Z", - "iopub.status.busy": "2023-12-28T10:56:35.720425Z", - "iopub.status.idle": "2023-12-28T10:56:38.530677Z", - "shell.execute_reply": "2023-12-28T10:56:38.530021Z" + "iopub.execute_input": "2024-01-02T16:49:31.033624Z", + "iopub.status.busy": "2024-01-02T16:49:31.033017Z", + "iopub.status.idle": "2024-01-02T16:49:33.893094Z", + "shell.execute_reply": "2024-01-02T16:49:33.892381Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:38.533109Z", - "iopub.status.busy": "2023-12-28T10:56:38.532903Z", - "iopub.status.idle": "2023-12-28T10:56:38.537951Z", - "shell.execute_reply": "2023-12-28T10:56:38.537416Z" + "iopub.execute_input": "2024-01-02T16:49:33.895754Z", + "iopub.status.busy": "2024-01-02T16:49:33.895382Z", + "iopub.status.idle": "2024-01-02T16:49:33.900514Z", + "shell.execute_reply": "2024-01-02T16:49:33.899883Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:38.540137Z", - "iopub.status.busy": "2023-12-28T10:56:38.539928Z", - "iopub.status.idle": "2023-12-28T10:56:38.544170Z", - "shell.execute_reply": "2023-12-28T10:56:38.543636Z" + "iopub.execute_input": "2024-01-02T16:49:33.902851Z", + "iopub.status.busy": "2024-01-02T16:49:33.902513Z", + "iopub.status.idle": "2024-01-02T16:49:33.906722Z", + "shell.execute_reply": "2024-01-02T16:49:33.906090Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:38.546349Z", - "iopub.status.busy": "2023-12-28T10:56:38.546156Z", - "iopub.status.idle": "2023-12-28T10:56:38.549541Z", - "shell.execute_reply": "2023-12-28T10:56:38.549024Z" + "iopub.execute_input": "2024-01-02T16:49:33.909259Z", + "iopub.status.busy": "2024-01-02T16:49:33.908858Z", + "iopub.status.idle": "2024-01-02T16:49:33.912479Z", + "shell.execute_reply": "2024-01-02T16:49:33.911850Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 6e03631f9..e0c9e77cd 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:43.821036Z", - "iopub.status.busy": "2023-12-28T10:56:43.820842Z", - "iopub.status.idle": "2023-12-28T10:56:44.927857Z", - "shell.execute_reply": "2023-12-28T10:56:44.927232Z" + "iopub.execute_input": "2024-01-02T16:49:38.864086Z", + "iopub.status.busy": "2024-01-02T16:49:38.863895Z", + "iopub.status.idle": "2024-01-02T16:49:39.960025Z", + "shell.execute_reply": "2024-01-02T16:49:39.959314Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:44.930982Z", - "iopub.status.busy": "2023-12-28T10:56:44.930370Z", - "iopub.status.idle": "2023-12-28T10:56:45.795412Z", - "shell.execute_reply": "2023-12-28T10:56:45.794562Z" + "iopub.execute_input": "2024-01-02T16:49:39.963077Z", + "iopub.status.busy": "2024-01-02T16:49:39.962664Z", + "iopub.status.idle": "2024-01-02T16:49:41.258667Z", + "shell.execute_reply": "2024-01-02T16:49:41.257788Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:45.798761Z", - "iopub.status.busy": "2023-12-28T10:56:45.798321Z", - "iopub.status.idle": "2023-12-28T10:56:45.801677Z", - "shell.execute_reply": "2023-12-28T10:56:45.801083Z" + "iopub.execute_input": "2024-01-02T16:49:41.261578Z", + "iopub.status.busy": "2024-01-02T16:49:41.261357Z", + "iopub.status.idle": "2024-01-02T16:49:41.264660Z", + "shell.execute_reply": "2024-01-02T16:49:41.264110Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:45.804338Z", - "iopub.status.busy": "2023-12-28T10:56:45.803855Z", - "iopub.status.idle": "2023-12-28T10:56:45.809520Z", - "shell.execute_reply": "2023-12-28T10:56:45.808917Z" + "iopub.execute_input": "2024-01-02T16:49:41.266991Z", + "iopub.status.busy": "2024-01-02T16:49:41.266789Z", + "iopub.status.idle": "2024-01-02T16:49:41.272414Z", + "shell.execute_reply": "2024-01-02T16:49:41.271888Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:45.811978Z", - "iopub.status.busy": "2023-12-28T10:56:45.811622Z", - "iopub.status.idle": "2023-12-28T10:56:46.416725Z", - "shell.execute_reply": "2023-12-28T10:56:46.416000Z" + "iopub.execute_input": "2024-01-02T16:49:41.274937Z", + "iopub.status.busy": "2024-01-02T16:49:41.274489Z", + "iopub.status.idle": "2024-01-02T16:49:41.891188Z", + "shell.execute_reply": "2024-01-02T16:49:41.890486Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:46.419674Z", - "iopub.status.busy": "2023-12-28T10:56:46.419247Z", - "iopub.status.idle": "2023-12-28T10:56:46.425575Z", - "shell.execute_reply": "2023-12-28T10:56:46.424974Z" + "iopub.execute_input": "2024-01-02T16:49:41.893909Z", + "iopub.status.busy": "2024-01-02T16:49:41.893671Z", + "iopub.status.idle": "2024-01-02T16:49:41.900561Z", + "shell.execute_reply": "2024-01-02T16:49:41.900044Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:46.427882Z", - "iopub.status.busy": "2023-12-28T10:56:46.427673Z", - "iopub.status.idle": "2023-12-28T10:56:46.432307Z", - "shell.execute_reply": "2023-12-28T10:56:46.431765Z" + "iopub.execute_input": "2024-01-02T16:49:41.903009Z", + "iopub.status.busy": "2024-01-02T16:49:41.902682Z", + "iopub.status.idle": "2024-01-02T16:49:41.906836Z", + "shell.execute_reply": "2024-01-02T16:49:41.906213Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:46.434568Z", - "iopub.status.busy": "2023-12-28T10:56:46.434367Z", - "iopub.status.idle": "2023-12-28T10:56:47.061405Z", - "shell.execute_reply": "2023-12-28T10:56:47.060667Z" + "iopub.execute_input": "2024-01-02T16:49:41.909469Z", + "iopub.status.busy": "2024-01-02T16:49:41.908934Z", + "iopub.status.idle": "2024-01-02T16:49:42.618824Z", + "shell.execute_reply": "2024-01-02T16:49:42.618157Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.064311Z", - "iopub.status.busy": "2023-12-28T10:56:47.064067Z", - "iopub.status.idle": "2023-12-28T10:56:47.166116Z", - "shell.execute_reply": "2023-12-28T10:56:47.165482Z" + "iopub.execute_input": "2024-01-02T16:49:42.621797Z", + "iopub.status.busy": "2024-01-02T16:49:42.621348Z", + "iopub.status.idle": "2024-01-02T16:49:42.725852Z", + "shell.execute_reply": "2024-01-02T16:49:42.725138Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.168630Z", - "iopub.status.busy": "2023-12-28T10:56:47.168250Z", - "iopub.status.idle": "2023-12-28T10:56:47.173155Z", - "shell.execute_reply": "2023-12-28T10:56:47.172612Z" + "iopub.execute_input": "2024-01-02T16:49:42.728481Z", + "iopub.status.busy": "2024-01-02T16:49:42.728249Z", + "iopub.status.idle": "2024-01-02T16:49:42.733159Z", + "shell.execute_reply": "2024-01-02T16:49:42.732543Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.175774Z", - "iopub.status.busy": "2023-12-28T10:56:47.175205Z", - "iopub.status.idle": "2023-12-28T10:56:47.558648Z", - "shell.execute_reply": "2023-12-28T10:56:47.557941Z" + "iopub.execute_input": "2024-01-02T16:49:42.735655Z", + "iopub.status.busy": "2024-01-02T16:49:42.735447Z", + "iopub.status.idle": "2024-01-02T16:49:43.121501Z", + "shell.execute_reply": "2024-01-02T16:49:43.120776Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.562233Z", - "iopub.status.busy": "2023-12-28T10:56:47.561775Z", - "iopub.status.idle": "2023-12-28T10:56:47.905896Z", - "shell.execute_reply": "2023-12-28T10:56:47.905225Z" + "iopub.execute_input": "2024-01-02T16:49:43.124509Z", + "iopub.status.busy": "2024-01-02T16:49:43.124032Z", + "iopub.status.idle": "2024-01-02T16:49:43.442266Z", + "shell.execute_reply": "2024-01-02T16:49:43.441512Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.909182Z", - "iopub.status.busy": "2023-12-28T10:56:47.908789Z", - "iopub.status.idle": "2023-12-28T10:56:48.299357Z", - "shell.execute_reply": "2023-12-28T10:56:48.298656Z" + "iopub.execute_input": "2024-01-02T16:49:43.445939Z", + "iopub.status.busy": "2024-01-02T16:49:43.445434Z", + "iopub.status.idle": "2024-01-02T16:49:43.811158Z", + "shell.execute_reply": "2024-01-02T16:49:43.810450Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:48.303205Z", - "iopub.status.busy": "2023-12-28T10:56:48.302752Z", - "iopub.status.idle": "2023-12-28T10:56:48.769415Z", - "shell.execute_reply": "2023-12-28T10:56:48.768726Z" + "iopub.execute_input": "2024-01-02T16:49:43.815206Z", + "iopub.status.busy": "2024-01-02T16:49:43.814625Z", + "iopub.status.idle": "2024-01-02T16:49:44.289207Z", + "shell.execute_reply": "2024-01-02T16:49:44.288483Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:48.773912Z", - "iopub.status.busy": "2023-12-28T10:56:48.773452Z", - "iopub.status.idle": "2023-12-28T10:56:49.229409Z", - "shell.execute_reply": "2023-12-28T10:56:49.228678Z" + "iopub.execute_input": "2024-01-02T16:49:44.293650Z", + "iopub.status.busy": "2024-01-02T16:49:44.293227Z", + "iopub.status.idle": "2024-01-02T16:49:44.733887Z", + "shell.execute_reply": "2024-01-02T16:49:44.733113Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:49.232709Z", - "iopub.status.busy": "2023-12-28T10:56:49.232250Z", - "iopub.status.idle": "2023-12-28T10:56:49.570840Z", - "shell.execute_reply": "2023-12-28T10:56:49.570113Z" + "iopub.execute_input": "2024-01-02T16:49:44.737041Z", + "iopub.status.busy": "2024-01-02T16:49:44.736563Z", + "iopub.status.idle": "2024-01-02T16:49:45.066675Z", + "shell.execute_reply": "2024-01-02T16:49:45.066024Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:49.573897Z", - "iopub.status.busy": "2023-12-28T10:56:49.573482Z", - "iopub.status.idle": "2023-12-28T10:56:49.774367Z", - "shell.execute_reply": "2023-12-28T10:56:49.773716Z" + "iopub.execute_input": "2024-01-02T16:49:45.070182Z", + "iopub.status.busy": "2024-01-02T16:49:45.069711Z", + "iopub.status.idle": "2024-01-02T16:49:45.273534Z", + "shell.execute_reply": "2024-01-02T16:49:45.272876Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:49.777315Z", - "iopub.status.busy": "2023-12-28T10:56:49.777081Z", - "iopub.status.idle": "2023-12-28T10:56:49.781239Z", - "shell.execute_reply": "2023-12-28T10:56:49.780601Z" + "iopub.execute_input": "2024-01-02T16:49:45.276803Z", + "iopub.status.busy": "2024-01-02T16:49:45.276396Z", + "iopub.status.idle": "2024-01-02T16:49:45.280478Z", + "shell.execute_reply": "2024-01-02T16:49:45.279917Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 8ae85fc0c..68f6277c1 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:52.094136Z", - "iopub.status.busy": "2023-12-28T10:56:52.093940Z", - "iopub.status.idle": "2023-12-28T10:56:54.091623Z", - "shell.execute_reply": "2023-12-28T10:56:54.090970Z" + "iopub.execute_input": "2024-01-02T16:49:47.766890Z", + "iopub.status.busy": "2024-01-02T16:49:47.766703Z", + "iopub.status.idle": "2024-01-02T16:49:49.804263Z", + "shell.execute_reply": "2024-01-02T16:49:49.803602Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:54.094780Z", - "iopub.status.busy": "2023-12-28T10:56:54.094226Z", - "iopub.status.idle": "2023-12-28T10:56:54.415356Z", - "shell.execute_reply": "2023-12-28T10:56:54.414717Z" + "iopub.execute_input": "2024-01-02T16:49:49.807215Z", + "iopub.status.busy": "2024-01-02T16:49:49.806863Z", + "iopub.status.idle": "2024-01-02T16:49:50.141976Z", + "shell.execute_reply": "2024-01-02T16:49:50.141226Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:54.418325Z", - "iopub.status.busy": "2023-12-28T10:56:54.417900Z", - "iopub.status.idle": "2023-12-28T10:56:54.422648Z", - "shell.execute_reply": "2023-12-28T10:56:54.422152Z" + "iopub.execute_input": "2024-01-02T16:49:50.144896Z", + "iopub.status.busy": "2024-01-02T16:49:50.144661Z", + "iopub.status.idle": "2024-01-02T16:49:50.149187Z", + "shell.execute_reply": "2024-01-02T16:49:50.148672Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:54.425150Z", - "iopub.status.busy": "2023-12-28T10:56:54.424783Z", - "iopub.status.idle": "2023-12-28T10:56:58.687789Z", - "shell.execute_reply": "2023-12-28T10:56:58.687183Z" + "iopub.execute_input": "2024-01-02T16:49:50.151538Z", + "iopub.status.busy": "2024-01-02T16:49:50.151319Z", + "iopub.status.idle": "2024-01-02T16:49:55.019554Z", + "shell.execute_reply": "2024-01-02T16:49:55.018929Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf2a475680f64525b23a306bbc7bff58", + "model_id": "72caee5580a6436ca9051cf4f371eb84", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:58.690271Z", - "iopub.status.busy": "2023-12-28T10:56:58.690059Z", - "iopub.status.idle": "2023-12-28T10:56:58.695217Z", - "shell.execute_reply": "2023-12-28T10:56:58.694690Z" + "iopub.execute_input": "2024-01-02T16:49:55.022310Z", + "iopub.status.busy": "2024-01-02T16:49:55.021898Z", + "iopub.status.idle": "2024-01-02T16:49:55.027081Z", + "shell.execute_reply": "2024-01-02T16:49:55.026564Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:58.697554Z", - "iopub.status.busy": "2023-12-28T10:56:58.697353Z", - "iopub.status.idle": "2023-12-28T10:56:59.224747Z", - "shell.execute_reply": "2023-12-28T10:56:59.224032Z" + "iopub.execute_input": "2024-01-02T16:49:55.029678Z", + "iopub.status.busy": "2024-01-02T16:49:55.029249Z", + "iopub.status.idle": "2024-01-02T16:49:55.589515Z", + "shell.execute_reply": "2024-01-02T16:49:55.588846Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:59.227675Z", - "iopub.status.busy": "2023-12-28T10:56:59.227212Z", - "iopub.status.idle": "2023-12-28T10:56:59.901176Z", - "shell.execute_reply": "2023-12-28T10:56:59.900482Z" + "iopub.execute_input": "2024-01-02T16:49:55.592250Z", + "iopub.status.busy": "2024-01-02T16:49:55.591837Z", + "iopub.status.idle": "2024-01-02T16:49:56.242182Z", + "shell.execute_reply": "2024-01-02T16:49:56.241445Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:59.903933Z", - "iopub.status.busy": "2023-12-28T10:56:59.903547Z", - "iopub.status.idle": "2023-12-28T10:56:59.907210Z", - "shell.execute_reply": "2023-12-28T10:56:59.906659Z" + "iopub.execute_input": "2024-01-02T16:49:56.245162Z", + "iopub.status.busy": "2024-01-02T16:49:56.244732Z", + "iopub.status.idle": "2024-01-02T16:49:56.248730Z", + "shell.execute_reply": "2024-01-02T16:49:56.247965Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:59.909576Z", - "iopub.status.busy": "2023-12-28T10:56:59.909209Z", - "iopub.status.idle": "2023-12-28T10:57:12.072007Z", - "shell.execute_reply": "2023-12-28T10:57:12.071271Z" + "iopub.execute_input": "2024-01-02T16:49:56.251572Z", + "iopub.status.busy": "2024-01-02T16:49:56.251038Z", + "iopub.status.idle": "2024-01-02T16:50:08.705942Z", + "shell.execute_reply": "2024-01-02T16:50:08.705237Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:12.075014Z", - "iopub.status.busy": "2023-12-28T10:57:12.074488Z", - "iopub.status.idle": "2023-12-28T10:57:13.649146Z", - "shell.execute_reply": "2023-12-28T10:57:13.648439Z" + "iopub.execute_input": "2024-01-02T16:50:08.708909Z", + "iopub.status.busy": "2024-01-02T16:50:08.708425Z", + "iopub.status.idle": "2024-01-02T16:50:10.287363Z", + "shell.execute_reply": "2024-01-02T16:50:10.286645Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:13.652228Z", - "iopub.status.busy": "2023-12-28T10:57:13.651854Z", - "iopub.status.idle": "2023-12-28T10:57:13.897235Z", - "shell.execute_reply": "2023-12-28T10:57:13.896540Z" + "iopub.execute_input": "2024-01-02T16:50:10.290570Z", + "iopub.status.busy": "2024-01-02T16:50:10.290069Z", + "iopub.status.idle": "2024-01-02T16:50:10.529792Z", + "shell.execute_reply": "2024-01-02T16:50:10.529080Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:13.900428Z", - "iopub.status.busy": "2023-12-28T10:57:13.899975Z", - "iopub.status.idle": "2023-12-28T10:57:14.585932Z", - "shell.execute_reply": "2023-12-28T10:57:14.585195Z" + "iopub.execute_input": "2024-01-02T16:50:10.532733Z", + "iopub.status.busy": "2024-01-02T16:50:10.532251Z", + "iopub.status.idle": "2024-01-02T16:50:11.199426Z", + "shell.execute_reply": "2024-01-02T16:50:11.198643Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:14.589259Z", - "iopub.status.busy": "2023-12-28T10:57:14.588852Z", - "iopub.status.idle": "2023-12-28T10:57:15.106744Z", - "shell.execute_reply": "2023-12-28T10:57:15.106120Z" + "iopub.execute_input": "2024-01-02T16:50:11.202505Z", + "iopub.status.busy": "2024-01-02T16:50:11.202011Z", + "iopub.status.idle": "2024-01-02T16:50:11.665067Z", + "shell.execute_reply": "2024-01-02T16:50:11.664385Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:15.109473Z", - "iopub.status.busy": "2023-12-28T10:57:15.109103Z", - "iopub.status.idle": "2023-12-28T10:57:15.361453Z", - "shell.execute_reply": "2023-12-28T10:57:15.360699Z" + "iopub.execute_input": "2024-01-02T16:50:11.668252Z", + "iopub.status.busy": "2024-01-02T16:50:11.667744Z", + "iopub.status.idle": "2024-01-02T16:50:11.901460Z", + "shell.execute_reply": "2024-01-02T16:50:11.900768Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:15.364723Z", - "iopub.status.busy": "2023-12-28T10:57:15.364443Z", - "iopub.status.idle": "2023-12-28T10:57:15.453484Z", - "shell.execute_reply": "2023-12-28T10:57:15.452898Z" + "iopub.execute_input": "2024-01-02T16:50:11.904763Z", + "iopub.status.busy": "2024-01-02T16:50:11.904236Z", + "iopub.status.idle": "2024-01-02T16:50:11.977114Z", + "shell.execute_reply": "2024-01-02T16:50:11.976376Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:15.456391Z", - "iopub.status.busy": "2023-12-28T10:57:15.455986Z", - "iopub.status.idle": "2023-12-28T10:57:53.700168Z", - "shell.execute_reply": "2023-12-28T10:57:53.699365Z" + "iopub.execute_input": "2024-01-02T16:50:11.980193Z", + "iopub.status.busy": "2024-01-02T16:50:11.979709Z", + "iopub.status.idle": "2024-01-02T16:50:50.527405Z", + "shell.execute_reply": "2024-01-02T16:50:50.526471Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:53.702935Z", - "iopub.status.busy": "2023-12-28T10:57:53.702502Z", - "iopub.status.idle": "2023-12-28T10:57:54.909834Z", - "shell.execute_reply": "2023-12-28T10:57:54.909186Z" + "iopub.execute_input": "2024-01-02T16:50:50.530479Z", + "iopub.status.busy": "2024-01-02T16:50:50.530227Z", + "iopub.status.idle": "2024-01-02T16:50:51.820875Z", + "shell.execute_reply": "2024-01-02T16:50:51.820138Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:54.912902Z", - "iopub.status.busy": "2023-12-28T10:57:54.912354Z", - "iopub.status.idle": "2023-12-28T10:57:55.109412Z", - "shell.execute_reply": "2023-12-28T10:57:55.108683Z" + "iopub.execute_input": "2024-01-02T16:50:51.824177Z", + "iopub.status.busy": "2024-01-02T16:50:51.823637Z", + "iopub.status.idle": "2024-01-02T16:50:52.015546Z", + "shell.execute_reply": "2024-01-02T16:50:52.014783Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:55.112592Z", - "iopub.status.busy": "2023-12-28T10:57:55.112169Z", - "iopub.status.idle": "2023-12-28T10:57:55.115671Z", - "shell.execute_reply": "2023-12-28T10:57:55.115056Z" + "iopub.execute_input": "2024-01-02T16:50:52.018833Z", + "iopub.status.busy": "2024-01-02T16:50:52.018426Z", + "iopub.status.idle": "2024-01-02T16:50:52.022167Z", + "shell.execute_reply": "2024-01-02T16:50:52.021467Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:55.118315Z", - "iopub.status.busy": "2023-12-28T10:57:55.117937Z", - "iopub.status.idle": "2023-12-28T10:57:55.126534Z", - "shell.execute_reply": "2023-12-28T10:57:55.126001Z" + "iopub.execute_input": "2024-01-02T16:50:52.024687Z", + "iopub.status.busy": "2024-01-02T16:50:52.024445Z", + "iopub.status.idle": "2024-01-02T16:50:52.033594Z", + "shell.execute_reply": "2024-01-02T16:50:52.033030Z" }, "nbsphinx": "hidden" }, @@ -1017,43 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "13bc01cf3a2e435199f662d58f58901d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f66354f02aa94fc2b31d15e051b229db", - "placeholder": "​", - "style": "IPY_MODEL_1b01b50c8f6741f4b667ad7953e8984a", - "value": " 170498071/170498071 [00:01<00:00, 111590585.89it/s]" - } - }, - "1b01b50c8f6741f4b667ad7953e8984a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "226eb886e5c94cedb8b6e128386cef61": { + "0670b11ae1434352921d9bf11d77702d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1105,23 +1069,67 @@ "width": null } }, - "26e186f1773d4bb6aea7e5d9c0ba1fdc": { + "196d523f75534c1898a55c376eabf597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "30f746cde4d140a48649396bf8bd565b": { + "2b1eab7c56954b33ad765d4eb5d7e334": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a907cbda5bee463b8bfa16678957a608", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_36635e978f1243fcb5028161914b6a63", + "value": 170498071.0 + } + }, + "2e51ae99817e467497fc8485f4a1dd30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0670b11ae1434352921d9bf11d77702d", + "placeholder": "​", + "style": "IPY_MODEL_196d523f75534c1898a55c376eabf597", + "value": " 170498071/170498071 [00:01<00:00, 97484533.27it/s]" + } + }, + "30f1b81aafb84f55be1afcd288768ac8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1136,7 +1144,66 @@ "description_width": "" } }, - "94fe1cb968ec426a96df50adf798f6f9": { + "36635e978f1243fcb5028161914b6a63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "72caee5580a6436ca9051cf4f371eb84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_87f20b742d5a421987ed4dc4a4f3d5f3", + "IPY_MODEL_2b1eab7c56954b33ad765d4eb5d7e334", + "IPY_MODEL_2e51ae99817e467497fc8485f4a1dd30" + ], + "layout": "IPY_MODEL_e5ae862d1d4b429584da304df0d9f1b0" + } + }, + "87f20b742d5a421987ed4dc4a4f3d5f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c6bb7f75d4fe4110b528d62b0a9547e5", + "placeholder": "​", + "style": "IPY_MODEL_30f1b81aafb84f55be1afcd288768ac8", + "value": "100%" + } + }, + "a907cbda5bee463b8bfa16678957a608": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1188,7 +1255,7 @@ "width": null } }, - "9e19eee61b8a4f2cb625f8ce8b334d4f": { + "c6bb7f75d4fe4110b528d62b0a9547e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1240,74 +1307,7 @@ "width": null } }, - "b981836a30524f608b1a80fc11f89ce8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_226eb886e5c94cedb8b6e128386cef61", - "placeholder": "​", - "style": "IPY_MODEL_30f746cde4d140a48649396bf8bd565b", - "value": "100%" - } - }, - "bf2a475680f64525b23a306bbc7bff58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b981836a30524f608b1a80fc11f89ce8", - "IPY_MODEL_c2a6a1e53d7a45bfb61cd1957a57f0a4", - "IPY_MODEL_13bc01cf3a2e435199f662d58f58901d" - ], - "layout": "IPY_MODEL_9e19eee61b8a4f2cb625f8ce8b334d4f" - } - }, - "c2a6a1e53d7a45bfb61cd1957a57f0a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_94fe1cb968ec426a96df50adf798f6f9", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26e186f1773d4bb6aea7e5d9c0ba1fdc", - "value": 170498071.0 - } - }, - "f66354f02aa94fc2b31d15e051b229db": { + "e5ae862d1d4b429584da304df0d9f1b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index ae002f32b..a46a1e2f8 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:00.034823Z", - "iopub.status.busy": "2023-12-28T10:58:00.034175Z", - "iopub.status.idle": "2023-12-28T10:58:01.150450Z", - "shell.execute_reply": "2023-12-28T10:58:01.149826Z" + "iopub.execute_input": "2024-01-02T16:50:56.657618Z", + "iopub.status.busy": "2024-01-02T16:50:56.657420Z", + "iopub.status.idle": "2024-01-02T16:50:57.812772Z", + "shell.execute_reply": "2024-01-02T16:50:57.812035Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.153420Z", - "iopub.status.busy": "2023-12-28T10:58:01.152980Z", - "iopub.status.idle": "2023-12-28T10:58:01.169440Z", - "shell.execute_reply": "2023-12-28T10:58:01.168733Z" + "iopub.execute_input": "2024-01-02T16:50:57.815846Z", + "iopub.status.busy": "2024-01-02T16:50:57.815504Z", + "iopub.status.idle": "2024-01-02T16:50:57.832448Z", + "shell.execute_reply": "2024-01-02T16:50:57.831893Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.172216Z", - "iopub.status.busy": "2023-12-28T10:58:01.171824Z", - "iopub.status.idle": "2023-12-28T10:58:01.175102Z", - "shell.execute_reply": "2023-12-28T10:58:01.174486Z" + "iopub.execute_input": "2024-01-02T16:50:57.835137Z", + "iopub.status.busy": "2024-01-02T16:50:57.834886Z", + "iopub.status.idle": "2024-01-02T16:50:57.838160Z", + "shell.execute_reply": "2024-01-02T16:50:57.837550Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.177660Z", - "iopub.status.busy": "2023-12-28T10:58:01.177293Z", - "iopub.status.idle": "2023-12-28T10:58:01.247515Z", - "shell.execute_reply": "2023-12-28T10:58:01.246859Z" + "iopub.execute_input": "2024-01-02T16:50:57.840780Z", + "iopub.status.busy": "2024-01-02T16:50:57.840294Z", + "iopub.status.idle": "2024-01-02T16:50:57.948682Z", + "shell.execute_reply": "2024-01-02T16:50:57.948041Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.250589Z", - "iopub.status.busy": "2023-12-28T10:58:01.250045Z", - "iopub.status.idle": "2023-12-28T10:58:01.533129Z", - "shell.execute_reply": "2023-12-28T10:58:01.532504Z" + "iopub.execute_input": "2024-01-02T16:50:57.951707Z", + "iopub.status.busy": "2024-01-02T16:50:57.951094Z", + "iopub.status.idle": "2024-01-02T16:50:58.247279Z", + "shell.execute_reply": "2024-01-02T16:50:58.246556Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.536128Z", - "iopub.status.busy": "2023-12-28T10:58:01.535696Z", - "iopub.status.idle": "2023-12-28T10:58:01.757495Z", - "shell.execute_reply": "2023-12-28T10:58:01.756628Z" + "iopub.execute_input": "2024-01-02T16:50:58.250351Z", + "iopub.status.busy": "2024-01-02T16:50:58.250095Z", + "iopub.status.idle": "2024-01-02T16:50:58.513267Z", + "shell.execute_reply": "2024-01-02T16:50:58.512536Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.760593Z", - "iopub.status.busy": "2023-12-28T10:58:01.760304Z", - "iopub.status.idle": "2023-12-28T10:58:01.765551Z", - "shell.execute_reply": "2023-12-28T10:58:01.764911Z" + "iopub.execute_input": "2024-01-02T16:50:58.516268Z", + "iopub.status.busy": "2024-01-02T16:50:58.515758Z", + "iopub.status.idle": "2024-01-02T16:50:58.520972Z", + "shell.execute_reply": "2024-01-02T16:50:58.520446Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.768527Z", - "iopub.status.busy": "2023-12-28T10:58:01.768085Z", - "iopub.status.idle": "2023-12-28T10:58:01.775232Z", - "shell.execute_reply": "2023-12-28T10:58:01.774443Z" + "iopub.execute_input": "2024-01-02T16:50:58.523234Z", + "iopub.status.busy": "2024-01-02T16:50:58.523030Z", + "iopub.status.idle": "2024-01-02T16:50:58.529724Z", + "shell.execute_reply": "2024-01-02T16:50:58.529219Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.778082Z", - "iopub.status.busy": "2023-12-28T10:58:01.777579Z", - "iopub.status.idle": "2023-12-28T10:58:01.780542Z", - "shell.execute_reply": "2023-12-28T10:58:01.779943Z" + "iopub.execute_input": "2024-01-02T16:50:58.532357Z", + "iopub.status.busy": "2024-01-02T16:50:58.532147Z", + "iopub.status.idle": "2024-01-02T16:50:58.534960Z", + "shell.execute_reply": "2024-01-02T16:50:58.534399Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.782773Z", - "iopub.status.busy": "2023-12-28T10:58:01.782484Z", - "iopub.status.idle": "2023-12-28T10:58:11.876126Z", - "shell.execute_reply": "2023-12-28T10:58:11.875468Z" + "iopub.execute_input": "2024-01-02T16:50:58.537211Z", + "iopub.status.busy": "2024-01-02T16:50:58.537012Z", + "iopub.status.idle": "2024-01-02T16:51:08.899964Z", + "shell.execute_reply": "2024-01-02T16:51:08.899314Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.879231Z", - "iopub.status.busy": "2023-12-28T10:58:11.878810Z", - "iopub.status.idle": "2023-12-28T10:58:11.886378Z", - "shell.execute_reply": "2023-12-28T10:58:11.885855Z" + "iopub.execute_input": "2024-01-02T16:51:08.903576Z", + "iopub.status.busy": "2024-01-02T16:51:08.902871Z", + "iopub.status.idle": "2024-01-02T16:51:08.911165Z", + "shell.execute_reply": "2024-01-02T16:51:08.910616Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.888676Z", - "iopub.status.busy": "2023-12-28T10:58:11.888472Z", - "iopub.status.idle": "2023-12-28T10:58:11.892483Z", - "shell.execute_reply": "2023-12-28T10:58:11.891823Z" + "iopub.execute_input": "2024-01-02T16:51:08.913947Z", + "iopub.status.busy": "2024-01-02T16:51:08.913415Z", + "iopub.status.idle": "2024-01-02T16:51:08.917624Z", + "shell.execute_reply": "2024-01-02T16:51:08.917093Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.894678Z", - "iopub.status.busy": "2023-12-28T10:58:11.894479Z", - "iopub.status.idle": "2023-12-28T10:58:11.898022Z", - "shell.execute_reply": "2023-12-28T10:58:11.897396Z" + "iopub.execute_input": "2024-01-02T16:51:08.919827Z", + "iopub.status.busy": "2024-01-02T16:51:08.919623Z", + "iopub.status.idle": "2024-01-02T16:51:08.923446Z", + "shell.execute_reply": "2024-01-02T16:51:08.922791Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.900185Z", - "iopub.status.busy": "2023-12-28T10:58:11.899988Z", - "iopub.status.idle": "2023-12-28T10:58:11.903514Z", - "shell.execute_reply": "2023-12-28T10:58:11.902977Z" + "iopub.execute_input": "2024-01-02T16:51:08.926206Z", + "iopub.status.busy": "2024-01-02T16:51:08.925604Z", + "iopub.status.idle": "2024-01-02T16:51:08.929199Z", + "shell.execute_reply": "2024-01-02T16:51:08.928561Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.905788Z", - "iopub.status.busy": "2023-12-28T10:58:11.905591Z", - "iopub.status.idle": "2023-12-28T10:58:11.915030Z", - "shell.execute_reply": "2023-12-28T10:58:11.914300Z" + "iopub.execute_input": "2024-01-02T16:51:08.931737Z", + "iopub.status.busy": "2024-01-02T16:51:08.931161Z", + "iopub.status.idle": "2024-01-02T16:51:08.940702Z", + "shell.execute_reply": "2024-01-02T16:51:08.940048Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.917702Z", - "iopub.status.busy": "2023-12-28T10:58:11.917480Z", - "iopub.status.idle": "2023-12-28T10:58:12.062648Z", - "shell.execute_reply": "2023-12-28T10:58:12.061928Z" + "iopub.execute_input": "2024-01-02T16:51:08.943406Z", + "iopub.status.busy": "2024-01-02T16:51:08.942944Z", + "iopub.status.idle": "2024-01-02T16:51:09.094075Z", + "shell.execute_reply": "2024-01-02T16:51:09.093396Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:12.065641Z", - "iopub.status.busy": "2023-12-28T10:58:12.065161Z", - "iopub.status.idle": "2023-12-28T10:58:12.195067Z", - "shell.execute_reply": "2023-12-28T10:58:12.194373Z" + "iopub.execute_input": "2024-01-02T16:51:09.097011Z", + "iopub.status.busy": "2024-01-02T16:51:09.096741Z", + "iopub.status.idle": "2024-01-02T16:51:09.229209Z", + "shell.execute_reply": "2024-01-02T16:51:09.228492Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:12.198503Z", - "iopub.status.busy": "2023-12-28T10:58:12.197954Z", - "iopub.status.idle": "2023-12-28T10:58:12.781097Z", - "shell.execute_reply": "2023-12-28T10:58:12.780391Z" + "iopub.execute_input": "2024-01-02T16:51:09.232247Z", + "iopub.status.busy": "2024-01-02T16:51:09.231971Z", + "iopub.status.idle": "2024-01-02T16:51:09.838982Z", + "shell.execute_reply": "2024-01-02T16:51:09.838319Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:12.784434Z", - "iopub.status.busy": "2023-12-28T10:58:12.783922Z", - "iopub.status.idle": "2023-12-28T10:58:12.865621Z", - "shell.execute_reply": "2023-12-28T10:58:12.864935Z" + "iopub.execute_input": "2024-01-02T16:51:09.842385Z", + "iopub.status.busy": "2024-01-02T16:51:09.841874Z", + "iopub.status.idle": "2024-01-02T16:51:09.934403Z", + "shell.execute_reply": "2024-01-02T16:51:09.933716Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:12.868830Z", - "iopub.status.busy": "2023-12-28T10:58:12.868278Z", - "iopub.status.idle": "2023-12-28T10:58:12.878484Z", - "shell.execute_reply": "2023-12-28T10:58:12.877845Z" + "iopub.execute_input": "2024-01-02T16:51:09.937358Z", + "iopub.status.busy": "2024-01-02T16:51:09.936918Z", + "iopub.status.idle": "2024-01-02T16:51:09.947202Z", + "shell.execute_reply": "2024-01-02T16:51:09.946667Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 86b1038bd..413855ff1 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:18.163263Z", - "iopub.status.busy": "2023-12-28T10:58:18.163065Z", - "iopub.status.idle": "2023-12-28T10:58:19.539002Z", - "shell.execute_reply": "2023-12-28T10:58:19.538212Z" + "iopub.execute_input": "2024-01-02T16:51:14.917502Z", + "iopub.status.busy": "2024-01-02T16:51:14.917281Z", + "iopub.status.idle": "2024-01-02T16:51:16.418301Z", + "shell.execute_reply": "2024-01-02T16:51:16.417534Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:19.541814Z", - "iopub.status.busy": "2023-12-28T10:58:19.541602Z", - "iopub.status.idle": "2023-12-28T10:59:00.575197Z", - "shell.execute_reply": "2023-12-28T10:59:00.574443Z" + "iopub.execute_input": "2024-01-02T16:51:16.421218Z", + "iopub.status.busy": "2024-01-02T16:51:16.420975Z", + "iopub.status.idle": "2024-01-02T16:52:04.763643Z", + "shell.execute_reply": "2024-01-02T16:52:04.762893Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:00.577967Z", - "iopub.status.busy": "2023-12-28T10:59:00.577758Z", - "iopub.status.idle": "2023-12-28T10:59:01.616355Z", - "shell.execute_reply": "2023-12-28T10:59:01.615641Z" + "iopub.execute_input": "2024-01-02T16:52:04.766816Z", + "iopub.status.busy": "2024-01-02T16:52:04.766365Z", + "iopub.status.idle": "2024-01-02T16:52:05.804700Z", + "shell.execute_reply": "2024-01-02T16:52:05.804082Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.619276Z", - "iopub.status.busy": "2023-12-28T10:59:01.618950Z", - "iopub.status.idle": "2023-12-28T10:59:01.622587Z", - "shell.execute_reply": "2023-12-28T10:59:01.622060Z" + "iopub.execute_input": "2024-01-02T16:52:05.807736Z", + "iopub.status.busy": "2024-01-02T16:52:05.807208Z", + "iopub.status.idle": "2024-01-02T16:52:05.810816Z", + "shell.execute_reply": "2024-01-02T16:52:05.810176Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.624987Z", - "iopub.status.busy": "2023-12-28T10:59:01.624790Z", - "iopub.status.idle": "2023-12-28T10:59:01.629005Z", - "shell.execute_reply": "2023-12-28T10:59:01.628463Z" + "iopub.execute_input": "2024-01-02T16:52:05.813388Z", + "iopub.status.busy": "2024-01-02T16:52:05.812981Z", + "iopub.status.idle": "2024-01-02T16:52:05.817038Z", + "shell.execute_reply": "2024-01-02T16:52:05.816539Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.631261Z", - "iopub.status.busy": "2023-12-28T10:59:01.631065Z", - "iopub.status.idle": "2023-12-28T10:59:01.635272Z", - "shell.execute_reply": "2023-12-28T10:59:01.634752Z" + "iopub.execute_input": "2024-01-02T16:52:05.819377Z", + "iopub.status.busy": "2024-01-02T16:52:05.819077Z", + "iopub.status.idle": "2024-01-02T16:52:05.822819Z", + "shell.execute_reply": "2024-01-02T16:52:05.822307Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.637637Z", - "iopub.status.busy": "2023-12-28T10:59:01.637280Z", - "iopub.status.idle": "2023-12-28T10:59:01.640345Z", - "shell.execute_reply": "2023-12-28T10:59:01.639819Z" + "iopub.execute_input": "2024-01-02T16:52:05.825279Z", + "iopub.status.busy": "2024-01-02T16:52:05.824918Z", + "iopub.status.idle": "2024-01-02T16:52:05.827921Z", + "shell.execute_reply": "2024-01-02T16:52:05.827364Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.642825Z", - "iopub.status.busy": "2023-12-28T10:59:01.642343Z", - "iopub.status.idle": "2023-12-28T11:00:26.512400Z", - "shell.execute_reply": "2023-12-28T11:00:26.511675Z" + "iopub.execute_input": "2024-01-02T16:52:05.830342Z", + "iopub.status.busy": "2024-01-02T16:52:05.830012Z", + "iopub.status.idle": "2024-01-02T16:53:34.170662Z", + "shell.execute_reply": "2024-01-02T16:53:34.169862Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b5be36e37104305970002c66d7bd72e", + "model_id": "9e743892e76b4b22937631c864bad121", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7c6c8437d53b4ab7921b43610cc69ef3", + "model_id": "5366c37ea08a4613acf959def96162ff", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:00:26.515443Z", - "iopub.status.busy": "2023-12-28T11:00:26.515029Z", - "iopub.status.idle": "2023-12-28T11:00:27.299642Z", - "shell.execute_reply": "2023-12-28T11:00:27.298951Z" + "iopub.execute_input": "2024-01-02T16:53:34.173757Z", + "iopub.status.busy": "2024-01-02T16:53:34.173485Z", + "iopub.status.idle": "2024-01-02T16:53:34.939645Z", + "shell.execute_reply": "2024-01-02T16:53:34.939002Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:00:27.302695Z", - "iopub.status.busy": "2023-12-28T11:00:27.302010Z", - "iopub.status.idle": "2023-12-28T11:00:29.463231Z", - "shell.execute_reply": "2023-12-28T11:00:29.462504Z" + "iopub.execute_input": "2024-01-02T16:53:34.942467Z", + "iopub.status.busy": "2024-01-02T16:53:34.941961Z", + "iopub.status.idle": "2024-01-02T16:53:37.003184Z", + "shell.execute_reply": "2024-01-02T16:53:37.002445Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:00:29.465894Z", - "iopub.status.busy": "2023-12-28T11:00:29.465678Z", - "iopub.status.idle": "2023-12-28T11:00:58.096999Z", - "shell.execute_reply": "2023-12-28T11:00:58.096299Z" + "iopub.execute_input": "2024-01-02T16:53:37.005980Z", + "iopub.status.busy": "2024-01-02T16:53:37.005575Z", + "iopub.status.idle": "2024-01-02T16:54:05.576893Z", + "shell.execute_reply": "2024-01-02T16:54:05.576201Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17494/4997817 [00:00<00:28, 174928.07it/s]" + " 0%| | 17314/4997817 [00:00<00:28, 173126.54it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 35194/4997817 [00:00<00:28, 176140.25it/s]" + " 1%| | 34829/4997817 [00:00<00:28, 174308.32it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 52809/4997817 [00:00<00:28, 175516.72it/s]" + " 1%| | 52365/4997817 [00:00<00:28, 174780.79it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 70361/4997817 [00:00<00:28, 174925.32it/s]" + " 1%|▏ | 69964/4997817 [00:00<00:28, 175254.25it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 87854/4997817 [00:00<00:28, 174222.28it/s]" + " 2%|▏ | 87490/4997817 [00:00<00:28, 175005.28it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 105302/4997817 [00:00<00:28, 174304.60it/s]" + " 2%|▏ | 105188/4997817 [00:00<00:27, 175672.96it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 122803/4997817 [00:00<00:27, 174529.20it/s]" + " 2%|▏ | 122771/4997817 [00:00<00:27, 175719.53it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140257/4997817 [00:00<00:27, 174101.97it/s]" + " 3%|▎ | 140344/4997817 [00:00<00:27, 175172.99it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 157873/4997817 [00:00<00:27, 174741.06it/s]" + " 3%|▎ | 157862/4997817 [00:00<00:27, 174941.50it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 175348/4997817 [00:01<00:27, 174171.37it/s]" + " 4%|▎ | 175357/4997817 [00:01<00:27, 174922.08it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 192803/4997817 [00:01<00:27, 174284.95it/s]" + " 4%|▍ | 192926/4997817 [00:01<00:27, 175151.99it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 210474/4997817 [00:01<00:27, 175018.20it/s]" + " 4%|▍ | 210609/4997817 [00:01<00:27, 175659.14it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 227977/4997817 [00:01<00:27, 174691.25it/s]" + " 5%|▍ | 228199/4997817 [00:01<00:27, 175727.40it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 245609/4997817 [00:01<00:27, 175179.19it/s]" + " 5%|▍ | 245865/4997817 [00:01<00:26, 176005.53it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263128/4997817 [00:01<00:27, 174978.28it/s]" + " 5%|▌ | 263466/4997817 [00:01<00:26, 175594.60it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 280670/4997817 [00:01<00:26, 175107.87it/s]" + " 6%|▌ | 281027/4997817 [00:01<00:26, 175595.13it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298262/4997817 [00:01<00:26, 175348.37it/s]" + " 6%|▌ | 298836/4997817 [00:01<00:26, 176341.43it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 315877/4997817 [00:01<00:26, 175584.53it/s]" + " 6%|▋ | 316665/4997817 [00:01<00:26, 176924.14it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 333546/4997817 [00:01<00:26, 175914.21it/s]" + " 7%|▋ | 334560/4997817 [00:01<00:26, 177527.64it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 351138/4997817 [00:02<00:26, 174764.56it/s]" + " 7%|▋ | 352485/4997817 [00:02<00:26, 178040.22it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 368617/4997817 [00:02<00:26, 174617.02it/s]" + " 7%|▋ | 370443/4997817 [00:02<00:25, 178499.86it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 386080/4997817 [00:02<00:26, 174307.07it/s]" + " 8%|▊ | 388402/4997817 [00:02<00:25, 178823.67it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 403590/4997817 [00:02<00:26, 174541.47it/s]" + " 8%|▊ | 406285/4997817 [00:02<00:25, 178740.60it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 421090/4997817 [00:02<00:26, 174676.09it/s]" + " 8%|▊ | 424160/4997817 [00:02<00:25, 178599.92it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 438559/4997817 [00:02<00:26, 174616.60it/s]" + " 9%|▉ | 442021/4997817 [00:02<00:25, 178448.54it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 456132/4997817 [00:02<00:25, 174945.64it/s]" + " 9%|▉ | 459866/4997817 [00:02<00:25, 175902.91it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 473696/4997817 [00:02<00:25, 175151.14it/s]" + " 10%|▉ | 477662/4997817 [00:02<00:25, 176508.79it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 491268/4997817 [00:02<00:25, 175318.83it/s]" + " 10%|▉ | 495424/4997817 [00:02<00:25, 176835.64it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 508816/4997817 [00:02<00:25, 175362.69it/s]" + " 10%|█ | 513310/4997817 [00:02<00:25, 177437.22it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 526353/4997817 [00:03<00:25, 174639.75it/s]" + " 11%|█ | 531207/4997817 [00:03<00:25, 177892.84it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 543818/4997817 [00:03<00:25, 174295.28it/s]" + " 11%|█ | 548999/4997817 [00:03<00:25, 175415.22it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 561297/4997817 [00:03<00:25, 174440.35it/s]" + " 11%|█▏ | 566644/4997817 [00:03<00:25, 175717.99it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 578742/4997817 [00:03<00:25, 174426.12it/s]" + " 12%|█▏ | 584538/4997817 [00:03<00:24, 176671.06it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 596240/4997817 [00:03<00:25, 174588.28it/s]" + " 12%|█▏ | 602262/4997817 [00:03<00:24, 176835.65it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 613715/4997817 [00:03<00:25, 174632.17it/s]" + " 12%|█▏ | 620024/4997817 [00:03<00:24, 177064.87it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 631179/4997817 [00:03<00:25, 174300.27it/s]" + " 13%|█▎ | 637734/4997817 [00:03<00:24, 176679.27it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 648658/4997817 [00:03<00:24, 174444.70it/s]" + " 13%|█▎ | 655474/4997817 [00:03<00:24, 176890.98it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 666151/4997817 [00:03<00:24, 174587.89it/s]" + " 13%|█▎ | 673248/4997817 [00:03<00:24, 177141.43it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 683662/4997817 [00:03<00:24, 174741.17it/s]" + " 14%|█▍ | 691105/4997817 [00:03<00:24, 177564.47it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 701137/4997817 [00:04<00:24, 174466.41it/s]" + " 14%|█▍ | 708942/4997817 [00:04<00:24, 177800.79it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 719049/4997817 [00:04<00:24, 175855.65it/s]" + " 15%|█▍ | 726723/4997817 [00:04<00:24, 177793.95it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 736888/4997817 [00:04<00:24, 176610.34it/s]" + " 15%|█▍ | 744503/4997817 [00:04<00:23, 177758.97it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754775/4997817 [00:04<00:23, 177283.55it/s]" + " 15%|█▌ | 762280/4997817 [00:04<00:23, 177746.19it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 772644/4997817 [00:04<00:23, 177702.24it/s]" + " 16%|█▌ | 780236/4997817 [00:04<00:23, 178287.44it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 790530/4997817 [00:04<00:23, 178044.76it/s]" + " 16%|█▌ | 798190/4997817 [00:04<00:23, 178658.65it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 808335/4997817 [00:04<00:23, 177949.17it/s]" + " 16%|█▋ | 816162/4997817 [00:04<00:23, 178972.42it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 826164/4997817 [00:04<00:23, 178048.48it/s]" + " 17%|█▋ | 834062/4997817 [00:04<00:23, 178976.39it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 843969/4997817 [00:04<00:23, 177534.17it/s]" + " 17%|█▋ | 851960/4997817 [00:04<00:23, 178605.71it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 861838/4997817 [00:04<00:23, 177875.85it/s]" + " 17%|█▋ | 869912/4997817 [00:04<00:23, 178875.91it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 879726/4997817 [00:05<00:23, 178173.98it/s]" + " 18%|█▊ | 887965/4997817 [00:05<00:22, 179366.26it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 897544/4997817 [00:05<00:23, 171075.68it/s]" + " 18%|█▊ | 905902/4997817 [00:05<00:22, 178845.68it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 915264/4997817 [00:05<00:23, 172855.36it/s]" + " 18%|█▊ | 923788/4997817 [00:05<00:22, 177995.05it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 933005/4997817 [00:05<00:23, 174189.25it/s]" + " 19%|█▉ | 941613/4997817 [00:05<00:22, 178068.40it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 950945/4997817 [00:05<00:23, 175726.56it/s]" + " 19%|█▉ | 959421/4997817 [00:05<00:22, 177686.46it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 968740/4997817 [00:05<00:22, 176384.22it/s]" + " 20%|█▉ | 977191/4997817 [00:05<00:22, 177262.11it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 986545/4997817 [00:05<00:22, 176877.29it/s]" + " 20%|█▉ | 994958/4997817 [00:05<00:22, 177380.94it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1004288/4997817 [00:05<00:22, 177037.15it/s]" + " 20%|██ | 1012772/4997817 [00:05<00:22, 177605.07it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022105/4997817 [00:05<00:22, 177372.06it/s]" + " 21%|██ | 1030533/4997817 [00:05<00:22, 177556.29it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1039856/4997817 [00:05<00:22, 177409.34it/s]" + " 21%|██ | 1048289/4997817 [00:05<00:22, 177115.61it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1057854/4997817 [00:06<00:22, 178175.41it/s]" + " 21%|██▏ | 1066001/4997817 [00:06<00:22, 176685.93it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1075877/4997817 [00:06<00:21, 178786.97it/s]" + " 22%|██▏ | 1083736/4997817 [00:06<00:22, 176881.29it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1093759/4997817 [00:06<00:21, 178734.21it/s]" + " 22%|██▏ | 1101425/4997817 [00:06<00:22, 176862.75it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1111635/4997817 [00:06<00:21, 177490.20it/s]" + " 22%|██▏ | 1119112/4997817 [00:06<00:21, 176613.07it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1129388/4997817 [00:06<00:21, 177110.83it/s]" + " 23%|██▎ | 1136832/4997817 [00:06<00:21, 176786.39it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1147221/4997817 [00:06<00:21, 177470.24it/s]" + " 23%|██▎ | 1154511/4997817 [00:06<00:21, 176436.52it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1164970/4997817 [00:06<00:21, 177083.53it/s]" + " 23%|██▎ | 1172155/4997817 [00:06<00:21, 175944.05it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1182680/4997817 [00:06<00:21, 176816.23it/s]" + " 24%|██▍ | 1190019/4997817 [00:06<00:21, 176746.71it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1200413/4997817 [00:06<00:21, 176967.27it/s]" + " 24%|██▍ | 1207695/4997817 [00:06<00:21, 176246.06it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1218124/4997817 [00:06<00:21, 177005.09it/s]" + " 25%|██▍ | 1225512/4997817 [00:06<00:21, 176818.30it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1235825/4997817 [00:07<00:21, 176052.28it/s]" + " 25%|██▍ | 1243258/4997817 [00:07<00:21, 177007.56it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1253587/4997817 [00:07<00:21, 176518.07it/s]" + " 25%|██▌ | 1260992/4997817 [00:07<00:21, 177102.98it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1271305/4997817 [00:07<00:21, 176711.57it/s]" + " 26%|██▌ | 1278703/4997817 [00:07<00:21, 176948.28it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288978/4997817 [00:07<00:21, 175896.07it/s]" + " 26%|██▌ | 1296561/4997817 [00:07<00:20, 177432.39it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1306626/4997817 [00:07<00:20, 176068.28it/s]" + " 26%|██▋ | 1314539/4997817 [00:07<00:20, 178132.38it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1324234/4997817 [00:07<00:20, 175987.30it/s]" + " 27%|██▋ | 1332353/4997817 [00:07<00:20, 178094.62it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1341834/4997817 [00:07<00:20, 175563.78it/s]" + " 27%|██▋ | 1350163/4997817 [00:07<00:20, 178042.71it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1359486/4997817 [00:07<00:20, 175845.00it/s]" + " 27%|██▋ | 1367993/4997817 [00:07<00:20, 178114.67it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1377072/4997817 [00:07<00:20, 175322.72it/s]" + " 28%|██▊ | 1385805/4997817 [00:07<00:20, 177932.13it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1394605/4997817 [00:07<00:20, 175190.77it/s]" + " 28%|██▊ | 1403599/4997817 [00:07<00:20, 177879.38it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1412244/4997817 [00:08<00:20, 175546.78it/s]" + " 28%|██▊ | 1421534/4997817 [00:08<00:20, 178317.13it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1429800/4997817 [00:08<00:20, 175322.96it/s]" + " 29%|██▉ | 1439417/4997817 [00:08<00:19, 178468.64it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1447333/4997817 [00:08<00:20, 175034.90it/s]" + " 29%|██▉ | 1457264/4997817 [00:08<00:19, 178443.46it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1464886/4997817 [00:08<00:20, 175179.67it/s]" + " 30%|██▉ | 1475117/4997817 [00:08<00:19, 178466.91it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1482494/4997817 [00:08<00:20, 175445.63it/s]" + " 30%|██▉ | 1492964/4997817 [00:08<00:19, 178362.80it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1500039/4997817 [00:08<00:19, 174970.49it/s]" + " 30%|███ | 1510883/4997817 [00:08<00:19, 178607.91it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1517639/4997817 [00:08<00:19, 175275.24it/s]" + " 31%|███ | 1528744/4997817 [00:08<00:19, 178567.36it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1535258/4997817 [00:08<00:19, 175544.89it/s]" + " 31%|███ | 1546601/4997817 [00:08<00:19, 175782.00it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1552902/4997817 [00:08<00:19, 175810.32it/s]" + " 31%|███▏ | 1564391/4997817 [00:08<00:19, 176405.65it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1570484/4997817 [00:08<00:19, 175331.08it/s]" + " 32%|███▏ | 1582183/4997817 [00:08<00:19, 176852.12it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1588018/4997817 [00:09<00:19, 174749.39it/s]" + " 32%|███▏ | 1599874/4997817 [00:09<00:19, 176799.15it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1605494/4997817 [00:09<00:20, 169542.83it/s]" + " 32%|███▏ | 1617558/4997817 [00:09<00:19, 175931.25it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1622481/4997817 [00:09<00:19, 169394.35it/s]" + " 33%|███▎ | 1635340/4997817 [00:09<00:19, 176491.27it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1639959/4997817 [00:09<00:19, 170978.91it/s]" + " 33%|███▎ | 1653006/4997817 [00:09<00:18, 176539.07it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1657724/4997817 [00:09<00:19, 172952.39it/s]" + " 33%|███▎ | 1670829/4997817 [00:09<00:18, 177040.12it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1675246/4997817 [00:09<00:19, 173623.37it/s]" + " 34%|███▍ | 1688580/4997817 [00:09<00:18, 177176.14it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1693123/4997817 [00:09<00:18, 175154.30it/s]" + " 34%|███▍ | 1706503/4997817 [00:09<00:18, 177786.41it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1710995/4997817 [00:09<00:18, 176215.23it/s]" + " 35%|███▍ | 1724283/4997817 [00:09<00:18, 175065.53it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1728624/4997817 [00:09<00:18, 176207.11it/s]" + " 35%|███▍ | 1742024/4997817 [00:09<00:18, 175757.81it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1746331/4997817 [00:09<00:18, 176463.04it/s]" + " 35%|███▌ | 1759900/4997817 [00:09<00:18, 176647.18it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1764157/4997817 [00:10<00:18, 176997.52it/s]" + " 36%|███▌ | 1777864/4997817 [00:10<00:18, 177537.66it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1782002/4997817 [00:10<00:18, 177428.25it/s]" + " 36%|███▌ | 1795832/4997817 [00:10<00:17, 178173.13it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1799874/4997817 [00:10<00:17, 177812.97it/s]" + " 36%|███▋ | 1813737/4997817 [00:10<00:17, 178430.15it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1817732/4997817 [00:10<00:17, 178039.56it/s]" + " 37%|███▋ | 1831631/4997817 [00:10<00:17, 178577.62it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1835619/4997817 [00:10<00:17, 178284.56it/s]" + " 37%|███▋ | 1849581/4997817 [00:10<00:17, 178851.18it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1853449/4997817 [00:10<00:17, 177762.39it/s]" + " 37%|███▋ | 1867468/4997817 [00:10<00:17, 178559.72it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1871227/4997817 [00:10<00:17, 176726.50it/s]" + " 38%|███▊ | 1885325/4997817 [00:10<00:17, 178504.74it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1888921/4997817 [00:10<00:17, 176785.58it/s]" + " 38%|███▊ | 1903191/4997817 [00:10<00:17, 178546.58it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1907046/4997817 [00:10<00:17, 178115.64it/s]" + " 38%|███▊ | 1921047/4997817 [00:10<00:17, 178521.32it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1925051/4997817 [00:10<00:17, 178689.39it/s]" + " 39%|███▉ | 1938938/4997817 [00:10<00:17, 178632.76it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1943110/4997817 [00:11<00:17, 179255.02it/s]" + " 39%|███▉ | 1956802/4997817 [00:11<00:17, 178610.47it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1961138/4997817 [00:11<00:16, 179558.93it/s]" + " 40%|███▉ | 1974708/4997817 [00:11<00:16, 178740.07it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1979165/4997817 [00:11<00:16, 179769.39it/s]" + " 40%|███▉ | 1992583/4997817 [00:11<00:16, 178554.16it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1997143/4997817 [00:11<00:16, 178238.15it/s]" + " 40%|████ | 2010516/4997817 [00:11<00:16, 178782.25it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2014996/4997817 [00:11<00:16, 178321.01it/s]" + " 41%|████ | 2028395/4997817 [00:11<00:16, 178688.59it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2032831/4997817 [00:11<00:16, 178037.02it/s]" + " 41%|████ | 2046264/4997817 [00:11<00:16, 178571.40it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2050637/4997817 [00:11<00:16, 177941.93it/s]" + " 41%|████▏ | 2064122/4997817 [00:11<00:16, 178451.89it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2068502/4997817 [00:11<00:16, 178149.10it/s]" + " 42%|████▏ | 2081968/4997817 [00:11<00:16, 178057.76it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2086318/4997817 [00:11<00:16, 177714.69it/s]" + " 42%|████▏ | 2099774/4997817 [00:11<00:16, 177921.25it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2104091/4997817 [00:11<00:16, 177589.19it/s]" + " 42%|████▏ | 2117567/4997817 [00:11<00:16, 177879.61it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2121851/4997817 [00:12<00:16, 177246.87it/s]" + " 43%|████▎ | 2135387/4997817 [00:12<00:16, 177971.55it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2139577/4997817 [00:12<00:16, 176801.43it/s]" + " 43%|████▎ | 2153185/4997817 [00:12<00:15, 177883.27it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2157258/4997817 [00:12<00:16, 176696.81it/s]" + " 43%|████▎ | 2170974/4997817 [00:12<00:15, 177203.01it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2174928/4997817 [00:12<00:15, 176565.53it/s]" + " 44%|████▍ | 2188695/4997817 [00:12<00:15, 177184.57it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2192690/4997817 [00:12<00:15, 176875.59it/s]" + " 44%|████▍ | 2206414/4997817 [00:12<00:15, 176902.41it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2210531/4997817 [00:12<00:15, 177330.22it/s]" + " 45%|████▍ | 2224105/4997817 [00:12<00:15, 176843.56it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2228267/4997817 [00:12<00:15, 177335.65it/s]" + " 45%|████▍ | 2241907/4997817 [00:12<00:15, 177192.07it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246001/4997817 [00:12<00:15, 177086.21it/s]" + " 45%|████▌ | 2259743/4997817 [00:12<00:15, 177536.48it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2263710/4997817 [00:12<00:15, 176337.22it/s]" + " 46%|████▌ | 2277497/4997817 [00:12<00:15, 176383.30it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281530/4997817 [00:12<00:15, 176888.86it/s]" + " 46%|████▌ | 2295146/4997817 [00:12<00:15, 176411.17it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2299313/4997817 [00:13<00:15, 177167.52it/s]" + " 46%|████▋ | 2312799/4997817 [00:13<00:15, 176442.08it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2317138/4997817 [00:13<00:15, 177486.83it/s]" + " 47%|████▋ | 2330531/4997817 [00:13<00:15, 176701.66it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2334888/4997817 [00:13<00:15, 173392.89it/s]" + " 47%|████▋ | 2348329/4997817 [00:13<00:14, 177079.94it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2352305/4997817 [00:13<00:15, 173619.60it/s]" + " 47%|████▋ | 2366219/4997817 [00:13<00:14, 177620.71it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2370327/4997817 [00:13<00:14, 175570.94it/s]" + " 48%|████▊ | 2384078/4997817 [00:13<00:14, 177908.22it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2388254/4997817 [00:13<00:14, 176668.32it/s]" + " 48%|████▊ | 2401913/4997817 [00:13<00:14, 178035.24it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2406168/4997817 [00:13<00:14, 177402.88it/s]" + " 48%|████▊ | 2419717/4997817 [00:13<00:14, 177907.88it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2424181/4997817 [00:13<00:14, 178214.05it/s]" + " 49%|████▉ | 2437622/4997817 [00:13<00:14, 178246.58it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2442067/4997817 [00:13<00:14, 178403.61it/s]" + " 49%|████▉ | 2455447/4997817 [00:13<00:14, 178140.44it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2459912/4997817 [00:13<00:14, 178341.18it/s]" + " 49%|████▉ | 2473268/4997817 [00:13<00:14, 178157.39it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2477749/4997817 [00:14<00:14, 178188.03it/s]" + " 50%|████▉ | 2491084/4997817 [00:14<00:14, 178137.72it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2495619/4997817 [00:14<00:14, 178336.29it/s]" + " 50%|█████ | 2508898/4997817 [00:14<00:13, 177998.74it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2513454/4997817 [00:14<00:14, 176503.51it/s]" + " 51%|█████ | 2526698/4997817 [00:14<00:13, 177909.15it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2531290/4997817 [00:14<00:13, 177052.07it/s]" + " 51%|█████ | 2544489/4997817 [00:14<00:13, 177444.51it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2549080/4997817 [00:14<00:13, 177302.14it/s]" + " 51%|█████▏ | 2562234/4997817 [00:14<00:13, 177426.20it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2566955/4997817 [00:14<00:13, 177732.39it/s]" + " 52%|█████▏ | 2579977/4997817 [00:14<00:13, 176938.77it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2584731/4997817 [00:14<00:13, 177556.57it/s]" + " 52%|█████▏ | 2597763/4997817 [00:14<00:13, 177208.87it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2602604/4997817 [00:14<00:13, 177902.74it/s]" + " 52%|█████▏ | 2615516/4997817 [00:14<00:13, 177300.23it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2620396/4997817 [00:14<00:13, 177697.13it/s]" + " 53%|█████▎ | 2633247/4997817 [00:14<00:13, 177005.41it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2638167/4997817 [00:14<00:13, 177680.87it/s]" + " 53%|█████▎ | 2650979/4997817 [00:14<00:13, 177096.59it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2656093/4997817 [00:15<00:13, 178150.08it/s]" + " 53%|█████▎ | 2668827/4997817 [00:15<00:13, 177505.66it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2673985/4997817 [00:15<00:13, 178376.13it/s]" + " 54%|█████▍ | 2686578/4997817 [00:15<00:13, 176155.38it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691823/4997817 [00:15<00:12, 178090.59it/s]" + " 54%|█████▍ | 2704355/4997817 [00:15<00:12, 176633.20it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2709633/4997817 [00:15<00:12, 177751.66it/s]" + " 54%|█████▍ | 2722218/4997817 [00:15<00:12, 177225.53it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2727441/4997817 [00:15<00:12, 177845.65it/s]" + " 55%|█████▍ | 2740063/4997817 [00:15<00:12, 177587.75it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2745226/4997817 [00:15<00:12, 177445.39it/s]" + " 55%|█████▌ | 2757851/4997817 [00:15<00:12, 177672.12it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2762992/4997817 [00:15<00:12, 177506.85it/s]" + " 56%|█████▌ | 2775620/4997817 [00:15<00:12, 177536.66it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2780853/4997817 [00:15<00:12, 177833.38it/s]" + " 56%|█████▌ | 2793443/4997817 [00:15<00:12, 177739.17it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2798637/4997817 [00:15<00:12, 177798.08it/s]" + " 56%|█████▌ | 2811218/4997817 [00:15<00:12, 174041.23it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2816470/4997817 [00:15<00:12, 177954.35it/s]" + " 57%|█████▋ | 2828903/4997817 [00:15<00:12, 174867.06it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2834301/4997817 [00:16<00:12, 178057.44it/s]" + " 57%|█████▋ | 2846700/4997817 [00:16<00:12, 175785.11it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2852176/4997817 [00:16<00:12, 178261.19it/s]" + " 57%|█████▋ | 2864443/4997817 [00:16<00:12, 176271.22it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2870003/4997817 [00:16<00:11, 177648.01it/s]" + " 58%|█████▊ | 2882278/4997817 [00:16<00:11, 176886.76it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2887769/4997817 [00:16<00:11, 177132.35it/s]" + " 58%|█████▊ | 2900037/4997817 [00:16<00:11, 177092.19it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2905493/4997817 [00:16<00:11, 177161.28it/s]" + " 58%|█████▊ | 2917797/4997817 [00:16<00:11, 177241.14it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2923270/4997817 [00:16<00:11, 177339.77it/s]" + " 59%|█████▊ | 2935524/4997817 [00:16<00:11, 177018.19it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2941005/4997817 [00:16<00:11, 177128.56it/s]" + " 59%|█████▉ | 2953228/4997817 [00:16<00:11, 176869.64it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2958755/4997817 [00:16<00:11, 177236.13it/s]" + " 59%|█████▉ | 2970917/4997817 [00:16<00:11, 176151.89it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2976514/4997817 [00:16<00:11, 177338.38it/s]" + " 60%|█████▉ | 2988534/4997817 [00:16<00:11, 175890.44it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2994348/4997817 [00:16<00:11, 177635.53it/s]" + " 60%|██████ | 3006235/4997817 [00:16<00:11, 176220.07it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3012134/4997817 [00:17<00:11, 177698.17it/s]" + " 61%|██████ | 3024139/4997817 [00:17<00:11, 177060.98it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3029980/4997817 [00:17<00:11, 177921.68it/s]" + " 61%|██████ | 3041872/4997817 [00:17<00:11, 177137.65it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3047789/4997817 [00:17<00:10, 177969.66it/s]" + " 61%|██████ | 3059587/4997817 [00:17<00:10, 177097.89it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3065587/4997817 [00:17<00:10, 177966.45it/s]" + " 62%|██████▏ | 3077357/4997817 [00:17<00:10, 177274.05it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3083384/4997817 [00:17<00:10, 177847.89it/s]" + " 62%|██████▏ | 3095085/4997817 [00:17<00:10, 177103.25it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3101169/4997817 [00:17<00:10, 177792.15it/s]" + " 62%|██████▏ | 3112872/4997817 [00:17<00:10, 177330.88it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3118949/4997817 [00:17<00:10, 177662.23it/s]" + " 63%|██████▎ | 3130650/4997817 [00:17<00:10, 177460.72it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3136750/4997817 [00:17<00:10, 177764.35it/s]" + " 63%|██████▎ | 3148563/4997817 [00:17<00:10, 177956.02it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3154652/4997817 [00:17<00:10, 178135.87it/s]" + " 63%|██████▎ | 3166432/4997817 [00:17<00:10, 178173.36it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3172466/4997817 [00:17<00:10, 177842.07it/s]" + " 64%|██████▎ | 3184250/4997817 [00:17<00:10, 177970.65it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3190267/4997817 [00:18<00:10, 177889.63it/s]" + " 64%|██████▍ | 3202048/4997817 [00:18<00:10, 177369.37it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3208057/4997817 [00:18<00:10, 177588.01it/s]" + " 64%|██████▍ | 3219786/4997817 [00:18<00:10, 176901.23it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3225816/4997817 [00:18<00:09, 177464.63it/s]" + " 65%|██████▍ | 3237477/4997817 [00:18<00:09, 176385.97it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3243563/4997817 [00:18<00:09, 177377.90it/s]" + " 65%|██████▌ | 3255117/4997817 [00:18<00:09, 175608.75it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3261301/4997817 [00:18<00:09, 176991.46it/s]" + " 65%|██████▌ | 3272679/4997817 [00:18<00:09, 175364.30it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3279001/4997817 [00:18<00:09, 176402.89it/s]" + " 66%|██████▌ | 3290216/4997817 [00:18<00:09, 175310.69it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3296642/4997817 [00:18<00:09, 176061.85it/s]" + " 66%|██████▌ | 3307758/4997817 [00:18<00:09, 175340.52it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3314249/4997817 [00:18<00:09, 175968.84it/s]" + " 67%|██████▋ | 3325293/4997817 [00:18<00:09, 175275.91it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3331847/4997817 [00:18<00:09, 175182.15it/s]" + " 67%|██████▋ | 3342868/4997817 [00:18<00:09, 175414.60it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3349366/4997817 [00:18<00:09, 174731.89it/s]" + " 67%|██████▋ | 3360410/4997817 [00:18<00:09, 174946.91it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3366870/4997817 [00:19<00:09, 174821.24it/s]" + " 68%|██████▊ | 3377909/4997817 [00:19<00:09, 174955.98it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384355/4997817 [00:19<00:09, 174826.27it/s]" + " 68%|██████▊ | 3395405/4997817 [00:19<00:09, 174938.26it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3401920/4997817 [00:19<00:09, 175067.62it/s]" + " 68%|██████▊ | 3412899/4997817 [00:19<00:09, 174667.90it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3419428/4997817 [00:19<00:09, 172449.11it/s]" + " 69%|██████▊ | 3430388/4997817 [00:19<00:08, 174729.95it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3436936/4997817 [00:19<00:09, 173225.59it/s]" + " 69%|██████▉ | 3447862/4997817 [00:19<00:08, 174724.77it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3454413/4997817 [00:19<00:08, 173682.24it/s]" + " 69%|██████▉ | 3465335/4997817 [00:19<00:08, 174649.77it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3471811/4997817 [00:19<00:08, 173768.38it/s]" + " 70%|██████▉ | 3482801/4997817 [00:19<00:08, 174605.11it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3489262/4997817 [00:19<00:08, 173987.88it/s]" + " 70%|███████ | 3500286/4997817 [00:19<00:08, 174674.94it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3506664/4997817 [00:19<00:08, 173837.73it/s]" + " 70%|███████ | 3517754/4997817 [00:19<00:08, 174642.55it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3524050/4997817 [00:19<00:08, 173726.72it/s]" + " 71%|███████ | 3535276/4997817 [00:19<00:08, 174811.73it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3541779/4997817 [00:20<00:08, 174790.87it/s]" + " 71%|███████ | 3552791/4997817 [00:20<00:08, 174908.46it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3559320/4997817 [00:20<00:08, 174971.73it/s]" + " 71%|███████▏ | 3570332/4997817 [00:20<00:08, 175056.30it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3576819/4997817 [00:20<00:08, 174841.60it/s]" + " 72%|███████▏ | 3587965/4997817 [00:20<00:08, 175434.98it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3594304/4997817 [00:20<00:08, 174451.03it/s]" + " 72%|███████▏ | 3605572/4997817 [00:20<00:07, 175620.98it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3611874/4997817 [00:20<00:07, 174822.21it/s]" + " 72%|███████▏ | 3623294/4997817 [00:20<00:07, 176096.38it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3629419/4997817 [00:20<00:07, 175005.63it/s]" + " 73%|███████▎ | 3640904/4997817 [00:20<00:07, 176024.50it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3646926/4997817 [00:20<00:07, 175021.72it/s]" + " 73%|███████▎ | 3658507/4997817 [00:20<00:07, 170676.69it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3664429/4997817 [00:20<00:07, 174612.10it/s]" + " 74%|███████▎ | 3675917/4997817 [00:20<00:07, 171677.93it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3681965/4997817 [00:20<00:07, 174834.14it/s]" + " 74%|███████▍ | 3693112/4997817 [00:20<00:07, 163982.93it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3699743/4997817 [00:20<00:07, 175712.77it/s]" + " 74%|███████▍ | 3710544/4997817 [00:20<00:07, 166948.03it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3717315/4997817 [00:21<00:07, 175177.07it/s]" + " 75%|███████▍ | 3728215/4997817 [00:21<00:07, 169784.08it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3734834/4997817 [00:21<00:07, 175070.87it/s]" + " 75%|███████▍ | 3745924/4997817 [00:21<00:07, 171924.04it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3752342/4997817 [00:21<00:07, 174347.46it/s]" + " 75%|███████▌ | 3763638/4997817 [00:21<00:07, 173460.72it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3769843/4997817 [00:21<00:07, 174542.86it/s]" + " 76%|███████▌ | 3781329/4997817 [00:21<00:06, 174480.22it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3787298/4997817 [00:21<00:06, 174394.61it/s]" + " 76%|███████▌ | 3798992/4997817 [00:21<00:06, 175117.76it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3804738/4997817 [00:21<00:06, 174299.31it/s]" + " 76%|███████▋ | 3816611/4997817 [00:21<00:06, 175433.05it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3822169/4997817 [00:21<00:06, 174117.57it/s]" + " 77%|███████▋ | 3834271/4997817 [00:21<00:06, 175776.50it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3839589/4997817 [00:21<00:06, 174140.05it/s]" + " 77%|███████▋ | 3851933/4997817 [00:21<00:06, 176026.68it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3857014/4997817 [00:21<00:06, 174170.79it/s]" + " 77%|███████▋ | 3869588/4997817 [00:21<00:06, 176180.54it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3874432/4997817 [00:22<00:06, 173710.47it/s]" + " 78%|███████▊ | 3887211/4997817 [00:21<00:06, 175622.10it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3891804/4997817 [00:22<00:06, 173690.70it/s]" + " 78%|███████▊ | 3904777/4997817 [00:22<00:06, 175260.61it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3909174/4997817 [00:22<00:06, 173278.92it/s]" + " 78%|███████▊ | 3922372/4997817 [00:22<00:06, 175462.33it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3926522/4997817 [00:22<00:06, 173335.52it/s]" + " 79%|███████▉ | 3939934/4997817 [00:22<00:06, 175506.68it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3943856/4997817 [00:22<00:06, 173233.30it/s]" + " 79%|███████▉ | 3957486/4997817 [00:22<00:05, 175329.34it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3961204/4997817 [00:22<00:05, 173303.01it/s]" + " 80%|███████▉ | 3975074/4997817 [00:22<00:05, 175490.25it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3978607/4997817 [00:22<00:05, 173518.01it/s]" + " 80%|███████▉ | 3992695/4997817 [00:22<00:05, 175700.52it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3995975/4997817 [00:22<00:05, 173564.50it/s]" + " 80%|████████ | 4010266/4997817 [00:22<00:05, 175420.64it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4013332/4997817 [00:22<00:05, 173391.08it/s]" + " 81%|████████ | 4027895/4997817 [00:22<00:05, 175676.50it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4030714/4997817 [00:22<00:05, 173514.94it/s]" + " 81%|████████ | 4045463/4997817 [00:22<00:05, 175631.93it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4048116/4997817 [00:23<00:05, 173663.90it/s]" + " 81%|████████▏ | 4063028/4997817 [00:22<00:05, 175634.51it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4065520/4997817 [00:23<00:05, 173773.60it/s]" + " 82%|████████▏ | 4080592/4997817 [00:23<00:05, 174865.98it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4082898/4997817 [00:23<00:05, 173743.90it/s]" + " 82%|████████▏ | 4098080/4997817 [00:23<00:05, 174814.65it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4100273/4997817 [00:23<00:05, 173481.96it/s]" + " 82%|████████▏ | 4115725/4997817 [00:23<00:05, 175300.20it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4117622/4997817 [00:23<00:05, 173256.34it/s]" + " 83%|████████▎ | 4133264/4997817 [00:23<00:04, 175322.13it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4134948/4997817 [00:23<00:05, 172520.22it/s]" + " 83%|████████▎ | 4150797/4997817 [00:23<00:04, 175066.95it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4152348/4997817 [00:23<00:04, 172958.60it/s]" + " 83%|████████▎ | 4168305/4997817 [00:23<00:04, 175046.04it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4169748/4997817 [00:23<00:04, 173267.53it/s]" + " 84%|████████▍ | 4185811/4997817 [00:23<00:04, 175044.90it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4187104/4997817 [00:23<00:04, 173352.29it/s]" + " 84%|████████▍ | 4203327/4997817 [00:23<00:04, 175076.44it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4204440/4997817 [00:23<00:04, 172791.19it/s]" + " 84%|████████▍ | 4220835/4997817 [00:23<00:04, 174933.90it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4221902/4997817 [00:24<00:04, 173333.48it/s]" + " 85%|████████▍ | 4238329/4997817 [00:24<00:04, 174674.70it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4239236/4997817 [00:24<00:04, 173153.23it/s]" + " 85%|████████▌ | 4256239/4997817 [00:24<00:04, 175996.66it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4256720/4997817 [00:24<00:04, 173654.39it/s]" + " 86%|████████▌ | 4273839/4997817 [00:24<00:04, 175799.04it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4274142/4997817 [00:24<00:04, 173821.11it/s]" + " 86%|████████▌ | 4291598/4997817 [00:24<00:04, 176331.95it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4291554/4997817 [00:24<00:04, 173906.49it/s]" + " 86%|████████▌ | 4309272/4997817 [00:24<00:03, 176450.48it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4309142/4997817 [00:24<00:03, 174494.60it/s]" + " 87%|████████▋ | 4326984/4997817 [00:24<00:03, 176648.44it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4326856/4997817 [00:24<00:03, 175283.28it/s]" + " 87%|████████▋ | 4344717/4997817 [00:24<00:03, 176849.29it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4344385/4997817 [00:24<00:03, 175275.19it/s]" + " 87%|████████▋ | 4362403/4997817 [00:24<00:03, 176596.00it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4361977/4997817 [00:24<00:03, 175463.60it/s]" + " 88%|████████▊ | 4380063/4997817 [00:24<00:03, 175961.51it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4379555/4997817 [00:24<00:03, 175555.66it/s]" + " 88%|████████▊ | 4397790/4997817 [00:24<00:03, 176348.48it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4397111/4997817 [00:25<00:03, 175291.26it/s]" + " 88%|████████▊ | 4415426/4997817 [00:25<00:03, 174788.80it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4414726/4997817 [00:25<00:03, 175544.11it/s]" + " 89%|████████▊ | 4432909/4997817 [00:25<00:03, 169890.16it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4432281/4997817 [00:25<00:03, 175358.70it/s]" + " 89%|████████▉ | 4450462/4997817 [00:25<00:03, 171535.25it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4449817/4997817 [00:25<00:03, 175271.13it/s]" + " 89%|████████▉ | 4468091/4997817 [00:25<00:03, 172931.24it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4467425/4997817 [00:25<00:03, 175509.76it/s]" + " 90%|████████▉ | 4485670/4997817 [00:25<00:02, 173774.79it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4484977/4997817 [00:25<00:02, 174813.20it/s]" + " 90%|█████████ | 4503252/4997817 [00:25<00:02, 174381.11it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4502745/4997817 [00:25<00:02, 175667.70it/s]" + " 90%|█████████ | 4520917/4997817 [00:25<00:02, 175052.85it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4520324/4997817 [00:25<00:02, 175702.10it/s]" + " 91%|█████████ | 4538464/4997817 [00:25<00:02, 175173.63it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4537895/4997817 [00:25<00:02, 175107.23it/s]" + " 91%|█████████ | 4556000/4997817 [00:25<00:02, 175226.80it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4555735/4997817 [00:25<00:02, 176089.20it/s]" + " 92%|█████████▏| 4573552/4997817 [00:25<00:02, 175311.24it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4573507/4997817 [00:26<00:02, 176573.73it/s]" + " 92%|█████████▏| 4591115/4997817 [00:26<00:02, 175403.76it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4591290/4997817 [00:26<00:02, 176944.94it/s]" + " 92%|█████████▏| 4608663/4997817 [00:26<00:02, 175423.90it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4608986/4997817 [00:26<00:02, 176778.77it/s]" + " 93%|█████████▎| 4626208/4997817 [00:26<00:02, 175425.88it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4626665/4997817 [00:26<00:02, 175958.86it/s]" + " 93%|█████████▎| 4643752/4997817 [00:26<00:02, 174281.24it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4644332/4997817 [00:26<00:02, 176168.57it/s]" + " 93%|█████████▎| 4661183/4997817 [00:26<00:01, 174117.01it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4662117/4997817 [00:26<00:01, 176667.85it/s]" + " 94%|█████████▎| 4678749/4997817 [00:26<00:01, 174573.91it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4679988/4997817 [00:26<00:01, 177275.43it/s]" + " 94%|█████████▍| 4696244/4997817 [00:26<00:01, 174681.47it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4697734/4997817 [00:26<00:01, 177327.60it/s]" + " 94%|█████████▍| 4713714/4997817 [00:26<00:01, 174596.35it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4715540/4997817 [00:26<00:01, 177542.82it/s]" + " 95%|█████████▍| 4731175/4997817 [00:26<00:01, 174541.29it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4733295/4997817 [00:26<00:01, 177504.30it/s]" + " 95%|█████████▌| 4748630/4997817 [00:26<00:01, 174055.68it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4751046/4997817 [00:27<00:01, 177280.39it/s]" + " 95%|█████████▌| 4766094/4997817 [00:27<00:01, 174228.01it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4768775/4997817 [00:27<00:01, 176933.50it/s]" + " 96%|█████████▌| 4783518/4997817 [00:27<00:01, 173985.40it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4786469/4997817 [00:27<00:01, 176596.14it/s]" + " 96%|█████████▌| 4800917/4997817 [00:27<00:01, 173759.33it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4804129/4997817 [00:27<00:01, 176400.22it/s]" + " 96%|█████████▋| 4818354/4997817 [00:27<00:01, 173939.86it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4821872/4997817 [00:27<00:00, 176704.67it/s]" + " 97%|█████████▋| 4835749/4997817 [00:27<00:00, 173824.93it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4839579/4997817 [00:27<00:00, 176809.80it/s]" + " 97%|█████████▋| 4853232/4997817 [00:27<00:00, 174121.61it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4857261/4997817 [00:27<00:00, 176267.53it/s]" + " 97%|█████████▋| 4870744/4997817 [00:27<00:00, 174418.81it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4874889/4997817 [00:27<00:00, 175438.98it/s]" + " 98%|█████████▊| 4888252/4997817 [00:27<00:00, 174613.92it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4892434/4997817 [00:27<00:00, 174606.22it/s]" + " 98%|█████████▊| 4905891/4997817 [00:27<00:00, 175141.70it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4910357/4997817 [00:27<00:00, 175980.03it/s]" + " 99%|█████████▊| 4923509/4997817 [00:27<00:00, 175450.58it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4928177/4997817 [00:28<00:00, 176637.54it/s]" + " 99%|█████████▉| 4941151/4997817 [00:28<00:00, 175734.70it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4946106/4997817 [00:28<00:00, 177425.94it/s]" + " 99%|█████████▉| 4958725/4997817 [00:28<00:00, 170139.31it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4963909/4997817 [00:28<00:00, 177604.34it/s]" + "100%|█████████▉| 4976689/4997817 [00:28<00:00, 172922.24it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4981743/4997817 [00:28<00:00, 177821.14it/s]" + "100%|█████████▉| 4994432/4997817 [00:28<00:00, 174250.40it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:28<00:00, 175926.09it/s]" + "100%|██████████| 4997817/4997817 [00:28<00:00, 176272.22it/s]" ] }, { @@ -3041,10 +3041,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:00:58.099379Z", - "iopub.status.busy": "2023-12-28T11:00:58.099176Z", - "iopub.status.idle": "2023-12-28T11:01:05.472880Z", - "shell.execute_reply": "2023-12-28T11:01:05.472119Z" + "iopub.execute_input": "2024-01-02T16:54:05.579547Z", + "iopub.status.busy": "2024-01-02T16:54:05.579190Z", + "iopub.status.idle": "2024-01-02T16:54:13.480290Z", + "shell.execute_reply": "2024-01-02T16:54:13.479656Z" } }, "outputs": [], @@ -3058,10 +3058,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:05.475773Z", - "iopub.status.busy": "2023-12-28T11:01:05.475520Z", - "iopub.status.idle": "2023-12-28T11:01:08.657861Z", - "shell.execute_reply": "2023-12-28T11:01:08.657156Z" + "iopub.execute_input": "2024-01-02T16:54:13.483283Z", + "iopub.status.busy": "2024-01-02T16:54:13.482997Z", + "iopub.status.idle": "2024-01-02T16:54:16.556482Z", + "shell.execute_reply": "2024-01-02T16:54:16.555768Z" } }, "outputs": [ @@ -3130,17 +3130,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:08.660529Z", - "iopub.status.busy": "2023-12-28T11:01:08.660298Z", - "iopub.status.idle": "2023-12-28T11:01:10.022188Z", - "shell.execute_reply": "2023-12-28T11:01:10.021545Z" + "iopub.execute_input": "2024-01-02T16:54:16.559423Z", + "iopub.status.busy": "2024-01-02T16:54:16.558914Z", + "iopub.status.idle": "2024-01-02T16:54:17.928966Z", + "shell.execute_reply": "2024-01-02T16:54:17.928254Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e5d7d226e9c4dce8d3d3f3c06d86667", + "model_id": "8aae686ac8c74b5bb91224442e911d92", "version_major": 2, "version_minor": 0 }, @@ -3170,10 +3170,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:10.025177Z", - "iopub.status.busy": "2023-12-28T11:01:10.024747Z", - "iopub.status.idle": "2023-12-28T11:01:10.222962Z", - "shell.execute_reply": "2023-12-28T11:01:10.222323Z" + "iopub.execute_input": "2024-01-02T16:54:17.931860Z", + "iopub.status.busy": "2024-01-02T16:54:17.931637Z", + "iopub.status.idle": "2024-01-02T16:54:18.128759Z", + "shell.execute_reply": "2024-01-02T16:54:18.128057Z" } }, "outputs": [], @@ -3187,10 +3187,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:10.225884Z", - "iopub.status.busy": "2023-12-28T11:01:10.225498Z", - "iopub.status.idle": "2023-12-28T11:01:14.952530Z", - "shell.execute_reply": "2023-12-28T11:01:14.951823Z" + "iopub.execute_input": "2024-01-02T16:54:18.131788Z", + "iopub.status.busy": "2024-01-02T16:54:18.131562Z", + "iopub.status.idle": "2024-01-02T16:54:23.002327Z", + "shell.execute_reply": "2024-01-02T16:54:23.001624Z" } }, "outputs": [ @@ -3263,10 +3263,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:14.955364Z", - "iopub.status.busy": "2023-12-28T11:01:14.954913Z", - "iopub.status.idle": "2023-12-28T11:01:15.012621Z", - "shell.execute_reply": "2023-12-28T11:01:15.011963Z" + "iopub.execute_input": "2024-01-02T16:54:23.004939Z", + "iopub.status.busy": "2024-01-02T16:54:23.004690Z", + "iopub.status.idle": "2024-01-02T16:54:23.061934Z", + "shell.execute_reply": "2024-01-02T16:54:23.061300Z" }, "nbsphinx": "hidden" }, @@ -3310,73 +3310,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02560d5b02ba416eb92e8117dce2c41f": { + "18b87859a774422d85d90b3b12ca90b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da874cb90aee49548b346f2c19b20e30", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e4c29e16dac4b8a97df090b1d9b5849", - "value": 30.0 - } - }, - "02cfe213e1e0454d8f264615fc31829c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0fc54cf2073c4f89b253f72c39348371", - "placeholder": "​", - "style": "IPY_MODEL_e9cc2435526f421284c2f1c5281c0519", - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "035817bcc0934941a47dfa90c5303c55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_95d3c52ab2c14abe863c86b4f4231d33", - "placeholder": "​", - "style": "IPY_MODEL_bbfe4bb4d5b441ed93bdaac7456f838a", - "value": " 30/30 [00:36<00:00, 1.14s/it]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "07782be3fe914bea89597758fd669be7": { + "1c7f5519b9b64fc395355cb12b76bd68": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3428,7 +3378,44 @@ "width": null } }, - "0fc54cf2073c4f89b253f72c39348371": { + "26a4d1c0051743c392f97fcc8ba5c838": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3514a40c715d4c2082a5c057f1ab8c81", + "placeholder": "​", + "style": "IPY_MODEL_5a8c307847e74c2cba883a49647903cd", + "value": " 30/30 [00:39<00:00, 1.28s/it]" + } + }, + "2a5591a41fbd4b00b135832d51ac7e43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2a5cdfd043e64682a63a44807c2660d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3480,23 +3467,28 @@ "width": null } }, - "1e4c29e16dac4b8a97df090b1d9b5849": { + "2d28ed44d20f472fac52924ffc2cd38b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_608a29bf646d460489a54686bad9349a", + "placeholder": "​", + "style": "IPY_MODEL_a4878243a53441729338e73c5c463051", + "value": "number of examples processed for estimating thresholds: 100%" } }, - "2238cc5fd07f4126916f173811521ed8": { + "3514a40c715d4c2082a5c057f1ab8c81": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3548,7 +3540,22 @@ "width": null } }, - "2422877bb39d4c828edd62dca32a1dbf": { + "429e6bdde66146e9a04a3f1b9b914d67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4334a63ee1d44ffba2507dda680bf08a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3600,31 +3607,38 @@ "width": null } }, - "2651666a8d4e43f2a9140f7e7cb48c7d": { + "4e789ee3793a4c0e9549b7f2a5c038fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2238cc5fd07f4126916f173811521ed8", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c987238c0cd44be0bf8b56b499c0d2f2", - "value": 30.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "2b5be36e37104305970002c66d7bd72e": { + "520d822941cb45318a25bbfd9ac371c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5366c37ea08a4613acf959def96162ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3639,14 +3653,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_02cfe213e1e0454d8f264615fc31829c", - "IPY_MODEL_f3182f5fe7894908b3a653ab8fbc78fc", - "IPY_MODEL_c6e7a1c2c7084d95843e3ef630984703" + "IPY_MODEL_b428720c2bc34f4ba044d226940bdb22", + "IPY_MODEL_85e7fdc552784d76afe3951c531d3322", + "IPY_MODEL_26a4d1c0051743c392f97fcc8ba5c838" ], - "layout": "IPY_MODEL_51271e127dbc43c991c5e60fada24f83" + "layout": "IPY_MODEL_d30a0b033ff7414ba4196c962fb57ffa" } }, - "2c94978e64114ef488c5163431a23970": { + "5a8c307847e74c2cba883a49647903cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3661,7 +3675,7 @@ "description_width": "" } }, - "3cec76bc20064f21865c24952ad1a91b": { + "5e43e88d7ceb4bcc82d2f9b10cb7bdb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3713,43 +3727,7 @@ "width": null } }, - "3ea8947037984722bbe58925ce4a2eab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4a158ae333e04a6fa84335f3b8ea3b92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ff54145d974e4e76b02e63e0106036eb", - "placeholder": "​", - "style": "IPY_MODEL_6bec90cac6374458977de8a39d27ab66", - "value": "images processed using softmin: 100%" - } - }, - "51271e127dbc43c991c5e60fada24f83": { + "608a29bf646d460489a54686bad9349a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3801,7 +3779,7 @@ "width": null } }, - "6a9f7abbe3c84bc2a7107ccd47325882": { + "638a053f1438455e80d05f3c0266bc75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3816,28 +3794,61 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2422877bb39d4c828edd62dca32a1dbf", + "layout": "IPY_MODEL_8fa0960df485498d9c8d9a3b954cde57", "placeholder": "​", - "style": "IPY_MODEL_2c94978e64114ef488c5163431a23970", - "value": " 30/30 [00:01<00:00, 22.67it/s]" + "style": "IPY_MODEL_4e789ee3793a4c0e9549b7f2a5c038fd", + "value": "images processed using softmin: 100%" } }, - "6bec90cac6374458977de8a39d27ab66": { + "6408d651bce44785a5d33951845fd916": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2a5cdfd043e64682a63a44807c2660d8", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a5591a41fbd4b00b135832d51ac7e43", + "value": 30.0 + } + }, + "6c376451402744ff85331aaff852218b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_876d3f07b29e4897b33aa11e06e59e12", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_520d822941cb45318a25bbfd9ac371c0", + "value": 30.0 } }, - "7aa96f457adc4634b9a6249bdcc96c26": { + "72d2afb9d7b04fd0b6b61ea1454e913b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3889,72 +3900,7 @@ "width": null } }, - "7c6c8437d53b4ab7921b43610cc69ef3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_87ac68af1b6e4d228977e709a1515532", - "IPY_MODEL_02560d5b02ba416eb92e8117dce2c41f", - "IPY_MODEL_035817bcc0934941a47dfa90c5303c55" - ], - "layout": "IPY_MODEL_e6a119e7eecf40ceb36b9f50eee2da04" - } - }, - "87ac68af1b6e4d228977e709a1515532": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d6fbc71e13e2479683d6562715fa0252", - "placeholder": "​", - "style": "IPY_MODEL_3ea8947037984722bbe58925ce4a2eab", - "value": "number of examples processed for checking labels: 100%" - } - }, - "8e5d7d226e9c4dce8d3d3f3c06d86667": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a158ae333e04a6fa84335f3b8ea3b92", - "IPY_MODEL_2651666a8d4e43f2a9140f7e7cb48c7d", - "IPY_MODEL_6a9f7abbe3c84bc2a7107ccd47325882" - ], - "layout": "IPY_MODEL_3cec76bc20064f21865c24952ad1a91b" - } - }, - "95d3c52ab2c14abe863c86b4f4231d33": { + "77b1b0ed9de04653bc3ea132b0ba3891": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4006,37 +3952,31 @@ "width": null } }, - "979d56e46d3546f5ae95cb022a6dd0d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bbfe4bb4d5b441ed93bdaac7456f838a": { + "85e7fdc552784d76afe3951c531d3322": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e43e88d7ceb4bcc82d2f9b10cb7bdb0", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_18b87859a774422d85d90b3b12ca90b7", + "value": 30.0 } }, - "c6e7a1c2c7084d95843e3ef630984703": { + "86dc325f73b24537beaf6529a837f97e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4051,45 +3991,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_07782be3fe914bea89597758fd669be7", + "layout": "IPY_MODEL_77b1b0ed9de04653bc3ea132b0ba3891", "placeholder": "​", - "style": "IPY_MODEL_979d56e46d3546f5ae95cb022a6dd0d2", - "value": " 30/30 [00:00<00:00, 414.77it/s]" + "style": "IPY_MODEL_e2f149bc7b184cc8928ff551d1ef5fd4", + "value": " 30/30 [00:01<00:00, 22.20it/s]" } }, - "c74a635ffc3b44d4b88d07667e70078a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c987238c0cd44be0bf8b56b499c0d2f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d6fbc71e13e2479683d6562715fa0252": { + "876d3f07b29e4897b33aa11e06e59e12": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4141,7 +4049,29 @@ "width": null } }, - "da874cb90aee49548b346f2c19b20e30": { + "8aae686ac8c74b5bb91224442e911d92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_638a053f1438455e80d05f3c0266bc75", + "IPY_MODEL_6c376451402744ff85331aaff852218b", + "IPY_MODEL_86dc325f73b24537beaf6529a837f97e" + ], + "layout": "IPY_MODEL_4334a63ee1d44ffba2507dda680bf08a" + } + }, + "8fa0960df485498d9c8d9a3b954cde57": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4193,7 +4123,65 @@ "width": null } }, - "e6a119e7eecf40ceb36b9f50eee2da04": { + "9e743892e76b4b22937631c864bad121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d28ed44d20f472fac52924ffc2cd38b", + "IPY_MODEL_6408d651bce44785a5d33951845fd916", + "IPY_MODEL_ff4ee3f9011c4f0385422bd1e19d8936" + ], + "layout": "IPY_MODEL_72d2afb9d7b04fd0b6b61ea1454e913b" + } + }, + "a4878243a53441729338e73c5c463051": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b428720c2bc34f4ba044d226940bdb22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c7f5519b9b64fc395355cb12b76bd68", + "placeholder": "​", + "style": "IPY_MODEL_429e6bdde66146e9a04a3f1b9b914d67", + "value": "number of examples processed for checking labels: 100%" + } + }, + "c1029b39e4aa4b6eb82c5236632a620e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4245,46 +4233,7 @@ "width": null } }, - "e9cc2435526f421284c2f1c5281c0519": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f3182f5fe7894908b3a653ab8fbc78fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7aa96f457adc4634b9a6249bdcc96c26", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c74a635ffc3b44d4b88d07667e70078a", - "value": 30.0 - } - }, - "ff54145d974e4e76b02e63e0106036eb": { + "d30a0b033ff7414ba4196c962fb57ffa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4335,6 +4284,57 @@ "visibility": null, "width": null } + }, + "e2f149bc7b184cc8928ff551d1ef5fd4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea6c9282ca374766b679ba3bac7d02a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ff4ee3f9011c4f0385422bd1e19d8936": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c1029b39e4aa4b6eb82c5236632a620e", + "placeholder": "​", + "style": "IPY_MODEL_ea6c9282ca374766b679ba3bac7d02a6", + "value": " 30/30 [00:00<00:00, 409.55it/s]" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 465119af7..28763a0d4 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:17.815928Z", - "iopub.status.busy": "2023-12-28T11:01:17.815459Z", - "iopub.status.idle": "2023-12-28T11:01:18.884160Z", - "shell.execute_reply": "2023-12-28T11:01:18.883441Z" + "iopub.execute_input": "2024-01-02T16:54:27.576023Z", + "iopub.status.busy": "2024-01-02T16:54:27.575559Z", + "iopub.status.idle": "2024-01-02T16:54:28.742983Z", + "shell.execute_reply": "2024-01-02T16:54:28.742379Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.887299Z", - "iopub.status.busy": "2023-12-28T11:01:18.886732Z", - "iopub.status.idle": "2023-12-28T11:01:18.904866Z", - "shell.execute_reply": "2023-12-28T11:01:18.904268Z" + "iopub.execute_input": "2024-01-02T16:54:28.745985Z", + "iopub.status.busy": "2024-01-02T16:54:28.745638Z", + "iopub.status.idle": "2024-01-02T16:54:28.763805Z", + "shell.execute_reply": "2024-01-02T16:54:28.763228Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.907994Z", - "iopub.status.busy": "2023-12-28T11:01:18.907553Z", - "iopub.status.idle": "2023-12-28T11:01:18.941517Z", - "shell.execute_reply": "2023-12-28T11:01:18.940872Z" + "iopub.execute_input": "2024-01-02T16:54:28.767155Z", + "iopub.status.busy": "2024-01-02T16:54:28.766705Z", + "iopub.status.idle": "2024-01-02T16:54:28.843012Z", + "shell.execute_reply": "2024-01-02T16:54:28.842373Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.944072Z", - "iopub.status.busy": "2023-12-28T11:01:18.943689Z", - "iopub.status.idle": "2023-12-28T11:01:18.947781Z", - "shell.execute_reply": "2023-12-28T11:01:18.947128Z" + "iopub.execute_input": "2024-01-02T16:54:28.845645Z", + "iopub.status.busy": "2024-01-02T16:54:28.845273Z", + "iopub.status.idle": "2024-01-02T16:54:28.849427Z", + "shell.execute_reply": "2024-01-02T16:54:28.848797Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.950390Z", - "iopub.status.busy": "2023-12-28T11:01:18.949908Z", - "iopub.status.idle": "2023-12-28T11:01:18.959421Z", - "shell.execute_reply": "2023-12-28T11:01:18.958716Z" + "iopub.execute_input": "2024-01-02T16:54:28.852103Z", + "iopub.status.busy": "2024-01-02T16:54:28.851576Z", + "iopub.status.idle": "2024-01-02T16:54:28.860870Z", + "shell.execute_reply": "2024-01-02T16:54:28.860356Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.962624Z", - "iopub.status.busy": "2023-12-28T11:01:18.962104Z", - "iopub.status.idle": "2023-12-28T11:01:18.965191Z", - "shell.execute_reply": "2023-12-28T11:01:18.964545Z" + "iopub.execute_input": "2024-01-02T16:54:28.863543Z", + "iopub.status.busy": "2024-01-02T16:54:28.863169Z", + "iopub.status.idle": "2024-01-02T16:54:28.865953Z", + "shell.execute_reply": "2024-01-02T16:54:28.865391Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.967757Z", - "iopub.status.busy": "2023-12-28T11:01:18.967263Z", - "iopub.status.idle": "2023-12-28T11:01:19.559833Z", - "shell.execute_reply": "2023-12-28T11:01:19.559095Z" + "iopub.execute_input": "2024-01-02T16:54:28.868390Z", + "iopub.status.busy": "2024-01-02T16:54:28.868002Z", + "iopub.status.idle": "2024-01-02T16:54:29.461813Z", + "shell.execute_reply": "2024-01-02T16:54:29.461162Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:19.562899Z", - "iopub.status.busy": "2023-12-28T11:01:19.562622Z", - "iopub.status.idle": "2023-12-28T11:01:20.852102Z", - "shell.execute_reply": "2023-12-28T11:01:20.851298Z" + "iopub.execute_input": "2024-01-02T16:54:29.464957Z", + "iopub.status.busy": "2024-01-02T16:54:29.464503Z", + "iopub.status.idle": "2024-01-02T16:54:30.836058Z", + "shell.execute_reply": "2024-01-02T16:54:30.835246Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:20.855347Z", - "iopub.status.busy": "2023-12-28T11:01:20.854744Z", - "iopub.status.idle": "2023-12-28T11:01:20.865630Z", - "shell.execute_reply": "2023-12-28T11:01:20.865114Z" + "iopub.execute_input": "2024-01-02T16:54:30.839595Z", + "iopub.status.busy": "2024-01-02T16:54:30.838711Z", + "iopub.status.idle": "2024-01-02T16:54:30.849806Z", + "shell.execute_reply": "2024-01-02T16:54:30.849127Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:20.868400Z", - "iopub.status.busy": "2023-12-28T11:01:20.867902Z", - "iopub.status.idle": "2023-12-28T11:01:20.872536Z", - "shell.execute_reply": "2023-12-28T11:01:20.872018Z" + "iopub.execute_input": "2024-01-02T16:54:30.852592Z", + "iopub.status.busy": "2024-01-02T16:54:30.852129Z", + "iopub.status.idle": "2024-01-02T16:54:30.856727Z", + "shell.execute_reply": "2024-01-02T16:54:30.856188Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:20.875133Z", - "iopub.status.busy": "2023-12-28T11:01:20.874771Z", - "iopub.status.idle": "2023-12-28T11:01:20.882350Z", - "shell.execute_reply": "2023-12-28T11:01:20.881828Z" + "iopub.execute_input": "2024-01-02T16:54:30.859393Z", + "iopub.status.busy": "2024-01-02T16:54:30.858941Z", + "iopub.status.idle": "2024-01-02T16:54:30.867756Z", + "shell.execute_reply": "2024-01-02T16:54:30.867189Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:20.884682Z", - "iopub.status.busy": "2023-12-28T11:01:20.884467Z", - "iopub.status.idle": "2023-12-28T11:01:21.008810Z", - "shell.execute_reply": "2023-12-28T11:01:21.008161Z" + "iopub.execute_input": "2024-01-02T16:54:30.870763Z", + "iopub.status.busy": "2024-01-02T16:54:30.870216Z", + "iopub.status.idle": "2024-01-02T16:54:30.995619Z", + "shell.execute_reply": "2024-01-02T16:54:30.994907Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:21.011522Z", - "iopub.status.busy": "2023-12-28T11:01:21.011244Z", - "iopub.status.idle": "2023-12-28T11:01:21.014556Z", - "shell.execute_reply": "2023-12-28T11:01:21.013993Z" + "iopub.execute_input": "2024-01-02T16:54:30.998448Z", + "iopub.status.busy": "2024-01-02T16:54:30.998064Z", + "iopub.status.idle": "2024-01-02T16:54:31.001225Z", + "shell.execute_reply": "2024-01-02T16:54:31.000616Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:21.017048Z", - "iopub.status.busy": "2023-12-28T11:01:21.016659Z", - "iopub.status.idle": "2023-12-28T11:01:22.504798Z", - "shell.execute_reply": "2023-12-28T11:01:22.504059Z" + "iopub.execute_input": "2024-01-02T16:54:31.003616Z", + "iopub.status.busy": "2024-01-02T16:54:31.003408Z", + "iopub.status.idle": "2024-01-02T16:54:32.513767Z", + "shell.execute_reply": "2024-01-02T16:54:32.513024Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:22.507863Z", - "iopub.status.busy": "2023-12-28T11:01:22.507444Z", - "iopub.status.idle": "2023-12-28T11:01:22.521420Z", - "shell.execute_reply": "2023-12-28T11:01:22.520854Z" + "iopub.execute_input": "2024-01-02T16:54:32.517287Z", + "iopub.status.busy": "2024-01-02T16:54:32.516775Z", + "iopub.status.idle": "2024-01-02T16:54:32.531651Z", + "shell.execute_reply": "2024-01-02T16:54:32.531046Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:22.523873Z", - "iopub.status.busy": "2023-12-28T11:01:22.523496Z", - "iopub.status.idle": "2023-12-28T11:01:22.549141Z", - "shell.execute_reply": "2023-12-28T11:01:22.548628Z" + "iopub.execute_input": "2024-01-02T16:54:32.534250Z", + "iopub.status.busy": "2024-01-02T16:54:32.534019Z", + "iopub.status.idle": "2024-01-02T16:54:32.610958Z", + "shell.execute_reply": "2024-01-02T16:54:32.610339Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index d6fa09cd6..da329fc94 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:27.832502Z", - "iopub.status.busy": "2023-12-28T11:01:27.832306Z", - "iopub.status.idle": "2023-12-28T11:01:29.980258Z", - "shell.execute_reply": "2023-12-28T11:01:29.979578Z" + "iopub.execute_input": "2024-01-02T16:54:37.736698Z", + "iopub.status.busy": "2024-01-02T16:54:37.736156Z", + "iopub.status.idle": "2024-01-02T16:54:39.863165Z", + "shell.execute_reply": "2024-01-02T16:54:39.862510Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:29.983313Z", - "iopub.status.busy": "2023-12-28T11:01:29.982750Z", - "iopub.status.idle": "2023-12-28T11:01:29.986523Z", - "shell.execute_reply": "2023-12-28T11:01:29.985990Z" + "iopub.execute_input": "2024-01-02T16:54:39.866338Z", + "iopub.status.busy": "2024-01-02T16:54:39.865797Z", + "iopub.status.idle": "2024-01-02T16:54:39.869443Z", + "shell.execute_reply": "2024-01-02T16:54:39.868865Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:29.989008Z", - "iopub.status.busy": "2023-12-28T11:01:29.988634Z", - "iopub.status.idle": "2023-12-28T11:01:29.991893Z", - "shell.execute_reply": "2023-12-28T11:01:29.991365Z" + "iopub.execute_input": "2024-01-02T16:54:39.871862Z", + "iopub.status.busy": "2024-01-02T16:54:39.871503Z", + "iopub.status.idle": "2024-01-02T16:54:39.874880Z", + "shell.execute_reply": "2024-01-02T16:54:39.874248Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:29.994425Z", - "iopub.status.busy": "2023-12-28T11:01:29.994063Z", - "iopub.status.idle": "2023-12-28T11:01:30.032613Z", - "shell.execute_reply": "2023-12-28T11:01:30.031904Z" + "iopub.execute_input": "2024-01-02T16:54:39.877312Z", + "iopub.status.busy": "2024-01-02T16:54:39.876941Z", + "iopub.status.idle": "2024-01-02T16:54:39.929547Z", + "shell.execute_reply": "2024-01-02T16:54:39.928892Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.035307Z", - "iopub.status.busy": "2023-12-28T11:01:30.034918Z", - "iopub.status.idle": "2023-12-28T11:01:30.039276Z", - "shell.execute_reply": "2023-12-28T11:01:30.038716Z" + "iopub.execute_input": "2024-01-02T16:54:39.932180Z", + "iopub.status.busy": "2024-01-02T16:54:39.931808Z", + "iopub.status.idle": "2024-01-02T16:54:39.935591Z", + "shell.execute_reply": "2024-01-02T16:54:39.935052Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.041654Z", - "iopub.status.busy": "2023-12-28T11:01:30.041430Z", - "iopub.status.idle": "2023-12-28T11:01:30.045848Z", - "shell.execute_reply": "2023-12-28T11:01:30.045298Z" + "iopub.execute_input": "2024-01-02T16:54:39.938001Z", + "iopub.status.busy": "2024-01-02T16:54:39.937540Z", + "iopub.status.idle": "2024-01-02T16:54:39.941583Z", + "shell.execute_reply": "2024-01-02T16:54:39.940953Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'apple_pay_or_google_pay', 'cancel_transfer'}\n" + "Classes: {'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'card_payment_fee_charged', 'getting_spare_card', 'lost_or_stolen_phone'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.048377Z", - "iopub.status.busy": "2023-12-28T11:01:30.047984Z", - "iopub.status.idle": "2023-12-28T11:01:30.051909Z", - "shell.execute_reply": "2023-12-28T11:01:30.051361Z" + "iopub.execute_input": "2024-01-02T16:54:39.944144Z", + "iopub.status.busy": "2024-01-02T16:54:39.943704Z", + "iopub.status.idle": "2024-01-02T16:54:39.947499Z", + "shell.execute_reply": "2024-01-02T16:54:39.946869Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.054549Z", - "iopub.status.busy": "2023-12-28T11:01:30.054081Z", - "iopub.status.idle": "2023-12-28T11:01:30.057941Z", - "shell.execute_reply": "2023-12-28T11:01:30.057397Z" + "iopub.execute_input": "2024-01-02T16:54:39.949923Z", + "iopub.status.busy": "2024-01-02T16:54:39.949487Z", + "iopub.status.idle": "2024-01-02T16:54:39.953207Z", + "shell.execute_reply": "2024-01-02T16:54:39.952571Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.060402Z", - "iopub.status.busy": "2023-12-28T11:01:30.060084Z", - "iopub.status.idle": "2023-12-28T11:01:38.919015Z", - "shell.execute_reply": "2023-12-28T11:01:38.918289Z" + "iopub.execute_input": "2024-01-02T16:54:39.955858Z", + "iopub.status.busy": "2024-01-02T16:54:39.955450Z", + "iopub.status.idle": "2024-01-02T16:54:48.781614Z", + "shell.execute_reply": "2024-01-02T16:54:48.780871Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:38.922314Z", - "iopub.status.busy": "2023-12-28T11:01:38.922064Z", - "iopub.status.idle": "2023-12-28T11:01:38.925165Z", - "shell.execute_reply": "2023-12-28T11:01:38.924554Z" + "iopub.execute_input": "2024-01-02T16:54:48.785035Z", + "iopub.status.busy": "2024-01-02T16:54:48.784590Z", + "iopub.status.idle": "2024-01-02T16:54:48.788004Z", + "shell.execute_reply": "2024-01-02T16:54:48.787341Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:38.927391Z", - "iopub.status.busy": "2023-12-28T11:01:38.927190Z", - "iopub.status.idle": "2023-12-28T11:01:38.930146Z", - "shell.execute_reply": "2023-12-28T11:01:38.929630Z" + "iopub.execute_input": "2024-01-02T16:54:48.790449Z", + "iopub.status.busy": "2024-01-02T16:54:48.790076Z", + "iopub.status.idle": "2024-01-02T16:54:48.792949Z", + "shell.execute_reply": "2024-01-02T16:54:48.792432Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:38.932712Z", - "iopub.status.busy": "2023-12-28T11:01:38.932112Z", - "iopub.status.idle": "2023-12-28T11:01:41.161145Z", - "shell.execute_reply": "2023-12-28T11:01:41.160377Z" + "iopub.execute_input": "2024-01-02T16:54:48.795237Z", + "iopub.status.busy": "2024-01-02T16:54:48.794835Z", + "iopub.status.idle": "2024-01-02T16:54:51.076518Z", + "shell.execute_reply": "2024-01-02T16:54:51.075766Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.164771Z", - "iopub.status.busy": "2023-12-28T11:01:41.164013Z", - "iopub.status.idle": "2023-12-28T11:01:41.172168Z", - "shell.execute_reply": "2023-12-28T11:01:41.171614Z" + "iopub.execute_input": "2024-01-02T16:54:51.080229Z", + "iopub.status.busy": "2024-01-02T16:54:51.079454Z", + "iopub.status.idle": "2024-01-02T16:54:51.088080Z", + "shell.execute_reply": "2024-01-02T16:54:51.087462Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.174715Z", - "iopub.status.busy": "2023-12-28T11:01:41.174312Z", - "iopub.status.idle": "2023-12-28T11:01:41.178758Z", - "shell.execute_reply": "2023-12-28T11:01:41.178219Z" + "iopub.execute_input": "2024-01-02T16:54:51.090720Z", + "iopub.status.busy": "2024-01-02T16:54:51.090328Z", + "iopub.status.idle": "2024-01-02T16:54:51.094473Z", + "shell.execute_reply": "2024-01-02T16:54:51.093903Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.181127Z", - "iopub.status.busy": "2023-12-28T11:01:41.180780Z", - "iopub.status.idle": "2023-12-28T11:01:41.184537Z", - "shell.execute_reply": "2023-12-28T11:01:41.183980Z" + "iopub.execute_input": "2024-01-02T16:54:51.096824Z", + "iopub.status.busy": "2024-01-02T16:54:51.096525Z", + "iopub.status.idle": "2024-01-02T16:54:51.100304Z", + "shell.execute_reply": "2024-01-02T16:54:51.099626Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.186823Z", - "iopub.status.busy": "2023-12-28T11:01:41.186475Z", - "iopub.status.idle": "2023-12-28T11:01:41.189611Z", - "shell.execute_reply": "2023-12-28T11:01:41.189068Z" + "iopub.execute_input": "2024-01-02T16:54:51.102958Z", + "iopub.status.busy": "2024-01-02T16:54:51.102546Z", + "iopub.status.idle": "2024-01-02T16:54:51.106438Z", + "shell.execute_reply": "2024-01-02T16:54:51.105819Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.191911Z", - "iopub.status.busy": "2023-12-28T11:01:41.191556Z", - "iopub.status.idle": "2023-12-28T11:01:41.198869Z", - "shell.execute_reply": "2023-12-28T11:01:41.198242Z" + "iopub.execute_input": "2024-01-02T16:54:51.109355Z", + "iopub.status.busy": "2024-01-02T16:54:51.108783Z", + "iopub.status.idle": "2024-01-02T16:54:51.117133Z", + "shell.execute_reply": "2024-01-02T16:54:51.116477Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.201392Z", - "iopub.status.busy": "2023-12-28T11:01:41.201041Z", - "iopub.status.idle": "2023-12-28T11:01:41.445547Z", - "shell.execute_reply": "2023-12-28T11:01:41.444900Z" + "iopub.execute_input": "2024-01-02T16:54:51.119789Z", + "iopub.status.busy": "2024-01-02T16:54:51.119404Z", + "iopub.status.idle": "2024-01-02T16:54:51.365989Z", + "shell.execute_reply": "2024-01-02T16:54:51.365197Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.448760Z", - "iopub.status.busy": "2023-12-28T11:01:41.448312Z", - "iopub.status.idle": "2023-12-28T11:01:41.728755Z", - "shell.execute_reply": "2023-12-28T11:01:41.728102Z" + "iopub.execute_input": "2024-01-02T16:54:51.369487Z", + "iopub.status.busy": "2024-01-02T16:54:51.368991Z", + "iopub.status.idle": "2024-01-02T16:54:51.649074Z", + "shell.execute_reply": "2024-01-02T16:54:51.648384Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.733056Z", - "iopub.status.busy": "2023-12-28T11:01:41.731867Z", - "iopub.status.idle": "2023-12-28T11:01:41.737541Z", - "shell.execute_reply": "2023-12-28T11:01:41.736943Z" + "iopub.execute_input": "2024-01-02T16:54:51.652498Z", + "iopub.status.busy": "2024-01-02T16:54:51.652009Z", + "iopub.status.idle": "2024-01-02T16:54:51.656370Z", + "shell.execute_reply": "2024-01-02T16:54:51.655753Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index b954465d5..9d4e73531 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:46.704696Z", - "iopub.status.busy": "2023-12-28T11:01:46.704251Z", - "iopub.status.idle": "2023-12-28T11:01:47.755447Z", - "shell.execute_reply": "2023-12-28T11:01:47.754737Z" + "iopub.execute_input": "2024-01-02T16:54:56.726795Z", + "iopub.status.busy": "2024-01-02T16:54:56.726603Z", + "iopub.status.idle": "2024-01-02T16:54:58.273424Z", + "shell.execute_reply": "2024-01-02T16:54:58.272639Z" } }, "outputs": [ @@ -86,15 +86,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-28 11:01:46-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... 169.150.236.100, 2400:52e0:1a00::871:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" + "--2024-01-02 16:54:56-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "169.150.236.97, 2400:52e0:1a00::940:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -115,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 4.78MB/s in 0.2s \r\n", "\r\n", - "2023-12-28 11:01:46 (7.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-01-02 16:54:57 (4.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,9 +145,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-28 11:01:47-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.93.188, 16.182.97.49, 16.182.70.233, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.93.188|:443... connected.\r\n", + "--2024-01-02 16:54:57-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.25.230, 52.217.64.132, 16.182.103.57, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.25.230|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -160,10 +174,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 96%[==================> ] 15.71M 58.2MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 59.6MB/s in 0.3s \r\n", + "pred_probs.npz 94%[=================> ] 15.31M 76.5MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 79.7MB/s in 0.2s \r\n", "\r\n", - "2023-12-28 11:01:47 (59.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-01-02 16:54:58 (79.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -180,10 +194,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:47.758514Z", - "iopub.status.busy": "2023-12-28T11:01:47.758022Z", - "iopub.status.idle": "2023-12-28T11:01:48.824651Z", - "shell.execute_reply": "2023-12-28T11:01:48.824003Z" + "iopub.execute_input": "2024-01-02T16:54:58.276629Z", + "iopub.status.busy": "2024-01-02T16:54:58.276157Z", + "iopub.status.idle": "2024-01-02T16:54:59.354729Z", + "shell.execute_reply": "2024-01-02T16:54:59.354098Z" }, "nbsphinx": "hidden" }, @@ -194,7 +208,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -220,10 +234,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:48.827674Z", - "iopub.status.busy": "2023-12-28T11:01:48.827077Z", - "iopub.status.idle": "2023-12-28T11:01:48.830897Z", - "shell.execute_reply": "2023-12-28T11:01:48.830373Z" + "iopub.execute_input": "2024-01-02T16:54:59.357702Z", + "iopub.status.busy": "2024-01-02T16:54:59.357355Z", + "iopub.status.idle": "2024-01-02T16:54:59.361303Z", + "shell.execute_reply": "2024-01-02T16:54:59.360666Z" } }, "outputs": [], @@ -273,10 +287,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:48.833450Z", - "iopub.status.busy": "2023-12-28T11:01:48.832992Z", - "iopub.status.idle": "2023-12-28T11:01:48.836307Z", - "shell.execute_reply": "2023-12-28T11:01:48.835778Z" + "iopub.execute_input": "2024-01-02T16:54:59.363770Z", + "iopub.status.busy": "2024-01-02T16:54:59.363352Z", + "iopub.status.idle": "2024-01-02T16:54:59.366535Z", + "shell.execute_reply": "2024-01-02T16:54:59.365975Z" }, "nbsphinx": "hidden" }, @@ -294,10 +308,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:48.838638Z", - "iopub.status.busy": "2023-12-28T11:01:48.838437Z", - "iopub.status.idle": "2023-12-28T11:01:56.659942Z", - "shell.execute_reply": "2023-12-28T11:01:56.659294Z" + "iopub.execute_input": "2024-01-02T16:54:59.368933Z", + "iopub.status.busy": "2024-01-02T16:54:59.368583Z", + "iopub.status.idle": "2024-01-02T16:55:07.500936Z", + "shell.execute_reply": "2024-01-02T16:55:07.500298Z" } }, "outputs": [], @@ -371,10 +385,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:56.663216Z", - "iopub.status.busy": "2023-12-28T11:01:56.662595Z", - "iopub.status.idle": "2023-12-28T11:01:56.669122Z", - "shell.execute_reply": "2023-12-28T11:01:56.668568Z" + "iopub.execute_input": "2024-01-02T16:55:07.503907Z", + "iopub.status.busy": "2024-01-02T16:55:07.503677Z", + "iopub.status.idle": "2024-01-02T16:55:07.509670Z", + "shell.execute_reply": "2024-01-02T16:55:07.509132Z" }, "nbsphinx": "hidden" }, @@ -414,10 +428,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:56.671699Z", - "iopub.status.busy": "2023-12-28T11:01:56.671218Z", - "iopub.status.idle": "2023-12-28T11:01:57.030278Z", - "shell.execute_reply": "2023-12-28T11:01:57.029584Z" + "iopub.execute_input": "2024-01-02T16:55:07.511947Z", + "iopub.status.busy": "2024-01-02T16:55:07.511741Z", + "iopub.status.idle": "2024-01-02T16:55:07.864023Z", + "shell.execute_reply": "2024-01-02T16:55:07.863256Z" } }, "outputs": [], @@ -454,10 +468,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:57.033161Z", - "iopub.status.busy": "2023-12-28T11:01:57.032944Z", - "iopub.status.idle": "2023-12-28T11:01:57.038400Z", - "shell.execute_reply": "2023-12-28T11:01:57.037762Z" + "iopub.execute_input": "2024-01-02T16:55:07.866956Z", + "iopub.status.busy": "2024-01-02T16:55:07.866742Z", + "iopub.status.idle": "2024-01-02T16:55:07.872869Z", + "shell.execute_reply": "2024-01-02T16:55:07.872239Z" } }, "outputs": [ @@ -529,10 +543,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:57.040798Z", - "iopub.status.busy": "2023-12-28T11:01:57.040589Z", - "iopub.status.idle": "2023-12-28T11:01:59.172254Z", - "shell.execute_reply": "2023-12-28T11:01:59.171507Z" + "iopub.execute_input": "2024-01-02T16:55:07.875445Z", + "iopub.status.busy": "2024-01-02T16:55:07.875075Z", + "iopub.status.idle": "2024-01-02T16:55:10.051459Z", + "shell.execute_reply": "2024-01-02T16:55:10.050703Z" } }, "outputs": [], @@ -554,10 +568,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.175878Z", - "iopub.status.busy": "2023-12-28T11:01:59.175064Z", - "iopub.status.idle": "2023-12-28T11:01:59.182355Z", - "shell.execute_reply": "2023-12-28T11:01:59.181798Z" + "iopub.execute_input": "2024-01-02T16:55:10.057373Z", + "iopub.status.busy": "2024-01-02T16:55:10.054200Z", + "iopub.status.idle": "2024-01-02T16:55:10.061692Z", + "shell.execute_reply": "2024-01-02T16:55:10.061125Z" } }, "outputs": [ @@ -593,10 +607,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.184682Z", - "iopub.status.busy": "2023-12-28T11:01:59.184481Z", - "iopub.status.idle": "2023-12-28T11:01:59.201791Z", - "shell.execute_reply": "2023-12-28T11:01:59.201280Z" + "iopub.execute_input": "2024-01-02T16:55:10.064238Z", + "iopub.status.busy": "2024-01-02T16:55:10.063869Z", + "iopub.status.idle": "2024-01-02T16:55:10.087508Z", + "shell.execute_reply": "2024-01-02T16:55:10.086849Z" } }, "outputs": [ @@ -774,10 +788,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.204070Z", - "iopub.status.busy": "2023-12-28T11:01:59.203846Z", - "iopub.status.idle": "2023-12-28T11:01:59.237197Z", - "shell.execute_reply": "2023-12-28T11:01:59.236590Z" + "iopub.execute_input": "2024-01-02T16:55:10.090071Z", + "iopub.status.busy": "2024-01-02T16:55:10.089851Z", + "iopub.status.idle": "2024-01-02T16:55:10.124901Z", + "shell.execute_reply": "2024-01-02T16:55:10.124224Z" } }, "outputs": [ @@ -879,10 +893,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.239699Z", - "iopub.status.busy": "2023-12-28T11:01:59.239489Z", - "iopub.status.idle": "2023-12-28T11:01:59.248039Z", - "shell.execute_reply": "2023-12-28T11:01:59.247529Z" + "iopub.execute_input": "2024-01-02T16:55:10.127560Z", + "iopub.status.busy": "2024-01-02T16:55:10.127295Z", + "iopub.status.idle": "2024-01-02T16:55:10.135768Z", + "shell.execute_reply": "2024-01-02T16:55:10.133364Z" } }, "outputs": [ @@ -956,10 +970,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.250400Z", - "iopub.status.busy": "2023-12-28T11:01:59.250201Z", - "iopub.status.idle": "2023-12-28T11:02:00.898594Z", - "shell.execute_reply": "2023-12-28T11:02:00.898038Z" + "iopub.execute_input": "2024-01-02T16:55:10.138318Z", + "iopub.status.busy": "2024-01-02T16:55:10.138090Z", + "iopub.status.idle": "2024-01-02T16:55:11.789093Z", + "shell.execute_reply": "2024-01-02T16:55:11.788512Z" } }, "outputs": [ @@ -1131,10 +1145,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:02:00.901078Z", - "iopub.status.busy": "2023-12-28T11:02:00.900865Z", - "iopub.status.idle": "2023-12-28T11:02:00.905184Z", - "shell.execute_reply": "2023-12-28T11:02:00.904674Z" + "iopub.execute_input": "2024-01-02T16:55:11.791753Z", + "iopub.status.busy": "2024-01-02T16:55:11.791332Z", + "iopub.status.idle": "2024-01-02T16:55:11.795768Z", + "shell.execute_reply": "2024-01-02T16:55:11.795237Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index fc768c3ff..361f082a9 100644 Binary files a/master/.doctrees/tutorials/audio.doctree and b/master/.doctrees/tutorials/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index b9a5825d7..55724359d 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index d2feb04ef..5f8a7974f 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 1e44d0d74..ff1dd9fc9 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 85943c357..8c2b91c81 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 04e6abf94..69c08924c 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index ad835fc06..baee93809 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index b68b1ba6e..a59056345 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index e9be27d92..9b9324efe 100644 Binary files a/master/.doctrees/tutorials/image.doctree and b/master/.doctrees/tutorials/image.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index c040b786f..266183e1b 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 30cae5512..bcd1d87b0 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index f411b940e..41b2170b5 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index ac85887cb..2b91c5506 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index aac44d73d..bccdce815 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 30f488312..0ad73516c 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index dfda40cb3..f857d3d81 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 7770c5b56..ff5ea6788 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 441d988cc..d82612807 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree index 95db753fa..de9688993 100644 Binary files a/master/.doctrees/tutorials/tabular.doctree and b/master/.doctrees/tutorials/tabular.doctree differ diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index e8dc43848..cb9605155 100644 Binary files a/master/.doctrees/tutorials/text.doctree and b/master/.doctrees/tutorials/text.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index c1c479c30..8b071f547 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_modules/cleanlab/benchmarking/noise_generation.html b/master/_modules/cleanlab/benchmarking/noise_generation.html index bb3fd12bd..7db5aefd9 100644 --- a/master/_modules/cleanlab/benchmarking/noise_generation.html +++ b/master/_modules/cleanlab/benchmarking/noise_generation.html @@ -1041,7 +1041,7 @@

Source code for cleanlab.benchmarking.noise_generation

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/classification.html b/master/_modules/cleanlab/classification.html index 46001a9e4..1da592691 100644 --- a/master/_modules/cleanlab/classification.html +++ b/master/_modules/cleanlab/classification.html @@ -1621,7 +1621,7 @@

Source code for cleanlab.classification

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/count.html b/master/_modules/cleanlab/count.html index 2e636a784..d39570c78 100644 --- a/master/_modules/cleanlab/count.html +++ b/master/_modules/cleanlab/count.html @@ -2025,7 +2025,7 @@

Source code for cleanlab.count

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/datalab.html b/master/_modules/cleanlab/datalab/datalab.html index 1982ba2d2..c48935b80 100644 --- a/master/_modules/cleanlab/datalab/datalab.html +++ b/master/_modules/cleanlab/datalab/datalab.html @@ -1118,7 +1118,7 @@

Source code for cleanlab.datalab.datalab

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/data.html b/master/_modules/cleanlab/datalab/internal/data.html index 62b6941ad..e9f50b45c 100644 --- a/master/_modules/cleanlab/datalab/internal/data.html +++ b/master/_modules/cleanlab/datalab/internal/data.html @@ -880,7 +880,7 @@

Source code for cleanlab.datalab.internal.data

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/data_issues.html b/master/_modules/cleanlab/datalab/internal/data_issues.html index 21b078706..0b7ff069a 100644 --- a/master/_modules/cleanlab/datalab/internal/data_issues.html +++ b/master/_modules/cleanlab/datalab/internal/data_issues.html @@ -914,7 +914,7 @@

Source code for cleanlab.datalab.internal.data_issues

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_finder.html b/master/_modules/cleanlab/datalab/internal/issue_finder.html index cd33dfa52..cb0f5eca0 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_finder.html +++ b/master/_modules/cleanlab/datalab/internal/issue_finder.html @@ -963,7 +963,7 @@

Source code for cleanlab.datalab.internal.issue_finder

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html b/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html index c8a88c26e..5f8e759dd 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html @@ -773,7 +773,7 @@

Source code for cleanlab.datalab.internal.issue_manager.duplicate

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html b/master/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html index f2b4b960a..7875532e6 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html @@ -589,10 +589,11 @@

Source code for cleanlab.datalab.internal.issue_manager.imbalance

K = len(self.datalab.class_names) class_probs = np.bincount(labels) / len(labels) rarest_class_idx = int(np.argmin(class_probs)) + # solely one class is identified as rarest, ties go to class w smaller integer index + scores = np.where(labels == rarest_class_idx, class_probs[rarest_class_idx], 1) imbalance_exists = class_probs[rarest_class_idx] < self.threshold * (1 / K) - rarest_class = rarest_class_idx if imbalance_exists else -1 - is_issue_column = labels == rarest_class - scores = np.where(is_issue_column, class_probs[rarest_class], 1) + rarest_class_issue = rarest_class_idx if imbalance_exists else -1 + is_issue_column = labels == rarest_class_issue self.issues = pd.DataFrame( { @@ -619,7 +620,7 @@

Source code for cleanlab.datalab.internal.issue_manager.imbalance

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html b/master/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html index 810747c13..dfb8419fa 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html @@ -883,7 +883,7 @@

Source code for cleanlab.datalab.internal.issue_manager.issue_manager

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/label.html b/master/_modules/cleanlab/datalab/internal/issue_manager/label.html index 5dd12a5e2..e211647c3 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/label.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/label.html @@ -803,7 +803,7 @@

Source code for cleanlab.datalab.internal.issue_manager.label

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html index 6dfe1ba5d..62be2815a 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html @@ -1062,7 +1062,7 @@

Source code for cleanlab.datalab.internal.issue_manager.noniid

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/null.html b/master/_modules/cleanlab/datalab/internal/issue_manager/null.html index f819d43e2..3c24396a4 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/null.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/null.html @@ -680,7 +680,7 @@

Source code for cleanlab.datalab.internal.issue_manager.null

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html b/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html index 1a71e3dc8..01ee37524 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html @@ -814,7 +814,7 @@

Source code for cleanlab.datalab.internal.issue_manager.outlier

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html b/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html index 8de21b7e2..340832b8f 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html @@ -788,7 +788,7 @@

Source code for cleanlab.datalab.internal.issue_manager.regression.label

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html b/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html index 064745e31..433ca75b6 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html @@ -928,7 +928,7 @@

Source code for cleanlab.datalab.internal.issue_manager.underperforming_grou
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html index 56881bc81..1fe9ee97b 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html @@ -745,7 +745,7 @@

Source code for cleanlab.datalab.internal.issue_manager_factory

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/datalab/internal/report.html b/master/_modules/cleanlab/datalab/internal/report.html index 1d3d2c216..f20a32d54 100644 --- a/master/_modules/cleanlab/datalab/internal/report.html +++ b/master/_modules/cleanlab/datalab/internal/report.html @@ -698,7 +698,7 @@

Source code for cleanlab.datalab.internal.report

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/dataset.html b/master/_modules/cleanlab/dataset.html index 9ceef8f65..b92b97aca 100644 --- a/master/_modules/cleanlab/dataset.html +++ b/master/_modules/cleanlab/dataset.html @@ -1062,7 +1062,7 @@

Source code for cleanlab.dataset

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/experimental/cifar_cnn.html b/master/_modules/cleanlab/experimental/cifar_cnn.html index 7d9b19fa5..b9876d15b 100644 --- a/master/_modules/cleanlab/experimental/cifar_cnn.html +++ b/master/_modules/cleanlab/experimental/cifar_cnn.html @@ -646,7 +646,7 @@

Source code for cleanlab.experimental.cifar_cnn

<
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/experimental/coteaching.html b/master/_modules/cleanlab/experimental/coteaching.html index 00f7374e0..27322272f 100644 --- a/master/_modules/cleanlab/experimental/coteaching.html +++ b/master/_modules/cleanlab/experimental/coteaching.html @@ -784,7 +784,7 @@

Source code for cleanlab.experimental.coteaching

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/experimental/label_issues_batched.html b/master/_modules/cleanlab/experimental/label_issues_batched.html index d0d69060d..d4f959f4a 100644 --- a/master/_modules/cleanlab/experimental/label_issues_batched.html +++ b/master/_modules/cleanlab/experimental/label_issues_batched.html @@ -1301,7 +1301,7 @@

Source code for cleanlab.experimental.label_issues_batched

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/experimental/mnist_pytorch.html b/master/_modules/cleanlab/experimental/mnist_pytorch.html index 3ab3ce01d..97bc2e0fc 100644 --- a/master/_modules/cleanlab/experimental/mnist_pytorch.html +++ b/master/_modules/cleanlab/experimental/mnist_pytorch.html @@ -923,7 +923,7 @@

Source code for cleanlab.experimental.mnist_pytorch

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/filter.html b/master/_modules/cleanlab/filter.html index f5f5840f5..aa2924dde 100644 --- a/master/_modules/cleanlab/filter.html +++ b/master/_modules/cleanlab/filter.html @@ -1504,7 +1504,7 @@

Source code for cleanlab.filter

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/internal/label_quality_utils.html b/master/_modules/cleanlab/internal/label_quality_utils.html index 6098bb048..560cb9c65 100644 --- a/master/_modules/cleanlab/internal/label_quality_utils.html +++ b/master/_modules/cleanlab/internal/label_quality_utils.html @@ -671,7 +671,7 @@

Source code for cleanlab.internal.label_quality_utils

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/internal/latent_algebra.html b/master/_modules/cleanlab/internal/latent_algebra.html index fe71e2ccf..edcb12be6 100644 --- a/master/_modules/cleanlab/internal/latent_algebra.html +++ b/master/_modules/cleanlab/internal/latent_algebra.html @@ -867,7 +867,7 @@

Source code for cleanlab.internal.latent_algebra

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/internal/multiannotator_utils.html b/master/_modules/cleanlab/internal/multiannotator_utils.html index 1e429a1e0..73f7d5e55 100644 --- a/master/_modules/cleanlab/internal/multiannotator_utils.html +++ b/master/_modules/cleanlab/internal/multiannotator_utils.html @@ -905,7 +905,7 @@

Source code for cleanlab.internal.multiannotator_utils

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/internal/multilabel_scorer.html b/master/_modules/cleanlab/internal/multilabel_scorer.html index 25df62904..5c6887537 100644 --- a/master/_modules/cleanlab/internal/multilabel_scorer.html +++ b/master/_modules/cleanlab/internal/multilabel_scorer.html @@ -1213,7 +1213,7 @@

Source code for cleanlab.internal.multilabel_scorer

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/internal/multilabel_utils.html b/master/_modules/cleanlab/internal/multilabel_utils.html index 3315d6835..4e0690a78 100644 --- a/master/_modules/cleanlab/internal/multilabel_utils.html +++ b/master/_modules/cleanlab/internal/multilabel_utils.html @@ -643,7 +643,7 @@

Source code for cleanlab.internal.multilabel_utils

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/internal/outlier.html b/master/_modules/cleanlab/internal/outlier.html index 0ad975aed..f666631a1 100644 --- a/master/_modules/cleanlab/internal/outlier.html +++ b/master/_modules/cleanlab/internal/outlier.html @@ -606,7 +606,7 @@

Source code for cleanlab.internal.outlier

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/internal/token_classification_utils.html b/master/_modules/cleanlab/internal/token_classification_utils.html index 28d92aa24..bbb31b5ba 100644 --- a/master/_modules/cleanlab/internal/token_classification_utils.html +++ b/master/_modules/cleanlab/internal/token_classification_utils.html @@ -829,7 +829,7 @@

Source code for cleanlab.internal.token_classification_utils

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/internal/util.html b/master/_modules/cleanlab/internal/util.html index 790fe03cf..87f4373f7 100644 --- a/master/_modules/cleanlab/internal/util.html +++ b/master/_modules/cleanlab/internal/util.html @@ -1299,7 +1299,7 @@

Source code for cleanlab.internal.util

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/internal/validation.html b/master/_modules/cleanlab/internal/validation.html index 19ad14cc3..70b03777a 100644 --- a/master/_modules/cleanlab/internal/validation.html +++ b/master/_modules/cleanlab/internal/validation.html @@ -760,7 +760,7 @@

Source code for cleanlab.internal.validation

           
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/models/keras.html b/master/_modules/cleanlab/models/keras.html index cf0f9c40c..ae76ef057 100644 --- a/master/_modules/cleanlab/models/keras.html +++ b/master/_modules/cleanlab/models/keras.html @@ -809,7 +809,7 @@

Source code for cleanlab.models.keras

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/multiannotator.html b/master/_modules/cleanlab/multiannotator.html index be0723969..3ac93b1e1 100644 --- a/master/_modules/cleanlab/multiannotator.html +++ b/master/_modules/cleanlab/multiannotator.html @@ -2476,7 +2476,7 @@

Source code for cleanlab.multiannotator

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/multilabel_classification/dataset.html b/master/_modules/cleanlab/multilabel_classification/dataset.html index 8c4d5cf07..4ff7795fe 100644 --- a/master/_modules/cleanlab/multilabel_classification/dataset.html +++ b/master/_modules/cleanlab/multilabel_classification/dataset.html @@ -880,7 +880,7 @@

Source code for cleanlab.multilabel_classification.dataset

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/multilabel_classification/filter.html b/master/_modules/cleanlab/multilabel_classification/filter.html index 0c3bd0a86..00d975dcc 100644 --- a/master/_modules/cleanlab/multilabel_classification/filter.html +++ b/master/_modules/cleanlab/multilabel_classification/filter.html @@ -857,7 +857,7 @@

Source code for cleanlab.multilabel_classification.filter

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/multilabel_classification/rank.html b/master/_modules/cleanlab/multilabel_classification/rank.html index 8c5f022df..6fd0595fd 100644 --- a/master/_modules/cleanlab/multilabel_classification/rank.html +++ b/master/_modules/cleanlab/multilabel_classification/rank.html @@ -732,7 +732,7 @@

Source code for cleanlab.multilabel_classification.rank

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/object_detection/filter.html b/master/_modules/cleanlab/object_detection/filter.html index faf10f493..fe3c2b5c9 100644 --- a/master/_modules/cleanlab/object_detection/filter.html +++ b/master/_modules/cleanlab/object_detection/filter.html @@ -958,7 +958,7 @@

Source code for cleanlab.object_detection.filter

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/object_detection/rank.html b/master/_modules/cleanlab/object_detection/rank.html index 3db09a6ac..dc1869027 100644 --- a/master/_modules/cleanlab/object_detection/rank.html +++ b/master/_modules/cleanlab/object_detection/rank.html @@ -1663,7 +1663,7 @@

Source code for cleanlab.object_detection.rank

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/object_detection/summary.html b/master/_modules/cleanlab/object_detection/summary.html index ac53e1730..5236b050b 100644 --- a/master/_modules/cleanlab/object_detection/summary.html +++ b/master/_modules/cleanlab/object_detection/summary.html @@ -1283,7 +1283,7 @@

Source code for cleanlab.object_detection.summary

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/outlier.html b/master/_modules/cleanlab/outlier.html index b13b39978..cd25d75ab 100644 --- a/master/_modules/cleanlab/outlier.html +++ b/master/_modules/cleanlab/outlier.html @@ -1095,7 +1095,7 @@

Source code for cleanlab.outlier

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/rank.html b/master/_modules/cleanlab/rank.html index 79fb58053..8df082830 100644 --- a/master/_modules/cleanlab/rank.html +++ b/master/_modules/cleanlab/rank.html @@ -1137,7 +1137,7 @@

Source code for cleanlab.rank

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/regression/learn.html b/master/_modules/cleanlab/regression/learn.html index 1d53797ac..4f14b2340 100644 --- a/master/_modules/cleanlab/regression/learn.html +++ b/master/_modules/cleanlab/regression/learn.html @@ -1419,7 +1419,7 @@

Source code for cleanlab.regression.learn

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/regression/rank.html b/master/_modules/cleanlab/regression/rank.html index cf5ce2c58..cbc1abe51 100644 --- a/master/_modules/cleanlab/regression/rank.html +++ b/master/_modules/cleanlab/regression/rank.html @@ -724,7 +724,7 @@

Source code for cleanlab.regression.rank

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/segmentation/filter.html b/master/_modules/cleanlab/segmentation/filter.html index 38b80a8be..eee60b85a 100644 --- a/master/_modules/cleanlab/segmentation/filter.html +++ b/master/_modules/cleanlab/segmentation/filter.html @@ -770,7 +770,7 @@

Source code for cleanlab.segmentation.filter

           
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/segmentation/rank.html b/master/_modules/cleanlab/segmentation/rank.html index 15606fa77..27feeabdd 100644 --- a/master/_modules/cleanlab/segmentation/rank.html +++ b/master/_modules/cleanlab/segmentation/rank.html @@ -782,7 +782,7 @@

Source code for cleanlab.segmentation.rank

         
Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/segmentation/summary.html b/master/_modules/cleanlab/segmentation/summary.html index d7e0127cd..10440cb1b 100644 --- a/master/_modules/cleanlab/segmentation/summary.html +++ b/master/_modules/cleanlab/segmentation/summary.html @@ -901,7 +901,7 @@

Source code for cleanlab.segmentation.summary

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/token_classification/filter.html b/master/_modules/cleanlab/token_classification/filter.html index f57dc585f..9f318e819 100644 --- a/master/_modules/cleanlab/token_classification/filter.html +++ b/master/_modules/cleanlab/token_classification/filter.html @@ -655,7 +655,7 @@

Source code for cleanlab.token_classification.filter

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/token_classification/rank.html b/master/_modules/cleanlab/token_classification/rank.html index f8d921071..20d9598fc 100644 --- a/master/_modules/cleanlab/token_classification/rank.html +++ b/master/_modules/cleanlab/token_classification/rank.html @@ -828,7 +828,7 @@

Source code for cleanlab.token_classification.rank

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/cleanlab/token_classification/summary.html b/master/_modules/cleanlab/token_classification/summary.html index f00f45f01..2b692bd95 100644 --- a/master/_modules/cleanlab/token_classification/summary.html +++ b/master/_modules/cleanlab/token_classification/summary.html @@ -893,7 +893,7 @@

Source code for cleanlab.token_classification.summary

Made with Sphinx and @pradyunsg's diff --git a/master/_modules/index.html b/master/_modules/index.html index bfe9aa9ea..ef139c7d8 100644 --- a/master/_modules/index.html +++ b/master/_modules/index.html @@ -589,7 +589,7 @@

All modules for which code is available

Made with Sphinx and @pradyunsg's diff --git a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst index 7ae8b6b76..2819c4f96 100644 --- a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst +++ b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst @@ -113,7 +113,7 @@ The assumption that examples in a dataset are Independent and Identically Distri For datasets with low non-IID score, you should consider why your data are not IID and act accordingly. For example, if the data distribution is drifting over time, consider employing a time-based train/test split instead of a random partition. Note that shuffling the data ahead of time will ensure a good non-IID score, but this is not always a fix to the underlying problem (e.g. future deployment data may stem from a different distribution, or you may overlook the fact that examples influence each other). We thus recommend **not** shuffling your data to be able to diagnose this issue if it exists. -Class-Imbalance Issue +Class Imbalance Issue --------------------- Class imbalance is diagnosed just using the `labels` provided as part of the dataset. The overall class imbalance quality score of a dataset is the proportion of examples belonging to the rarest class `q`. If this proportion `q` falls below a threshold, then we say this dataset suffers from the class imbalance issue. diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index fba1d430a..e81813d49 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index dc9d13e29..e9e1483bf 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 6d8a23010..8cc3cabc9 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 73aeeaf25..3c7f86ee2 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 45cb01557..ac497f0f5 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index c922c06e6..94dfc6132 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 18ee434c3..4b1627de7 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 4f15fff77..f61387719 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 46160f82f..daa606466 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -72,7 +72,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index e71f78157..88f1794b2 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 880e03bbb..15cebd647 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 2a4276918..c65a134fa 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 0a3c77f59..3720dff18 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index 3fc1f022c..1c50302d7 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index c35a3c886..11554bccb 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 69bf29c58..ba85c2b44 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/benchmarking/index.html b/master/cleanlab/benchmarking/index.html index 7d0adae1d..14360dfb0 100644 --- a/master/cleanlab/benchmarking/index.html +++ b/master/cleanlab/benchmarking/index.html @@ -564,7 +564,7 @@
Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/benchmarking/noise_generation.html b/master/cleanlab/benchmarking/noise_generation.html index fbc333430..b3a9852a3 100644 --- a/master/cleanlab/benchmarking/noise_generation.html +++ b/master/cleanlab/benchmarking/noise_generation.html @@ -744,7 +744,7 @@
Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/classification.html b/master/cleanlab/classification.html index 5738b9746..78f5ba177 100644 --- a/master/cleanlab/classification.html +++ b/master/cleanlab/classification.html @@ -1193,7 +1193,7 @@
Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/count.html b/master/cleanlab/count.html index 7ef4c679d..e56287f89 100644 --- a/master/cleanlab/count.html +++ b/master/cleanlab/count.html @@ -1178,7 +1178,7 @@
Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/datalab.html b/master/cleanlab/datalab/datalab.html index 244ce1fe1..ebc174070 100644 --- a/master/cleanlab/datalab/datalab.html +++ b/master/cleanlab/datalab/datalab.html @@ -1120,7 +1120,7 @@
Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/guide/custom_issue_manager.html b/master/cleanlab/datalab/guide/custom_issue_manager.html index 0dfc1cda7..d300d02aa 100644 --- a/master/cleanlab/datalab/guide/custom_issue_manager.html +++ b/master/cleanlab/datalab/guide/custom_issue_manager.html @@ -765,7 +765,7 @@

Use with Datalab
Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/guide/generating_cluster_ids.html b/master/cleanlab/datalab/guide/generating_cluster_ids.html index 17e79d9e4..bbd9de369 100644 --- a/master/cleanlab/datalab/guide/generating_cluster_ids.html +++ b/master/cleanlab/datalab/guide/generating_cluster_ids.html @@ -562,7 +562,7 @@

Generating Cluster IDs
Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/guide/index.html b/master/cleanlab/datalab/guide/index.html index f76b2c69c..af9b6019f 100644 --- a/master/cleanlab/datalab/guide/index.html +++ b/master/cleanlab/datalab/guide/index.html @@ -552,7 +552,7 @@

Types of issuesOutlier Issue
  • (Near) Duplicate Issue
  • Non-IID Issue
  • -
  • Class-Imbalance Issue
  • +
  • Class Imbalance Issue
  • Image-specific Issues
  • Underperforming Group Issue
  • @@ -622,7 +622,7 @@

    Customizing issue types
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/guide/issue_type_description.html b/master/cleanlab/datalab/guide/issue_type_description.html index f31497676..d2aa79102 100644 --- a/master/cleanlab/datalab/guide/issue_type_description.html +++ b/master/cleanlab/datalab/guide/issue_type_description.html @@ -612,7 +612,7 @@

    Non-IID Issue -

    Class-Imbalance Issue#

    +

    Class Imbalance Issue#

    Class imbalance is diagnosed just using the labels provided as part of the dataset. The overall class imbalance quality score of a dataset is the proportion of examples belonging to the rarest class q. If this proportion q falls below a threshold, then we say this dataset suffers from the class imbalance issue.

    In a dataset identified as having class imbalance, the class imbalance quality score for each example is set equal to q if it is labeled as the rarest class, and is equal to 1 for all other examples.

    Class imbalance in a dataset can lead to subpar model performance for the under-represented class. Consider collecting more data from the under-represented class, or at least take special care while modeling via techniques like over/under-sampling, SMOTE, asymmetric class weighting, etc.

    @@ -811,7 +811,7 @@

    Image Issue Parameters
    Made with Sphinx and @pradyunsg's @@ -864,7 +864,7 @@

    Image Issue ParametersOutlier Issue
  • (Near) Duplicate Issue
  • Non-IID Issue
  • -
  • Class-Imbalance Issue
  • +
  • Class Imbalance Issue
  • Image-specific Issues
  • Underperforming Group Issue
  • diff --git a/master/cleanlab/datalab/index.html b/master/cleanlab/datalab/index.html index 8cb1ef2e3..d24e2c09d 100644 --- a/master/cleanlab/datalab/index.html +++ b/master/cleanlab/datalab/index.html @@ -599,7 +599,7 @@

    API Reference
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/data.html b/master/cleanlab/datalab/internal/data.html index 9fd666e4c..ef8529811 100644 --- a/master/cleanlab/datalab/internal/data.html +++ b/master/cleanlab/datalab/internal/data.html @@ -822,7 +822,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/data_issues.html b/master/cleanlab/datalab/internal/data_issues.html index 58706b5c0..febadd117 100644 --- a/master/cleanlab/datalab/internal/data_issues.html +++ b/master/cleanlab/datalab/internal/data_issues.html @@ -831,7 +831,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/factory.html b/master/cleanlab/datalab/internal/factory.html index 66d8a6132..67f74aaae 100644 --- a/master/cleanlab/datalab/internal/factory.html +++ b/master/cleanlab/datalab/internal/factory.html @@ -704,7 +704,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/index.html b/master/cleanlab/datalab/internal/index.html index 9728a5ce0..a4a0bc74a 100644 --- a/master/cleanlab/datalab/internal/index.html +++ b/master/cleanlab/datalab/internal/index.html @@ -578,7 +578,7 @@

    internal
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_finder.html b/master/cleanlab/datalab/internal/issue_finder.html index 98fe316e4..ddc06e918 100644 --- a/master/cleanlab/datalab/internal/issue_finder.html +++ b/master/cleanlab/datalab/internal/issue_finder.html @@ -692,7 +692,7 @@

    issue_finder
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/_notices/not_registered.html b/master/cleanlab/datalab/internal/issue_manager/_notices/not_registered.html index 4becf33a7..49e7c7a0f 100644 --- a/master/cleanlab/datalab/internal/issue_manager/_notices/not_registered.html +++ b/master/cleanlab/datalab/internal/issue_manager/_notices/not_registered.html @@ -543,7 +543,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/duplicate.html b/master/cleanlab/datalab/internal/issue_manager/duplicate.html index 25e0befb9..82cff3bdd 100644 --- a/master/cleanlab/datalab/internal/issue_manager/duplicate.html +++ b/master/cleanlab/datalab/internal/issue_manager/duplicate.html @@ -769,7 +769,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/imbalance.html b/master/cleanlab/datalab/internal/issue_manager/imbalance.html index 00074dd10..250f1eb52 100644 --- a/master/cleanlab/datalab/internal/issue_manager/imbalance.html +++ b/master/cleanlab/datalab/internal/issue_manager/imbalance.html @@ -772,7 +772,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/index.html b/master/cleanlab/datalab/internal/issue_manager/index.html index a10eb3b5a..a7c4ea778 100644 --- a/master/cleanlab/datalab/internal/issue_manager/index.html +++ b/master/cleanlab/datalab/internal/issue_manager/index.html @@ -598,7 +598,7 @@

    ML task-specific issue managers
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/issue_manager.html b/master/cleanlab/datalab/internal/issue_manager/issue_manager.html index 136350875..22f74e726 100644 --- a/master/cleanlab/datalab/internal/issue_manager/issue_manager.html +++ b/master/cleanlab/datalab/internal/issue_manager/issue_manager.html @@ -804,7 +804,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/label.html b/master/cleanlab/datalab/internal/issue_manager/label.html index c82bf022a..dd6970f03 100644 --- a/master/cleanlab/datalab/internal/issue_manager/label.html +++ b/master/cleanlab/datalab/internal/issue_manager/label.html @@ -799,7 +799,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/noniid.html b/master/cleanlab/datalab/internal/issue_manager/noniid.html index 6ac1bc62a..fe1d30be1 100644 --- a/master/cleanlab/datalab/internal/issue_manager/noniid.html +++ b/master/cleanlab/datalab/internal/issue_manager/noniid.html @@ -827,7 +827,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/null.html b/master/cleanlab/datalab/internal/issue_manager/null.html index 70f314c7d..537d46fa3 100644 --- a/master/cleanlab/datalab/internal/issue_manager/null.html +++ b/master/cleanlab/datalab/internal/issue_manager/null.html @@ -774,7 +774,7 @@

    null#
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/outlier.html b/master/cleanlab/datalab/internal/issue_manager/outlier.html index 1c114f9c6..5dfbaa8d8 100644 --- a/master/cleanlab/datalab/internal/issue_manager/outlier.html +++ b/master/cleanlab/datalab/internal/issue_manager/outlier.html @@ -784,7 +784,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/regression/index.html b/master/cleanlab/datalab/internal/issue_manager/regression/index.html index 6813fa904..fd0d93e07 100644 --- a/master/cleanlab/datalab/internal/issue_manager/regression/index.html +++ b/master/cleanlab/datalab/internal/issue_manager/regression/index.html @@ -568,7 +568,7 @@

    regression
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/regression/label.html b/master/cleanlab/datalab/internal/issue_manager/regression/label.html index cb7d08979..e08ef2a8e 100644 --- a/master/cleanlab/datalab/internal/issue_manager/regression/label.html +++ b/master/cleanlab/datalab/internal/issue_manager/regression/label.html @@ -887,7 +887,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html b/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html index 074ab07ff..9337e2c35 100644 --- a/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html +++ b/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html @@ -879,7 +879,7 @@

    underperforming_group
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/internal/report.html b/master/cleanlab/datalab/internal/report.html index f2aaf9838..706824bb9 100644 --- a/master/cleanlab/datalab/internal/report.html +++ b/master/cleanlab/datalab/internal/report.html @@ -653,7 +653,7 @@

    report
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/datalab/optional_dependencies.html b/master/cleanlab/datalab/optional_dependencies.html index ac5b1bf14..0db08a0e1 100644 --- a/master/cleanlab/datalab/optional_dependencies.html +++ b/master/cleanlab/datalab/optional_dependencies.html @@ -546,7 +546,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/dataset.html b/master/cleanlab/dataset.html index ce003b641..cf02f882c 100644 --- a/master/cleanlab/dataset.html +++ b/master/cleanlab/dataset.html @@ -820,7 +820,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/experimental/cifar_cnn.html b/master/cleanlab/experimental/cifar_cnn.html index 33684b895..d1ff64b6c 100644 --- a/master/cleanlab/experimental/cifar_cnn.html +++ b/master/cleanlab/experimental/cifar_cnn.html @@ -1967,7 +1967,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/experimental/coteaching.html b/master/cleanlab/experimental/coteaching.html index 891738834..be86addb3 100644 --- a/master/cleanlab/experimental/coteaching.html +++ b/master/cleanlab/experimental/coteaching.html @@ -653,7 +653,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/experimental/index.html b/master/cleanlab/experimental/index.html index 761d217bd..549f04f66 100644 --- a/master/cleanlab/experimental/index.html +++ b/master/cleanlab/experimental/index.html @@ -573,7 +573,7 @@

    experimental
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/experimental/label_issues_batched.html b/master/cleanlab/experimental/label_issues_batched.html index b9d13198b..081e07083 100644 --- a/master/cleanlab/experimental/label_issues_batched.html +++ b/master/cleanlab/experimental/label_issues_batched.html @@ -913,7 +913,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/experimental/mnist_pytorch.html b/master/cleanlab/experimental/mnist_pytorch.html index 07eb26abf..6e3194931 100644 --- a/master/cleanlab/experimental/mnist_pytorch.html +++ b/master/cleanlab/experimental/mnist_pytorch.html @@ -2381,7 +2381,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/filter.html b/master/cleanlab/filter.html index cc7c79e45..20486003d 100644 --- a/master/cleanlab/filter.html +++ b/master/cleanlab/filter.html @@ -768,7 +768,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/index.html b/master/cleanlab/internal/index.html index c5e6f705f..b6ed9b690 100644 --- a/master/cleanlab/internal/index.html +++ b/master/cleanlab/internal/index.html @@ -575,7 +575,7 @@

    internal
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/label_quality_utils.html b/master/cleanlab/internal/label_quality_utils.html index f6eb06dce..99cc9213e 100644 --- a/master/cleanlab/internal/label_quality_utils.html +++ b/master/cleanlab/internal/label_quality_utils.html @@ -605,7 +605,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/latent_algebra.html b/master/cleanlab/internal/latent_algebra.html index 3e3cc7045..50387e08e 100644 --- a/master/cleanlab/internal/latent_algebra.html +++ b/master/cleanlab/internal/latent_algebra.html @@ -795,7 +795,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/multiannotator_utils.html b/master/cleanlab/internal/multiannotator_utils.html index 7d8e8f378..987e68dea 100644 --- a/master/cleanlab/internal/multiannotator_utils.html +++ b/master/cleanlab/internal/multiannotator_utils.html @@ -652,7 +652,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/multilabel_scorer.html b/master/cleanlab/internal/multilabel_scorer.html index c3117ced8..3d874a174 100644 --- a/master/cleanlab/internal/multilabel_scorer.html +++ b/master/cleanlab/internal/multilabel_scorer.html @@ -1134,7 +1134,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/multilabel_utils.html b/master/cleanlab/internal/multilabel_utils.html index f3d0f01da..638854da0 100644 --- a/master/cleanlab/internal/multilabel_utils.html +++ b/master/cleanlab/internal/multilabel_utils.html @@ -653,7 +653,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/outlier.html b/master/cleanlab/internal/outlier.html index 88620b474..cf11f266c 100644 --- a/master/cleanlab/internal/outlier.html +++ b/master/cleanlab/internal/outlier.html @@ -611,7 +611,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/token_classification_utils.html b/master/cleanlab/internal/token_classification_utils.html index 83cacbf9f..5d8a83d60 100644 --- a/master/cleanlab/internal/token_classification_utils.html +++ b/master/cleanlab/internal/token_classification_utils.html @@ -784,7 +784,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/util.html b/master/cleanlab/internal/util.html index b5ff4ddc7..e1a482481 100644 --- a/master/cleanlab/internal/util.html +++ b/master/cleanlab/internal/util.html @@ -1157,7 +1157,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/internal/validation.html b/master/cleanlab/internal/validation.html index 182e64a85..f95794435 100644 --- a/master/cleanlab/internal/validation.html +++ b/master/cleanlab/internal/validation.html @@ -639,7 +639,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/models/fasttext.html b/master/cleanlab/models/fasttext.html index cf3e4b329..02c901a25 100644 --- a/master/cleanlab/models/fasttext.html +++ b/master/cleanlab/models/fasttext.html @@ -559,7 +559,7 @@

    fasttext
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/models/index.html b/master/cleanlab/models/index.html index ed82ce38b..0870b379d 100644 --- a/master/cleanlab/models/index.html +++ b/master/cleanlab/models/index.html @@ -571,7 +571,7 @@

    models
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/models/keras.html b/master/cleanlab/models/keras.html index b45a39bc7..9fa688f8c 100644 --- a/master/cleanlab/models/keras.html +++ b/master/cleanlab/models/keras.html @@ -799,7 +799,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/multiannotator.html b/master/cleanlab/multiannotator.html index d97463ad9..45319f6c1 100644 --- a/master/cleanlab/multiannotator.html +++ b/master/cleanlab/multiannotator.html @@ -890,7 +890,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/multilabel_classification/dataset.html b/master/cleanlab/multilabel_classification/dataset.html index 8e6c52127..f8f7c7725 100644 --- a/master/cleanlab/multilabel_classification/dataset.html +++ b/master/cleanlab/multilabel_classification/dataset.html @@ -711,7 +711,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/multilabel_classification/filter.html b/master/cleanlab/multilabel_classification/filter.html index 33900c764..d4a7024f8 100644 --- a/master/cleanlab/multilabel_classification/filter.html +++ b/master/cleanlab/multilabel_classification/filter.html @@ -702,7 +702,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/multilabel_classification/index.html b/master/cleanlab/multilabel_classification/index.html index 494471d74..5e80c7eb8 100644 --- a/master/cleanlab/multilabel_classification/index.html +++ b/master/cleanlab/multilabel_classification/index.html @@ -569,7 +569,7 @@

    multilabel_classification
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/multilabel_classification/rank.html b/master/cleanlab/multilabel_classification/rank.html index 1fbd74b32..e0ec0d2f6 100644 --- a/master/cleanlab/multilabel_classification/rank.html +++ b/master/cleanlab/multilabel_classification/rank.html @@ -671,7 +671,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/object_detection/filter.html b/master/cleanlab/object_detection/filter.html index 31c43720b..6a1100f82 100644 --- a/master/cleanlab/object_detection/filter.html +++ b/master/cleanlab/object_detection/filter.html @@ -621,7 +621,7 @@

    filter
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/object_detection/index.html b/master/cleanlab/object_detection/index.html index 9346c5c3d..b0b7acd3e 100644 --- a/master/cleanlab/object_detection/index.html +++ b/master/cleanlab/object_detection/index.html @@ -567,7 +567,7 @@

    object_detection
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/object_detection/rank.html b/master/cleanlab/object_detection/rank.html index 2a5e36d0c..ec8347b06 100644 --- a/master/cleanlab/object_detection/rank.html +++ b/master/cleanlab/object_detection/rank.html @@ -883,7 +883,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/object_detection/summary.html b/master/cleanlab/object_detection/summary.html index 93e9a209a..9d0e73e8e 100644 --- a/master/cleanlab/object_detection/summary.html +++ b/master/cleanlab/object_detection/summary.html @@ -844,7 +844,7 @@

    summary
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/outlier.html b/master/cleanlab/outlier.html index f5f98e30f..903d05c96 100644 --- a/master/cleanlab/outlier.html +++ b/master/cleanlab/outlier.html @@ -765,7 +765,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/rank.html b/master/cleanlab/rank.html index 617191ddd..94697efae 100644 --- a/master/cleanlab/rank.html +++ b/master/cleanlab/rank.html @@ -855,7 +855,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/regression/index.html b/master/cleanlab/regression/index.html index 6a8028d6d..e81abafaa 100644 --- a/master/cleanlab/regression/index.html +++ b/master/cleanlab/regression/index.html @@ -566,7 +566,7 @@

    regression
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/regression/learn.html b/master/cleanlab/regression/learn.html index 2fb0521b1..9a485a257 100644 --- a/master/cleanlab/regression/learn.html +++ b/master/cleanlab/regression/learn.html @@ -1077,7 +1077,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/regression/rank.html b/master/cleanlab/regression/rank.html index 9104a2538..133a4ed4c 100644 --- a/master/cleanlab/regression/rank.html +++ b/master/cleanlab/regression/rank.html @@ -612,7 +612,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/segmentation/filter.html b/master/cleanlab/segmentation/filter.html index 8a74b8e6b..7cef5a853 100644 --- a/master/cleanlab/segmentation/filter.html +++ b/master/cleanlab/segmentation/filter.html @@ -620,7 +620,7 @@

    filter
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/segmentation/index.html b/master/cleanlab/segmentation/index.html index f70655237..3a80a2cfc 100644 --- a/master/cleanlab/segmentation/index.html +++ b/master/cleanlab/segmentation/index.html @@ -567,7 +567,7 @@

    segmentation
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/segmentation/rank.html b/master/cleanlab/segmentation/rank.html index 6a550b4d9..74285d570 100644 --- a/master/cleanlab/segmentation/rank.html +++ b/master/cleanlab/segmentation/rank.html @@ -675,7 +675,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/segmentation/summary.html b/master/cleanlab/segmentation/summary.html index a14ef5e5c..d231d81ad 100644 --- a/master/cleanlab/segmentation/summary.html +++ b/master/cleanlab/segmentation/summary.html @@ -705,7 +705,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/token_classification/filter.html b/master/cleanlab/token_classification/filter.html index 5a6612b0c..c7e325a29 100644 --- a/master/cleanlab/token_classification/filter.html +++ b/master/cleanlab/token_classification/filter.html @@ -623,7 +623,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/token_classification/index.html b/master/cleanlab/token_classification/index.html index b6fc51066..ee910553d 100644 --- a/master/cleanlab/token_classification/index.html +++ b/master/cleanlab/token_classification/index.html @@ -567,7 +567,7 @@

    token_classification
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/token_classification/rank.html b/master/cleanlab/token_classification/rank.html index ec6ff9732..c88a779ac 100644 --- a/master/cleanlab/token_classification/rank.html +++ b/master/cleanlab/token_classification/rank.html @@ -720,7 +720,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/cleanlab/token_classification/summary.html b/master/cleanlab/token_classification/summary.html index d9ab249de..a63d89a4f 100644 --- a/master/cleanlab/token_classification/summary.html +++ b/master/cleanlab/token_classification/summary.html @@ -729,7 +729,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/genindex.html b/master/genindex.html index 428ec50d5..6b8b29f0a 100644 --- a/master/genindex.html +++ b/master/genindex.html @@ -2502,7 +2502,7 @@

    Z

    Made with Sphinx and @pradyunsg's diff --git a/master/index.html b/master/index.html index 8c45185dc..2ea446880 100644 --- a/master/index.html +++ b/master/index.html @@ -657,7 +657,7 @@

    Easy Mode
    Made with Sphinx and @pradyunsg's diff --git a/master/migrating/migrate_v2.html b/master/migrating/migrate_v2.html index 2cfd4e430..498ba80f5 100644 --- a/master/migrating/migrate_v2.html +++ b/master/migrating/migrate_v2.html @@ -617,7 +617,7 @@

    Common argument and variable name changes
    Made with Sphinx and @pradyunsg's diff --git a/master/objects.inv b/master/objects.inv index c77bc3e6e..28492b9ae 100644 Binary files a/master/objects.inv and b/master/objects.inv differ diff --git a/master/py-modindex.html b/master/py-modindex.html index f3fba3cc8..259566ec4 100644 --- a/master/py-modindex.html +++ b/master/py-modindex.html @@ -884,7 +884,7 @@

    Python Module Index

    Made with Sphinx and @pradyunsg's diff --git a/master/search.html b/master/search.html index 27798e633..1dbc98335 100644 --- a/master/search.html +++ b/master/search.html @@ -502,7 +502,7 @@
    Made with Sphinx and @pradyunsg's diff --git a/master/searchindex.js b/master/searchindex.js index 7a72408ca..c62360ce7 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 14, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 14, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 14, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 14, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 14, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 14, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 14, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 11, 14, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 77, 78, 79, 80, 81, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 14, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 30, 34, 49, 58, 61, 77, 78, 80, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 14, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 80, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 80, 87, 90, 93], "deploi": [2, 61, 80], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 78, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 14, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 78, 80, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 12, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 14, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 30, 34, 57], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 78, 80, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 80, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 14, 44, 61, 79, 89], "csr": [4, 14], "evenli": [4, 14], "omit": [4, 14, 56, 57, 81, 86], "itself": [4, 14, 30, 34, 86], "duplic": [4, 7, 14, 18, 19, 30, 34, 71, 74, 82], "explicit": [4, 14], "precend": [4, 14], "construct": [4, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 14, 86], "nor": [4, 8, 12, 14], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "nearestneighbor": [4, 8, 58, 77, 87], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "kneighbors_graph": [4, 77], "mode": [4, 30, 33, 34, 77, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "start": [5, 8, 30, 31, 34, 71, 77, 85, 93], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "three": [8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 80, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": 8, "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 79, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 83], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 84, 86], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 22, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 22, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 22, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "null": 18, "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "nullissuemanag": 22, "miss": [22, 30, 34, 44, 54, 56, 77, 80, 86, 89], "null_track": 22, "null_scor": 22, "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 82, 84, 86, 87], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "ascend": [29, 42, 50, 81, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "arbitrari": [29, 65, 69, 74, 87, 89], "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 86], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "posit": [30, 34, 44, 57, 79, 87], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 85, 89, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 91], "log_interv": 34, "01": [34, 59, 61, 73, 82, 85, 86, 89, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "enabl": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "th": [39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 86, 93], "452": 40, "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "second": [40, 42, 44, 57, 59, 74, 80, 82, 93], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "extend": [41, 81, 87, 93], "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 77, 79, 82, 89], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "segment": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 89, 93], "02": [69, 74, 75, 82, 86, 89], "03": [69, 79, 82, 86, 93], "04": [69, 86, 89], "08": [69, 82, 86, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 80, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 80], "platform": [71, 80], "automl": [71, 80], "foundat": 71, "smart": [71, 80], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 82, 84, 86], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 78, 79, 80, 82, 86, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "address": [74, 75, 78, 80, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 82, 86], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 91, 93], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "2465": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "463180e": [74, 75], "07": [74, 75, 82, 86], "51": [74, 75, 77, 79, 82, 86], "857172e": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "297": [74, 86], "userwarn": [74, 75], "327": [74, 86], "306": 74, "34": [74, 79, 82, 84, 86, 87, 93], "54": [74, 79, 82, 86], "039117": 74, "53": [74, 75, 77, 79, 85, 86, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 93], "085049e": 74, "087324e": 74, "89": [74, 77, 86, 89], "92": [74, 82, 86, 91], "574261e": 74, "583757e": 74, "91": [74, 86, 92], "314215e": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86, 93], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 82, 86, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 91], "87": [75, 81, 86, 89, 92], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "246459": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "235095": 75, "970324": 75, "816965": 75, "548979": 75, "221560": 75, "890575": 75, "530924": 75, "622256": 75, "199185": 75, "752776": 75, "499498": 75, "179601": 75, "948362": 75, "090224": 75, "632385": 75, "292800": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "reflect": [77, 78, 84, 86, 87, 89, 91, 92], "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 91], "94": [77, 79, 82, 86, 89, 91], "78": [77, 79, 82, 86, 89, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 82, 86, 93], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "2169": 77, "690": 77, "246": [77, 86], "185": [77, 79, 86], "582": 77, "691": 77, "168": [77, 82], "915": 77, "187": [77, 79], "27": [77, 79, 82, 86, 93], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "898": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "619": 77, "620": 77, "621": 77, "622": 77, "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89], "96": [77, 79, 82, 85, 86, 89], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 86, 89], "wari": [77, 78, 80], "intent": [78, 92], "servic": [78, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "beneficiary_not_allow": [78, 92], "getting_spare_card": [78, 92], "supported_cards_and_curr": [78, 92], "card_payment_fee_charg": [78, 92], "card_about_to_expir": [78, 92], "visa_or_mastercard": [78, 92], "apple_pay_or_google_pai": [78, 92], "change_pin": [78, 92], "lost_or_stolen_phon": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86], "41": [78, 79, 86, 89], "38": [78, 79, 86], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "0656": 78, "160": [78, 82], "006237": 78, "148": 78, "546": 78, "006485": 78, "514": 78, "481": 78, "008165": 78, "0000": [78, 79, 82], "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86], "575507": 78, "575874": 78, "0800": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "shortlist": [78, 89, 92], "curat": [78, 83], "strongli": 78, "p_valu": 78, "benign": 78, "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": 79, "002216": 79, "000974": 79, "59": [79, 86, 93], "88": [79, 81, 82, 85, 86, 89], "000873": 79, "000739": 79, "79": [79, 86, 91], "32635": 79, "32636": 79, "47": [79, 86, 93], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "93": [79, 86, 89, 91, 93], "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 93], "44": [79, 85, 86], "71": [79, 82, 86], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89], "452381": 79, "459770": 79, "72": [79, 82, 85, 89], "523364": 79, "460784": 79, "446602": 79, "57": [79, 81, 82], "68": [79, 82, 86, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 82, 86], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85, 93], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "60": [81, 82], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "super": 81, "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "666": 81, "331": 81, "310": 81, "712": 81, "62": [81, 82, 86, 89], "34it": 81, "63": [81, 82, 86], "29it": 81, "492": 81, "085": 81, "883": 81, "330": [81, 86], "290": [81, 86], "678": 81, "87it": 81, "82it": 81, "476": 81, "305": [81, 89], "860": 81, "328": [81, 86], "335": 81, "447": 81, "76it": 81, "04it": 81, "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "0268": 81, "30659": 81, "000015": 81, "30968": 81, "258": 81, "000017": 81, "9762": 81, "54565": 81, "47139": 81, "000026": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "3312": 82, "007136": 82, "119": [82, 86], "033725": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "037825": 82, "236": [82, 86, 93], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "1960": 82, "158": 82, "159": [82, 85, 86], "161": 82, "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "69": [82, 89], "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 93], "76": [82, 85, 86, 89, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "196": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86, 93], "169": [82, 93], "151": [82, 86], "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "156": 82, "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "300": [84, 93], "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "na": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": 86, "323": 86, "226": 86, "228": 86, "232": 86, "219": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": 86, "229": 86, "85": [86, 89], "217": [86, 93], "237": 86, "207": 86, "204": 86, "205": 86, "223": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "semantic_segment": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "system": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "175926": 90, "09it": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "637": 91, "cheat": 91, "0pt": 91, "233": [91, 93], "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2023": 93, "2400": 93, "52e0": 93, "1a00": 93, "871": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "959": 93, "94k": 93, "kb": 93, "mb": 93, "directori": 93, "inflat": 93, "182": 93, "17045998": 93, "16m": 93, "octet": 93, "26m": 93, "6mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "null": 22, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": 71, "mode": 71, "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 14, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 14, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 14, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 14, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 14, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 14, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 14, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 11, 14, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 77, 78, 79, 80, 81, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 14, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 30, 34, 49, 58, 61, 77, 78, 80, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 14, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 80, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 80, 87, 90, 93], "deploi": [2, 61, 80], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 78, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 14, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 78, 80, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 12, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 14, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 78, 80, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 80, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 14, 44, 61, 79, 89], "csr": [4, 14], "evenli": [4, 14], "omit": [4, 14, 56, 57, 81, 86], "itself": [4, 14, 30, 34, 86], "duplic": [4, 7, 14, 18, 19, 30, 34, 71, 74, 82], "explicit": [4, 14], "precend": [4, 14], "construct": [4, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 14, 86], "nor": [4, 8, 12, 14], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "nearestneighbor": [4, 8, 58, 77, 87], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "kneighbors_graph": [4, 77], "mode": [4, 30, 33, 34, 77, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "start": [5, 8, 30, 31, 34, 71, 77, 85, 93], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "three": [8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 80, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": 8, "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 79, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 83], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 22, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 22, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 22, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "null": 18, "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "nullissuemanag": 22, "miss": [22, 30, 34, 44, 54, 56, 77, 80, 86, 89], "null_track": 22, "null_scor": 22, "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 81, 82, 84, 86, 87, 90], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "ascend": [29, 42, 50, 81, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "arbitrari": [29, 65, 69, 74, 87, 89], "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "posit": [30, 34, 44, 57, 79, 87], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91, 93], "log_interv": 34, "01": [34, 59, 61, 73, 81, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "enabl": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "th": [39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 81, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "second": [40, 42, 44, 57, 59, 74, 80, 82, 93], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "extend": [41, 81, 87, 93], "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 81, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "segment": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 89, 90], "02": [69, 74, 75, 81, 82, 86, 89, 90, 93], "03": [69, 79, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 80, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 80], "platform": [71, 80], "automl": [71, 80], "foundat": 71, "smart": [71, 80], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 78, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "address": [74, 75, 78, 80, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86, 93], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "2465": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 82, 86, 90], "857172e": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "297": [74, 86], "userwarn": [74, 75], "327": [74, 86], "306": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90, 93], "039117": 74, "53": [74, 75, 77, 79, 85, 86, 90, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 81, 86, 90, 93], "085049e": 74, "087324e": 74, "89": [74, 77, 86, 89, 90], "92": [74, 82, 86, 90, 91], "574261e": 74, "583757e": 74, "91": [74, 86, 90, 92], "314215e": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 81, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 81, 82, 86, 90, 91, 93], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "246459": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "235095": 75, "970324": 75, "816965": 75, "548979": 75, "221560": 75, "890575": 75, "530924": 75, "622256": 75, "199185": 75, "752776": 75, "499498": 75, "179601": 75, "948362": 75, "090224": 75, "632385": 75, "292800": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "reflect": [77, 78, 84, 86, 87, 89, 91, 92], "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91], "94": [77, 79, 82, 86, 89, 90, 91, 93], "78": [77, 79, 82, 86, 89, 90, 91, 93], "9acca4": [77, 91], "48": [77, 79, 81, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 82, 86, 90], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "2169": 77, "690": 77, "246": [77, 86], "185": [77, 79, 86], "582": 77, "691": 77, "168": [77, 82], "915": 77, "187": [77, 79], "27": [77, 79, 82, 86, 90, 93], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "898": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 81, 89, 90, 93], "96": [77, 79, 82, 85, 86, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 81, 86, 89, 90], "wari": [77, 78, 80], "intent": [78, 92], "servic": [78, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "card_payment_fee_charg": [78, 92], "beneficiary_not_allow": [78, 92], "supported_cards_and_curr": [78, 92], "visa_or_mastercard": [78, 92], "card_about_to_expir": [78, 92], "change_pin": [78, 92], "apple_pay_or_google_pai": [78, 92], "lost_or_stolen_phon": [78, 92], "getting_spare_card": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90], "41": [78, 79, 81, 86, 89, 90], "38": [78, 79, 81, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "0656": 78, "160": 78, "006237": 78, "148": 78, "546": 78, "006485": 78, "514": 78, "481": 78, "008165": 78, "0000": [78, 79, 82], "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86, 90], "575507": 78, "575874": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "shortlist": [78, 89, 92], "curat": [78, 83], "strongli": 78, "p_valu": 78, "benign": 78, "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91, 93], "32635": 79, "32636": 79, "47": [79, 81, 86, 90], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "93": [79, 86, 89, 90, 91], "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 81, 89, 90], "452381": 79, "459770": 79, "72": [79, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 82, 90, 93], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "super": 81, "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "665": 81, "331": 81, "310": 81, "432": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "04it": [81, 90], "13it": [81, 90], "52it": [81, 90], "38it": [81, 90], "85": [81, 86, 89, 90], "69": [81, 82, 89, 90], "16it": [81, 90], "31it": [81, 90], "54it": [81, 90], "77it": [81, 90], "03it": [81, 90], "62it": [81, 90], "12it": [81, 90], "492": 81, "085": 81, "727": 81, "330": [81, 86], "290": [81, 86], "561": 81, "60it": [81, 90], "62": [81, 82, 86, 89, 90], "81it": [81, 90], "55it": [81, 90], "09it": 81, "26it": [81, 90], "02it": [81, 90], "71it": [81, 90], "29it": [81, 90], "476": 81, "305": [81, 89], "669": 81, "328": [81, 86], "335": 81, "420": 81, "91it": [81, 90], "76it": [81, 90], "86it": [81, 90], "65it": [81, 90], "74it": [81, 90], "93it": [81, 90], "97it": [81, 90], "57it": [81, 90], "05it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "0268": 81, "30659": 81, "000015": 81, "30968": 81, "258": 81, "000017": 81, "9762": 81, "54565": 81, "47139": 81, "000026": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "3312": 82, "007136": 82, "119": [82, 86], "033725": 82, "103": [82, 86, 93], "033738": 82, "238": [82, 86], "037825": 82, "236": [82, 86, 93], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91, 93], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "63": [82, 86, 90], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86, 93], "169": [82, 93], "151": [82, 86], "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "300": [84, 93], "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "na": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86], "265": 85, "159": [85, 86], "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": 86, "323": 86, "226": 86, "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": [86, 93], "215": 86, "220": 86, "229": 86, "217": [86, 93], "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "659": 89, "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "semantic_segment": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "system": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "17314": 90, "173126": 90, "34829": 90, "174308": 90, "32it": 90, "52365": 90, "174780": 90, "79it": 90, "69964": 90, "175254": 90, "25it": 90, "87490": 90, "175005": 90, "28it": 90, "105188": 90, "175672": 90, "96it": 90, "122771": 90, "175719": 90, "53it": 90, "140344": 90, "175172": 90, "99it": 90, "157862": 90, "174941": 90, "50it": 90, "175357": 90, "174922": 90, "08it": 90, "192926": 90, "175151": 90, "210609": 90, "175659": 90, "14it": 90, "228199": 90, "175727": 90, "40it": 90, "245865": 90, "176005": 90, "263466": 90, "175594": 90, "281027": 90, "175595": 90, "298836": 90, "176341": 90, "43it": 90, "316665": 90, "176924": 90, "334560": 90, "177527": 90, "64it": 90, "352485": 90, "178040": 90, "22it": 90, "370443": 90, "178499": 90, "388402": 90, "178823": 90, "67it": 90, "406285": 90, "178740": 90, "424160": 90, "178599": 90, "92it": 90, "442021": 90, "178448": 90, "459866": 90, "175902": 90, "477662": 90, "176508": 90, "495424": 90, "176835": 90, "513310": 90, "177437": 90, "531207": 90, "177892": 90, "84it": 90, "548999": 90, "175415": 90, "566644": 90, "175717": 90, "584538": 90, "176671": 90, "06it": 90, "602262": 90, "620024": 90, "177064": 90, "87it": 90, "637734": 90, "176679": 90, "27it": 90, "655474": 90, "176890": 90, "98it": 90, "673248": 90, "177141": 90, "691105": 90, "177564": 90, "47it": 90, "708942": 90, "177800": 90, "726723": 90, "177793": 90, "95it": 90, "744503": 90, "177758": 90, "762280": 90, "177746": 90, "19it": 90, "780236": 90, "178287": 90, "44it": 90, "798190": 90, "178658": 90, "816162": 90, "178972": 90, "42it": 90, "834062": 90, "178976": 90, "39it": 90, "851960": 90, "178605": 90, "869912": 90, "178875": 90, "887965": 90, "179366": 90, "905902": 90, "178845": 90, "68it": 90, "923788": 90, "177995": 90, "941613": 90, "178068": 90, "959421": 90, "177686": 90, "46it": 90, "977191": 90, "177262": 90, "11it": 90, "994958": 90, "177380": 90, "94it": 90, "1012772": 90, "177605": 90, "07it": 90, "1030533": 90, "177556": 90, "1048289": 90, "177115": 90, "61it": 90, "1066001": 90, "176685": 90, "1083736": 90, "176881": 90, "1101425": 90, "176862": 90, "75it": 90, "1119112": 90, "176613": 90, "1136832": 90, "176786": 90, "1154511": 90, "176436": 90, "1172155": 90, "175944": 90, "1190019": 90, "176746": 90, "1207695": 90, "176246": 90, "1225512": 90, "176818": 90, "30it": 90, "1243258": 90, "177007": 90, "56it": 90, "1260992": 90, "177102": 90, "1278703": 90, "176948": 90, "1296561": 90, "177432": 90, "1314539": 90, "178132": 90, "1332353": 90, "178094": 90, "1350163": 90, "178042": 90, "1367993": 90, "178114": 90, "1385805": 90, "177932": 90, "1403599": 90, "177879": 90, "1421534": 90, "178317": 90, "1439417": 90, "178468": 90, "1457264": 90, "178443": 90, "1475117": 90, "178466": 90, "1492964": 90, "178362": 90, "80it": 90, "1510883": 90, "178607": 90, "1528744": 90, "178567": 90, "36it": 90, "1546601": 90, "175782": 90, "00it": 90, "1564391": 90, "176405": 90, "1582183": 90, "176852": 90, "1599874": 90, "176799": 90, "15it": 90, "1617558": 90, "175931": 90, "1635340": 90, "176491": 90, "1653006": 90, "176539": 90, "1670829": 90, "177040": 90, "1688580": 90, "177176": 90, "1706503": 90, "177786": 90, "41it": 90, "1724283": 90, "175065": 90, "1742024": 90, "175757": 90, "1759900": 90, "176647": 90, "18it": 90, "1777864": 90, "177537": 90, "66it": 90, "1795832": 90, "178173": 90, "1813737": 90, "178430": 90, "1831631": 90, "178577": 90, "1849581": 90, "178851": 90, "1867468": 90, "178559": 90, "72it": 90, "1885325": 90, "178504": 90, "1903191": 90, "178546": 90, "58it": 90, "1921047": 90, "178521": 90, "1938938": 90, "178632": 90, "1956802": 90, "178610": 90, "1974708": 90, "1992583": 90, "178554": 90, "2010516": 90, "178782": 90, "2028395": 90, "178688": 90, "59it": 90, "2046264": 90, "178571": 90, "2064122": 90, "178451": 90, "89it": 90, "2081968": 90, "178057": 90, "2099774": 90, "177921": 90, "2117567": 90, "2135387": 90, "177971": 90, "2153185": 90, "177883": 90, "2170974": 90, "177203": 90, "01it": 90, "2188695": 90, "177184": 90, "2206414": 90, "176902": 90, "2224105": 90, "176843": 90, "2241907": 90, "177192": 90, "2259743": 90, "177536": 90, "48it": 90, "2277497": 90, "176383": 90, "2295146": 90, "176411": 90, "17it": 90, "2312799": 90, "176442": 90, "2330531": 90, "176701": 90, "2348329": 90, "177079": 90, "2366219": 90, "177620": 90, "2384078": 90, "177908": 90, "2401913": 90, "178035": 90, "24it": 90, "2419717": 90, "177907": 90, "88it": 90, "2437622": 90, "178246": 90, "2455447": 90, "178140": 90, "2473268": 90, "178157": 90, "2491084": 90, "178137": 90, "2508898": 90, "177998": 90, "2526698": 90, "177909": 90, "2544489": 90, "177444": 90, "51it": 90, "2562234": 90, "177426": 90, "20it": 90, "2579977": 90, "176938": 90, "2597763": 90, "177208": 90, "2615516": 90, "177300": 90, "23it": 90, "2633247": 90, "177005": 90, "2650979": 90, "177096": 90, "2668827": 90, "177505": 90, "2686578": 90, "176155": 90, "2704355": 90, "176633": 90, "2722218": 90, "177225": 90, "2740063": 90, "177587": 90, "2757851": 90, "177672": 90, "2775620": 90, "2793443": 90, "177739": 90, "2811218": 90, "174041": 90, "2828903": 90, "174867": 90, "2846700": 90, "175785": 90, "2864443": 90, "176271": 90, "2882278": 90, "176886": 90, "2900037": 90, "177092": 90, "2917797": 90, "177241": 90, "2935524": 90, "177018": 90, "2953228": 90, "176869": 90, "2970917": 90, "176151": 90, "2988534": 90, "175890": 90, "3006235": 90, "176220": 90, "3024139": 90, "177060": 90, "3041872": 90, "177137": 90, "3059587": 90, "177097": 90, "3077357": 90, "177274": 90, "3095085": 90, "177103": 90, "3112872": 90, "177330": 90, "3130650": 90, "177460": 90, "3148563": 90, "177956": 90, "3166432": 90, "3184250": 90, "177970": 90, "3202048": 90, "177369": 90, "37it": 90, "3219786": 90, "176901": 90, "3237477": 90, "176385": 90, "3255117": 90, "175608": 90, "3272679": 90, "175364": 90, "3290216": 90, "175310": 90, "69it": 90, "3307758": 90, "175340": 90, "3325293": 90, "175275": 90, "3342868": 90, "175414": 90, "3360410": 90, "174946": 90, "3377909": 90, "174955": 90, "3395405": 90, "174938": 90, "3412899": 90, "174667": 90, "90it": 90, "3430388": 90, "174729": 90, "3447862": 90, "174724": 90, "3465335": 90, "174649": 90, "3482801": 90, "174605": 90, "3500286": 90, "174674": 90, "3517754": 90, "174642": 90, "3535276": 90, "174811": 90, "73it": 90, "3552791": 90, "174908": 90, "3570332": 90, "175056": 90, "3587965": 90, "175434": 90, "3605572": 90, "175620": 90, "3623294": 90, "176096": 90, "3640904": 90, "176024": 90, "3658507": 90, "170676": 90, "3675917": 90, "171677": 90, "3693112": 90, "163982": 90, "3710544": 90, "166948": 90, "3728215": 90, "169784": 90, "3745924": 90, "171924": 90, "3763638": 90, "173460": 90, "3781329": 90, "174480": 90, "3798992": 90, "175117": 90, "3816611": 90, "175433": 90, "3834271": 90, "175776": 90, "3851933": 90, "176026": 90, "3869588": 90, "176180": 90, "3887211": 90, "175622": 90, "10it": 90, "3904777": 90, "175260": 90, "3922372": 90, "175462": 90, "33it": 90, "3939934": 90, "175506": 90, "3957486": 90, "175329": 90, "34it": 90, "3975074": 90, "175490": 90, "3992695": 90, "175700": 90, "4010266": 90, "175420": 90, "4027895": 90, "175676": 90, "4045463": 90, "175631": 90, "4063028": 90, "175634": 90, "4080592": 90, "174865": 90, "4098080": 90, "174814": 90, "4115725": 90, "175300": 90, "4133264": 90, "175322": 90, "4150797": 90, "175066": 90, "4168305": 90, "175046": 90, "4185811": 90, "175044": 90, "4203327": 90, "175076": 90, "4220835": 90, "174933": 90, "4238329": 90, "70it": 90, "4256239": 90, "175996": 90, "4273839": 90, "175799": 90, "4291598": 90, "176331": 90, "4309272": 90, "176450": 90, "4326984": 90, "176648": 90, "4344717": 90, "176849": 90, "4362403": 90, "176596": 90, "4380063": 90, "175961": 90, "4397790": 90, "176348": 90, "4415426": 90, "174788": 90, "4432909": 90, "169890": 90, "4450462": 90, "171535": 90, "4468091": 90, "172931": 90, "4485670": 90, "173774": 90, "4503252": 90, "174381": 90, "4520917": 90, "175052": 90, "85it": 90, "4538464": 90, "175173": 90, "63it": 90, "4556000": 90, "175226": 90, "4573552": 90, "175311": 90, "4591115": 90, "175403": 90, "4608663": 90, "175423": 90, "4626208": 90, "175425": 90, "4643752": 90, "174281": 90, "4661183": 90, "174117": 90, "4678749": 90, "174573": 90, "4696244": 90, "174681": 90, "4713714": 90, "174596": 90, "35it": 90, "4731175": 90, "174541": 90, "4748630": 90, "174055": 90, "4766094": 90, "174228": 90, "4783518": 90, "173985": 90, "4800917": 90, "173759": 90, "4818354": 90, "173939": 90, "4835749": 90, "173824": 90, "4853232": 90, "174121": 90, "4870744": 90, "174418": 90, "4888252": 90, "174613": 90, "4905891": 90, "175141": 90, "4923509": 90, "175450": 90, "4941151": 90, "175734": 90, "4958725": 90, "170139": 90, "4976689": 90, "172922": 90, "4994432": 90, "174250": 90, "176272": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "637": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a00": 93, "940": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "78mb": 93, "mb": 93, "directori": 93, "inflat": 93, "182": 93, "17045998": 93, "16m": 93, "octet": 93, "31m": 93, "5mb": 93, "26m": 93, "7mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "null": 22, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": 71, "mode": 71, "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 7874a5433..a52fb02d9 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1155,12 +1155,19 @@

    5. Use cleanlab to find label issues +
     Finding label issues ...
    +
    +
    +
    +
    +
    +
    +
     
     Audit complete. 6 issues found in the dataset.
     
    @@ -1488,7 +1495,7 @@

    5. Use cleanlab to find label issues -{"state": {"c6f71b2028154d16a58578947d83cc27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a066142dce2413c9639bc8d8d30d658": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f3d936ca3c6e4573a2920e5c4c15ac6c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c6f71b2028154d16a58578947d83cc27", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1a066142dce2413c9639bc8d8d30d658", "value": 2041.0}}, "5efae04d3267437abfd1419b0114ca8b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc61a30b92484d8990aa7b71bf342f82": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "87729e672c2d4ce2ba6a81b9da22e94f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5efae04d3267437abfd1419b0114ca8b", "placeholder": "\u200b", "style": "IPY_MODEL_bc61a30b92484d8990aa7b71bf342f82", "value": "hyperparams.yaml: 100%"}}, "1f9f80b63e324c639867795266559d9c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68ec5a0d5997405a82e27be239693ac0": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e797666dfb5147acbc966d774965f0d4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1f9f80b63e324c639867795266559d9c", "placeholder": "\u200b", "style": "IPY_MODEL_68ec5a0d5997405a82e27be239693ac0", "value": " 2.04k/2.04k [00:00<00:00, 345kB/s]"}}, "79732b67a74d4267977a5c093caa7000": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17bd9f3b6c4b4783beadd9210d45501f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_87729e672c2d4ce2ba6a81b9da22e94f", "IPY_MODEL_f3d936ca3c6e4573a2920e5c4c15ac6c", "IPY_MODEL_e797666dfb5147acbc966d774965f0d4"], "layout": "IPY_MODEL_79732b67a74d4267977a5c093caa7000"}}, "e66a327a542a46e58c9e673750803fb2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e3cdb0c7aba412bb0586c941f9ead84": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f0a87417b61b4d1ea5297d2c42ed9cae": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e66a327a542a46e58c9e673750803fb2", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2e3cdb0c7aba412bb0586c941f9ead84", "value": 16887676.0}}, "87b9d9fd92514a929ab030bde176967f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce13c544ce7e432ea69d60307d7153b7": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ccdcf0da3c724ee292bdf16fa4322cf4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_87b9d9fd92514a929ab030bde176967f", "placeholder": "\u200b", "style": "IPY_MODEL_ce13c544ce7e432ea69d60307d7153b7", "value": "embedding_model.ckpt: 100%"}}, "7f22531a00764a7b97a7ae5cd2f285f7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "186e084f99e84f7c8fd0b51cedb9f974": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c01f650e1b91421398db09bd11b85534": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7f22531a00764a7b97a7ae5cd2f285f7", "placeholder": "\u200b", "style": "IPY_MODEL_186e084f99e84f7c8fd0b51cedb9f974", "value": " 16.9M/16.9M [00:00<00:00, 275MB/s]"}}, "16512d5656144c5eb40a6c62d4966fe3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "809ad3c5936148cbb415f950203ffb18": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ccdcf0da3c724ee292bdf16fa4322cf4", "IPY_MODEL_f0a87417b61b4d1ea5297d2c42ed9cae", "IPY_MODEL_c01f650e1b91421398db09bd11b85534"], "layout": "IPY_MODEL_16512d5656144c5eb40a6c62d4966fe3"}}, "a12a4826c9084fdf86733da3675f8037": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b32901c5ee514d50ac8e6f5122ffa7eb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "33582bcb8ede4407b485d42e36541e59": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a12a4826c9084fdf86733da3675f8037", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b32901c5ee514d50ac8e6f5122ffa7eb", "value": 3201.0}}, "083a7719dc494f76957e51bc9144a7c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2ff2ef250af428cab639d6bab14a562": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "843fb19da7f548398dc0377674cd1268": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_083a7719dc494f76957e51bc9144a7c1", "placeholder": "\u200b", "style": "IPY_MODEL_f2ff2ef250af428cab639d6bab14a562", "value": "mean_var_norm_emb.ckpt: 100%"}}, "dadd7d7c758b4d1f994208614b9d3193": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eee78ec5c4aa43f7add70a3f3dd1ccd8": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e31a4b36cd5e41bd9171cf531ef604bc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dadd7d7c758b4d1f994208614b9d3193", "placeholder": "\u200b", "style": "IPY_MODEL_eee78ec5c4aa43f7add70a3f3dd1ccd8", "value": " 3.20k/3.20k [00:00<00:00, 541kB/s]"}}, "ab46063ba5884c25bbb67861e9df900e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea89448c7a7b4f93bbb2b073cceb6f7e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_843fb19da7f548398dc0377674cd1268", "IPY_MODEL_33582bcb8ede4407b485d42e36541e59", "IPY_MODEL_e31a4b36cd5e41bd9171cf531ef604bc"], "layout": "IPY_MODEL_ab46063ba5884c25bbb67861e9df900e"}}, "4b84dadd3a044e088fd65bfb0664432b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b493c78b58574866a742de0b1549eecb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f365411cd1444832b8012041bb95907b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4b84dadd3a044e088fd65bfb0664432b", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b493c78b58574866a742de0b1549eecb", "value": 15856877.0}}, "f22ef6b831894f3e83dba951bc27b73c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99050cbe69404e6f954be1e0ce084d7c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "68b89f6726bf4eca8cd7bf2a7d8f6c65": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f22ef6b831894f3e83dba951bc27b73c", "placeholder": "\u200b", "style": "IPY_MODEL_99050cbe69404e6f954be1e0ce084d7c", "value": "classifier.ckpt: 100%"}}, "2dd4d023cf954d5cab921299018cb173": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce46fde3101a4ee2bc65b97db93c7035": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "421f8744d6194e20a660a55aa540c912": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2dd4d023cf954d5cab921299018cb173", "placeholder": "\u200b", "style": "IPY_MODEL_ce46fde3101a4ee2bc65b97db93c7035", "value": " 15.9M/15.9M [00:00<00:00, 345MB/s]"}}, "fbf7075cd01c4b6f929393fcfc8d68b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b41fab769e945ff8579771955e47a7e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68b89f6726bf4eca8cd7bf2a7d8f6c65", "IPY_MODEL_f365411cd1444832b8012041bb95907b", "IPY_MODEL_421f8744d6194e20a660a55aa540c912"], "layout": "IPY_MODEL_fbf7075cd01c4b6f929393fcfc8d68b8"}}, "0053385b8d0949c392857b68c25c20df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63685b0fb8fe4a31a64c83c9ef236e26": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5afd1de248dc4457b2648126d12212ac": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0053385b8d0949c392857b68c25c20df", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_63685b0fb8fe4a31a64c83c9ef236e26", "value": 128619.0}}, "73d02e4bcd8a419dbe0265e83aa6c1f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba113e57ee6b45be85187c3b3c1aa630": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f6e6e81be61947d1a3570d3762b32cb0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_73d02e4bcd8a419dbe0265e83aa6c1f0", "placeholder": "\u200b", "style": "IPY_MODEL_ba113e57ee6b45be85187c3b3c1aa630", "value": "label_encoder.txt: 100%"}}, "b3feb573217b4162bb80e913db68a16f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71ae6f7f46ca41b8b1d29c43bd426598": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b34f459edf974edbae73845ec97afd01": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b3feb573217b4162bb80e913db68a16f", "placeholder": "\u200b", "style": "IPY_MODEL_71ae6f7f46ca41b8b1d29c43bd426598", "value": " 129k/129k [00:00<00:00, 13.1MB/s]"}}, "a7bdb9d0c5454dab99da16dac727cfdb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "524846c05ee748419d3a5fcec0fe74a5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f6e6e81be61947d1a3570d3762b32cb0", "IPY_MODEL_5afd1de248dc4457b2648126d12212ac", "IPY_MODEL_b34f459edf974edbae73845ec97afd01"], "layout": "IPY_MODEL_a7bdb9d0c5454dab99da16dac727cfdb"}}}, "version_major": 2, "version_minor": 0} +{"state": {"233dc78cbaf5429783458584eef59a3d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcccb7c786e14c64a02d7b9b9e59311d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "59a5497f2eb84d2a9da51e49ceeb98f3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_233dc78cbaf5429783458584eef59a3d", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bcccb7c786e14c64a02d7b9b9e59311d", "value": 2041.0}}, "9037c8328d8040b4897bf11f9e592aec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "157048c06e264f86bda3ef419060a06c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f9412dd6609c4c359154bcdfdd0acbe3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9037c8328d8040b4897bf11f9e592aec", "placeholder": "\u200b", "style": "IPY_MODEL_157048c06e264f86bda3ef419060a06c", "value": "hyperparams.yaml: 100%"}}, "337643ebaec0449aa9e3ae4146e1a9e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9c14092589eb40d1b823a51b799c5e9a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b812c970fae941f287f8a4f8c76f6ac6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_337643ebaec0449aa9e3ae4146e1a9e4", "placeholder": "\u200b", "style": "IPY_MODEL_9c14092589eb40d1b823a51b799c5e9a", "value": " 2.04k/2.04k [00:00<00:00, 339kB/s]"}}, "e83ff9e0dab744e1b2bb2a9db4c3abdf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13fe3515fa2f4b0b9f901f4f9357b3c0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f9412dd6609c4c359154bcdfdd0acbe3", "IPY_MODEL_59a5497f2eb84d2a9da51e49ceeb98f3", "IPY_MODEL_b812c970fae941f287f8a4f8c76f6ac6"], "layout": "IPY_MODEL_e83ff9e0dab744e1b2bb2a9db4c3abdf"}}, "d0f0a981495d45728f277fb082ec264e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "739db12d623e4c43a91791914b371fee": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "92f62436bcd944f78efc7babcce019da": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d0f0a981495d45728f277fb082ec264e", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_739db12d623e4c43a91791914b371fee", "value": 16887676.0}}, "4f31d78cc76a44d2878b81f03b3d02ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9292b15e9b844d9a9c91dc007dd50283": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "23061bab7caf4050b58f287fc3ec33a6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4f31d78cc76a44d2878b81f03b3d02ea", "placeholder": "\u200b", "style": "IPY_MODEL_9292b15e9b844d9a9c91dc007dd50283", "value": "embedding_model.ckpt: 100%"}}, "1e0ea345b83745549cb6416c44dd86e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9897f25c10154a29aa042fad42a78591": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4983d8113c63419f93ff80c4d6a5d5c3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1e0ea345b83745549cb6416c44dd86e6", "placeholder": "\u200b", "style": "IPY_MODEL_9897f25c10154a29aa042fad42a78591", "value": " 16.9M/16.9M [00:00<00:00, 158MB/s]"}}, "fa6b2eb20ebf44718d7f3d8903fc8fc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60c8340290db4347ab6f65ce3ca4d11c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_23061bab7caf4050b58f287fc3ec33a6", "IPY_MODEL_92f62436bcd944f78efc7babcce019da", "IPY_MODEL_4983d8113c63419f93ff80c4d6a5d5c3"], "layout": "IPY_MODEL_fa6b2eb20ebf44718d7f3d8903fc8fc4"}}, "e264c0d7bd7c411d9dc4b82b9cbe3531": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d5f0e761ca44ddb9eba68d96cbd3514": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "adb86bfca83d45c6b1b1c371d9da559b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e264c0d7bd7c411d9dc4b82b9cbe3531", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2d5f0e761ca44ddb9eba68d96cbd3514", "value": 3201.0}}, "a273dc0e93a1499b88571d2c39f7b31c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "335f99df41e04f3182b16e23f6f63c44": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2b5886d457e74a0895122c12a89d948e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a273dc0e93a1499b88571d2c39f7b31c", "placeholder": "\u200b", "style": "IPY_MODEL_335f99df41e04f3182b16e23f6f63c44", "value": "mean_var_norm_emb.ckpt: 100%"}}, "9600d17d803c4304a3c07d93fdd021a2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93fae6dec60d4a8098b79425198753d8": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9fa1f2883ea94f4faa2641df8ceb21b8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9600d17d803c4304a3c07d93fdd021a2", "placeholder": "\u200b", "style": "IPY_MODEL_93fae6dec60d4a8098b79425198753d8", "value": " 3.20k/3.20k [00:00<00:00, 576kB/s]"}}, "0087ef5a32144b6c8bec34e9845b3464": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "687feb5310c2488ca4eb14ca4c8f2ad5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2b5886d457e74a0895122c12a89d948e", "IPY_MODEL_adb86bfca83d45c6b1b1c371d9da559b", "IPY_MODEL_9fa1f2883ea94f4faa2641df8ceb21b8"], "layout": "IPY_MODEL_0087ef5a32144b6c8bec34e9845b3464"}}, "6426df38855443bb838b7a3bec6790fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cabb6cdd891b4c3aa4203c6f62b574bb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "af075ffd2f734c8b8d8ed1beba3080e9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6426df38855443bb838b7a3bec6790fd", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cabb6cdd891b4c3aa4203c6f62b574bb", "value": 15856877.0}}, "a8c5961711a0447d849d893377535e47": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad453df3073a41bb87c6e11612f47065": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ee8cce41c67943d692e45df5672e1eaf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a8c5961711a0447d849d893377535e47", "placeholder": "\u200b", "style": "IPY_MODEL_ad453df3073a41bb87c6e11612f47065", "value": "classifier.ckpt: 100%"}}, "455d24315ae947cc8f2b0ba6388499b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44eff4de8493449e8a1eab525d8b2a71": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "035872182c9143ad8f86a89acc899334": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_455d24315ae947cc8f2b0ba6388499b4", "placeholder": "\u200b", "style": "IPY_MODEL_44eff4de8493449e8a1eab525d8b2a71", "value": " 15.9M/15.9M [00:00<00:00, 322MB/s]"}}, "fe2b9a79029841e980ca44eab24ef5f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e61a2386a81f4f6085910c2cbd0e42af": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ee8cce41c67943d692e45df5672e1eaf", "IPY_MODEL_af075ffd2f734c8b8d8ed1beba3080e9", "IPY_MODEL_035872182c9143ad8f86a89acc899334"], "layout": "IPY_MODEL_fe2b9a79029841e980ca44eab24ef5f9"}}, "edc9dafcaf924ab2a2c54829dd7fc370": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a077719fd7e742b09418f746b303c129": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c6616e9e2c484e6688962d7adfc41915": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_edc9dafcaf924ab2a2c54829dd7fc370", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a077719fd7e742b09418f746b303c129", "value": 128619.0}}, "cc1f9fd001904744ae71a86d00427563": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6678305566c64527be48b5e006018f7c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2642d234ac3d4ccd9d2eaef41f7d78cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cc1f9fd001904744ae71a86d00427563", "placeholder": "\u200b", "style": "IPY_MODEL_6678305566c64527be48b5e006018f7c", "value": "label_encoder.txt: 100%"}}, "35df409f12924faabc452ed61e5ffa88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9be07746a74e46438b53389a78c20bb2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "872dfdc1dc2c451fa785679707d3e254": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_35df409f12924faabc452ed61e5ffa88", "placeholder": "\u200b", "style": "IPY_MODEL_9be07746a74e46438b53389a78c20bb2", "value": " 129k/129k [00:00<00:00, 2.74MB/s]"}}, "2dc84d5400314013bc99a05b1d35be1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9a21c591eb3d4b80b61b6d311ccdbde1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2642d234ac3d4ccd9d2eaef41f7d78cd", "IPY_MODEL_c6616e9e2c484e6688962d7adfc41915", "IPY_MODEL_872dfdc1dc2c451fa785679707d3e254"], "layout": "IPY_MODEL_2dc84d5400314013bc99a05b1d35be1e"}}}, "version_major": 2, "version_minor": 0} @@ -1521,7 +1528,7 @@

    5. Use cleanlab to find label issues
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 066a9ceb6..015740e61 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:37.968603Z", - "iopub.status.busy": "2023-12-28T10:49:37.968073Z", - "iopub.status.idle": "2023-12-28T10:49:41.247886Z", - "shell.execute_reply": "2023-12-28T10:49:41.247199Z" + "iopub.execute_input": "2024-01-02T16:42:27.655009Z", + "iopub.status.busy": "2024-01-02T16:42:27.654799Z", + "iopub.status.idle": "2024-01-02T16:42:30.993613Z", + "shell.execute_reply": "2024-01-02T16:42:30.992971Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:41.251136Z", - "iopub.status.busy": "2023-12-28T10:49:41.250759Z", - "iopub.status.idle": "2023-12-28T10:49:41.254222Z", - "shell.execute_reply": "2023-12-28T10:49:41.253705Z" + "iopub.execute_input": "2024-01-02T16:42:30.996941Z", + "iopub.status.busy": "2024-01-02T16:42:30.996304Z", + "iopub.status.idle": "2024-01-02T16:42:30.999846Z", + "shell.execute_reply": "2024-01-02T16:42:30.999274Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:41.256387Z", - "iopub.status.busy": "2023-12-28T10:49:41.256195Z", - "iopub.status.idle": "2023-12-28T10:49:41.261260Z", - "shell.execute_reply": "2023-12-28T10:49:41.260774Z" + "iopub.execute_input": "2024-01-02T16:42:31.002378Z", + "iopub.status.busy": "2024-01-02T16:42:31.001938Z", + "iopub.status.idle": "2024-01-02T16:42:31.007046Z", + "shell.execute_reply": "2024-01-02T16:42:31.006568Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-28T10:49:41.263804Z", - "iopub.status.busy": "2023-12-28T10:49:41.263321Z", - "iopub.status.idle": "2023-12-28T10:49:42.833923Z", - "shell.execute_reply": "2023-12-28T10:49:42.833149Z" + "iopub.execute_input": "2024-01-02T16:42:31.009477Z", + "iopub.status.busy": "2024-01-02T16:42:31.009069Z", + "iopub.status.idle": "2024-01-02T16:42:32.646804Z", + "shell.execute_reply": "2024-01-02T16:42:32.645951Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-28T10:49:42.836978Z", - "iopub.status.busy": "2023-12-28T10:49:42.836556Z", - "iopub.status.idle": "2023-12-28T10:49:42.848880Z", - "shell.execute_reply": "2023-12-28T10:49:42.848236Z" + "iopub.execute_input": "2024-01-02T16:42:32.650212Z", + "iopub.status.busy": "2024-01-02T16:42:32.649705Z", + "iopub.status.idle": "2024-01-02T16:42:32.662157Z", + "shell.execute_reply": "2024-01-02T16:42:32.661493Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:42.882023Z", - "iopub.status.busy": "2023-12-28T10:49:42.881541Z", - "iopub.status.idle": "2023-12-28T10:49:42.887474Z", - "shell.execute_reply": "2023-12-28T10:49:42.886916Z" + "iopub.execute_input": "2024-01-02T16:42:32.694746Z", + "iopub.status.busy": "2024-01-02T16:42:32.694276Z", + "iopub.status.idle": "2024-01-02T16:42:32.700229Z", + "shell.execute_reply": "2024-01-02T16:42:32.699602Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-28T10:49:42.890058Z", - "iopub.status.busy": "2023-12-28T10:49:42.889601Z", - "iopub.status.idle": "2023-12-28T10:49:43.603575Z", - "shell.execute_reply": "2023-12-28T10:49:43.602915Z" + "iopub.execute_input": "2024-01-02T16:42:32.702997Z", + "iopub.status.busy": "2024-01-02T16:42:32.702522Z", + "iopub.status.idle": "2024-01-02T16:42:33.443249Z", + "shell.execute_reply": "2024-01-02T16:42:33.442619Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:43.606262Z", - "iopub.status.busy": "2023-12-28T10:49:43.605871Z", - "iopub.status.idle": "2023-12-28T10:49:44.155731Z", - "shell.execute_reply": "2023-12-28T10:49:44.155132Z" + "iopub.execute_input": "2024-01-02T16:42:33.445911Z", + "iopub.status.busy": "2024-01-02T16:42:33.445481Z", + "iopub.status.idle": "2024-01-02T16:42:34.287425Z", + "shell.execute_reply": "2024-01-02T16:42:34.286795Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2023-12-28T10:49:44.158650Z", - "iopub.status.busy": "2023-12-28T10:49:44.158414Z", - "iopub.status.idle": "2023-12-28T10:49:44.183087Z", - "shell.execute_reply": "2023-12-28T10:49:44.182440Z" + "iopub.execute_input": "2024-01-02T16:42:34.290342Z", + "iopub.status.busy": "2024-01-02T16:42:34.289962Z", + "iopub.status.idle": "2024-01-02T16:42:34.312682Z", + "shell.execute_reply": "2024-01-02T16:42:34.312152Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:44.185879Z", - "iopub.status.busy": "2023-12-28T10:49:44.185512Z", - "iopub.status.idle": "2023-12-28T10:49:44.189005Z", - "shell.execute_reply": "2023-12-28T10:49:44.188387Z" + "iopub.execute_input": "2024-01-02T16:42:34.315167Z", + "iopub.status.busy": "2024-01-02T16:42:34.314793Z", + "iopub.status.idle": "2024-01-02T16:42:34.318141Z", + "shell.execute_reply": "2024-01-02T16:42:34.317614Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:49:44.191401Z", - "iopub.status.busy": "2023-12-28T10:49:44.191195Z", - "iopub.status.idle": "2023-12-28T10:50:03.391225Z", - "shell.execute_reply": "2023-12-28T10:50:03.390522Z" + "iopub.execute_input": "2024-01-02T16:42:34.320385Z", + "iopub.status.busy": "2024-01-02T16:42:34.320034Z", + "iopub.status.idle": "2024-01-02T16:42:53.303371Z", + "shell.execute_reply": "2024-01-02T16:42:53.302681Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:03.394361Z", - "iopub.status.busy": "2023-12-28T10:50:03.394155Z", - "iopub.status.idle": "2023-12-28T10:50:03.398891Z", - "shell.execute_reply": "2023-12-28T10:50:03.398368Z" + "iopub.execute_input": "2024-01-02T16:42:53.306931Z", + "iopub.status.busy": "2024-01-02T16:42:53.306520Z", + "iopub.status.idle": "2024-01-02T16:42:53.311354Z", + "shell.execute_reply": "2024-01-02T16:42:53.310768Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:03.401189Z", - "iopub.status.busy": "2023-12-28T10:50:03.400996Z", - "iopub.status.idle": "2023-12-28T10:50:08.938865Z", - "shell.execute_reply": "2023-12-28T10:50:08.938132Z" + "iopub.execute_input": "2024-01-02T16:42:53.314000Z", + "iopub.status.busy": "2024-01-02T16:42:53.313578Z", + "iopub.status.idle": "2024-01-02T16:42:58.869258Z", + "shell.execute_reply": "2024-01-02T16:42:58.868544Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:08.943596Z", - "iopub.status.busy": "2023-12-28T10:50:08.942230Z", - "iopub.status.idle": "2023-12-28T10:50:08.950322Z", - "shell.execute_reply": "2023-12-28T10:50:08.949715Z" + "iopub.execute_input": "2024-01-02T16:42:58.872743Z", + "iopub.status.busy": "2024-01-02T16:42:58.872378Z", + "iopub.status.idle": "2024-01-02T16:42:58.878472Z", + "shell.execute_reply": "2024-01-02T16:42:58.877818Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:08.954876Z", - "iopub.status.busy": "2023-12-28T10:50:08.953573Z", - "iopub.status.idle": "2023-12-28T10:50:09.060592Z", - "shell.execute_reply": "2023-12-28T10:50:09.059756Z" + "iopub.execute_input": "2024-01-02T16:42:58.882057Z", + "iopub.status.busy": "2024-01-02T16:42:58.881797Z", + "iopub.status.idle": "2024-01-02T16:42:58.987900Z", + "shell.execute_reply": "2024-01-02T16:42:58.987100Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.063401Z", - "iopub.status.busy": "2023-12-28T10:50:09.062951Z", - "iopub.status.idle": "2023-12-28T10:50:09.073340Z", - "shell.execute_reply": "2023-12-28T10:50:09.072785Z" + "iopub.execute_input": "2024-01-02T16:42:58.991077Z", + "iopub.status.busy": "2024-01-02T16:42:58.990445Z", + "iopub.status.idle": "2024-01-02T16:42:59.000419Z", + "shell.execute_reply": "2024-01-02T16:42:58.999876Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.075862Z", - "iopub.status.busy": "2023-12-28T10:50:09.075472Z", - "iopub.status.idle": "2023-12-28T10:50:09.083854Z", - "shell.execute_reply": "2023-12-28T10:50:09.083205Z" + "iopub.execute_input": "2024-01-02T16:42:59.002804Z", + "iopub.status.busy": "2024-01-02T16:42:59.002585Z", + "iopub.status.idle": "2024-01-02T16:42:59.011368Z", + "shell.execute_reply": "2024-01-02T16:42:59.010819Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.086497Z", - "iopub.status.busy": "2023-12-28T10:50:09.086109Z", - "iopub.status.idle": "2023-12-28T10:50:09.090772Z", - "shell.execute_reply": "2023-12-28T10:50:09.090154Z" + "iopub.execute_input": "2024-01-02T16:42:59.013793Z", + "iopub.status.busy": "2024-01-02T16:42:59.013584Z", + "iopub.status.idle": "2024-01-02T16:42:59.018718Z", + "shell.execute_reply": "2024-01-02T16:42:59.018177Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.093175Z", - "iopub.status.busy": "2023-12-28T10:50:09.092800Z", - "iopub.status.idle": "2023-12-28T10:50:09.098848Z", - "shell.execute_reply": "2023-12-28T10:50:09.098313Z" + "iopub.execute_input": "2024-01-02T16:42:59.021014Z", + "iopub.status.busy": "2024-01-02T16:42:59.020813Z", + "iopub.status.idle": "2024-01-02T16:42:59.027483Z", + "shell.execute_reply": "2024-01-02T16:42:59.026933Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.101451Z", - "iopub.status.busy": "2023-12-28T10:50:09.101044Z", - "iopub.status.idle": "2023-12-28T10:50:09.215829Z", - "shell.execute_reply": "2023-12-28T10:50:09.215205Z" + "iopub.execute_input": "2024-01-02T16:42:59.030039Z", + "iopub.status.busy": "2024-01-02T16:42:59.029810Z", + "iopub.status.idle": "2024-01-02T16:42:59.147564Z", + "shell.execute_reply": "2024-01-02T16:42:59.146890Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.218431Z", - "iopub.status.busy": "2023-12-28T10:50:09.218053Z", - "iopub.status.idle": "2023-12-28T10:50:09.325661Z", - "shell.execute_reply": "2023-12-28T10:50:09.324962Z" + "iopub.execute_input": "2024-01-02T16:42:59.150592Z", + "iopub.status.busy": "2024-01-02T16:42:59.150096Z", + "iopub.status.idle": "2024-01-02T16:42:59.262500Z", + "shell.execute_reply": "2024-01-02T16:42:59.261779Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.328263Z", - "iopub.status.busy": "2023-12-28T10:50:09.327856Z", - "iopub.status.idle": "2023-12-28T10:50:09.436418Z", - "shell.execute_reply": "2023-12-28T10:50:09.435722Z" + "iopub.execute_input": "2024-01-02T16:42:59.265187Z", + "iopub.status.busy": "2024-01-02T16:42:59.264844Z", + "iopub.status.idle": "2024-01-02T16:42:59.374141Z", + "shell.execute_reply": "2024-01-02T16:42:59.373468Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.439135Z", - "iopub.status.busy": "2023-12-28T10:50:09.438746Z", - "iopub.status.idle": "2023-12-28T10:50:09.546764Z", - "shell.execute_reply": "2023-12-28T10:50:09.546104Z" + "iopub.execute_input": "2024-01-02T16:42:59.376846Z", + "iopub.status.busy": "2024-01-02T16:42:59.376511Z", + "iopub.status.idle": "2024-01-02T16:42:59.489951Z", + "shell.execute_reply": "2024-01-02T16:42:59.489279Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:09.549298Z", - "iopub.status.busy": "2023-12-28T10:50:09.549087Z", - "iopub.status.idle": "2023-12-28T10:50:09.552778Z", - "shell.execute_reply": "2023-12-28T10:50:09.552230Z" + "iopub.execute_input": "2024-01-02T16:42:59.492637Z", + "iopub.status.busy": "2024-01-02T16:42:59.492165Z", + "iopub.status.idle": "2024-01-02T16:42:59.495759Z", + "shell.execute_reply": "2024-01-02T16:42:59.495225Z" }, "nbsphinx": "hidden" }, @@ -1377,7 +1377,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0053385b8d0949c392857b68c25c20df": { + "0087ef5a32144b6c8bec34e9845b3464": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1429,7 +1429,65 @@ "width": null } }, - "083a7719dc494f76957e51bc9144a7c1": { + "035872182c9143ad8f86a89acc899334": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_455d24315ae947cc8f2b0ba6388499b4", + "placeholder": "​", + "style": "IPY_MODEL_44eff4de8493449e8a1eab525d8b2a71", + "value": " 15.9M/15.9M [00:00<00:00, 322MB/s]" + } + }, + "13fe3515fa2f4b0b9f901f4f9357b3c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f9412dd6609c4c359154bcdfdd0acbe3", + "IPY_MODEL_59a5497f2eb84d2a9da51e49ceeb98f3", + "IPY_MODEL_b812c970fae941f287f8a4f8c76f6ac6" + ], + "layout": "IPY_MODEL_e83ff9e0dab744e1b2bb2a9db4c3abdf" + } + }, + "157048c06e264f86bda3ef419060a06c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1e0ea345b83745549cb6416c44dd86e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1481,29 +1539,28 @@ "width": null } }, - "0b41fab769e945ff8579771955e47a7e": { + "23061bab7caf4050b58f287fc3ec33a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_68b89f6726bf4eca8cd7bf2a7d8f6c65", - "IPY_MODEL_f365411cd1444832b8012041bb95907b", - "IPY_MODEL_421f8744d6194e20a660a55aa540c912" - ], - "layout": "IPY_MODEL_fbf7075cd01c4b6f929393fcfc8d68b8" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4f31d78cc76a44d2878b81f03b3d02ea", + "placeholder": "​", + "style": "IPY_MODEL_9292b15e9b844d9a9c91dc007dd50283", + "value": "embedding_model.ckpt: 100%" } }, - "16512d5656144c5eb40a6c62d4966fe3": { + "233dc78cbaf5429783458584eef59a3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1555,44 +1612,49 @@ "width": null } }, - "17bd9f3b6c4b4783beadd9210d45501f": { + "2642d234ac3d4ccd9d2eaef41f7d78cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_87729e672c2d4ce2ba6a81b9da22e94f", - "IPY_MODEL_f3d936ca3c6e4573a2920e5c4c15ac6c", - "IPY_MODEL_e797666dfb5147acbc966d774965f0d4" - ], - "layout": "IPY_MODEL_79732b67a74d4267977a5c093caa7000" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc1f9fd001904744ae71a86d00427563", + "placeholder": "​", + "style": "IPY_MODEL_6678305566c64527be48b5e006018f7c", + "value": "label_encoder.txt: 100%" } }, - "186e084f99e84f7c8fd0b51cedb9f974": { + "2b5886d457e74a0895122c12a89d948e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a273dc0e93a1499b88571d2c39f7b31c", + "placeholder": "​", + "style": "IPY_MODEL_335f99df41e04f3182b16e23f6f63c44", + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "1a066142dce2413c9639bc8d8d30d658": { + "2d5f0e761ca44ddb9eba68d96cbd3514": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1608,7 +1670,7 @@ "description_width": "" } }, - "1f9f80b63e324c639867795266559d9c": { + "2dc84d5400314013bc99a05b1d35be1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1660,7 +1722,22 @@ "width": null } }, - "2dd4d023cf954d5cab921299018cb173": { + "335f99df41e04f3182b16e23f6f63c44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "337643ebaec0449aa9e3ae4146e1a9e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1712,68 +1789,7 @@ "width": null } }, - "2e3cdb0c7aba412bb0586c941f9ead84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "33582bcb8ede4407b485d42e36541e59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a12a4826c9084fdf86733da3675f8037", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b32901c5ee514d50ac8e6f5122ffa7eb", - "value": 3201.0 - } - }, - "421f8744d6194e20a660a55aa540c912": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2dd4d023cf954d5cab921299018cb173", - "placeholder": "​", - "style": "IPY_MODEL_ce46fde3101a4ee2bc65b97db93c7035", - "value": " 15.9M/15.9M [00:00<00:00, 345MB/s]" - } - }, - "4b84dadd3a044e088fd65bfb0664432b": { + "35df409f12924faabc452ed61e5ffa88": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1825,53 +1841,22 @@ "width": null } }, - "524846c05ee748419d3a5fcec0fe74a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f6e6e81be61947d1a3570d3762b32cb0", - "IPY_MODEL_5afd1de248dc4457b2648126d12212ac", - "IPY_MODEL_b34f459edf974edbae73845ec97afd01" - ], - "layout": "IPY_MODEL_a7bdb9d0c5454dab99da16dac727cfdb" - } - }, - "5afd1de248dc4457b2648126d12212ac": { + "44eff4de8493449e8a1eab525d8b2a71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0053385b8d0949c392857b68c25c20df", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_63685b0fb8fe4a31a64c83c9ef236e26", - "value": 128619.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "5efae04d3267437abfd1419b0114ca8b": { + "455d24315ae947cc8f2b0ba6388499b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1923,23 +1908,7 @@ "width": null } }, - "63685b0fb8fe4a31a64c83c9ef236e26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "68b89f6726bf4eca8cd7bf2a7d8f6c65": { + "4983d8113c63419f93ff80c4d6a5d5c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1954,43 +1923,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f22ef6b831894f3e83dba951bc27b73c", + "layout": "IPY_MODEL_1e0ea345b83745549cb6416c44dd86e6", "placeholder": "​", - "style": "IPY_MODEL_99050cbe69404e6f954be1e0ce084d7c", - "value": "classifier.ckpt: 100%" - } - }, - "68ec5a0d5997405a82e27be239693ac0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "71ae6f7f46ca41b8b1d29c43bd426598": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_9897f25c10154a29aa042fad42a78591", + "value": " 16.9M/16.9M [00:00<00:00, 158MB/s]" } }, - "73d02e4bcd8a419dbe0265e83aa6c1f0": { + "4f31d78cc76a44d2878b81f03b3d02ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2042,59 +1981,53 @@ "width": null } }, - "79732b67a74d4267977a5c093caa7000": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "59a5497f2eb84d2a9da51e49ceeb98f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_233dc78cbaf5429783458584eef59a3d", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bcccb7c786e14c64a02d7b9b9e59311d", + "value": 2041.0 + } + }, + "60c8340290db4347ab6f65ce3ca4d11c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_23061bab7caf4050b58f287fc3ec33a6", + "IPY_MODEL_92f62436bcd944f78efc7babcce019da", + "IPY_MODEL_4983d8113c63419f93ff80c4d6a5d5c3" + ], + "layout": "IPY_MODEL_fa6b2eb20ebf44718d7f3d8903fc8fc4" } }, - "7f22531a00764a7b97a7ae5cd2f285f7": { + "6426df38855443bb838b7a3bec6790fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2146,7 +2079,22 @@ "width": null } }, - "809ad3c5936148cbb415f950203ffb18": { + "6678305566c64527be48b5e006018f7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "687feb5310c2488ca4eb14ca4c8f2ad5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2161,35 +2109,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ccdcf0da3c724ee292bdf16fa4322cf4", - "IPY_MODEL_f0a87417b61b4d1ea5297d2c42ed9cae", - "IPY_MODEL_c01f650e1b91421398db09bd11b85534" + "IPY_MODEL_2b5886d457e74a0895122c12a89d948e", + "IPY_MODEL_adb86bfca83d45c6b1b1c371d9da559b", + "IPY_MODEL_9fa1f2883ea94f4faa2641df8ceb21b8" ], - "layout": "IPY_MODEL_16512d5656144c5eb40a6c62d4966fe3" + "layout": "IPY_MODEL_0087ef5a32144b6c8bec34e9845b3464" } }, - "843fb19da7f548398dc0377674cd1268": { + "739db12d623e4c43a91791914b371fee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_083a7719dc494f76957e51bc9144a7c1", - "placeholder": "​", - "style": "IPY_MODEL_f2ff2ef250af428cab639d6bab14a562", - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "87729e672c2d4ce2ba6a81b9da22e94f": { + "872dfdc1dc2c451fa785679707d3e254": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2204,13 +2147,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5efae04d3267437abfd1419b0114ca8b", + "layout": "IPY_MODEL_35df409f12924faabc452ed61e5ffa88", "placeholder": "​", - "style": "IPY_MODEL_bc61a30b92484d8990aa7b71bf342f82", - "value": "hyperparams.yaml: 100%" + "style": "IPY_MODEL_9be07746a74e46438b53389a78c20bb2", + "value": " 129k/129k [00:00<00:00, 2.74MB/s]" } }, - "87b9d9fd92514a929ab030bde176967f": { + "9037c8328d8040b4897bf11f9e592aec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2262,7 +2205,46 @@ "width": null } }, - "99050cbe69404e6f954be1e0ce084d7c": { + "9292b15e9b844d9a9c91dc007dd50283": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "92f62436bcd944f78efc7babcce019da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d0f0a981495d45728f277fb082ec264e", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_739db12d623e4c43a91791914b371fee", + "value": 16887676.0 + } + }, + "93fae6dec60d4a8098b79425198753d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2277,7 +2259,7 @@ "description_width": "" } }, - "a12a4826c9084fdf86733da3675f8037": { + "9600d17d803c4304a3c07d93fdd021a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2329,7 +2311,111 @@ "width": null } }, - "a7bdb9d0c5454dab99da16dac727cfdb": { + "9897f25c10154a29aa042fad42a78591": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a21c591eb3d4b80b61b6d311ccdbde1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2642d234ac3d4ccd9d2eaef41f7d78cd", + "IPY_MODEL_c6616e9e2c484e6688962d7adfc41915", + "IPY_MODEL_872dfdc1dc2c451fa785679707d3e254" + ], + "layout": "IPY_MODEL_2dc84d5400314013bc99a05b1d35be1e" + } + }, + "9be07746a74e46438b53389a78c20bb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c14092589eb40d1b823a51b799c5e9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9fa1f2883ea94f4faa2641df8ceb21b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9600d17d803c4304a3c07d93fdd021a2", + "placeholder": "​", + "style": "IPY_MODEL_93fae6dec60d4a8098b79425198753d8", + "value": " 3.20k/3.20k [00:00<00:00, 576kB/s]" + } + }, + "a077719fd7e742b09418f746b303c129": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a273dc0e93a1499b88571d2c39f7b31c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2381,7 +2467,7 @@ "width": null } }, - "ab46063ba5884c25bbb67861e9df900e": { + "a8c5961711a0447d849d893377535e47": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2433,163 +2519,147 @@ "width": null } }, - "b32901c5ee514d50ac8e6f5122ffa7eb": { + "ad453df3073a41bb87c6e11612f47065": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "b34f459edf974edbae73845ec97afd01": { + "adb86bfca83d45c6b1b1c371d9da559b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b3feb573217b4162bb80e913db68a16f", - "placeholder": "​", - "style": "IPY_MODEL_71ae6f7f46ca41b8b1d29c43bd426598", - "value": " 129k/129k [00:00<00:00, 13.1MB/s]" + "layout": "IPY_MODEL_e264c0d7bd7c411d9dc4b82b9cbe3531", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d5f0e761ca44ddb9eba68d96cbd3514", + "value": 3201.0 } }, - "b3feb573217b4162bb80e913db68a16f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "af075ffd2f734c8b8d8ed1beba3080e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6426df38855443bb838b7a3bec6790fd", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cabb6cdd891b4c3aa4203c6f62b574bb", + "value": 15856877.0 } }, - "b493c78b58574866a742de0b1549eecb": { + "b812c970fae941f287f8a4f8c76f6ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_337643ebaec0449aa9e3ae4146e1a9e4", + "placeholder": "​", + "style": "IPY_MODEL_9c14092589eb40d1b823a51b799c5e9a", + "value": " 2.04k/2.04k [00:00<00:00, 339kB/s]" } }, - "ba113e57ee6b45be85187c3b3c1aa630": { + "bcccb7c786e14c64a02d7b9b9e59311d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "bc61a30b92484d8990aa7b71bf342f82": { + "c6616e9e2c484e6688962d7adfc41915": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_edc9dafcaf924ab2a2c54829dd7fc370", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a077719fd7e742b09418f746b303c129", + "value": 128619.0 } }, - "c01f650e1b91421398db09bd11b85534": { + "cabb6cdd891b4c3aa4203c6f62b574bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7f22531a00764a7b97a7ae5cd2f285f7", - "placeholder": "​", - "style": "IPY_MODEL_186e084f99e84f7c8fd0b51cedb9f974", - "value": " 16.9M/16.9M [00:00<00:00, 275MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c6f71b2028154d16a58578947d83cc27": { + "cc1f9fd001904744ae71a86d00427563": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2641,58 +2711,7 @@ "width": null } }, - "ccdcf0da3c724ee292bdf16fa4322cf4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_87b9d9fd92514a929ab030bde176967f", - "placeholder": "​", - "style": "IPY_MODEL_ce13c544ce7e432ea69d60307d7153b7", - "value": "embedding_model.ckpt: 100%" - } - }, - "ce13c544ce7e432ea69d60307d7153b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ce46fde3101a4ee2bc65b97db93c7035": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dadd7d7c758b4d1f994208614b9d3193": { + "d0f0a981495d45728f277fb082ec264e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2744,28 +2763,7 @@ "width": null } }, - "e31a4b36cd5e41bd9171cf531ef604bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dadd7d7c758b4d1f994208614b9d3193", - "placeholder": "​", - "style": "IPY_MODEL_eee78ec5c4aa43f7add70a3f3dd1ccd8", - "value": " 3.20k/3.20k [00:00<00:00, 541kB/s]" - } - }, - "e66a327a542a46e58c9e673750803fb2": { + "e264c0d7bd7c411d9dc4b82b9cbe3531": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2817,28 +2815,7 @@ "width": null } }, - "e797666dfb5147acbc966d774965f0d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1f9f80b63e324c639867795266559d9c", - "placeholder": "​", - "style": "IPY_MODEL_68ec5a0d5997405a82e27be239693ac0", - "value": " 2.04k/2.04k [00:00<00:00, 345kB/s]" - } - }, - "ea89448c7a7b4f93bbb2b073cceb6f7e": { + "e61a2386a81f4f6085910c2cbd0e42af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2853,53 +2830,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_843fb19da7f548398dc0377674cd1268", - "IPY_MODEL_33582bcb8ede4407b485d42e36541e59", - "IPY_MODEL_e31a4b36cd5e41bd9171cf531ef604bc" + "IPY_MODEL_ee8cce41c67943d692e45df5672e1eaf", + "IPY_MODEL_af075ffd2f734c8b8d8ed1beba3080e9", + "IPY_MODEL_035872182c9143ad8f86a89acc899334" ], - "layout": "IPY_MODEL_ab46063ba5884c25bbb67861e9df900e" + "layout": "IPY_MODEL_fe2b9a79029841e980ca44eab24ef5f9" } }, - "eee78ec5c4aa43f7add70a3f3dd1ccd8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f0a87417b61b4d1ea5297d2c42ed9cae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e66a327a542a46e58c9e673750803fb2", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e3cdb0c7aba412bb0586c941f9ead84", - "value": 16887676.0 - } - }, - "f22ef6b831894f3e83dba951bc27b73c": { + "e83ff9e0dab744e1b2bb2a9db4c3abdf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2951,70 +2889,80 @@ "width": null } }, - "f2ff2ef250af428cab639d6bab14a562": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "edc9dafcaf924ab2a2c54829dd7fc370": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f365411cd1444832b8012041bb95907b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4b84dadd3a044e088fd65bfb0664432b", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b493c78b58574866a742de0b1549eecb", - "value": 15856877.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f3d936ca3c6e4573a2920e5c4c15ac6c": { + "ee8cce41c67943d692e45df5672e1eaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c6f71b2028154d16a58578947d83cc27", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a066142dce2413c9639bc8d8d30d658", - "value": 2041.0 + "layout": "IPY_MODEL_a8c5961711a0447d849d893377535e47", + "placeholder": "​", + "style": "IPY_MODEL_ad453df3073a41bb87c6e11612f47065", + "value": "classifier.ckpt: 100%" } }, - "f6e6e81be61947d1a3570d3762b32cb0": { + "f9412dd6609c4c359154bcdfdd0acbe3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3029,13 +2977,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_73d02e4bcd8a419dbe0265e83aa6c1f0", + "layout": "IPY_MODEL_9037c8328d8040b4897bf11f9e592aec", "placeholder": "​", - "style": "IPY_MODEL_ba113e57ee6b45be85187c3b3c1aa630", - "value": "label_encoder.txt: 100%" + "style": "IPY_MODEL_157048c06e264f86bda3ef419060a06c", + "value": "hyperparams.yaml: 100%" + } + }, + "fa6b2eb20ebf44718d7f3d8903fc8fc4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fbf7075cd01c4b6f929393fcfc8d68b8": { + "fe2b9a79029841e980ca44eab24ef5f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 0d58b85ee..59a311fd6 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1082,12 +1082,19 @@

    Functionality 1: Incremental issue search +
     Finding label issues ...
    +
    +
    +
    +
    +
    +
    @@ -1702,7 +1709,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"cb29499f69f646f8bc306688277aeef3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcc5a228aa7f4c13b9c3eb05ee9c8253": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4f90956440a74660be102e72c0aa965a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cb29499f69f646f8bc306688277aeef3", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bcc5a228aa7f4c13b9c3eb05ee9c8253", "value": 132.0}}, "8ca67813159948e49694d112e74187ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4fee7a574ae348a69a21b2fc3f9464dd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "946dd7c3ac5649fab11b9e9dc559d2bc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8ca67813159948e49694d112e74187ea", "placeholder": "\u200b", "style": "IPY_MODEL_4fee7a574ae348a69a21b2fc3f9464dd", "value": "Saving the dataset (1/1 shards): 100%"}}, "9da51a1f1257499e856f6e00deced49e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "280f82f911c94cafadfe5bf5271dccba": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c232c102c5c9462980c0a1422e8a29e9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9da51a1f1257499e856f6e00deced49e", "placeholder": "\u200b", "style": "IPY_MODEL_280f82f911c94cafadfe5bf5271dccba", "value": " 132/132 [00:00<00:00, 11010.86 examples/s]"}}, "06525292aee94ad1afbcfb7c80b2ebbd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "90124a1816fc4b2398ba329fa7593bf7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_946dd7c3ac5649fab11b9e9dc559d2bc", "IPY_MODEL_4f90956440a74660be102e72c0aa965a", "IPY_MODEL_c232c102c5c9462980c0a1422e8a29e9"], "layout": "IPY_MODEL_06525292aee94ad1afbcfb7c80b2ebbd"}}}, "version_major": 2, "version_minor": 0} +{"state": {"b581c1a21f8b40e8aaaca850551394c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "405c56b73c8c46a4adf63a66299367b4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "407f8338b2f645aa8b506f4d61a1f029": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b581c1a21f8b40e8aaaca850551394c9", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_405c56b73c8c46a4adf63a66299367b4", "value": 132.0}}, "0578f53af7da451f8c89f12173cafe24": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c53585d57b384f76b68b110915b25a5c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c9aaa30b92dc44babad0d9b527b76f8a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0578f53af7da451f8c89f12173cafe24", "placeholder": "\u200b", "style": "IPY_MODEL_c53585d57b384f76b68b110915b25a5c", "value": "Saving the dataset (1/1 shards): 100%"}}, "91ba1022deff4d149a7fe3f7ebd1640f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9645894b0b74beaa339a6bbe4ac7b36": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b96082c6094c46369d251561152ad7df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_91ba1022deff4d149a7fe3f7ebd1640f", "placeholder": "\u200b", "style": "IPY_MODEL_b9645894b0b74beaa339a6bbe4ac7b36", "value": " 132/132 [00:00<00:00, 10363.48 examples/s]"}}, "0237fcfb7df84d0a961faa9a854f084f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0bf73f39809642ee8f09fa8160e6e0bf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c9aaa30b92dc44babad0d9b527b76f8a", "IPY_MODEL_407f8338b2f645aa8b506f4d61a1f029", "IPY_MODEL_b96082c6094c46369d251561152ad7df"], "layout": "IPY_MODEL_0237fcfb7df84d0a961faa9a854f084f"}}}, "version_major": 2, "version_minor": 0} @@ -1735,7 +1742,7 @@

    Functionality 4: Adding a custom IssueManager
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 4526a8399..ecb2cffcb 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:15.143831Z", - "iopub.status.busy": "2023-12-28T10:50:15.143643Z", - "iopub.status.idle": "2023-12-28T10:50:16.225589Z", - "shell.execute_reply": "2023-12-28T10:50:16.224921Z" + "iopub.execute_input": "2024-01-02T16:43:04.926980Z", + "iopub.status.busy": "2024-01-02T16:43:04.926484Z", + "iopub.status.idle": "2024-01-02T16:43:06.013759Z", + "shell.execute_reply": "2024-01-02T16:43:06.013067Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.228524Z", - "iopub.status.busy": "2023-12-28T10:50:16.228242Z", - "iopub.status.idle": "2023-12-28T10:50:16.231362Z", - "shell.execute_reply": "2023-12-28T10:50:16.230794Z" + "iopub.execute_input": "2024-01-02T16:43:06.016851Z", + "iopub.status.busy": "2024-01-02T16:43:06.016545Z", + "iopub.status.idle": "2024-01-02T16:43:06.019887Z", + "shell.execute_reply": "2024-01-02T16:43:06.019295Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.233889Z", - "iopub.status.busy": "2023-12-28T10:50:16.233478Z", - "iopub.status.idle": "2023-12-28T10:50:16.242734Z", - "shell.execute_reply": "2023-12-28T10:50:16.242149Z" + "iopub.execute_input": "2024-01-02T16:43:06.022336Z", + "iopub.status.busy": "2024-01-02T16:43:06.021997Z", + "iopub.status.idle": "2024-01-02T16:43:06.031289Z", + "shell.execute_reply": "2024-01-02T16:43:06.030678Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.245105Z", - "iopub.status.busy": "2023-12-28T10:50:16.244739Z", - "iopub.status.idle": "2023-12-28T10:50:16.249707Z", - "shell.execute_reply": "2023-12-28T10:50:16.249227Z" + "iopub.execute_input": "2024-01-02T16:43:06.033592Z", + "iopub.status.busy": "2024-01-02T16:43:06.033248Z", + "iopub.status.idle": "2024-01-02T16:43:06.038438Z", + "shell.execute_reply": "2024-01-02T16:43:06.037916Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.252278Z", - "iopub.status.busy": "2023-12-28T10:50:16.251909Z", - "iopub.status.idle": "2023-12-28T10:50:16.525316Z", - "shell.execute_reply": "2023-12-28T10:50:16.524688Z" + "iopub.execute_input": "2024-01-02T16:43:06.040816Z", + "iopub.status.busy": "2024-01-02T16:43:06.040615Z", + "iopub.status.idle": "2024-01-02T16:43:06.323660Z", + "shell.execute_reply": "2024-01-02T16:43:06.323026Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.528184Z", - "iopub.status.busy": "2023-12-28T10:50:16.527851Z", - "iopub.status.idle": "2023-12-28T10:50:16.838734Z", - "shell.execute_reply": "2023-12-28T10:50:16.838066Z" + "iopub.execute_input": "2024-01-02T16:43:06.326553Z", + "iopub.status.busy": "2024-01-02T16:43:06.326323Z", + "iopub.status.idle": "2024-01-02T16:43:06.698597Z", + "shell.execute_reply": "2024-01-02T16:43:06.697906Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.841418Z", - "iopub.status.busy": "2023-12-28T10:50:16.841034Z", - "iopub.status.idle": "2023-12-28T10:50:16.865849Z", - "shell.execute_reply": "2023-12-28T10:50:16.865312Z" + "iopub.execute_input": "2024-01-02T16:43:06.701335Z", + "iopub.status.busy": "2024-01-02T16:43:06.700921Z", + "iopub.status.idle": "2024-01-02T16:43:06.726434Z", + "shell.execute_reply": "2024-01-02T16:43:06.725786Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.868637Z", - "iopub.status.busy": "2023-12-28T10:50:16.868251Z", - "iopub.status.idle": "2023-12-28T10:50:16.880006Z", - "shell.execute_reply": "2023-12-28T10:50:16.879381Z" + "iopub.execute_input": "2024-01-02T16:43:06.729295Z", + "iopub.status.busy": "2024-01-02T16:43:06.728817Z", + "iopub.status.idle": "2024-01-02T16:43:06.740870Z", + "shell.execute_reply": "2024-01-02T16:43:06.740224Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:16.882551Z", - "iopub.status.busy": "2023-12-28T10:50:16.882060Z", - "iopub.status.idle": "2023-12-28T10:50:18.165561Z", - "shell.execute_reply": "2023-12-28T10:50:18.164811Z" + "iopub.execute_input": "2024-01-02T16:43:06.743725Z", + "iopub.status.busy": "2024-01-02T16:43:06.743356Z", + "iopub.status.idle": "2024-01-02T16:43:08.041298Z", + "shell.execute_reply": "2024-01-02T16:43:08.040623Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.168547Z", - "iopub.status.busy": "2023-12-28T10:50:18.167995Z", - "iopub.status.idle": "2023-12-28T10:50:18.190487Z", - "shell.execute_reply": "2023-12-28T10:50:18.189870Z" + "iopub.execute_input": "2024-01-02T16:43:08.044353Z", + "iopub.status.busy": "2024-01-02T16:43:08.043895Z", + "iopub.status.idle": "2024-01-02T16:43:08.068172Z", + "shell.execute_reply": "2024-01-02T16:43:08.067547Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.193008Z", - "iopub.status.busy": "2023-12-28T10:50:18.192629Z", - "iopub.status.idle": "2023-12-28T10:50:18.213206Z", - "shell.execute_reply": "2023-12-28T10:50:18.212525Z" + "iopub.execute_input": "2024-01-02T16:43:08.070855Z", + "iopub.status.busy": "2024-01-02T16:43:08.070461Z", + "iopub.status.idle": "2024-01-02T16:43:08.091981Z", + "shell.execute_reply": "2024-01-02T16:43:08.091312Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:297: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:297: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:327: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.215885Z", - "iopub.status.busy": "2023-12-28T10:50:18.215443Z", - "iopub.status.idle": "2023-12-28T10:50:18.230713Z", - "shell.execute_reply": "2023-12-28T10:50:18.230077Z" + "iopub.execute_input": "2024-01-02T16:43:08.094876Z", + "iopub.status.busy": "2024-01-02T16:43:08.094479Z", + "iopub.status.idle": "2024-01-02T16:43:08.109093Z", + "shell.execute_reply": "2024-01-02T16:43:08.108576Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.233476Z", - "iopub.status.busy": "2023-12-28T10:50:18.233097Z", - "iopub.status.idle": "2023-12-28T10:50:18.256097Z", - "shell.execute_reply": "2023-12-28T10:50:18.255392Z" + "iopub.execute_input": "2024-01-02T16:43:08.111744Z", + "iopub.status.busy": "2024-01-02T16:43:08.111369Z", + "iopub.status.idle": "2024-01-02T16:43:08.133931Z", + "shell.execute_reply": "2024-01-02T16:43:08.133269Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "90124a1816fc4b2398ba329fa7593bf7", + "model_id": "0bf73f39809642ee8f09fa8160e6e0bf", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.259768Z", - "iopub.status.busy": "2023-12-28T10:50:18.259350Z", - "iopub.status.idle": "2023-12-28T10:50:18.274323Z", - "shell.execute_reply": "2023-12-28T10:50:18.273773Z" + "iopub.execute_input": "2024-01-02T16:43:08.137034Z", + "iopub.status.busy": "2024-01-02T16:43:08.136658Z", + "iopub.status.idle": "2024-01-02T16:43:08.151983Z", + "shell.execute_reply": "2024-01-02T16:43:08.151457Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.276936Z", - "iopub.status.busy": "2023-12-28T10:50:18.276560Z", - "iopub.status.idle": "2023-12-28T10:50:18.282972Z", - "shell.execute_reply": "2023-12-28T10:50:18.282455Z" + "iopub.execute_input": "2024-01-02T16:43:08.154411Z", + "iopub.status.busy": "2024-01-02T16:43:08.154107Z", + "iopub.status.idle": "2024-01-02T16:43:08.160430Z", + "shell.execute_reply": "2024-01-02T16:43:08.159900Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:18.285438Z", - "iopub.status.busy": "2023-12-28T10:50:18.285073Z", - "iopub.status.idle": "2023-12-28T10:50:18.303533Z", - "shell.execute_reply": "2023-12-28T10:50:18.302873Z" + "iopub.execute_input": "2024-01-02T16:43:08.162892Z", + "iopub.status.busy": "2024-01-02T16:43:08.162546Z", + "iopub.status.idle": "2024-01-02T16:43:08.182474Z", + "shell.execute_reply": "2024-01-02T16:43:08.181772Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06525292aee94ad1afbcfb7c80b2ebbd": { + "0237fcfb7df84d0a961faa9a854f084f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1482,61 +1482,7 @@ "width": null } }, - "280f82f911c94cafadfe5bf5271dccba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4f90956440a74660be102e72c0aa965a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb29499f69f646f8bc306688277aeef3", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bcc5a228aa7f4c13b9c3eb05ee9c8253", - "value": 132.0 - } - }, - "4fee7a574ae348a69a21b2fc3f9464dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8ca67813159948e49694d112e74187ea": { + "0578f53af7da451f8c89f12173cafe24": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1588,7 +1534,7 @@ "width": null } }, - "90124a1816fc4b2398ba329fa7593bf7": { + "0bf73f39809642ee8f09fa8160e6e0bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1603,35 +1549,54 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_946dd7c3ac5649fab11b9e9dc559d2bc", - "IPY_MODEL_4f90956440a74660be102e72c0aa965a", - "IPY_MODEL_c232c102c5c9462980c0a1422e8a29e9" + "IPY_MODEL_c9aaa30b92dc44babad0d9b527b76f8a", + "IPY_MODEL_407f8338b2f645aa8b506f4d61a1f029", + "IPY_MODEL_b96082c6094c46369d251561152ad7df" ], - "layout": "IPY_MODEL_06525292aee94ad1afbcfb7c80b2ebbd" + "layout": "IPY_MODEL_0237fcfb7df84d0a961faa9a854f084f" } }, - "946dd7c3ac5649fab11b9e9dc559d2bc": { + "405c56b73c8c46a4adf63a66299367b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "407f8338b2f645aa8b506f4d61a1f029": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8ca67813159948e49694d112e74187ea", - "placeholder": "​", - "style": "IPY_MODEL_4fee7a574ae348a69a21b2fc3f9464dd", - "value": "Saving the dataset (1/1 shards): 100%" + "layout": "IPY_MODEL_b581c1a21f8b40e8aaaca850551394c9", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_405c56b73c8c46a4adf63a66299367b4", + "value": 132.0 } }, - "9da51a1f1257499e856f6e00deced49e": { + "91ba1022deff4d149a7fe3f7ebd1640f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1683,44 +1648,7 @@ "width": null } }, - "bcc5a228aa7f4c13b9c3eb05ee9c8253": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c232c102c5c9462980c0a1422e8a29e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9da51a1f1257499e856f6e00deced49e", - "placeholder": "​", - "style": "IPY_MODEL_280f82f911c94cafadfe5bf5271dccba", - "value": " 132/132 [00:00<00:00, 11010.86 examples/s]" - } - }, - "cb29499f69f646f8bc306688277aeef3": { + "b581c1a21f8b40e8aaaca850551394c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1771,6 +1699,78 @@ "visibility": null, "width": null } + }, + "b96082c6094c46369d251561152ad7df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91ba1022deff4d149a7fe3f7ebd1640f", + "placeholder": "​", + "style": "IPY_MODEL_b9645894b0b74beaa339a6bbe4ac7b36", + "value": " 132/132 [00:00<00:00, 10363.48 examples/s]" + } + }, + "b9645894b0b74beaa339a6bbe4ac7b36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c53585d57b384f76b68b110915b25a5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c9aaa30b92dc44babad0d9b527b76f8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0578f53af7da451f8c89f12173cafe24", + "placeholder": "​", + "style": "IPY_MODEL_c53585d57b384f76b68b110915b25a5c", + "value": "Saving the dataset (1/1 shards): 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index 312f2a734..0fd728ae0 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -1774,7 +1774,7 @@

    Near duplicate issues
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 556eafb73..646c2392e 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:23.127399Z", - "iopub.status.busy": "2023-12-28T10:50:23.127207Z", - "iopub.status.idle": "2023-12-28T10:50:24.210804Z", - "shell.execute_reply": "2023-12-28T10:50:24.210190Z" + "iopub.execute_input": "2024-01-02T16:43:12.910070Z", + "iopub.status.busy": "2024-01-02T16:43:12.909888Z", + "iopub.status.idle": "2024-01-02T16:43:14.014787Z", + "shell.execute_reply": "2024-01-02T16:43:14.014141Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.213824Z", - "iopub.status.busy": "2023-12-28T10:50:24.213271Z", - "iopub.status.idle": "2023-12-28T10:50:24.216530Z", - "shell.execute_reply": "2023-12-28T10:50:24.216010Z" + "iopub.execute_input": "2024-01-02T16:43:14.017798Z", + "iopub.status.busy": "2024-01-02T16:43:14.017277Z", + "iopub.status.idle": "2024-01-02T16:43:14.020596Z", + "shell.execute_reply": "2024-01-02T16:43:14.020083Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.219198Z", - "iopub.status.busy": "2023-12-28T10:50:24.218823Z", - "iopub.status.idle": "2023-12-28T10:50:24.228723Z", - "shell.execute_reply": "2023-12-28T10:50:24.228181Z" + "iopub.execute_input": "2024-01-02T16:43:14.023239Z", + "iopub.status.busy": "2024-01-02T16:43:14.022887Z", + "iopub.status.idle": "2024-01-02T16:43:14.033253Z", + "shell.execute_reply": "2024-01-02T16:43:14.032704Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.231046Z", - "iopub.status.busy": "2023-12-28T10:50:24.230672Z", - "iopub.status.idle": "2023-12-28T10:50:24.235453Z", - "shell.execute_reply": "2023-12-28T10:50:24.234975Z" + "iopub.execute_input": "2024-01-02T16:43:14.036036Z", + "iopub.status.busy": "2024-01-02T16:43:14.035558Z", + "iopub.status.idle": "2024-01-02T16:43:14.040586Z", + "shell.execute_reply": "2024-01-02T16:43:14.039956Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.237950Z", - "iopub.status.busy": "2023-12-28T10:50:24.237536Z", - "iopub.status.idle": "2023-12-28T10:50:24.512859Z", - "shell.execute_reply": "2023-12-28T10:50:24.512246Z" + "iopub.execute_input": "2024-01-02T16:43:14.043211Z", + "iopub.status.busy": "2024-01-02T16:43:14.043005Z", + "iopub.status.idle": "2024-01-02T16:43:14.323675Z", + "shell.execute_reply": "2024-01-02T16:43:14.323039Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.515846Z", - "iopub.status.busy": "2023-12-28T10:50:24.515415Z", - "iopub.status.idle": "2023-12-28T10:50:24.888437Z", - "shell.execute_reply": "2023-12-28T10:50:24.887708Z" + "iopub.execute_input": "2024-01-02T16:43:14.326611Z", + "iopub.status.busy": "2024-01-02T16:43:14.326227Z", + "iopub.status.idle": "2024-01-02T16:43:14.698981Z", + "shell.execute_reply": "2024-01-02T16:43:14.698288Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.891202Z", - "iopub.status.busy": "2023-12-28T10:50:24.890750Z", - "iopub.status.idle": "2023-12-28T10:50:24.893821Z", - "shell.execute_reply": "2023-12-28T10:50:24.893238Z" + "iopub.execute_input": "2024-01-02T16:43:14.701623Z", + "iopub.status.busy": "2024-01-02T16:43:14.701415Z", + "iopub.status.idle": "2024-01-02T16:43:14.704308Z", + "shell.execute_reply": "2024-01-02T16:43:14.703756Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.896308Z", - "iopub.status.busy": "2023-12-28T10:50:24.895918Z", - "iopub.status.idle": "2023-12-28T10:50:24.934585Z", - "shell.execute_reply": "2023-12-28T10:50:24.933888Z" + "iopub.execute_input": "2024-01-02T16:43:14.706734Z", + "iopub.status.busy": "2024-01-02T16:43:14.706532Z", + "iopub.status.idle": "2024-01-02T16:43:14.745069Z", + "shell.execute_reply": "2024-01-02T16:43:14.744459Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:24.937574Z", - "iopub.status.busy": "2023-12-28T10:50:24.936861Z", - "iopub.status.idle": "2023-12-28T10:50:26.251582Z", - "shell.execute_reply": "2023-12-28T10:50:26.250822Z" + "iopub.execute_input": "2024-01-02T16:43:14.747628Z", + "iopub.status.busy": "2024-01-02T16:43:14.747226Z", + "iopub.status.idle": "2024-01-02T16:43:16.079434Z", + "shell.execute_reply": "2024-01-02T16:43:16.078668Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.254711Z", - "iopub.status.busy": "2023-12-28T10:50:26.254201Z", - "iopub.status.idle": "2023-12-28T10:50:26.275060Z", - "shell.execute_reply": "2023-12-28T10:50:26.274446Z" + "iopub.execute_input": "2024-01-02T16:43:16.082391Z", + "iopub.status.busy": "2024-01-02T16:43:16.081860Z", + "iopub.status.idle": "2024-01-02T16:43:16.101229Z", + "shell.execute_reply": "2024-01-02T16:43:16.100650Z" } }, "outputs": [ @@ -855,10 +855,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.277595Z", - "iopub.status.busy": "2023-12-28T10:50:26.277217Z", - "iopub.status.idle": "2023-12-28T10:50:26.284148Z", - "shell.execute_reply": "2023-12-28T10:50:26.283553Z" + "iopub.execute_input": "2024-01-02T16:43:16.103832Z", + "iopub.status.busy": "2024-01-02T16:43:16.103518Z", + "iopub.status.idle": "2024-01-02T16:43:16.111043Z", + "shell.execute_reply": "2024-01-02T16:43:16.110390Z" } }, "outputs": [ @@ -955,10 +955,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.286524Z", - "iopub.status.busy": "2023-12-28T10:50:26.286144Z", - "iopub.status.idle": "2023-12-28T10:50:26.293526Z", - "shell.execute_reply": "2023-12-28T10:50:26.292892Z" + "iopub.execute_input": "2024-01-02T16:43:16.113360Z", + "iopub.status.busy": "2024-01-02T16:43:16.113149Z", + "iopub.status.idle": "2024-01-02T16:43:16.120923Z", + "shell.execute_reply": "2024-01-02T16:43:16.120283Z" } }, "outputs": [ @@ -1025,10 +1025,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.296120Z", - "iopub.status.busy": "2023-12-28T10:50:26.295707Z", - "iopub.status.idle": "2023-12-28T10:50:26.305261Z", - "shell.execute_reply": "2023-12-28T10:50:26.304626Z" + "iopub.execute_input": "2024-01-02T16:43:16.123402Z", + "iopub.status.busy": "2024-01-02T16:43:16.123195Z", + "iopub.status.idle": "2024-01-02T16:43:16.133393Z", + "shell.execute_reply": "2024-01-02T16:43:16.132855Z" } }, "outputs": [ @@ -1182,10 +1182,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.307771Z", - "iopub.status.busy": "2023-12-28T10:50:26.307345Z", - "iopub.status.idle": "2023-12-28T10:50:26.317022Z", - "shell.execute_reply": "2023-12-28T10:50:26.316381Z" + "iopub.execute_input": "2024-01-02T16:43:16.135617Z", + "iopub.status.busy": "2024-01-02T16:43:16.135416Z", + "iopub.status.idle": "2024-01-02T16:43:16.145516Z", + "shell.execute_reply": "2024-01-02T16:43:16.144985Z" } }, "outputs": [ @@ -1301,10 +1301,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.319568Z", - "iopub.status.busy": "2023-12-28T10:50:26.319187Z", - "iopub.status.idle": "2023-12-28T10:50:26.326878Z", - "shell.execute_reply": "2023-12-28T10:50:26.326246Z" + "iopub.execute_input": "2024-01-02T16:43:16.147717Z", + "iopub.status.busy": "2024-01-02T16:43:16.147522Z", + "iopub.status.idle": "2024-01-02T16:43:16.155043Z", + "shell.execute_reply": "2024-01-02T16:43:16.154462Z" }, "scrolled": true }, @@ -1429,10 +1429,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:26.329366Z", - "iopub.status.busy": "2023-12-28T10:50:26.328932Z", - "iopub.status.idle": "2023-12-28T10:50:26.339254Z", - "shell.execute_reply": "2023-12-28T10:50:26.338626Z" + "iopub.execute_input": "2024-01-02T16:43:16.157338Z", + "iopub.status.busy": "2024-01-02T16:43:16.157139Z", + "iopub.status.idle": "2024-01-02T16:43:16.167394Z", + "shell.execute_reply": "2024-01-02T16:43:16.166761Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/index.html b/master/tutorials/datalab/index.html index 3f47dc404..39da9aa9d 100644 --- a/master/tutorials/datalab/index.html +++ b/master/tutorials/datalab/index.html @@ -567,7 +567,7 @@

    Datalab Tutorials
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/datalab/tabular.html b/master/tutorials/datalab/tabular.html index 17c41595a..4db41ea79 100644 --- a/master/tutorials/datalab/tabular.html +++ b/master/tutorials/datalab/tabular.html @@ -1043,12 +1043,19 @@

    5. Use cleanlab to find label issues +
     Finding label issues ...
    +
    +
    +
    +
    +
    +
    +
     Finding outlier issues ...
     Finding near_duplicate issues ...
     Finding non_iid issues ...
    @@ -1178,11 +1185,11 @@ 

    5. Use cleanlab to find label issues @@ -1682,7 +1689,7 @@

    Near-duplicate issues
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 2b26df229..bc4240224 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:31.441284Z", - "iopub.status.busy": "2023-12-28T10:50:31.441088Z", - "iopub.status.idle": "2023-12-28T10:50:32.477040Z", - "shell.execute_reply": "2023-12-28T10:50:32.476406Z" + "iopub.execute_input": "2024-01-02T16:43:20.948874Z", + "iopub.status.busy": "2024-01-02T16:43:20.948322Z", + "iopub.status.idle": "2024-01-02T16:43:21.979951Z", + "shell.execute_reply": "2024-01-02T16:43:21.979340Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.480062Z", - "iopub.status.busy": "2023-12-28T10:50:32.479560Z", - "iopub.status.idle": "2023-12-28T10:50:32.496295Z", - "shell.execute_reply": "2023-12-28T10:50:32.495689Z" + "iopub.execute_input": "2024-01-02T16:43:21.982910Z", + "iopub.status.busy": "2024-01-02T16:43:21.982428Z", + "iopub.status.idle": "2024-01-02T16:43:21.999057Z", + "shell.execute_reply": "2024-01-02T16:43:21.998569Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.499063Z", - "iopub.status.busy": "2023-12-28T10:50:32.498709Z", - "iopub.status.idle": "2023-12-28T10:50:32.616178Z", - "shell.execute_reply": "2023-12-28T10:50:32.615497Z" + "iopub.execute_input": "2024-01-02T16:43:22.001488Z", + "iopub.status.busy": "2024-01-02T16:43:22.001280Z", + "iopub.status.idle": "2024-01-02T16:43:22.209088Z", + "shell.execute_reply": "2024-01-02T16:43:22.208493Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.618746Z", - "iopub.status.busy": "2023-12-28T10:50:32.618413Z", - "iopub.status.idle": "2023-12-28T10:50:32.622202Z", - "shell.execute_reply": "2023-12-28T10:50:32.621676Z" + "iopub.execute_input": "2024-01-02T16:43:22.211461Z", + "iopub.status.busy": "2024-01-02T16:43:22.211256Z", + "iopub.status.idle": "2024-01-02T16:43:22.215053Z", + "shell.execute_reply": "2024-01-02T16:43:22.214550Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.624399Z", - "iopub.status.busy": "2023-12-28T10:50:32.624200Z", - "iopub.status.idle": "2023-12-28T10:50:32.632440Z", - "shell.execute_reply": "2023-12-28T10:50:32.631798Z" + "iopub.execute_input": "2024-01-02T16:43:22.217526Z", + "iopub.status.busy": "2024-01-02T16:43:22.217167Z", + "iopub.status.idle": "2024-01-02T16:43:22.224971Z", + "shell.execute_reply": "2024-01-02T16:43:22.224471Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.635046Z", - "iopub.status.busy": "2023-12-28T10:50:32.634851Z", - "iopub.status.idle": "2023-12-28T10:50:32.637733Z", - "shell.execute_reply": "2023-12-28T10:50:32.637210Z" + "iopub.execute_input": "2024-01-02T16:43:22.227490Z", + "iopub.status.busy": "2024-01-02T16:43:22.227117Z", + "iopub.status.idle": "2024-01-02T16:43:22.229922Z", + "shell.execute_reply": "2024-01-02T16:43:22.229380Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:32.639906Z", - "iopub.status.busy": "2023-12-28T10:50:32.639711Z", - "iopub.status.idle": "2023-12-28T10:50:36.211594Z", - "shell.execute_reply": "2023-12-28T10:50:36.210955Z" + "iopub.execute_input": "2024-01-02T16:43:22.232312Z", + "iopub.status.busy": "2024-01-02T16:43:22.231945Z", + "iopub.status.idle": "2024-01-02T16:43:25.922257Z", + "shell.execute_reply": "2024-01-02T16:43:25.921533Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:36.215028Z", - "iopub.status.busy": "2023-12-28T10:50:36.214564Z", - "iopub.status.idle": "2023-12-28T10:50:36.224889Z", - "shell.execute_reply": "2023-12-28T10:50:36.224389Z" + "iopub.execute_input": "2024-01-02T16:43:25.925625Z", + "iopub.status.busy": "2024-01-02T16:43:25.925143Z", + "iopub.status.idle": "2024-01-02T16:43:25.934900Z", + "shell.execute_reply": "2024-01-02T16:43:25.934264Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:36.227489Z", - "iopub.status.busy": "2023-12-28T10:50:36.227110Z", - "iopub.status.idle": "2023-12-28T10:50:37.592670Z", - "shell.execute_reply": "2023-12-28T10:50:37.591938Z" + "iopub.execute_input": "2024-01-02T16:43:25.937602Z", + "iopub.status.busy": "2024-01-02T16:43:25.937082Z", + "iopub.status.idle": "2024-01-02T16:43:27.292747Z", + "shell.execute_reply": "2024-01-02T16:43:27.291971Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.596195Z", - "iopub.status.busy": "2023-12-28T10:50:37.595493Z", - "iopub.status.idle": "2023-12-28T10:50:37.620177Z", - "shell.execute_reply": "2023-12-28T10:50:37.619548Z" + "iopub.execute_input": "2024-01-02T16:43:27.297304Z", + "iopub.status.busy": "2024-01-02T16:43:27.295918Z", + "iopub.status.idle": "2024-01-02T16:43:27.322952Z", + "shell.execute_reply": "2024-01-02T16:43:27.322336Z" }, "scrolled": true }, @@ -595,11 +595,11 @@ "\n", "Examples representing most severe instances of this issue:\n", " is_class_imbalance_issue class_imbalance_score\n", - "0 False 1.0\n", - "619 False 1.0\n", - "620 False 1.0\n", - "621 False 1.0\n", - "622 False 1.0\n" + "393 False 0.156217\n", + "391 False 0.156217\n", + "806 False 0.156217\n", + "805 False 0.156217\n", + "156 False 0.156217\n" ] } ], @@ -621,10 +621,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.623337Z", - "iopub.status.busy": "2023-12-28T10:50:37.622874Z", - "iopub.status.idle": "2023-12-28T10:50:37.633631Z", - "shell.execute_reply": "2023-12-28T10:50:37.633012Z" + "iopub.execute_input": "2024-01-02T16:43:27.327379Z", + "iopub.status.busy": "2024-01-02T16:43:27.326244Z", + "iopub.status.idle": "2024-01-02T16:43:27.338918Z", + "shell.execute_reply": "2024-01-02T16:43:27.338323Z" } }, "outputs": [ @@ -728,10 +728,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.636687Z", - "iopub.status.busy": "2023-12-28T10:50:37.636248Z", - "iopub.status.idle": "2023-12-28T10:50:37.649137Z", - "shell.execute_reply": "2023-12-28T10:50:37.648498Z" + "iopub.execute_input": "2024-01-02T16:43:27.343212Z", + "iopub.status.busy": "2024-01-02T16:43:27.342071Z", + "iopub.status.idle": "2024-01-02T16:43:27.356605Z", + "shell.execute_reply": "2024-01-02T16:43:27.356004Z" } }, "outputs": [ @@ -860,10 +860,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.652394Z", - "iopub.status.busy": "2023-12-28T10:50:37.651968Z", - "iopub.status.idle": "2023-12-28T10:50:37.663000Z", - "shell.execute_reply": "2023-12-28T10:50:37.662379Z" + "iopub.execute_input": "2024-01-02T16:43:27.360952Z", + "iopub.status.busy": "2024-01-02T16:43:27.359817Z", + "iopub.status.idle": "2024-01-02T16:43:27.372494Z", + "shell.execute_reply": "2024-01-02T16:43:27.371883Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.667123Z", - "iopub.status.busy": "2023-12-28T10:50:37.665984Z", - "iopub.status.idle": "2023-12-28T10:50:37.681083Z", - "shell.execute_reply": "2023-12-28T10:50:37.680350Z" + "iopub.execute_input": "2024-01-02T16:43:27.376830Z", + "iopub.status.busy": "2024-01-02T16:43:27.375700Z", + "iopub.status.idle": "2024-01-02T16:43:27.387239Z", + "shell.execute_reply": "2024-01-02T16:43:27.386752Z" } }, "outputs": [ @@ -1091,10 +1091,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.683973Z", - "iopub.status.busy": "2023-12-28T10:50:37.683587Z", - "iopub.status.idle": "2023-12-28T10:50:37.692321Z", - "shell.execute_reply": "2023-12-28T10:50:37.691583Z" + "iopub.execute_input": "2024-01-02T16:43:27.390068Z", + "iopub.status.busy": "2024-01-02T16:43:27.389674Z", + "iopub.status.idle": "2024-01-02T16:43:27.397684Z", + "shell.execute_reply": "2024-01-02T16:43:27.397154Z" } }, "outputs": [ @@ -1178,10 +1178,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.694815Z", - "iopub.status.busy": "2023-12-28T10:50:37.694435Z", - "iopub.status.idle": "2023-12-28T10:50:37.701429Z", - "shell.execute_reply": "2023-12-28T10:50:37.700802Z" + "iopub.execute_input": "2024-01-02T16:43:27.400276Z", + "iopub.status.busy": "2024-01-02T16:43:27.399787Z", + "iopub.status.idle": "2024-01-02T16:43:27.406739Z", + "shell.execute_reply": "2024-01-02T16:43:27.406110Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:37.704030Z", - "iopub.status.busy": "2023-12-28T10:50:37.703659Z", - "iopub.status.idle": "2023-12-28T10:50:37.710668Z", - "shell.execute_reply": "2023-12-28T10:50:37.710146Z" + "iopub.execute_input": "2024-01-02T16:43:27.409417Z", + "iopub.status.busy": "2024-01-02T16:43:27.409027Z", + "iopub.status.idle": "2024-01-02T16:43:27.415905Z", + "shell.execute_reply": "2024-01-02T16:43:27.415281Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 86c14044f..b0ce30a9c 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -943,7 +943,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'change_pin', 'lost_or_stolen_phone'}
    +Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card'}
     

    Let’s view the i-th example in the dataset:

    @@ -990,43 +990,43 @@

    2. Load and format the text dataset

    -
    +

    -
    +

    -
    +

    -
    +

    -
    +
    -
    +
    -
    +

    @@ -1076,12 +1076,19 @@

    4. Use cleanlab to find issues in your dataset +
     Finding label issues ...
    +
    +
    +
    +
    +
    +
    +
     Finding outlier issues ...
     Fitting OOD estimator based on provided features ...
     Finding near_duplicate issues ...
    @@ -1213,11 +1220,11 @@ 

    4. Use cleanlab to find issues in your dataset @@ -1754,7 +1761,7 @@

    Non-IID issues (data drift) -{"state": {"6e380842062a4f86a1da5c3620386874": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px"}}, "806e57cfdd8d43908533f6c8749dfc5e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fa3ab0136e38413986721ab71d6c782c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6e380842062a4f86a1da5c3620386874", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_806e57cfdd8d43908533f6c8749dfc5e", "value": 0.0}}, "1455c763b56e4f39b88a6414c2355423": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d1b163668ee4b41b7ad74d75d2dc71e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "65533490e4f24682811aa80ac70ccf1f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1455c763b56e4f39b88a6414c2355423", "placeholder": "\u200b", "style": "IPY_MODEL_3d1b163668ee4b41b7ad74d75d2dc71e", "value": ""}}, "e60717a72163424bb32e1816cff3c885": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0cb0e29166d84be6bb583a9004da5c42": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "51edb07e48b3499db5b8bd03abef074a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e60717a72163424bb32e1816cff3c885", "placeholder": "\u200b", "style": "IPY_MODEL_0cb0e29166d84be6bb583a9004da5c42", "value": " 0/0 [00:00<?, ?it/s]"}}, "da85687dd9944e3195c03ba5ad6634c2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6026f80c546045ba90baf2862e01385f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_65533490e4f24682811aa80ac70ccf1f", "IPY_MODEL_fa3ab0136e38413986721ab71d6c782c", "IPY_MODEL_51edb07e48b3499db5b8bd03abef074a"], "layout": "IPY_MODEL_da85687dd9944e3195c03ba5ad6634c2"}}, "a966318b56e54dbe98185eefc1bec3c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2fe20bd6cf34cdf9f60ff919c96b412": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f52aa0c0ae654587b9ac91bfbff3f902": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a966318b56e54dbe98185eefc1bec3c1", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f2fe20bd6cf34cdf9f60ff919c96b412", "value": 391.0}}, "0966d9b7d5e24713916cc115e44fb7fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da97121956124c4ab00f9b4f6dd5cd2f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7dd4da3c549c45ed9fce6579b27530f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0966d9b7d5e24713916cc115e44fb7fb", "placeholder": "\u200b", "style": "IPY_MODEL_da97121956124c4ab00f9b4f6dd5cd2f", "value": ".gitattributes: 100%"}}, "58a51e9e6f934e80ba32e2d119e41f51": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "258793d030024251a3078230b6b4de71": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f15c8b7603b84636b18b6dc61c822809": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_58a51e9e6f934e80ba32e2d119e41f51", "placeholder": "\u200b", "style": "IPY_MODEL_258793d030024251a3078230b6b4de71", "value": " 391/391 [00:00<00:00, 47.6kB/s]"}}, "a76a4b5363954ec8af096601ae1bf519": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "29bd27e9df334714828cb191caed3549": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7dd4da3c549c45ed9fce6579b27530f4", "IPY_MODEL_f52aa0c0ae654587b9ac91bfbff3f902", "IPY_MODEL_f15c8b7603b84636b18b6dc61c822809"], "layout": "IPY_MODEL_a76a4b5363954ec8af096601ae1bf519"}}, "f13687759a0f458ba3800556c1d4502d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e23c71c5924644438757e783faf26508": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "36cd132150f441d0b9ef3414e99ef5fd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f13687759a0f458ba3800556c1d4502d", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e23c71c5924644438757e783faf26508", "value": 2211.0}}, "59f4c423e0754af7b1e3cc1a4fa53016": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c423f0c304cc4921b77c3d1ab1914fdb": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "07c2bfa4e96b4691b9a3f82df6fdd6ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_59f4c423e0754af7b1e3cc1a4fa53016", "placeholder": "\u200b", "style": "IPY_MODEL_c423f0c304cc4921b77c3d1ab1914fdb", "value": "README.md: 100%"}}, "9f699baa71f64faf92d047221b5d2709": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "675b1d5061ee4cab9e4ddcef179c7b28": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "abf85ff646214c7b853811d149c094a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9f699baa71f64faf92d047221b5d2709", "placeholder": "\u200b", "style": "IPY_MODEL_675b1d5061ee4cab9e4ddcef179c7b28", "value": " 2.21k/2.21k [00:00<00:00, 276kB/s]"}}, "3965c43b7d344e2485e977fb58bffb4f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "188c19db59ae461cb5ab90cc79c1374a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_07c2bfa4e96b4691b9a3f82df6fdd6ca", "IPY_MODEL_36cd132150f441d0b9ef3414e99ef5fd", "IPY_MODEL_abf85ff646214c7b853811d149c094a2"], "layout": "IPY_MODEL_3965c43b7d344e2485e977fb58bffb4f"}}, "e9f13c6ee67b4bc7a11fa4f92b4e9ef9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a77c831d71a14e4194159194b8de5cec": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ad2c279439164c91870ca5c5222da96b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e9f13c6ee67b4bc7a11fa4f92b4e9ef9", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a77c831d71a14e4194159194b8de5cec", "value": 665.0}}, "002a3ba42c6f4d21b674649860b6bb8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2bfe3078b0cc4f1db9e03a00f19b073b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "616b1baa8a814f71aaa6754339d8c41b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_002a3ba42c6f4d21b674649860b6bb8f", "placeholder": "\u200b", "style": "IPY_MODEL_2bfe3078b0cc4f1db9e03a00f19b073b", "value": "config.json: 100%"}}, "2cfad4c3de7f4876b8e7277537e1bb9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "650efd38f38e4610bbf408e72bb11dca": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "dcf37c90171448c782e2f524d7912a43": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2cfad4c3de7f4876b8e7277537e1bb9d", "placeholder": "\u200b", "style": "IPY_MODEL_650efd38f38e4610bbf408e72bb11dca", "value": " 665/665 [00:00<00:00, 81.6kB/s]"}}, "861043b327284c33a90a7914f68a6868": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7bb1e7e05e60454ab46487e0b06e8015": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_616b1baa8a814f71aaa6754339d8c41b", "IPY_MODEL_ad2c279439164c91870ca5c5222da96b", "IPY_MODEL_dcf37c90171448c782e2f524d7912a43"], "layout": "IPY_MODEL_861043b327284c33a90a7914f68a6868"}}, "f9e8808c383a4da9846012ddf7516297": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "414097937b4f44d298d7822517bbcd23": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c83e58a81a144c7a925fa5df4992a126": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f9e8808c383a4da9846012ddf7516297", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_414097937b4f44d298d7822517bbcd23", "value": 54245363.0}}, "4f91f5d0bd1848c480a38f4dbf27c703": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a08ef0e6f74f47d8ab2c891a22141fad": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "fdc27e75dbc04752b2cc294edefd6439": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4f91f5d0bd1848c480a38f4dbf27c703", "placeholder": "\u200b", "style": "IPY_MODEL_a08ef0e6f74f47d8ab2c891a22141fad", "value": "pytorch_model.bin: 100%"}}, "b1c9216294b0463882e8dd83016634ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "082542db1bb140bd99c7ca0e790e7939": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ace80592947c4c4b8577f2b04a6f648f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b1c9216294b0463882e8dd83016634ae", "placeholder": "\u200b", "style": "IPY_MODEL_082542db1bb140bd99c7ca0e790e7939", "value": " 54.2M/54.2M [00:00<00:00, 304MB/s]"}}, "df45180808974725a66cfb7c70093730": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e30203085c184383b15297aff47b5870": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fdc27e75dbc04752b2cc294edefd6439", "IPY_MODEL_c83e58a81a144c7a925fa5df4992a126", "IPY_MODEL_ace80592947c4c4b8577f2b04a6f648f"], "layout": "IPY_MODEL_df45180808974725a66cfb7c70093730"}}, "01e2a9e1904e4fd3b8ab0e029fb19423": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c45d8f06bd66462c823a39d4d862fe48": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2906da4b1e354c26940b3597884f7b68": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_01e2a9e1904e4fd3b8ab0e029fb19423", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c45d8f06bd66462c823a39d4d862fe48", "value": 466062.0}}, "becb4412c5454df4a0869e76eb093406": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79d3bd9b1d24452387ab0be1f5a6101e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "eab8ebc83ced49e79d9e70411bc7a4fc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_becb4412c5454df4a0869e76eb093406", "placeholder": "\u200b", "style": "IPY_MODEL_79d3bd9b1d24452387ab0be1f5a6101e", "value": "tokenizer.json: 100%"}}, "653a5a02c18746348f55fedb9cb64441": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "decbf2ca27454671bc94d3a3b272b819": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2cc49402c85e4e48ad59581e7ebc948d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_653a5a02c18746348f55fedb9cb64441", "placeholder": "\u200b", "style": "IPY_MODEL_decbf2ca27454671bc94d3a3b272b819", "value": " 466k/466k [00:00<00:00, 6.11MB/s]"}}, "bd85665d8c5143279c00bb60adea2639": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ee68691137f4c98896da1fef213310d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_eab8ebc83ced49e79d9e70411bc7a4fc", "IPY_MODEL_2906da4b1e354c26940b3597884f7b68", "IPY_MODEL_2cc49402c85e4e48ad59581e7ebc948d"], "layout": "IPY_MODEL_bd85665d8c5143279c00bb60adea2639"}}, "ce3a324339fe44c4bee2a4a1b278d1bb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b97b5f9f21443998985d0d4ff2719b9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f773b402043d426caffb41dc672d966e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ce3a324339fe44c4bee2a4a1b278d1bb", "max": 29.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9b97b5f9f21443998985d0d4ff2719b9", "value": 29.0}}, "c11231a052ff493985580acd5a0529ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50fa280cff9a4d5882a5db045cf40ff8": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b984b1bf0c194d66bb4b4d902bc1e0fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c11231a052ff493985580acd5a0529ab", "placeholder": "\u200b", "style": "IPY_MODEL_50fa280cff9a4d5882a5db045cf40ff8", "value": "tokenizer_config.json: 100%"}}, "0ce7d40556744bd4b07afbe2f362a2e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "76d6c78025ed4fb4accf51226797c8bd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e7ed4e54956842e1abcf7d52c4b7cb65": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0ce7d40556744bd4b07afbe2f362a2e3", "placeholder": "\u200b", "style": "IPY_MODEL_76d6c78025ed4fb4accf51226797c8bd", "value": " 29.0/29.0 [00:00<00:00, 3.66kB/s]"}}, "8f180b0650b64cb48614e0e1135798d5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "886021f191904b33a4371d295ac03dc0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b984b1bf0c194d66bb4b4d902bc1e0fe", "IPY_MODEL_f773b402043d426caffb41dc672d966e", "IPY_MODEL_e7ed4e54956842e1abcf7d52c4b7cb65"], "layout": "IPY_MODEL_8f180b0650b64cb48614e0e1135798d5"}}, "b3ea83bfea984719aad6881d02d15726": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9860b38f8fa640b0b794c7b461f40b8e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1612a462a5f347c290efc6b184fad81d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b3ea83bfea984719aad6881d02d15726", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9860b38f8fa640b0b794c7b461f40b8e", "value": 231508.0}}, "95e07a64f5904b45843138bd367778a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "342e7e5e018c4763889b5e40e408b40b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "46288b5e4f834b86b2da02b8787d3a18": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_95e07a64f5904b45843138bd367778a5", "placeholder": "\u200b", "style": "IPY_MODEL_342e7e5e018c4763889b5e40e408b40b", "value": "vocab.txt: 100%"}}, "3e289c46d5bb48a48c228c595cb9ed06": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63cfe310a8af436b9beb983d7268434d": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "361b24cc1b2344759145f8b024b40930": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3e289c46d5bb48a48c228c595cb9ed06", "placeholder": "\u200b", "style": "IPY_MODEL_63cfe310a8af436b9beb983d7268434d", "value": " 232k/232k [00:00<00:00, 11.8MB/s]"}}, "e4b66cd9e5c84cc68b42a33d8d69248d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a308d4d8368044c0b8902a8d75fe15c9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_46288b5e4f834b86b2da02b8787d3a18", "IPY_MODEL_1612a462a5f347c290efc6b184fad81d", "IPY_MODEL_361b24cc1b2344759145f8b024b40930"], "layout": "IPY_MODEL_e4b66cd9e5c84cc68b42a33d8d69248d"}}}, "version_major": 2, "version_minor": 0} +{"state": {"08f47e5fa8db41d58b7ff6bfe3370d47": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px"}}, "58875ab8a5c3488aacfdc39e4b5676c8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "352078d368bd40fba10fbe2f07365998": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_08f47e5fa8db41d58b7ff6bfe3370d47", "max": 1.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_58875ab8a5c3488aacfdc39e4b5676c8", "value": 0.0}}, "a7b5f8ee14044146b36ab94719f42e69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c719c33aeb394c7b882ea7afce9a1f79": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8a3114c4394e46e1b7ce1495220913db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a7b5f8ee14044146b36ab94719f42e69", "placeholder": "\u200b", "style": "IPY_MODEL_c719c33aeb394c7b882ea7afce9a1f79", "value": ""}}, "00872c50338a4b1eb76079883d76d52a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3859f207e8504fe884329e18f61b651a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "23d4c289cba944d19d2219709e2ec6fa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_00872c50338a4b1eb76079883d76d52a", "placeholder": "\u200b", "style": "IPY_MODEL_3859f207e8504fe884329e18f61b651a", "value": " 0/0 [00:00<?, ?it/s]"}}, "eaaadabf61ef4df1a6b16c5b9bd3316b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "032575598b4e473292addfff7238dfa1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8a3114c4394e46e1b7ce1495220913db", "IPY_MODEL_352078d368bd40fba10fbe2f07365998", "IPY_MODEL_23d4c289cba944d19d2219709e2ec6fa"], "layout": "IPY_MODEL_eaaadabf61ef4df1a6b16c5b9bd3316b"}}, "0a26c2fdb81e4727987b87ecb38bc533": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17a12fa38de743528ce11c50b737ce2c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4e4725582b7d4c51a27837f8e60e4795": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0a26c2fdb81e4727987b87ecb38bc533", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_17a12fa38de743528ce11c50b737ce2c", "value": 391.0}}, "1031454917d647a0b4cfe90beb0830cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e88cd21cb2c243bebb5a5a8e1ecb095c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "577727eb0f1b47c48279709c3b9a9608": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1031454917d647a0b4cfe90beb0830cc", "placeholder": "\u200b", "style": "IPY_MODEL_e88cd21cb2c243bebb5a5a8e1ecb095c", "value": ".gitattributes: 100%"}}, "cb66f921283e4958a739e49462cc4a04": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d067bae22a7149b0b925bcff92c6c521": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e2eefec0360443059b5fb7468a9344b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cb66f921283e4958a739e49462cc4a04", "placeholder": "\u200b", "style": "IPY_MODEL_d067bae22a7149b0b925bcff92c6c521", "value": " 391/391 [00:00<00:00, 47.5kB/s]"}}, "09839e5f04d7436787998fc1f0c11891": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cfa8e33b9ba34f9b84f7b2894dcb1cdd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_577727eb0f1b47c48279709c3b9a9608", "IPY_MODEL_4e4725582b7d4c51a27837f8e60e4795", "IPY_MODEL_e2eefec0360443059b5fb7468a9344b5"], "layout": "IPY_MODEL_09839e5f04d7436787998fc1f0c11891"}}, "6942705f444b47bcb26fa2b03e75680f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f6cdba4653642b2b283ba5bf58317e2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ec93e5ab280d446aa1a9adf1d266a1fa": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6942705f444b47bcb26fa2b03e75680f", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1f6cdba4653642b2b283ba5bf58317e2", "value": 2211.0}}, "66ef85debde64162ae6c512de7c515ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c56c66205764ccf916a1e50a15b64b6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c03dd46fef444ca39b07539e939e4f9b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_66ef85debde64162ae6c512de7c515ee", "placeholder": "\u200b", "style": "IPY_MODEL_6c56c66205764ccf916a1e50a15b64b6", "value": "README.md: 100%"}}, "9b79eef51bb748e895abcbf600656188": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96054d864a4149bfa010505bb1cb6ac7": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7727a3aa392d4e308626c24f2cb24804": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9b79eef51bb748e895abcbf600656188", "placeholder": "\u200b", "style": "IPY_MODEL_96054d864a4149bfa010505bb1cb6ac7", "value": " 2.21k/2.21k [00:00<00:00, 271kB/s]"}}, "020920f595fa4115a5c7409d5b8c51e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9be87e374eee4c2cadd9184c312be454": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c03dd46fef444ca39b07539e939e4f9b", "IPY_MODEL_ec93e5ab280d446aa1a9adf1d266a1fa", "IPY_MODEL_7727a3aa392d4e308626c24f2cb24804"], "layout": "IPY_MODEL_020920f595fa4115a5c7409d5b8c51e4"}}, "a9b344d87e044d63b1aeb911dccf6c52": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6ddcf0e3d9c4420940e7dff92d49558": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "22b09695a81248ef84a9befb859f13b9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a9b344d87e044d63b1aeb911dccf6c52", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d6ddcf0e3d9c4420940e7dff92d49558", "value": 665.0}}, "3bad9e6168634b67ad7431240182d0d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9c134709d5b1445db6c4dd35221b352a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "be2f22e6b3854b0c9a41624a878904e2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3bad9e6168634b67ad7431240182d0d8", "placeholder": "\u200b", "style": "IPY_MODEL_9c134709d5b1445db6c4dd35221b352a", "value": "config.json: 100%"}}, "03edcac73dcc40b8a17fae8bd6b93aec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df34e95d26004ef994b0fce1364a7a43": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0fa2df8226524d9d8d5b78234f773e8d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_03edcac73dcc40b8a17fae8bd6b93aec", "placeholder": "\u200b", "style": "IPY_MODEL_df34e95d26004ef994b0fce1364a7a43", "value": " 665/665 [00:00<00:00, 81.8kB/s]"}}, "56da5629abdf42609544500e398f5aaa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8bae24cade9a4f9fb9606ed955bcc7d8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_be2f22e6b3854b0c9a41624a878904e2", "IPY_MODEL_22b09695a81248ef84a9befb859f13b9", "IPY_MODEL_0fa2df8226524d9d8d5b78234f773e8d"], "layout": "IPY_MODEL_56da5629abdf42609544500e398f5aaa"}}, "3161d3546d3e4867a4f90d42697c4d3e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "381df575cc04443f8850f5a376171268": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1d95bc1485a14e32b156a7680ac3765b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3161d3546d3e4867a4f90d42697c4d3e", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_381df575cc04443f8850f5a376171268", "value": 54245363.0}}, "0a38aad82ac14989a4a9217f3a811d6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f4d9a96d2b3a4ffda14f1ca5b6753fac": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "611caa81a658462c931147c01308d1e1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0a38aad82ac14989a4a9217f3a811d6f", "placeholder": "\u200b", "style": "IPY_MODEL_f4d9a96d2b3a4ffda14f1ca5b6753fac", "value": "pytorch_model.bin: 100%"}}, "7ccd9dae7d0e4db5b0e3661287ab260f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "45fccd0e53e94a58a9f202b1ef377e8f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a62a499ccde44fd49197c357e5bf6794": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7ccd9dae7d0e4db5b0e3661287ab260f", "placeholder": "\u200b", "style": "IPY_MODEL_45fccd0e53e94a58a9f202b1ef377e8f", "value": " 54.2M/54.2M [00:00<00:00, 294MB/s]"}}, "a178e4969c0648598019d2eed591912c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cefe0741da744da1b2967a16480c3466": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_611caa81a658462c931147c01308d1e1", "IPY_MODEL_1d95bc1485a14e32b156a7680ac3765b", "IPY_MODEL_a62a499ccde44fd49197c357e5bf6794"], "layout": "IPY_MODEL_a178e4969c0648598019d2eed591912c"}}, "6aab1e9b8d704c299dc28baabf1b6b35": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a32f8f2df62f460d8ff9351020ba1726": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e7b9f584e7734ecc96eef9c869aa866f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6aab1e9b8d704c299dc28baabf1b6b35", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a32f8f2df62f460d8ff9351020ba1726", "value": 466062.0}}, "9b786c2a321444849e65be50966b1717": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "edda32825d264c45a43c0cddd935f4fb": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4904c252f6964710a37546566c62f010": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9b786c2a321444849e65be50966b1717", "placeholder": "\u200b", "style": "IPY_MODEL_edda32825d264c45a43c0cddd935f4fb", "value": "tokenizer.json: 100%"}}, "e64e46031cfc4c28af96f771e862a54f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff41dec3e8d544528ed4122b89c1cc1a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0fcefde9154b4c99bd494cf6f4543d4a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e64e46031cfc4c28af96f771e862a54f", "placeholder": "\u200b", "style": "IPY_MODEL_ff41dec3e8d544528ed4122b89c1cc1a", "value": " 466k/466k [00:00<00:00, 25.4MB/s]"}}, "46d3aa33fc824244b3b76d5eb4d0641e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "134a1cda4acb4edab174eb997e37d992": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4904c252f6964710a37546566c62f010", "IPY_MODEL_e7b9f584e7734ecc96eef9c869aa866f", "IPY_MODEL_0fcefde9154b4c99bd494cf6f4543d4a"], "layout": "IPY_MODEL_46d3aa33fc824244b3b76d5eb4d0641e"}}, "290788bc416e4895aad25c5a54722fd8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25faffe7c8f345b1b119c8293d76de1a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2100b7eda7a9467e987e6e29f35ab150": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_290788bc416e4895aad25c5a54722fd8", "max": 29.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_25faffe7c8f345b1b119c8293d76de1a", "value": 29.0}}, "419c312bbb7b42cca785da2b636fd355": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ff2eb9a434c453b9583447e1a2dbeca": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2ce939ae604d4ff49b74657b5177c48e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_419c312bbb7b42cca785da2b636fd355", "placeholder": "\u200b", "style": "IPY_MODEL_9ff2eb9a434c453b9583447e1a2dbeca", "value": "tokenizer_config.json: 100%"}}, "c316145836374f27876f8194d241b65c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9f956cf1eb7400180959cb85e53b150": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "06c3e93466e841cdb8f0766e760cb4b9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c316145836374f27876f8194d241b65c", "placeholder": "\u200b", "style": "IPY_MODEL_c9f956cf1eb7400180959cb85e53b150", "value": " 29.0/29.0 [00:00<00:00, 3.80kB/s]"}}, "82aa04caa9f44924bec5d3db501834d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a21341e48eb48a5a8cb46237cc6040e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2ce939ae604d4ff49b74657b5177c48e", "IPY_MODEL_2100b7eda7a9467e987e6e29f35ab150", "IPY_MODEL_06c3e93466e841cdb8f0766e760cb4b9"], "layout": "IPY_MODEL_82aa04caa9f44924bec5d3db501834d6"}}, "8e7bf439a8924e5c9e36eac02d23bdb1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6cb80492555460883d684e9c4ca11bc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "727d364de29748c89b359fc9269e8c21": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8e7bf439a8924e5c9e36eac02d23bdb1", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d6cb80492555460883d684e9c4ca11bc", "value": 231508.0}}, "7e2ebbcb0d404d869282cebad95ee30d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2570298ac39547cabb1eacf559587a8c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6b2c89ca673045e6910f473ffcd2a155": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7e2ebbcb0d404d869282cebad95ee30d", "placeholder": "\u200b", "style": "IPY_MODEL_2570298ac39547cabb1eacf559587a8c", "value": "vocab.txt: 100%"}}, "979bd28b34ed41f8aba44e5222499d15": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a5640826dd44475e821fa74b810eb1a4": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "09194539b33f415eb6243079a5493c34": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_979bd28b34ed41f8aba44e5222499d15", "placeholder": "\u200b", "style": "IPY_MODEL_a5640826dd44475e821fa74b810eb1a4", "value": " 232k/232k [00:00<00:00, 5.41MB/s]"}}, "72d78ee7c8994847928a783170a0882f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "efbcffcfef5b4247bac1c857e7f07a58": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6b2c89ca673045e6910f473ffcd2a155", "IPY_MODEL_727d364de29748c89b359fc9269e8c21", "IPY_MODEL_09194539b33f415eb6243079a5493c34"], "layout": "IPY_MODEL_72d78ee7c8994847928a783170a0882f"}}}, "version_major": 2, "version_minor": 0} @@ -1788,7 +1795,7 @@

    Non-IID issues (data drift)
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 71524e6c1..df25d3811 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:42.296308Z", - "iopub.status.busy": "2023-12-28T10:50:42.295684Z", - "iopub.status.idle": "2023-12-28T10:50:44.808313Z", - "shell.execute_reply": "2023-12-28T10:50:44.807639Z" + "iopub.execute_input": "2024-01-02T16:43:32.130627Z", + "iopub.status.busy": "2024-01-02T16:43:32.130344Z", + "iopub.status.idle": "2024-01-02T16:43:34.442750Z", + "shell.execute_reply": "2024-01-02T16:43:34.442185Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6026f80c546045ba90baf2862e01385f", + "model_id": "032575598b4e473292addfff7238dfa1", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.811256Z", - "iopub.status.busy": "2023-12-28T10:50:44.810826Z", - "iopub.status.idle": "2023-12-28T10:50:44.814274Z", - "shell.execute_reply": "2023-12-28T10:50:44.813736Z" + "iopub.execute_input": "2024-01-02T16:43:34.445733Z", + "iopub.status.busy": "2024-01-02T16:43:34.445233Z", + "iopub.status.idle": "2024-01-02T16:43:34.448635Z", + "shell.execute_reply": "2024-01-02T16:43:34.448077Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.816672Z", - "iopub.status.busy": "2023-12-28T10:50:44.816355Z", - "iopub.status.idle": "2023-12-28T10:50:44.819588Z", - "shell.execute_reply": "2023-12-28T10:50:44.819072Z" + "iopub.execute_input": "2024-01-02T16:43:34.451209Z", + "iopub.status.busy": "2024-01-02T16:43:34.450761Z", + "iopub.status.idle": "2024-01-02T16:43:34.454043Z", + "shell.execute_reply": "2024-01-02T16:43:34.453455Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.821895Z", - "iopub.status.busy": "2023-12-28T10:50:44.821594Z", - "iopub.status.idle": "2023-12-28T10:50:44.855877Z", - "shell.execute_reply": "2023-12-28T10:50:44.855303Z" + "iopub.execute_input": "2024-01-02T16:43:34.456329Z", + "iopub.status.busy": "2024-01-02T16:43:34.456027Z", + "iopub.status.idle": "2024-01-02T16:43:34.540440Z", + "shell.execute_reply": "2024-01-02T16:43:34.539823Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.858326Z", - "iopub.status.busy": "2023-12-28T10:50:44.858017Z", - "iopub.status.idle": "2023-12-28T10:50:44.862431Z", - "shell.execute_reply": "2023-12-28T10:50:44.861892Z" + "iopub.execute_input": "2024-01-02T16:43:34.543030Z", + "iopub.status.busy": "2024-01-02T16:43:34.542554Z", + "iopub.status.idle": "2024-01-02T16:43:34.547162Z", + "shell.execute_reply": "2024-01-02T16:43:34.546619Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'change_pin', 'lost_or_stolen_phone'}\n" + "Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.865000Z", - "iopub.status.busy": "2023-12-28T10:50:44.864591Z", - "iopub.status.idle": "2023-12-28T10:50:44.868468Z", - "shell.execute_reply": "2023-12-28T10:50:44.867926Z" + "iopub.execute_input": "2024-01-02T16:43:34.549361Z", + "iopub.status.busy": "2024-01-02T16:43:34.549169Z", + "iopub.status.idle": "2024-01-02T16:43:34.553002Z", + "shell.execute_reply": "2024-01-02T16:43:34.552474Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:44.871001Z", - "iopub.status.busy": "2023-12-28T10:50:44.870636Z", - "iopub.status.idle": "2023-12-28T10:50:53.857935Z", - "shell.execute_reply": "2023-12-28T10:50:53.857284Z" + "iopub.execute_input": "2024-01-02T16:43:34.555619Z", + "iopub.status.busy": "2024-01-02T16:43:34.555119Z", + "iopub.status.idle": "2024-01-02T16:43:44.089984Z", + "shell.execute_reply": "2024-01-02T16:43:44.089314Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "29bd27e9df334714828cb191caed3549", + "model_id": "cfa8e33b9ba34f9b84f7b2894dcb1cdd", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "188c19db59ae461cb5ab90cc79c1374a", + "model_id": "9be87e374eee4c2cadd9184c312be454", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7bb1e7e05e60454ab46487e0b06e8015", + "model_id": "8bae24cade9a4f9fb9606ed955bcc7d8", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e30203085c184383b15297aff47b5870", + "model_id": "cefe0741da744da1b2967a16480c3466", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8ee68691137f4c98896da1fef213310d", + "model_id": "134a1cda4acb4edab174eb997e37d992", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "886021f191904b33a4371d295ac03dc0", + "model_id": "5a21341e48eb48a5a8cb46237cc6040e", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a308d4d8368044c0b8902a8d75fe15c9", + "model_id": "efbcffcfef5b4247bac1c857e7f07a58", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:53.861261Z", - "iopub.status.busy": "2023-12-28T10:50:53.861000Z", - "iopub.status.idle": "2023-12-28T10:50:55.033789Z", - "shell.execute_reply": "2023-12-28T10:50:55.033107Z" + "iopub.execute_input": "2024-01-02T16:43:44.093238Z", + "iopub.status.busy": "2024-01-02T16:43:44.093010Z", + "iopub.status.idle": "2024-01-02T16:43:45.277162Z", + "shell.execute_reply": "2024-01-02T16:43:45.276455Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:55.037446Z", - "iopub.status.busy": "2023-12-28T10:50:55.037085Z", - "iopub.status.idle": "2023-12-28T10:50:55.040116Z", - "shell.execute_reply": "2023-12-28T10:50:55.039449Z" + "iopub.execute_input": "2024-01-02T16:43:45.280984Z", + "iopub.status.busy": "2024-01-02T16:43:45.280513Z", + "iopub.status.idle": "2024-01-02T16:43:45.285245Z", + "shell.execute_reply": "2024-01-02T16:43:45.284646Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:55.042832Z", - "iopub.status.busy": "2023-12-28T10:50:55.042554Z", - "iopub.status.idle": "2023-12-28T10:50:56.393143Z", - "shell.execute_reply": "2023-12-28T10:50:56.392396Z" + "iopub.execute_input": "2024-01-02T16:43:45.289761Z", + "iopub.status.busy": "2024-01-02T16:43:45.288461Z", + "iopub.status.idle": "2024-01-02T16:43:46.640141Z", + "shell.execute_reply": "2024-01-02T16:43:46.639366Z" }, "scrolled": true }, @@ -639,10 +639,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.398315Z", - "iopub.status.busy": "2023-12-28T10:50:56.396728Z", - "iopub.status.idle": "2023-12-28T10:50:56.425015Z", - "shell.execute_reply": "2023-12-28T10:50:56.424374Z" + "iopub.execute_input": "2024-01-02T16:43:46.643964Z", + "iopub.status.busy": "2024-01-02T16:43:46.643338Z", + "iopub.status.idle": "2024-01-02T16:43:46.668494Z", + "shell.execute_reply": "2024-01-02T16:43:46.667901Z" }, "scrolled": true }, @@ -759,11 +759,11 @@ "\n", "Examples representing most severe instances of this issue:\n", " is_class_imbalance_issue class_imbalance_score\n", - "0 False 1.0\n", - "658 False 1.0\n", - "659 False 1.0\n", - "660 False 1.0\n", - "661 False 1.0\n" + "454 False 0.08\n", + "452 False 0.08\n", + "453 False 0.08\n", + "455 False 0.08\n", + "456 False 0.08\n" ] } ], @@ -785,10 +785,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.429700Z", - "iopub.status.busy": "2023-12-28T10:50:56.428366Z", - "iopub.status.idle": "2023-12-28T10:50:56.442084Z", - "shell.execute_reply": "2023-12-28T10:50:56.441475Z" + "iopub.execute_input": "2024-01-02T16:43:46.671770Z", + "iopub.status.busy": "2024-01-02T16:43:46.671376Z", + "iopub.status.idle": "2024-01-02T16:43:46.681971Z", + "shell.execute_reply": "2024-01-02T16:43:46.681353Z" }, "scrolled": true }, @@ -898,10 +898,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.446739Z", - "iopub.status.busy": "2023-12-28T10:50:56.445420Z", - "iopub.status.idle": "2023-12-28T10:50:56.452586Z", - "shell.execute_reply": "2023-12-28T10:50:56.452098Z" + "iopub.execute_input": "2024-01-02T16:43:46.685258Z", + "iopub.status.busy": "2024-01-02T16:43:46.684870Z", + "iopub.status.idle": "2024-01-02T16:43:46.690275Z", + "shell.execute_reply": "2024-01-02T16:43:46.689673Z" } }, "outputs": [ @@ -939,10 +939,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.455481Z", - "iopub.status.busy": "2023-12-28T10:50:56.455067Z", - "iopub.status.idle": "2023-12-28T10:50:56.462931Z", - "shell.execute_reply": "2023-12-28T10:50:56.462282Z" + "iopub.execute_input": "2024-01-02T16:43:46.693177Z", + "iopub.status.busy": "2024-01-02T16:43:46.692741Z", + "iopub.status.idle": "2024-01-02T16:43:46.700334Z", + "shell.execute_reply": "2024-01-02T16:43:46.699860Z" } }, "outputs": [ @@ -1059,10 +1059,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.465736Z", - "iopub.status.busy": "2023-12-28T10:50:56.465287Z", - "iopub.status.idle": "2023-12-28T10:50:56.472693Z", - "shell.execute_reply": "2023-12-28T10:50:56.472086Z" + "iopub.execute_input": "2024-01-02T16:43:46.702614Z", + "iopub.status.busy": "2024-01-02T16:43:46.702272Z", + "iopub.status.idle": "2024-01-02T16:43:46.708457Z", + "shell.execute_reply": "2024-01-02T16:43:46.707998Z" } }, "outputs": [ @@ -1145,10 +1145,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.475278Z", - "iopub.status.busy": "2023-12-28T10:50:56.474893Z", - "iopub.status.idle": "2023-12-28T10:50:56.482054Z", - "shell.execute_reply": "2023-12-28T10:50:56.481519Z" + "iopub.execute_input": "2024-01-02T16:43:46.710612Z", + "iopub.status.busy": "2024-01-02T16:43:46.710275Z", + "iopub.status.idle": "2024-01-02T16:43:46.715977Z", + "shell.execute_reply": "2024-01-02T16:43:46.715510Z" } }, "outputs": [ @@ -1256,10 +1256,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.484554Z", - "iopub.status.busy": "2023-12-28T10:50:56.484170Z", - "iopub.status.idle": "2023-12-28T10:50:56.493457Z", - "shell.execute_reply": "2023-12-28T10:50:56.492928Z" + "iopub.execute_input": "2024-01-02T16:43:46.718214Z", + "iopub.status.busy": "2024-01-02T16:43:46.717868Z", + "iopub.status.idle": "2024-01-02T16:43:46.726346Z", + "shell.execute_reply": "2024-01-02T16:43:46.725880Z" } }, "outputs": [ @@ -1370,10 +1370,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.495852Z", - "iopub.status.busy": "2023-12-28T10:50:56.495479Z", - "iopub.status.idle": "2023-12-28T10:50:56.501321Z", - "shell.execute_reply": "2023-12-28T10:50:56.500758Z" + "iopub.execute_input": "2024-01-02T16:43:46.728556Z", + "iopub.status.busy": "2024-01-02T16:43:46.728219Z", + "iopub.status.idle": "2024-01-02T16:43:46.733467Z", + "shell.execute_reply": "2024-01-02T16:43:46.733009Z" } }, "outputs": [ @@ -1441,10 +1441,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.503767Z", - "iopub.status.busy": "2023-12-28T10:50:56.503361Z", - "iopub.status.idle": "2023-12-28T10:50:56.509401Z", - "shell.execute_reply": "2023-12-28T10:50:56.508757Z" + "iopub.execute_input": "2024-01-02T16:43:46.735774Z", + "iopub.status.busy": "2024-01-02T16:43:46.735223Z", + "iopub.status.idle": "2024-01-02T16:43:46.741279Z", + "shell.execute_reply": "2024-01-02T16:43:46.740745Z" } }, "outputs": [ @@ -1522,10 +1522,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.511997Z", - "iopub.status.busy": "2023-12-28T10:50:56.511614Z", - "iopub.status.idle": "2023-12-28T10:50:56.517085Z", - "shell.execute_reply": "2023-12-28T10:50:56.516521Z" + "iopub.execute_input": "2024-01-02T16:43:46.743620Z", + "iopub.status.busy": "2024-01-02T16:43:46.743420Z", + "iopub.status.idle": "2024-01-02T16:43:46.749243Z", + "shell.execute_reply": "2024-01-02T16:43:46.748588Z" }, "nbsphinx": "hidden" }, @@ -1561,10 +1561,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:50:56.519544Z", - "iopub.status.busy": "2023-12-28T10:50:56.519175Z", - "iopub.status.idle": "2023-12-28T10:50:56.523174Z", - "shell.execute_reply": "2023-12-28T10:50:56.522550Z" + "iopub.execute_input": "2024-01-02T16:43:46.751745Z", + "iopub.status.busy": "2024-01-02T16:43:46.751498Z", + "iopub.status.idle": "2024-01-02T16:43:46.755904Z", + "shell.execute_reply": "2024-01-02T16:43:46.755367Z" } }, "outputs": [ @@ -1618,7 +1618,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "002a3ba42c6f4d21b674649860b6bb8f": { + "00872c50338a4b1eb76079883d76d52a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1670,7 +1670,7 @@ "width": null } }, - "01e2a9e1904e4fd3b8ab0e029fb19423": { + "020920f595fa4115a5c7409d5b8c51e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1722,43 +1722,102 @@ "width": null } }, - "07c2bfa4e96b4691b9a3f82df6fdd6ca": { + "032575598b4e473292addfff7238dfa1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_59f4c423e0754af7b1e3cc1a4fa53016", - "placeholder": "​", - "style": "IPY_MODEL_c423f0c304cc4921b77c3d1ab1914fdb", - "value": "README.md: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a3114c4394e46e1b7ce1495220913db", + "IPY_MODEL_352078d368bd40fba10fbe2f07365998", + "IPY_MODEL_23d4c289cba944d19d2219709e2ec6fa" + ], + "layout": "IPY_MODEL_eaaadabf61ef4df1a6b16c5b9bd3316b" + } + }, + "03edcac73dcc40b8a17fae8bd6b93aec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "082542db1bb140bd99c7ca0e790e7939": { + "06c3e93466e841cdb8f0766e760cb4b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c316145836374f27876f8194d241b65c", + "placeholder": "​", + "style": "IPY_MODEL_c9f956cf1eb7400180959cb85e53b150", + "value": " 29.0/29.0 [00:00<00:00, 3.80kB/s]" } }, - "0966d9b7d5e24713916cc115e44fb7fb": { + "08f47e5fa8db41d58b7ff6bfe3370d47": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1807,25 +1866,31 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "0cb0e29166d84be6bb583a9004da5c42": { + "09194539b33f415eb6243079a5493c34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_979bd28b34ed41f8aba44e5222499d15", + "placeholder": "​", + "style": "IPY_MODEL_a5640826dd44475e821fa74b810eb1a4", + "value": " 232k/232k [00:00<00:00, 5.41MB/s]" } }, - "0ce7d40556744bd4b07afbe2f362a2e3": { + "09839e5f04d7436787998fc1f0c11891": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1877,7 +1942,7 @@ "width": null } }, - "1455c763b56e4f39b88a6414c2355423": { + "0a26c2fdb81e4727987b87ecb38bc533": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1929,150 +1994,7 @@ "width": null } }, - "1612a462a5f347c290efc6b184fad81d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b3ea83bfea984719aad6881d02d15726", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9860b38f8fa640b0b794c7b461f40b8e", - "value": 231508.0 - } - }, - "188c19db59ae461cb5ab90cc79c1374a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07c2bfa4e96b4691b9a3f82df6fdd6ca", - "IPY_MODEL_36cd132150f441d0b9ef3414e99ef5fd", - "IPY_MODEL_abf85ff646214c7b853811d149c094a2" - ], - "layout": "IPY_MODEL_3965c43b7d344e2485e977fb58bffb4f" - } - }, - "258793d030024251a3078230b6b4de71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2906da4b1e354c26940b3597884f7b68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_01e2a9e1904e4fd3b8ab0e029fb19423", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c45d8f06bd66462c823a39d4d862fe48", - "value": 466062.0 - } - }, - "29bd27e9df334714828cb191caed3549": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7dd4da3c549c45ed9fce6579b27530f4", - "IPY_MODEL_f52aa0c0ae654587b9ac91bfbff3f902", - "IPY_MODEL_f15c8b7603b84636b18b6dc61c822809" - ], - "layout": "IPY_MODEL_a76a4b5363954ec8af096601ae1bf519" - } - }, - "2bfe3078b0cc4f1db9e03a00f19b073b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2cc49402c85e4e48ad59581e7ebc948d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_653a5a02c18746348f55fedb9cb64441", - "placeholder": "​", - "style": "IPY_MODEL_decbf2ca27454671bc94d3a3b272b819", - "value": " 466k/466k [00:00<00:00, 6.11MB/s]" - } - }, - "2cfad4c3de7f4876b8e7277537e1bb9d": { + "0a38aad82ac14989a4a9217f3a811d6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2124,22 +2046,7 @@ "width": null } }, - "342e7e5e018c4763889b5e40e408b40b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "361b24cc1b2344759145f8b024b40930": { + "0fa2df8226524d9d8d5b78234f773e8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2154,37 +2061,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3e289c46d5bb48a48c228c595cb9ed06", + "layout": "IPY_MODEL_03edcac73dcc40b8a17fae8bd6b93aec", "placeholder": "​", - "style": "IPY_MODEL_63cfe310a8af436b9beb983d7268434d", - "value": " 232k/232k [00:00<00:00, 11.8MB/s]" + "style": "IPY_MODEL_df34e95d26004ef994b0fce1364a7a43", + "value": " 665/665 [00:00<00:00, 81.8kB/s]" } }, - "36cd132150f441d0b9ef3414e99ef5fd": { + "0fcefde9154b4c99bd494cf6f4543d4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f13687759a0f458ba3800556c1d4502d", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e23c71c5924644438757e783faf26508", - "value": 2211.0 + "layout": "IPY_MODEL_e64e46031cfc4c28af96f771e862a54f", + "placeholder": "​", + "style": "IPY_MODEL_ff41dec3e8d544528ed4122b89c1cc1a", + "value": " 466k/466k [00:00<00:00, 25.4MB/s]" } }, - "3965c43b7d344e2485e977fb58bffb4f": { + "1031454917d647a0b4cfe90beb0830cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2236,74 +2140,29 @@ "width": null } }, - "3d1b163668ee4b41b7ad74d75d2dc71e": { + "134a1cda4acb4edab174eb997e37d992": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3e289c46d5bb48a48c228c595cb9ed06": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4904c252f6964710a37546566c62f010", + "IPY_MODEL_e7b9f584e7734ecc96eef9c869aa866f", + "IPY_MODEL_0fcefde9154b4c99bd494cf6f4543d4a" + ], + "layout": "IPY_MODEL_46d3aa33fc824244b3b76d5eb4d0641e" } }, - "414097937b4f44d298d7822517bbcd23": { + "17a12fa38de743528ce11c50b737ce2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -2319,242 +2178,95 @@ "description_width": "" } }, - "46288b5e4f834b86b2da02b8787d3a18": { + "1d95bc1485a14e32b156a7680ac3765b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_95e07a64f5904b45843138bd367778a5", - "placeholder": "​", - "style": "IPY_MODEL_342e7e5e018c4763889b5e40e408b40b", - "value": "vocab.txt: 100%" - } - }, - "4f91f5d0bd1848c480a38f4dbf27c703": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_3161d3546d3e4867a4f90d42697c4d3e", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_381df575cc04443f8850f5a376171268", + "value": 54245363.0 } }, - "50fa280cff9a4d5882a5db045cf40ff8": { + "1f6cdba4653642b2b283ba5bf58317e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "51edb07e48b3499db5b8bd03abef074a": { + "2100b7eda7a9467e987e6e29f35ab150": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e60717a72163424bb32e1816cff3c885", - "placeholder": "​", - "style": "IPY_MODEL_0cb0e29166d84be6bb583a9004da5c42", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "58a51e9e6f934e80ba32e2d119e41f51": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "59f4c423e0754af7b1e3cc1a4fa53016": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_290788bc416e4895aad25c5a54722fd8", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_25faffe7c8f345b1b119c8293d76de1a", + "value": 29.0 } }, - "6026f80c546045ba90baf2862e01385f": { + "22b09695a81248ef84a9befb859f13b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_65533490e4f24682811aa80ac70ccf1f", - "IPY_MODEL_fa3ab0136e38413986721ab71d6c782c", - "IPY_MODEL_51edb07e48b3499db5b8bd03abef074a" - ], - "layout": "IPY_MODEL_da85687dd9944e3195c03ba5ad6634c2" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9b344d87e044d63b1aeb911dccf6c52", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d6ddcf0e3d9c4420940e7dff92d49558", + "value": 665.0 } }, - "616b1baa8a814f71aaa6754339d8c41b": { + "23d4c289cba944d19d2219709e2ec6fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2569,13 +2281,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_002a3ba42c6f4d21b674649860b6bb8f", + "layout": "IPY_MODEL_00872c50338a4b1eb76079883d76d52a", "placeholder": "​", - "style": "IPY_MODEL_2bfe3078b0cc4f1db9e03a00f19b073b", - "value": "config.json: 100%" + "style": "IPY_MODEL_3859f207e8504fe884329e18f61b651a", + "value": " 0/0 [00:00<?, ?it/s]" } }, - "63cfe310a8af436b9beb983d7268434d": { + "2570298ac39547cabb1eacf559587a8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2590,22 +2302,23 @@ "description_width": "" } }, - "650efd38f38e4610bbf408e72bb11dca": { + "25faffe7c8f345b1b119c8293d76de1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "653a5a02c18746348f55fedb9cb64441": { + "290788bc416e4895aad25c5a54722fd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2657,7 +2370,7 @@ "width": null } }, - "65533490e4f24682811aa80ac70ccf1f": { + "2ce939ae604d4ff49b74657b5177c48e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2672,28 +2385,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1455c763b56e4f39b88a6414c2355423", + "layout": "IPY_MODEL_419c312bbb7b42cca785da2b636fd355", "placeholder": "​", - "style": "IPY_MODEL_3d1b163668ee4b41b7ad74d75d2dc71e", - "value": "" - } - }, - "675b1d5061ee4cab9e4ddcef179c7b28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_9ff2eb9a434c453b9583447e1a2dbeca", + "value": "tokenizer_config.json: 100%" } }, - "6e380842062a4f86a1da5c3620386874": { + "3161d3546d3e4867a4f90d42697c4d3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2742,99 +2440,65 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "76d6c78025ed4fb4accf51226797c8bd": { + "352078d368bd40fba10fbe2f07365998": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_08f47e5fa8db41d58b7ff6bfe3370d47", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_58875ab8a5c3488aacfdc39e4b5676c8", + "value": 0.0 } }, - "79d3bd9b1d24452387ab0be1f5a6101e": { + "381df575cc04443f8850f5a376171268": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7bb1e7e05e60454ab46487e0b06e8015": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_616b1baa8a814f71aaa6754339d8c41b", - "IPY_MODEL_ad2c279439164c91870ca5c5222da96b", - "IPY_MODEL_dcf37c90171448c782e2f524d7912a43" - ], - "layout": "IPY_MODEL_861043b327284c33a90a7914f68a6868" - } - }, - "7dd4da3c549c45ed9fce6579b27530f4": { + "3859f207e8504fe884329e18f61b651a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0966d9b7d5e24713916cc115e44fb7fb", - "placeholder": "​", - "style": "IPY_MODEL_da97121956124c4ab00f9b4f6dd5cd2f", - "value": ".gitattributes: 100%" - } - }, - "806e57cfdd8d43908533f6c8749dfc5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "861043b327284c33a90a7914f68a6868": { + "3bad9e6168634b67ad7431240182d0d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2886,51 +2550,7 @@ "width": null } }, - "886021f191904b33a4371d295ac03dc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b984b1bf0c194d66bb4b4d902bc1e0fe", - "IPY_MODEL_f773b402043d426caffb41dc672d966e", - "IPY_MODEL_e7ed4e54956842e1abcf7d52c4b7cb65" - ], - "layout": "IPY_MODEL_8f180b0650b64cb48614e0e1135798d5" - } - }, - "8ee68691137f4c98896da1fef213310d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eab8ebc83ced49e79d9e70411bc7a4fc", - "IPY_MODEL_2906da4b1e354c26940b3597884f7b68", - "IPY_MODEL_2cc49402c85e4e48ad59581e7ebc948d" - ], - "layout": "IPY_MODEL_bd85665d8c5143279c00bb60adea2639" - } - }, - "8f180b0650b64cb48614e0e1135798d5": { + "419c312bbb7b42cca785da2b636fd355": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2982,7 +2602,22 @@ "width": null } }, - "95e07a64f5904b45843138bd367778a5": { + "45fccd0e53e94a58a9f202b1ef377e8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46d3aa33fc824244b3b76d5eb4d0641e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3034,39 +2669,52 @@ "width": null } }, - "9860b38f8fa640b0b794c7b461f40b8e": { + "4904c252f6964710a37546566c62f010": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9b786c2a321444849e65be50966b1717", + "placeholder": "​", + "style": "IPY_MODEL_edda32825d264c45a43c0cddd935f4fb", + "value": "tokenizer.json: 100%" } }, - "9b97b5f9f21443998985d0d4ff2719b9": { + "4e4725582b7d4c51a27837f8e60e4795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a26c2fdb81e4727987b87ecb38bc533", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_17a12fa38de743528ce11c50b737ce2c", + "value": 391.0 } }, - "9f699baa71f64faf92d047221b5d2709": { + "56da5629abdf42609544500e398f5aaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3118,22 +2766,44 @@ "width": null } }, - "a08ef0e6f74f47d8ab2c891a22141fad": { + "577727eb0f1b47c48279709c3b9a9608": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1031454917d647a0b4cfe90beb0830cc", + "placeholder": "​", + "style": "IPY_MODEL_e88cd21cb2c243bebb5a5a8e1ecb095c", + "value": ".gitattributes: 100%" + } + }, + "58875ab8a5c3488aacfdc39e4b5676c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "a308d4d8368044c0b8902a8d75fe15c9": { + "5a21341e48eb48a5a8cb46237cc6040e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3148,14 +2818,35 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_46288b5e4f834b86b2da02b8787d3a18", - "IPY_MODEL_1612a462a5f347c290efc6b184fad81d", - "IPY_MODEL_361b24cc1b2344759145f8b024b40930" + "IPY_MODEL_2ce939ae604d4ff49b74657b5177c48e", + "IPY_MODEL_2100b7eda7a9467e987e6e29f35ab150", + "IPY_MODEL_06c3e93466e841cdb8f0766e760cb4b9" ], - "layout": "IPY_MODEL_e4b66cd9e5c84cc68b42a33d8d69248d" + "layout": "IPY_MODEL_82aa04caa9f44924bec5d3db501834d6" + } + }, + "611caa81a658462c931147c01308d1e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a38aad82ac14989a4a9217f3a811d6f", + "placeholder": "​", + "style": "IPY_MODEL_f4d9a96d2b3a4ffda14f1ca5b6753fac", + "value": "pytorch_model.bin: 100%" } }, - "a76a4b5363954ec8af096601ae1bf519": { + "66ef85debde64162ae6c512de7c515ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3207,23 +2898,59 @@ "width": null } }, - "a77c831d71a14e4194159194b8de5cec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "6942705f444b47bcb26fa2b03e75680f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a966318b56e54dbe98185eefc1bec3c1": { + "6aab1e9b8d704c299dc28baabf1b6b35": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3275,7 +3002,7 @@ "width": null } }, - "abf85ff646214c7b853811d149c094a2": { + "6b2c89ca673045e6910f473ffcd2a155": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3290,58 +3017,125 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9f699baa71f64faf92d047221b5d2709", + "layout": "IPY_MODEL_7e2ebbcb0d404d869282cebad95ee30d", "placeholder": "​", - "style": "IPY_MODEL_675b1d5061ee4cab9e4ddcef179c7b28", - "value": " 2.21k/2.21k [00:00<00:00, 276kB/s]" + "style": "IPY_MODEL_2570298ac39547cabb1eacf559587a8c", + "value": "vocab.txt: 100%" } }, - "ace80592947c4c4b8577f2b04a6f648f": { + "6c56c66205764ccf916a1e50a15b64b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "727d364de29748c89b359fc9269e8c21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b1c9216294b0463882e8dd83016634ae", - "placeholder": "​", - "style": "IPY_MODEL_082542db1bb140bd99c7ca0e790e7939", - "value": " 54.2M/54.2M [00:00<00:00, 304MB/s]" + "layout": "IPY_MODEL_8e7bf439a8924e5c9e36eac02d23bdb1", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d6cb80492555460883d684e9c4ca11bc", + "value": 231508.0 + } + }, + "72d78ee7c8994847928a783170a0882f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ad2c279439164c91870ca5c5222da96b": { + "7727a3aa392d4e308626c24f2cb24804": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e9f13c6ee67b4bc7a11fa4f92b4e9ef9", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a77c831d71a14e4194159194b8de5cec", - "value": 665.0 + "layout": "IPY_MODEL_9b79eef51bb748e895abcbf600656188", + "placeholder": "​", + "style": "IPY_MODEL_96054d864a4149bfa010505bb1cb6ac7", + "value": " 2.21k/2.21k [00:00<00:00, 271kB/s]" } }, - "b1c9216294b0463882e8dd83016634ae": { + "7ccd9dae7d0e4db5b0e3661287ab260f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3393,7 +3187,7 @@ "width": null } }, - "b3ea83bfea984719aad6881d02d15726": { + "7e2ebbcb0d404d869282cebad95ee30d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3445,28 +3239,7 @@ "width": null } }, - "b984b1bf0c194d66bb4b4d902bc1e0fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c11231a052ff493985580acd5a0529ab", - "placeholder": "​", - "style": "IPY_MODEL_50fa280cff9a4d5882a5db045cf40ff8", - "value": "tokenizer_config.json: 100%" - } - }, - "bd85665d8c5143279c00bb60adea2639": { + "82aa04caa9f44924bec5d3db501834d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3518,7 +3291,50 @@ "width": null } }, - "becb4412c5454df4a0869e76eb093406": { + "8a3114c4394e46e1b7ce1495220913db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7b5f8ee14044146b36ab94719f42e69", + "placeholder": "​", + "style": "IPY_MODEL_c719c33aeb394c7b882ea7afce9a1f79", + "value": "" + } + }, + "8bae24cade9a4f9fb9606ed955bcc7d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_be2f22e6b3854b0c9a41624a878904e2", + "IPY_MODEL_22b09695a81248ef84a9befb859f13b9", + "IPY_MODEL_0fa2df8226524d9d8d5b78234f773e8d" + ], + "layout": "IPY_MODEL_56da5629abdf42609544500e398f5aaa" + } + }, + "8e7bf439a8924e5c9e36eac02d23bdb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3570,7 +3386,22 @@ "width": null } }, - "c11231a052ff493985580acd5a0529ab": { + "96054d864a4149bfa010505bb1cb6ac7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "979bd28b34ed41f8aba44e5222499d15": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3622,62 +3453,7 @@ "width": null } }, - "c423f0c304cc4921b77c3d1ab1914fdb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c45d8f06bd66462c823a39d4d862fe48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c83e58a81a144c7a925fa5df4992a126": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f9e8808c383a4da9846012ddf7516297", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_414097937b4f44d298d7822517bbcd23", - "value": 54245363.0 - } - }, - "ce3a324339fe44c4bee2a4a1b278d1bb": { + "9b786c2a321444849e65be50966b1717": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3729,7 +3505,7 @@ "width": null } }, - "da85687dd9944e3195c03ba5ad6634c2": { + "9b79eef51bb748e895abcbf600656188": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3781,43 +3557,44 @@ "width": null } }, - "da97121956124c4ab00f9b4f6dd5cd2f": { + "9be87e374eee4c2cadd9184c312be454": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c03dd46fef444ca39b07539e939e4f9b", + "IPY_MODEL_ec93e5ab280d446aa1a9adf1d266a1fa", + "IPY_MODEL_7727a3aa392d4e308626c24f2cb24804" + ], + "layout": "IPY_MODEL_020920f595fa4115a5c7409d5b8c51e4" } }, - "dcf37c90171448c782e2f524d7912a43": { + "9c134709d5b1445db6c4dd35221b352a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2cfad4c3de7f4876b8e7277537e1bb9d", - "placeholder": "​", - "style": "IPY_MODEL_650efd38f38e4610bbf408e72bb11dca", - "value": " 665/665 [00:00<00:00, 81.6kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "decbf2ca27454671bc94d3a3b272b819": { + "9ff2eb9a434c453b9583447e1a2dbeca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3832,7 +3609,7 @@ "description_width": "" } }, - "df45180808974725a66cfb7c70093730": { + "a178e4969c0648598019d2eed591912c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3884,7 +3661,7 @@ "width": null } }, - "e23c71c5924644438757e783faf26508": { + "a32f8f2df62f460d8ff9351020ba1726": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3900,29 +3677,95 @@ "description_width": "" } }, - "e30203085c184383b15297aff47b5870": { + "a5640826dd44475e821fa74b810eb1a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a62a499ccde44fd49197c357e5bf6794": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fdc27e75dbc04752b2cc294edefd6439", - "IPY_MODEL_c83e58a81a144c7a925fa5df4992a126", - "IPY_MODEL_ace80592947c4c4b8577f2b04a6f648f" - ], - "layout": "IPY_MODEL_df45180808974725a66cfb7c70093730" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7ccd9dae7d0e4db5b0e3661287ab260f", + "placeholder": "​", + "style": "IPY_MODEL_45fccd0e53e94a58a9f202b1ef377e8f", + "value": " 54.2M/54.2M [00:00<00:00, 294MB/s]" + } + }, + "a7b5f8ee14044146b36ab94719f42e69": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e4b66cd9e5c84cc68b42a33d8d69248d": { + "a9b344d87e044d63b1aeb911dccf6c52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3974,7 +3817,49 @@ "width": null } }, - "e60717a72163424bb32e1816cff3c885": { + "be2f22e6b3854b0c9a41624a878904e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3bad9e6168634b67ad7431240182d0d8", + "placeholder": "​", + "style": "IPY_MODEL_9c134709d5b1445db6c4dd35221b352a", + "value": "config.json: 100%" + } + }, + "c03dd46fef444ca39b07539e939e4f9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_66ef85debde64162ae6c512de7c515ee", + "placeholder": "​", + "style": "IPY_MODEL_6c56c66205764ccf916a1e50a15b64b6", + "value": "README.md: 100%" + } + }, + "c316145836374f27876f8194d241b65c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4026,28 +3911,37 @@ "width": null } }, - "e7ed4e54956842e1abcf7d52c4b7cb65": { + "c719c33aeb394c7b882ea7afce9a1f79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0ce7d40556744bd4b07afbe2f362a2e3", - "placeholder": "​", - "style": "IPY_MODEL_76d6c78025ed4fb4accf51226797c8bd", - "value": " 29.0/29.0 [00:00<00:00, 3.66kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c9f956cf1eb7400180959cb85e53b150": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e9f13c6ee67b4bc7a11fa4f92b4e9ef9": { + "cb66f921283e4958a739e49462cc4a04": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4099,7 +3993,113 @@ "width": null } }, - "eab8ebc83ced49e79d9e70411bc7a4fc": { + "cefe0741da744da1b2967a16480c3466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_611caa81a658462c931147c01308d1e1", + "IPY_MODEL_1d95bc1485a14e32b156a7680ac3765b", + "IPY_MODEL_a62a499ccde44fd49197c357e5bf6794" + ], + "layout": "IPY_MODEL_a178e4969c0648598019d2eed591912c" + } + }, + "cfa8e33b9ba34f9b84f7b2894dcb1cdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_577727eb0f1b47c48279709c3b9a9608", + "IPY_MODEL_4e4725582b7d4c51a27837f8e60e4795", + "IPY_MODEL_e2eefec0360443059b5fb7468a9344b5" + ], + "layout": "IPY_MODEL_09839e5f04d7436787998fc1f0c11891" + } + }, + "d067bae22a7149b0b925bcff92c6c521": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d6cb80492555460883d684e9c4ca11bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d6ddcf0e3d9c4420940e7dff92d49558": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "df34e95d26004ef994b0fce1364a7a43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e2eefec0360443059b5fb7468a9344b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4114,13 +4114,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_becb4412c5454df4a0869e76eb093406", + "layout": "IPY_MODEL_cb66f921283e4958a739e49462cc4a04", "placeholder": "​", - "style": "IPY_MODEL_79d3bd9b1d24452387ab0be1f5a6101e", - "value": "tokenizer.json: 100%" + "style": "IPY_MODEL_d067bae22a7149b0b925bcff92c6c521", + "value": " 391/391 [00:00<00:00, 47.5kB/s]" } }, - "f13687759a0f458ba3800556c1d4502d": { + "e64e46031cfc4c28af96f771e862a54f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4172,44 +4172,7 @@ "width": null } }, - "f15c8b7603b84636b18b6dc61c822809": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_58a51e9e6f934e80ba32e2d119e41f51", - "placeholder": "​", - "style": "IPY_MODEL_258793d030024251a3078230b6b4de71", - "value": " 391/391 [00:00<00:00, 47.6kB/s]" - } - }, - "f2fe20bd6cf34cdf9f60ff919c96b412": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f52aa0c0ae654587b9ac91bfbff3f902": { + "e7b9f584e7734ecc96eef9c869aa866f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4225,39 +4188,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a966318b56e54dbe98185eefc1bec3c1", - "max": 391.0, + "layout": "IPY_MODEL_6aab1e9b8d704c299dc28baabf1b6b35", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f2fe20bd6cf34cdf9f60ff919c96b412", - "value": 391.0 + "style": "IPY_MODEL_a32f8f2df62f460d8ff9351020ba1726", + "value": 466062.0 } }, - "f773b402043d426caffb41dc672d966e": { + "e88cd21cb2c243bebb5a5a8e1ecb095c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ce3a324339fe44c4bee2a4a1b278d1bb", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b97b5f9f21443998985d0d4ff2719b9", - "value": 29.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "f9e8808c383a4da9846012ddf7516297": { + "eaaadabf61ef4df1a6b16c5b9bd3316b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4309,7 +4263,7 @@ "width": null } }, - "fa3ab0136e38413986721ab71d6c782c": { + "ec93e5ab280d446aa1a9adf1d266a1fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4325,33 +4279,79 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6e380842062a4f86a1da5c3620386874", - "max": 1.0, + "layout": "IPY_MODEL_6942705f444b47bcb26fa2b03e75680f", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_806e57cfdd8d43908533f6c8749dfc5e", - "value": 0.0 + "style": "IPY_MODEL_1f6cdba4653642b2b283ba5bf58317e2", + "value": 2211.0 } }, - "fdc27e75dbc04752b2cc294edefd6439": { + "edda32825d264c45a43c0cddd935f4fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "efbcffcfef5b4247bac1c857e7f07a58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4f91f5d0bd1848c480a38f4dbf27c703", - "placeholder": "​", - "style": "IPY_MODEL_a08ef0e6f74f47d8ab2c891a22141fad", - "value": "pytorch_model.bin: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b2c89ca673045e6910f473ffcd2a155", + "IPY_MODEL_727d364de29748c89b359fc9269e8c21", + "IPY_MODEL_09194539b33f415eb6243079a5493c34" + ], + "layout": "IPY_MODEL_72d78ee7c8994847928a783170a0882f" + } + }, + "f4d9a96d2b3a4ffda14f1ca5b6753fac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ff41dec3e8d544528ed4122b89c1cc1a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } } }, diff --git a/master/tutorials/dataset_health.html b/master/tutorials/dataset_health.html index defe123a1..56a23262a 100644 --- a/master/tutorials/dataset_health.html +++ b/master/tutorials/dataset_health.html @@ -947,6 +947,13 @@

    Start of tutorial: Evaluate the health of 8 popular dataset 🎯 Caltech256 🎯 +

    +
    +
    +
    +
    +
    +
     
     Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)
     
    @@ -1260,6 +1267,13 @@ 

    Start of tutorial: Evaluate the health of 8 popular dataset
     
    +
    +

    +
    +
    +
    +
    +
      * Overall, about 7% (2,051 of the 29,780) labels in your dataset have potential issues.
      ** The overall label health score for this dataset is: 0.93.
     
    @@ -1268,6 +1282,13 @@ 

    Start of tutorial: Evaluate the health of 8 popular dataset 🎯 Mnist_test_set 🎯 +

    +
    +
    +
    +
    +
    +
     
     Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)
     
    @@ -1883,6 +1904,13 @@ 

    Start of tutorial: Evaluate the health of 8 popular dataset 🎯 Cifar10_test_set 🎯 +

    +
    +
    +
    +
    +
    +
     
     Loaded the 'cifar10_test_set' dataset with predicted probabilities of shape (10000, 10)
     
    @@ -2498,6 +2526,13 @@ 

    Start of tutorial: Evaluate the health of 8 popular dataset 🎯 Cifar100_test_set 🎯 +

    +
    +
    +
    +
    +
    +
     
     Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)
     
    @@ -2819,6 +2854,13 @@ 

    Start of tutorial: Evaluate the health of 8 popular dataset 🎯 20news_test_set 🎯 +

    +
    +
    +
    +
    +
    +
     
     Loaded the '20news_test_set' dataset with predicted probabilities of shape (7532, 20)
     
    @@ -3260,7 +3302,7 @@ 

    Start of tutorial: Evaluate the health of 8 popular dataset
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index e10955479..485b45c09 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:01.530821Z", - "iopub.status.busy": "2023-12-28T10:51:01.530627Z", - "iopub.status.idle": "2023-12-28T10:51:02.560475Z", - "shell.execute_reply": "2023-12-28T10:51:02.559799Z" + "iopub.execute_input": "2024-01-02T16:43:52.409557Z", + "iopub.status.busy": "2024-01-02T16:43:52.409344Z", + "iopub.status.idle": "2024-01-02T16:43:53.435241Z", + "shell.execute_reply": "2024-01-02T16:43:53.434634Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:02.563458Z", - "iopub.status.busy": "2023-12-28T10:51:02.563072Z", - "iopub.status.idle": "2023-12-28T10:51:02.566230Z", - "shell.execute_reply": "2023-12-28T10:51:02.565716Z" + "iopub.execute_input": "2024-01-02T16:43:53.438069Z", + "iopub.status.busy": "2024-01-02T16:43:53.437682Z", + "iopub.status.idle": "2024-01-02T16:43:53.440831Z", + "shell.execute_reply": "2024-01-02T16:43:53.440210Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:02.568610Z", - "iopub.status.busy": "2023-12-28T10:51:02.568409Z", - "iopub.status.idle": "2023-12-28T10:51:02.581349Z", - "shell.execute_reply": "2023-12-28T10:51:02.580808Z" + "iopub.execute_input": "2024-01-02T16:43:53.443461Z", + "iopub.status.busy": "2024-01-02T16:43:53.443001Z", + "iopub.status.idle": "2024-01-02T16:43:53.455868Z", + "shell.execute_reply": "2024-01-02T16:43:53.455358Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:02.584023Z", - "iopub.status.busy": "2023-12-28T10:51:02.583564Z", - "iopub.status.idle": "2023-12-28T10:51:05.294388Z", - "shell.execute_reply": "2023-12-28T10:51:05.293763Z" + "iopub.execute_input": "2024-01-02T16:43:53.458165Z", + "iopub.status.busy": "2024-01-02T16:43:53.457913Z", + "iopub.status.idle": "2024-01-02T16:43:57.414922Z", + "shell.execute_reply": "2024-01-02T16:43:57.414258Z" }, "id": "dhTHOg8Pyv5G" }, @@ -297,7 +297,13 @@ "text": [ "\n", "🎯 Caltech256 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)\n", "\n", @@ -306,13 +312,7 @@ "| for your dataset with 29,780 examples and 256 classes. |\n", "| Note, Cleanlab is not a medical doctor... yet. |\n", "-------------------------------------------------------------\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "Overall Class Quality and Noise across your dataset (below)\n", "------------------------------------------------------------ \n", "\n" @@ -692,7 +692,13 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", @@ -2176,7 +2182,13 @@ "\n", "\n", "🎯 Cifar100_test_set 🎯\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n", "\n", diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 48c6840b1..a2ab139b1 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -937,13 +937,13 @@

    How can I find label issues in big datasets with limited memory?

    -
    +

    -
    +
    @@ -1443,7 +1443,7 @@

    Can’t find an answer to your question?Cleanlab Github issues, Cleanlab Code Examples or our Slack Community.

    If your question is not addressed anywhere, please open a new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    @@ -1476,7 +1476,7 @@

    Can’t find an answer to your question?
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 7e5c7c7e5..e9bbb8603 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:10.056653Z", - "iopub.status.busy": "2023-12-28T10:51:10.056431Z", - "iopub.status.idle": "2023-12-28T10:51:11.099227Z", - "shell.execute_reply": "2023-12-28T10:51:11.098513Z" + "iopub.execute_input": "2024-01-02T16:44:01.836132Z", + "iopub.status.busy": "2024-01-02T16:44:01.835524Z", + "iopub.status.idle": "2024-01-02T16:44:02.871925Z", + "shell.execute_reply": "2024-01-02T16:44:02.871308Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:11.102542Z", - "iopub.status.busy": "2023-12-28T10:51:11.102158Z", - "iopub.status.idle": "2023-12-28T10:51:11.105825Z", - "shell.execute_reply": "2023-12-28T10:51:11.105329Z" + "iopub.execute_input": "2024-01-02T16:44:02.875269Z", + "iopub.status.busy": "2024-01-02T16:44:02.874921Z", + "iopub.status.idle": "2024-01-02T16:44:02.878630Z", + "shell.execute_reply": "2024-01-02T16:44:02.878073Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:11.108217Z", - "iopub.status.busy": "2023-12-28T10:51:11.107825Z", - "iopub.status.idle": "2023-12-28T10:51:13.163439Z", - "shell.execute_reply": "2023-12-28T10:51:13.162751Z" + "iopub.execute_input": "2024-01-02T16:44:02.881147Z", + "iopub.status.busy": "2024-01-02T16:44:02.880697Z", + "iopub.status.idle": "2024-01-02T16:44:04.932805Z", + "shell.execute_reply": "2024-01-02T16:44:04.932101Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.167063Z", - "iopub.status.busy": "2023-12-28T10:51:13.166223Z", - "iopub.status.idle": "2023-12-28T10:51:13.206496Z", - "shell.execute_reply": "2023-12-28T10:51:13.205720Z" + "iopub.execute_input": "2024-01-02T16:44:04.936242Z", + "iopub.status.busy": "2024-01-02T16:44:04.935568Z", + "iopub.status.idle": "2024-01-02T16:44:04.977309Z", + "shell.execute_reply": "2024-01-02T16:44:04.976623Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.210014Z", - "iopub.status.busy": "2023-12-28T10:51:13.209470Z", - "iopub.status.idle": "2023-12-28T10:51:13.247629Z", - "shell.execute_reply": "2023-12-28T10:51:13.246963Z" + "iopub.execute_input": "2024-01-02T16:44:04.980707Z", + "iopub.status.busy": "2024-01-02T16:44:04.980148Z", + "iopub.status.idle": "2024-01-02T16:44:05.021253Z", + "shell.execute_reply": "2024-01-02T16:44:05.020568Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.250842Z", - "iopub.status.busy": "2023-12-28T10:51:13.250341Z", - "iopub.status.idle": "2023-12-28T10:51:13.253713Z", - "shell.execute_reply": "2023-12-28T10:51:13.253190Z" + "iopub.execute_input": "2024-01-02T16:44:05.024395Z", + "iopub.status.busy": "2024-01-02T16:44:05.024036Z", + "iopub.status.idle": "2024-01-02T16:44:05.027237Z", + "shell.execute_reply": "2024-01-02T16:44:05.026726Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.256163Z", - "iopub.status.busy": "2023-12-28T10:51:13.255701Z", - "iopub.status.idle": "2023-12-28T10:51:13.258528Z", - "shell.execute_reply": "2023-12-28T10:51:13.258027Z" + "iopub.execute_input": "2024-01-02T16:44:05.029619Z", + "iopub.status.busy": "2024-01-02T16:44:05.029251Z", + "iopub.status.idle": "2024-01-02T16:44:05.032031Z", + "shell.execute_reply": "2024-01-02T16:44:05.031494Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.261300Z", - "iopub.status.busy": "2023-12-28T10:51:13.260854Z", - "iopub.status.idle": "2023-12-28T10:51:13.289328Z", - "shell.execute_reply": "2023-12-28T10:51:13.288681Z" + "iopub.execute_input": "2024-01-02T16:44:05.034600Z", + "iopub.status.busy": "2024-01-02T16:44:05.034101Z", + "iopub.status.idle": "2024-01-02T16:44:05.063683Z", + "shell.execute_reply": "2024-01-02T16:44:05.062966Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0dc7733f6fac484ba4dd969b147cd88c", + "model_id": "d488a45de9614f829dd754c7c7931f9d", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa5ce7bdd5184371a27768440d1591bb", + "model_id": "f8012a98f78442b2a1e0ec66d6d50513", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.297891Z", - "iopub.status.busy": "2023-12-28T10:51:13.297369Z", - "iopub.status.idle": "2023-12-28T10:51:13.304455Z", - "shell.execute_reply": "2023-12-28T10:51:13.303805Z" + "iopub.execute_input": "2024-01-02T16:44:05.071334Z", + "iopub.status.busy": "2024-01-02T16:44:05.071060Z", + "iopub.status.idle": "2024-01-02T16:44:05.078931Z", + "shell.execute_reply": "2024-01-02T16:44:05.078300Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.306816Z", - "iopub.status.busy": "2023-12-28T10:51:13.306473Z", - "iopub.status.idle": "2023-12-28T10:51:13.310237Z", - "shell.execute_reply": "2023-12-28T10:51:13.309611Z" + "iopub.execute_input": "2024-01-02T16:44:05.081522Z", + "iopub.status.busy": "2024-01-02T16:44:05.081066Z", + "iopub.status.idle": "2024-01-02T16:44:05.084947Z", + "shell.execute_reply": "2024-01-02T16:44:05.084327Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.312719Z", - "iopub.status.busy": "2023-12-28T10:51:13.312198Z", - "iopub.status.idle": "2023-12-28T10:51:13.319058Z", - "shell.execute_reply": "2023-12-28T10:51:13.318509Z" + "iopub.execute_input": "2024-01-02T16:44:05.087377Z", + "iopub.status.busy": "2024-01-02T16:44:05.086987Z", + "iopub.status.idle": "2024-01-02T16:44:05.094059Z", + "shell.execute_reply": "2024-01-02T16:44:05.093400Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.321507Z", - "iopub.status.busy": "2023-12-28T10:51:13.321101Z", - "iopub.status.idle": "2023-12-28T10:51:13.362551Z", - "shell.execute_reply": "2023-12-28T10:51:13.361876Z" + "iopub.execute_input": "2024-01-02T16:44:05.096313Z", + "iopub.status.busy": "2024-01-02T16:44:05.096003Z", + "iopub.status.idle": "2024-01-02T16:44:05.144182Z", + "shell.execute_reply": "2024-01-02T16:44:05.143488Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.365681Z", - "iopub.status.busy": "2023-12-28T10:51:13.365269Z", - "iopub.status.idle": "2023-12-28T10:51:13.410609Z", - "shell.execute_reply": "2023-12-28T10:51:13.409837Z" + "iopub.execute_input": "2024-01-02T16:44:05.147224Z", + "iopub.status.busy": "2024-01-02T16:44:05.146876Z", + "iopub.status.idle": "2024-01-02T16:44:05.188244Z", + "shell.execute_reply": "2024-01-02T16:44:05.187562Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.413896Z", - "iopub.status.busy": "2023-12-28T10:51:13.413407Z", - "iopub.status.idle": "2023-12-28T10:51:13.533617Z", - "shell.execute_reply": "2023-12-28T10:51:13.532912Z" + "iopub.execute_input": "2024-01-02T16:44:05.191549Z", + "iopub.status.busy": "2024-01-02T16:44:05.191212Z", + "iopub.status.idle": "2024-01-02T16:44:05.315836Z", + "shell.execute_reply": "2024-01-02T16:44:05.315150Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:13.536558Z", - "iopub.status.busy": "2023-12-28T10:51:13.536157Z", - "iopub.status.idle": "2023-12-28T10:51:16.057955Z", - "shell.execute_reply": "2023-12-28T10:51:16.057207Z" + "iopub.execute_input": "2024-01-02T16:44:05.318672Z", + "iopub.status.busy": "2024-01-02T16:44:05.318394Z", + "iopub.status.idle": "2024-01-02T16:44:07.862364Z", + "shell.execute_reply": "2024-01-02T16:44:07.861593Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.061086Z", - "iopub.status.busy": "2023-12-28T10:51:16.060657Z", - "iopub.status.idle": "2023-12-28T10:51:16.121695Z", - "shell.execute_reply": "2023-12-28T10:51:16.121025Z" + "iopub.execute_input": "2024-01-02T16:44:07.864976Z", + "iopub.status.busy": "2024-01-02T16:44:07.864750Z", + "iopub.status.idle": "2024-01-02T16:44:07.929221Z", + "shell.execute_reply": "2024-01-02T16:44:07.928549Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "4cd2fecd", + "id": "11e1fe1a", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "81842555", + "id": "45754f3c", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "a8bd4f39", + "id": "69ad04b9", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.124470Z", - "iopub.status.busy": "2023-12-28T10:51:16.124045Z", - "iopub.status.idle": "2023-12-28T10:51:16.236633Z", - "shell.execute_reply": "2023-12-28T10:51:16.235924Z" + "iopub.execute_input": "2024-01-02T16:44:07.931855Z", + "iopub.status.busy": "2024-01-02T16:44:07.931498Z", + "iopub.status.idle": "2024-01-02T16:44:08.044089Z", + "shell.execute_reply": "2024-01-02T16:44:08.043350Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "806f20e9", + "id": "b80e307b", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "0f606bf4", + "id": "a07778a1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.240458Z", - "iopub.status.busy": "2023-12-28T10:51:16.239465Z", - "iopub.status.idle": "2023-12-28T10:51:16.309914Z", - "shell.execute_reply": "2023-12-28T10:51:16.309279Z" + "iopub.execute_input": "2024-01-02T16:44:08.048178Z", + "iopub.status.busy": "2024-01-02T16:44:08.046973Z", + "iopub.status.idle": "2024-01-02T16:44:08.127066Z", + "shell.execute_reply": "2024-01-02T16:44:08.126241Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "b46572c4", + "id": "4d632f0a", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "e42cb388", + "id": "bb89e3e8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.312656Z", - "iopub.status.busy": "2023-12-28T10:51:16.312445Z", - "iopub.status.idle": "2023-12-28T10:51:16.320866Z", - "shell.execute_reply": "2023-12-28T10:51:16.320186Z" + "iopub.execute_input": "2024-01-02T16:44:08.129987Z", + "iopub.status.busy": "2024-01-02T16:44:08.129751Z", + "iopub.status.idle": "2024-01-02T16:44:08.138421Z", + "shell.execute_reply": "2024-01-02T16:44:08.137863Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "ffb7cad6", + "id": "789c4c8c", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "0313e8ec", + "id": "23b042cf", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.323709Z", - "iopub.status.busy": "2023-12-28T10:51:16.323107Z", - "iopub.status.idle": "2023-12-28T10:51:16.342675Z", - "shell.execute_reply": "2023-12-28T10:51:16.342005Z" + "iopub.execute_input": "2024-01-02T16:44:08.140990Z", + "iopub.status.busy": "2024-01-02T16:44:08.140665Z", + "iopub.status.idle": "2024-01-02T16:44:08.162010Z", + "shell.execute_reply": "2024-01-02T16:44:08.161231Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "25d9f5e6", + "id": "a4d04f62", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:16.345358Z", - "iopub.status.busy": "2023-12-28T10:51:16.344975Z", - "iopub.status.idle": "2023-12-28T10:51:16.349022Z", - "shell.execute_reply": "2023-12-28T10:51:16.348429Z" + "iopub.execute_input": "2024-01-02T16:44:08.164720Z", + "iopub.status.busy": "2024-01-02T16:44:08.164389Z", + "iopub.status.idle": "2024-01-02T16:44:08.168517Z", + "shell.execute_reply": "2024-01-02T16:44:08.167980Z" } }, "outputs": [ @@ -1203,59 +1203,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07dfe5af91a84c728a8a628c11190002": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0dc7733f6fac484ba4dd969b147cd88c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e38334c5ecaa41cb800313b30c6ad845", - "IPY_MODEL_ec931f109a5e4830be6e15b23a2caa8a", - "IPY_MODEL_30316cf420824a829eda8ee3f3f36991" - ], - "layout": "IPY_MODEL_baea8f8c366a4ca6a34381a5e6fb99eb" - } - }, - "2a3410c8e76e4da1a2c1201acdafe8e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2f6d326f28604310a38367ee98fd7fb9": { + "02a9cda90bd24fca8175d8c43eef4909": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1307,28 +1255,7 @@ "width": null } }, - "30316cf420824a829eda8ee3f3f36991": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d9ebc6f9f30b4734a554a85db6ae8861", - "placeholder": "​", - "style": "IPY_MODEL_c45bbedb6a7949b882e184b9bc4d46b9", - "value": " 10000/? [00:00<00:00, 1034379.15it/s]" - } - }, - "3ddcd594710745acaad1e1cc6f149d8a": { + "0b26a491d8c34a0d931670d5928603e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1380,7 +1307,58 @@ "width": null } }, - "55b58ad72a8d46099d3702084a1b182a": { + "2eeea2f7645b4188aedc5f31e15144f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_47e4de9f7c634aab83b30f36f22afe5a", + "placeholder": "​", + "style": "IPY_MODEL_d9920febf823481abf81cd51efec171f", + "value": " 10000/? [00:00<00:00, 913751.91it/s]" + } + }, + "3148dccaefa7441cbc8361a12a0fd8cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "37a9e3c1702f4fb5a5c74358cfc1971f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "45d26c1bc9814e0c951e6344c92aee31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1432,81 +1410,7 @@ "width": null } }, - "62df1f18b44e4d90a0824dbdcec6edf0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "63d2a866773744b9aff15c1767a550dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9556274857844616b2c2abdcb7b93e59", - "placeholder": "​", - "style": "IPY_MODEL_2a3410c8e76e4da1a2c1201acdafe8e0", - "value": " 10000/? [00:00<00:00, 980504.48it/s]" - } - }, - "85188d9282f24a42addc1338023f31f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8dd5a6da291645aeaa639467f94d1774": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3ddcd594710745acaad1e1cc6f149d8a", - "placeholder": "​", - "style": "IPY_MODEL_07dfe5af91a84c728a8a628c11190002", - "value": "number of examples processed for checking labels: " - } - }, - "9556274857844616b2c2abdcb7b93e59": { + "47e4de9f7c634aab83b30f36f22afe5a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1558,7 +1462,7 @@ "width": null } }, - "a3a2eaf1b069458cb5afc716f77e9a4d": { + "5eef3d260b1c48f0a9af95ac534c9261": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1610,29 +1514,7 @@ "width": null } }, - "aa5ce7bdd5184371a27768440d1591bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8dd5a6da291645aeaa639467f94d1774", - "IPY_MODEL_d1cd15e8c98749cc8d09445334cef423", - "IPY_MODEL_63d2a866773744b9aff15c1767a550dc" - ], - "layout": "IPY_MODEL_c0e70cfa3e214daf8c1b1ca5e050ae40" - } - }, - "baea8f8c366a4ca6a34381a5e6fb99eb": { + "6320bb24a64d490c85aa206924dd41ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1684,7 +1566,39 @@ "width": null } }, - "c0e70cfa3e214daf8c1b1ca5e050ae40": { + "67a78d71b09c418bacaa113820259639": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6a3ad8390a4a48c2a689f4a1aec792a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8e3eb4631d924de79ed076260db759f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1736,7 +1650,7 @@ "width": null } }, - "c45bbedb6a7949b882e184b9bc4d46b9": { + "969994746ec14cfabd3d67d9b854d535": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1751,31 +1665,7 @@ "description_width": "" } }, - "d1cd15e8c98749cc8d09445334cef423": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a3a2eaf1b069458cb5afc716f77e9a4d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_85188d9282f24a42addc1338023f31f1", - "value": 50.0 - } - }, - "d9ebc6f9f30b4734a554a85db6ae8861": { + "a2ca91a8edc646b881d822eb3c890f36": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1827,7 +1717,7 @@ "width": null } }, - "e38334c5ecaa41cb800313b30c6ad845": { + "af8f0cbc84314c2dbaf42c0c0e559eb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1842,13 +1732,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2f6d326f28604310a38367ee98fd7fb9", + "layout": "IPY_MODEL_5eef3d260b1c48f0a9af95ac534c9261", "placeholder": "​", - "style": "IPY_MODEL_f6176f13b6394a6da6ffd7d60a6be946", - "value": "number of examples processed for estimating thresholds: " + "style": "IPY_MODEL_969994746ec14cfabd3d67d9b854d535", + "value": "number of examples processed for checking labels: " } }, - "ec931f109a5e4830be6e15b23a2caa8a": { + "bc697095a3a249d5a1c4a81792b4ee30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1864,15 +1754,58 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_55b58ad72a8d46099d3702084a1b182a", + "layout": "IPY_MODEL_a2ca91a8edc646b881d822eb3c890f36", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_62df1f18b44e4d90a0824dbdcec6edf0", + "style": "IPY_MODEL_67a78d71b09c418bacaa113820259639", "value": 50.0 } }, - "f6176f13b6394a6da6ffd7d60a6be946": { + "cf809e3cf7844d18930646c1e4f3784e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0b26a491d8c34a0d931670d5928603e9", + "placeholder": "​", + "style": "IPY_MODEL_3148dccaefa7441cbc8361a12a0fd8cb", + "value": "number of examples processed for estimating thresholds: " + } + }, + "d488a45de9614f829dd754c7c7931f9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf809e3cf7844d18930646c1e4f3784e", + "IPY_MODEL_bc697095a3a249d5a1c4a81792b4ee30", + "IPY_MODEL_2eeea2f7645b4188aedc5f31e15144f3" + ], + "layout": "IPY_MODEL_45d26c1bc9814e0c951e6344c92aee31" + } + }, + "d9920febf823481abf81cd51efec171f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1886,6 +1819,73 @@ "_view_name": "StyleView", "description_width": "" } + }, + "f8012a98f78442b2a1e0ec66d6d50513": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af8f0cbc84314c2dbaf42c0c0e559eb9", + "IPY_MODEL_ff9ffed88a004b62bfb3bd67c09719f6", + "IPY_MODEL_ff51c94d645845d7803e7f0b10c60e8d" + ], + "layout": "IPY_MODEL_8e3eb4631d924de79ed076260db759f0" + } + }, + "ff51c94d645845d7803e7f0b10c60e8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6320bb24a64d490c85aa206924dd41ac", + "placeholder": "​", + "style": "IPY_MODEL_37a9e3c1702f4fb5a5c74358cfc1971f", + "value": " 10000/? [00:00<00:00, 1135191.08it/s]" + } + }, + "ff9ffed88a004b62bfb3bd67c09719f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02a9cda90bd24fca8175d8c43eef4909", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6a3ad8390a4a48c2a689f4a1aec792a4", + "value": 50.0 + } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index 0ba15b493..ee2a6abdd 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -879,25 +879,25 @@

    2. Fetch and normalize the Fashion-MNIST dataset

    -
    +

    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    -
    +
    -100%|██████████| 40/40 [00:00<00:00, 62.34it/s]
    +epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.665
     
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    0%| | 0/40 [00:00&lt;?, ?it/s]
    +

    </pre>

    +
    +
    +
    0%| | 0/40 [00:00<?, ?it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    0%| | 0/40 [00:00<?, ?it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    8%|▊ | 3/40 [00:00&lt;00:01, 26.04it/s]
    +

    </pre>

    +
    +
    +
    8%|▊ | 3/40 [00:00<00:01, 26.04it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    8%|▊ | 3/40 [00:00<00:01, 26.04it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    28%|██▊ | 11/40 [00:00&lt;00:00, 52.13it/s]
    +

    </pre>

    +
    +
    +
    28%|██▊ | 11/40 [00:00<00:00, 52.13it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    28%|██▊ | 11/40 [00:00<00:00, 52.13it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    48%|████▊ | 19/40 [00:00&lt;00:00, 61.52it/s]
    +

    </pre>

    +
    +
    +
    48%|████▊ | 19/40 [00:00<00:00, 61.52it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    48%|████▊ | 19/40 [00:00<00:00, 61.52it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    65%|██████▌ | 26/40 [00:00&lt;00:00, 64.38it/s]
    +

    </pre>

    +
    +
    +
    65%|██████▌ | 26/40 [00:00<00:00, 64.38it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    65%|██████▌ | 26/40 [00:00<00:00, 64.38it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    85%|████████▌ | 34/40 [00:00&lt;00:00, 69.16it/s]
    +

    </pre>

    +
    +
    +
    85%|████████▌ | 34/40 [00:00<00:00, 69.16it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    85%|████████▌ | 34/40 [00:00<00:00, 69.16it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 64.31it/s]
    +

    </pre>

    +
    +
    +
    100%|██████████| 40/40 [00:00<00:00, 64.31it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|██████████| 40/40 [00:00<00:00, 64.31it/s]

    -100%|██████████| 40/40 [00:00<00:00, 63.29it/s]
    +
     
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    0%| | 0/40 [00:00&lt;?, ?it/s]
    +

    </pre>

    +
    +
    +
    0%| | 0/40 [00:00<?, ?it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    0%| | 0/40 [00:00<?, ?it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    5%|▌ | 2/40 [00:00&lt;00:02, 17.54it/s]
    +

    </pre>

    +
    +
    +
    5%|▌ | 2/40 [00:00<00:02, 17.54it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    5%|▌ | 2/40 [00:00<00:02, 17.54it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    25%|██▌ | 10/40 [00:00&lt;00:00, 49.77it/s]
    +

    </pre>

    +
    +
    +
    25%|██▌ | 10/40 [00:00<00:00, 49.77it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    25%|██▌ | 10/40 [00:00<00:00, 49.77it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    45%|████▌ | 18/40 [00:00&lt;00:00, 61.03it/s]
    +

    </pre>

    +
    +
    +
    45%|████▌ | 18/40 [00:00<00:00, 61.03it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    45%|████▌ | 18/40 [00:00<00:00, 61.03it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    65%|██████▌ | 26/40 [00:00&lt;00:00, 66.62it/s]
    +

    </pre>

    +
    +
    +
    65%|██████▌ | 26/40 [00:00<00:00, 66.62it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    65%|██████▌ | 26/40 [00:00<00:00, 66.62it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    85%|████████▌ | 34/40 [00:00&lt;00:00, 69.31it/s]
    +

    </pre>

    +
    +
    +
    85%|████████▌ | 34/40 [00:00<00:00, 69.31it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    85%|████████▌ | 34/40 [00:00<00:00, 69.31it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 64.12it/s]
    +

    </pre>

    +
    +
    +
    100%|██████████| 40/40 [00:00<00:00, 64.12it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|██████████| 40/40 [00:00<00:00, 64.12it/s]

    +
    +
    +
    +
    +
    +
    +epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.561
     Computing feature embeddings ...
     
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    0%| | 0/40 [00:00&lt;?, ?it/s]
    +

    </pre>

    +
    +
    +
    0%| | 0/40 [00:00<?, ?it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    0%| | 0/40 [00:00<?, ?it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 9.31it/s]
    +

    </pre>

    +
    +
    +
    2%|▎ | 1/40 [00:00<00:04, 9.31it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    2%|▎ | 1/40 [00:00<00:04, 9.31it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    20%|██ | 8/40 [00:00&lt;00:00, 41.54it/s]
    +

    </pre>

    +
    +
    +
    20%|██ | 8/40 [00:00<00:00, 41.54it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    20%|██ | 8/40 [00:00<00:00, 41.54it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    40%|████ | 16/40 [00:00&lt;00:00, 55.60it/s]
    +

    </pre>

    +
    +
    +
    40%|████ | 16/40 [00:00<00:00, 55.60it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    40%|████ | 16/40 [00:00<00:00, 55.60it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    60%|██████ | 24/40 [00:00&lt;00:00, 62.81it/s]
    +

    </pre>

    +
    +
    +
    60%|██████ | 24/40 [00:00<00:00, 62.81it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    60%|██████ | 24/40 [00:00<00:00, 62.81it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    80%|████████ | 32/40 [00:00&lt;00:00, 67.55it/s]
    +

    </pre>

    +
    +
    +
    80%|████████ | 32/40 [00:00<00:00, 67.55it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    80%|████████ | 32/40 [00:00<00:00, 67.55it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 62.09it/s]
    +

    </pre>

    +
    +
    +
    100%|██████████| 40/40 [00:00<00:00, 62.09it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|██████████| 40/40 [00:00<00:00, 62.09it/s]

    -100%|██████████| 40/40 [00:00<00:00, 61.87it/s]
    +
     

    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    0%| | 0/40 [00:00&lt;?, ?it/s]
    +

    </pre>

    +
    +
    +
    0%| | 0/40 [00:00<?, ?it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    0%| | 0/40 [00:00<?, ?it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 9.26it/s]
    +

    </pre>

    +
    +
    +
    2%|▎ | 1/40 [00:00<00:04, 9.26it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    2%|▎ | 1/40 [00:00<00:04, 9.26it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    20%|██ | 8/40 [00:00&lt;00:00, 41.31it/s]
    +

    </pre>

    +
    +
    +
    20%|██ | 8/40 [00:00<00:00, 41.31it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    20%|██ | 8/40 [00:00<00:00, 41.31it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    38%|███▊ | 15/40 [00:00&lt;00:00, 52.02it/s]
    +

    </pre>

    +
    +
    +
    38%|███▊ | 15/40 [00:00<00:00, 52.02it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    38%|███▊ | 15/40 [00:00<00:00, 52.02it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    55%|█████▌ | 22/40 [00:00&lt;00:00, 56.71it/s]
    +

    </pre>

    +
    +
    +
    55%|█████▌ | 22/40 [00:00<00:00, 56.71it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    55%|█████▌ | 22/40 [00:00<00:00, 56.71it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    75%|███████▌ | 30/40 [00:00&lt;00:00, 62.29it/s]
    +

    </pre>

    +
    +
    +
    75%|███████▌ | 30/40 [00:00<00:00, 62.29it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    75%|███████▌ | 30/40 [00:00<00:00, 62.29it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 39/40 [00:00&lt;00:00, 69.03it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 39/40 [00:00<00:00, 69.03it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 39/40 [00:00<00:00, 69.03it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 58.55it/s]
    +

    </pre>

    +
    +
    +
    100%|██████████| 40/40 [00:00<00:00, 58.55it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|██████████| 40/40 [00:00<00:00, 58.55it/s]

    +
    +
    +
    +
    +
    +
    +Training on fold: 3 ...
    +
    +
    -100%|██████████| 40/40 [00:00<00:00, 62.82it/s]
    +
     
    +
    +
    +
    +
    +
    +epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.420
     Computing feature embeddings ...
     
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    0%| | 0/40 [00:00&lt;?, ?it/s]
    +

    </pre>

    +
    +
    +
    0%| | 0/40 [00:00<?, ?it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    0%| | 0/40 [00:00<?, ?it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    5%|▌ | 2/40 [00:00&lt;00:02, 18.31it/s]
    +

    </pre>

    +
    +
    +
    5%|▌ | 2/40 [00:00<00:02, 18.31it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    5%|▌ | 2/40 [00:00<00:02, 18.31it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    25%|██▌ | 10/40 [00:00&lt;00:00, 50.91it/s]
    +

    </pre>

    +
    +
    +
    25%|██▌ | 10/40 [00:00<00:00, 50.91it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    25%|██▌ | 10/40 [00:00<00:00, 50.91it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    45%|████▌ | 18/40 [00:00&lt;00:00, 61.54it/s]
    +

    </pre>

    +
    +
    +
    45%|████▌ | 18/40 [00:00<00:00, 61.54it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    45%|████▌ | 18/40 [00:00<00:00, 61.54it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    65%|██████▌ | 26/40 [00:00&lt;00:00, 66.77it/s]
    +

    </pre>

    +
    +
    +
    65%|██████▌ | 26/40 [00:00<00:00, 66.77it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    65%|██████▌ | 26/40 [00:00<00:00, 66.77it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    85%|████████▌ | 34/40 [00:00&lt;00:00, 68.76it/s]
    +

    </pre>

    +
    +
    +
    85%|████████▌ | 34/40 [00:00<00:00, 68.76it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    85%|████████▌ | 34/40 [00:00<00:00, 68.76it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 62.86it/s]
    +

    </pre>

    +
    +
    +
    100%|██████████| 40/40 [00:00<00:00, 62.86it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|██████████| 40/40 [00:00<00:00, 62.86it/s]

    -100%|██████████| 40/40 [00:00<00:00, 57.76it/s]
    +
     

    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    0%| | 0/40 [00:00&lt;?, ?it/s]
    +

    </pre>

    +
    +
    +
    0%| | 0/40 [00:00<?, ?it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    0%| | 0/40 [00:00<?, ?it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    2%|▎ | 1/40 [00:00&lt;00:04, 9.65it/s]
    +

    </pre>

    +
    +
    +
    2%|▎ | 1/40 [00:00<00:04, 9.65it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    2%|▎ | 1/40 [00:00<00:04, 9.65it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    22%|██▎ | 9/40 [00:00&lt;00:00, 47.74it/s]
    +

    </pre>

    +
    +
    +
    22%|██▎ | 9/40 [00:00<00:00, 47.74it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    22%|██▎ | 9/40 [00:00<00:00, 47.74it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    42%|████▎ | 17/40 [00:00&lt;00:00, 59.93it/s]
    +

    </pre>

    +
    +
    +
    42%|████▎ | 17/40 [00:00<00:00, 59.93it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    42%|████▎ | 17/40 [00:00<00:00, 59.93it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    60%|██████ | 24/40 [00:00&lt;00:00, 61.97it/s]
    +

    </pre>

    +
    +
    +
    60%|██████ | 24/40 [00:00<00:00, 61.97it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    60%|██████ | 24/40 [00:00<00:00, 61.97it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    80%|████████ | 32/40 [00:00&lt;00:00, 66.57it/s]
    +

    </pre>

    +
    +
    +
    80%|████████ | 32/40 [00:00<00:00, 66.57it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    80%|████████ | 32/40 [00:00<00:00, 66.57it/s]

    +
    +
    +
    +
    +
    +
    100%|██████████| 40/40 [00:00&lt;00:00, 62.05it/s]
    +

    </pre>

    +
    +
    +
    100%|██████████| 40/40 [00:00<00:00, 62.05it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|██████████| 40/40 [00:00<00:00, 62.05it/s]

    +
    +
    +
    +
    -100%|██████████| 40/40 [00:00<00:00, 65.04it/s]
    +Finished Training
     
    +
    +
    +
    +
    +
    +
     Finding outlier issues ...
     Fitting OOD estimator based on provided features ...
    +
    +
    +
    +
    +
    +
    +
     Finding near_duplicate issues ...
     Finding non_iid issues ...
    +
    +
    +
    -
    +
    @@ -1518,11 +2630,11 @@

    View report - is_dark_issue dark_score + is_dark_issue 34848 - True 0.203922 + True 50270 - True 0.204588 + True 3936 - True 0.213098 + True 733 - True 0.217686 + True 8094 - True 0.230118 + True @@ -2256,35 +3368,35 @@

    Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2307,7 +3419,7 @@

    Low information images

    Here we can see a lot of low information images belong to the Sandal class.

    @@ -2341,7 +3453,7 @@

    Low information images
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index 2fa48f624..2fa4aaff8 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:21.699842Z", - "iopub.status.busy": "2023-12-28T10:51:21.699465Z", - "iopub.status.idle": "2023-12-28T10:51:23.862154Z", - "shell.execute_reply": "2023-12-28T10:51:23.861540Z" + "iopub.execute_input": "2024-01-02T16:44:13.318315Z", + "iopub.status.busy": "2024-01-02T16:44:13.317856Z", + "iopub.status.idle": "2024-01-02T16:44:15.517012Z", + "shell.execute_reply": "2024-01-02T16:44:15.516379Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:23.865216Z", - "iopub.status.busy": "2023-12-28T10:51:23.864655Z", - "iopub.status.idle": "2023-12-28T10:51:23.868563Z", - "shell.execute_reply": "2023-12-28T10:51:23.867912Z" + "iopub.execute_input": "2024-01-02T16:44:15.520115Z", + "iopub.status.busy": "2024-01-02T16:44:15.519591Z", + "iopub.status.idle": "2024-01-02T16:44:15.523342Z", + "shell.execute_reply": "2024-01-02T16:44:15.522787Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:23.870991Z", - "iopub.status.busy": "2023-12-28T10:51:23.870562Z", - "iopub.status.idle": "2023-12-28T10:51:25.218141Z", - "shell.execute_reply": "2023-12-28T10:51:25.217535Z" + "iopub.execute_input": "2024-01-02T16:44:15.525726Z", + "iopub.status.busy": "2024-01-02T16:44:15.525367Z", + "iopub.status.idle": "2024-01-02T16:44:18.452974Z", + "shell.execute_reply": "2024-01-02T16:44:18.452328Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ef00bbe1818846999730dee959633c30", + "model_id": "bdd8d83d16ce4e48ba972c56b576b84d", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4d6a08f2339f4c438e1d42bf2ca12173", + "model_id": "3aef40a726a7487a997682ee3a6e5826", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6b14d27bd3d45a2bcf6d7b5f8764c86", + "model_id": "e292d7c9b544457998217dfe333664e2", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7c47746dcb1140dbb4cf79d8a6a53b0a", + "model_id": "d26337e7713242faa01dda838af51958", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:25.220827Z", - "iopub.status.busy": "2023-12-28T10:51:25.220363Z", - "iopub.status.idle": "2023-12-28T10:51:25.224557Z", - "shell.execute_reply": "2023-12-28T10:51:25.223934Z" + "iopub.execute_input": "2024-01-02T16:44:18.455560Z", + "iopub.status.busy": "2024-01-02T16:44:18.455197Z", + "iopub.status.idle": "2024-01-02T16:44:18.459152Z", + "shell.execute_reply": "2024-01-02T16:44:18.458645Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:25.227017Z", - "iopub.status.busy": "2023-12-28T10:51:25.226639Z", - "iopub.status.idle": "2023-12-28T10:51:37.539939Z", - "shell.execute_reply": "2023-12-28T10:51:37.539211Z" + "iopub.execute_input": "2024-01-02T16:44:18.461476Z", + "iopub.status.busy": "2024-01-02T16:44:18.461130Z", + "iopub.status.idle": "2024-01-02T16:44:30.629126Z", + "shell.execute_reply": "2024-01-02T16:44:30.628505Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66b99572a6894b269c707cacbf13b4c1", + "model_id": "ab8ea257c1544162ac74cedcd94836b8", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:37.543074Z", - "iopub.status.busy": "2023-12-28T10:51:37.542680Z", - "iopub.status.idle": "2023-12-28T10:51:58.820961Z", - "shell.execute_reply": "2023-12-28T10:51:58.820325Z" + "iopub.execute_input": "2024-01-02T16:44:30.632109Z", + "iopub.status.busy": "2024-01-02T16:44:30.631717Z", + "iopub.status.idle": "2024-01-02T16:44:52.190264Z", + "shell.execute_reply": "2024-01-02T16:44:52.189462Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.824174Z", - "iopub.status.busy": "2023-12-28T10:51:58.823728Z", - "iopub.status.idle": "2023-12-28T10:51:58.829801Z", - "shell.execute_reply": "2023-12-28T10:51:58.829275Z" + "iopub.execute_input": "2024-01-02T16:44:52.193635Z", + "iopub.status.busy": "2024-01-02T16:44:52.193228Z", + "iopub.status.idle": "2024-01-02T16:44:52.199290Z", + "shell.execute_reply": "2024-01-02T16:44:52.198591Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.832003Z", - "iopub.status.busy": "2023-12-28T10:51:58.831791Z", - "iopub.status.idle": "2023-12-28T10:51:58.836036Z", - "shell.execute_reply": "2023-12-28T10:51:58.835417Z" + "iopub.execute_input": "2024-01-02T16:44:52.201991Z", + "iopub.status.busy": "2024-01-02T16:44:52.201536Z", + "iopub.status.idle": "2024-01-02T16:44:52.206383Z", + "shell.execute_reply": "2024-01-02T16:44:52.205819Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.838335Z", - "iopub.status.busy": "2023-12-28T10:51:58.838137Z", - "iopub.status.idle": "2023-12-28T10:51:58.847977Z", - "shell.execute_reply": "2023-12-28T10:51:58.847325Z" + "iopub.execute_input": "2024-01-02T16:44:52.208914Z", + "iopub.status.busy": "2024-01-02T16:44:52.208542Z", + "iopub.status.idle": "2024-01-02T16:44:52.218376Z", + "shell.execute_reply": "2024-01-02T16:44:52.217711Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.850216Z", - "iopub.status.busy": "2023-12-28T10:51:58.850015Z", - "iopub.status.idle": "2023-12-28T10:51:58.877757Z", - "shell.execute_reply": "2023-12-28T10:51:58.877222Z" + "iopub.execute_input": "2024-01-02T16:44:52.220804Z", + "iopub.status.busy": "2024-01-02T16:44:52.220352Z", + "iopub.status.idle": "2024-01-02T16:44:52.250373Z", + "shell.execute_reply": "2024-01-02T16:44:52.249854Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:51:58.880248Z", - "iopub.status.busy": "2023-12-28T10:51:58.880005Z", - "iopub.status.idle": "2023-12-28T10:52:31.033894Z", - "shell.execute_reply": "2023-12-28T10:52:31.033222Z" + "iopub.execute_input": "2024-01-02T16:44:52.252797Z", + "iopub.status.busy": "2024-01-02T16:44:52.252420Z", + "iopub.status.idle": "2024-01-02T16:45:23.624499Z", + "shell.execute_reply": "2024-01-02T16:45:23.623642Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.666\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.665\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.712\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.432\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.80it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.04it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.85it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 52.13it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.83it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 61.52it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 64.05it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 64.38it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 68.13it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 69.16it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.34it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.31it/s]" ] }, { @@ -820,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.36it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.54it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.96it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 49.77it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 60.56it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 61.03it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 66.53it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 66.62it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 66.40it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 69.31it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.29it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.12it/s]" ] }, { @@ -882,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.883\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.727\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.678\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.561\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.85it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.31it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.54it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 58.38it/s]" + " 40%|████ | 16/40 [00:00<00:00, 55.60it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 64.68it/s]" + " 60%|██████ | 24/40 [00:00<00:00, 62.81it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 69.37it/s]" + " 80%|████████ | 32/40 [00:00<00:00, 67.55it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.87it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.09it/s]" ] }, { @@ -976,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.90it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 9.26it/s]" ] }, { @@ -984,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 44.75it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.31it/s]" ] }, { @@ -992,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 57.19it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 52.02it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.70it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 56.71it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.12it/s]" + " 75%|███████▌ | 30/40 [00:00<00:00, 62.29it/s]" ] }, { @@ -1016,14 +1016,15 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.82it/s]" + " 98%|█████████▊| 39/40 [00:00<00:00, 69.03it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\n" + "\r", + "100%|██████████| 40/40 [00:00<00:00, 58.55it/s]" ] }, { @@ -1035,26 +1036,25 @@ ] }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.860\n" + "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.447\n", - "Computing feature embeddings ...\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.669\n" ] }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "\r", - " 0%| | 0/40 [00:00\n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "
    " ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2614,10 +2614,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:01.847213Z", - "iopub.status.busy": "2023-12-28T10:56:01.846630Z", - "iopub.status.idle": "2023-12-28T10:56:01.853206Z", - "shell.execute_reply": "2023-12-28T10:56:01.852635Z" + "iopub.execute_input": "2024-01-02T16:48:56.478782Z", + "iopub.status.busy": "2024-01-02T16:48:56.478538Z", + "iopub.status.idle": "2024-01-02T16:48:56.485279Z", + "shell.execute_reply": "2024-01-02T16:48:56.484611Z" }, "nbsphinx": "hidden" }, @@ -2654,10 +2654,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:01.856114Z", - "iopub.status.busy": "2023-12-28T10:56:01.855573Z", - "iopub.status.idle": "2023-12-28T10:56:02.059181Z", - "shell.execute_reply": "2023-12-28T10:56:02.058516Z" + "iopub.execute_input": "2024-01-02T16:48:56.488523Z", + "iopub.status.busy": "2024-01-02T16:48:56.488269Z", + "iopub.status.idle": "2024-01-02T16:48:56.695600Z", + "shell.execute_reply": "2024-01-02T16:48:56.694916Z" } }, "outputs": [ @@ -2699,10 +2699,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:02.062080Z", - "iopub.status.busy": "2023-12-28T10:56:02.061666Z", - "iopub.status.idle": "2023-12-28T10:56:02.070670Z", - "shell.execute_reply": "2023-12-28T10:56:02.070039Z" + "iopub.execute_input": "2024-01-02T16:48:56.698633Z", + "iopub.status.busy": "2024-01-02T16:48:56.698078Z", + "iopub.status.idle": "2024-01-02T16:48:56.709634Z", + "shell.execute_reply": "2024-01-02T16:48:56.708930Z" } }, "outputs": [ @@ -2727,47 +2727,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2788,10 +2788,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:02.073041Z", - "iopub.status.busy": "2023-12-28T10:56:02.072839Z", - "iopub.status.idle": "2023-12-28T10:56:02.238265Z", - "shell.execute_reply": "2023-12-28T10:56:02.237583Z" + "iopub.execute_input": "2024-01-02T16:48:56.712327Z", + "iopub.status.busy": "2024-01-02T16:48:56.711896Z", + "iopub.status.idle": "2024-01-02T16:48:56.917398Z", + "shell.execute_reply": "2024-01-02T16:48:56.916721Z" } }, "outputs": [ @@ -2822,10 +2822,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:02.241234Z", - "iopub.status.busy": "2023-12-28T10:56:02.240968Z", - "iopub.status.idle": "2023-12-28T10:56:02.246032Z", - "shell.execute_reply": "2023-12-28T10:56:02.245498Z" + "iopub.execute_input": "2024-01-02T16:48:56.920279Z", + "iopub.status.busy": "2024-01-02T16:48:56.919883Z", + "iopub.status.idle": "2024-01-02T16:48:56.924875Z", + "shell.execute_reply": "2024-01-02T16:48:56.924234Z" }, "nbsphinx": "hidden" }, @@ -2862,22 +2862,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "037533e3506a4a9db931c5ee5310d8eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0a2e35c2d0364ecd99b3552fb95f3158": { + "0084a46c9d7e4b36807b48823efd789c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2929,7 +2914,28 @@ "width": null } }, - "0e1b25214be54a04a986ae8d193de7b6": { + "06c63814bae1457eb141d1bc207b8993": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_691f90e8e3c546fc895b1d0cd686e0aa", + "placeholder": "​", + "style": "IPY_MODEL_ff0d891d4d0547a8bf72adfa5a9448f4", + "value": "Downloading data: 100%" + } + }, + "06f8640a1b2043ec992a791379bcfe4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2981,7 +2987,23 @@ "width": null } }, - "14759363841c473b92f1ff183a30c931": { + "08092c96bdc34e5f9b0cbdc9f1bcf56f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0b8808eb05cf4d469b80ea697d3c0efd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3033,7 +3055,7 @@ "width": null } }, - "1a1db66bec834718a82b95d8e2ede7c5": { + "0dc3f4aa8c8241689bcc703926fcb385": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3085,7 +3107,7 @@ "width": null } }, - "1daef5f644ca438493bcca1dd7869da0": { + "0eee090ebc4b4bc1b2f7b93498eb5a66": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3100,13 +3122,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e9a1eb9feb394f79a7eccaaeeb8592e7", + "layout": "IPY_MODEL_f3608822aa154fa098ba8256974e88bd", "placeholder": "​", - "style": "IPY_MODEL_46ce9be0c5554dd7befb947548fd1a80", - "value": "Generating train split: " + "style": "IPY_MODEL_b660df2b73104c37976425e56f81a28f", + "value": "Map (num_proc=4): 100%" + } + }, + "1389c65d0684462fae24fdb9d027df5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "273ccb68240f4452a4425c0d0d6e5d66": { + "14f59594e791448fb08985949852fc3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3121,50 +3159,89 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d633ad83c7cd4e9197391dc81cd735a2", + "layout": "IPY_MODEL_1a434d1d381343e48b3e2cfc48c6b0bf", "placeholder": "​", - "style": "IPY_MODEL_286f8c4ddb394191b7004962c9d5de04", - "value": " 60000/60000 [00:12<00:00, 6321.63 examples/s]" + "style": "IPY_MODEL_b108f5b2d21b4b29adc6e1cb78399f93", + "value": " 10000/0 [00:00<00:00, 515283.42 examples/s]" } }, - "286f8c4ddb394191b7004962c9d5de04": { + "1760f769aeb246b29e063ffd5f80064e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8a6d75af45b4d9e807068f2581d1c30", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e6d7e1df9af0467194ff9a53b3fc7444", + "value": 30931277.0 } }, - "29644f36ac7643c4b12f830df90a3c65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "19f1b86223924ddabeba38237f2b7fc2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c04e1f6f6d5146eba074a6693a403e0a", - "IPY_MODEL_edc5dc4e84aa4145b0a6602ef0029e7f", - "IPY_MODEL_7a5b7e15665047d188a690e3512c34b9" - ], - "layout": "IPY_MODEL_9af8569a05bc4e65b71661993bffa124" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2ac75d362c4d4e0793f683d4ec0fb37e": { + "1a434d1d381343e48b3e2cfc48c6b0bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3216,22 +3293,75 @@ "width": null } }, - "2c156ba3c74f45899af8bcd138125124": { + "1cc852b932b0485c9e9f22d2f3e92582": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "2f8f43fbc3f441ec996ed4c99c2d038b": { + "1f9defb94a3843dabd5e7e0e98e77e96": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1fa21ad594604bbf9d8970cfa576f67a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3246,243 +3376,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_622ab8bd1eb24a9982dd8053dd962ac8", + "layout": "IPY_MODEL_3941c95303154619b58578a1ff65e595", "placeholder": "​", - "style": "IPY_MODEL_2c156ba3c74f45899af8bcd138125124", - "value": "Generating test split: " + "style": "IPY_MODEL_a4aca255af78468084ef3e4fb3f5efed", + "value": "Generating train split: " } }, - "36e5a0c19adc4dbb8f617103322ae7a4": { + "281f009bdade4018bc23cfa73ce284c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ce37a4915f184bf08e640ffcbcec7c0b", - "placeholder": "​", - "style": "IPY_MODEL_4af652dc1adb40d5bd82ad4694356c2d", - "value": " 5.18M/5.18M [00:00<00:00, 103MB/s]" - } - }, - "3d7705f04e28493d89543b1eaae3be43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3eea06a95b574fa684368b3f710e4ddf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f0a82082ff264607a24328db2ed8046f", - "placeholder": "​", - "style": "IPY_MODEL_9482e57799854291ae3f1370b6df8ba1", - "value": " 30.9M/30.9M [00:00<00:00, 101MB/s]" - } - }, - "41590f323a0445dd99a80ebf0a607121": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "42055436f26f4d22a23bb9c0f3cba0cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "428ad3c068fe496b819856f327c7e0e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6302999e4a3a4669b4b88412e0ca9685", - "placeholder": "​", - "style": "IPY_MODEL_9c084166328743828e1d7cc83f16de79", - "value": "Downloading data: 100%" - } - }, - "46ce9be0c5554dd7befb947548fd1a80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4af652dc1adb40d5bd82ad4694356c2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4d6a08f2339f4c438e1d42bf2ca12173": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bff41dbf2d214467884c050fecb52fc5", - "IPY_MODEL_5cca085d9faf4ee4a94c803663604aec", - "IPY_MODEL_36e5a0c19adc4dbb8f617103322ae7a4" - ], - "layout": "IPY_MODEL_bb930c218f93407ba619107a77d019f1" - } - }, - "4e3b2e2395604440bda582fb532fd397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8de2f42076984fdaa8f63906e27d31d9", + "layout": "IPY_MODEL_06f8640a1b2043ec992a791379bcfe4e", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e3fa13bb55694ae5b76f9b53ca7b5376", + "style": "IPY_MODEL_1cc852b932b0485c9e9f22d2f3e92582", "value": 60000.0 } }, - "57953bca660842cfa9b502e35e14c4de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dbd75684b3f445f2978c7563f62b1c02", - "placeholder": "​", - "style": "IPY_MODEL_41590f323a0445dd99a80ebf0a607121", - "value": " 60000/0 [00:00<00:00, 906337.64 examples/s]" - } - }, - "5cca085d9faf4ee4a94c803663604aec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1a1db66bec834718a82b95d8e2ede7c5", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d8faaf72ffd34bb68c49d897cd1a7154", - "value": 5175617.0 - } - }, - "609bee0dd7db46a5a15dddfc14104b6d": { + "2a83bf73f6cb49a894c297eb4386c9c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3531,10 +3455,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "622ab8bd1eb24a9982dd8053dd962ac8": { + "2d2040740633486dbc15bdc76cc9b35c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3586,7 +3510,7 @@ "width": null } }, - "62c69dd53f4e4fcaaadcf89cfd16d9e5": { + "36a0193962984f10b9f30fc8ba224591": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3635,10 +3559,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "6302999e4a3a4669b4b88412e0ca9685": { + "3941c95303154619b58578a1ff65e595": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3690,7 +3614,59 @@ "width": null } }, - "64f12fc1eccb40e691dabed0e253052a": { + "3a10397af8534b289809fd9f34cffa12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3aef40a726a7487a997682ee3a6e5826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_81cb41be12bd4ae997b1f7764525ff8e", + "IPY_MODEL_ccc9e01b27ad4197b41bc1e7b0f66f85", + "IPY_MODEL_759c0d13d2d1402399ac72d54b4f9f0e" + ], + "layout": "IPY_MODEL_f128750b544a4ee4a3f4589b594baa89" + } + }, + "3e2a4c0ddae74e13a2021ce5e714a1c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "470684e2f72a47c8bb16131ca6641ac2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3742,53 +3718,28 @@ "width": null } }, - "65b47325afea4e1cb5027d0e81086147": { + "478826a4b8414ab7b1feb20466e62ebd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_609bee0dd7db46a5a15dddfc14104b6d", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74e4c3c4f34a4ceeb7a73328dcb00640", - "value": 1.0 - } - }, - "66b99572a6894b269c707cacbf13b4c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac6d64b487e048ac89b9674a2d8b7d89", - "IPY_MODEL_4e3b2e2395604440bda582fb532fd397", - "IPY_MODEL_273ccb68240f4452a4425c0d0d6e5d66" - ], - "layout": "IPY_MODEL_7f6f494514c3441da2ba837472c5bdec" + "layout": "IPY_MODEL_0dc3f4aa8c8241689bcc703926fcb385", + "placeholder": "​", + "style": "IPY_MODEL_ef15f1fa0cfd44c78a6592dd49078246", + "value": " 60000/60000 [00:12<00:00, 4033.19 examples/s]" } }, - "6caeb04a6a0a4f6994fab1dd7f9da38d": { + "5cf96142e7774584bdadc1562718a970": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3840,22 +3791,23 @@ "width": null } }, - "6dd311692ffc4923a691eb4943643ca3": { + "651f52ae3e444f03953a477119b11bce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7172bd075ca34d1298c29b0d2df90ccf": { + "691f90e8e3c546fc895b1d0cd686e0aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3907,44 +3859,7 @@ "width": null } }, - "74e4c3c4f34a4ceeb7a73328dcb00640": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a5b7e15665047d188a690e3512c34b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7172bd075ca34d1298c29b0d2df90ccf", - "placeholder": "​", - "style": "IPY_MODEL_9ea66324f81a4c369f3466fb807830e4", - "value": " 60000/60000 [00:35<00:00, 1700.84it/s]" - } - }, - "7c47746dcb1140dbb4cf79d8a6a53b0a": { + "6d8f8bfc0b0a430d875f79a4876cbea8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3959,14 +3874,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2f8f43fbc3f441ec996ed4c99c2d038b", - "IPY_MODEL_65b47325afea4e1cb5027d0e81086147", - "IPY_MODEL_ce169250a1c6449e855719ea19052bf5" + "IPY_MODEL_be5a8f94447e42749262ff299cf80cce", + "IPY_MODEL_b0eedbc2adf6476883bef4f2544e0a0b", + "IPY_MODEL_f3177bf243774120931644bf2f7ba71a" ], - "layout": "IPY_MODEL_0e1b25214be54a04a986ae8d193de7b6" + "layout": "IPY_MODEL_c2fb736b62b14a01859746d9a681e302" } }, - "7cb6af9d65904904b5a44be4f2f09c2c": { + "6e836216b9d4487ba965235031583c88": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4018,7 +3933,28 @@ "width": null } }, - "7f6f494514c3441da2ba837472c5bdec": { + "759c0d13d2d1402399ac72d54b4f9f0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_36a0193962984f10b9f30fc8ba224591", + "placeholder": "​", + "style": "IPY_MODEL_3e2a4c0ddae74e13a2021ce5e714a1c5", + "value": " 5.18M/5.18M [00:00<00:00, 36.8MB/s]" + } + }, + "7add5400a5da409fb9d7c08b05a0ba21": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4067,10 +4003,31 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "7d432e5280c34db5bf91110519486c2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5cf96142e7774584bdadc1562718a970", + "placeholder": "​", + "style": "IPY_MODEL_dcb618d9470340d89aa43b59d3f72457", + "value": "100%" } }, - "8de2f42076984fdaa8f63906e27d31d9": { + "7df7c6173c594905b0c15f7b6de09cef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4119,10 +4076,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "9482e57799854291ae3f1370b6df8ba1": { + "8145a9d46eac42c9b6df1a73c0a939c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4137,7 +4094,52 @@ "description_width": "" } }, - "9af8569a05bc4e65b71661993bffa124": { + "81cb41be12bd4ae997b1f7764525ff8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e610f8b737c645a486d7333f510fe4ad", + "placeholder": "​", + "style": "IPY_MODEL_3a10397af8534b289809fd9f34cffa12", + "value": "Downloading data: 100%" + } + }, + "86bb4802d1044f179dd7689fbee6472d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7add5400a5da409fb9d7c08b05a0ba21", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9500021d4c6845768227c7b5a80cec31", + "value": 1.0 + } + }, + "89d8973b51704e0ca29f84ec52a5ba4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4189,37 +4191,75 @@ "width": null } }, - "9c084166328743828e1d7cc83f16de79": { + "9500021d4c6845768227c7b5a80cec31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "9ea66324f81a4c369f3466fb807830e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "984254e50a7943e084d77ab55e1b75ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a0e14bce408046abbbe0bd3869324180": { + "9ed293197ad2467ca3ab555091ecdaa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4271,29 +4311,37 @@ "width": null } }, - "a6b14d27bd3d45a2bcf6d7b5f8764c86": { + "a4aca255af78468084ef3e4fb3f5efed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1daef5f644ca438493bcca1dd7869da0", - "IPY_MODEL_c3acffca81664f2587e5c2da7ef4b09d", - "IPY_MODEL_57953bca660842cfa9b502e35e14c4de" - ], - "layout": "IPY_MODEL_f41d46f837cd4a0a8cec418a61ef9508" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ac6d64b487e048ac89b9674a2d8b7d89": { + "aa230d667893417ea30900813140092c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ab2bd70697b249fea796fca48455ce88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4308,49 +4356,59 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_14759363841c473b92f1ff183a30c931", + "layout": "IPY_MODEL_984254e50a7943e084d77ab55e1b75ee", "placeholder": "​", - "style": "IPY_MODEL_6dd311692ffc4923a691eb4943643ca3", - "value": "Map (num_proc=4): 100%" + "style": "IPY_MODEL_df9488dd0eb74ab59ba48af227e281c2", + "value": " 60000/0 [00:00<00:00, 815499.46 examples/s]" } }, - "b04b2f332708453883fa56928cfbf40e": { + "ab8ea257c1544162ac74cedcd94836b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0eee090ebc4b4bc1b2f7b93498eb5a66", + "IPY_MODEL_c8aa3f6340f14b74aa43f81c59d5d0c6", + "IPY_MODEL_478826a4b8414ab7b1feb20466e62ebd" + ], + "layout": "IPY_MODEL_19f1b86223924ddabeba38237f2b7fc2" } }, - "b05d2aa8ac5646b98e35ce402b624ecb": { + "b0eedbc2adf6476883bef4f2544e0a0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e87f90bd58124e4eab224d1cec4dd2e4", - "placeholder": "​", - "style": "IPY_MODEL_3d7705f04e28493d89543b1eaae3be43", - "value": " 2/2 [00:00<00:00, 371.44it/s]" + "layout": "IPY_MODEL_2a83bf73f6cb49a894c297eb4386c9c7", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_651f52ae3e444f03953a477119b11bce", + "value": 2.0 } }, - "b2900305d7f84a6da01c50c7177f1548": { + "b108f5b2d21b4b29adc6e1cb78399f93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4365,96 +4423,44 @@ "description_width": "" } }, - "b4e5f808095f4f02bb7ce7ec45ff7a98": { + "b660df2b73104c37976425e56f81a28f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "bb930c218f93407ba619107a77d019f1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bff41dbf2d214467884c050fecb52fc5": { + "bdd8d83d16ce4e48ba972c56b576b84d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c09169500af342eb8463958cc00a7579", - "placeholder": "​", - "style": "IPY_MODEL_b2900305d7f84a6da01c50c7177f1548", - "value": "Downloading data: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_06c63814bae1457eb141d1bc207b8993", + "IPY_MODEL_1760f769aeb246b29e063ffd5f80064e", + "IPY_MODEL_ec2b0ac700f54d8aa2f69ba12899344a" + ], + "layout": "IPY_MODEL_0b8808eb05cf4d469b80ea697d3c0efd" } }, - "c04e1f6f6d5146eba074a6693a403e0a": { + "be5a8f94447e42749262ff299cf80cce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4469,29 +4475,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6caeb04a6a0a4f6994fab1dd7f9da38d", + "layout": "IPY_MODEL_9ed293197ad2467ca3ab555091ecdaa1", "placeholder": "​", - "style": "IPY_MODEL_eaae1350695f4f84b6bbcdb9968d01d2", - "value": "100%" - } - }, - "c0515addf2c94d7a88da0f586fc136d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_8145a9d46eac42c9b6df1a73c0a939c5", + "value": "Computing checksums: 100%" } }, - "c09169500af342eb8463958cc00a7579": { + "c2fb736b62b14a01859746d9a681e302": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4543,31 +4533,7 @@ "width": null } }, - "c3acffca81664f2587e5c2da7ef4b09d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_62c69dd53f4e4fcaaadcf89cfd16d9e5", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42055436f26f4d22a23bb9c0f3cba0cc", - "value": 1.0 - } - }, - "c7b37c7838c14e67b7a02371d6627401": { + "c389564992c542e382f5f71873b9a413": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4619,28 +4585,225 @@ "width": null } }, - "ce169250a1c6449e855719ea19052bf5": { + "c8aa3f6340f14b74aa43f81c59d5d0c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0084a46c9d7e4b36807b48823efd789c", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08092c96bdc34e5f9b0cbdc9f1bcf56f", + "value": 60000.0 + } + }, + "cb2b88424c724c14b0127ce86920d745": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_89d8973b51704e0ca29f84ec52a5ba4c", + "placeholder": "​", + "style": "IPY_MODEL_aa230d667893417ea30900813140092c", + "value": "Generating test split: " + } + }, + "ccc9e01b27ad4197b41bc1e7b0f66f85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e836216b9d4487ba965235031583c88", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1389c65d0684462fae24fdb9d027df5d", + "value": 5175617.0 + } + }, + "d26337e7713242faa01dda838af51958": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb2b88424c724c14b0127ce86920d745", + "IPY_MODEL_86bb4802d1044f179dd7689fbee6472d", + "IPY_MODEL_14f59594e791448fb08985949852fc3b" + ], + "layout": "IPY_MODEL_c389564992c542e382f5f71873b9a413" + } + }, + "d474e11ccac84eb3ae5e7f7f7ef976b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f9defb94a3843dabd5e7e0e98e77e96", + "placeholder": "​", + "style": "IPY_MODEL_e5e94ce25d24403d8cb0e279ee6b06f0", + "value": " 60000/60000 [00:36<00:00, 1650.56it/s]" + } + }, + "d5eb20cb64654ab4bbe4db8de1291651": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dcb618d9470340d89aa43b59d3f72457": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ddcb7ec7c9bb4b79ba420742fd6ff681": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7df7c6173c594905b0c15f7b6de09cef", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f30c07742de24d01ad45ee987fc432ac", + "value": 1.0 + } + }, + "df9488dd0eb74ab59ba48af227e281c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e292d7c9b544457998217dfe333664e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1fa21ad594604bbf9d8970cfa576f67a", + "IPY_MODEL_ddcb7ec7c9bb4b79ba420742fd6ff681", + "IPY_MODEL_ab2bd70697b249fea796fca48455ce88" + ], + "layout": "IPY_MODEL_2d2040740633486dbc15bdc76cc9b35c" + } + }, + "e5e94ce25d24403d8cb0e279ee6b06f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a0e14bce408046abbbe0bd3869324180", - "placeholder": "​", - "style": "IPY_MODEL_b04b2f332708453883fa56928cfbf40e", - "value": " 10000/0 [00:00<00:00, 513435.26 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "ce37a4915f184bf08e640ffcbcec7c0b": { + "e610f8b737c645a486d7333f510fe4ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4692,7 +4855,7 @@ "width": null } }, - "d598d0cc8897415e9e7f33f617573f0c": { + "e6d7e1df9af0467194ff9a53b3fc7444": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4708,7 +4871,29 @@ "description_width": "" } }, - "d633ad83c7cd4e9197391dc81cd735a2": { + "e8d9991648f741b8b42d0cd2a79dbd20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d432e5280c34db5bf91110519486c2b", + "IPY_MODEL_281f009bdade4018bc23cfa73ce284c9", + "IPY_MODEL_d474e11ccac84eb3ae5e7f7f7ef976b8" + ], + "layout": "IPY_MODEL_f84000f1236d4ff9a0828bcdfb6805c7" + } + }, + "e913666f50514e48b23970ba7bdb8a54": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4760,23 +4945,7 @@ "width": null } }, - "d8faaf72ffd34bb68c49d897cd1a7154": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d9a14666701b4eaa85397e1540b74476": { + "ec2b0ac700f54d8aa2f69ba12899344a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4791,65 +4960,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_64f12fc1eccb40e691dabed0e253052a", + "layout": "IPY_MODEL_470684e2f72a47c8bb16131ca6641ac2", "placeholder": "​", - "style": "IPY_MODEL_037533e3506a4a9db931c5ee5310d8eb", - "value": "Computing checksums: 100%" + "style": "IPY_MODEL_d5eb20cb64654ab4bbe4db8de1291651", + "value": " 30.9M/30.9M [00:00<00:00, 81.5MB/s]" } }, - "dbd75684b3f445f2978c7563f62b1c02": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "ef15f1fa0cfd44c78a6592dd49078246": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "e1e7d332a6864d698218a7238b481af4": { + "f128750b544a4ee4a3f4589b594baa89": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4901,7 +5033,7 @@ "width": null } }, - "e3fa13bb55694ae5b76f9b53ca7b5376": { + "f30c07742de24d01ad45ee987fc432ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4917,83 +5049,28 @@ "description_width": "" } }, - "e7d02323320f4a44955033b8b1b6d7f2": { + "f3177bf243774120931644bf2f7ba71a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0a2e35c2d0364ecd99b3552fb95f3158", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b4e5f808095f4f02bb7ce7ec45ff7a98", - "value": 2.0 - } - }, - "e87f90bd58124e4eab224d1cec4dd2e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_e913666f50514e48b23970ba7bdb8a54", + "placeholder": "​", + "style": "IPY_MODEL_fbc6469adef845ad9eee1c645cf997dc", + "value": " 2/2 [00:00<00:00, 310.06it/s]" } }, - "e9a1eb9feb394f79a7eccaaeeb8592e7": { + "f3608822aa154fa098ba8256974e88bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5045,68 +5122,7 @@ "width": null } }, - "eaae1350695f4f84b6bbcdb9968d01d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "edc5dc4e84aa4145b0a6602ef0029e7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e1e7d332a6864d698218a7238b481af4", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0515addf2c94d7a88da0f586fc136d9", - "value": 60000.0 - } - }, - "ef00bbe1818846999730dee959633c30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_428ad3c068fe496b819856f327c7e0e1", - "IPY_MODEL_f6f27fefe269477fa839a257e32a476f", - "IPY_MODEL_3eea06a95b574fa684368b3f710e4ddf" - ], - "layout": "IPY_MODEL_c7b37c7838c14e67b7a02371d6627401" - } - }, - "f0a82082ff264607a24328db2ed8046f": { + "f84000f1236d4ff9a0828bcdfb6805c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5158,7 +5174,7 @@ "width": null } }, - "f41d46f837cd4a0a8cec418a61ef9508": { + "f8a6d75af45b4d9e807068f2581d1c30": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5210,50 +5226,34 @@ "width": null } }, - "f6f27fefe269477fa839a257e32a476f": { + "fbc6469adef845ad9eee1c645cf997dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2ac75d362c4d4e0793f683d4ec0fb37e", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d598d0cc8897415e9e7f33f617573f0c", - "value": 30931277.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "fa00b036fdcb4d30939a11eff6edc1dd": { + "ff0d891d4d0547a8bf72adfa5a9448f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d9a14666701b4eaa85397e1540b74476", - "IPY_MODEL_e7d02323320f4a44955033b8b1b6d7f2", - "IPY_MODEL_b05d2aa8ac5646b98e35ce402b624ecb" - ], - "layout": "IPY_MODEL_7cb6af9d65904904b5a44be4f2f09c2c" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } } }, diff --git a/master/tutorials/indepth_overview.html b/master/tutorials/indepth_overview.html index 351332cad..6217afa6c 100644 --- a/master/tutorials/indepth_overview.html +++ b/master/tutorials/indepth_overview.html @@ -994,12 +994,19 @@

    Workflow 1: Use Datalab to detect many types of issues

    -

    -
    +
     [Original classes] Accuracy of yourFavoriteModel: 83%
     [Modified classes] Accuracy of yourFavoriteModel: 94%
    +
    +
    +
    +
    +
    +
    +
     [Modified classes] Accuracy of yourFavoriteModel (+ CleanLearning): 96%
     
    @@ -2153,7 +2167,7 @@

    Workflow 8: Ensembling label quality scores from multiple p
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 7c241402e..27bb5c9ce 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:08.005401Z", - "iopub.status.busy": "2023-12-28T10:56:08.005203Z", - "iopub.status.idle": "2023-12-28T10:56:09.104869Z", - "shell.execute_reply": "2023-12-28T10:56:09.104175Z" + "iopub.execute_input": "2024-01-02T16:49:03.099988Z", + "iopub.status.busy": "2024-01-02T16:49:03.099806Z", + "iopub.status.idle": "2024-01-02T16:49:04.204503Z", + "shell.execute_reply": "2024-01-02T16:49:04.203806Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.108498Z", - "iopub.status.busy": "2023-12-28T10:56:09.108039Z", - "iopub.status.idle": "2023-12-28T10:56:09.384434Z", - "shell.execute_reply": "2023-12-28T10:56:09.383805Z" + "iopub.execute_input": "2024-01-02T16:49:04.207505Z", + "iopub.status.busy": "2024-01-02T16:49:04.207181Z", + "iopub.status.idle": "2024-01-02T16:49:04.484854Z", + "shell.execute_reply": "2024-01-02T16:49:04.484147Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.387361Z", - "iopub.status.busy": "2023-12-28T10:56:09.386971Z", - "iopub.status.idle": "2023-12-28T10:56:09.400045Z", - "shell.execute_reply": "2023-12-28T10:56:09.399497Z" + "iopub.execute_input": "2024-01-02T16:49:04.488167Z", + "iopub.status.busy": "2024-01-02T16:49:04.487933Z", + "iopub.status.idle": "2024-01-02T16:49:04.500060Z", + "shell.execute_reply": "2024-01-02T16:49:04.499575Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.402580Z", - "iopub.status.busy": "2023-12-28T10:56:09.402169Z", - "iopub.status.idle": "2023-12-28T10:56:09.635326Z", - "shell.execute_reply": "2023-12-28T10:56:09.634639Z" + "iopub.execute_input": "2024-01-02T16:49:04.502648Z", + "iopub.status.busy": "2024-01-02T16:49:04.502226Z", + "iopub.status.idle": "2024-01-02T16:49:04.737163Z", + "shell.execute_reply": "2024-01-02T16:49:04.736448Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.638139Z", - "iopub.status.busy": "2023-12-28T10:56:09.637857Z", - "iopub.status.idle": "2023-12-28T10:56:09.664839Z", - "shell.execute_reply": "2023-12-28T10:56:09.664270Z" + "iopub.execute_input": "2024-01-02T16:49:04.739724Z", + "iopub.status.busy": "2024-01-02T16:49:04.739517Z", + "iopub.status.idle": "2024-01-02T16:49:04.766088Z", + "shell.execute_reply": "2024-01-02T16:49:04.765548Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:09.667615Z", - "iopub.status.busy": "2023-12-28T10:56:09.667226Z", - "iopub.status.idle": "2023-12-28T10:56:11.004906Z", - "shell.execute_reply": "2023-12-28T10:56:11.004143Z" + "iopub.execute_input": "2024-01-02T16:49:04.768303Z", + "iopub.status.busy": "2024-01-02T16:49:04.768103Z", + "iopub.status.idle": "2024-01-02T16:49:06.111886Z", + "shell.execute_reply": "2024-01-02T16:49:06.111165Z" } }, "outputs": [ @@ -472,10 +472,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:11.008060Z", - "iopub.status.busy": "2023-12-28T10:56:11.007304Z", - "iopub.status.idle": "2023-12-28T10:56:11.027553Z", - "shell.execute_reply": "2023-12-28T10:56:11.026982Z" + "iopub.execute_input": "2024-01-02T16:49:06.114867Z", + "iopub.status.busy": "2024-01-02T16:49:06.114194Z", + "iopub.status.idle": "2024-01-02T16:49:06.134216Z", + "shell.execute_reply": "2024-01-02T16:49:06.133536Z" }, "scrolled": true }, @@ -592,11 +592,11 @@ "\n", "Examples representing most severe instances of this issue:\n", " is_class_imbalance_issue class_imbalance_score\n", - "0 False 1.0\n", - "158 False 1.0\n", - "159 False 1.0\n", - "160 False 1.0\n", - "161 False 1.0\n" + "249 False 0.196\n", + "223 False 0.196\n", + "222 False 0.196\n", + "221 False 0.196\n", + "219 False 0.196\n" ] } ], @@ -618,10 +618,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:11.030095Z", - "iopub.status.busy": "2023-12-28T10:56:11.029710Z", - "iopub.status.idle": "2023-12-28T10:56:11.913655Z", - "shell.execute_reply": "2023-12-28T10:56:11.913003Z" + "iopub.execute_input": "2024-01-02T16:49:06.137258Z", + "iopub.status.busy": "2024-01-02T16:49:06.136710Z", + "iopub.status.idle": "2024-01-02T16:49:07.063487Z", + "shell.execute_reply": "2024-01-02T16:49:07.062735Z" }, "id": "AaHC5MRKjruT" }, @@ -740,10 +740,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:11.916569Z", - "iopub.status.busy": "2023-12-28T10:56:11.916263Z", - "iopub.status.idle": "2023-12-28T10:56:11.931428Z", - "shell.execute_reply": "2023-12-28T10:56:11.930781Z" + "iopub.execute_input": "2024-01-02T16:49:07.066290Z", + "iopub.status.busy": "2024-01-02T16:49:07.065873Z", + "iopub.status.idle": "2024-01-02T16:49:07.081024Z", + "shell.execute_reply": "2024-01-02T16:49:07.080389Z" }, "id": "Wy27rvyhjruU" }, @@ -792,10 +792,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:11.934129Z", - "iopub.status.busy": "2023-12-28T10:56:11.933641Z", - "iopub.status.idle": "2023-12-28T10:56:12.026099Z", - "shell.execute_reply": "2023-12-28T10:56:12.025355Z" + "iopub.execute_input": "2024-01-02T16:49:07.083775Z", + "iopub.status.busy": "2024-01-02T16:49:07.083405Z", + "iopub.status.idle": "2024-01-02T16:49:07.178385Z", + "shell.execute_reply": "2024-01-02T16:49:07.177589Z" }, "id": "Db8YHnyVjruU" }, @@ -902,10 +902,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.028901Z", - "iopub.status.busy": "2023-12-28T10:56:12.028600Z", - "iopub.status.idle": "2023-12-28T10:56:12.235558Z", - "shell.execute_reply": "2023-12-28T10:56:12.234902Z" + "iopub.execute_input": "2024-01-02T16:49:07.181623Z", + "iopub.status.busy": "2024-01-02T16:49:07.181149Z", + "iopub.status.idle": "2024-01-02T16:49:07.388199Z", + "shell.execute_reply": "2024-01-02T16:49:07.387521Z" }, "id": "iJqAHuS2jruV" }, @@ -942,10 +942,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.238379Z", - "iopub.status.busy": "2023-12-28T10:56:12.237963Z", - "iopub.status.idle": "2023-12-28T10:56:12.255773Z", - "shell.execute_reply": "2023-12-28T10:56:12.255196Z" + "iopub.execute_input": "2024-01-02T16:49:07.390894Z", + "iopub.status.busy": "2024-01-02T16:49:07.390532Z", + "iopub.status.idle": "2024-01-02T16:49:07.409277Z", + "shell.execute_reply": "2024-01-02T16:49:07.408710Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1007,10 +1007,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.258303Z", - "iopub.status.busy": "2023-12-28T10:56:12.257976Z", - "iopub.status.idle": "2023-12-28T10:56:12.268655Z", - "shell.execute_reply": "2023-12-28T10:56:12.267960Z" + "iopub.execute_input": "2024-01-02T16:49:07.411893Z", + "iopub.status.busy": "2024-01-02T16:49:07.411499Z", + "iopub.status.idle": "2024-01-02T16:49:07.421691Z", + "shell.execute_reply": "2024-01-02T16:49:07.421181Z" }, "id": "0lonvOYvjruV" }, @@ -1157,10 +1157,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.271013Z", - "iopub.status.busy": "2023-12-28T10:56:12.270799Z", - "iopub.status.idle": "2023-12-28T10:56:12.379361Z", - "shell.execute_reply": "2023-12-28T10:56:12.378656Z" + "iopub.execute_input": "2024-01-02T16:49:07.424216Z", + "iopub.status.busy": "2024-01-02T16:49:07.423827Z", + "iopub.status.idle": "2024-01-02T16:49:07.523611Z", + "shell.execute_reply": "2024-01-02T16:49:07.522880Z" }, "id": "MfqTCa3kjruV" }, @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.382531Z", - "iopub.status.busy": "2023-12-28T10:56:12.382116Z", - "iopub.status.idle": "2023-12-28T10:56:12.546907Z", - "shell.execute_reply": "2023-12-28T10:56:12.546128Z" + "iopub.execute_input": "2024-01-02T16:49:07.526701Z", + "iopub.status.busy": "2024-01-02T16:49:07.526298Z", + "iopub.status.idle": "2024-01-02T16:49:07.689852Z", + "shell.execute_reply": "2024-01-02T16:49:07.689182Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1304,10 +1304,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.549694Z", - "iopub.status.busy": "2023-12-28T10:56:12.549467Z", - "iopub.status.idle": "2023-12-28T10:56:12.553830Z", - "shell.execute_reply": "2023-12-28T10:56:12.553266Z" + "iopub.execute_input": "2024-01-02T16:49:07.692749Z", + "iopub.status.busy": "2024-01-02T16:49:07.692314Z", + "iopub.status.idle": "2024-01-02T16:49:07.696446Z", + "shell.execute_reply": "2024-01-02T16:49:07.695847Z" }, "id": "0rXP3ZPWjruW" }, @@ -1345,10 +1345,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.556434Z", - "iopub.status.busy": "2023-12-28T10:56:12.556052Z", - "iopub.status.idle": "2023-12-28T10:56:12.560535Z", - "shell.execute_reply": "2023-12-28T10:56:12.559891Z" + "iopub.execute_input": "2024-01-02T16:49:07.698889Z", + "iopub.status.busy": "2024-01-02T16:49:07.698512Z", + "iopub.status.idle": "2024-01-02T16:49:07.703612Z", + "shell.execute_reply": "2024-01-02T16:49:07.703078Z" }, "id": "-iRPe8KXjruW" }, @@ -1403,10 +1403,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.563073Z", - "iopub.status.busy": "2023-12-28T10:56:12.562695Z", - "iopub.status.idle": "2023-12-28T10:56:12.604416Z", - "shell.execute_reply": "2023-12-28T10:56:12.603734Z" + "iopub.execute_input": "2024-01-02T16:49:07.706098Z", + "iopub.status.busy": "2024-01-02T16:49:07.705712Z", + "iopub.status.idle": "2024-01-02T16:49:07.745766Z", + "shell.execute_reply": "2024-01-02T16:49:07.745154Z" }, "id": "ZpipUliyjruW" }, @@ -1457,10 +1457,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.607306Z", - "iopub.status.busy": "2023-12-28T10:56:12.606885Z", - "iopub.status.idle": "2023-12-28T10:56:12.656620Z", - "shell.execute_reply": "2023-12-28T10:56:12.655892Z" + "iopub.execute_input": "2024-01-02T16:49:07.748574Z", + "iopub.status.busy": "2024-01-02T16:49:07.748176Z", + "iopub.status.idle": "2024-01-02T16:49:07.795070Z", + "shell.execute_reply": "2024-01-02T16:49:07.794479Z" }, "id": "SLq-3q4xjruX" }, @@ -1529,10 +1529,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.659456Z", - "iopub.status.busy": "2023-12-28T10:56:12.659020Z", - "iopub.status.idle": "2023-12-28T10:56:12.773117Z", - "shell.execute_reply": "2023-12-28T10:56:12.772410Z" + "iopub.execute_input": "2024-01-02T16:49:07.797932Z", + "iopub.status.busy": "2024-01-02T16:49:07.797462Z", + "iopub.status.idle": "2024-01-02T16:49:07.907500Z", + "shell.execute_reply": "2024-01-02T16:49:07.906819Z" }, "id": "g5LHhhuqFbXK" }, @@ -1564,10 +1564,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.776795Z", - "iopub.status.busy": "2023-12-28T10:56:12.776337Z", - "iopub.status.idle": "2023-12-28T10:56:12.895821Z", - "shell.execute_reply": "2023-12-28T10:56:12.895064Z" + "iopub.execute_input": "2024-01-02T16:49:07.910590Z", + "iopub.status.busy": "2024-01-02T16:49:07.910235Z", + "iopub.status.idle": "2024-01-02T16:49:08.030760Z", + "shell.execute_reply": "2024-01-02T16:49:08.030020Z" }, "id": "p7w8F8ezBcet" }, @@ -1624,10 +1624,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:12.898778Z", - "iopub.status.busy": "2023-12-28T10:56:12.898403Z", - "iopub.status.idle": "2023-12-28T10:56:13.105290Z", - "shell.execute_reply": "2023-12-28T10:56:13.104584Z" + "iopub.execute_input": "2024-01-02T16:49:08.033914Z", + "iopub.status.busy": "2024-01-02T16:49:08.033415Z", + "iopub.status.idle": "2024-01-02T16:49:08.241079Z", + "shell.execute_reply": "2024-01-02T16:49:08.240387Z" }, "id": "WETRL74tE_sU" }, @@ -1662,10 +1662,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:13.108282Z", - "iopub.status.busy": "2023-12-28T10:56:13.107842Z", - "iopub.status.idle": "2023-12-28T10:56:13.366204Z", - "shell.execute_reply": "2023-12-28T10:56:13.365525Z" + "iopub.execute_input": "2024-01-02T16:49:08.243992Z", + "iopub.status.busy": "2024-01-02T16:49:08.243568Z", + "iopub.status.idle": "2024-01-02T16:49:08.476939Z", + "shell.execute_reply": "2024-01-02T16:49:08.476238Z" }, "id": "kCfdx2gOLmXS" }, @@ -1827,10 +1827,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:13.369028Z", - "iopub.status.busy": "2023-12-28T10:56:13.368733Z", - "iopub.status.idle": "2023-12-28T10:56:13.375801Z", - "shell.execute_reply": "2023-12-28T10:56:13.375194Z" + "iopub.execute_input": "2024-01-02T16:49:08.479868Z", + "iopub.status.busy": "2024-01-02T16:49:08.479456Z", + "iopub.status.idle": "2024-01-02T16:49:08.485787Z", + "shell.execute_reply": "2024-01-02T16:49:08.485276Z" }, "id": "-uogYRWFYnuu" }, @@ -1884,10 +1884,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:13.378307Z", - "iopub.status.busy": "2023-12-28T10:56:13.377911Z", - "iopub.status.idle": "2023-12-28T10:56:13.595714Z", - "shell.execute_reply": "2023-12-28T10:56:13.594980Z" + "iopub.execute_input": "2024-01-02T16:49:08.488143Z", + "iopub.status.busy": "2024-01-02T16:49:08.487805Z", + "iopub.status.idle": "2024-01-02T16:49:08.701193Z", + "shell.execute_reply": "2024-01-02T16:49:08.700507Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1934,10 +1934,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:13.598672Z", - "iopub.status.busy": "2023-12-28T10:56:13.598375Z", - "iopub.status.idle": "2023-12-28T10:56:14.668356Z", - "shell.execute_reply": "2023-12-28T10:56:14.667735Z" + "iopub.execute_input": "2024-01-02T16:49:08.704323Z", + "iopub.status.busy": "2024-01-02T16:49:08.703824Z", + "iopub.status.idle": "2024-01-02T16:49:09.770055Z", + "shell.execute_reply": "2024-01-02T16:49:09.769322Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/index.html b/master/tutorials/index.html index 55c6f6343..4926a29af 100644 --- a/master/tutorials/index.html +++ b/master/tutorials/index.html @@ -560,7 +560,7 @@

    Tutorials
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/multiannotator.html b/master/tutorials/multiannotator.html index de97af163..bca4c4b18 100644 --- a/master/tutorials/multiannotator.html +++ b/master/tutorials/multiannotator.html @@ -1726,7 +1726,7 @@

    How does cleanlab.multiannotator work?
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index f2f9fcff3..0fde9c368 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:20.317010Z", - "iopub.status.busy": "2023-12-28T10:56:20.316543Z", - "iopub.status.idle": "2023-12-28T10:56:21.365451Z", - "shell.execute_reply": "2023-12-28T10:56:21.364821Z" + "iopub.execute_input": "2024-01-02T16:49:15.656276Z", + "iopub.status.busy": "2024-01-02T16:49:15.655721Z", + "iopub.status.idle": "2024-01-02T16:49:16.719128Z", + "shell.execute_reply": "2024-01-02T16:49:16.718495Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.368433Z", - "iopub.status.busy": "2023-12-28T10:56:21.368112Z", - "iopub.status.idle": "2023-12-28T10:56:21.371302Z", - "shell.execute_reply": "2023-12-28T10:56:21.370770Z" + "iopub.execute_input": "2024-01-02T16:49:16.722438Z", + "iopub.status.busy": "2024-01-02T16:49:16.721854Z", + "iopub.status.idle": "2024-01-02T16:49:16.725376Z", + "shell.execute_reply": "2024-01-02T16:49:16.724838Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.373881Z", - "iopub.status.busy": "2023-12-28T10:56:21.373435Z", - "iopub.status.idle": "2023-12-28T10:56:21.381738Z", - "shell.execute_reply": "2023-12-28T10:56:21.381217Z" + "iopub.execute_input": "2024-01-02T16:49:16.728086Z", + "iopub.status.busy": "2024-01-02T16:49:16.727618Z", + "iopub.status.idle": "2024-01-02T16:49:16.736481Z", + "shell.execute_reply": "2024-01-02T16:49:16.735906Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.383925Z", - "iopub.status.busy": "2023-12-28T10:56:21.383680Z", - "iopub.status.idle": "2023-12-28T10:56:21.432149Z", - "shell.execute_reply": "2023-12-28T10:56:21.431519Z" + "iopub.execute_input": "2024-01-02T16:49:16.738864Z", + "iopub.status.busy": "2024-01-02T16:49:16.738645Z", + "iopub.status.idle": "2024-01-02T16:49:16.789671Z", + "shell.execute_reply": "2024-01-02T16:49:16.788941Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.434786Z", - "iopub.status.busy": "2023-12-28T10:56:21.434576Z", - "iopub.status.idle": "2023-12-28T10:56:21.454152Z", - "shell.execute_reply": "2023-12-28T10:56:21.453597Z" + "iopub.execute_input": "2024-01-02T16:49:16.792808Z", + "iopub.status.busy": "2024-01-02T16:49:16.792316Z", + "iopub.status.idle": "2024-01-02T16:49:16.812709Z", + "shell.execute_reply": "2024-01-02T16:49:16.812073Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.456716Z", - "iopub.status.busy": "2023-12-28T10:56:21.456331Z", - "iopub.status.idle": "2023-12-28T10:56:21.460558Z", - "shell.execute_reply": "2023-12-28T10:56:21.460054Z" + "iopub.execute_input": "2024-01-02T16:49:16.815434Z", + "iopub.status.busy": "2024-01-02T16:49:16.815026Z", + "iopub.status.idle": "2024-01-02T16:49:16.819447Z", + "shell.execute_reply": "2024-01-02T16:49:16.818793Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.463104Z", - "iopub.status.busy": "2023-12-28T10:56:21.462741Z", - "iopub.status.idle": "2023-12-28T10:56:21.490042Z", - "shell.execute_reply": "2023-12-28T10:56:21.489544Z" + "iopub.execute_input": "2024-01-02T16:49:16.822375Z", + "iopub.status.busy": "2024-01-02T16:49:16.821963Z", + "iopub.status.idle": "2024-01-02T16:49:16.853743Z", + "shell.execute_reply": "2024-01-02T16:49:16.852990Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.492537Z", - "iopub.status.busy": "2023-12-28T10:56:21.492149Z", - "iopub.status.idle": "2023-12-28T10:56:21.519667Z", - "shell.execute_reply": "2023-12-28T10:56:21.519017Z" + "iopub.execute_input": "2024-01-02T16:49:16.856805Z", + "iopub.status.busy": "2024-01-02T16:49:16.856283Z", + "iopub.status.idle": "2024-01-02T16:49:16.885117Z", + "shell.execute_reply": "2024-01-02T16:49:16.884563Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:21.522529Z", - "iopub.status.busy": "2023-12-28T10:56:21.522116Z", - "iopub.status.idle": "2023-12-28T10:56:22.869140Z", - "shell.execute_reply": "2023-12-28T10:56:22.868507Z" + "iopub.execute_input": "2024-01-02T16:49:16.887914Z", + "iopub.status.busy": "2024-01-02T16:49:16.887413Z", + "iopub.status.idle": "2024-01-02T16:49:18.280131Z", + "shell.execute_reply": "2024-01-02T16:49:18.279377Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.872458Z", - "iopub.status.busy": "2023-12-28T10:56:22.871766Z", - "iopub.status.idle": "2023-12-28T10:56:22.879427Z", - "shell.execute_reply": "2023-12-28T10:56:22.878802Z" + "iopub.execute_input": "2024-01-02T16:49:18.283383Z", + "iopub.status.busy": "2024-01-02T16:49:18.282954Z", + "iopub.status.idle": "2024-01-02T16:49:18.290561Z", + "shell.execute_reply": "2024-01-02T16:49:18.289985Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.881952Z", - "iopub.status.busy": "2023-12-28T10:56:22.881553Z", - "iopub.status.idle": "2023-12-28T10:56:22.895646Z", - "shell.execute_reply": "2023-12-28T10:56:22.895003Z" + "iopub.execute_input": "2024-01-02T16:49:18.293066Z", + "iopub.status.busy": "2024-01-02T16:49:18.292699Z", + "iopub.status.idle": "2024-01-02T16:49:18.307176Z", + "shell.execute_reply": "2024-01-02T16:49:18.306551Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.898286Z", - "iopub.status.busy": "2023-12-28T10:56:22.897797Z", - "iopub.status.idle": "2023-12-28T10:56:22.905442Z", - "shell.execute_reply": "2023-12-28T10:56:22.904830Z" + "iopub.execute_input": "2024-01-02T16:49:18.309728Z", + "iopub.status.busy": "2024-01-02T16:49:18.309267Z", + "iopub.status.idle": "2024-01-02T16:49:18.316485Z", + "shell.execute_reply": "2024-01-02T16:49:18.315870Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.908290Z", - "iopub.status.busy": "2023-12-28T10:56:22.907851Z", - "iopub.status.idle": "2023-12-28T10:56:22.910964Z", - "shell.execute_reply": "2023-12-28T10:56:22.910409Z" + "iopub.execute_input": "2024-01-02T16:49:18.318942Z", + "iopub.status.busy": "2024-01-02T16:49:18.318734Z", + "iopub.status.idle": "2024-01-02T16:49:18.321764Z", + "shell.execute_reply": "2024-01-02T16:49:18.321243Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.913422Z", - "iopub.status.busy": "2023-12-28T10:56:22.912996Z", - "iopub.status.idle": "2023-12-28T10:56:22.917294Z", - "shell.execute_reply": "2023-12-28T10:56:22.916664Z" + "iopub.execute_input": "2024-01-02T16:49:18.324152Z", + "iopub.status.busy": "2024-01-02T16:49:18.323952Z", + "iopub.status.idle": "2024-01-02T16:49:18.327911Z", + "shell.execute_reply": "2024-01-02T16:49:18.327308Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.919835Z", - "iopub.status.busy": "2023-12-28T10:56:22.919372Z", - "iopub.status.idle": "2023-12-28T10:56:22.922384Z", - "shell.execute_reply": "2023-12-28T10:56:22.921765Z" + "iopub.execute_input": "2024-01-02T16:49:18.330362Z", + "iopub.status.busy": "2024-01-02T16:49:18.330161Z", + "iopub.status.idle": "2024-01-02T16:49:18.333179Z", + "shell.execute_reply": "2024-01-02T16:49:18.332535Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.924707Z", - "iopub.status.busy": "2023-12-28T10:56:22.924359Z", - "iopub.status.idle": "2023-12-28T10:56:22.929077Z", - "shell.execute_reply": "2023-12-28T10:56:22.928436Z" + "iopub.execute_input": "2024-01-02T16:49:18.335601Z", + "iopub.status.busy": "2024-01-02T16:49:18.335166Z", + "iopub.status.idle": "2024-01-02T16:49:18.340143Z", + "shell.execute_reply": "2024-01-02T16:49:18.339604Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.931720Z", - "iopub.status.busy": "2023-12-28T10:56:22.931192Z", - "iopub.status.idle": "2023-12-28T10:56:22.966177Z", - "shell.execute_reply": "2023-12-28T10:56:22.965591Z" + "iopub.execute_input": "2024-01-02T16:49:18.342557Z", + "iopub.status.busy": "2024-01-02T16:49:18.342352Z", + "iopub.status.idle": "2024-01-02T16:49:18.378356Z", + "shell.execute_reply": "2024-01-02T16:49:18.377727Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:22.969108Z", - "iopub.status.busy": "2023-12-28T10:56:22.968630Z", - "iopub.status.idle": "2023-12-28T10:56:22.973963Z", - "shell.execute_reply": "2023-12-28T10:56:22.973316Z" + "iopub.execute_input": "2024-01-02T16:49:18.381562Z", + "iopub.status.busy": "2024-01-02T16:49:18.381140Z", + "iopub.status.idle": "2024-01-02T16:49:18.386482Z", + "shell.execute_reply": "2024-01-02T16:49:18.385875Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.html b/master/tutorials/multilabel_classification.html index d719e1f88..0e8ad51b1 100644 --- a/master/tutorials/multilabel_classification.html +++ b/master/tutorials/multilabel_classification.html @@ -1167,7 +1167,7 @@

    How to format labels given as a one-hot (multi-hot) binary matrix?
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 9c743645f..45ea66118 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:28.743768Z", - "iopub.status.busy": "2023-12-28T10:56:28.743253Z", - "iopub.status.idle": "2023-12-28T10:56:29.822734Z", - "shell.execute_reply": "2023-12-28T10:56:29.822141Z" + "iopub.execute_input": "2024-01-02T16:49:23.912100Z", + "iopub.status.busy": "2024-01-02T16:49:23.911897Z", + "iopub.status.idle": "2024-01-02T16:49:25.052575Z", + "shell.execute_reply": "2024-01-02T16:49:25.051857Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:29.825632Z", - "iopub.status.busy": "2023-12-28T10:56:29.825214Z", - "iopub.status.idle": "2023-12-28T10:56:30.117317Z", - "shell.execute_reply": "2023-12-28T10:56:30.116702Z" + "iopub.execute_input": "2024-01-02T16:49:25.055898Z", + "iopub.status.busy": "2024-01-02T16:49:25.055276Z", + "iopub.status.idle": "2024-01-02T16:49:25.355652Z", + "shell.execute_reply": "2024-01-02T16:49:25.355022Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:30.120460Z", - "iopub.status.busy": "2023-12-28T10:56:30.120078Z", - "iopub.status.idle": "2023-12-28T10:56:30.134256Z", - "shell.execute_reply": "2023-12-28T10:56:30.133731Z" + "iopub.execute_input": "2024-01-02T16:49:25.358805Z", + "iopub.status.busy": "2024-01-02T16:49:25.358418Z", + "iopub.status.idle": "2024-01-02T16:49:25.372223Z", + "shell.execute_reply": "2024-01-02T16:49:25.371567Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:30.136827Z", - "iopub.status.busy": "2023-12-28T10:56:30.136451Z", - "iopub.status.idle": "2023-12-28T10:56:32.768294Z", - "shell.execute_reply": "2023-12-28T10:56:32.767601Z" + "iopub.execute_input": "2024-01-02T16:49:25.374973Z", + "iopub.status.busy": "2024-01-02T16:49:25.374505Z", + "iopub.status.idle": "2024-01-02T16:49:28.051077Z", + "shell.execute_reply": "2024-01-02T16:49:28.050398Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:32.771104Z", - "iopub.status.busy": "2023-12-28T10:56:32.770606Z", - "iopub.status.idle": "2023-12-28T10:56:34.327354Z", - "shell.execute_reply": "2023-12-28T10:56:34.326616Z" + "iopub.execute_input": "2024-01-02T16:49:28.053984Z", + "iopub.status.busy": "2024-01-02T16:49:28.053486Z", + "iopub.status.idle": "2024-01-02T16:49:29.610606Z", + "shell.execute_reply": "2024-01-02T16:49:29.609892Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:34.330365Z", - "iopub.status.busy": "2023-12-28T10:56:34.330125Z", - "iopub.status.idle": "2023-12-28T10:56:34.335383Z", - "shell.execute_reply": "2023-12-28T10:56:34.334850Z" + "iopub.execute_input": "2024-01-02T16:49:29.613450Z", + "iopub.status.busy": "2024-01-02T16:49:29.613225Z", + "iopub.status.idle": "2024-01-02T16:49:29.617900Z", + "shell.execute_reply": "2024-01-02T16:49:29.617266Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:34.337697Z", - "iopub.status.busy": "2023-12-28T10:56:34.337500Z", - "iopub.status.idle": "2023-12-28T10:56:35.717872Z", - "shell.execute_reply": "2023-12-28T10:56:35.717184Z" + "iopub.execute_input": "2024-01-02T16:49:29.620246Z", + "iopub.status.busy": "2024-01-02T16:49:29.620040Z", + "iopub.status.idle": "2024-01-02T16:49:31.030594Z", + "shell.execute_reply": "2024-01-02T16:49:31.029797Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:35.721335Z", - "iopub.status.busy": "2023-12-28T10:56:35.720425Z", - "iopub.status.idle": "2023-12-28T10:56:38.530677Z", - "shell.execute_reply": "2023-12-28T10:56:38.530021Z" + "iopub.execute_input": "2024-01-02T16:49:31.033624Z", + "iopub.status.busy": "2024-01-02T16:49:31.033017Z", + "iopub.status.idle": "2024-01-02T16:49:33.893094Z", + "shell.execute_reply": "2024-01-02T16:49:33.892381Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:38.533109Z", - "iopub.status.busy": "2023-12-28T10:56:38.532903Z", - "iopub.status.idle": "2023-12-28T10:56:38.537951Z", - "shell.execute_reply": "2023-12-28T10:56:38.537416Z" + "iopub.execute_input": "2024-01-02T16:49:33.895754Z", + "iopub.status.busy": "2024-01-02T16:49:33.895382Z", + "iopub.status.idle": "2024-01-02T16:49:33.900514Z", + "shell.execute_reply": "2024-01-02T16:49:33.899883Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:38.540137Z", - "iopub.status.busy": "2023-12-28T10:56:38.539928Z", - "iopub.status.idle": "2023-12-28T10:56:38.544170Z", - "shell.execute_reply": "2023-12-28T10:56:38.543636Z" + "iopub.execute_input": "2024-01-02T16:49:33.902851Z", + "iopub.status.busy": "2024-01-02T16:49:33.902513Z", + "iopub.status.idle": "2024-01-02T16:49:33.906722Z", + "shell.execute_reply": "2024-01-02T16:49:33.906090Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:38.546349Z", - "iopub.status.busy": "2023-12-28T10:56:38.546156Z", - "iopub.status.idle": "2023-12-28T10:56:38.549541Z", - "shell.execute_reply": "2023-12-28T10:56:38.549024Z" + "iopub.execute_input": "2024-01-02T16:49:33.909259Z", + "iopub.status.busy": "2024-01-02T16:49:33.908858Z", + "iopub.status.idle": "2024-01-02T16:49:33.912479Z", + "shell.execute_reply": "2024-01-02T16:49:33.911850Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.html b/master/tutorials/object_detection.html index 6503a5fdb..0bca8fe35 100644 --- a/master/tutorials/object_detection.html +++ b/master/tutorials/object_detection.html @@ -1514,7 +1514,7 @@

    Other uses of visualize
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 6e03631f9..e0c9e77cd 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:43.821036Z", - "iopub.status.busy": "2023-12-28T10:56:43.820842Z", - "iopub.status.idle": "2023-12-28T10:56:44.927857Z", - "shell.execute_reply": "2023-12-28T10:56:44.927232Z" + "iopub.execute_input": "2024-01-02T16:49:38.864086Z", + "iopub.status.busy": "2024-01-02T16:49:38.863895Z", + "iopub.status.idle": "2024-01-02T16:49:39.960025Z", + "shell.execute_reply": "2024-01-02T16:49:39.959314Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:44.930982Z", - "iopub.status.busy": "2023-12-28T10:56:44.930370Z", - "iopub.status.idle": "2023-12-28T10:56:45.795412Z", - "shell.execute_reply": "2023-12-28T10:56:45.794562Z" + "iopub.execute_input": "2024-01-02T16:49:39.963077Z", + "iopub.status.busy": "2024-01-02T16:49:39.962664Z", + "iopub.status.idle": "2024-01-02T16:49:41.258667Z", + "shell.execute_reply": "2024-01-02T16:49:41.257788Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:45.798761Z", - "iopub.status.busy": "2023-12-28T10:56:45.798321Z", - "iopub.status.idle": "2023-12-28T10:56:45.801677Z", - "shell.execute_reply": "2023-12-28T10:56:45.801083Z" + "iopub.execute_input": "2024-01-02T16:49:41.261578Z", + "iopub.status.busy": "2024-01-02T16:49:41.261357Z", + "iopub.status.idle": "2024-01-02T16:49:41.264660Z", + "shell.execute_reply": "2024-01-02T16:49:41.264110Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:45.804338Z", - "iopub.status.busy": "2023-12-28T10:56:45.803855Z", - "iopub.status.idle": "2023-12-28T10:56:45.809520Z", - "shell.execute_reply": "2023-12-28T10:56:45.808917Z" + "iopub.execute_input": "2024-01-02T16:49:41.266991Z", + "iopub.status.busy": "2024-01-02T16:49:41.266789Z", + "iopub.status.idle": "2024-01-02T16:49:41.272414Z", + "shell.execute_reply": "2024-01-02T16:49:41.271888Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:45.811978Z", - "iopub.status.busy": "2023-12-28T10:56:45.811622Z", - "iopub.status.idle": "2023-12-28T10:56:46.416725Z", - "shell.execute_reply": "2023-12-28T10:56:46.416000Z" + "iopub.execute_input": "2024-01-02T16:49:41.274937Z", + "iopub.status.busy": "2024-01-02T16:49:41.274489Z", + "iopub.status.idle": "2024-01-02T16:49:41.891188Z", + "shell.execute_reply": "2024-01-02T16:49:41.890486Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:46.419674Z", - "iopub.status.busy": "2023-12-28T10:56:46.419247Z", - "iopub.status.idle": "2023-12-28T10:56:46.425575Z", - "shell.execute_reply": "2023-12-28T10:56:46.424974Z" + "iopub.execute_input": "2024-01-02T16:49:41.893909Z", + "iopub.status.busy": "2024-01-02T16:49:41.893671Z", + "iopub.status.idle": "2024-01-02T16:49:41.900561Z", + "shell.execute_reply": "2024-01-02T16:49:41.900044Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:46.427882Z", - "iopub.status.busy": "2023-12-28T10:56:46.427673Z", - "iopub.status.idle": "2023-12-28T10:56:46.432307Z", - "shell.execute_reply": "2023-12-28T10:56:46.431765Z" + "iopub.execute_input": "2024-01-02T16:49:41.903009Z", + "iopub.status.busy": "2024-01-02T16:49:41.902682Z", + "iopub.status.idle": "2024-01-02T16:49:41.906836Z", + "shell.execute_reply": "2024-01-02T16:49:41.906213Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:46.434568Z", - "iopub.status.busy": "2023-12-28T10:56:46.434367Z", - "iopub.status.idle": "2023-12-28T10:56:47.061405Z", - "shell.execute_reply": "2023-12-28T10:56:47.060667Z" + "iopub.execute_input": "2024-01-02T16:49:41.909469Z", + "iopub.status.busy": "2024-01-02T16:49:41.908934Z", + "iopub.status.idle": "2024-01-02T16:49:42.618824Z", + "shell.execute_reply": "2024-01-02T16:49:42.618157Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.064311Z", - "iopub.status.busy": "2023-12-28T10:56:47.064067Z", - "iopub.status.idle": "2023-12-28T10:56:47.166116Z", - "shell.execute_reply": "2023-12-28T10:56:47.165482Z" + "iopub.execute_input": "2024-01-02T16:49:42.621797Z", + "iopub.status.busy": "2024-01-02T16:49:42.621348Z", + "iopub.status.idle": "2024-01-02T16:49:42.725852Z", + "shell.execute_reply": "2024-01-02T16:49:42.725138Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.168630Z", - "iopub.status.busy": "2023-12-28T10:56:47.168250Z", - "iopub.status.idle": "2023-12-28T10:56:47.173155Z", - "shell.execute_reply": "2023-12-28T10:56:47.172612Z" + "iopub.execute_input": "2024-01-02T16:49:42.728481Z", + "iopub.status.busy": "2024-01-02T16:49:42.728249Z", + "iopub.status.idle": "2024-01-02T16:49:42.733159Z", + "shell.execute_reply": "2024-01-02T16:49:42.732543Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.175774Z", - "iopub.status.busy": "2023-12-28T10:56:47.175205Z", - "iopub.status.idle": "2023-12-28T10:56:47.558648Z", - "shell.execute_reply": "2023-12-28T10:56:47.557941Z" + "iopub.execute_input": "2024-01-02T16:49:42.735655Z", + "iopub.status.busy": "2024-01-02T16:49:42.735447Z", + "iopub.status.idle": "2024-01-02T16:49:43.121501Z", + "shell.execute_reply": "2024-01-02T16:49:43.120776Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.562233Z", - "iopub.status.busy": "2023-12-28T10:56:47.561775Z", - "iopub.status.idle": "2023-12-28T10:56:47.905896Z", - "shell.execute_reply": "2023-12-28T10:56:47.905225Z" + "iopub.execute_input": "2024-01-02T16:49:43.124509Z", + "iopub.status.busy": "2024-01-02T16:49:43.124032Z", + "iopub.status.idle": "2024-01-02T16:49:43.442266Z", + "shell.execute_reply": "2024-01-02T16:49:43.441512Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:47.909182Z", - "iopub.status.busy": "2023-12-28T10:56:47.908789Z", - "iopub.status.idle": "2023-12-28T10:56:48.299357Z", - "shell.execute_reply": "2023-12-28T10:56:48.298656Z" + "iopub.execute_input": "2024-01-02T16:49:43.445939Z", + "iopub.status.busy": "2024-01-02T16:49:43.445434Z", + "iopub.status.idle": "2024-01-02T16:49:43.811158Z", + "shell.execute_reply": "2024-01-02T16:49:43.810450Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:48.303205Z", - "iopub.status.busy": "2023-12-28T10:56:48.302752Z", - "iopub.status.idle": "2023-12-28T10:56:48.769415Z", - "shell.execute_reply": "2023-12-28T10:56:48.768726Z" + "iopub.execute_input": "2024-01-02T16:49:43.815206Z", + "iopub.status.busy": "2024-01-02T16:49:43.814625Z", + "iopub.status.idle": "2024-01-02T16:49:44.289207Z", + "shell.execute_reply": "2024-01-02T16:49:44.288483Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:48.773912Z", - "iopub.status.busy": "2023-12-28T10:56:48.773452Z", - "iopub.status.idle": "2023-12-28T10:56:49.229409Z", - "shell.execute_reply": "2023-12-28T10:56:49.228678Z" + "iopub.execute_input": "2024-01-02T16:49:44.293650Z", + "iopub.status.busy": "2024-01-02T16:49:44.293227Z", + "iopub.status.idle": "2024-01-02T16:49:44.733887Z", + "shell.execute_reply": "2024-01-02T16:49:44.733113Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:49.232709Z", - "iopub.status.busy": "2023-12-28T10:56:49.232250Z", - "iopub.status.idle": "2023-12-28T10:56:49.570840Z", - "shell.execute_reply": "2023-12-28T10:56:49.570113Z" + "iopub.execute_input": "2024-01-02T16:49:44.737041Z", + "iopub.status.busy": "2024-01-02T16:49:44.736563Z", + "iopub.status.idle": "2024-01-02T16:49:45.066675Z", + "shell.execute_reply": "2024-01-02T16:49:45.066024Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:49.573897Z", - "iopub.status.busy": "2023-12-28T10:56:49.573482Z", - "iopub.status.idle": "2023-12-28T10:56:49.774367Z", - "shell.execute_reply": "2023-12-28T10:56:49.773716Z" + "iopub.execute_input": "2024-01-02T16:49:45.070182Z", + "iopub.status.busy": "2024-01-02T16:49:45.069711Z", + "iopub.status.idle": "2024-01-02T16:49:45.273534Z", + "shell.execute_reply": "2024-01-02T16:49:45.272876Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:49.777315Z", - "iopub.status.busy": "2023-12-28T10:56:49.777081Z", - "iopub.status.idle": "2023-12-28T10:56:49.781239Z", - "shell.execute_reply": "2023-12-28T10:56:49.780601Z" + "iopub.execute_input": "2024-01-02T16:49:45.276803Z", + "iopub.status.busy": "2024-01-02T16:49:45.276396Z", + "iopub.status.idle": "2024-01-02T16:49:45.280478Z", + "shell.execute_reply": "2024-01-02T16:49:45.279917Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 12e1b4496..e87ab4e24 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -931,15 +931,29 @@

    2. Pre-process the Cifar10 dataset

    -
    +

    -

    -
    +
     Train embeddings pooled shape: (5000, 2048)
    +
    +
    +
    +
    +
    +
    +
     Test embeddings pooled shape: (1000, 2048)
     
    @@ -1276,7 +1297,7 @@

    4. Use cleanlab and here.

    @@ -1309,7 +1330,7 @@

    4. Use cleanlab and
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 8ae85fc0c..68f6277c1 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:52.094136Z", - "iopub.status.busy": "2023-12-28T10:56:52.093940Z", - "iopub.status.idle": "2023-12-28T10:56:54.091623Z", - "shell.execute_reply": "2023-12-28T10:56:54.090970Z" + "iopub.execute_input": "2024-01-02T16:49:47.766890Z", + "iopub.status.busy": "2024-01-02T16:49:47.766703Z", + "iopub.status.idle": "2024-01-02T16:49:49.804263Z", + "shell.execute_reply": "2024-01-02T16:49:49.803602Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:54.094780Z", - "iopub.status.busy": "2023-12-28T10:56:54.094226Z", - "iopub.status.idle": "2023-12-28T10:56:54.415356Z", - "shell.execute_reply": "2023-12-28T10:56:54.414717Z" + "iopub.execute_input": "2024-01-02T16:49:49.807215Z", + "iopub.status.busy": "2024-01-02T16:49:49.806863Z", + "iopub.status.idle": "2024-01-02T16:49:50.141976Z", + "shell.execute_reply": "2024-01-02T16:49:50.141226Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:54.418325Z", - "iopub.status.busy": "2023-12-28T10:56:54.417900Z", - "iopub.status.idle": "2023-12-28T10:56:54.422648Z", - "shell.execute_reply": "2023-12-28T10:56:54.422152Z" + "iopub.execute_input": "2024-01-02T16:49:50.144896Z", + "iopub.status.busy": "2024-01-02T16:49:50.144661Z", + "iopub.status.idle": "2024-01-02T16:49:50.149187Z", + "shell.execute_reply": "2024-01-02T16:49:50.148672Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:54.425150Z", - "iopub.status.busy": "2023-12-28T10:56:54.424783Z", - "iopub.status.idle": "2023-12-28T10:56:58.687789Z", - "shell.execute_reply": "2023-12-28T10:56:58.687183Z" + "iopub.execute_input": "2024-01-02T16:49:50.151538Z", + "iopub.status.busy": "2024-01-02T16:49:50.151319Z", + "iopub.status.idle": "2024-01-02T16:49:55.019554Z", + "shell.execute_reply": "2024-01-02T16:49:55.018929Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf2a475680f64525b23a306bbc7bff58", + "model_id": "72caee5580a6436ca9051cf4f371eb84", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:58.690271Z", - "iopub.status.busy": "2023-12-28T10:56:58.690059Z", - "iopub.status.idle": "2023-12-28T10:56:58.695217Z", - "shell.execute_reply": "2023-12-28T10:56:58.694690Z" + "iopub.execute_input": "2024-01-02T16:49:55.022310Z", + "iopub.status.busy": "2024-01-02T16:49:55.021898Z", + "iopub.status.idle": "2024-01-02T16:49:55.027081Z", + "shell.execute_reply": "2024-01-02T16:49:55.026564Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:58.697554Z", - "iopub.status.busy": "2023-12-28T10:56:58.697353Z", - "iopub.status.idle": "2023-12-28T10:56:59.224747Z", - "shell.execute_reply": "2023-12-28T10:56:59.224032Z" + "iopub.execute_input": "2024-01-02T16:49:55.029678Z", + "iopub.status.busy": "2024-01-02T16:49:55.029249Z", + "iopub.status.idle": "2024-01-02T16:49:55.589515Z", + "shell.execute_reply": "2024-01-02T16:49:55.588846Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:59.227675Z", - "iopub.status.busy": "2023-12-28T10:56:59.227212Z", - "iopub.status.idle": "2023-12-28T10:56:59.901176Z", - "shell.execute_reply": "2023-12-28T10:56:59.900482Z" + "iopub.execute_input": "2024-01-02T16:49:55.592250Z", + "iopub.status.busy": "2024-01-02T16:49:55.591837Z", + "iopub.status.idle": "2024-01-02T16:49:56.242182Z", + "shell.execute_reply": "2024-01-02T16:49:56.241445Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:59.903933Z", - "iopub.status.busy": "2023-12-28T10:56:59.903547Z", - "iopub.status.idle": "2023-12-28T10:56:59.907210Z", - "shell.execute_reply": "2023-12-28T10:56:59.906659Z" + "iopub.execute_input": "2024-01-02T16:49:56.245162Z", + "iopub.status.busy": "2024-01-02T16:49:56.244732Z", + "iopub.status.idle": "2024-01-02T16:49:56.248730Z", + "shell.execute_reply": "2024-01-02T16:49:56.247965Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:56:59.909576Z", - "iopub.status.busy": "2023-12-28T10:56:59.909209Z", - "iopub.status.idle": "2023-12-28T10:57:12.072007Z", - "shell.execute_reply": "2023-12-28T10:57:12.071271Z" + "iopub.execute_input": "2024-01-02T16:49:56.251572Z", + "iopub.status.busy": "2024-01-02T16:49:56.251038Z", + "iopub.status.idle": "2024-01-02T16:50:08.705942Z", + "shell.execute_reply": "2024-01-02T16:50:08.705237Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:12.075014Z", - "iopub.status.busy": "2023-12-28T10:57:12.074488Z", - "iopub.status.idle": "2023-12-28T10:57:13.649146Z", - "shell.execute_reply": "2023-12-28T10:57:13.648439Z" + "iopub.execute_input": "2024-01-02T16:50:08.708909Z", + "iopub.status.busy": "2024-01-02T16:50:08.708425Z", + "iopub.status.idle": "2024-01-02T16:50:10.287363Z", + "shell.execute_reply": "2024-01-02T16:50:10.286645Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:13.652228Z", - "iopub.status.busy": "2023-12-28T10:57:13.651854Z", - "iopub.status.idle": "2023-12-28T10:57:13.897235Z", - "shell.execute_reply": "2023-12-28T10:57:13.896540Z" + "iopub.execute_input": "2024-01-02T16:50:10.290570Z", + "iopub.status.busy": "2024-01-02T16:50:10.290069Z", + "iopub.status.idle": "2024-01-02T16:50:10.529792Z", + "shell.execute_reply": "2024-01-02T16:50:10.529080Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:13.900428Z", - "iopub.status.busy": "2023-12-28T10:57:13.899975Z", - "iopub.status.idle": "2023-12-28T10:57:14.585932Z", - "shell.execute_reply": "2023-12-28T10:57:14.585195Z" + "iopub.execute_input": "2024-01-02T16:50:10.532733Z", + "iopub.status.busy": "2024-01-02T16:50:10.532251Z", + "iopub.status.idle": "2024-01-02T16:50:11.199426Z", + "shell.execute_reply": "2024-01-02T16:50:11.198643Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:14.589259Z", - "iopub.status.busy": "2023-12-28T10:57:14.588852Z", - "iopub.status.idle": "2023-12-28T10:57:15.106744Z", - "shell.execute_reply": "2023-12-28T10:57:15.106120Z" + "iopub.execute_input": "2024-01-02T16:50:11.202505Z", + "iopub.status.busy": "2024-01-02T16:50:11.202011Z", + "iopub.status.idle": "2024-01-02T16:50:11.665067Z", + "shell.execute_reply": "2024-01-02T16:50:11.664385Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:15.109473Z", - "iopub.status.busy": "2023-12-28T10:57:15.109103Z", - "iopub.status.idle": "2023-12-28T10:57:15.361453Z", - "shell.execute_reply": "2023-12-28T10:57:15.360699Z" + "iopub.execute_input": "2024-01-02T16:50:11.668252Z", + "iopub.status.busy": "2024-01-02T16:50:11.667744Z", + "iopub.status.idle": "2024-01-02T16:50:11.901460Z", + "shell.execute_reply": "2024-01-02T16:50:11.900768Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:15.364723Z", - "iopub.status.busy": "2023-12-28T10:57:15.364443Z", - "iopub.status.idle": "2023-12-28T10:57:15.453484Z", - "shell.execute_reply": "2023-12-28T10:57:15.452898Z" + "iopub.execute_input": "2024-01-02T16:50:11.904763Z", + "iopub.status.busy": "2024-01-02T16:50:11.904236Z", + "iopub.status.idle": "2024-01-02T16:50:11.977114Z", + "shell.execute_reply": "2024-01-02T16:50:11.976376Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:15.456391Z", - "iopub.status.busy": "2023-12-28T10:57:15.455986Z", - "iopub.status.idle": "2023-12-28T10:57:53.700168Z", - "shell.execute_reply": "2023-12-28T10:57:53.699365Z" + "iopub.execute_input": "2024-01-02T16:50:11.980193Z", + "iopub.status.busy": "2024-01-02T16:50:11.979709Z", + "iopub.status.idle": "2024-01-02T16:50:50.527405Z", + "shell.execute_reply": "2024-01-02T16:50:50.526471Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:53.702935Z", - "iopub.status.busy": "2023-12-28T10:57:53.702502Z", - "iopub.status.idle": "2023-12-28T10:57:54.909834Z", - "shell.execute_reply": "2023-12-28T10:57:54.909186Z" + "iopub.execute_input": "2024-01-02T16:50:50.530479Z", + "iopub.status.busy": "2024-01-02T16:50:50.530227Z", + "iopub.status.idle": "2024-01-02T16:50:51.820875Z", + "shell.execute_reply": "2024-01-02T16:50:51.820138Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:54.912902Z", - "iopub.status.busy": "2023-12-28T10:57:54.912354Z", - "iopub.status.idle": "2023-12-28T10:57:55.109412Z", - "shell.execute_reply": "2023-12-28T10:57:55.108683Z" + "iopub.execute_input": "2024-01-02T16:50:51.824177Z", + "iopub.status.busy": "2024-01-02T16:50:51.823637Z", + "iopub.status.idle": "2024-01-02T16:50:52.015546Z", + "shell.execute_reply": "2024-01-02T16:50:52.014783Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:55.112592Z", - "iopub.status.busy": "2023-12-28T10:57:55.112169Z", - "iopub.status.idle": "2023-12-28T10:57:55.115671Z", - "shell.execute_reply": "2023-12-28T10:57:55.115056Z" + "iopub.execute_input": "2024-01-02T16:50:52.018833Z", + "iopub.status.busy": "2024-01-02T16:50:52.018426Z", + "iopub.status.idle": "2024-01-02T16:50:52.022167Z", + "shell.execute_reply": "2024-01-02T16:50:52.021467Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:57:55.118315Z", - "iopub.status.busy": "2023-12-28T10:57:55.117937Z", - "iopub.status.idle": "2023-12-28T10:57:55.126534Z", - "shell.execute_reply": "2023-12-28T10:57:55.126001Z" + "iopub.execute_input": "2024-01-02T16:50:52.024687Z", + "iopub.status.busy": "2024-01-02T16:50:52.024445Z", + "iopub.status.idle": "2024-01-02T16:50:52.033594Z", + "shell.execute_reply": "2024-01-02T16:50:52.033030Z" }, "nbsphinx": "hidden" }, @@ -1017,43 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "13bc01cf3a2e435199f662d58f58901d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f66354f02aa94fc2b31d15e051b229db", - "placeholder": "​", - "style": "IPY_MODEL_1b01b50c8f6741f4b667ad7953e8984a", - "value": " 170498071/170498071 [00:01<00:00, 111590585.89it/s]" - } - }, - "1b01b50c8f6741f4b667ad7953e8984a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "226eb886e5c94cedb8b6e128386cef61": { + "0670b11ae1434352921d9bf11d77702d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1105,23 +1069,67 @@ "width": null } }, - "26e186f1773d4bb6aea7e5d9c0ba1fdc": { + "196d523f75534c1898a55c376eabf597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "30f746cde4d140a48649396bf8bd565b": { + "2b1eab7c56954b33ad765d4eb5d7e334": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a907cbda5bee463b8bfa16678957a608", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_36635e978f1243fcb5028161914b6a63", + "value": 170498071.0 + } + }, + "2e51ae99817e467497fc8485f4a1dd30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0670b11ae1434352921d9bf11d77702d", + "placeholder": "​", + "style": "IPY_MODEL_196d523f75534c1898a55c376eabf597", + "value": " 170498071/170498071 [00:01<00:00, 97484533.27it/s]" + } + }, + "30f1b81aafb84f55be1afcd288768ac8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1136,7 +1144,66 @@ "description_width": "" } }, - "94fe1cb968ec426a96df50adf798f6f9": { + "36635e978f1243fcb5028161914b6a63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "72caee5580a6436ca9051cf4f371eb84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_87f20b742d5a421987ed4dc4a4f3d5f3", + "IPY_MODEL_2b1eab7c56954b33ad765d4eb5d7e334", + "IPY_MODEL_2e51ae99817e467497fc8485f4a1dd30" + ], + "layout": "IPY_MODEL_e5ae862d1d4b429584da304df0d9f1b0" + } + }, + "87f20b742d5a421987ed4dc4a4f3d5f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c6bb7f75d4fe4110b528d62b0a9547e5", + "placeholder": "​", + "style": "IPY_MODEL_30f1b81aafb84f55be1afcd288768ac8", + "value": "100%" + } + }, + "a907cbda5bee463b8bfa16678957a608": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1188,7 +1255,7 @@ "width": null } }, - "9e19eee61b8a4f2cb625f8ce8b334d4f": { + "c6bb7f75d4fe4110b528d62b0a9547e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1240,74 +1307,7 @@ "width": null } }, - "b981836a30524f608b1a80fc11f89ce8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_226eb886e5c94cedb8b6e128386cef61", - "placeholder": "​", - "style": "IPY_MODEL_30f746cde4d140a48649396bf8bd565b", - "value": "100%" - } - }, - "bf2a475680f64525b23a306bbc7bff58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b981836a30524f608b1a80fc11f89ce8", - "IPY_MODEL_c2a6a1e53d7a45bfb61cd1957a57f0a4", - "IPY_MODEL_13bc01cf3a2e435199f662d58f58901d" - ], - "layout": "IPY_MODEL_9e19eee61b8a4f2cb625f8ce8b334d4f" - } - }, - "c2a6a1e53d7a45bfb61cd1957a57f0a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_94fe1cb968ec426a96df50adf798f6f9", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26e186f1773d4bb6aea7e5d9c0ba1fdc", - "value": 170498071.0 - } - }, - "f66354f02aa94fc2b31d15e051b229db": { + "e5ae862d1d4b429584da304df0d9f1b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/tutorials/pred_probs_cross_val.html b/master/tutorials/pred_probs_cross_val.html index 8b597af63..b11978b0e 100644 --- a/master/tutorials/pred_probs_cross_val.html +++ b/master/tutorials/pred_probs_cross_val.html @@ -601,7 +601,7 @@

    What is K-fold cross-validation?
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/regression.html b/master/tutorials/regression.html index cff7f6dac..4099196f1 100644 --- a/master/tutorials/regression.html +++ b/master/tutorials/regression.html @@ -1393,7 +1393,7 @@

    5. Other ways to find noisy labels in regression datasets
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index ae002f32b..a46a1e2f8 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:00.034823Z", - "iopub.status.busy": "2023-12-28T10:58:00.034175Z", - "iopub.status.idle": "2023-12-28T10:58:01.150450Z", - "shell.execute_reply": "2023-12-28T10:58:01.149826Z" + "iopub.execute_input": "2024-01-02T16:50:56.657618Z", + "iopub.status.busy": "2024-01-02T16:50:56.657420Z", + "iopub.status.idle": "2024-01-02T16:50:57.812772Z", + "shell.execute_reply": "2024-01-02T16:50:57.812035Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.153420Z", - "iopub.status.busy": "2023-12-28T10:58:01.152980Z", - "iopub.status.idle": "2023-12-28T10:58:01.169440Z", - "shell.execute_reply": "2023-12-28T10:58:01.168733Z" + "iopub.execute_input": "2024-01-02T16:50:57.815846Z", + "iopub.status.busy": "2024-01-02T16:50:57.815504Z", + "iopub.status.idle": "2024-01-02T16:50:57.832448Z", + "shell.execute_reply": "2024-01-02T16:50:57.831893Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.172216Z", - "iopub.status.busy": "2023-12-28T10:58:01.171824Z", - "iopub.status.idle": "2023-12-28T10:58:01.175102Z", - "shell.execute_reply": "2023-12-28T10:58:01.174486Z" + "iopub.execute_input": "2024-01-02T16:50:57.835137Z", + "iopub.status.busy": "2024-01-02T16:50:57.834886Z", + "iopub.status.idle": "2024-01-02T16:50:57.838160Z", + "shell.execute_reply": "2024-01-02T16:50:57.837550Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.177660Z", - "iopub.status.busy": "2023-12-28T10:58:01.177293Z", - "iopub.status.idle": "2023-12-28T10:58:01.247515Z", - "shell.execute_reply": "2023-12-28T10:58:01.246859Z" + "iopub.execute_input": "2024-01-02T16:50:57.840780Z", + "iopub.status.busy": "2024-01-02T16:50:57.840294Z", + "iopub.status.idle": "2024-01-02T16:50:57.948682Z", + "shell.execute_reply": "2024-01-02T16:50:57.948041Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.250589Z", - "iopub.status.busy": "2023-12-28T10:58:01.250045Z", - "iopub.status.idle": "2023-12-28T10:58:01.533129Z", - "shell.execute_reply": "2023-12-28T10:58:01.532504Z" + "iopub.execute_input": "2024-01-02T16:50:57.951707Z", + "iopub.status.busy": "2024-01-02T16:50:57.951094Z", + "iopub.status.idle": "2024-01-02T16:50:58.247279Z", + "shell.execute_reply": "2024-01-02T16:50:58.246556Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.536128Z", - "iopub.status.busy": "2023-12-28T10:58:01.535696Z", - "iopub.status.idle": "2023-12-28T10:58:01.757495Z", - "shell.execute_reply": "2023-12-28T10:58:01.756628Z" + "iopub.execute_input": "2024-01-02T16:50:58.250351Z", + "iopub.status.busy": "2024-01-02T16:50:58.250095Z", + "iopub.status.idle": "2024-01-02T16:50:58.513267Z", + "shell.execute_reply": "2024-01-02T16:50:58.512536Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.760593Z", - "iopub.status.busy": "2023-12-28T10:58:01.760304Z", - "iopub.status.idle": "2023-12-28T10:58:01.765551Z", - "shell.execute_reply": "2023-12-28T10:58:01.764911Z" + "iopub.execute_input": "2024-01-02T16:50:58.516268Z", + "iopub.status.busy": "2024-01-02T16:50:58.515758Z", + "iopub.status.idle": "2024-01-02T16:50:58.520972Z", + "shell.execute_reply": "2024-01-02T16:50:58.520446Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.768527Z", - "iopub.status.busy": "2023-12-28T10:58:01.768085Z", - "iopub.status.idle": "2023-12-28T10:58:01.775232Z", - "shell.execute_reply": "2023-12-28T10:58:01.774443Z" + "iopub.execute_input": "2024-01-02T16:50:58.523234Z", + "iopub.status.busy": "2024-01-02T16:50:58.523030Z", + "iopub.status.idle": "2024-01-02T16:50:58.529724Z", + "shell.execute_reply": "2024-01-02T16:50:58.529219Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.778082Z", - "iopub.status.busy": "2023-12-28T10:58:01.777579Z", - "iopub.status.idle": "2023-12-28T10:58:01.780542Z", - "shell.execute_reply": "2023-12-28T10:58:01.779943Z" + "iopub.execute_input": "2024-01-02T16:50:58.532357Z", + "iopub.status.busy": "2024-01-02T16:50:58.532147Z", + "iopub.status.idle": "2024-01-02T16:50:58.534960Z", + "shell.execute_reply": "2024-01-02T16:50:58.534399Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:01.782773Z", - "iopub.status.busy": "2023-12-28T10:58:01.782484Z", - "iopub.status.idle": "2023-12-28T10:58:11.876126Z", - "shell.execute_reply": "2023-12-28T10:58:11.875468Z" + "iopub.execute_input": "2024-01-02T16:50:58.537211Z", + "iopub.status.busy": "2024-01-02T16:50:58.537012Z", + "iopub.status.idle": "2024-01-02T16:51:08.899964Z", + "shell.execute_reply": "2024-01-02T16:51:08.899314Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.879231Z", - "iopub.status.busy": "2023-12-28T10:58:11.878810Z", - "iopub.status.idle": "2023-12-28T10:58:11.886378Z", - "shell.execute_reply": "2023-12-28T10:58:11.885855Z" + "iopub.execute_input": "2024-01-02T16:51:08.903576Z", + "iopub.status.busy": "2024-01-02T16:51:08.902871Z", + "iopub.status.idle": "2024-01-02T16:51:08.911165Z", + "shell.execute_reply": "2024-01-02T16:51:08.910616Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.888676Z", - "iopub.status.busy": "2023-12-28T10:58:11.888472Z", - "iopub.status.idle": "2023-12-28T10:58:11.892483Z", - "shell.execute_reply": "2023-12-28T10:58:11.891823Z" + "iopub.execute_input": "2024-01-02T16:51:08.913947Z", + "iopub.status.busy": "2024-01-02T16:51:08.913415Z", + "iopub.status.idle": "2024-01-02T16:51:08.917624Z", + "shell.execute_reply": "2024-01-02T16:51:08.917093Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.894678Z", - "iopub.status.busy": "2023-12-28T10:58:11.894479Z", - "iopub.status.idle": "2023-12-28T10:58:11.898022Z", - "shell.execute_reply": "2023-12-28T10:58:11.897396Z" + "iopub.execute_input": "2024-01-02T16:51:08.919827Z", + "iopub.status.busy": "2024-01-02T16:51:08.919623Z", + "iopub.status.idle": "2024-01-02T16:51:08.923446Z", + "shell.execute_reply": "2024-01-02T16:51:08.922791Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.900185Z", - "iopub.status.busy": "2023-12-28T10:58:11.899988Z", - "iopub.status.idle": "2023-12-28T10:58:11.903514Z", - "shell.execute_reply": "2023-12-28T10:58:11.902977Z" + "iopub.execute_input": "2024-01-02T16:51:08.926206Z", + "iopub.status.busy": "2024-01-02T16:51:08.925604Z", + "iopub.status.idle": "2024-01-02T16:51:08.929199Z", + "shell.execute_reply": "2024-01-02T16:51:08.928561Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.905788Z", - "iopub.status.busy": "2023-12-28T10:58:11.905591Z", - "iopub.status.idle": "2023-12-28T10:58:11.915030Z", - "shell.execute_reply": "2023-12-28T10:58:11.914300Z" + "iopub.execute_input": "2024-01-02T16:51:08.931737Z", + "iopub.status.busy": "2024-01-02T16:51:08.931161Z", + "iopub.status.idle": "2024-01-02T16:51:08.940702Z", + "shell.execute_reply": "2024-01-02T16:51:08.940048Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:11.917702Z", - "iopub.status.busy": "2023-12-28T10:58:11.917480Z", - "iopub.status.idle": "2023-12-28T10:58:12.062648Z", - "shell.execute_reply": "2023-12-28T10:58:12.061928Z" + "iopub.execute_input": "2024-01-02T16:51:08.943406Z", + "iopub.status.busy": "2024-01-02T16:51:08.942944Z", + "iopub.status.idle": "2024-01-02T16:51:09.094075Z", + "shell.execute_reply": "2024-01-02T16:51:09.093396Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:12.065641Z", - "iopub.status.busy": "2023-12-28T10:58:12.065161Z", - "iopub.status.idle": "2023-12-28T10:58:12.195067Z", - "shell.execute_reply": "2023-12-28T10:58:12.194373Z" + "iopub.execute_input": "2024-01-02T16:51:09.097011Z", + "iopub.status.busy": "2024-01-02T16:51:09.096741Z", + "iopub.status.idle": "2024-01-02T16:51:09.229209Z", + "shell.execute_reply": "2024-01-02T16:51:09.228492Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:12.198503Z", - "iopub.status.busy": "2023-12-28T10:58:12.197954Z", - "iopub.status.idle": "2023-12-28T10:58:12.781097Z", - "shell.execute_reply": "2023-12-28T10:58:12.780391Z" + "iopub.execute_input": "2024-01-02T16:51:09.232247Z", + "iopub.status.busy": "2024-01-02T16:51:09.231971Z", + "iopub.status.idle": "2024-01-02T16:51:09.838982Z", + "shell.execute_reply": "2024-01-02T16:51:09.838319Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:12.784434Z", - "iopub.status.busy": "2023-12-28T10:58:12.783922Z", - "iopub.status.idle": "2023-12-28T10:58:12.865621Z", - "shell.execute_reply": "2023-12-28T10:58:12.864935Z" + "iopub.execute_input": "2024-01-02T16:51:09.842385Z", + "iopub.status.busy": "2024-01-02T16:51:09.841874Z", + "iopub.status.idle": "2024-01-02T16:51:09.934403Z", + "shell.execute_reply": "2024-01-02T16:51:09.933716Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:12.868830Z", - "iopub.status.busy": "2023-12-28T10:58:12.868278Z", - "iopub.status.idle": "2023-12-28T10:58:12.878484Z", - "shell.execute_reply": "2023-12-28T10:58:12.877845Z" + "iopub.execute_input": "2024-01-02T16:51:09.937358Z", + "iopub.status.busy": "2024-01-02T16:51:09.936918Z", + "iopub.status.idle": "2024-01-02T16:51:09.947202Z", + "shell.execute_reply": "2024-01-02T16:51:09.946667Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index fea01a83c..4b7a8f30f 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -960,13 +960,13 @@

    3. Use cleanlab to find label issues

    -
    +

    -
    +

    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    0%| | 17314/4997817 [00:00&lt;00:28, 173126.54it/s]
    +

    </pre>

    +
    +
    +
    0%| | 17314/4997817 [00:00<00:28, 173126.54it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    0%| | 17314/4997817 [00:00<00:28, 173126.54it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    1%| | 34829/4997817 [00:00&lt;00:28, 174308.32it/s]
    +

    </pre>

    +
    +
    +
    1%| | 34829/4997817 [00:00<00:28, 174308.32it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    1%| | 34829/4997817 [00:00<00:28, 174308.32it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    1%| | 52365/4997817 [00:00&lt;00:28, 174780.79it/s]
    +

    </pre>

    +
    +
    +
    1%| | 52365/4997817 [00:00<00:28, 174780.79it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    1%| | 52365/4997817 [00:00<00:28, 174780.79it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    1%|▏ | 69964/4997817 [00:00&lt;00:28, 175254.25it/s]
    +

    </pre>

    +
    +
    +
    1%|▏ | 69964/4997817 [00:00<00:28, 175254.25it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    1%|▏ | 69964/4997817 [00:00<00:28, 175254.25it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    2%|▏ | 87490/4997817 [00:00&lt;00:28, 175005.28it/s]
    +

    </pre>

    +
    +
    +
    2%|▏ | 87490/4997817 [00:00<00:28, 175005.28it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    2%|▏ | 87490/4997817 [00:00<00:28, 175005.28it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    2%|▏ | 105188/4997817 [00:00&lt;00:27, 175672.96it/s]
    +

    </pre>

    +
    +
    +
    2%|▏ | 105188/4997817 [00:00<00:27, 175672.96it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    2%|▏ | 105188/4997817 [00:00<00:27, 175672.96it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    2%|▏ | 122771/4997817 [00:00&lt;00:27, 175719.53it/s]
    +

    </pre>

    +
    +
    +
    2%|▏ | 122771/4997817 [00:00<00:27, 175719.53it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    2%|▏ | 122771/4997817 [00:00<00:27, 175719.53it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    3%|▎ | 140344/4997817 [00:00&lt;00:27, 175172.99it/s]
    +

    </pre>

    +
    +
    +
    3%|▎ | 140344/4997817 [00:00<00:27, 175172.99it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    3%|▎ | 140344/4997817 [00:00<00:27, 175172.99it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    3%|▎ | 157862/4997817 [00:00&lt;00:27, 174941.50it/s]
    +

    </pre>

    +
    +
    +
    3%|▎ | 157862/4997817 [00:00<00:27, 174941.50it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    3%|▎ | 157862/4997817 [00:00<00:27, 174941.50it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    4%|▎ | 175357/4997817 [00:01&lt;00:27, 174922.08it/s]
    +

    </pre>

    +
    +
    +
    4%|▎ | 175357/4997817 [00:01<00:27, 174922.08it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    4%|▎ | 175357/4997817 [00:01<00:27, 174922.08it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    4%|▍ | 192926/4997817 [00:01&lt;00:27, 175151.99it/s]
    +

    </pre>

    +
    +
    +
    4%|▍ | 192926/4997817 [00:01<00:27, 175151.99it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    4%|▍ | 192926/4997817 [00:01<00:27, 175151.99it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    4%|▍ | 210609/4997817 [00:01&lt;00:27, 175659.14it/s]
    +

    </pre>

    +
    +
    +
    4%|▍ | 210609/4997817 [00:01<00:27, 175659.14it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    4%|▍ | 210609/4997817 [00:01<00:27, 175659.14it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    5%|▍ | 228199/4997817 [00:01&lt;00:27, 175727.40it/s]
    +

    </pre>

    +
    +
    +
    5%|▍ | 228199/4997817 [00:01<00:27, 175727.40it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    5%|▍ | 228199/4997817 [00:01<00:27, 175727.40it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    5%|▍ | 245865/4997817 [00:01&lt;00:26, 176005.53it/s]
    +

    </pre>

    +
    +
    +
    5%|▍ | 245865/4997817 [00:01<00:26, 176005.53it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    5%|▍ | 245865/4997817 [00:01<00:26, 176005.53it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    5%|▌ | 263466/4997817 [00:01&lt;00:26, 175594.60it/s]
    +

    </pre>

    +
    +
    +
    5%|▌ | 263466/4997817 [00:01<00:26, 175594.60it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    5%|▌ | 263466/4997817 [00:01<00:26, 175594.60it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    6%|▌ | 281027/4997817 [00:01&lt;00:26, 175595.13it/s]
    +

    </pre>

    +
    +
    +
    6%|▌ | 281027/4997817 [00:01<00:26, 175595.13it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    6%|▌ | 281027/4997817 [00:01<00:26, 175595.13it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    6%|▌ | 298836/4997817 [00:01&lt;00:26, 176341.43it/s]
    +

    </pre>

    +
    +
    +
    6%|▌ | 298836/4997817 [00:01<00:26, 176341.43it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    6%|▌ | 298836/4997817 [00:01<00:26, 176341.43it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    6%|▋ | 316665/4997817 [00:01&lt;00:26, 176924.14it/s]
    +

    </pre>

    +
    +
    +
    6%|▋ | 316665/4997817 [00:01<00:26, 176924.14it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    6%|▋ | 316665/4997817 [00:01<00:26, 176924.14it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    7%|▋ | 334560/4997817 [00:01&lt;00:26, 177527.64it/s]
    +

    </pre>

    +
    +
    +
    7%|▋ | 334560/4997817 [00:01<00:26, 177527.64it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    7%|▋ | 334560/4997817 [00:01<00:26, 177527.64it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    7%|▋ | 352485/4997817 [00:02&lt;00:26, 178040.22it/s]
    +

    </pre>

    +
    +
    +
    7%|▋ | 352485/4997817 [00:02<00:26, 178040.22it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    7%|▋ | 352485/4997817 [00:02<00:26, 178040.22it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    7%|▋ | 370443/4997817 [00:02&lt;00:25, 178499.86it/s]
    +

    </pre>

    +
    +
    +
    7%|▋ | 370443/4997817 [00:02<00:25, 178499.86it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    7%|▋ | 370443/4997817 [00:02<00:25, 178499.86it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    8%|▊ | 388402/4997817 [00:02&lt;00:25, 178823.67it/s]
    +

    </pre>

    +
    +
    +
    8%|▊ | 388402/4997817 [00:02<00:25, 178823.67it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    8%|▊ | 388402/4997817 [00:02<00:25, 178823.67it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    8%|▊ | 406285/4997817 [00:02&lt;00:25, 178740.60it/s]
    +

    </pre>

    +
    +
    +
    8%|▊ | 406285/4997817 [00:02<00:25, 178740.60it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    8%|▊ | 406285/4997817 [00:02<00:25, 178740.60it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    8%|▊ | 424160/4997817 [00:02&lt;00:25, 178599.92it/s]
    +

    </pre>

    +
    +
    +
    8%|▊ | 424160/4997817 [00:02<00:25, 178599.92it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    8%|▊ | 424160/4997817 [00:02<00:25, 178599.92it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    9%|▉ | 442021/4997817 [00:02&lt;00:25, 178448.54it/s]
    +

    </pre>

    +
    +
    +
    9%|▉ | 442021/4997817 [00:02<00:25, 178448.54it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    9%|▉ | 442021/4997817 [00:02<00:25, 178448.54it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    9%|▉ | 459866/4997817 [00:02&lt;00:25, 175902.91it/s]
    +

    </pre>

    +
    +
    +
    9%|▉ | 459866/4997817 [00:02<00:25, 175902.91it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    9%|▉ | 459866/4997817 [00:02<00:25, 175902.91it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    10%|▉ | 477662/4997817 [00:02&lt;00:25, 176508.79it/s]
    +

    </pre>

    +
    +
    +
    10%|▉ | 477662/4997817 [00:02<00:25, 176508.79it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    10%|▉ | 477662/4997817 [00:02<00:25, 176508.79it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    10%|▉ | 495424/4997817 [00:02&lt;00:25, 176835.64it/s]
    +

    </pre>

    +
    +
    +
    10%|▉ | 495424/4997817 [00:02<00:25, 176835.64it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    10%|▉ | 495424/4997817 [00:02<00:25, 176835.64it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    10%|█ | 513310/4997817 [00:02&lt;00:25, 177437.22it/s]
    +

    </pre>

    +
    +
    +
    10%|█ | 513310/4997817 [00:02<00:25, 177437.22it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    10%|█ | 513310/4997817 [00:02<00:25, 177437.22it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    11%|█ | 531207/4997817 [00:03&lt;00:25, 177892.84it/s]
    +

    </pre>

    +
    +
    +
    11%|█ | 531207/4997817 [00:03<00:25, 177892.84it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    11%|█ | 531207/4997817 [00:03<00:25, 177892.84it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    11%|█ | 548999/4997817 [00:03&lt;00:25, 175415.22it/s]
    +

    </pre>

    +
    +
    +
    11%|█ | 548999/4997817 [00:03<00:25, 175415.22it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    11%|█ | 548999/4997817 [00:03<00:25, 175415.22it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    11%|█▏ | 566644/4997817 [00:03&lt;00:25, 175717.99it/s]
    +

    </pre>

    +
    +
    +
    11%|█▏ | 566644/4997817 [00:03<00:25, 175717.99it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    11%|█▏ | 566644/4997817 [00:03<00:25, 175717.99it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    12%|█▏ | 584538/4997817 [00:03&lt;00:24, 176671.06it/s]
    +

    </pre>

    +
    +
    +
    12%|█▏ | 584538/4997817 [00:03<00:24, 176671.06it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    12%|█▏ | 584538/4997817 [00:03<00:24, 176671.06it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    12%|█▏ | 602262/4997817 [00:03&lt;00:24, 176835.65it/s]
    +

    </pre>

    +
    +
    +
    12%|█▏ | 602262/4997817 [00:03<00:24, 176835.65it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    12%|█▏ | 602262/4997817 [00:03<00:24, 176835.65it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    12%|█▏ | 620024/4997817 [00:03&lt;00:24, 177064.87it/s]
    +

    </pre>

    +
    +
    +
    12%|█▏ | 620024/4997817 [00:03<00:24, 177064.87it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    12%|█▏ | 620024/4997817 [00:03<00:24, 177064.87it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    13%|█▎ | 637734/4997817 [00:03&lt;00:24, 176679.27it/s]
    +

    </pre>

    +
    +
    +
    13%|█▎ | 637734/4997817 [00:03<00:24, 176679.27it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    13%|█▎ | 637734/4997817 [00:03<00:24, 176679.27it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    13%|█▎ | 655474/4997817 [00:03&lt;00:24, 176890.98it/s]
    +

    </pre>

    +
    +
    +
    13%|█▎ | 655474/4997817 [00:03<00:24, 176890.98it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    13%|█▎ | 655474/4997817 [00:03<00:24, 176890.98it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    13%|█▎ | 673248/4997817 [00:03&lt;00:24, 177141.43it/s]
    +

    </pre>

    +
    +
    +
    13%|█▎ | 673248/4997817 [00:03<00:24, 177141.43it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    13%|█▎ | 673248/4997817 [00:03<00:24, 177141.43it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    14%|█▍ | 691105/4997817 [00:03&lt;00:24, 177564.47it/s]
    +

    </pre>

    +
    +
    +
    14%|█▍ | 691105/4997817 [00:03<00:24, 177564.47it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    14%|█▍ | 691105/4997817 [00:03<00:24, 177564.47it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    14%|█▍ | 708942/4997817 [00:04&lt;00:24, 177800.79it/s]
    +

    </pre>

    +
    +
    +
    14%|█▍ | 708942/4997817 [00:04<00:24, 177800.79it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    14%|█▍ | 708942/4997817 [00:04<00:24, 177800.79it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    15%|█▍ | 726723/4997817 [00:04&lt;00:24, 177793.95it/s]
    +

    </pre>

    +
    +
    +
    15%|█▍ | 726723/4997817 [00:04<00:24, 177793.95it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    15%|█▍ | 726723/4997817 [00:04<00:24, 177793.95it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    15%|█▍ | 744503/4997817 [00:04&lt;00:23, 177758.97it/s]
    +

    </pre>

    +
    +
    +
    15%|█▍ | 744503/4997817 [00:04<00:23, 177758.97it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    15%|█▍ | 744503/4997817 [00:04<00:23, 177758.97it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    15%|█▌ | 762280/4997817 [00:04&lt;00:23, 177746.19it/s]
    +

    </pre>

    +
    +
    +
    15%|█▌ | 762280/4997817 [00:04<00:23, 177746.19it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    15%|█▌ | 762280/4997817 [00:04<00:23, 177746.19it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    16%|█▌ | 780236/4997817 [00:04&lt;00:23, 178287.44it/s]
    +

    </pre>

    +
    +
    +
    16%|█▌ | 780236/4997817 [00:04<00:23, 178287.44it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    16%|█▌ | 780236/4997817 [00:04<00:23, 178287.44it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    16%|█▌ | 798190/4997817 [00:04&lt;00:23, 178658.65it/s]
    +

    </pre>

    +
    +
    +
    16%|█▌ | 798190/4997817 [00:04<00:23, 178658.65it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    16%|█▌ | 798190/4997817 [00:04<00:23, 178658.65it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    16%|█▋ | 816162/4997817 [00:04&lt;00:23, 178972.42it/s]
    +

    </pre>

    +
    +
    +
    16%|█▋ | 816162/4997817 [00:04<00:23, 178972.42it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    16%|█▋ | 816162/4997817 [00:04<00:23, 178972.42it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    17%|█▋ | 834062/4997817 [00:04&lt;00:23, 178976.39it/s]
    +

    </pre>

    +
    +
    +
    17%|█▋ | 834062/4997817 [00:04<00:23, 178976.39it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    17%|█▋ | 834062/4997817 [00:04<00:23, 178976.39it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    17%|█▋ | 851960/4997817 [00:04&lt;00:23, 178605.71it/s]
    +

    </pre>

    +
    +
    +
    17%|█▋ | 851960/4997817 [00:04<00:23, 178605.71it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    17%|█▋ | 851960/4997817 [00:04<00:23, 178605.71it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    17%|█▋ | 869912/4997817 [00:04&lt;00:23, 178875.91it/s]
    +

    </pre>

    +
    +
    +
    17%|█▋ | 869912/4997817 [00:04<00:23, 178875.91it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    17%|█▋ | 869912/4997817 [00:04<00:23, 178875.91it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    18%|█▊ | 887965/4997817 [00:05&lt;00:22, 179366.26it/s]
    +

    </pre>

    +
    +
    +
    18%|█▊ | 887965/4997817 [00:05<00:22, 179366.26it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    18%|█▊ | 887965/4997817 [00:05<00:22, 179366.26it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    18%|█▊ | 905902/4997817 [00:05&lt;00:22, 178845.68it/s]
    +

    </pre>

    +
    +
    +
    18%|█▊ | 905902/4997817 [00:05<00:22, 178845.68it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    18%|█▊ | 905902/4997817 [00:05<00:22, 178845.68it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    18%|█▊ | 923788/4997817 [00:05&lt;00:22, 177995.05it/s]
    +

    </pre>

    +
    +
    +
    18%|█▊ | 923788/4997817 [00:05<00:22, 177995.05it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    18%|█▊ | 923788/4997817 [00:05<00:22, 177995.05it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    19%|█▉ | 941613/4997817 [00:05&lt;00:22, 178068.40it/s]
    +

    </pre>

    +
    +
    +
    19%|█▉ | 941613/4997817 [00:05<00:22, 178068.40it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    19%|█▉ | 941613/4997817 [00:05<00:22, 178068.40it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    19%|█▉ | 959421/4997817 [00:05&lt;00:22, 177686.46it/s]
    +

    </pre>

    +
    +
    +
    19%|█▉ | 959421/4997817 [00:05<00:22, 177686.46it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    19%|█▉ | 959421/4997817 [00:05<00:22, 177686.46it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    20%|█▉ | 977191/4997817 [00:05&lt;00:22, 177262.11it/s]
    +

    </pre>

    +
    +
    +
    20%|█▉ | 977191/4997817 [00:05<00:22, 177262.11it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    20%|█▉ | 977191/4997817 [00:05<00:22, 177262.11it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    20%|█▉ | 994958/4997817 [00:05&lt;00:22, 177380.94it/s]
    +

    </pre>

    +
    +
    +
    20%|█▉ | 994958/4997817 [00:05<00:22, 177380.94it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    20%|█▉ | 994958/4997817 [00:05<00:22, 177380.94it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    20%|██ | 1012772/4997817 [00:05&lt;00:22, 177605.07it/s]
    +

    </pre>

    +
    +
    +
    20%|██ | 1012772/4997817 [00:05<00:22, 177605.07it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    20%|██ | 1012772/4997817 [00:05<00:22, 177605.07it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    21%|██ | 1030533/4997817 [00:05&lt;00:22, 177556.29it/s]
    +

    </pre>

    +
    +
    +
    21%|██ | 1030533/4997817 [00:05<00:22, 177556.29it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    21%|██ | 1030533/4997817 [00:05<00:22, 177556.29it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    21%|██ | 1048289/4997817 [00:05&lt;00:22, 177115.61it/s]
    +

    </pre>

    +
    +
    +
    21%|██ | 1048289/4997817 [00:05<00:22, 177115.61it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    21%|██ | 1048289/4997817 [00:05<00:22, 177115.61it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    21%|██▏ | 1066001/4997817 [00:06&lt;00:22, 176685.93it/s]
    +

    </pre>

    +
    +
    +
    21%|██▏ | 1066001/4997817 [00:06<00:22, 176685.93it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    21%|██▏ | 1066001/4997817 [00:06<00:22, 176685.93it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    22%|██▏ | 1083736/4997817 [00:06&lt;00:22, 176881.29it/s]
    +

    </pre>

    +
    +
    +
    22%|██▏ | 1083736/4997817 [00:06<00:22, 176881.29it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    22%|██▏ | 1083736/4997817 [00:06<00:22, 176881.29it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    22%|██▏ | 1101425/4997817 [00:06&lt;00:22, 176862.75it/s]
    +

    </pre>

    +
    +
    +
    22%|██▏ | 1101425/4997817 [00:06<00:22, 176862.75it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    22%|██▏ | 1101425/4997817 [00:06<00:22, 176862.75it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    22%|██▏ | 1119112/4997817 [00:06&lt;00:21, 176613.07it/s]
    +

    </pre>

    +
    +
    +
    22%|██▏ | 1119112/4997817 [00:06<00:21, 176613.07it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    22%|██▏ | 1119112/4997817 [00:06<00:21, 176613.07it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    23%|██▎ | 1136832/4997817 [00:06&lt;00:21, 176786.39it/s]
    +

    </pre>

    +
    +
    +
    23%|██▎ | 1136832/4997817 [00:06<00:21, 176786.39it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    23%|██▎ | 1136832/4997817 [00:06<00:21, 176786.39it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    23%|██▎ | 1154511/4997817 [00:06&lt;00:21, 176436.52it/s]
    +

    </pre>

    +
    +
    +
    23%|██▎ | 1154511/4997817 [00:06<00:21, 176436.52it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    23%|██▎ | 1154511/4997817 [00:06<00:21, 176436.52it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    23%|██▎ | 1172155/4997817 [00:06&lt;00:21, 175944.05it/s]
    +

    </pre>

    +
    +
    +
    23%|██▎ | 1172155/4997817 [00:06<00:21, 175944.05it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    23%|██▎ | 1172155/4997817 [00:06<00:21, 175944.05it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    24%|██▍ | 1190019/4997817 [00:06&lt;00:21, 176746.71it/s]
    +

    </pre>

    +
    +
    +
    24%|██▍ | 1190019/4997817 [00:06<00:21, 176746.71it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    24%|██▍ | 1190019/4997817 [00:06<00:21, 176746.71it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    24%|██▍ | 1207695/4997817 [00:06&lt;00:21, 176246.06it/s]
    +

    </pre>

    +
    +
    +
    24%|██▍ | 1207695/4997817 [00:06<00:21, 176246.06it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    24%|██▍ | 1207695/4997817 [00:06<00:21, 176246.06it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    25%|██▍ | 1225512/4997817 [00:06&lt;00:21, 176818.30it/s]
    +

    </pre>

    +
    +
    +
    25%|██▍ | 1225512/4997817 [00:06<00:21, 176818.30it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    25%|██▍ | 1225512/4997817 [00:06<00:21, 176818.30it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    25%|██▍ | 1243258/4997817 [00:07&lt;00:21, 177007.56it/s]
    +

    </pre>

    +
    +
    +
    25%|██▍ | 1243258/4997817 [00:07<00:21, 177007.56it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    25%|██▍ | 1243258/4997817 [00:07<00:21, 177007.56it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    25%|██▌ | 1260992/4997817 [00:07&lt;00:21, 177102.98it/s]
    +

    </pre>

    +
    +
    +
    25%|██▌ | 1260992/4997817 [00:07<00:21, 177102.98it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    25%|██▌ | 1260992/4997817 [00:07<00:21, 177102.98it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    26%|██▌ | 1278703/4997817 [00:07&lt;00:21, 176948.28it/s]
    +

    </pre>

    +
    +
    +
    26%|██▌ | 1278703/4997817 [00:07<00:21, 176948.28it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    26%|██▌ | 1278703/4997817 [00:07<00:21, 176948.28it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    26%|██▌ | 1296561/4997817 [00:07&lt;00:20, 177432.39it/s]
    +

    </pre>

    +
    +
    +
    26%|██▌ | 1296561/4997817 [00:07<00:20, 177432.39it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    26%|██▌ | 1296561/4997817 [00:07<00:20, 177432.39it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    26%|██▋ | 1314539/4997817 [00:07&lt;00:20, 178132.38it/s]
    +

    </pre>

    +
    +
    +
    26%|██▋ | 1314539/4997817 [00:07<00:20, 178132.38it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    26%|██▋ | 1314539/4997817 [00:07<00:20, 178132.38it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    27%|██▋ | 1332353/4997817 [00:07&lt;00:20, 178094.62it/s]
    +

    </pre>

    +
    +
    +
    27%|██▋ | 1332353/4997817 [00:07<00:20, 178094.62it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    27%|██▋ | 1332353/4997817 [00:07<00:20, 178094.62it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    27%|██▋ | 1350163/4997817 [00:07&lt;00:20, 178042.71it/s]
    +

    </pre>

    +
    +
    +
    27%|██▋ | 1350163/4997817 [00:07<00:20, 178042.71it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    27%|██▋ | 1350163/4997817 [00:07<00:20, 178042.71it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    27%|██▋ | 1367993/4997817 [00:07&lt;00:20, 178114.67it/s]
    +

    </pre>

    +
    +
    +
    27%|██▋ | 1367993/4997817 [00:07<00:20, 178114.67it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    27%|██▋ | 1367993/4997817 [00:07<00:20, 178114.67it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    28%|██▊ | 1385805/4997817 [00:07&lt;00:20, 177932.13it/s]
    +

    </pre>

    +
    +
    +
    28%|██▊ | 1385805/4997817 [00:07<00:20, 177932.13it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    28%|██▊ | 1385805/4997817 [00:07<00:20, 177932.13it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    28%|██▊ | 1403599/4997817 [00:07&lt;00:20, 177879.38it/s]
    +

    </pre>

    +
    +
    +
    28%|██▊ | 1403599/4997817 [00:07<00:20, 177879.38it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    28%|██▊ | 1403599/4997817 [00:07<00:20, 177879.38it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    28%|██▊ | 1421534/4997817 [00:08&lt;00:20, 178317.13it/s]
    +

    </pre>

    +
    +
    +
    28%|██▊ | 1421534/4997817 [00:08<00:20, 178317.13it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    28%|██▊ | 1421534/4997817 [00:08<00:20, 178317.13it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    29%|██▉ | 1439417/4997817 [00:08&lt;00:19, 178468.64it/s]
    +

    </pre>

    +
    +
    +
    29%|██▉ | 1439417/4997817 [00:08<00:19, 178468.64it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    29%|██▉ | 1439417/4997817 [00:08<00:19, 178468.64it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    29%|██▉ | 1457264/4997817 [00:08&lt;00:19, 178443.46it/s]
    +

    </pre>

    +
    +
    +
    29%|██▉ | 1457264/4997817 [00:08<00:19, 178443.46it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    29%|██▉ | 1457264/4997817 [00:08<00:19, 178443.46it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    30%|██▉ | 1475117/4997817 [00:08&lt;00:19, 178466.91it/s]
    +

    </pre>

    +
    +
    +
    30%|██▉ | 1475117/4997817 [00:08<00:19, 178466.91it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    30%|██▉ | 1475117/4997817 [00:08<00:19, 178466.91it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    30%|██▉ | 1492964/4997817 [00:08&lt;00:19, 178362.80it/s]
    +

    </pre>

    +
    +
    +
    30%|██▉ | 1492964/4997817 [00:08<00:19, 178362.80it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    30%|██▉ | 1492964/4997817 [00:08<00:19, 178362.80it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    30%|███ | 1510883/4997817 [00:08&lt;00:19, 178607.91it/s]
    +

    </pre>

    +
    +
    +
    30%|███ | 1510883/4997817 [00:08<00:19, 178607.91it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    30%|███ | 1510883/4997817 [00:08<00:19, 178607.91it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    31%|███ | 1528744/4997817 [00:08&lt;00:19, 178567.36it/s]
    +

    </pre>

    +
    +
    +
    31%|███ | 1528744/4997817 [00:08<00:19, 178567.36it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    31%|███ | 1528744/4997817 [00:08<00:19, 178567.36it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    31%|███ | 1546601/4997817 [00:08&lt;00:19, 175782.00it/s]
    +

    </pre>

    +
    +
    +
    31%|███ | 1546601/4997817 [00:08<00:19, 175782.00it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    31%|███ | 1546601/4997817 [00:08<00:19, 175782.00it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    31%|███▏ | 1564391/4997817 [00:08&lt;00:19, 176405.65it/s]
    +

    </pre>

    +
    +
    +
    31%|███▏ | 1564391/4997817 [00:08<00:19, 176405.65it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    31%|███▏ | 1564391/4997817 [00:08<00:19, 176405.65it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    32%|███▏ | 1582183/4997817 [00:08&lt;00:19, 176852.12it/s]
    +

    </pre>

    +
    +
    +
    32%|███▏ | 1582183/4997817 [00:08<00:19, 176852.12it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    32%|███▏ | 1582183/4997817 [00:08<00:19, 176852.12it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    32%|███▏ | 1599874/4997817 [00:09&lt;00:19, 176799.15it/s]
    +

    </pre>

    +
    +
    +
    32%|███▏ | 1599874/4997817 [00:09<00:19, 176799.15it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    32%|███▏ | 1599874/4997817 [00:09<00:19, 176799.15it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    32%|███▏ | 1617558/4997817 [00:09&lt;00:19, 175931.25it/s]
    +

    </pre>

    +
    +
    +
    32%|███▏ | 1617558/4997817 [00:09<00:19, 175931.25it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    32%|███▏ | 1617558/4997817 [00:09<00:19, 175931.25it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    33%|███▎ | 1635340/4997817 [00:09&lt;00:19, 176491.27it/s]
    +

    </pre>

    +
    +
    +
    33%|███▎ | 1635340/4997817 [00:09<00:19, 176491.27it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    33%|███▎ | 1635340/4997817 [00:09<00:19, 176491.27it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    33%|███▎ | 1653006/4997817 [00:09&lt;00:18, 176539.07it/s]
    +

    </pre>

    +
    +
    +
    33%|███▎ | 1653006/4997817 [00:09<00:18, 176539.07it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    33%|███▎ | 1653006/4997817 [00:09<00:18, 176539.07it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    33%|███▎ | 1670829/4997817 [00:09&lt;00:18, 177040.12it/s]
    +

    </pre>

    +
    +
    +
    33%|███▎ | 1670829/4997817 [00:09<00:18, 177040.12it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    33%|███▎ | 1670829/4997817 [00:09<00:18, 177040.12it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    34%|███▍ | 1688580/4997817 [00:09&lt;00:18, 177176.14it/s]
    +

    </pre>

    +
    +
    +
    34%|███▍ | 1688580/4997817 [00:09<00:18, 177176.14it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    34%|███▍ | 1688580/4997817 [00:09<00:18, 177176.14it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    34%|███▍ | 1706503/4997817 [00:09&lt;00:18, 177786.41it/s]
    +

    </pre>

    +
    +
    +
    34%|███▍ | 1706503/4997817 [00:09<00:18, 177786.41it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    34%|███▍ | 1706503/4997817 [00:09<00:18, 177786.41it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    35%|███▍ | 1724283/4997817 [00:09&lt;00:18, 175065.53it/s]
    +

    </pre>

    +
    +
    +
    35%|███▍ | 1724283/4997817 [00:09<00:18, 175065.53it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    35%|███▍ | 1724283/4997817 [00:09<00:18, 175065.53it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    35%|███▍ | 1742024/4997817 [00:09&lt;00:18, 175757.81it/s]
    +

    </pre>

    +
    +
    +
    35%|███▍ | 1742024/4997817 [00:09<00:18, 175757.81it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    35%|███▍ | 1742024/4997817 [00:09<00:18, 175757.81it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    35%|███▌ | 1759900/4997817 [00:09&lt;00:18, 176647.18it/s]
    +

    </pre>

    +
    +
    +
    35%|███▌ | 1759900/4997817 [00:09<00:18, 176647.18it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    35%|███▌ | 1759900/4997817 [00:09<00:18, 176647.18it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    36%|███▌ | 1777864/4997817 [00:10&lt;00:18, 177537.66it/s]
    +

    </pre>

    +
    +
    +
    36%|███▌ | 1777864/4997817 [00:10<00:18, 177537.66it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    36%|███▌ | 1777864/4997817 [00:10<00:18, 177537.66it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    36%|███▌ | 1795832/4997817 [00:10&lt;00:17, 178173.13it/s]
    +

    </pre>

    +
    +
    +
    36%|███▌ | 1795832/4997817 [00:10<00:17, 178173.13it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    36%|███▌ | 1795832/4997817 [00:10<00:17, 178173.13it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    36%|███▋ | 1813737/4997817 [00:10&lt;00:17, 178430.15it/s]
    +

    </pre>

    +
    +
    +
    36%|███▋ | 1813737/4997817 [00:10<00:17, 178430.15it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    36%|███▋ | 1813737/4997817 [00:10<00:17, 178430.15it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    37%|███▋ | 1831631/4997817 [00:10&lt;00:17, 178577.62it/s]
    +

    </pre>

    +
    +
    +
    37%|███▋ | 1831631/4997817 [00:10<00:17, 178577.62it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    37%|███▋ | 1831631/4997817 [00:10<00:17, 178577.62it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    37%|███▋ | 1849581/4997817 [00:10&lt;00:17, 178851.18it/s]
    +

    </pre>

    +
    +
    +
    37%|███▋ | 1849581/4997817 [00:10<00:17, 178851.18it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    37%|███▋ | 1849581/4997817 [00:10<00:17, 178851.18it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    37%|███▋ | 1867468/4997817 [00:10&lt;00:17, 178559.72it/s]
    +

    </pre>

    +
    +
    +
    37%|███▋ | 1867468/4997817 [00:10<00:17, 178559.72it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    37%|███▋ | 1867468/4997817 [00:10<00:17, 178559.72it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    38%|███▊ | 1885325/4997817 [00:10&lt;00:17, 178504.74it/s]
    +

    </pre>

    +
    +
    +
    38%|███▊ | 1885325/4997817 [00:10<00:17, 178504.74it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    38%|███▊ | 1885325/4997817 [00:10<00:17, 178504.74it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    38%|███▊ | 1903191/4997817 [00:10&lt;00:17, 178546.58it/s]
    +

    </pre>

    +
    +
    +
    38%|███▊ | 1903191/4997817 [00:10<00:17, 178546.58it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    38%|███▊ | 1903191/4997817 [00:10<00:17, 178546.58it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    38%|███▊ | 1921047/4997817 [00:10&lt;00:17, 178521.32it/s]
    +

    </pre>

    +
    +
    +
    38%|███▊ | 1921047/4997817 [00:10<00:17, 178521.32it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    38%|███▊ | 1921047/4997817 [00:10<00:17, 178521.32it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    39%|███▉ | 1938938/4997817 [00:10&lt;00:17, 178632.76it/s]
    +

    </pre>

    +
    +
    +
    39%|███▉ | 1938938/4997817 [00:10<00:17, 178632.76it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    39%|███▉ | 1938938/4997817 [00:10<00:17, 178632.76it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    39%|███▉ | 1956802/4997817 [00:11&lt;00:17, 178610.47it/s]
    +

    </pre>

    +
    +
    +
    39%|███▉ | 1956802/4997817 [00:11<00:17, 178610.47it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    39%|███▉ | 1956802/4997817 [00:11<00:17, 178610.47it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    40%|███▉ | 1974708/4997817 [00:11&lt;00:16, 178740.07it/s]
    +

    </pre>

    +
    +
    +
    40%|███▉ | 1974708/4997817 [00:11<00:16, 178740.07it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    40%|███▉ | 1974708/4997817 [00:11<00:16, 178740.07it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    40%|███▉ | 1992583/4997817 [00:11&lt;00:16, 178554.16it/s]
    +

    </pre>

    +
    +
    +
    40%|███▉ | 1992583/4997817 [00:11<00:16, 178554.16it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    40%|███▉ | 1992583/4997817 [00:11<00:16, 178554.16it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    40%|████ | 2010516/4997817 [00:11&lt;00:16, 178782.25it/s]
    +

    </pre>

    +
    +
    +
    40%|████ | 2010516/4997817 [00:11<00:16, 178782.25it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    40%|████ | 2010516/4997817 [00:11<00:16, 178782.25it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    41%|████ | 2028395/4997817 [00:11&lt;00:16, 178688.59it/s]
    +

    </pre>

    +
    +
    +
    41%|████ | 2028395/4997817 [00:11<00:16, 178688.59it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    41%|████ | 2028395/4997817 [00:11<00:16, 178688.59it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    41%|████ | 2046264/4997817 [00:11&lt;00:16, 178571.40it/s]
    +

    </pre>

    +
    +
    +
    41%|████ | 2046264/4997817 [00:11<00:16, 178571.40it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    41%|████ | 2046264/4997817 [00:11<00:16, 178571.40it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    41%|████▏ | 2064122/4997817 [00:11&lt;00:16, 178451.89it/s]
    +

    </pre>

    +
    +
    +
    41%|████▏ | 2064122/4997817 [00:11<00:16, 178451.89it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    41%|████▏ | 2064122/4997817 [00:11<00:16, 178451.89it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    42%|████▏ | 2081968/4997817 [00:11&lt;00:16, 178057.76it/s]
    +

    </pre>

    +
    +
    +
    42%|████▏ | 2081968/4997817 [00:11<00:16, 178057.76it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    42%|████▏ | 2081968/4997817 [00:11<00:16, 178057.76it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    42%|████▏ | 2099774/4997817 [00:11&lt;00:16, 177921.25it/s]
    +

    </pre>

    +
    +
    +
    42%|████▏ | 2099774/4997817 [00:11<00:16, 177921.25it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    42%|████▏ | 2099774/4997817 [00:11<00:16, 177921.25it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    42%|████▏ | 2117567/4997817 [00:11&lt;00:16, 177879.61it/s]
    +

    </pre>

    +
    +
    +
    42%|████▏ | 2117567/4997817 [00:11<00:16, 177879.61it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    42%|████▏ | 2117567/4997817 [00:11<00:16, 177879.61it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    43%|████▎ | 2135387/4997817 [00:12&lt;00:16, 177971.55it/s]
    +

    </pre>

    +
    +
    +
    43%|████▎ | 2135387/4997817 [00:12<00:16, 177971.55it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    43%|████▎ | 2135387/4997817 [00:12<00:16, 177971.55it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    43%|████▎ | 2153185/4997817 [00:12&lt;00:15, 177883.27it/s]
    +

    </pre>

    +
    +
    +
    43%|████▎ | 2153185/4997817 [00:12<00:15, 177883.27it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    43%|████▎ | 2153185/4997817 [00:12<00:15, 177883.27it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    43%|████▎ | 2170974/4997817 [00:12&lt;00:15, 177203.01it/s]
    +

    </pre>

    +
    +
    +
    43%|████▎ | 2170974/4997817 [00:12<00:15, 177203.01it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    43%|████▎ | 2170974/4997817 [00:12<00:15, 177203.01it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    44%|████▍ | 2188695/4997817 [00:12&lt;00:15, 177184.57it/s]
    +

    </pre>

    +
    +
    +
    44%|████▍ | 2188695/4997817 [00:12<00:15, 177184.57it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    44%|████▍ | 2188695/4997817 [00:12<00:15, 177184.57it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    44%|████▍ | 2206414/4997817 [00:12&lt;00:15, 176902.41it/s]
    +

    </pre>

    +
    +
    +
    44%|████▍ | 2206414/4997817 [00:12<00:15, 176902.41it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    44%|████▍ | 2206414/4997817 [00:12<00:15, 176902.41it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    45%|████▍ | 2224105/4997817 [00:12&lt;00:15, 176843.56it/s]
    +

    </pre>

    +
    +
    +
    45%|████▍ | 2224105/4997817 [00:12<00:15, 176843.56it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    45%|████▍ | 2224105/4997817 [00:12<00:15, 176843.56it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    45%|████▍ | 2241907/4997817 [00:12&lt;00:15, 177192.07it/s]
    +

    </pre>

    +
    +
    +
    45%|████▍ | 2241907/4997817 [00:12<00:15, 177192.07it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    45%|████▍ | 2241907/4997817 [00:12<00:15, 177192.07it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    45%|████▌ | 2259743/4997817 [00:12&lt;00:15, 177536.48it/s]
    +

    </pre>

    +
    +
    +
    45%|████▌ | 2259743/4997817 [00:12<00:15, 177536.48it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    45%|████▌ | 2259743/4997817 [00:12<00:15, 177536.48it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    46%|████▌ | 2277497/4997817 [00:12&lt;00:15, 176383.30it/s]
    +

    </pre>

    +
    +
    +
    46%|████▌ | 2277497/4997817 [00:12<00:15, 176383.30it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    46%|████▌ | 2277497/4997817 [00:12<00:15, 176383.30it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    46%|████▌ | 2295146/4997817 [00:12&lt;00:15, 176411.17it/s]
    +

    </pre>

    +
    +
    +
    46%|████▌ | 2295146/4997817 [00:12<00:15, 176411.17it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    46%|████▌ | 2295146/4997817 [00:12<00:15, 176411.17it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    46%|████▋ | 2312799/4997817 [00:13&lt;00:15, 176442.08it/s]
    +

    </pre>

    +
    +
    +
    46%|████▋ | 2312799/4997817 [00:13<00:15, 176442.08it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    46%|████▋ | 2312799/4997817 [00:13<00:15, 176442.08it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    47%|████▋ | 2330531/4997817 [00:13&lt;00:15, 176701.66it/s]
    +

    </pre>

    +
    +
    +
    47%|████▋ | 2330531/4997817 [00:13<00:15, 176701.66it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    47%|████▋ | 2330531/4997817 [00:13<00:15, 176701.66it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    47%|████▋ | 2348329/4997817 [00:13&lt;00:14, 177079.94it/s]
    +

    </pre>

    +
    +
    +
    47%|████▋ | 2348329/4997817 [00:13<00:14, 177079.94it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    47%|████▋ | 2348329/4997817 [00:13<00:14, 177079.94it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    47%|████▋ | 2366219/4997817 [00:13&lt;00:14, 177620.71it/s]
    +

    </pre>

    +
    +
    +
    47%|████▋ | 2366219/4997817 [00:13<00:14, 177620.71it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    47%|████▋ | 2366219/4997817 [00:13<00:14, 177620.71it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    48%|████▊ | 2384078/4997817 [00:13&lt;00:14, 177908.22it/s]
    +

    </pre>

    +
    +
    +
    48%|████▊ | 2384078/4997817 [00:13<00:14, 177908.22it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    48%|████▊ | 2384078/4997817 [00:13<00:14, 177908.22it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    48%|████▊ | 2401913/4997817 [00:13&lt;00:14, 178035.24it/s]
    +

    </pre>

    +
    +
    +
    48%|████▊ | 2401913/4997817 [00:13<00:14, 178035.24it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    48%|████▊ | 2401913/4997817 [00:13<00:14, 178035.24it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    48%|████▊ | 2419717/4997817 [00:13&lt;00:14, 177907.88it/s]
    +

    </pre>

    +
    +
    +
    48%|████▊ | 2419717/4997817 [00:13<00:14, 177907.88it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    48%|████▊ | 2419717/4997817 [00:13<00:14, 177907.88it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    49%|████▉ | 2437622/4997817 [00:13&lt;00:14, 178246.58it/s]
    +

    </pre>

    +
    +
    +
    49%|████▉ | 2437622/4997817 [00:13<00:14, 178246.58it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    49%|████▉ | 2437622/4997817 [00:13<00:14, 178246.58it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    49%|████▉ | 2455447/4997817 [00:13&lt;00:14, 178140.44it/s]
    +

    </pre>

    +
    +
    +
    49%|████▉ | 2455447/4997817 [00:13<00:14, 178140.44it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    49%|████▉ | 2455447/4997817 [00:13<00:14, 178140.44it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    49%|████▉ | 2473268/4997817 [00:13&lt;00:14, 178157.39it/s]
    +

    </pre>

    +
    +
    +
    49%|████▉ | 2473268/4997817 [00:13<00:14, 178157.39it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    49%|████▉ | 2473268/4997817 [00:13<00:14, 178157.39it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    50%|████▉ | 2491084/4997817 [00:14&lt;00:14, 178137.72it/s]
    +

    </pre>

    +
    +
    +
    50%|████▉ | 2491084/4997817 [00:14<00:14, 178137.72it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    50%|████▉ | 2491084/4997817 [00:14<00:14, 178137.72it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    50%|█████ | 2508898/4997817 [00:14&lt;00:13, 177998.74it/s]
    +

    </pre>

    +
    +
    +
    50%|█████ | 2508898/4997817 [00:14<00:13, 177998.74it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    50%|█████ | 2508898/4997817 [00:14<00:13, 177998.74it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    51%|█████ | 2526698/4997817 [00:14&lt;00:13, 177909.15it/s]
    +

    </pre>

    +
    +
    +
    51%|█████ | 2526698/4997817 [00:14<00:13, 177909.15it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    51%|█████ | 2526698/4997817 [00:14<00:13, 177909.15it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    51%|█████ | 2544489/4997817 [00:14&lt;00:13, 177444.51it/s]
    +

    </pre>

    +
    +
    +
    51%|█████ | 2544489/4997817 [00:14<00:13, 177444.51it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    51%|█████ | 2544489/4997817 [00:14<00:13, 177444.51it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    51%|█████▏ | 2562234/4997817 [00:14&lt;00:13, 177426.20it/s]
    +

    </pre>

    +
    +
    +
    51%|█████▏ | 2562234/4997817 [00:14<00:13, 177426.20it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    51%|█████▏ | 2562234/4997817 [00:14<00:13, 177426.20it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    52%|█████▏ | 2579977/4997817 [00:14&lt;00:13, 176938.77it/s]
    +

    </pre>

    +
    +
    +
    52%|█████▏ | 2579977/4997817 [00:14<00:13, 176938.77it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    52%|█████▏ | 2579977/4997817 [00:14<00:13, 176938.77it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    52%|█████▏ | 2597763/4997817 [00:14&lt;00:13, 177208.87it/s]
    +

    </pre>

    +
    +
    +
    52%|█████▏ | 2597763/4997817 [00:14<00:13, 177208.87it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    52%|█████▏ | 2597763/4997817 [00:14<00:13, 177208.87it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    52%|█████▏ | 2615516/4997817 [00:14&lt;00:13, 177300.23it/s]
    +

    </pre>

    +
    +
    +
    52%|█████▏ | 2615516/4997817 [00:14<00:13, 177300.23it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    52%|█████▏ | 2615516/4997817 [00:14<00:13, 177300.23it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    53%|█████▎ | 2633247/4997817 [00:14&lt;00:13, 177005.41it/s]
    +

    </pre>

    +
    +
    +
    53%|█████▎ | 2633247/4997817 [00:14<00:13, 177005.41it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    53%|█████▎ | 2633247/4997817 [00:14<00:13, 177005.41it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    53%|█████▎ | 2650979/4997817 [00:14&lt;00:13, 177096.59it/s]
    +

    </pre>

    +
    +
    +
    53%|█████▎ | 2650979/4997817 [00:14<00:13, 177096.59it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    53%|█████▎ | 2650979/4997817 [00:14<00:13, 177096.59it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    53%|█████▎ | 2668827/4997817 [00:15&lt;00:13, 177505.66it/s]
    +

    </pre>

    +
    +
    +
    53%|█████▎ | 2668827/4997817 [00:15<00:13, 177505.66it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    53%|█████▎ | 2668827/4997817 [00:15<00:13, 177505.66it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    54%|█████▍ | 2686578/4997817 [00:15&lt;00:13, 176155.38it/s]
    +

    </pre>

    +
    +
    +
    54%|█████▍ | 2686578/4997817 [00:15<00:13, 176155.38it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    54%|█████▍ | 2686578/4997817 [00:15<00:13, 176155.38it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    54%|█████▍ | 2704355/4997817 [00:15&lt;00:12, 176633.20it/s]
    +

    </pre>

    +
    +
    +
    54%|█████▍ | 2704355/4997817 [00:15<00:12, 176633.20it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    54%|█████▍ | 2704355/4997817 [00:15<00:12, 176633.20it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    54%|█████▍ | 2722218/4997817 [00:15&lt;00:12, 177225.53it/s]
    +

    </pre>

    +
    +
    +
    54%|█████▍ | 2722218/4997817 [00:15<00:12, 177225.53it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    54%|█████▍ | 2722218/4997817 [00:15<00:12, 177225.53it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    55%|█████▍ | 2740063/4997817 [00:15&lt;00:12, 177587.75it/s]
    +

    </pre>

    +
    +
    +
    55%|█████▍ | 2740063/4997817 [00:15<00:12, 177587.75it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    55%|█████▍ | 2740063/4997817 [00:15<00:12, 177587.75it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    55%|█████▌ | 2757851/4997817 [00:15&lt;00:12, 177672.12it/s]
    +

    </pre>

    +
    +
    +
    55%|█████▌ | 2757851/4997817 [00:15<00:12, 177672.12it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    55%|█████▌ | 2757851/4997817 [00:15<00:12, 177672.12it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    56%|█████▌ | 2775620/4997817 [00:15&lt;00:12, 177536.66it/s]
    +

    </pre>

    +
    +
    +
    56%|█████▌ | 2775620/4997817 [00:15<00:12, 177536.66it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    56%|█████▌ | 2775620/4997817 [00:15<00:12, 177536.66it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    56%|█████▌ | 2793443/4997817 [00:15&lt;00:12, 177739.17it/s]
    +

    </pre>

    +
    +
    +
    56%|█████▌ | 2793443/4997817 [00:15<00:12, 177739.17it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    56%|█████▌ | 2793443/4997817 [00:15<00:12, 177739.17it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    56%|█████▌ | 2811218/4997817 [00:15&lt;00:12, 174041.23it/s]
    +

    </pre>

    +
    +
    +
    56%|█████▌ | 2811218/4997817 [00:15<00:12, 174041.23it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    56%|█████▌ | 2811218/4997817 [00:15<00:12, 174041.23it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    57%|█████▋ | 2828903/4997817 [00:15&lt;00:12, 174867.06it/s]
    +

    </pre>

    +
    +
    +
    57%|█████▋ | 2828903/4997817 [00:15<00:12, 174867.06it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    57%|█████▋ | 2828903/4997817 [00:15<00:12, 174867.06it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    57%|█████▋ | 2846700/4997817 [00:16&lt;00:12, 175785.11it/s]
    +

    </pre>

    +
    +
    +
    57%|█████▋ | 2846700/4997817 [00:16<00:12, 175785.11it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    57%|█████▋ | 2846700/4997817 [00:16<00:12, 175785.11it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    57%|█████▋ | 2864443/4997817 [00:16&lt;00:12, 176271.22it/s]
    +

    </pre>

    +
    +
    +
    57%|█████▋ | 2864443/4997817 [00:16<00:12, 176271.22it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    57%|█████▋ | 2864443/4997817 [00:16<00:12, 176271.22it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    58%|█████▊ | 2882278/4997817 [00:16&lt;00:11, 176886.76it/s]
    +

    </pre>

    +
    +
    +
    58%|█████▊ | 2882278/4997817 [00:16<00:11, 176886.76it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    58%|█████▊ | 2882278/4997817 [00:16<00:11, 176886.76it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    58%|█████▊ | 2900037/4997817 [00:16&lt;00:11, 177092.19it/s]
    +

    </pre>

    +
    +
    +
    58%|█████▊ | 2900037/4997817 [00:16<00:11, 177092.19it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    58%|█████▊ | 2900037/4997817 [00:16<00:11, 177092.19it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    58%|█████▊ | 2917797/4997817 [00:16&lt;00:11, 177241.14it/s]
    +

    </pre>

    +
    +
    +
    58%|█████▊ | 2917797/4997817 [00:16<00:11, 177241.14it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    58%|█████▊ | 2917797/4997817 [00:16<00:11, 177241.14it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    59%|█████▊ | 2935524/4997817 [00:16&lt;00:11, 177018.19it/s]
    +

    </pre>

    +
    +
    +
    59%|█████▊ | 2935524/4997817 [00:16<00:11, 177018.19it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    59%|█████▊ | 2935524/4997817 [00:16<00:11, 177018.19it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    59%|█████▉ | 2953228/4997817 [00:16&lt;00:11, 176869.64it/s]
    +

    </pre>

    +
    +
    +
    59%|█████▉ | 2953228/4997817 [00:16<00:11, 176869.64it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    59%|█████▉ | 2953228/4997817 [00:16<00:11, 176869.64it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    59%|█████▉ | 2970917/4997817 [00:16&lt;00:11, 176151.89it/s]
    +

    </pre>

    +
    +
    +
    59%|█████▉ | 2970917/4997817 [00:16<00:11, 176151.89it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    59%|█████▉ | 2970917/4997817 [00:16<00:11, 176151.89it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    60%|█████▉ | 2988534/4997817 [00:16&lt;00:11, 175890.44it/s]
    +

    </pre>

    +
    +
    +
    60%|█████▉ | 2988534/4997817 [00:16<00:11, 175890.44it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    60%|█████▉ | 2988534/4997817 [00:16<00:11, 175890.44it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    60%|██████ | 3006235/4997817 [00:16&lt;00:11, 176220.07it/s]
    +

    </pre>

    +
    +
    +
    60%|██████ | 3006235/4997817 [00:16<00:11, 176220.07it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    60%|██████ | 3006235/4997817 [00:16<00:11, 176220.07it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    61%|██████ | 3024139/4997817 [00:17&lt;00:11, 177060.98it/s]
    +

    </pre>

    +
    +
    +
    61%|██████ | 3024139/4997817 [00:17<00:11, 177060.98it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    61%|██████ | 3024139/4997817 [00:17<00:11, 177060.98it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    61%|██████ | 3041872/4997817 [00:17&lt;00:11, 177137.65it/s]
    +

    </pre>

    +
    +
    +
    61%|██████ | 3041872/4997817 [00:17<00:11, 177137.65it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    61%|██████ | 3041872/4997817 [00:17<00:11, 177137.65it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    61%|██████ | 3059587/4997817 [00:17&lt;00:10, 177097.89it/s]
    +

    </pre>

    +
    +
    +
    61%|██████ | 3059587/4997817 [00:17<00:10, 177097.89it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    61%|██████ | 3059587/4997817 [00:17<00:10, 177097.89it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    62%|██████▏ | 3077357/4997817 [00:17&lt;00:10, 177274.05it/s]
    +

    </pre>

    +
    +
    +
    62%|██████▏ | 3077357/4997817 [00:17<00:10, 177274.05it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    62%|██████▏ | 3077357/4997817 [00:17<00:10, 177274.05it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    62%|██████▏ | 3095085/4997817 [00:17&lt;00:10, 177103.25it/s]
    +

    </pre>

    +
    +
    +
    62%|██████▏ | 3095085/4997817 [00:17<00:10, 177103.25it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    62%|██████▏ | 3095085/4997817 [00:17<00:10, 177103.25it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    62%|██████▏ | 3112872/4997817 [00:17&lt;00:10, 177330.88it/s]
    +

    </pre>

    +
    +
    +
    62%|██████▏ | 3112872/4997817 [00:17<00:10, 177330.88it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    62%|██████▏ | 3112872/4997817 [00:17<00:10, 177330.88it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    63%|██████▎ | 3130650/4997817 [00:17&lt;00:10, 177460.72it/s]
    +

    </pre>

    +
    +
    +
    63%|██████▎ | 3130650/4997817 [00:17<00:10, 177460.72it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    63%|██████▎ | 3130650/4997817 [00:17<00:10, 177460.72it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    63%|██████▎ | 3148563/4997817 [00:17&lt;00:10, 177956.02it/s]
    +

    </pre>

    +
    +
    +
    63%|██████▎ | 3148563/4997817 [00:17<00:10, 177956.02it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    63%|██████▎ | 3148563/4997817 [00:17<00:10, 177956.02it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    63%|██████▎ | 3166432/4997817 [00:17&lt;00:10, 178173.36it/s]
    +

    </pre>

    +
    +
    +
    63%|██████▎ | 3166432/4997817 [00:17<00:10, 178173.36it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    63%|██████▎ | 3166432/4997817 [00:17<00:10, 178173.36it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    64%|██████▎ | 3184250/4997817 [00:17&lt;00:10, 177970.65it/s]
    +

    </pre>

    +
    +
    +
    64%|██████▎ | 3184250/4997817 [00:17<00:10, 177970.65it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    64%|██████▎ | 3184250/4997817 [00:17<00:10, 177970.65it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    64%|██████▍ | 3202048/4997817 [00:18&lt;00:10, 177369.37it/s]
    +

    </pre>

    +
    +
    +
    64%|██████▍ | 3202048/4997817 [00:18<00:10, 177369.37it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    64%|██████▍ | 3202048/4997817 [00:18<00:10, 177369.37it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    64%|██████▍ | 3219786/4997817 [00:18&lt;00:10, 176901.23it/s]
    +

    </pre>

    +
    +
    +
    64%|██████▍ | 3219786/4997817 [00:18<00:10, 176901.23it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    64%|██████▍ | 3219786/4997817 [00:18<00:10, 176901.23it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    65%|██████▍ | 3237477/4997817 [00:18&lt;00:09, 176385.97it/s]
    +

    </pre>

    +
    +
    +
    65%|██████▍ | 3237477/4997817 [00:18<00:09, 176385.97it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    65%|██████▍ | 3237477/4997817 [00:18<00:09, 176385.97it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    65%|██████▌ | 3255117/4997817 [00:18&lt;00:09, 175608.75it/s]
    +

    </pre>

    +
    +
    +
    65%|██████▌ | 3255117/4997817 [00:18<00:09, 175608.75it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    65%|██████▌ | 3255117/4997817 [00:18<00:09, 175608.75it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    65%|██████▌ | 3272679/4997817 [00:18&lt;00:09, 175364.30it/s]
    +

    </pre>

    +
    +
    +
    65%|██████▌ | 3272679/4997817 [00:18<00:09, 175364.30it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    65%|██████▌ | 3272679/4997817 [00:18<00:09, 175364.30it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    66%|██████▌ | 3290216/4997817 [00:18&lt;00:09, 175310.69it/s]
    +

    </pre>

    +
    +
    +
    66%|██████▌ | 3290216/4997817 [00:18<00:09, 175310.69it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    66%|██████▌ | 3290216/4997817 [00:18<00:09, 175310.69it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    66%|██████▌ | 3307758/4997817 [00:18&lt;00:09, 175340.52it/s]
    +

    </pre>

    +
    +
    +
    66%|██████▌ | 3307758/4997817 [00:18<00:09, 175340.52it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    66%|██████▌ | 3307758/4997817 [00:18<00:09, 175340.52it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    67%|██████▋ | 3325293/4997817 [00:18&lt;00:09, 175275.91it/s]
    +

    </pre>

    +
    +
    +
    67%|██████▋ | 3325293/4997817 [00:18<00:09, 175275.91it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    67%|██████▋ | 3325293/4997817 [00:18<00:09, 175275.91it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    67%|██████▋ | 3342868/4997817 [00:18&lt;00:09, 175414.60it/s]
    +

    </pre>

    +
    +
    +
    67%|██████▋ | 3342868/4997817 [00:18<00:09, 175414.60it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    67%|██████▋ | 3342868/4997817 [00:18<00:09, 175414.60it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    67%|██████▋ | 3360410/4997817 [00:18&lt;00:09, 174946.91it/s]
    +

    </pre>

    +
    +
    +
    67%|██████▋ | 3360410/4997817 [00:18<00:09, 174946.91it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    67%|██████▋ | 3360410/4997817 [00:18<00:09, 174946.91it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    68%|██████▊ | 3377909/4997817 [00:19&lt;00:09, 174955.98it/s]
    +

    </pre>

    +
    +
    +
    68%|██████▊ | 3377909/4997817 [00:19<00:09, 174955.98it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    68%|██████▊ | 3377909/4997817 [00:19<00:09, 174955.98it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    68%|██████▊ | 3395405/4997817 [00:19&lt;00:09, 174938.26it/s]
    +

    </pre>

    +
    +
    +
    68%|██████▊ | 3395405/4997817 [00:19<00:09, 174938.26it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    68%|██████▊ | 3395405/4997817 [00:19<00:09, 174938.26it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    68%|██████▊ | 3412899/4997817 [00:19&lt;00:09, 174667.90it/s]
    +

    </pre>

    +
    +
    +
    68%|██████▊ | 3412899/4997817 [00:19<00:09, 174667.90it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    68%|██████▊ | 3412899/4997817 [00:19<00:09, 174667.90it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    69%|██████▊ | 3430388/4997817 [00:19&lt;00:08, 174729.95it/s]
    +

    </pre>

    +
    +
    +
    69%|██████▊ | 3430388/4997817 [00:19<00:08, 174729.95it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    69%|██████▊ | 3430388/4997817 [00:19<00:08, 174729.95it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    69%|██████▉ | 3447862/4997817 [00:19&lt;00:08, 174724.77it/s]
    +

    </pre>

    +
    +
    +
    69%|██████▉ | 3447862/4997817 [00:19<00:08, 174724.77it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    69%|██████▉ | 3447862/4997817 [00:19<00:08, 174724.77it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    69%|██████▉ | 3465335/4997817 [00:19&lt;00:08, 174649.77it/s]
    +

    </pre>

    +
    +
    +
    69%|██████▉ | 3465335/4997817 [00:19<00:08, 174649.77it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    69%|██████▉ | 3465335/4997817 [00:19<00:08, 174649.77it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    70%|██████▉ | 3482801/4997817 [00:19&lt;00:08, 174605.11it/s]
    +

    </pre>

    +
    +
    +
    70%|██████▉ | 3482801/4997817 [00:19<00:08, 174605.11it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    70%|██████▉ | 3482801/4997817 [00:19<00:08, 174605.11it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    70%|███████ | 3500286/4997817 [00:19&lt;00:08, 174674.94it/s]
    +

    </pre>

    +
    +
    +
    70%|███████ | 3500286/4997817 [00:19<00:08, 174674.94it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    70%|███████ | 3500286/4997817 [00:19<00:08, 174674.94it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    70%|███████ | 3517754/4997817 [00:19&lt;00:08, 174642.55it/s]
    +

    </pre>

    +
    +
    +
    70%|███████ | 3517754/4997817 [00:19<00:08, 174642.55it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    70%|███████ | 3517754/4997817 [00:19<00:08, 174642.55it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    71%|███████ | 3535276/4997817 [00:19&lt;00:08, 174811.73it/s]
    +

    </pre>

    +
    +
    +
    71%|███████ | 3535276/4997817 [00:19<00:08, 174811.73it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    71%|███████ | 3535276/4997817 [00:19<00:08, 174811.73it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    71%|███████ | 3552791/4997817 [00:20&lt;00:08, 174908.46it/s]
    +

    </pre>

    +
    +
    +
    71%|███████ | 3552791/4997817 [00:20<00:08, 174908.46it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    71%|███████ | 3552791/4997817 [00:20<00:08, 174908.46it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    71%|███████▏ | 3570332/4997817 [00:20&lt;00:08, 175056.30it/s]
    +

    </pre>

    +
    +
    +
    71%|███████▏ | 3570332/4997817 [00:20<00:08, 175056.30it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    71%|███████▏ | 3570332/4997817 [00:20<00:08, 175056.30it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    72%|███████▏ | 3587965/4997817 [00:20&lt;00:08, 175434.98it/s]
    +

    </pre>

    +
    +
    +
    72%|███████▏ | 3587965/4997817 [00:20<00:08, 175434.98it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    72%|███████▏ | 3587965/4997817 [00:20<00:08, 175434.98it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    72%|███████▏ | 3605572/4997817 [00:20&lt;00:07, 175620.98it/s]
    +

    </pre>

    +
    +
    +
    72%|███████▏ | 3605572/4997817 [00:20<00:07, 175620.98it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    72%|███████▏ | 3605572/4997817 [00:20<00:07, 175620.98it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    72%|███████▏ | 3623294/4997817 [00:20&lt;00:07, 176096.38it/s]
    +

    </pre>

    +
    +
    +
    72%|███████▏ | 3623294/4997817 [00:20<00:07, 176096.38it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    72%|███████▏ | 3623294/4997817 [00:20<00:07, 176096.38it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    73%|███████▎ | 3640904/4997817 [00:20&lt;00:07, 176024.50it/s]
    +

    </pre>

    +
    +
    +
    73%|███████▎ | 3640904/4997817 [00:20<00:07, 176024.50it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    73%|███████▎ | 3640904/4997817 [00:20<00:07, 176024.50it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    73%|███████▎ | 3658507/4997817 [00:20&lt;00:07, 170676.69it/s]
    +

    </pre>

    +
    +
    +
    73%|███████▎ | 3658507/4997817 [00:20<00:07, 170676.69it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    73%|███████▎ | 3658507/4997817 [00:20<00:07, 170676.69it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    74%|███████▎ | 3675917/4997817 [00:20&lt;00:07, 171677.93it/s]
    +

    </pre>

    +
    +
    +
    74%|███████▎ | 3675917/4997817 [00:20<00:07, 171677.93it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    74%|███████▎ | 3675917/4997817 [00:20<00:07, 171677.93it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    74%|███████▍ | 3693112/4997817 [00:20&lt;00:07, 163982.93it/s]
    +

    </pre>

    +
    +
    +
    74%|███████▍ | 3693112/4997817 [00:20<00:07, 163982.93it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    74%|███████▍ | 3693112/4997817 [00:20<00:07, 163982.93it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    74%|███████▍ | 3710544/4997817 [00:20&lt;00:07, 166948.03it/s]
    +

    </pre>

    +
    +
    +
    74%|███████▍ | 3710544/4997817 [00:20<00:07, 166948.03it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    74%|███████▍ | 3710544/4997817 [00:20<00:07, 166948.03it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    75%|███████▍ | 3728215/4997817 [00:21&lt;00:07, 169784.08it/s]
    +

    </pre>

    +
    +
    +
    75%|███████▍ | 3728215/4997817 [00:21<00:07, 169784.08it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    75%|███████▍ | 3728215/4997817 [00:21<00:07, 169784.08it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    75%|███████▍ | 3745924/4997817 [00:21&lt;00:07, 171924.04it/s]
    +

    </pre>

    +
    +
    +
    75%|███████▍ | 3745924/4997817 [00:21<00:07, 171924.04it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    75%|███████▍ | 3745924/4997817 [00:21<00:07, 171924.04it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    75%|███████▌ | 3763638/4997817 [00:21&lt;00:07, 173460.72it/s]
    +

    </pre>

    +
    +
    +
    75%|███████▌ | 3763638/4997817 [00:21<00:07, 173460.72it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    75%|███████▌ | 3763638/4997817 [00:21<00:07, 173460.72it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    76%|███████▌ | 3781329/4997817 [00:21&lt;00:06, 174480.22it/s]
    +

    </pre>

    +
    +
    +
    76%|███████▌ | 3781329/4997817 [00:21<00:06, 174480.22it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    76%|███████▌ | 3781329/4997817 [00:21<00:06, 174480.22it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    76%|███████▌ | 3798992/4997817 [00:21&lt;00:06, 175117.76it/s]
    +

    </pre>

    +
    +
    +
    76%|███████▌ | 3798992/4997817 [00:21<00:06, 175117.76it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    76%|███████▌ | 3798992/4997817 [00:21<00:06, 175117.76it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    76%|███████▋ | 3816611/4997817 [00:21&lt;00:06, 175433.05it/s]
    +

    </pre>

    +
    +
    +
    76%|███████▋ | 3816611/4997817 [00:21<00:06, 175433.05it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    76%|███████▋ | 3816611/4997817 [00:21<00:06, 175433.05it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    77%|███████▋ | 3834271/4997817 [00:21&lt;00:06, 175776.50it/s]
    +

    </pre>

    +
    +
    +
    77%|███████▋ | 3834271/4997817 [00:21<00:06, 175776.50it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    77%|███████▋ | 3834271/4997817 [00:21<00:06, 175776.50it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    77%|███████▋ | 3851933/4997817 [00:21&lt;00:06, 176026.68it/s]
    +

    </pre>

    +
    +
    +
    77%|███████▋ | 3851933/4997817 [00:21<00:06, 176026.68it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    77%|███████▋ | 3851933/4997817 [00:21<00:06, 176026.68it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    77%|███████▋ | 3869588/4997817 [00:21&lt;00:06, 176180.54it/s]
    +

    </pre>

    +
    +
    +
    77%|███████▋ | 3869588/4997817 [00:21<00:06, 176180.54it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    77%|███████▋ | 3869588/4997817 [00:21<00:06, 176180.54it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    78%|███████▊ | 3887211/4997817 [00:21&lt;00:06, 175622.10it/s]
    +

    </pre>

    +
    +
    +
    78%|███████▊ | 3887211/4997817 [00:21<00:06, 175622.10it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    78%|███████▊ | 3887211/4997817 [00:21<00:06, 175622.10it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    78%|███████▊ | 3904777/4997817 [00:22&lt;00:06, 175260.61it/s]
    +

    </pre>

    +
    +
    +
    78%|███████▊ | 3904777/4997817 [00:22<00:06, 175260.61it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    78%|███████▊ | 3904777/4997817 [00:22<00:06, 175260.61it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    78%|███████▊ | 3922372/4997817 [00:22&lt;00:06, 175462.33it/s]
    +

    </pre>

    +
    +
    +
    78%|███████▊ | 3922372/4997817 [00:22<00:06, 175462.33it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    78%|███████▊ | 3922372/4997817 [00:22<00:06, 175462.33it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    79%|███████▉ | 3939934/4997817 [00:22&lt;00:06, 175506.68it/s]
    +

    </pre>

    +
    +
    +
    79%|███████▉ | 3939934/4997817 [00:22<00:06, 175506.68it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    79%|███████▉ | 3939934/4997817 [00:22<00:06, 175506.68it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    79%|███████▉ | 3957486/4997817 [00:22&lt;00:05, 175329.34it/s]
    +

    </pre>

    +
    +
    +
    79%|███████▉ | 3957486/4997817 [00:22<00:05, 175329.34it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    79%|███████▉ | 3957486/4997817 [00:22<00:05, 175329.34it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    80%|███████▉ | 3975074/4997817 [00:22&lt;00:05, 175490.25it/s]
    +

    </pre>

    +
    +
    +
    80%|███████▉ | 3975074/4997817 [00:22<00:05, 175490.25it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    80%|███████▉ | 3975074/4997817 [00:22<00:05, 175490.25it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    80%|███████▉ | 3992695/4997817 [00:22&lt;00:05, 175700.52it/s]
    +

    </pre>

    +
    +
    +
    80%|███████▉ | 3992695/4997817 [00:22<00:05, 175700.52it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    80%|███████▉ | 3992695/4997817 [00:22<00:05, 175700.52it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    80%|████████ | 4010266/4997817 [00:22&lt;00:05, 175420.64it/s]
    +

    </pre>

    +
    +
    +
    80%|████████ | 4010266/4997817 [00:22<00:05, 175420.64it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    80%|████████ | 4010266/4997817 [00:22<00:05, 175420.64it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    81%|████████ | 4027895/4997817 [00:22&lt;00:05, 175676.50it/s]
    +

    </pre>

    +
    +
    +
    81%|████████ | 4027895/4997817 [00:22<00:05, 175676.50it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    81%|████████ | 4027895/4997817 [00:22<00:05, 175676.50it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    81%|████████ | 4045463/4997817 [00:22&lt;00:05, 175631.93it/s]
    +

    </pre>

    +
    +
    +
    81%|████████ | 4045463/4997817 [00:22<00:05, 175631.93it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    81%|████████ | 4045463/4997817 [00:22<00:05, 175631.93it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    81%|████████▏ | 4063028/4997817 [00:22&lt;00:05, 175634.51it/s]
    +

    </pre>

    +
    +
    +
    81%|████████▏ | 4063028/4997817 [00:22<00:05, 175634.51it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    81%|████████▏ | 4063028/4997817 [00:22<00:05, 175634.51it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    82%|████████▏ | 4080592/4997817 [00:23&lt;00:05, 174865.98it/s]
    +

    </pre>

    +
    +
    +
    82%|████████▏ | 4080592/4997817 [00:23<00:05, 174865.98it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    82%|████████▏ | 4080592/4997817 [00:23<00:05, 174865.98it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    82%|████████▏ | 4098080/4997817 [00:23&lt;00:05, 174814.65it/s]
    +

    </pre>

    +
    +
    +
    82%|████████▏ | 4098080/4997817 [00:23<00:05, 174814.65it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    82%|████████▏ | 4098080/4997817 [00:23<00:05, 174814.65it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    82%|████████▏ | 4115725/4997817 [00:23&lt;00:05, 175300.20it/s]
    +

    </pre>

    +
    +
    +
    82%|████████▏ | 4115725/4997817 [00:23<00:05, 175300.20it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    82%|████████▏ | 4115725/4997817 [00:23<00:05, 175300.20it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    83%|████████▎ | 4133264/4997817 [00:23&lt;00:04, 175322.13it/s]
    +

    </pre>

    +
    +
    +
    83%|████████▎ | 4133264/4997817 [00:23<00:04, 175322.13it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    83%|████████▎ | 4133264/4997817 [00:23<00:04, 175322.13it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    83%|████████▎ | 4150797/4997817 [00:23&lt;00:04, 175066.95it/s]
    +

    </pre>

    +
    +
    +
    83%|████████▎ | 4150797/4997817 [00:23<00:04, 175066.95it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    83%|████████▎ | 4150797/4997817 [00:23<00:04, 175066.95it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    83%|████████▎ | 4168305/4997817 [00:23&lt;00:04, 175046.04it/s]
    +

    </pre>

    +
    +
    +
    83%|████████▎ | 4168305/4997817 [00:23<00:04, 175046.04it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    83%|████████▎ | 4168305/4997817 [00:23<00:04, 175046.04it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    84%|████████▍ | 4185811/4997817 [00:23&lt;00:04, 175044.90it/s]
    +

    </pre>

    +
    +
    +
    84%|████████▍ | 4185811/4997817 [00:23<00:04, 175044.90it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    84%|████████▍ | 4185811/4997817 [00:23<00:04, 175044.90it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    84%|████████▍ | 4203327/4997817 [00:23&lt;00:04, 175076.44it/s]
    +

    </pre>

    +
    +
    +
    84%|████████▍ | 4203327/4997817 [00:23<00:04, 175076.44it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    84%|████████▍ | 4203327/4997817 [00:23<00:04, 175076.44it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    84%|████████▍ | 4220835/4997817 [00:23&lt;00:04, 174933.90it/s]
    +

    </pre>

    +
    +
    +
    84%|████████▍ | 4220835/4997817 [00:23<00:04, 174933.90it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    84%|████████▍ | 4220835/4997817 [00:23<00:04, 174933.90it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    85%|████████▍ | 4238329/4997817 [00:24&lt;00:04, 174674.70it/s]
    +

    </pre>

    +
    +
    +
    85%|████████▍ | 4238329/4997817 [00:24<00:04, 174674.70it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    85%|████████▍ | 4238329/4997817 [00:24<00:04, 174674.70it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    85%|████████▌ | 4256239/4997817 [00:24&lt;00:04, 175996.66it/s]
    +

    </pre>

    +
    +
    +
    85%|████████▌ | 4256239/4997817 [00:24<00:04, 175996.66it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    85%|████████▌ | 4256239/4997817 [00:24<00:04, 175996.66it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    86%|████████▌ | 4273839/4997817 [00:24&lt;00:04, 175799.04it/s]
    +

    </pre>

    +
    +
    +
    86%|████████▌ | 4273839/4997817 [00:24<00:04, 175799.04it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    86%|████████▌ | 4273839/4997817 [00:24<00:04, 175799.04it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    86%|████████▌ | 4291598/4997817 [00:24&lt;00:04, 176331.95it/s]
    +

    </pre>

    +
    +
    +
    86%|████████▌ | 4291598/4997817 [00:24<00:04, 176331.95it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    86%|████████▌ | 4291598/4997817 [00:24<00:04, 176331.95it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    86%|████████▌ | 4309272/4997817 [00:24&lt;00:03, 176450.48it/s]
    +

    </pre>

    +
    +
    +
    86%|████████▌ | 4309272/4997817 [00:24<00:03, 176450.48it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    86%|████████▌ | 4309272/4997817 [00:24<00:03, 176450.48it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    87%|████████▋ | 4326984/4997817 [00:24&lt;00:03, 176648.44it/s]
    +

    </pre>

    +
    +
    +
    87%|████████▋ | 4326984/4997817 [00:24<00:03, 176648.44it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    87%|████████▋ | 4326984/4997817 [00:24<00:03, 176648.44it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    87%|████████▋ | 4344717/4997817 [00:24&lt;00:03, 176849.29it/s]
    +

    </pre>

    +
    +
    +
    87%|████████▋ | 4344717/4997817 [00:24<00:03, 176849.29it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    87%|████████▋ | 4344717/4997817 [00:24<00:03, 176849.29it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    87%|████████▋ | 4362403/4997817 [00:24&lt;00:03, 176596.00it/s]
    +

    </pre>

    +
    +
    +
    87%|████████▋ | 4362403/4997817 [00:24<00:03, 176596.00it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    87%|████████▋ | 4362403/4997817 [00:24<00:03, 176596.00it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    88%|████████▊ | 4380063/4997817 [00:24&lt;00:03, 175961.51it/s]
    +

    </pre>

    +
    +
    +
    88%|████████▊ | 4380063/4997817 [00:24<00:03, 175961.51it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    88%|████████▊ | 4380063/4997817 [00:24<00:03, 175961.51it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    88%|████████▊ | 4397790/4997817 [00:24&lt;00:03, 176348.48it/s]
    +

    </pre>

    +
    +
    +
    88%|████████▊ | 4397790/4997817 [00:24<00:03, 176348.48it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    88%|████████▊ | 4397790/4997817 [00:24<00:03, 176348.48it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    88%|████████▊ | 4415426/4997817 [00:25&lt;00:03, 174788.80it/s]
    +

    </pre>

    +
    +
    +
    88%|████████▊ | 4415426/4997817 [00:25<00:03, 174788.80it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    88%|████████▊ | 4415426/4997817 [00:25<00:03, 174788.80it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    89%|████████▊ | 4432909/4997817 [00:25&lt;00:03, 169890.16it/s]
    +

    </pre>

    +
    +
    +
    89%|████████▊ | 4432909/4997817 [00:25<00:03, 169890.16it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    89%|████████▊ | 4432909/4997817 [00:25<00:03, 169890.16it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    89%|████████▉ | 4450462/4997817 [00:25&lt;00:03, 171535.25it/s]
    +

    </pre>

    +
    +
    +
    89%|████████▉ | 4450462/4997817 [00:25<00:03, 171535.25it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    89%|████████▉ | 4450462/4997817 [00:25<00:03, 171535.25it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    89%|████████▉ | 4468091/4997817 [00:25&lt;00:03, 172931.24it/s]
    +

    </pre>

    +
    +
    +
    89%|████████▉ | 4468091/4997817 [00:25<00:03, 172931.24it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    89%|████████▉ | 4468091/4997817 [00:25<00:03, 172931.24it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    90%|████████▉ | 4485670/4997817 [00:25&lt;00:02, 173774.79it/s]
    +

    </pre>

    +
    +
    +
    90%|████████▉ | 4485670/4997817 [00:25<00:02, 173774.79it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    90%|████████▉ | 4485670/4997817 [00:25<00:02, 173774.79it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    90%|█████████ | 4503252/4997817 [00:25&lt;00:02, 174381.11it/s]
    +

    </pre>

    +
    +
    +
    90%|█████████ | 4503252/4997817 [00:25<00:02, 174381.11it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    90%|█████████ | 4503252/4997817 [00:25<00:02, 174381.11it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    90%|█████████ | 4520917/4997817 [00:25&lt;00:02, 175052.85it/s]
    +

    </pre>

    +
    +
    +
    90%|█████████ | 4520917/4997817 [00:25<00:02, 175052.85it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    90%|█████████ | 4520917/4997817 [00:25<00:02, 175052.85it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    91%|█████████ | 4538464/4997817 [00:25&lt;00:02, 175173.63it/s]
    +

    </pre>

    +
    +
    +
    91%|█████████ | 4538464/4997817 [00:25<00:02, 175173.63it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    91%|█████████ | 4538464/4997817 [00:25<00:02, 175173.63it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    91%|█████████ | 4556000/4997817 [00:25&lt;00:02, 175226.80it/s]
    +

    </pre>

    +
    +
    +
    91%|█████████ | 4556000/4997817 [00:25<00:02, 175226.80it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    91%|█████████ | 4556000/4997817 [00:25<00:02, 175226.80it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    92%|█████████▏| 4573552/4997817 [00:25&lt;00:02, 175311.24it/s]
    +

    </pre>

    +
    +
    +
    92%|█████████▏| 4573552/4997817 [00:25<00:02, 175311.24it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    92%|█████████▏| 4573552/4997817 [00:25<00:02, 175311.24it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    92%|█████████▏| 4591115/4997817 [00:26&lt;00:02, 175403.76it/s]
    +

    </pre>

    +
    +
    +
    92%|█████████▏| 4591115/4997817 [00:26<00:02, 175403.76it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    92%|█████████▏| 4591115/4997817 [00:26<00:02, 175403.76it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    92%|█████████▏| 4608663/4997817 [00:26&lt;00:02, 175423.90it/s]
    +

    </pre>

    +
    +
    +
    92%|█████████▏| 4608663/4997817 [00:26<00:02, 175423.90it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    92%|█████████▏| 4608663/4997817 [00:26<00:02, 175423.90it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    93%|█████████▎| 4626208/4997817 [00:26&lt;00:02, 175425.88it/s]
    +

    </pre>

    +
    +
    +
    93%|█████████▎| 4626208/4997817 [00:26<00:02, 175425.88it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    93%|█████████▎| 4626208/4997817 [00:26<00:02, 175425.88it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    93%|█████████▎| 4643752/4997817 [00:26&lt;00:02, 174281.24it/s]
    +

    </pre>

    +
    +
    +
    93%|█████████▎| 4643752/4997817 [00:26<00:02, 174281.24it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    93%|█████████▎| 4643752/4997817 [00:26<00:02, 174281.24it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    93%|█████████▎| 4661183/4997817 [00:26&lt;00:01, 174117.01it/s]
    +

    </pre>

    +
    +
    +
    93%|█████████▎| 4661183/4997817 [00:26<00:01, 174117.01it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    93%|█████████▎| 4661183/4997817 [00:26<00:01, 174117.01it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    94%|█████████▎| 4678749/4997817 [00:26&lt;00:01, 174573.91it/s]
    +

    </pre>

    +
    +
    +
    94%|█████████▎| 4678749/4997817 [00:26<00:01, 174573.91it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    94%|█████████▎| 4678749/4997817 [00:26<00:01, 174573.91it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    94%|█████████▍| 4696244/4997817 [00:26&lt;00:01, 174681.47it/s]
    +

    </pre>

    +
    +
    +
    94%|█████████▍| 4696244/4997817 [00:26<00:01, 174681.47it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    94%|█████████▍| 4696244/4997817 [00:26<00:01, 174681.47it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    94%|█████████▍| 4713714/4997817 [00:26&lt;00:01, 174596.35it/s]
    +

    </pre>

    +
    +
    +
    94%|█████████▍| 4713714/4997817 [00:26<00:01, 174596.35it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    94%|█████████▍| 4713714/4997817 [00:26<00:01, 174596.35it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    95%|█████████▍| 4731175/4997817 [00:26&lt;00:01, 174541.29it/s]
    +

    </pre>

    +
    +
    +
    95%|█████████▍| 4731175/4997817 [00:26<00:01, 174541.29it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    95%|█████████▍| 4731175/4997817 [00:26<00:01, 174541.29it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    95%|█████████▌| 4748630/4997817 [00:26&lt;00:01, 174055.68it/s]
    +

    </pre>

    +
    +
    +
    95%|█████████▌| 4748630/4997817 [00:26<00:01, 174055.68it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    95%|█████████▌| 4748630/4997817 [00:26<00:01, 174055.68it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    95%|█████████▌| 4766094/4997817 [00:27&lt;00:01, 174228.01it/s]
    +

    </pre>

    +
    +
    +
    95%|█████████▌| 4766094/4997817 [00:27<00:01, 174228.01it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    95%|█████████▌| 4766094/4997817 [00:27<00:01, 174228.01it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    96%|█████████▌| 4783518/4997817 [00:27&lt;00:01, 173985.40it/s]
    +

    </pre>

    +
    +
    +
    96%|█████████▌| 4783518/4997817 [00:27<00:01, 173985.40it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    96%|█████████▌| 4783518/4997817 [00:27<00:01, 173985.40it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    96%|█████████▌| 4800917/4997817 [00:27&lt;00:01, 173759.33it/s]
    +

    </pre>

    +
    +
    +
    96%|█████████▌| 4800917/4997817 [00:27<00:01, 173759.33it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    96%|█████████▌| 4800917/4997817 [00:27<00:01, 173759.33it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    96%|█████████▋| 4818354/4997817 [00:27&lt;00:01, 173939.86it/s]
    +

    </pre>

    +
    +
    +
    96%|█████████▋| 4818354/4997817 [00:27<00:01, 173939.86it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    96%|█████████▋| 4818354/4997817 [00:27<00:01, 173939.86it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    97%|█████████▋| 4835749/4997817 [00:27&lt;00:00, 173824.93it/s]
    +

    </pre>

    +
    +
    +
    97%|█████████▋| 4835749/4997817 [00:27<00:00, 173824.93it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    97%|█████████▋| 4835749/4997817 [00:27<00:00, 173824.93it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    97%|█████████▋| 4853232/4997817 [00:27&lt;00:00, 174121.61it/s]
    +

    </pre>

    +
    +
    +
    97%|█████████▋| 4853232/4997817 [00:27<00:00, 174121.61it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    97%|█████████▋| 4853232/4997817 [00:27<00:00, 174121.61it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    97%|█████████▋| 4870744/4997817 [00:27&lt;00:00, 174418.81it/s]
    +

    </pre>

    +
    +
    +
    97%|█████████▋| 4870744/4997817 [00:27<00:00, 174418.81it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    97%|█████████▋| 4870744/4997817 [00:27<00:00, 174418.81it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 4888252/4997817 [00:27&lt;00:00, 174613.92it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 4888252/4997817 [00:27<00:00, 174613.92it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 4888252/4997817 [00:27<00:00, 174613.92it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    98%|█████████▊| 4905891/4997817 [00:27&lt;00:00, 175141.70it/s]
    +

    </pre>

    +
    +
    +
    98%|█████████▊| 4905891/4997817 [00:27<00:00, 175141.70it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    98%|█████████▊| 4905891/4997817 [00:27<00:00, 175141.70it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    99%|█████████▊| 4923509/4997817 [00:27&lt;00:00, 175450.58it/s]
    +

    </pre>

    +
    +
    +
    99%|█████████▊| 4923509/4997817 [00:27<00:00, 175450.58it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    99%|█████████▊| 4923509/4997817 [00:27<00:00, 175450.58it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    99%|█████████▉| 4941151/4997817 [00:28&lt;00:00, 175734.70it/s]
    +

    </pre>

    +
    +
    +
    99%|█████████▉| 4941151/4997817 [00:28<00:00, 175734.70it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    99%|█████████▉| 4941151/4997817 [00:28<00:00, 175734.70it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    +
    more-to-come:
    +

    +
    class:
    +

    stderr

    +
    +
    +
    +
    +
    99%|█████████▉| 4958725/4997817 [00:28&lt;00:00, 170139.31it/s]
    +

    </pre>

    +
    +
    +
    99%|█████████▉| 4958725/4997817 [00:28<00:00, 170139.31it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    99%|█████████▉| 4958725/4997817 [00:28<00:00, 170139.31it/s]

    +
    +
    -
    -100%|██████████| 4997817/4997817 [00:28<00:00, 175926.09it/s]
    -
    +
    +
    +
    +
    100%|█████████▉| 4976689/4997817 [00:28&lt;00:00, 172922.24it/s]
    +

    </pre>

    +
    +
    +
    100%|█████████▉| 4976689/4997817 [00:28<00:00, 172922.24it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|█████████▉| 4976689/4997817 [00:28<00:00, 172922.24it/s]

    +
    +
    +
    +
    +
    +
    +
    +
    100%|█████████▉| 4994432/4997817 [00:28&lt;00:00, 174250.40it/s]
    +

    </pre>

    +
    +
    +
    100%|█████████▉| 4994432/4997817 [00:28<00:00, 174250.40it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|█████████▉| 4994432/4997817 [00:28<00:00, 174250.40it/s]

    +
    +
    +
    +
    +
    +
    +
    100%|██████████| 4997817/4997817 [00:28&lt;00:00, 176272.22it/s]
    +

    </pre>

    +
    +
    +
    100%|██████████| 4997817/4997817 [00:28<00:00, 176272.22it/s]
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    100%|██████████| 4997817/4997817 [00:28<00:00, 176272.22it/s]

    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1366,7 +8715,7 @@

    Get label quality scores -{"state": {"7aa96f457adc4634b9a6249bdcc96c26": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c74a635ffc3b44d4b88d07667e70078a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f3182f5fe7894908b3a653ab8fbc78fc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7aa96f457adc4634b9a6249bdcc96c26", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c74a635ffc3b44d4b88d07667e70078a", "value": 30.0}}, "0fc54cf2073c4f89b253f72c39348371": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9cc2435526f421284c2f1c5281c0519": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "02cfe213e1e0454d8f264615fc31829c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0fc54cf2073c4f89b253f72c39348371", "placeholder": "\u200b", "style": "IPY_MODEL_e9cc2435526f421284c2f1c5281c0519", "value": "number of examples processed for estimating thresholds: 100%"}}, "07782be3fe914bea89597758fd669be7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "979d56e46d3546f5ae95cb022a6dd0d2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c6e7a1c2c7084d95843e3ef630984703": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_07782be3fe914bea89597758fd669be7", "placeholder": "\u200b", "style": "IPY_MODEL_979d56e46d3546f5ae95cb022a6dd0d2", "value": " 30/30 [00:00<00:00, 414.77it/s]"}}, "51271e127dbc43c991c5e60fada24f83": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b5be36e37104305970002c66d7bd72e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_02cfe213e1e0454d8f264615fc31829c", "IPY_MODEL_f3182f5fe7894908b3a653ab8fbc78fc", "IPY_MODEL_c6e7a1c2c7084d95843e3ef630984703"], "layout": "IPY_MODEL_51271e127dbc43c991c5e60fada24f83"}}, "da874cb90aee49548b346f2c19b20e30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e4c29e16dac4b8a97df090b1d9b5849": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "02560d5b02ba416eb92e8117dce2c41f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_da874cb90aee49548b346f2c19b20e30", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1e4c29e16dac4b8a97df090b1d9b5849", "value": 30.0}}, "d6fbc71e13e2479683d6562715fa0252": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3ea8947037984722bbe58925ce4a2eab": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "87ac68af1b6e4d228977e709a1515532": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d6fbc71e13e2479683d6562715fa0252", "placeholder": "\u200b", "style": "IPY_MODEL_3ea8947037984722bbe58925ce4a2eab", "value": "number of examples processed for checking labels: 100%"}}, "95d3c52ab2c14abe863c86b4f4231d33": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bbfe4bb4d5b441ed93bdaac7456f838a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "035817bcc0934941a47dfa90c5303c55": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_95d3c52ab2c14abe863c86b4f4231d33", "placeholder": "\u200b", "style": "IPY_MODEL_bbfe4bb4d5b441ed93bdaac7456f838a", "value": " 30/30 [00:36<00:00, 1.14s/it]"}}, "e6a119e7eecf40ceb36b9f50eee2da04": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c6c8437d53b4ab7921b43610cc69ef3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_87ac68af1b6e4d228977e709a1515532", "IPY_MODEL_02560d5b02ba416eb92e8117dce2c41f", "IPY_MODEL_035817bcc0934941a47dfa90c5303c55"], "layout": "IPY_MODEL_e6a119e7eecf40ceb36b9f50eee2da04"}}, "2238cc5fd07f4126916f173811521ed8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c987238c0cd44be0bf8b56b499c0d2f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2651666a8d4e43f2a9140f7e7cb48c7d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2238cc5fd07f4126916f173811521ed8", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c987238c0cd44be0bf8b56b499c0d2f2", "value": 30.0}}, "ff54145d974e4e76b02e63e0106036eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6bec90cac6374458977de8a39d27ab66": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4a158ae333e04a6fa84335f3b8ea3b92": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ff54145d974e4e76b02e63e0106036eb", "placeholder": "\u200b", "style": "IPY_MODEL_6bec90cac6374458977de8a39d27ab66", "value": "images processed using softmin: 100%"}}, "2422877bb39d4c828edd62dca32a1dbf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c94978e64114ef488c5163431a23970": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6a9f7abbe3c84bc2a7107ccd47325882": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2422877bb39d4c828edd62dca32a1dbf", "placeholder": "\u200b", "style": "IPY_MODEL_2c94978e64114ef488c5163431a23970", "value": " 30/30 [00:01<00:00, 22.67it/s]"}}, "3cec76bc20064f21865c24952ad1a91b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e5d7d226e9c4dce8d3d3f3c06d86667": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4a158ae333e04a6fa84335f3b8ea3b92", "IPY_MODEL_2651666a8d4e43f2a9140f7e7cb48c7d", "IPY_MODEL_6a9f7abbe3c84bc2a7107ccd47325882"], "layout": "IPY_MODEL_3cec76bc20064f21865c24952ad1a91b"}}}, "version_major": 2, "version_minor": 0} +{"state": {"2a5cdfd043e64682a63a44807c2660d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a5591a41fbd4b00b135832d51ac7e43": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6408d651bce44785a5d33951845fd916": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2a5cdfd043e64682a63a44807c2660d8", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2a5591a41fbd4b00b135832d51ac7e43", "value": 30.0}}, "608a29bf646d460489a54686bad9349a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4878243a53441729338e73c5c463051": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2d28ed44d20f472fac52924ffc2cd38b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_608a29bf646d460489a54686bad9349a", "placeholder": "\u200b", "style": "IPY_MODEL_a4878243a53441729338e73c5c463051", "value": "number of examples processed for estimating thresholds: 100%"}}, "c1029b39e4aa4b6eb82c5236632a620e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea6c9282ca374766b679ba3bac7d02a6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ff4ee3f9011c4f0385422bd1e19d8936": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c1029b39e4aa4b6eb82c5236632a620e", "placeholder": "\u200b", "style": "IPY_MODEL_ea6c9282ca374766b679ba3bac7d02a6", "value": " 30/30 [00:00<00:00, 409.55it/s]"}}, "72d2afb9d7b04fd0b6b61ea1454e913b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e743892e76b4b22937631c864bad121": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2d28ed44d20f472fac52924ffc2cd38b", "IPY_MODEL_6408d651bce44785a5d33951845fd916", "IPY_MODEL_ff4ee3f9011c4f0385422bd1e19d8936"], "layout": "IPY_MODEL_72d2afb9d7b04fd0b6b61ea1454e913b"}}, "5e43e88d7ceb4bcc82d2f9b10cb7bdb0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "18b87859a774422d85d90b3b12ca90b7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "85e7fdc552784d76afe3951c531d3322": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5e43e88d7ceb4bcc82d2f9b10cb7bdb0", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_18b87859a774422d85d90b3b12ca90b7", "value": 30.0}}, "1c7f5519b9b64fc395355cb12b76bd68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "429e6bdde66146e9a04a3f1b9b914d67": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b428720c2bc34f4ba044d226940bdb22": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1c7f5519b9b64fc395355cb12b76bd68", "placeholder": "\u200b", "style": "IPY_MODEL_429e6bdde66146e9a04a3f1b9b914d67", "value": "number of examples processed for checking labels: 100%"}}, "3514a40c715d4c2082a5c057f1ab8c81": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a8c307847e74c2cba883a49647903cd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "26a4d1c0051743c392f97fcc8ba5c838": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3514a40c715d4c2082a5c057f1ab8c81", "placeholder": "\u200b", "style": "IPY_MODEL_5a8c307847e74c2cba883a49647903cd", "value": " 30/30 [00:39<00:00, 1.28s/it]"}}, "d30a0b033ff7414ba4196c962fb57ffa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5366c37ea08a4613acf959def96162ff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b428720c2bc34f4ba044d226940bdb22", "IPY_MODEL_85e7fdc552784d76afe3951c531d3322", "IPY_MODEL_26a4d1c0051743c392f97fcc8ba5c838"], "layout": "IPY_MODEL_d30a0b033ff7414ba4196c962fb57ffa"}}, "876d3f07b29e4897b33aa11e06e59e12": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "520d822941cb45318a25bbfd9ac371c0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6c376451402744ff85331aaff852218b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_876d3f07b29e4897b33aa11e06e59e12", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_520d822941cb45318a25bbfd9ac371c0", "value": 30.0}}, "8fa0960df485498d9c8d9a3b954cde57": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e789ee3793a4c0e9549b7f2a5c038fd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "638a053f1438455e80d05f3c0266bc75": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8fa0960df485498d9c8d9a3b954cde57", "placeholder": "\u200b", "style": "IPY_MODEL_4e789ee3793a4c0e9549b7f2a5c038fd", "value": "images processed using softmin: 100%"}}, "77b1b0ed9de04653bc3ea132b0ba3891": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2f149bc7b184cc8928ff551d1ef5fd4": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "86dc325f73b24537beaf6529a837f97e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_77b1b0ed9de04653bc3ea132b0ba3891", "placeholder": "\u200b", "style": "IPY_MODEL_e2f149bc7b184cc8928ff551d1ef5fd4", "value": " 30/30 [00:01<00:00, 22.20it/s]"}}, "4334a63ee1d44ffba2507dda680bf08a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8aae686ac8c74b5bb91224442e911d92": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_638a053f1438455e80d05f3c0266bc75", "IPY_MODEL_6c376451402744ff85331aaff852218b", "IPY_MODEL_86dc325f73b24537beaf6529a837f97e"], "layout": "IPY_MODEL_4334a63ee1d44ffba2507dda680bf08a"}}}, "version_major": 2, "version_minor": 0} @@ -1400,7 +8749,7 @@

    Get label quality scores
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 86b1038bd..413855ff1 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:18.163263Z", - "iopub.status.busy": "2023-12-28T10:58:18.163065Z", - "iopub.status.idle": "2023-12-28T10:58:19.539002Z", - "shell.execute_reply": "2023-12-28T10:58:19.538212Z" + "iopub.execute_input": "2024-01-02T16:51:14.917502Z", + "iopub.status.busy": "2024-01-02T16:51:14.917281Z", + "iopub.status.idle": "2024-01-02T16:51:16.418301Z", + "shell.execute_reply": "2024-01-02T16:51:16.417534Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:58:19.541814Z", - "iopub.status.busy": "2023-12-28T10:58:19.541602Z", - "iopub.status.idle": "2023-12-28T10:59:00.575197Z", - "shell.execute_reply": "2023-12-28T10:59:00.574443Z" + "iopub.execute_input": "2024-01-02T16:51:16.421218Z", + "iopub.status.busy": "2024-01-02T16:51:16.420975Z", + "iopub.status.idle": "2024-01-02T16:52:04.763643Z", + "shell.execute_reply": "2024-01-02T16:52:04.762893Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:00.577967Z", - "iopub.status.busy": "2023-12-28T10:59:00.577758Z", - "iopub.status.idle": "2023-12-28T10:59:01.616355Z", - "shell.execute_reply": "2023-12-28T10:59:01.615641Z" + "iopub.execute_input": "2024-01-02T16:52:04.766816Z", + "iopub.status.busy": "2024-01-02T16:52:04.766365Z", + "iopub.status.idle": "2024-01-02T16:52:05.804700Z", + "shell.execute_reply": "2024-01-02T16:52:05.804082Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.619276Z", - "iopub.status.busy": "2023-12-28T10:59:01.618950Z", - "iopub.status.idle": "2023-12-28T10:59:01.622587Z", - "shell.execute_reply": "2023-12-28T10:59:01.622060Z" + "iopub.execute_input": "2024-01-02T16:52:05.807736Z", + "iopub.status.busy": "2024-01-02T16:52:05.807208Z", + "iopub.status.idle": "2024-01-02T16:52:05.810816Z", + "shell.execute_reply": "2024-01-02T16:52:05.810176Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.624987Z", - "iopub.status.busy": "2023-12-28T10:59:01.624790Z", - "iopub.status.idle": "2023-12-28T10:59:01.629005Z", - "shell.execute_reply": "2023-12-28T10:59:01.628463Z" + "iopub.execute_input": "2024-01-02T16:52:05.813388Z", + "iopub.status.busy": "2024-01-02T16:52:05.812981Z", + "iopub.status.idle": "2024-01-02T16:52:05.817038Z", + "shell.execute_reply": "2024-01-02T16:52:05.816539Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.631261Z", - "iopub.status.busy": "2023-12-28T10:59:01.631065Z", - "iopub.status.idle": "2023-12-28T10:59:01.635272Z", - "shell.execute_reply": "2023-12-28T10:59:01.634752Z" + "iopub.execute_input": "2024-01-02T16:52:05.819377Z", + "iopub.status.busy": "2024-01-02T16:52:05.819077Z", + "iopub.status.idle": "2024-01-02T16:52:05.822819Z", + "shell.execute_reply": "2024-01-02T16:52:05.822307Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.637637Z", - "iopub.status.busy": "2023-12-28T10:59:01.637280Z", - "iopub.status.idle": "2023-12-28T10:59:01.640345Z", - "shell.execute_reply": "2023-12-28T10:59:01.639819Z" + "iopub.execute_input": "2024-01-02T16:52:05.825279Z", + "iopub.status.busy": "2024-01-02T16:52:05.824918Z", + "iopub.status.idle": "2024-01-02T16:52:05.827921Z", + "shell.execute_reply": "2024-01-02T16:52:05.827364Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T10:59:01.642825Z", - "iopub.status.busy": "2023-12-28T10:59:01.642343Z", - "iopub.status.idle": "2023-12-28T11:00:26.512400Z", - "shell.execute_reply": "2023-12-28T11:00:26.511675Z" + "iopub.execute_input": "2024-01-02T16:52:05.830342Z", + "iopub.status.busy": "2024-01-02T16:52:05.830012Z", + "iopub.status.idle": "2024-01-02T16:53:34.170662Z", + "shell.execute_reply": "2024-01-02T16:53:34.169862Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b5be36e37104305970002c66d7bd72e", + "model_id": "9e743892e76b4b22937631c864bad121", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7c6c8437d53b4ab7921b43610cc69ef3", + "model_id": "5366c37ea08a4613acf959def96162ff", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:00:26.515443Z", - "iopub.status.busy": "2023-12-28T11:00:26.515029Z", - "iopub.status.idle": "2023-12-28T11:00:27.299642Z", - "shell.execute_reply": "2023-12-28T11:00:27.298951Z" + "iopub.execute_input": "2024-01-02T16:53:34.173757Z", + "iopub.status.busy": "2024-01-02T16:53:34.173485Z", + "iopub.status.idle": "2024-01-02T16:53:34.939645Z", + "shell.execute_reply": "2024-01-02T16:53:34.939002Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:00:27.302695Z", - "iopub.status.busy": "2023-12-28T11:00:27.302010Z", - "iopub.status.idle": "2023-12-28T11:00:29.463231Z", - "shell.execute_reply": "2023-12-28T11:00:29.462504Z" + "iopub.execute_input": "2024-01-02T16:53:34.942467Z", + "iopub.status.busy": "2024-01-02T16:53:34.941961Z", + "iopub.status.idle": "2024-01-02T16:53:37.003184Z", + "shell.execute_reply": "2024-01-02T16:53:37.002445Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:00:29.465894Z", - "iopub.status.busy": "2023-12-28T11:00:29.465678Z", - "iopub.status.idle": "2023-12-28T11:00:58.096999Z", - "shell.execute_reply": "2023-12-28T11:00:58.096299Z" + "iopub.execute_input": "2024-01-02T16:53:37.005980Z", + "iopub.status.busy": "2024-01-02T16:53:37.005575Z", + "iopub.status.idle": "2024-01-02T16:54:05.576893Z", + "shell.execute_reply": "2024-01-02T16:54:05.576201Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17494/4997817 [00:00<00:28, 174928.07it/s]" + " 0%| | 17314/4997817 [00:00<00:28, 173126.54it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 35194/4997817 [00:00<00:28, 176140.25it/s]" + " 1%| | 34829/4997817 [00:00<00:28, 174308.32it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 52809/4997817 [00:00<00:28, 175516.72it/s]" + " 1%| | 52365/4997817 [00:00<00:28, 174780.79it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 70361/4997817 [00:00<00:28, 174925.32it/s]" + " 1%|▏ | 69964/4997817 [00:00<00:28, 175254.25it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 87854/4997817 [00:00<00:28, 174222.28it/s]" + " 2%|▏ | 87490/4997817 [00:00<00:28, 175005.28it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 105302/4997817 [00:00<00:28, 174304.60it/s]" + " 2%|▏ | 105188/4997817 [00:00<00:27, 175672.96it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 122803/4997817 [00:00<00:27, 174529.20it/s]" + " 2%|▏ | 122771/4997817 [00:00<00:27, 175719.53it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140257/4997817 [00:00<00:27, 174101.97it/s]" + " 3%|▎ | 140344/4997817 [00:00<00:27, 175172.99it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 157873/4997817 [00:00<00:27, 174741.06it/s]" + " 3%|▎ | 157862/4997817 [00:00<00:27, 174941.50it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 175348/4997817 [00:01<00:27, 174171.37it/s]" + " 4%|▎ | 175357/4997817 [00:01<00:27, 174922.08it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 192803/4997817 [00:01<00:27, 174284.95it/s]" + " 4%|▍ | 192926/4997817 [00:01<00:27, 175151.99it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 210474/4997817 [00:01<00:27, 175018.20it/s]" + " 4%|▍ | 210609/4997817 [00:01<00:27, 175659.14it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 227977/4997817 [00:01<00:27, 174691.25it/s]" + " 5%|▍ | 228199/4997817 [00:01<00:27, 175727.40it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 245609/4997817 [00:01<00:27, 175179.19it/s]" + " 5%|▍ | 245865/4997817 [00:01<00:26, 176005.53it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263128/4997817 [00:01<00:27, 174978.28it/s]" + " 5%|▌ | 263466/4997817 [00:01<00:26, 175594.60it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 280670/4997817 [00:01<00:26, 175107.87it/s]" + " 6%|▌ | 281027/4997817 [00:01<00:26, 175595.13it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298262/4997817 [00:01<00:26, 175348.37it/s]" + " 6%|▌ | 298836/4997817 [00:01<00:26, 176341.43it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 315877/4997817 [00:01<00:26, 175584.53it/s]" + " 6%|▋ | 316665/4997817 [00:01<00:26, 176924.14it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 333546/4997817 [00:01<00:26, 175914.21it/s]" + " 7%|▋ | 334560/4997817 [00:01<00:26, 177527.64it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 351138/4997817 [00:02<00:26, 174764.56it/s]" + " 7%|▋ | 352485/4997817 [00:02<00:26, 178040.22it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 368617/4997817 [00:02<00:26, 174617.02it/s]" + " 7%|▋ | 370443/4997817 [00:02<00:25, 178499.86it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 386080/4997817 [00:02<00:26, 174307.07it/s]" + " 8%|▊ | 388402/4997817 [00:02<00:25, 178823.67it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 403590/4997817 [00:02<00:26, 174541.47it/s]" + " 8%|▊ | 406285/4997817 [00:02<00:25, 178740.60it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 421090/4997817 [00:02<00:26, 174676.09it/s]" + " 8%|▊ | 424160/4997817 [00:02<00:25, 178599.92it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 438559/4997817 [00:02<00:26, 174616.60it/s]" + " 9%|▉ | 442021/4997817 [00:02<00:25, 178448.54it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 456132/4997817 [00:02<00:25, 174945.64it/s]" + " 9%|▉ | 459866/4997817 [00:02<00:25, 175902.91it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 473696/4997817 [00:02<00:25, 175151.14it/s]" + " 10%|▉ | 477662/4997817 [00:02<00:25, 176508.79it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 491268/4997817 [00:02<00:25, 175318.83it/s]" + " 10%|▉ | 495424/4997817 [00:02<00:25, 176835.64it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 508816/4997817 [00:02<00:25, 175362.69it/s]" + " 10%|█ | 513310/4997817 [00:02<00:25, 177437.22it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 526353/4997817 [00:03<00:25, 174639.75it/s]" + " 11%|█ | 531207/4997817 [00:03<00:25, 177892.84it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 543818/4997817 [00:03<00:25, 174295.28it/s]" + " 11%|█ | 548999/4997817 [00:03<00:25, 175415.22it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 561297/4997817 [00:03<00:25, 174440.35it/s]" + " 11%|█▏ | 566644/4997817 [00:03<00:25, 175717.99it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 578742/4997817 [00:03<00:25, 174426.12it/s]" + " 12%|█▏ | 584538/4997817 [00:03<00:24, 176671.06it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 596240/4997817 [00:03<00:25, 174588.28it/s]" + " 12%|█▏ | 602262/4997817 [00:03<00:24, 176835.65it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 613715/4997817 [00:03<00:25, 174632.17it/s]" + " 12%|█▏ | 620024/4997817 [00:03<00:24, 177064.87it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 631179/4997817 [00:03<00:25, 174300.27it/s]" + " 13%|█▎ | 637734/4997817 [00:03<00:24, 176679.27it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 648658/4997817 [00:03<00:24, 174444.70it/s]" + " 13%|█▎ | 655474/4997817 [00:03<00:24, 176890.98it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 666151/4997817 [00:03<00:24, 174587.89it/s]" + " 13%|█▎ | 673248/4997817 [00:03<00:24, 177141.43it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 683662/4997817 [00:03<00:24, 174741.17it/s]" + " 14%|█▍ | 691105/4997817 [00:03<00:24, 177564.47it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 701137/4997817 [00:04<00:24, 174466.41it/s]" + " 14%|█▍ | 708942/4997817 [00:04<00:24, 177800.79it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 719049/4997817 [00:04<00:24, 175855.65it/s]" + " 15%|█▍ | 726723/4997817 [00:04<00:24, 177793.95it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 736888/4997817 [00:04<00:24, 176610.34it/s]" + " 15%|█▍ | 744503/4997817 [00:04<00:23, 177758.97it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 754775/4997817 [00:04<00:23, 177283.55it/s]" + " 15%|█▌ | 762280/4997817 [00:04<00:23, 177746.19it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 772644/4997817 [00:04<00:23, 177702.24it/s]" + " 16%|█▌ | 780236/4997817 [00:04<00:23, 178287.44it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 790530/4997817 [00:04<00:23, 178044.76it/s]" + " 16%|█▌ | 798190/4997817 [00:04<00:23, 178658.65it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 808335/4997817 [00:04<00:23, 177949.17it/s]" + " 16%|█▋ | 816162/4997817 [00:04<00:23, 178972.42it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 826164/4997817 [00:04<00:23, 178048.48it/s]" + " 17%|█▋ | 834062/4997817 [00:04<00:23, 178976.39it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 843969/4997817 [00:04<00:23, 177534.17it/s]" + " 17%|█▋ | 851960/4997817 [00:04<00:23, 178605.71it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 861838/4997817 [00:04<00:23, 177875.85it/s]" + " 17%|█▋ | 869912/4997817 [00:04<00:23, 178875.91it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 879726/4997817 [00:05<00:23, 178173.98it/s]" + " 18%|█▊ | 887965/4997817 [00:05<00:22, 179366.26it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 897544/4997817 [00:05<00:23, 171075.68it/s]" + " 18%|█▊ | 905902/4997817 [00:05<00:22, 178845.68it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 915264/4997817 [00:05<00:23, 172855.36it/s]" + " 18%|█▊ | 923788/4997817 [00:05<00:22, 177995.05it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 933005/4997817 [00:05<00:23, 174189.25it/s]" + " 19%|█▉ | 941613/4997817 [00:05<00:22, 178068.40it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 950945/4997817 [00:05<00:23, 175726.56it/s]" + " 19%|█▉ | 959421/4997817 [00:05<00:22, 177686.46it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 968740/4997817 [00:05<00:22, 176384.22it/s]" + " 20%|█▉ | 977191/4997817 [00:05<00:22, 177262.11it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 986545/4997817 [00:05<00:22, 176877.29it/s]" + " 20%|█▉ | 994958/4997817 [00:05<00:22, 177380.94it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1004288/4997817 [00:05<00:22, 177037.15it/s]" + " 20%|██ | 1012772/4997817 [00:05<00:22, 177605.07it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1022105/4997817 [00:05<00:22, 177372.06it/s]" + " 21%|██ | 1030533/4997817 [00:05<00:22, 177556.29it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1039856/4997817 [00:05<00:22, 177409.34it/s]" + " 21%|██ | 1048289/4997817 [00:05<00:22, 177115.61it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1057854/4997817 [00:06<00:22, 178175.41it/s]" + " 21%|██▏ | 1066001/4997817 [00:06<00:22, 176685.93it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1075877/4997817 [00:06<00:21, 178786.97it/s]" + " 22%|██▏ | 1083736/4997817 [00:06<00:22, 176881.29it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1093759/4997817 [00:06<00:21, 178734.21it/s]" + " 22%|██▏ | 1101425/4997817 [00:06<00:22, 176862.75it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1111635/4997817 [00:06<00:21, 177490.20it/s]" + " 22%|██▏ | 1119112/4997817 [00:06<00:21, 176613.07it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1129388/4997817 [00:06<00:21, 177110.83it/s]" + " 23%|██▎ | 1136832/4997817 [00:06<00:21, 176786.39it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1147221/4997817 [00:06<00:21, 177470.24it/s]" + " 23%|██▎ | 1154511/4997817 [00:06<00:21, 176436.52it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1164970/4997817 [00:06<00:21, 177083.53it/s]" + " 23%|██▎ | 1172155/4997817 [00:06<00:21, 175944.05it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1182680/4997817 [00:06<00:21, 176816.23it/s]" + " 24%|██▍ | 1190019/4997817 [00:06<00:21, 176746.71it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1200413/4997817 [00:06<00:21, 176967.27it/s]" + " 24%|██▍ | 1207695/4997817 [00:06<00:21, 176246.06it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1218124/4997817 [00:06<00:21, 177005.09it/s]" + " 25%|██▍ | 1225512/4997817 [00:06<00:21, 176818.30it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1235825/4997817 [00:07<00:21, 176052.28it/s]" + " 25%|██▍ | 1243258/4997817 [00:07<00:21, 177007.56it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1253587/4997817 [00:07<00:21, 176518.07it/s]" + " 25%|██▌ | 1260992/4997817 [00:07<00:21, 177102.98it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1271305/4997817 [00:07<00:21, 176711.57it/s]" + " 26%|██▌ | 1278703/4997817 [00:07<00:21, 176948.28it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288978/4997817 [00:07<00:21, 175896.07it/s]" + " 26%|██▌ | 1296561/4997817 [00:07<00:20, 177432.39it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1306626/4997817 [00:07<00:20, 176068.28it/s]" + " 26%|██▋ | 1314539/4997817 [00:07<00:20, 178132.38it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1324234/4997817 [00:07<00:20, 175987.30it/s]" + " 27%|██▋ | 1332353/4997817 [00:07<00:20, 178094.62it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1341834/4997817 [00:07<00:20, 175563.78it/s]" + " 27%|██▋ | 1350163/4997817 [00:07<00:20, 178042.71it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1359486/4997817 [00:07<00:20, 175845.00it/s]" + " 27%|██▋ | 1367993/4997817 [00:07<00:20, 178114.67it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1377072/4997817 [00:07<00:20, 175322.72it/s]" + " 28%|██▊ | 1385805/4997817 [00:07<00:20, 177932.13it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1394605/4997817 [00:07<00:20, 175190.77it/s]" + " 28%|██▊ | 1403599/4997817 [00:07<00:20, 177879.38it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1412244/4997817 [00:08<00:20, 175546.78it/s]" + " 28%|██▊ | 1421534/4997817 [00:08<00:20, 178317.13it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1429800/4997817 [00:08<00:20, 175322.96it/s]" + " 29%|██▉ | 1439417/4997817 [00:08<00:19, 178468.64it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1447333/4997817 [00:08<00:20, 175034.90it/s]" + " 29%|██▉ | 1457264/4997817 [00:08<00:19, 178443.46it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1464886/4997817 [00:08<00:20, 175179.67it/s]" + " 30%|██▉ | 1475117/4997817 [00:08<00:19, 178466.91it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1482494/4997817 [00:08<00:20, 175445.63it/s]" + " 30%|██▉ | 1492964/4997817 [00:08<00:19, 178362.80it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1500039/4997817 [00:08<00:19, 174970.49it/s]" + " 30%|███ | 1510883/4997817 [00:08<00:19, 178607.91it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1517639/4997817 [00:08<00:19, 175275.24it/s]" + " 31%|███ | 1528744/4997817 [00:08<00:19, 178567.36it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1535258/4997817 [00:08<00:19, 175544.89it/s]" + " 31%|███ | 1546601/4997817 [00:08<00:19, 175782.00it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1552902/4997817 [00:08<00:19, 175810.32it/s]" + " 31%|███▏ | 1564391/4997817 [00:08<00:19, 176405.65it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1570484/4997817 [00:08<00:19, 175331.08it/s]" + " 32%|███▏ | 1582183/4997817 [00:08<00:19, 176852.12it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1588018/4997817 [00:09<00:19, 174749.39it/s]" + " 32%|███▏ | 1599874/4997817 [00:09<00:19, 176799.15it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1605494/4997817 [00:09<00:20, 169542.83it/s]" + " 32%|███▏ | 1617558/4997817 [00:09<00:19, 175931.25it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1622481/4997817 [00:09<00:19, 169394.35it/s]" + " 33%|███▎ | 1635340/4997817 [00:09<00:19, 176491.27it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1639959/4997817 [00:09<00:19, 170978.91it/s]" + " 33%|███▎ | 1653006/4997817 [00:09<00:18, 176539.07it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1657724/4997817 [00:09<00:19, 172952.39it/s]" + " 33%|███▎ | 1670829/4997817 [00:09<00:18, 177040.12it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1675246/4997817 [00:09<00:19, 173623.37it/s]" + " 34%|███▍ | 1688580/4997817 [00:09<00:18, 177176.14it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1693123/4997817 [00:09<00:18, 175154.30it/s]" + " 34%|███▍ | 1706503/4997817 [00:09<00:18, 177786.41it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1710995/4997817 [00:09<00:18, 176215.23it/s]" + " 35%|███▍ | 1724283/4997817 [00:09<00:18, 175065.53it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1728624/4997817 [00:09<00:18, 176207.11it/s]" + " 35%|███▍ | 1742024/4997817 [00:09<00:18, 175757.81it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1746331/4997817 [00:09<00:18, 176463.04it/s]" + " 35%|███▌ | 1759900/4997817 [00:09<00:18, 176647.18it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1764157/4997817 [00:10<00:18, 176997.52it/s]" + " 36%|███▌ | 1777864/4997817 [00:10<00:18, 177537.66it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1782002/4997817 [00:10<00:18, 177428.25it/s]" + " 36%|███▌ | 1795832/4997817 [00:10<00:17, 178173.13it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1799874/4997817 [00:10<00:17, 177812.97it/s]" + " 36%|███▋ | 1813737/4997817 [00:10<00:17, 178430.15it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1817732/4997817 [00:10<00:17, 178039.56it/s]" + " 37%|███▋ | 1831631/4997817 [00:10<00:17, 178577.62it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1835619/4997817 [00:10<00:17, 178284.56it/s]" + " 37%|███▋ | 1849581/4997817 [00:10<00:17, 178851.18it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1853449/4997817 [00:10<00:17, 177762.39it/s]" + " 37%|███▋ | 1867468/4997817 [00:10<00:17, 178559.72it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1871227/4997817 [00:10<00:17, 176726.50it/s]" + " 38%|███▊ | 1885325/4997817 [00:10<00:17, 178504.74it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1888921/4997817 [00:10<00:17, 176785.58it/s]" + " 38%|███▊ | 1903191/4997817 [00:10<00:17, 178546.58it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1907046/4997817 [00:10<00:17, 178115.64it/s]" + " 38%|███▊ | 1921047/4997817 [00:10<00:17, 178521.32it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1925051/4997817 [00:10<00:17, 178689.39it/s]" + " 39%|███▉ | 1938938/4997817 [00:10<00:17, 178632.76it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1943110/4997817 [00:11<00:17, 179255.02it/s]" + " 39%|███▉ | 1956802/4997817 [00:11<00:17, 178610.47it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1961138/4997817 [00:11<00:16, 179558.93it/s]" + " 40%|███▉ | 1974708/4997817 [00:11<00:16, 178740.07it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1979165/4997817 [00:11<00:16, 179769.39it/s]" + " 40%|███▉ | 1992583/4997817 [00:11<00:16, 178554.16it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1997143/4997817 [00:11<00:16, 178238.15it/s]" + " 40%|████ | 2010516/4997817 [00:11<00:16, 178782.25it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2014996/4997817 [00:11<00:16, 178321.01it/s]" + " 41%|████ | 2028395/4997817 [00:11<00:16, 178688.59it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2032831/4997817 [00:11<00:16, 178037.02it/s]" + " 41%|████ | 2046264/4997817 [00:11<00:16, 178571.40it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2050637/4997817 [00:11<00:16, 177941.93it/s]" + " 41%|████▏ | 2064122/4997817 [00:11<00:16, 178451.89it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2068502/4997817 [00:11<00:16, 178149.10it/s]" + " 42%|████▏ | 2081968/4997817 [00:11<00:16, 178057.76it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2086318/4997817 [00:11<00:16, 177714.69it/s]" + " 42%|████▏ | 2099774/4997817 [00:11<00:16, 177921.25it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2104091/4997817 [00:11<00:16, 177589.19it/s]" + " 42%|████▏ | 2117567/4997817 [00:11<00:16, 177879.61it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2121851/4997817 [00:12<00:16, 177246.87it/s]" + " 43%|████▎ | 2135387/4997817 [00:12<00:16, 177971.55it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2139577/4997817 [00:12<00:16, 176801.43it/s]" + " 43%|████▎ | 2153185/4997817 [00:12<00:15, 177883.27it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2157258/4997817 [00:12<00:16, 176696.81it/s]" + " 43%|████▎ | 2170974/4997817 [00:12<00:15, 177203.01it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2174928/4997817 [00:12<00:15, 176565.53it/s]" + " 44%|████▍ | 2188695/4997817 [00:12<00:15, 177184.57it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2192690/4997817 [00:12<00:15, 176875.59it/s]" + " 44%|████▍ | 2206414/4997817 [00:12<00:15, 176902.41it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2210531/4997817 [00:12<00:15, 177330.22it/s]" + " 45%|████▍ | 2224105/4997817 [00:12<00:15, 176843.56it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2228267/4997817 [00:12<00:15, 177335.65it/s]" + " 45%|████▍ | 2241907/4997817 [00:12<00:15, 177192.07it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246001/4997817 [00:12<00:15, 177086.21it/s]" + " 45%|████▌ | 2259743/4997817 [00:12<00:15, 177536.48it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2263710/4997817 [00:12<00:15, 176337.22it/s]" + " 46%|████▌ | 2277497/4997817 [00:12<00:15, 176383.30it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281530/4997817 [00:12<00:15, 176888.86it/s]" + " 46%|████▌ | 2295146/4997817 [00:12<00:15, 176411.17it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2299313/4997817 [00:13<00:15, 177167.52it/s]" + " 46%|████▋ | 2312799/4997817 [00:13<00:15, 176442.08it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2317138/4997817 [00:13<00:15, 177486.83it/s]" + " 47%|████▋ | 2330531/4997817 [00:13<00:15, 176701.66it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2334888/4997817 [00:13<00:15, 173392.89it/s]" + " 47%|████▋ | 2348329/4997817 [00:13<00:14, 177079.94it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2352305/4997817 [00:13<00:15, 173619.60it/s]" + " 47%|████▋ | 2366219/4997817 [00:13<00:14, 177620.71it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2370327/4997817 [00:13<00:14, 175570.94it/s]" + " 48%|████▊ | 2384078/4997817 [00:13<00:14, 177908.22it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2388254/4997817 [00:13<00:14, 176668.32it/s]" + " 48%|████▊ | 2401913/4997817 [00:13<00:14, 178035.24it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2406168/4997817 [00:13<00:14, 177402.88it/s]" + " 48%|████▊ | 2419717/4997817 [00:13<00:14, 177907.88it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2424181/4997817 [00:13<00:14, 178214.05it/s]" + " 49%|████▉ | 2437622/4997817 [00:13<00:14, 178246.58it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2442067/4997817 [00:13<00:14, 178403.61it/s]" + " 49%|████▉ | 2455447/4997817 [00:13<00:14, 178140.44it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2459912/4997817 [00:13<00:14, 178341.18it/s]" + " 49%|████▉ | 2473268/4997817 [00:13<00:14, 178157.39it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2477749/4997817 [00:14<00:14, 178188.03it/s]" + " 50%|████▉ | 2491084/4997817 [00:14<00:14, 178137.72it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2495619/4997817 [00:14<00:14, 178336.29it/s]" + " 50%|█████ | 2508898/4997817 [00:14<00:13, 177998.74it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2513454/4997817 [00:14<00:14, 176503.51it/s]" + " 51%|█████ | 2526698/4997817 [00:14<00:13, 177909.15it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2531290/4997817 [00:14<00:13, 177052.07it/s]" + " 51%|█████ | 2544489/4997817 [00:14<00:13, 177444.51it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2549080/4997817 [00:14<00:13, 177302.14it/s]" + " 51%|█████▏ | 2562234/4997817 [00:14<00:13, 177426.20it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2566955/4997817 [00:14<00:13, 177732.39it/s]" + " 52%|█████▏ | 2579977/4997817 [00:14<00:13, 176938.77it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2584731/4997817 [00:14<00:13, 177556.57it/s]" + " 52%|█████▏ | 2597763/4997817 [00:14<00:13, 177208.87it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2602604/4997817 [00:14<00:13, 177902.74it/s]" + " 52%|█████▏ | 2615516/4997817 [00:14<00:13, 177300.23it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2620396/4997817 [00:14<00:13, 177697.13it/s]" + " 53%|█████▎ | 2633247/4997817 [00:14<00:13, 177005.41it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2638167/4997817 [00:14<00:13, 177680.87it/s]" + " 53%|█████▎ | 2650979/4997817 [00:14<00:13, 177096.59it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2656093/4997817 [00:15<00:13, 178150.08it/s]" + " 53%|█████▎ | 2668827/4997817 [00:15<00:13, 177505.66it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2673985/4997817 [00:15<00:13, 178376.13it/s]" + " 54%|█████▍ | 2686578/4997817 [00:15<00:13, 176155.38it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691823/4997817 [00:15<00:12, 178090.59it/s]" + " 54%|█████▍ | 2704355/4997817 [00:15<00:12, 176633.20it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2709633/4997817 [00:15<00:12, 177751.66it/s]" + " 54%|█████▍ | 2722218/4997817 [00:15<00:12, 177225.53it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2727441/4997817 [00:15<00:12, 177845.65it/s]" + " 55%|█████▍ | 2740063/4997817 [00:15<00:12, 177587.75it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2745226/4997817 [00:15<00:12, 177445.39it/s]" + " 55%|█████▌ | 2757851/4997817 [00:15<00:12, 177672.12it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2762992/4997817 [00:15<00:12, 177506.85it/s]" + " 56%|█████▌ | 2775620/4997817 [00:15<00:12, 177536.66it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2780853/4997817 [00:15<00:12, 177833.38it/s]" + " 56%|█████▌ | 2793443/4997817 [00:15<00:12, 177739.17it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2798637/4997817 [00:15<00:12, 177798.08it/s]" + " 56%|█████▌ | 2811218/4997817 [00:15<00:12, 174041.23it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2816470/4997817 [00:15<00:12, 177954.35it/s]" + " 57%|█████▋ | 2828903/4997817 [00:15<00:12, 174867.06it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2834301/4997817 [00:16<00:12, 178057.44it/s]" + " 57%|█████▋ | 2846700/4997817 [00:16<00:12, 175785.11it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2852176/4997817 [00:16<00:12, 178261.19it/s]" + " 57%|█████▋ | 2864443/4997817 [00:16<00:12, 176271.22it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2870003/4997817 [00:16<00:11, 177648.01it/s]" + " 58%|█████▊ | 2882278/4997817 [00:16<00:11, 176886.76it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2887769/4997817 [00:16<00:11, 177132.35it/s]" + " 58%|█████▊ | 2900037/4997817 [00:16<00:11, 177092.19it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2905493/4997817 [00:16<00:11, 177161.28it/s]" + " 58%|█████▊ | 2917797/4997817 [00:16<00:11, 177241.14it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2923270/4997817 [00:16<00:11, 177339.77it/s]" + " 59%|█████▊ | 2935524/4997817 [00:16<00:11, 177018.19it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2941005/4997817 [00:16<00:11, 177128.56it/s]" + " 59%|█████▉ | 2953228/4997817 [00:16<00:11, 176869.64it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2958755/4997817 [00:16<00:11, 177236.13it/s]" + " 59%|█████▉ | 2970917/4997817 [00:16<00:11, 176151.89it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2976514/4997817 [00:16<00:11, 177338.38it/s]" + " 60%|█████▉ | 2988534/4997817 [00:16<00:11, 175890.44it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2994348/4997817 [00:16<00:11, 177635.53it/s]" + " 60%|██████ | 3006235/4997817 [00:16<00:11, 176220.07it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3012134/4997817 [00:17<00:11, 177698.17it/s]" + " 61%|██████ | 3024139/4997817 [00:17<00:11, 177060.98it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3029980/4997817 [00:17<00:11, 177921.68it/s]" + " 61%|██████ | 3041872/4997817 [00:17<00:11, 177137.65it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3047789/4997817 [00:17<00:10, 177969.66it/s]" + " 61%|██████ | 3059587/4997817 [00:17<00:10, 177097.89it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3065587/4997817 [00:17<00:10, 177966.45it/s]" + " 62%|██████▏ | 3077357/4997817 [00:17<00:10, 177274.05it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3083384/4997817 [00:17<00:10, 177847.89it/s]" + " 62%|██████▏ | 3095085/4997817 [00:17<00:10, 177103.25it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3101169/4997817 [00:17<00:10, 177792.15it/s]" + " 62%|██████▏ | 3112872/4997817 [00:17<00:10, 177330.88it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3118949/4997817 [00:17<00:10, 177662.23it/s]" + " 63%|██████▎ | 3130650/4997817 [00:17<00:10, 177460.72it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3136750/4997817 [00:17<00:10, 177764.35it/s]" + " 63%|██████▎ | 3148563/4997817 [00:17<00:10, 177956.02it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3154652/4997817 [00:17<00:10, 178135.87it/s]" + " 63%|██████▎ | 3166432/4997817 [00:17<00:10, 178173.36it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3172466/4997817 [00:17<00:10, 177842.07it/s]" + " 64%|██████▎ | 3184250/4997817 [00:17<00:10, 177970.65it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3190267/4997817 [00:18<00:10, 177889.63it/s]" + " 64%|██████▍ | 3202048/4997817 [00:18<00:10, 177369.37it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3208057/4997817 [00:18<00:10, 177588.01it/s]" + " 64%|██████▍ | 3219786/4997817 [00:18<00:10, 176901.23it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3225816/4997817 [00:18<00:09, 177464.63it/s]" + " 65%|██████▍ | 3237477/4997817 [00:18<00:09, 176385.97it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3243563/4997817 [00:18<00:09, 177377.90it/s]" + " 65%|██████▌ | 3255117/4997817 [00:18<00:09, 175608.75it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3261301/4997817 [00:18<00:09, 176991.46it/s]" + " 65%|██████▌ | 3272679/4997817 [00:18<00:09, 175364.30it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3279001/4997817 [00:18<00:09, 176402.89it/s]" + " 66%|██████▌ | 3290216/4997817 [00:18<00:09, 175310.69it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3296642/4997817 [00:18<00:09, 176061.85it/s]" + " 66%|██████▌ | 3307758/4997817 [00:18<00:09, 175340.52it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3314249/4997817 [00:18<00:09, 175968.84it/s]" + " 67%|██████▋ | 3325293/4997817 [00:18<00:09, 175275.91it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3331847/4997817 [00:18<00:09, 175182.15it/s]" + " 67%|██████▋ | 3342868/4997817 [00:18<00:09, 175414.60it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3349366/4997817 [00:18<00:09, 174731.89it/s]" + " 67%|██████▋ | 3360410/4997817 [00:18<00:09, 174946.91it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3366870/4997817 [00:19<00:09, 174821.24it/s]" + " 68%|██████▊ | 3377909/4997817 [00:19<00:09, 174955.98it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3384355/4997817 [00:19<00:09, 174826.27it/s]" + " 68%|██████▊ | 3395405/4997817 [00:19<00:09, 174938.26it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3401920/4997817 [00:19<00:09, 175067.62it/s]" + " 68%|██████▊ | 3412899/4997817 [00:19<00:09, 174667.90it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3419428/4997817 [00:19<00:09, 172449.11it/s]" + " 69%|██████▊ | 3430388/4997817 [00:19<00:08, 174729.95it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3436936/4997817 [00:19<00:09, 173225.59it/s]" + " 69%|██████▉ | 3447862/4997817 [00:19<00:08, 174724.77it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3454413/4997817 [00:19<00:08, 173682.24it/s]" + " 69%|██████▉ | 3465335/4997817 [00:19<00:08, 174649.77it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3471811/4997817 [00:19<00:08, 173768.38it/s]" + " 70%|██████▉ | 3482801/4997817 [00:19<00:08, 174605.11it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3489262/4997817 [00:19<00:08, 173987.88it/s]" + " 70%|███████ | 3500286/4997817 [00:19<00:08, 174674.94it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3506664/4997817 [00:19<00:08, 173837.73it/s]" + " 70%|███████ | 3517754/4997817 [00:19<00:08, 174642.55it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3524050/4997817 [00:19<00:08, 173726.72it/s]" + " 71%|███████ | 3535276/4997817 [00:19<00:08, 174811.73it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3541779/4997817 [00:20<00:08, 174790.87it/s]" + " 71%|███████ | 3552791/4997817 [00:20<00:08, 174908.46it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3559320/4997817 [00:20<00:08, 174971.73it/s]" + " 71%|███████▏ | 3570332/4997817 [00:20<00:08, 175056.30it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3576819/4997817 [00:20<00:08, 174841.60it/s]" + " 72%|███████▏ | 3587965/4997817 [00:20<00:08, 175434.98it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3594304/4997817 [00:20<00:08, 174451.03it/s]" + " 72%|███████▏ | 3605572/4997817 [00:20<00:07, 175620.98it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3611874/4997817 [00:20<00:07, 174822.21it/s]" + " 72%|███████▏ | 3623294/4997817 [00:20<00:07, 176096.38it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3629419/4997817 [00:20<00:07, 175005.63it/s]" + " 73%|███████▎ | 3640904/4997817 [00:20<00:07, 176024.50it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3646926/4997817 [00:20<00:07, 175021.72it/s]" + " 73%|███████▎ | 3658507/4997817 [00:20<00:07, 170676.69it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3664429/4997817 [00:20<00:07, 174612.10it/s]" + " 74%|███████▎ | 3675917/4997817 [00:20<00:07, 171677.93it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3681965/4997817 [00:20<00:07, 174834.14it/s]" + " 74%|███████▍ | 3693112/4997817 [00:20<00:07, 163982.93it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3699743/4997817 [00:20<00:07, 175712.77it/s]" + " 74%|███████▍ | 3710544/4997817 [00:20<00:07, 166948.03it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3717315/4997817 [00:21<00:07, 175177.07it/s]" + " 75%|███████▍ | 3728215/4997817 [00:21<00:07, 169784.08it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3734834/4997817 [00:21<00:07, 175070.87it/s]" + " 75%|███████▍ | 3745924/4997817 [00:21<00:07, 171924.04it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3752342/4997817 [00:21<00:07, 174347.46it/s]" + " 75%|███████▌ | 3763638/4997817 [00:21<00:07, 173460.72it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3769843/4997817 [00:21<00:07, 174542.86it/s]" + " 76%|███████▌ | 3781329/4997817 [00:21<00:06, 174480.22it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3787298/4997817 [00:21<00:06, 174394.61it/s]" + " 76%|███████▌ | 3798992/4997817 [00:21<00:06, 175117.76it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3804738/4997817 [00:21<00:06, 174299.31it/s]" + " 76%|███████▋ | 3816611/4997817 [00:21<00:06, 175433.05it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3822169/4997817 [00:21<00:06, 174117.57it/s]" + " 77%|███████▋ | 3834271/4997817 [00:21<00:06, 175776.50it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3839589/4997817 [00:21<00:06, 174140.05it/s]" + " 77%|███████▋ | 3851933/4997817 [00:21<00:06, 176026.68it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3857014/4997817 [00:21<00:06, 174170.79it/s]" + " 77%|███████▋ | 3869588/4997817 [00:21<00:06, 176180.54it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3874432/4997817 [00:22<00:06, 173710.47it/s]" + " 78%|███████▊ | 3887211/4997817 [00:21<00:06, 175622.10it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3891804/4997817 [00:22<00:06, 173690.70it/s]" + " 78%|███████▊ | 3904777/4997817 [00:22<00:06, 175260.61it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3909174/4997817 [00:22<00:06, 173278.92it/s]" + " 78%|███████▊ | 3922372/4997817 [00:22<00:06, 175462.33it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3926522/4997817 [00:22<00:06, 173335.52it/s]" + " 79%|███████▉ | 3939934/4997817 [00:22<00:06, 175506.68it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3943856/4997817 [00:22<00:06, 173233.30it/s]" + " 79%|███████▉ | 3957486/4997817 [00:22<00:05, 175329.34it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3961204/4997817 [00:22<00:05, 173303.01it/s]" + " 80%|███████▉ | 3975074/4997817 [00:22<00:05, 175490.25it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3978607/4997817 [00:22<00:05, 173518.01it/s]" + " 80%|███████▉ | 3992695/4997817 [00:22<00:05, 175700.52it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3995975/4997817 [00:22<00:05, 173564.50it/s]" + " 80%|████████ | 4010266/4997817 [00:22<00:05, 175420.64it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4013332/4997817 [00:22<00:05, 173391.08it/s]" + " 81%|████████ | 4027895/4997817 [00:22<00:05, 175676.50it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4030714/4997817 [00:22<00:05, 173514.94it/s]" + " 81%|████████ | 4045463/4997817 [00:22<00:05, 175631.93it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4048116/4997817 [00:23<00:05, 173663.90it/s]" + " 81%|████████▏ | 4063028/4997817 [00:22<00:05, 175634.51it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4065520/4997817 [00:23<00:05, 173773.60it/s]" + " 82%|████████▏ | 4080592/4997817 [00:23<00:05, 174865.98it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4082898/4997817 [00:23<00:05, 173743.90it/s]" + " 82%|████████▏ | 4098080/4997817 [00:23<00:05, 174814.65it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4100273/4997817 [00:23<00:05, 173481.96it/s]" + " 82%|████████▏ | 4115725/4997817 [00:23<00:05, 175300.20it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4117622/4997817 [00:23<00:05, 173256.34it/s]" + " 83%|████████▎ | 4133264/4997817 [00:23<00:04, 175322.13it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4134948/4997817 [00:23<00:05, 172520.22it/s]" + " 83%|████████▎ | 4150797/4997817 [00:23<00:04, 175066.95it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4152348/4997817 [00:23<00:04, 172958.60it/s]" + " 83%|████████▎ | 4168305/4997817 [00:23<00:04, 175046.04it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4169748/4997817 [00:23<00:04, 173267.53it/s]" + " 84%|████████▍ | 4185811/4997817 [00:23<00:04, 175044.90it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4187104/4997817 [00:23<00:04, 173352.29it/s]" + " 84%|████████▍ | 4203327/4997817 [00:23<00:04, 175076.44it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4204440/4997817 [00:23<00:04, 172791.19it/s]" + " 84%|████████▍ | 4220835/4997817 [00:23<00:04, 174933.90it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4221902/4997817 [00:24<00:04, 173333.48it/s]" + " 85%|████████▍ | 4238329/4997817 [00:24<00:04, 174674.70it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4239236/4997817 [00:24<00:04, 173153.23it/s]" + " 85%|████████▌ | 4256239/4997817 [00:24<00:04, 175996.66it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4256720/4997817 [00:24<00:04, 173654.39it/s]" + " 86%|████████▌ | 4273839/4997817 [00:24<00:04, 175799.04it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4274142/4997817 [00:24<00:04, 173821.11it/s]" + " 86%|████████▌ | 4291598/4997817 [00:24<00:04, 176331.95it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4291554/4997817 [00:24<00:04, 173906.49it/s]" + " 86%|████████▌ | 4309272/4997817 [00:24<00:03, 176450.48it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4309142/4997817 [00:24<00:03, 174494.60it/s]" + " 87%|████████▋ | 4326984/4997817 [00:24<00:03, 176648.44it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4326856/4997817 [00:24<00:03, 175283.28it/s]" + " 87%|████████▋ | 4344717/4997817 [00:24<00:03, 176849.29it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4344385/4997817 [00:24<00:03, 175275.19it/s]" + " 87%|████████▋ | 4362403/4997817 [00:24<00:03, 176596.00it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4361977/4997817 [00:24<00:03, 175463.60it/s]" + " 88%|████████▊ | 4380063/4997817 [00:24<00:03, 175961.51it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4379555/4997817 [00:24<00:03, 175555.66it/s]" + " 88%|████████▊ | 4397790/4997817 [00:24<00:03, 176348.48it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4397111/4997817 [00:25<00:03, 175291.26it/s]" + " 88%|████████▊ | 4415426/4997817 [00:25<00:03, 174788.80it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4414726/4997817 [00:25<00:03, 175544.11it/s]" + " 89%|████████▊ | 4432909/4997817 [00:25<00:03, 169890.16it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4432281/4997817 [00:25<00:03, 175358.70it/s]" + " 89%|████████▉ | 4450462/4997817 [00:25<00:03, 171535.25it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4449817/4997817 [00:25<00:03, 175271.13it/s]" + " 89%|████████▉ | 4468091/4997817 [00:25<00:03, 172931.24it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4467425/4997817 [00:25<00:03, 175509.76it/s]" + " 90%|████████▉ | 4485670/4997817 [00:25<00:02, 173774.79it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4484977/4997817 [00:25<00:02, 174813.20it/s]" + " 90%|█████████ | 4503252/4997817 [00:25<00:02, 174381.11it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4502745/4997817 [00:25<00:02, 175667.70it/s]" + " 90%|█████████ | 4520917/4997817 [00:25<00:02, 175052.85it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4520324/4997817 [00:25<00:02, 175702.10it/s]" + " 91%|█████████ | 4538464/4997817 [00:25<00:02, 175173.63it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4537895/4997817 [00:25<00:02, 175107.23it/s]" + " 91%|█████████ | 4556000/4997817 [00:25<00:02, 175226.80it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4555735/4997817 [00:25<00:02, 176089.20it/s]" + " 92%|█████████▏| 4573552/4997817 [00:25<00:02, 175311.24it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4573507/4997817 [00:26<00:02, 176573.73it/s]" + " 92%|█████████▏| 4591115/4997817 [00:26<00:02, 175403.76it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4591290/4997817 [00:26<00:02, 176944.94it/s]" + " 92%|█████████▏| 4608663/4997817 [00:26<00:02, 175423.90it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4608986/4997817 [00:26<00:02, 176778.77it/s]" + " 93%|█████████▎| 4626208/4997817 [00:26<00:02, 175425.88it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4626665/4997817 [00:26<00:02, 175958.86it/s]" + " 93%|█████████▎| 4643752/4997817 [00:26<00:02, 174281.24it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4644332/4997817 [00:26<00:02, 176168.57it/s]" + " 93%|█████████▎| 4661183/4997817 [00:26<00:01, 174117.01it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4662117/4997817 [00:26<00:01, 176667.85it/s]" + " 94%|█████████▎| 4678749/4997817 [00:26<00:01, 174573.91it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4679988/4997817 [00:26<00:01, 177275.43it/s]" + " 94%|█████████▍| 4696244/4997817 [00:26<00:01, 174681.47it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4697734/4997817 [00:26<00:01, 177327.60it/s]" + " 94%|█████████▍| 4713714/4997817 [00:26<00:01, 174596.35it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4715540/4997817 [00:26<00:01, 177542.82it/s]" + " 95%|█████████▍| 4731175/4997817 [00:26<00:01, 174541.29it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4733295/4997817 [00:26<00:01, 177504.30it/s]" + " 95%|█████████▌| 4748630/4997817 [00:26<00:01, 174055.68it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4751046/4997817 [00:27<00:01, 177280.39it/s]" + " 95%|█████████▌| 4766094/4997817 [00:27<00:01, 174228.01it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4768775/4997817 [00:27<00:01, 176933.50it/s]" + " 96%|█████████▌| 4783518/4997817 [00:27<00:01, 173985.40it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4786469/4997817 [00:27<00:01, 176596.14it/s]" + " 96%|█████████▌| 4800917/4997817 [00:27<00:01, 173759.33it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4804129/4997817 [00:27<00:01, 176400.22it/s]" + " 96%|█████████▋| 4818354/4997817 [00:27<00:01, 173939.86it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4821872/4997817 [00:27<00:00, 176704.67it/s]" + " 97%|█████████▋| 4835749/4997817 [00:27<00:00, 173824.93it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4839579/4997817 [00:27<00:00, 176809.80it/s]" + " 97%|█████████▋| 4853232/4997817 [00:27<00:00, 174121.61it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4857261/4997817 [00:27<00:00, 176267.53it/s]" + " 97%|█████████▋| 4870744/4997817 [00:27<00:00, 174418.81it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4874889/4997817 [00:27<00:00, 175438.98it/s]" + " 98%|█████████▊| 4888252/4997817 [00:27<00:00, 174613.92it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4892434/4997817 [00:27<00:00, 174606.22it/s]" + " 98%|█████████▊| 4905891/4997817 [00:27<00:00, 175141.70it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4910357/4997817 [00:27<00:00, 175980.03it/s]" + " 99%|█████████▊| 4923509/4997817 [00:27<00:00, 175450.58it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4928177/4997817 [00:28<00:00, 176637.54it/s]" + " 99%|█████████▉| 4941151/4997817 [00:28<00:00, 175734.70it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4946106/4997817 [00:28<00:00, 177425.94it/s]" + " 99%|█████████▉| 4958725/4997817 [00:28<00:00, 170139.31it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4963909/4997817 [00:28<00:00, 177604.34it/s]" + "100%|█████████▉| 4976689/4997817 [00:28<00:00, 172922.24it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4981743/4997817 [00:28<00:00, 177821.14it/s]" + "100%|█████████▉| 4994432/4997817 [00:28<00:00, 174250.40it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:28<00:00, 175926.09it/s]" + "100%|██████████| 4997817/4997817 [00:28<00:00, 176272.22it/s]" ] }, { @@ -3041,10 +3041,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:00:58.099379Z", - "iopub.status.busy": "2023-12-28T11:00:58.099176Z", - "iopub.status.idle": "2023-12-28T11:01:05.472880Z", - "shell.execute_reply": "2023-12-28T11:01:05.472119Z" + "iopub.execute_input": "2024-01-02T16:54:05.579547Z", + "iopub.status.busy": "2024-01-02T16:54:05.579190Z", + "iopub.status.idle": "2024-01-02T16:54:13.480290Z", + "shell.execute_reply": "2024-01-02T16:54:13.479656Z" } }, "outputs": [], @@ -3058,10 +3058,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:05.475773Z", - "iopub.status.busy": "2023-12-28T11:01:05.475520Z", - "iopub.status.idle": "2023-12-28T11:01:08.657861Z", - "shell.execute_reply": "2023-12-28T11:01:08.657156Z" + "iopub.execute_input": "2024-01-02T16:54:13.483283Z", + "iopub.status.busy": "2024-01-02T16:54:13.482997Z", + "iopub.status.idle": "2024-01-02T16:54:16.556482Z", + "shell.execute_reply": "2024-01-02T16:54:16.555768Z" } }, "outputs": [ @@ -3130,17 +3130,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:08.660529Z", - "iopub.status.busy": "2023-12-28T11:01:08.660298Z", - "iopub.status.idle": "2023-12-28T11:01:10.022188Z", - "shell.execute_reply": "2023-12-28T11:01:10.021545Z" + "iopub.execute_input": "2024-01-02T16:54:16.559423Z", + "iopub.status.busy": "2024-01-02T16:54:16.558914Z", + "iopub.status.idle": "2024-01-02T16:54:17.928966Z", + "shell.execute_reply": "2024-01-02T16:54:17.928254Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e5d7d226e9c4dce8d3d3f3c06d86667", + "model_id": "8aae686ac8c74b5bb91224442e911d92", "version_major": 2, "version_minor": 0 }, @@ -3170,10 +3170,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:10.025177Z", - "iopub.status.busy": "2023-12-28T11:01:10.024747Z", - "iopub.status.idle": "2023-12-28T11:01:10.222962Z", - "shell.execute_reply": "2023-12-28T11:01:10.222323Z" + "iopub.execute_input": "2024-01-02T16:54:17.931860Z", + "iopub.status.busy": "2024-01-02T16:54:17.931637Z", + "iopub.status.idle": "2024-01-02T16:54:18.128759Z", + "shell.execute_reply": "2024-01-02T16:54:18.128057Z" } }, "outputs": [], @@ -3187,10 +3187,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:10.225884Z", - "iopub.status.busy": "2023-12-28T11:01:10.225498Z", - "iopub.status.idle": "2023-12-28T11:01:14.952530Z", - "shell.execute_reply": "2023-12-28T11:01:14.951823Z" + "iopub.execute_input": "2024-01-02T16:54:18.131788Z", + "iopub.status.busy": "2024-01-02T16:54:18.131562Z", + "iopub.status.idle": "2024-01-02T16:54:23.002327Z", + "shell.execute_reply": "2024-01-02T16:54:23.001624Z" } }, "outputs": [ @@ -3263,10 +3263,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:14.955364Z", - "iopub.status.busy": "2023-12-28T11:01:14.954913Z", - "iopub.status.idle": "2023-12-28T11:01:15.012621Z", - "shell.execute_reply": "2023-12-28T11:01:15.011963Z" + "iopub.execute_input": "2024-01-02T16:54:23.004939Z", + "iopub.status.busy": "2024-01-02T16:54:23.004690Z", + "iopub.status.idle": "2024-01-02T16:54:23.061934Z", + "shell.execute_reply": "2024-01-02T16:54:23.061300Z" }, "nbsphinx": "hidden" }, @@ -3310,73 +3310,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02560d5b02ba416eb92e8117dce2c41f": { + "18b87859a774422d85d90b3b12ca90b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da874cb90aee49548b346f2c19b20e30", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e4c29e16dac4b8a97df090b1d9b5849", - "value": 30.0 - } - }, - "02cfe213e1e0454d8f264615fc31829c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0fc54cf2073c4f89b253f72c39348371", - "placeholder": "​", - "style": "IPY_MODEL_e9cc2435526f421284c2f1c5281c0519", - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "035817bcc0934941a47dfa90c5303c55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_95d3c52ab2c14abe863c86b4f4231d33", - "placeholder": "​", - "style": "IPY_MODEL_bbfe4bb4d5b441ed93bdaac7456f838a", - "value": " 30/30 [00:36<00:00, 1.14s/it]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "07782be3fe914bea89597758fd669be7": { + "1c7f5519b9b64fc395355cb12b76bd68": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3428,7 +3378,44 @@ "width": null } }, - "0fc54cf2073c4f89b253f72c39348371": { + "26a4d1c0051743c392f97fcc8ba5c838": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3514a40c715d4c2082a5c057f1ab8c81", + "placeholder": "​", + "style": "IPY_MODEL_5a8c307847e74c2cba883a49647903cd", + "value": " 30/30 [00:39<00:00, 1.28s/it]" + } + }, + "2a5591a41fbd4b00b135832d51ac7e43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2a5cdfd043e64682a63a44807c2660d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3480,23 +3467,28 @@ "width": null } }, - "1e4c29e16dac4b8a97df090b1d9b5849": { + "2d28ed44d20f472fac52924ffc2cd38b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_608a29bf646d460489a54686bad9349a", + "placeholder": "​", + "style": "IPY_MODEL_a4878243a53441729338e73c5c463051", + "value": "number of examples processed for estimating thresholds: 100%" } }, - "2238cc5fd07f4126916f173811521ed8": { + "3514a40c715d4c2082a5c057f1ab8c81": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3548,7 +3540,22 @@ "width": null } }, - "2422877bb39d4c828edd62dca32a1dbf": { + "429e6bdde66146e9a04a3f1b9b914d67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4334a63ee1d44ffba2507dda680bf08a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3600,31 +3607,38 @@ "width": null } }, - "2651666a8d4e43f2a9140f7e7cb48c7d": { + "4e789ee3793a4c0e9549b7f2a5c038fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2238cc5fd07f4126916f173811521ed8", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c987238c0cd44be0bf8b56b499c0d2f2", - "value": 30.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "2b5be36e37104305970002c66d7bd72e": { + "520d822941cb45318a25bbfd9ac371c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5366c37ea08a4613acf959def96162ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3639,14 +3653,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_02cfe213e1e0454d8f264615fc31829c", - "IPY_MODEL_f3182f5fe7894908b3a653ab8fbc78fc", - "IPY_MODEL_c6e7a1c2c7084d95843e3ef630984703" + "IPY_MODEL_b428720c2bc34f4ba044d226940bdb22", + "IPY_MODEL_85e7fdc552784d76afe3951c531d3322", + "IPY_MODEL_26a4d1c0051743c392f97fcc8ba5c838" ], - "layout": "IPY_MODEL_51271e127dbc43c991c5e60fada24f83" + "layout": "IPY_MODEL_d30a0b033ff7414ba4196c962fb57ffa" } }, - "2c94978e64114ef488c5163431a23970": { + "5a8c307847e74c2cba883a49647903cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3661,7 +3675,7 @@ "description_width": "" } }, - "3cec76bc20064f21865c24952ad1a91b": { + "5e43e88d7ceb4bcc82d2f9b10cb7bdb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3713,43 +3727,7 @@ "width": null } }, - "3ea8947037984722bbe58925ce4a2eab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4a158ae333e04a6fa84335f3b8ea3b92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ff54145d974e4e76b02e63e0106036eb", - "placeholder": "​", - "style": "IPY_MODEL_6bec90cac6374458977de8a39d27ab66", - "value": "images processed using softmin: 100%" - } - }, - "51271e127dbc43c991c5e60fada24f83": { + "608a29bf646d460489a54686bad9349a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3801,7 +3779,7 @@ "width": null } }, - "6a9f7abbe3c84bc2a7107ccd47325882": { + "638a053f1438455e80d05f3c0266bc75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3816,28 +3794,61 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2422877bb39d4c828edd62dca32a1dbf", + "layout": "IPY_MODEL_8fa0960df485498d9c8d9a3b954cde57", "placeholder": "​", - "style": "IPY_MODEL_2c94978e64114ef488c5163431a23970", - "value": " 30/30 [00:01<00:00, 22.67it/s]" + "style": "IPY_MODEL_4e789ee3793a4c0e9549b7f2a5c038fd", + "value": "images processed using softmin: 100%" } }, - "6bec90cac6374458977de8a39d27ab66": { + "6408d651bce44785a5d33951845fd916": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2a5cdfd043e64682a63a44807c2660d8", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a5591a41fbd4b00b135832d51ac7e43", + "value": 30.0 + } + }, + "6c376451402744ff85331aaff852218b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_876d3f07b29e4897b33aa11e06e59e12", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_520d822941cb45318a25bbfd9ac371c0", + "value": 30.0 } }, - "7aa96f457adc4634b9a6249bdcc96c26": { + "72d2afb9d7b04fd0b6b61ea1454e913b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3889,72 +3900,7 @@ "width": null } }, - "7c6c8437d53b4ab7921b43610cc69ef3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_87ac68af1b6e4d228977e709a1515532", - "IPY_MODEL_02560d5b02ba416eb92e8117dce2c41f", - "IPY_MODEL_035817bcc0934941a47dfa90c5303c55" - ], - "layout": "IPY_MODEL_e6a119e7eecf40ceb36b9f50eee2da04" - } - }, - "87ac68af1b6e4d228977e709a1515532": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d6fbc71e13e2479683d6562715fa0252", - "placeholder": "​", - "style": "IPY_MODEL_3ea8947037984722bbe58925ce4a2eab", - "value": "number of examples processed for checking labels: 100%" - } - }, - "8e5d7d226e9c4dce8d3d3f3c06d86667": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a158ae333e04a6fa84335f3b8ea3b92", - "IPY_MODEL_2651666a8d4e43f2a9140f7e7cb48c7d", - "IPY_MODEL_6a9f7abbe3c84bc2a7107ccd47325882" - ], - "layout": "IPY_MODEL_3cec76bc20064f21865c24952ad1a91b" - } - }, - "95d3c52ab2c14abe863c86b4f4231d33": { + "77b1b0ed9de04653bc3ea132b0ba3891": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4006,37 +3952,31 @@ "width": null } }, - "979d56e46d3546f5ae95cb022a6dd0d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bbfe4bb4d5b441ed93bdaac7456f838a": { + "85e7fdc552784d76afe3951c531d3322": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e43e88d7ceb4bcc82d2f9b10cb7bdb0", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_18b87859a774422d85d90b3b12ca90b7", + "value": 30.0 } }, - "c6e7a1c2c7084d95843e3ef630984703": { + "86dc325f73b24537beaf6529a837f97e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4051,45 +3991,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_07782be3fe914bea89597758fd669be7", + "layout": "IPY_MODEL_77b1b0ed9de04653bc3ea132b0ba3891", "placeholder": "​", - "style": "IPY_MODEL_979d56e46d3546f5ae95cb022a6dd0d2", - "value": " 30/30 [00:00<00:00, 414.77it/s]" + "style": "IPY_MODEL_e2f149bc7b184cc8928ff551d1ef5fd4", + "value": " 30/30 [00:01<00:00, 22.20it/s]" } }, - "c74a635ffc3b44d4b88d07667e70078a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c987238c0cd44be0bf8b56b499c0d2f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d6fbc71e13e2479683d6562715fa0252": { + "876d3f07b29e4897b33aa11e06e59e12": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4141,7 +4049,29 @@ "width": null } }, - "da874cb90aee49548b346f2c19b20e30": { + "8aae686ac8c74b5bb91224442e911d92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_638a053f1438455e80d05f3c0266bc75", + "IPY_MODEL_6c376451402744ff85331aaff852218b", + "IPY_MODEL_86dc325f73b24537beaf6529a837f97e" + ], + "layout": "IPY_MODEL_4334a63ee1d44ffba2507dda680bf08a" + } + }, + "8fa0960df485498d9c8d9a3b954cde57": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4193,7 +4123,65 @@ "width": null } }, - "e6a119e7eecf40ceb36b9f50eee2da04": { + "9e743892e76b4b22937631c864bad121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d28ed44d20f472fac52924ffc2cd38b", + "IPY_MODEL_6408d651bce44785a5d33951845fd916", + "IPY_MODEL_ff4ee3f9011c4f0385422bd1e19d8936" + ], + "layout": "IPY_MODEL_72d2afb9d7b04fd0b6b61ea1454e913b" + } + }, + "a4878243a53441729338e73c5c463051": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b428720c2bc34f4ba044d226940bdb22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c7f5519b9b64fc395355cb12b76bd68", + "placeholder": "​", + "style": "IPY_MODEL_429e6bdde66146e9a04a3f1b9b914d67", + "value": "number of examples processed for checking labels: 100%" + } + }, + "c1029b39e4aa4b6eb82c5236632a620e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4245,46 +4233,7 @@ "width": null } }, - "e9cc2435526f421284c2f1c5281c0519": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f3182f5fe7894908b3a653ab8fbc78fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7aa96f457adc4634b9a6249bdcc96c26", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c74a635ffc3b44d4b88d07667e70078a", - "value": 30.0 - } - }, - "ff54145d974e4e76b02e63e0106036eb": { + "d30a0b033ff7414ba4196c962fb57ffa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4335,6 +4284,57 @@ "visibility": null, "width": null } + }, + "e2f149bc7b184cc8928ff551d1ef5fd4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea6c9282ca374766b679ba3bac7d02a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ff4ee3f9011c4f0385422bd1e19d8936": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c1029b39e4aa4b6eb82c5236632a620e", + "placeholder": "​", + "style": "IPY_MODEL_ea6c9282ca374766b679ba3bac7d02a6", + "value": " 30/30 [00:00<00:00, 409.55it/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/tabular.html b/master/tutorials/tabular.html index 95f42f224..8c68a6cc4 100644 --- a/master/tutorials/tabular.html +++ b/master/tutorials/tabular.html @@ -1264,7 +1264,7 @@

    5. Train a more robust model from noisy labels
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 465119af7..28763a0d4 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:17.815928Z", - "iopub.status.busy": "2023-12-28T11:01:17.815459Z", - "iopub.status.idle": "2023-12-28T11:01:18.884160Z", - "shell.execute_reply": "2023-12-28T11:01:18.883441Z" + "iopub.execute_input": "2024-01-02T16:54:27.576023Z", + "iopub.status.busy": "2024-01-02T16:54:27.575559Z", + "iopub.status.idle": "2024-01-02T16:54:28.742983Z", + "shell.execute_reply": "2024-01-02T16:54:28.742379Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.887299Z", - "iopub.status.busy": "2023-12-28T11:01:18.886732Z", - "iopub.status.idle": "2023-12-28T11:01:18.904866Z", - "shell.execute_reply": "2023-12-28T11:01:18.904268Z" + "iopub.execute_input": "2024-01-02T16:54:28.745985Z", + "iopub.status.busy": "2024-01-02T16:54:28.745638Z", + "iopub.status.idle": "2024-01-02T16:54:28.763805Z", + "shell.execute_reply": "2024-01-02T16:54:28.763228Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.907994Z", - "iopub.status.busy": "2023-12-28T11:01:18.907553Z", - "iopub.status.idle": "2023-12-28T11:01:18.941517Z", - "shell.execute_reply": "2023-12-28T11:01:18.940872Z" + "iopub.execute_input": "2024-01-02T16:54:28.767155Z", + "iopub.status.busy": "2024-01-02T16:54:28.766705Z", + "iopub.status.idle": "2024-01-02T16:54:28.843012Z", + "shell.execute_reply": "2024-01-02T16:54:28.842373Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.944072Z", - "iopub.status.busy": "2023-12-28T11:01:18.943689Z", - "iopub.status.idle": "2023-12-28T11:01:18.947781Z", - "shell.execute_reply": "2023-12-28T11:01:18.947128Z" + "iopub.execute_input": "2024-01-02T16:54:28.845645Z", + "iopub.status.busy": "2024-01-02T16:54:28.845273Z", + "iopub.status.idle": "2024-01-02T16:54:28.849427Z", + "shell.execute_reply": "2024-01-02T16:54:28.848797Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.950390Z", - "iopub.status.busy": "2023-12-28T11:01:18.949908Z", - "iopub.status.idle": "2023-12-28T11:01:18.959421Z", - "shell.execute_reply": "2023-12-28T11:01:18.958716Z" + "iopub.execute_input": "2024-01-02T16:54:28.852103Z", + "iopub.status.busy": "2024-01-02T16:54:28.851576Z", + "iopub.status.idle": "2024-01-02T16:54:28.860870Z", + "shell.execute_reply": "2024-01-02T16:54:28.860356Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.962624Z", - "iopub.status.busy": "2023-12-28T11:01:18.962104Z", - "iopub.status.idle": "2023-12-28T11:01:18.965191Z", - "shell.execute_reply": "2023-12-28T11:01:18.964545Z" + "iopub.execute_input": "2024-01-02T16:54:28.863543Z", + "iopub.status.busy": "2024-01-02T16:54:28.863169Z", + "iopub.status.idle": "2024-01-02T16:54:28.865953Z", + "shell.execute_reply": "2024-01-02T16:54:28.865391Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:18.967757Z", - "iopub.status.busy": "2023-12-28T11:01:18.967263Z", - "iopub.status.idle": "2023-12-28T11:01:19.559833Z", - "shell.execute_reply": "2023-12-28T11:01:19.559095Z" + "iopub.execute_input": "2024-01-02T16:54:28.868390Z", + "iopub.status.busy": "2024-01-02T16:54:28.868002Z", + "iopub.status.idle": "2024-01-02T16:54:29.461813Z", + "shell.execute_reply": "2024-01-02T16:54:29.461162Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:19.562899Z", - "iopub.status.busy": "2023-12-28T11:01:19.562622Z", - "iopub.status.idle": "2023-12-28T11:01:20.852102Z", - "shell.execute_reply": "2023-12-28T11:01:20.851298Z" + "iopub.execute_input": "2024-01-02T16:54:29.464957Z", + "iopub.status.busy": "2024-01-02T16:54:29.464503Z", + "iopub.status.idle": "2024-01-02T16:54:30.836058Z", + "shell.execute_reply": "2024-01-02T16:54:30.835246Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:20.855347Z", - "iopub.status.busy": "2023-12-28T11:01:20.854744Z", - "iopub.status.idle": "2023-12-28T11:01:20.865630Z", - "shell.execute_reply": "2023-12-28T11:01:20.865114Z" + "iopub.execute_input": "2024-01-02T16:54:30.839595Z", + "iopub.status.busy": "2024-01-02T16:54:30.838711Z", + "iopub.status.idle": "2024-01-02T16:54:30.849806Z", + "shell.execute_reply": "2024-01-02T16:54:30.849127Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:20.868400Z", - "iopub.status.busy": "2023-12-28T11:01:20.867902Z", - "iopub.status.idle": "2023-12-28T11:01:20.872536Z", - "shell.execute_reply": "2023-12-28T11:01:20.872018Z" + "iopub.execute_input": "2024-01-02T16:54:30.852592Z", + "iopub.status.busy": "2024-01-02T16:54:30.852129Z", + "iopub.status.idle": "2024-01-02T16:54:30.856727Z", + "shell.execute_reply": "2024-01-02T16:54:30.856188Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:20.875133Z", - "iopub.status.busy": "2023-12-28T11:01:20.874771Z", - "iopub.status.idle": "2023-12-28T11:01:20.882350Z", - "shell.execute_reply": "2023-12-28T11:01:20.881828Z" + "iopub.execute_input": "2024-01-02T16:54:30.859393Z", + "iopub.status.busy": "2024-01-02T16:54:30.858941Z", + "iopub.status.idle": "2024-01-02T16:54:30.867756Z", + "shell.execute_reply": "2024-01-02T16:54:30.867189Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:20.884682Z", - "iopub.status.busy": "2023-12-28T11:01:20.884467Z", - "iopub.status.idle": "2023-12-28T11:01:21.008810Z", - "shell.execute_reply": "2023-12-28T11:01:21.008161Z" + "iopub.execute_input": "2024-01-02T16:54:30.870763Z", + "iopub.status.busy": "2024-01-02T16:54:30.870216Z", + "iopub.status.idle": "2024-01-02T16:54:30.995619Z", + "shell.execute_reply": "2024-01-02T16:54:30.994907Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:21.011522Z", - "iopub.status.busy": "2023-12-28T11:01:21.011244Z", - "iopub.status.idle": "2023-12-28T11:01:21.014556Z", - "shell.execute_reply": "2023-12-28T11:01:21.013993Z" + "iopub.execute_input": "2024-01-02T16:54:30.998448Z", + "iopub.status.busy": "2024-01-02T16:54:30.998064Z", + "iopub.status.idle": "2024-01-02T16:54:31.001225Z", + "shell.execute_reply": "2024-01-02T16:54:31.000616Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:21.017048Z", - "iopub.status.busy": "2023-12-28T11:01:21.016659Z", - "iopub.status.idle": "2023-12-28T11:01:22.504798Z", - "shell.execute_reply": "2023-12-28T11:01:22.504059Z" + "iopub.execute_input": "2024-01-02T16:54:31.003616Z", + "iopub.status.busy": "2024-01-02T16:54:31.003408Z", + "iopub.status.idle": "2024-01-02T16:54:32.513767Z", + "shell.execute_reply": "2024-01-02T16:54:32.513024Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:22.507863Z", - "iopub.status.busy": "2023-12-28T11:01:22.507444Z", - "iopub.status.idle": "2023-12-28T11:01:22.521420Z", - "shell.execute_reply": "2023-12-28T11:01:22.520854Z" + "iopub.execute_input": "2024-01-02T16:54:32.517287Z", + "iopub.status.busy": "2024-01-02T16:54:32.516775Z", + "iopub.status.idle": "2024-01-02T16:54:32.531651Z", + "shell.execute_reply": "2024-01-02T16:54:32.531046Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:22.523873Z", - "iopub.status.busy": "2023-12-28T11:01:22.523496Z", - "iopub.status.idle": "2023-12-28T11:01:22.549141Z", - "shell.execute_reply": "2023-12-28T11:01:22.548628Z" + "iopub.execute_input": "2024-01-02T16:54:32.534250Z", + "iopub.status.busy": "2024-01-02T16:54:32.534019Z", + "iopub.status.idle": "2024-01-02T16:54:32.610958Z", + "shell.execute_reply": "2024-01-02T16:54:32.610339Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 3861cea31..925c41377 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -969,7 +969,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'change_pin', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'apple_pay_or_google_pay', 'cancel_transfer'}
    +Classes: {'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'card_payment_fee_charged', 'getting_spare_card', 'lost_or_stolen_phone'}
     

    Let’s print the first example in the train set.

    @@ -1354,7 +1354,7 @@

    4. Train a more robust model from noisy labels
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index d6fa09cd6..da329fc94 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:27.832502Z", - "iopub.status.busy": "2023-12-28T11:01:27.832306Z", - "iopub.status.idle": "2023-12-28T11:01:29.980258Z", - "shell.execute_reply": "2023-12-28T11:01:29.979578Z" + "iopub.execute_input": "2024-01-02T16:54:37.736698Z", + "iopub.status.busy": "2024-01-02T16:54:37.736156Z", + "iopub.status.idle": "2024-01-02T16:54:39.863165Z", + "shell.execute_reply": "2024-01-02T16:54:39.862510Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:29.983313Z", - "iopub.status.busy": "2023-12-28T11:01:29.982750Z", - "iopub.status.idle": "2023-12-28T11:01:29.986523Z", - "shell.execute_reply": "2023-12-28T11:01:29.985990Z" + "iopub.execute_input": "2024-01-02T16:54:39.866338Z", + "iopub.status.busy": "2024-01-02T16:54:39.865797Z", + "iopub.status.idle": "2024-01-02T16:54:39.869443Z", + "shell.execute_reply": "2024-01-02T16:54:39.868865Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:29.989008Z", - "iopub.status.busy": "2023-12-28T11:01:29.988634Z", - "iopub.status.idle": "2023-12-28T11:01:29.991893Z", - "shell.execute_reply": "2023-12-28T11:01:29.991365Z" + "iopub.execute_input": "2024-01-02T16:54:39.871862Z", + "iopub.status.busy": "2024-01-02T16:54:39.871503Z", + "iopub.status.idle": "2024-01-02T16:54:39.874880Z", + "shell.execute_reply": "2024-01-02T16:54:39.874248Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:29.994425Z", - "iopub.status.busy": "2023-12-28T11:01:29.994063Z", - "iopub.status.idle": "2023-12-28T11:01:30.032613Z", - "shell.execute_reply": "2023-12-28T11:01:30.031904Z" + "iopub.execute_input": "2024-01-02T16:54:39.877312Z", + "iopub.status.busy": "2024-01-02T16:54:39.876941Z", + "iopub.status.idle": "2024-01-02T16:54:39.929547Z", + "shell.execute_reply": "2024-01-02T16:54:39.928892Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.035307Z", - "iopub.status.busy": "2023-12-28T11:01:30.034918Z", - "iopub.status.idle": "2023-12-28T11:01:30.039276Z", - "shell.execute_reply": "2023-12-28T11:01:30.038716Z" + "iopub.execute_input": "2024-01-02T16:54:39.932180Z", + "iopub.status.busy": "2024-01-02T16:54:39.931808Z", + "iopub.status.idle": "2024-01-02T16:54:39.935591Z", + "shell.execute_reply": "2024-01-02T16:54:39.935052Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.041654Z", - "iopub.status.busy": "2023-12-28T11:01:30.041430Z", - "iopub.status.idle": "2023-12-28T11:01:30.045848Z", - "shell.execute_reply": "2023-12-28T11:01:30.045298Z" + "iopub.execute_input": "2024-01-02T16:54:39.938001Z", + "iopub.status.busy": "2024-01-02T16:54:39.937540Z", + "iopub.status.idle": "2024-01-02T16:54:39.941583Z", + "shell.execute_reply": "2024-01-02T16:54:39.940953Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_about_to_expire', 'apple_pay_or_google_pay', 'cancel_transfer'}\n" + "Classes: {'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'beneficiary_not_allowed', 'card_about_to_expire', 'card_payment_fee_charged', 'getting_spare_card', 'lost_or_stolen_phone'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.048377Z", - "iopub.status.busy": "2023-12-28T11:01:30.047984Z", - "iopub.status.idle": "2023-12-28T11:01:30.051909Z", - "shell.execute_reply": "2023-12-28T11:01:30.051361Z" + "iopub.execute_input": "2024-01-02T16:54:39.944144Z", + "iopub.status.busy": "2024-01-02T16:54:39.943704Z", + "iopub.status.idle": "2024-01-02T16:54:39.947499Z", + "shell.execute_reply": "2024-01-02T16:54:39.946869Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.054549Z", - "iopub.status.busy": "2023-12-28T11:01:30.054081Z", - "iopub.status.idle": "2023-12-28T11:01:30.057941Z", - "shell.execute_reply": "2023-12-28T11:01:30.057397Z" + "iopub.execute_input": "2024-01-02T16:54:39.949923Z", + "iopub.status.busy": "2024-01-02T16:54:39.949487Z", + "iopub.status.idle": "2024-01-02T16:54:39.953207Z", + "shell.execute_reply": "2024-01-02T16:54:39.952571Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:30.060402Z", - "iopub.status.busy": "2023-12-28T11:01:30.060084Z", - "iopub.status.idle": "2023-12-28T11:01:38.919015Z", - "shell.execute_reply": "2023-12-28T11:01:38.918289Z" + "iopub.execute_input": "2024-01-02T16:54:39.955858Z", + "iopub.status.busy": "2024-01-02T16:54:39.955450Z", + "iopub.status.idle": "2024-01-02T16:54:48.781614Z", + "shell.execute_reply": "2024-01-02T16:54:48.780871Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:38.922314Z", - "iopub.status.busy": "2023-12-28T11:01:38.922064Z", - "iopub.status.idle": "2023-12-28T11:01:38.925165Z", - "shell.execute_reply": "2023-12-28T11:01:38.924554Z" + "iopub.execute_input": "2024-01-02T16:54:48.785035Z", + "iopub.status.busy": "2024-01-02T16:54:48.784590Z", + "iopub.status.idle": "2024-01-02T16:54:48.788004Z", + "shell.execute_reply": "2024-01-02T16:54:48.787341Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:38.927391Z", - "iopub.status.busy": "2023-12-28T11:01:38.927190Z", - "iopub.status.idle": "2023-12-28T11:01:38.930146Z", - "shell.execute_reply": "2023-12-28T11:01:38.929630Z" + "iopub.execute_input": "2024-01-02T16:54:48.790449Z", + "iopub.status.busy": "2024-01-02T16:54:48.790076Z", + "iopub.status.idle": "2024-01-02T16:54:48.792949Z", + "shell.execute_reply": "2024-01-02T16:54:48.792432Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:38.932712Z", - "iopub.status.busy": "2023-12-28T11:01:38.932112Z", - "iopub.status.idle": "2023-12-28T11:01:41.161145Z", - "shell.execute_reply": "2023-12-28T11:01:41.160377Z" + "iopub.execute_input": "2024-01-02T16:54:48.795237Z", + "iopub.status.busy": "2024-01-02T16:54:48.794835Z", + "iopub.status.idle": "2024-01-02T16:54:51.076518Z", + "shell.execute_reply": "2024-01-02T16:54:51.075766Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.164771Z", - "iopub.status.busy": "2023-12-28T11:01:41.164013Z", - "iopub.status.idle": "2023-12-28T11:01:41.172168Z", - "shell.execute_reply": "2023-12-28T11:01:41.171614Z" + "iopub.execute_input": "2024-01-02T16:54:51.080229Z", + "iopub.status.busy": "2024-01-02T16:54:51.079454Z", + "iopub.status.idle": "2024-01-02T16:54:51.088080Z", + "shell.execute_reply": "2024-01-02T16:54:51.087462Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.174715Z", - "iopub.status.busy": "2023-12-28T11:01:41.174312Z", - "iopub.status.idle": "2023-12-28T11:01:41.178758Z", - "shell.execute_reply": "2023-12-28T11:01:41.178219Z" + "iopub.execute_input": "2024-01-02T16:54:51.090720Z", + "iopub.status.busy": "2024-01-02T16:54:51.090328Z", + "iopub.status.idle": "2024-01-02T16:54:51.094473Z", + "shell.execute_reply": "2024-01-02T16:54:51.093903Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.181127Z", - "iopub.status.busy": "2023-12-28T11:01:41.180780Z", - "iopub.status.idle": "2023-12-28T11:01:41.184537Z", - "shell.execute_reply": "2023-12-28T11:01:41.183980Z" + "iopub.execute_input": "2024-01-02T16:54:51.096824Z", + "iopub.status.busy": "2024-01-02T16:54:51.096525Z", + "iopub.status.idle": "2024-01-02T16:54:51.100304Z", + "shell.execute_reply": "2024-01-02T16:54:51.099626Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.186823Z", - "iopub.status.busy": "2023-12-28T11:01:41.186475Z", - "iopub.status.idle": "2023-12-28T11:01:41.189611Z", - "shell.execute_reply": "2023-12-28T11:01:41.189068Z" + "iopub.execute_input": "2024-01-02T16:54:51.102958Z", + "iopub.status.busy": "2024-01-02T16:54:51.102546Z", + "iopub.status.idle": "2024-01-02T16:54:51.106438Z", + "shell.execute_reply": "2024-01-02T16:54:51.105819Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.191911Z", - "iopub.status.busy": "2023-12-28T11:01:41.191556Z", - "iopub.status.idle": "2023-12-28T11:01:41.198869Z", - "shell.execute_reply": "2023-12-28T11:01:41.198242Z" + "iopub.execute_input": "2024-01-02T16:54:51.109355Z", + "iopub.status.busy": "2024-01-02T16:54:51.108783Z", + "iopub.status.idle": "2024-01-02T16:54:51.117133Z", + "shell.execute_reply": "2024-01-02T16:54:51.116477Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.201392Z", - "iopub.status.busy": "2023-12-28T11:01:41.201041Z", - "iopub.status.idle": "2023-12-28T11:01:41.445547Z", - "shell.execute_reply": "2023-12-28T11:01:41.444900Z" + "iopub.execute_input": "2024-01-02T16:54:51.119789Z", + "iopub.status.busy": "2024-01-02T16:54:51.119404Z", + "iopub.status.idle": "2024-01-02T16:54:51.365989Z", + "shell.execute_reply": "2024-01-02T16:54:51.365197Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.448760Z", - "iopub.status.busy": "2023-12-28T11:01:41.448312Z", - "iopub.status.idle": "2023-12-28T11:01:41.728755Z", - "shell.execute_reply": "2023-12-28T11:01:41.728102Z" + "iopub.execute_input": "2024-01-02T16:54:51.369487Z", + "iopub.status.busy": "2024-01-02T16:54:51.368991Z", + "iopub.status.idle": "2024-01-02T16:54:51.649074Z", + "shell.execute_reply": "2024-01-02T16:54:51.648384Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:41.733056Z", - "iopub.status.busy": "2023-12-28T11:01:41.731867Z", - "iopub.status.idle": "2023-12-28T11:01:41.737541Z", - "shell.execute_reply": "2023-12-28T11:01:41.736943Z" + "iopub.execute_input": "2024-01-02T16:54:51.652498Z", + "iopub.status.busy": "2024-01-02T16:54:51.652009Z", + "iopub.status.idle": "2024-01-02T16:54:51.656370Z", + "shell.execute_reply": "2024-01-02T16:54:51.655753Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 669f4ab21..91494b5f3 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -857,41 +857,157 @@

    1. Install required dependencies and download data

    -
    +
    +
    +
    +
    +
    +--2024-01-02 16:54:56--  https://data.deepai.org/conll2003.zip
    +Resolving data.deepai.org (data.deepai.org)...
    +
    +
    +
    ---2023-12-28 11:01:46--  https://data.deepai.org/conll2003.zip
    -Resolving data.deepai.org (data.deepai.org)... 169.150.236.100, 2400:52e0:1a00::871:1
    -Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.
    -HTTP request sent, awaiting response... 200 OK
    +169.150.236.97, 2400:52e0:1a00::940:1
    +Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443...
    +
    +
    +
    +
    +
    +
    +
    +connected.
    +HTTP request sent, awaiting response...
    +
    +
    +
    +
    +
    +
    +
    +200 OK
     Length: 982975 (960K) [application/zip]
    -Saving to: ‘conll2003.zip’
    -
    -conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.1s
    -
    -2023-12-28 11:01:46 (7.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]
    -
    -mkdir: cannot create directory ‘data’: File exists
    +Saving to: ‘conll2003.zip’
    +
    +
    +
    conll2003.zip 0%[ ] 0 –.-KB/s
    +

    </pre>

    +
    +
    +
    conll2003.zip 0%[ ] 0 –.-KB/s
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    conll2003.zip 0%[ ] 0 –.-KB/s

    +
    +
    +
    +
    +
    +
    +

    conll2003.zip 100%[===================&gt;] 959.94K 4.78MB/s in 0.2s

    +
    +
    +

    2024-01-02 16:54:57 (4.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    mkdir: cannot create directory ‘data’: File exists +</pre>

    +
    +
    +

    conll2003.zip 100%[===================>] 959.94K 4.78MB/s in 0.2s

    +
    +
    +

    2024-01-02 16:54:57 (4.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    mkdir: cannot create directory ‘data’: File exists +end{sphinxVerbatim}

    +
    +
    +

    conll2003.zip 100%[===================>] 959.94K 4.78MB/s in 0.2s

    +
    +

    2024-01-02 16:54:57 (4.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]

    +

    mkdir: cannot create directory ‘data’: File exists

    +
    +
    +
    +
    +
    +
     Archive:  conll2003.zip
       inflating: data/metadata
       inflating: data/test.txt
       inflating: data/train.txt
       inflating: data/valid.txt
    ---2023-12-28 11:01:47--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz
    -Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.93.188, 16.182.97.49, 16.182.70.233, ...
    -Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.93.188|:443... connected.
    -HTTP request sent, awaiting response... 200 OK
    -Length: 17045998 (16M) [binary/octet-stream]
    -Saving to: ‘pred_probs.npz’
    -
    -pred_probs.npz      100%[===================>]  16.26M  59.6MB/s    in 0.3s
    -
    -2023-12-28 11:01:47 (59.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
    -
     
    +
    +
    +
    +
    +
    +--2024-01-02 16:54:57--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz
    +Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.25.230, 52.217.64.132, 16.182.103.57, ...
    +Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.25.230|:443... connected.
    +
    +
    +
    +
    +
    +
    +
    +HTTP request sent, awaiting response...
    +
    +
    +
    +
    +
    +
    +
    +200 OK
    +Length: 17045998 (16M) [binary/octet-stream]
    +Saving to: ‘pred_probs.npz’
    +
    +
    +
    pred_probs.npz 0%[ ] 0 –.-KB/s
    +

    </pre>

    +
    +
    +
    pred_probs.npz 0%[ ] 0 –.-KB/s
    +

    end{sphinxVerbatim}

    +
    +
    +
    +

    pred_probs.npz 0%[ ] 0 –.-KB/s

    +
    +
    +
    +
    +
    +
    +

    pred_probs.npz 94%[=================&gt; ] 15.31M 76.5MB/s +pred_probs.npz 100%[===================&gt;] 16.26M 79.7MB/s in 0.2s

    +
    +
    +

    2024-01-02 16:54:58 (79.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    </pre>

    +
    +
    +

    pred_probs.npz 94%[=================> ] 15.31M 76.5MB/s +pred_probs.npz 100%[===================>] 16.26M 79.7MB/s in 0.2s

    +
    +
    +

    2024-01-02 16:54:58 (79.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +

    end{sphinxVerbatim}

    +
    +
    +

    pred_probs.npz 94%[=================> ] 15.31M 76.5MB/s +pred_probs.npz 100%[===================>] 16.26M 79.7MB/s in 0.2s

    +
    +

    2024-01-02 16:54:58 (79.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

    +
    [3]:
     
    @@ -1577,7 +1693,7 @@

    How does cleanlab.token_classification work?
    Made with Sphinx and @pradyunsg's diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index b954465d5..9d4e73531 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:46.704696Z", - "iopub.status.busy": "2023-12-28T11:01:46.704251Z", - "iopub.status.idle": "2023-12-28T11:01:47.755447Z", - "shell.execute_reply": "2023-12-28T11:01:47.754737Z" + "iopub.execute_input": "2024-01-02T16:54:56.726795Z", + "iopub.status.busy": "2024-01-02T16:54:56.726603Z", + "iopub.status.idle": "2024-01-02T16:54:58.273424Z", + "shell.execute_reply": "2024-01-02T16:54:58.272639Z" } }, "outputs": [ @@ -86,15 +86,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-28 11:01:46-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... 169.150.236.100, 2400:52e0:1a00::871:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" + "--2024-01-02 16:54:56-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "169.150.236.97, 2400:52e0:1a00::940:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -115,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 4.78MB/s in 0.2s \r\n", "\r\n", - "2023-12-28 11:01:46 (7.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-01-02 16:54:57 (4.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,9 +145,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-28 11:01:47-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.93.188, 16.182.97.49, 16.182.70.233, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.93.188|:443... connected.\r\n", + "--2024-01-02 16:54:57-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.25.230, 52.217.64.132, 16.182.103.57, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.25.230|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -160,10 +174,10 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 96%[==================> ] 15.71M 58.2MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 59.6MB/s in 0.3s \r\n", + "pred_probs.npz 94%[=================> ] 15.31M 76.5MB/s \r", + "pred_probs.npz 100%[===================>] 16.26M 79.7MB/s in 0.2s \r\n", "\r\n", - "2023-12-28 11:01:47 (59.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-01-02 16:54:58 (79.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -180,10 +194,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:47.758514Z", - "iopub.status.busy": "2023-12-28T11:01:47.758022Z", - "iopub.status.idle": "2023-12-28T11:01:48.824651Z", - "shell.execute_reply": "2023-12-28T11:01:48.824003Z" + "iopub.execute_input": "2024-01-02T16:54:58.276629Z", + "iopub.status.busy": "2024-01-02T16:54:58.276157Z", + "iopub.status.idle": "2024-01-02T16:54:59.354729Z", + "shell.execute_reply": "2024-01-02T16:54:59.354098Z" }, "nbsphinx": "hidden" }, @@ -194,7 +208,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -220,10 +234,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:48.827674Z", - "iopub.status.busy": "2023-12-28T11:01:48.827077Z", - "iopub.status.idle": "2023-12-28T11:01:48.830897Z", - "shell.execute_reply": "2023-12-28T11:01:48.830373Z" + "iopub.execute_input": "2024-01-02T16:54:59.357702Z", + "iopub.status.busy": "2024-01-02T16:54:59.357355Z", + "iopub.status.idle": "2024-01-02T16:54:59.361303Z", + "shell.execute_reply": "2024-01-02T16:54:59.360666Z" } }, "outputs": [], @@ -273,10 +287,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:48.833450Z", - "iopub.status.busy": "2023-12-28T11:01:48.832992Z", - "iopub.status.idle": "2023-12-28T11:01:48.836307Z", - "shell.execute_reply": "2023-12-28T11:01:48.835778Z" + "iopub.execute_input": "2024-01-02T16:54:59.363770Z", + "iopub.status.busy": "2024-01-02T16:54:59.363352Z", + "iopub.status.idle": "2024-01-02T16:54:59.366535Z", + "shell.execute_reply": "2024-01-02T16:54:59.365975Z" }, "nbsphinx": "hidden" }, @@ -294,10 +308,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:48.838638Z", - "iopub.status.busy": "2023-12-28T11:01:48.838437Z", - "iopub.status.idle": "2023-12-28T11:01:56.659942Z", - "shell.execute_reply": "2023-12-28T11:01:56.659294Z" + "iopub.execute_input": "2024-01-02T16:54:59.368933Z", + "iopub.status.busy": "2024-01-02T16:54:59.368583Z", + "iopub.status.idle": "2024-01-02T16:55:07.500936Z", + "shell.execute_reply": "2024-01-02T16:55:07.500298Z" } }, "outputs": [], @@ -371,10 +385,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:56.663216Z", - "iopub.status.busy": "2023-12-28T11:01:56.662595Z", - "iopub.status.idle": "2023-12-28T11:01:56.669122Z", - "shell.execute_reply": "2023-12-28T11:01:56.668568Z" + "iopub.execute_input": "2024-01-02T16:55:07.503907Z", + "iopub.status.busy": "2024-01-02T16:55:07.503677Z", + "iopub.status.idle": "2024-01-02T16:55:07.509670Z", + "shell.execute_reply": "2024-01-02T16:55:07.509132Z" }, "nbsphinx": "hidden" }, @@ -414,10 +428,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:56.671699Z", - "iopub.status.busy": "2023-12-28T11:01:56.671218Z", - "iopub.status.idle": "2023-12-28T11:01:57.030278Z", - "shell.execute_reply": "2023-12-28T11:01:57.029584Z" + "iopub.execute_input": "2024-01-02T16:55:07.511947Z", + "iopub.status.busy": "2024-01-02T16:55:07.511741Z", + "iopub.status.idle": "2024-01-02T16:55:07.864023Z", + "shell.execute_reply": "2024-01-02T16:55:07.863256Z" } }, "outputs": [], @@ -454,10 +468,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:57.033161Z", - "iopub.status.busy": "2023-12-28T11:01:57.032944Z", - "iopub.status.idle": "2023-12-28T11:01:57.038400Z", - "shell.execute_reply": "2023-12-28T11:01:57.037762Z" + "iopub.execute_input": "2024-01-02T16:55:07.866956Z", + "iopub.status.busy": "2024-01-02T16:55:07.866742Z", + "iopub.status.idle": "2024-01-02T16:55:07.872869Z", + "shell.execute_reply": "2024-01-02T16:55:07.872239Z" } }, "outputs": [ @@ -529,10 +543,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:57.040798Z", - "iopub.status.busy": "2023-12-28T11:01:57.040589Z", - "iopub.status.idle": "2023-12-28T11:01:59.172254Z", - "shell.execute_reply": "2023-12-28T11:01:59.171507Z" + "iopub.execute_input": "2024-01-02T16:55:07.875445Z", + "iopub.status.busy": "2024-01-02T16:55:07.875075Z", + "iopub.status.idle": "2024-01-02T16:55:10.051459Z", + "shell.execute_reply": "2024-01-02T16:55:10.050703Z" } }, "outputs": [], @@ -554,10 +568,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.175878Z", - "iopub.status.busy": "2023-12-28T11:01:59.175064Z", - "iopub.status.idle": "2023-12-28T11:01:59.182355Z", - "shell.execute_reply": "2023-12-28T11:01:59.181798Z" + "iopub.execute_input": "2024-01-02T16:55:10.057373Z", + "iopub.status.busy": "2024-01-02T16:55:10.054200Z", + "iopub.status.idle": "2024-01-02T16:55:10.061692Z", + "shell.execute_reply": "2024-01-02T16:55:10.061125Z" } }, "outputs": [ @@ -593,10 +607,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.184682Z", - "iopub.status.busy": "2023-12-28T11:01:59.184481Z", - "iopub.status.idle": "2023-12-28T11:01:59.201791Z", - "shell.execute_reply": "2023-12-28T11:01:59.201280Z" + "iopub.execute_input": "2024-01-02T16:55:10.064238Z", + "iopub.status.busy": "2024-01-02T16:55:10.063869Z", + "iopub.status.idle": "2024-01-02T16:55:10.087508Z", + "shell.execute_reply": "2024-01-02T16:55:10.086849Z" } }, "outputs": [ @@ -774,10 +788,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.204070Z", - "iopub.status.busy": "2023-12-28T11:01:59.203846Z", - "iopub.status.idle": "2023-12-28T11:01:59.237197Z", - "shell.execute_reply": "2023-12-28T11:01:59.236590Z" + "iopub.execute_input": "2024-01-02T16:55:10.090071Z", + "iopub.status.busy": "2024-01-02T16:55:10.089851Z", + "iopub.status.idle": "2024-01-02T16:55:10.124901Z", + "shell.execute_reply": "2024-01-02T16:55:10.124224Z" } }, "outputs": [ @@ -879,10 +893,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.239699Z", - "iopub.status.busy": "2023-12-28T11:01:59.239489Z", - "iopub.status.idle": "2023-12-28T11:01:59.248039Z", - "shell.execute_reply": "2023-12-28T11:01:59.247529Z" + "iopub.execute_input": "2024-01-02T16:55:10.127560Z", + "iopub.status.busy": "2024-01-02T16:55:10.127295Z", + "iopub.status.idle": "2024-01-02T16:55:10.135768Z", + "shell.execute_reply": "2024-01-02T16:55:10.133364Z" } }, "outputs": [ @@ -956,10 +970,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:01:59.250400Z", - "iopub.status.busy": "2023-12-28T11:01:59.250201Z", - "iopub.status.idle": "2023-12-28T11:02:00.898594Z", - "shell.execute_reply": "2023-12-28T11:02:00.898038Z" + "iopub.execute_input": "2024-01-02T16:55:10.138318Z", + "iopub.status.busy": "2024-01-02T16:55:10.138090Z", + "iopub.status.idle": "2024-01-02T16:55:11.789093Z", + "shell.execute_reply": "2024-01-02T16:55:11.788512Z" } }, "outputs": [ @@ -1131,10 +1145,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-12-28T11:02:00.901078Z", - "iopub.status.busy": "2023-12-28T11:02:00.900865Z", - "iopub.status.idle": "2023-12-28T11:02:00.905184Z", - "shell.execute_reply": "2023-12-28T11:02:00.904674Z" + "iopub.execute_input": "2024-01-02T16:55:11.791753Z", + "iopub.status.busy": "2024-01-02T16:55:11.791332Z", + "iopub.status.idle": "2024-01-02T16:55:11.795768Z", + "shell.execute_reply": "2024-01-02T16:55:11.795237Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 699795076..7566bcf33 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.5.0", - commit_hash: "002f898eadeb4043537e000c06d669780166c8fe", + commit_hash: "7eb9967a0b8904183ee871077ecf8e2db99fef3a", }; \ No newline at end of file