diff --git a/master/.buildinfo b/master/.buildinfo
index f930016d0..09ac73dea 100644
--- a/master/.buildinfo
+++ b/master/.buildinfo
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: b4407d63d236faf6851915523c3d29b6
+config: 81095c8d2627180010760fe2bacaa397
tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree
index 443b2ea6d..c33766ea5 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ
diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree
index bb81d3696..f55457011 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ
diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree
index a8b81eec1..98e4b2e3b 100644
Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ
diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree
index cec05f4e0..7d19a6b9c 100644
Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree
index 850f2ab5b..61cc2037b 100644
Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree
index 31ebcdf8a..b6b40ed71 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree
index 2249c9869..977773b7a 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree
index df1ec6e46..f2c6ab502 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree
index 3dd45c029..45349bafa 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree
index 0a877e18d..ffefbabb5 100644
Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree
index a5509d249..60165d3bc 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree
index 11d3c02ca..e95d24320 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree
index 2beca80ee..239aa3c21 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree
index b4350c556..9e117f42d 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree
index 4fcc5b22c..487c8d9a7 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree
index 24552d14d..ed40905a4 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree
index 420c6fc77..3084f400e 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree
index f390c17f7..bc97854bd 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree
index c8b3a99d9..8b4362768 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree
index dd308bb3d..18444f042 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree
index 8b3b79597..1e70e7c9d 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree
index 422243640..96472f20b 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree
index d38562688..267a36fa4 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree
index f91738826..68a15cb1a 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree
index 27133379b..8c82a7f6f 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree
index dd6565d2d..61029a5ed 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree
index cc7c3ba99..6852e5141 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree
index 6f6cf810a..28757f3fc 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree
index abcec836f..a03d1c92d 100644
Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ
diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree
index f31535737..e0d352666 100644
Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree
index 46e353f8d..a99242581 100644
Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree
index 9df79acb6..207e09214 100644
Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree
index 48483e676..bf71fbf59 100644
Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree
index 9c991d080..eb3a043a5 100644
Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree
index ba29b542d..3c2fd0b50 100644
Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ
diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree
index 932bdeed6..90a0fc668 100644
Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree
index c9f4dbf51..80415654d 100644
Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree
index 4b00159b8..4553bc187 100644
Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree
index 292a47b0d..7e908ab5f 100644
Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree
index 384b907e1..263535512 100644
Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree
index 1baa2ed84..c999fd0b3 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree
index 2c4bcea2f..6b4c78567 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree
index f4670e9b8..abe13ca7b 100644
Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree
index 75838b269..c7a1bb700 100644
Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree
index 4a7059dc0..015cb2c7a 100644
Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree
index a833786cd..d67ce4a16 100644
Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ
diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree
index 00088f44b..63a665a4e 100644
Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ
diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree
index 4f3ae53a5..478f3e5c2 100644
Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ
diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree
index deed20e61..800bebb36 100644
Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ
diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree
index b0e8bd3a1..37b2b5206 100644
Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree
index f60b94a6a..c81873c5e 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree
index 17ee20c1a..d86610dbe 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree
index 0280f9b3b..4bf4e7164 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree
index f1c092d2a..77faa240d 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree
index 0bb1a98af..dc94218e5 100644
Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree
index 3e433d136..d80bc6b25 100644
Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree
index 647e38548..571095be0 100644
Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree
index b7211083d..2a1ca0285 100644
Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree
index fd6ca5dba..d60ba9bc7 100644
Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree
index 21832f915..89e3df367 100644
Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree
index fae459fce..048aa4a04 100644
Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree
index db240a091..c82a0310d 100644
Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree
index 916626323..be644a4f1 100644
Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree
index cb101b507..ae976ac8c 100644
Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree
index 293cd34fe..2861cffc6 100644
Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree
index dcf8bf1af..20e8dbdfe 100644
Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree
index 1279ebe67..bf7ef6ac8 100644
Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree
index 873a04d06..904356899 100644
Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree
index 5586a97f2..74d522232 100644
Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree
index 44b309fa6..9cdbcbc8c 100644
Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree
index c6f31f24a..f30382e28 100644
Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ
diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle
index d1eb223e3..5d8d25a7d 100644
Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ
diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree
index 3f54e6852..99967b0ce 100644
Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ
diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree
index ec44f5d62..814927842 100644
Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ
diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
index 066a9ceb6..015740e61 100644
--- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:37.968603Z",
- "iopub.status.busy": "2023-12-28T10:49:37.968073Z",
- "iopub.status.idle": "2023-12-28T10:49:41.247886Z",
- "shell.execute_reply": "2023-12-28T10:49:41.247199Z"
+ "iopub.execute_input": "2024-01-02T16:42:27.655009Z",
+ "iopub.status.busy": "2024-01-02T16:42:27.654799Z",
+ "iopub.status.idle": "2024-01-02T16:42:30.993613Z",
+ "shell.execute_reply": "2024-01-02T16:42:30.992971Z"
},
"nbsphinx": "hidden"
},
@@ -97,7 +97,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -131,10 +131,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:41.251136Z",
- "iopub.status.busy": "2023-12-28T10:49:41.250759Z",
- "iopub.status.idle": "2023-12-28T10:49:41.254222Z",
- "shell.execute_reply": "2023-12-28T10:49:41.253705Z"
+ "iopub.execute_input": "2024-01-02T16:42:30.996941Z",
+ "iopub.status.busy": "2024-01-02T16:42:30.996304Z",
+ "iopub.status.idle": "2024-01-02T16:42:30.999846Z",
+ "shell.execute_reply": "2024-01-02T16:42:30.999274Z"
},
"id": "LaEiwXUiVHCS"
},
@@ -157,10 +157,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:41.256387Z",
- "iopub.status.busy": "2023-12-28T10:49:41.256195Z",
- "iopub.status.idle": "2023-12-28T10:49:41.261260Z",
- "shell.execute_reply": "2023-12-28T10:49:41.260774Z"
+ "iopub.execute_input": "2024-01-02T16:42:31.002378Z",
+ "iopub.status.busy": "2024-01-02T16:42:31.001938Z",
+ "iopub.status.idle": "2024-01-02T16:42:31.007046Z",
+ "shell.execute_reply": "2024-01-02T16:42:31.006568Z"
},
"nbsphinx": "hidden"
},
@@ -208,10 +208,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:41.263804Z",
- "iopub.status.busy": "2023-12-28T10:49:41.263321Z",
- "iopub.status.idle": "2023-12-28T10:49:42.833923Z",
- "shell.execute_reply": "2023-12-28T10:49:42.833149Z"
+ "iopub.execute_input": "2024-01-02T16:42:31.009477Z",
+ "iopub.status.busy": "2024-01-02T16:42:31.009069Z",
+ "iopub.status.idle": "2024-01-02T16:42:32.646804Z",
+ "shell.execute_reply": "2024-01-02T16:42:32.645951Z"
},
"id": "GRDPEg7-VOQe",
"outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6"
@@ -242,10 +242,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:42.836978Z",
- "iopub.status.busy": "2023-12-28T10:49:42.836556Z",
- "iopub.status.idle": "2023-12-28T10:49:42.848880Z",
- "shell.execute_reply": "2023-12-28T10:49:42.848236Z"
+ "iopub.execute_input": "2024-01-02T16:42:32.650212Z",
+ "iopub.status.busy": "2024-01-02T16:42:32.649705Z",
+ "iopub.status.idle": "2024-01-02T16:42:32.662157Z",
+ "shell.execute_reply": "2024-01-02T16:42:32.661493Z"
},
"id": "FDA5sGZwUSur",
"outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895"
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:42.882023Z",
- "iopub.status.busy": "2023-12-28T10:49:42.881541Z",
- "iopub.status.idle": "2023-12-28T10:49:42.887474Z",
- "shell.execute_reply": "2023-12-28T10:49:42.886916Z"
+ "iopub.execute_input": "2024-01-02T16:42:32.694746Z",
+ "iopub.status.busy": "2024-01-02T16:42:32.694276Z",
+ "iopub.status.idle": "2024-01-02T16:42:32.700229Z",
+ "shell.execute_reply": "2024-01-02T16:42:32.699602Z"
},
"nbsphinx": "hidden"
},
@@ -380,10 +380,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:42.890058Z",
- "iopub.status.busy": "2023-12-28T10:49:42.889601Z",
- "iopub.status.idle": "2023-12-28T10:49:43.603575Z",
- "shell.execute_reply": "2023-12-28T10:49:43.602915Z"
+ "iopub.execute_input": "2024-01-02T16:42:32.702997Z",
+ "iopub.status.busy": "2024-01-02T16:42:32.702522Z",
+ "iopub.status.idle": "2024-01-02T16:42:33.443249Z",
+ "shell.execute_reply": "2024-01-02T16:42:33.442619Z"
},
"id": "dLBvUZLlII5w",
"outputId": "c6a4917f-4a82-4a89-9193-415072e45550"
@@ -435,10 +435,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:43.606262Z",
- "iopub.status.busy": "2023-12-28T10:49:43.605871Z",
- "iopub.status.idle": "2023-12-28T10:49:44.155731Z",
- "shell.execute_reply": "2023-12-28T10:49:44.155132Z"
+ "iopub.execute_input": "2024-01-02T16:42:33.445911Z",
+ "iopub.status.busy": "2024-01-02T16:42:33.445481Z",
+ "iopub.status.idle": "2024-01-02T16:42:34.287425Z",
+ "shell.execute_reply": "2024-01-02T16:42:34.286795Z"
},
"id": "vL9lkiKsHvKr"
},
@@ -472,10 +472,10 @@
"height": 143
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:44.158650Z",
- "iopub.status.busy": "2023-12-28T10:49:44.158414Z",
- "iopub.status.idle": "2023-12-28T10:49:44.183087Z",
- "shell.execute_reply": "2023-12-28T10:49:44.182440Z"
+ "iopub.execute_input": "2024-01-02T16:42:34.290342Z",
+ "iopub.status.busy": "2024-01-02T16:42:34.289962Z",
+ "iopub.status.idle": "2024-01-02T16:42:34.312682Z",
+ "shell.execute_reply": "2024-01-02T16:42:34.312152Z"
},
"id": "obQYDKdLiUU6",
"outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4"
@@ -555,10 +555,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:44.185879Z",
- "iopub.status.busy": "2023-12-28T10:49:44.185512Z",
- "iopub.status.idle": "2023-12-28T10:49:44.189005Z",
- "shell.execute_reply": "2023-12-28T10:49:44.188387Z"
+ "iopub.execute_input": "2024-01-02T16:42:34.315167Z",
+ "iopub.status.busy": "2024-01-02T16:42:34.314793Z",
+ "iopub.status.idle": "2024-01-02T16:42:34.318141Z",
+ "shell.execute_reply": "2024-01-02T16:42:34.317614Z"
},
"id": "I8JqhOZgi94g"
},
@@ -580,10 +580,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:49:44.191401Z",
- "iopub.status.busy": "2023-12-28T10:49:44.191195Z",
- "iopub.status.idle": "2023-12-28T10:50:03.391225Z",
- "shell.execute_reply": "2023-12-28T10:50:03.390522Z"
+ "iopub.execute_input": "2024-01-02T16:42:34.320385Z",
+ "iopub.status.busy": "2024-01-02T16:42:34.320034Z",
+ "iopub.status.idle": "2024-01-02T16:42:53.303371Z",
+ "shell.execute_reply": "2024-01-02T16:42:53.302681Z"
},
"id": "2FSQ2GR9R_YA"
},
@@ -615,10 +615,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:03.394361Z",
- "iopub.status.busy": "2023-12-28T10:50:03.394155Z",
- "iopub.status.idle": "2023-12-28T10:50:03.398891Z",
- "shell.execute_reply": "2023-12-28T10:50:03.398368Z"
+ "iopub.execute_input": "2024-01-02T16:42:53.306931Z",
+ "iopub.status.busy": "2024-01-02T16:42:53.306520Z",
+ "iopub.status.idle": "2024-01-02T16:42:53.311354Z",
+ "shell.execute_reply": "2024-01-02T16:42:53.310768Z"
},
"id": "kAkY31IVXyr8",
"outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632"
@@ -677,10 +677,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:03.401189Z",
- "iopub.status.busy": "2023-12-28T10:50:03.400996Z",
- "iopub.status.idle": "2023-12-28T10:50:08.938865Z",
- "shell.execute_reply": "2023-12-28T10:50:08.938132Z"
+ "iopub.execute_input": "2024-01-02T16:42:53.314000Z",
+ "iopub.status.busy": "2024-01-02T16:42:53.313578Z",
+ "iopub.status.idle": "2024-01-02T16:42:58.869258Z",
+ "shell.execute_reply": "2024-01-02T16:42:58.868544Z"
},
"id": "i_drkY9YOcw4"
},
@@ -714,10 +714,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:08.943596Z",
- "iopub.status.busy": "2023-12-28T10:50:08.942230Z",
- "iopub.status.idle": "2023-12-28T10:50:08.950322Z",
- "shell.execute_reply": "2023-12-28T10:50:08.949715Z"
+ "iopub.execute_input": "2024-01-02T16:42:58.872743Z",
+ "iopub.status.busy": "2024-01-02T16:42:58.872378Z",
+ "iopub.status.idle": "2024-01-02T16:42:58.878472Z",
+ "shell.execute_reply": "2024-01-02T16:42:58.877818Z"
},
"id": "_b-AQeoXOc7q",
"outputId": "15ae534a-f517-4906-b177-ca91931a8954"
@@ -764,10 +764,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:08.954876Z",
- "iopub.status.busy": "2023-12-28T10:50:08.953573Z",
- "iopub.status.idle": "2023-12-28T10:50:09.060592Z",
- "shell.execute_reply": "2023-12-28T10:50:09.059756Z"
+ "iopub.execute_input": "2024-01-02T16:42:58.882057Z",
+ "iopub.status.busy": "2024-01-02T16:42:58.881797Z",
+ "iopub.status.idle": "2024-01-02T16:42:58.987900Z",
+ "shell.execute_reply": "2024-01-02T16:42:58.987100Z"
}
},
"outputs": [
@@ -804,10 +804,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:09.063401Z",
- "iopub.status.busy": "2023-12-28T10:50:09.062951Z",
- "iopub.status.idle": "2023-12-28T10:50:09.073340Z",
- "shell.execute_reply": "2023-12-28T10:50:09.072785Z"
+ "iopub.execute_input": "2024-01-02T16:42:58.991077Z",
+ "iopub.status.busy": "2024-01-02T16:42:58.990445Z",
+ "iopub.status.idle": "2024-01-02T16:42:59.000419Z",
+ "shell.execute_reply": "2024-01-02T16:42:58.999876Z"
},
"scrolled": true
},
@@ -862,10 +862,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:09.075862Z",
- "iopub.status.busy": "2023-12-28T10:50:09.075472Z",
- "iopub.status.idle": "2023-12-28T10:50:09.083854Z",
- "shell.execute_reply": "2023-12-28T10:50:09.083205Z"
+ "iopub.execute_input": "2024-01-02T16:42:59.002804Z",
+ "iopub.status.busy": "2024-01-02T16:42:59.002585Z",
+ "iopub.status.idle": "2024-01-02T16:42:59.011368Z",
+ "shell.execute_reply": "2024-01-02T16:42:59.010819Z"
}
},
"outputs": [
@@ -969,10 +969,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:09.086497Z",
- "iopub.status.busy": "2023-12-28T10:50:09.086109Z",
- "iopub.status.idle": "2023-12-28T10:50:09.090772Z",
- "shell.execute_reply": "2023-12-28T10:50:09.090154Z"
+ "iopub.execute_input": "2024-01-02T16:42:59.013793Z",
+ "iopub.status.busy": "2024-01-02T16:42:59.013584Z",
+ "iopub.status.idle": "2024-01-02T16:42:59.018718Z",
+ "shell.execute_reply": "2024-01-02T16:42:59.018177Z"
}
},
"outputs": [
@@ -1010,10 +1010,10 @@
"height": 237
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:09.093175Z",
- "iopub.status.busy": "2023-12-28T10:50:09.092800Z",
- "iopub.status.idle": "2023-12-28T10:50:09.098848Z",
- "shell.execute_reply": "2023-12-28T10:50:09.098313Z"
+ "iopub.execute_input": "2024-01-02T16:42:59.021014Z",
+ "iopub.status.busy": "2024-01-02T16:42:59.020813Z",
+ "iopub.status.idle": "2024-01-02T16:42:59.027483Z",
+ "shell.execute_reply": "2024-01-02T16:42:59.026933Z"
},
"id": "FQwRHgbclpsO",
"outputId": "fee5c335-c00e-4fcc-f22b-718705e93182"
@@ -1133,10 +1133,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:09.101451Z",
- "iopub.status.busy": "2023-12-28T10:50:09.101044Z",
- "iopub.status.idle": "2023-12-28T10:50:09.215829Z",
- "shell.execute_reply": "2023-12-28T10:50:09.215205Z"
+ "iopub.execute_input": "2024-01-02T16:42:59.030039Z",
+ "iopub.status.busy": "2024-01-02T16:42:59.029810Z",
+ "iopub.status.idle": "2024-01-02T16:42:59.147564Z",
+ "shell.execute_reply": "2024-01-02T16:42:59.146890Z"
},
"id": "ff1NFVlDoysO",
"outputId": "8141a036-44c1-4349-c338-880432513e37"
@@ -1190,10 +1190,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:09.218431Z",
- "iopub.status.busy": "2023-12-28T10:50:09.218053Z",
- "iopub.status.idle": "2023-12-28T10:50:09.325661Z",
- "shell.execute_reply": "2023-12-28T10:50:09.324962Z"
+ "iopub.execute_input": "2024-01-02T16:42:59.150592Z",
+ "iopub.status.busy": "2024-01-02T16:42:59.150096Z",
+ "iopub.status.idle": "2024-01-02T16:42:59.262500Z",
+ "shell.execute_reply": "2024-01-02T16:42:59.261779Z"
},
"id": "GZgovGkdiaiP",
"outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7"
@@ -1238,10 +1238,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:09.328263Z",
- "iopub.status.busy": "2023-12-28T10:50:09.327856Z",
- "iopub.status.idle": "2023-12-28T10:50:09.436418Z",
- "shell.execute_reply": "2023-12-28T10:50:09.435722Z"
+ "iopub.execute_input": "2024-01-02T16:42:59.265187Z",
+ "iopub.status.busy": "2024-01-02T16:42:59.264844Z",
+ "iopub.status.idle": "2024-01-02T16:42:59.374141Z",
+ "shell.execute_reply": "2024-01-02T16:42:59.373468Z"
},
"id": "lfa2eHbMwG8R",
"outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c"
@@ -1282,10 +1282,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:09.439135Z",
- "iopub.status.busy": "2023-12-28T10:50:09.438746Z",
- "iopub.status.idle": "2023-12-28T10:50:09.546764Z",
- "shell.execute_reply": "2023-12-28T10:50:09.546104Z"
+ "iopub.execute_input": "2024-01-02T16:42:59.376846Z",
+ "iopub.status.busy": "2024-01-02T16:42:59.376511Z",
+ "iopub.status.idle": "2024-01-02T16:42:59.489951Z",
+ "shell.execute_reply": "2024-01-02T16:42:59.489279Z"
}
},
"outputs": [
@@ -1333,10 +1333,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:09.549298Z",
- "iopub.status.busy": "2023-12-28T10:50:09.549087Z",
- "iopub.status.idle": "2023-12-28T10:50:09.552778Z",
- "shell.execute_reply": "2023-12-28T10:50:09.552230Z"
+ "iopub.execute_input": "2024-01-02T16:42:59.492637Z",
+ "iopub.status.busy": "2024-01-02T16:42:59.492165Z",
+ "iopub.status.idle": "2024-01-02T16:42:59.495759Z",
+ "shell.execute_reply": "2024-01-02T16:42:59.495225Z"
},
"nbsphinx": "hidden"
},
@@ -1377,7 +1377,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "0053385b8d0949c392857b68c25c20df": {
+ "0087ef5a32144b6c8bec34e9845b3464": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1429,7 +1429,65 @@
"width": null
}
},
- "083a7719dc494f76957e51bc9144a7c1": {
+ "035872182c9143ad8f86a89acc899334": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_455d24315ae947cc8f2b0ba6388499b4",
+ "placeholder": "",
+ "style": "IPY_MODEL_44eff4de8493449e8a1eab525d8b2a71",
+ "value": " 15.9M/15.9M [00:00<00:00, 322MB/s]"
+ }
+ },
+ "13fe3515fa2f4b0b9f901f4f9357b3c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f9412dd6609c4c359154bcdfdd0acbe3",
+ "IPY_MODEL_59a5497f2eb84d2a9da51e49ceeb98f3",
+ "IPY_MODEL_b812c970fae941f287f8a4f8c76f6ac6"
+ ],
+ "layout": "IPY_MODEL_e83ff9e0dab744e1b2bb2a9db4c3abdf"
+ }
+ },
+ "157048c06e264f86bda3ef419060a06c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1e0ea345b83745549cb6416c44dd86e6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1481,29 +1539,28 @@
"width": null
}
},
- "0b41fab769e945ff8579771955e47a7e": {
+ "23061bab7caf4050b58f287fc3ec33a6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_68b89f6726bf4eca8cd7bf2a7d8f6c65",
- "IPY_MODEL_f365411cd1444832b8012041bb95907b",
- "IPY_MODEL_421f8744d6194e20a660a55aa540c912"
- ],
- "layout": "IPY_MODEL_fbf7075cd01c4b6f929393fcfc8d68b8"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4f31d78cc76a44d2878b81f03b3d02ea",
+ "placeholder": "",
+ "style": "IPY_MODEL_9292b15e9b844d9a9c91dc007dd50283",
+ "value": "embedding_model.ckpt: 100%"
}
},
- "16512d5656144c5eb40a6c62d4966fe3": {
+ "233dc78cbaf5429783458584eef59a3d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1555,44 +1612,49 @@
"width": null
}
},
- "17bd9f3b6c4b4783beadd9210d45501f": {
+ "2642d234ac3d4ccd9d2eaef41f7d78cd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_87729e672c2d4ce2ba6a81b9da22e94f",
- "IPY_MODEL_f3d936ca3c6e4573a2920e5c4c15ac6c",
- "IPY_MODEL_e797666dfb5147acbc966d774965f0d4"
- ],
- "layout": "IPY_MODEL_79732b67a74d4267977a5c093caa7000"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cc1f9fd001904744ae71a86d00427563",
+ "placeholder": "",
+ "style": "IPY_MODEL_6678305566c64527be48b5e006018f7c",
+ "value": "label_encoder.txt: 100%"
}
},
- "186e084f99e84f7c8fd0b51cedb9f974": {
+ "2b5886d457e74a0895122c12a89d948e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a273dc0e93a1499b88571d2c39f7b31c",
+ "placeholder": "",
+ "style": "IPY_MODEL_335f99df41e04f3182b16e23f6f63c44",
+ "value": "mean_var_norm_emb.ckpt: 100%"
}
},
- "1a066142dce2413c9639bc8d8d30d658": {
+ "2d5f0e761ca44ddb9eba68d96cbd3514": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -1608,7 +1670,7 @@
"description_width": ""
}
},
- "1f9f80b63e324c639867795266559d9c": {
+ "2dc84d5400314013bc99a05b1d35be1e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1660,7 +1722,22 @@
"width": null
}
},
- "2dd4d023cf954d5cab921299018cb173": {
+ "335f99df41e04f3182b16e23f6f63c44": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "337643ebaec0449aa9e3ae4146e1a9e4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1712,68 +1789,7 @@
"width": null
}
},
- "2e3cdb0c7aba412bb0586c941f9ead84": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "33582bcb8ede4407b485d42e36541e59": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a12a4826c9084fdf86733da3675f8037",
- "max": 3201.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b32901c5ee514d50ac8e6f5122ffa7eb",
- "value": 3201.0
- }
- },
- "421f8744d6194e20a660a55aa540c912": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2dd4d023cf954d5cab921299018cb173",
- "placeholder": "",
- "style": "IPY_MODEL_ce46fde3101a4ee2bc65b97db93c7035",
- "value": " 15.9M/15.9M [00:00<00:00, 345MB/s]"
- }
- },
- "4b84dadd3a044e088fd65bfb0664432b": {
+ "35df409f12924faabc452ed61e5ffa88": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1825,53 +1841,22 @@
"width": null
}
},
- "524846c05ee748419d3a5fcec0fe74a5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f6e6e81be61947d1a3570d3762b32cb0",
- "IPY_MODEL_5afd1de248dc4457b2648126d12212ac",
- "IPY_MODEL_b34f459edf974edbae73845ec97afd01"
- ],
- "layout": "IPY_MODEL_a7bdb9d0c5454dab99da16dac727cfdb"
- }
- },
- "5afd1de248dc4457b2648126d12212ac": {
+ "44eff4de8493449e8a1eab525d8b2a71": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0053385b8d0949c392857b68c25c20df",
- "max": 128619.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_63685b0fb8fe4a31a64c83c9ef236e26",
- "value": 128619.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "5efae04d3267437abfd1419b0114ca8b": {
+ "455d24315ae947cc8f2b0ba6388499b4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1923,23 +1908,7 @@
"width": null
}
},
- "63685b0fb8fe4a31a64c83c9ef236e26": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "68b89f6726bf4eca8cd7bf2a7d8f6c65": {
+ "4983d8113c63419f93ff80c4d6a5d5c3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1954,43 +1923,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f22ef6b831894f3e83dba951bc27b73c",
+ "layout": "IPY_MODEL_1e0ea345b83745549cb6416c44dd86e6",
"placeholder": "",
- "style": "IPY_MODEL_99050cbe69404e6f954be1e0ce084d7c",
- "value": "classifier.ckpt: 100%"
- }
- },
- "68ec5a0d5997405a82e27be239693ac0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "71ae6f7f46ca41b8b1d29c43bd426598": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_9897f25c10154a29aa042fad42a78591",
+ "value": " 16.9M/16.9M [00:00<00:00, 158MB/s]"
}
},
- "73d02e4bcd8a419dbe0265e83aa6c1f0": {
+ "4f31d78cc76a44d2878b81f03b3d02ea": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2042,59 +1981,53 @@
"width": null
}
},
- "79732b67a74d4267977a5c093caa7000": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "59a5497f2eb84d2a9da51e49ceeb98f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_233dc78cbaf5429783458584eef59a3d",
+ "max": 2041.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_bcccb7c786e14c64a02d7b9b9e59311d",
+ "value": 2041.0
+ }
+ },
+ "60c8340290db4347ab6f65ce3ca4d11c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_23061bab7caf4050b58f287fc3ec33a6",
+ "IPY_MODEL_92f62436bcd944f78efc7babcce019da",
+ "IPY_MODEL_4983d8113c63419f93ff80c4d6a5d5c3"
+ ],
+ "layout": "IPY_MODEL_fa6b2eb20ebf44718d7f3d8903fc8fc4"
}
},
- "7f22531a00764a7b97a7ae5cd2f285f7": {
+ "6426df38855443bb838b7a3bec6790fd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2146,7 +2079,22 @@
"width": null
}
},
- "809ad3c5936148cbb415f950203ffb18": {
+ "6678305566c64527be48b5e006018f7c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "687feb5310c2488ca4eb14ca4c8f2ad5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -2161,35 +2109,30 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_ccdcf0da3c724ee292bdf16fa4322cf4",
- "IPY_MODEL_f0a87417b61b4d1ea5297d2c42ed9cae",
- "IPY_MODEL_c01f650e1b91421398db09bd11b85534"
+ "IPY_MODEL_2b5886d457e74a0895122c12a89d948e",
+ "IPY_MODEL_adb86bfca83d45c6b1b1c371d9da559b",
+ "IPY_MODEL_9fa1f2883ea94f4faa2641df8ceb21b8"
],
- "layout": "IPY_MODEL_16512d5656144c5eb40a6c62d4966fe3"
+ "layout": "IPY_MODEL_0087ef5a32144b6c8bec34e9845b3464"
}
},
- "843fb19da7f548398dc0377674cd1268": {
+ "739db12d623e4c43a91791914b371fee": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_083a7719dc494f76957e51bc9144a7c1",
- "placeholder": "",
- "style": "IPY_MODEL_f2ff2ef250af428cab639d6bab14a562",
- "value": "mean_var_norm_emb.ckpt: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "87729e672c2d4ce2ba6a81b9da22e94f": {
+ "872dfdc1dc2c451fa785679707d3e254": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2204,13 +2147,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5efae04d3267437abfd1419b0114ca8b",
+ "layout": "IPY_MODEL_35df409f12924faabc452ed61e5ffa88",
"placeholder": "",
- "style": "IPY_MODEL_bc61a30b92484d8990aa7b71bf342f82",
- "value": "hyperparams.yaml: 100%"
+ "style": "IPY_MODEL_9be07746a74e46438b53389a78c20bb2",
+ "value": " 129k/129k [00:00<00:00, 2.74MB/s]"
}
},
- "87b9d9fd92514a929ab030bde176967f": {
+ "9037c8328d8040b4897bf11f9e592aec": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2262,7 +2205,46 @@
"width": null
}
},
- "99050cbe69404e6f954be1e0ce084d7c": {
+ "9292b15e9b844d9a9c91dc007dd50283": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "92f62436bcd944f78efc7babcce019da": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d0f0a981495d45728f277fb082ec264e",
+ "max": 16887676.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_739db12d623e4c43a91791914b371fee",
+ "value": 16887676.0
+ }
+ },
+ "93fae6dec60d4a8098b79425198753d8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2277,7 +2259,7 @@
"description_width": ""
}
},
- "a12a4826c9084fdf86733da3675f8037": {
+ "9600d17d803c4304a3c07d93fdd021a2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2329,7 +2311,111 @@
"width": null
}
},
- "a7bdb9d0c5454dab99da16dac727cfdb": {
+ "9897f25c10154a29aa042fad42a78591": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9a21c591eb3d4b80b61b6d311ccdbde1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2642d234ac3d4ccd9d2eaef41f7d78cd",
+ "IPY_MODEL_c6616e9e2c484e6688962d7adfc41915",
+ "IPY_MODEL_872dfdc1dc2c451fa785679707d3e254"
+ ],
+ "layout": "IPY_MODEL_2dc84d5400314013bc99a05b1d35be1e"
+ }
+ },
+ "9be07746a74e46438b53389a78c20bb2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9c14092589eb40d1b823a51b799c5e9a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9fa1f2883ea94f4faa2641df8ceb21b8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9600d17d803c4304a3c07d93fdd021a2",
+ "placeholder": "",
+ "style": "IPY_MODEL_93fae6dec60d4a8098b79425198753d8",
+ "value": " 3.20k/3.20k [00:00<00:00, 576kB/s]"
+ }
+ },
+ "a077719fd7e742b09418f746b303c129": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "a273dc0e93a1499b88571d2c39f7b31c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2381,7 +2467,7 @@
"width": null
}
},
- "ab46063ba5884c25bbb67861e9df900e": {
+ "a8c5961711a0447d849d893377535e47": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2433,163 +2519,147 @@
"width": null
}
},
- "b32901c5ee514d50ac8e6f5122ffa7eb": {
+ "ad453df3073a41bb87c6e11612f47065": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "b34f459edf974edbae73845ec97afd01": {
+ "adb86bfca83d45c6b1b1c371d9da559b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_b3feb573217b4162bb80e913db68a16f",
- "placeholder": "",
- "style": "IPY_MODEL_71ae6f7f46ca41b8b1d29c43bd426598",
- "value": " 129k/129k [00:00<00:00, 13.1MB/s]"
+ "layout": "IPY_MODEL_e264c0d7bd7c411d9dc4b82b9cbe3531",
+ "max": 3201.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2d5f0e761ca44ddb9eba68d96cbd3514",
+ "value": 3201.0
}
},
- "b3feb573217b4162bb80e913db68a16f": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "af075ffd2f734c8b8d8ed1beba3080e9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6426df38855443bb838b7a3bec6790fd",
+ "max": 15856877.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_cabb6cdd891b4c3aa4203c6f62b574bb",
+ "value": 15856877.0
}
},
- "b493c78b58574866a742de0b1549eecb": {
+ "b812c970fae941f287f8a4f8c76f6ac6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_337643ebaec0449aa9e3ae4146e1a9e4",
+ "placeholder": "",
+ "style": "IPY_MODEL_9c14092589eb40d1b823a51b799c5e9a",
+ "value": " 2.04k/2.04k [00:00<00:00, 339kB/s]"
}
},
- "ba113e57ee6b45be85187c3b3c1aa630": {
+ "bcccb7c786e14c64a02d7b9b9e59311d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "bc61a30b92484d8990aa7b71bf342f82": {
+ "c6616e9e2c484e6688962d7adfc41915": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_edc9dafcaf924ab2a2c54829dd7fc370",
+ "max": 128619.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a077719fd7e742b09418f746b303c129",
+ "value": 128619.0
}
},
- "c01f650e1b91421398db09bd11b85534": {
+ "cabb6cdd891b4c3aa4203c6f62b574bb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_7f22531a00764a7b97a7ae5cd2f285f7",
- "placeholder": "",
- "style": "IPY_MODEL_186e084f99e84f7c8fd0b51cedb9f974",
- "value": " 16.9M/16.9M [00:00<00:00, 275MB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "c6f71b2028154d16a58578947d83cc27": {
+ "cc1f9fd001904744ae71a86d00427563": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2641,58 +2711,7 @@
"width": null
}
},
- "ccdcf0da3c724ee292bdf16fa4322cf4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_87b9d9fd92514a929ab030bde176967f",
- "placeholder": "",
- "style": "IPY_MODEL_ce13c544ce7e432ea69d60307d7153b7",
- "value": "embedding_model.ckpt: 100%"
- }
- },
- "ce13c544ce7e432ea69d60307d7153b7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ce46fde3101a4ee2bc65b97db93c7035": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "dadd7d7c758b4d1f994208614b9d3193": {
+ "d0f0a981495d45728f277fb082ec264e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2744,28 +2763,7 @@
"width": null
}
},
- "e31a4b36cd5e41bd9171cf531ef604bc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_dadd7d7c758b4d1f994208614b9d3193",
- "placeholder": "",
- "style": "IPY_MODEL_eee78ec5c4aa43f7add70a3f3dd1ccd8",
- "value": " 3.20k/3.20k [00:00<00:00, 541kB/s]"
- }
- },
- "e66a327a542a46e58c9e673750803fb2": {
+ "e264c0d7bd7c411d9dc4b82b9cbe3531": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2817,28 +2815,7 @@
"width": null
}
},
- "e797666dfb5147acbc966d774965f0d4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1f9f80b63e324c639867795266559d9c",
- "placeholder": "",
- "style": "IPY_MODEL_68ec5a0d5997405a82e27be239693ac0",
- "value": " 2.04k/2.04k [00:00<00:00, 345kB/s]"
- }
- },
- "ea89448c7a7b4f93bbb2b073cceb6f7e": {
+ "e61a2386a81f4f6085910c2cbd0e42af": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -2853,53 +2830,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_843fb19da7f548398dc0377674cd1268",
- "IPY_MODEL_33582bcb8ede4407b485d42e36541e59",
- "IPY_MODEL_e31a4b36cd5e41bd9171cf531ef604bc"
+ "IPY_MODEL_ee8cce41c67943d692e45df5672e1eaf",
+ "IPY_MODEL_af075ffd2f734c8b8d8ed1beba3080e9",
+ "IPY_MODEL_035872182c9143ad8f86a89acc899334"
],
- "layout": "IPY_MODEL_ab46063ba5884c25bbb67861e9df900e"
+ "layout": "IPY_MODEL_fe2b9a79029841e980ca44eab24ef5f9"
}
},
- "eee78ec5c4aa43f7add70a3f3dd1ccd8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "f0a87417b61b4d1ea5297d2c42ed9cae": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e66a327a542a46e58c9e673750803fb2",
- "max": 16887676.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_2e3cdb0c7aba412bb0586c941f9ead84",
- "value": 16887676.0
- }
- },
- "f22ef6b831894f3e83dba951bc27b73c": {
+ "e83ff9e0dab744e1b2bb2a9db4c3abdf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2951,70 +2889,80 @@
"width": null
}
},
- "f2ff2ef250af428cab639d6bab14a562": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "edc9dafcaf924ab2a2c54829dd7fc370": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "f365411cd1444832b8012041bb95907b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4b84dadd3a044e088fd65bfb0664432b",
- "max": 15856877.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b493c78b58574866a742de0b1549eecb",
- "value": 15856877.0
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "f3d936ca3c6e4573a2920e5c4c15ac6c": {
+ "ee8cce41c67943d692e45df5672e1eaf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_c6f71b2028154d16a58578947d83cc27",
- "max": 2041.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_1a066142dce2413c9639bc8d8d30d658",
- "value": 2041.0
+ "layout": "IPY_MODEL_a8c5961711a0447d849d893377535e47",
+ "placeholder": "",
+ "style": "IPY_MODEL_ad453df3073a41bb87c6e11612f47065",
+ "value": "classifier.ckpt: 100%"
}
},
- "f6e6e81be61947d1a3570d3762b32cb0": {
+ "f9412dd6609c4c359154bcdfdd0acbe3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3029,13 +2977,65 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_73d02e4bcd8a419dbe0265e83aa6c1f0",
+ "layout": "IPY_MODEL_9037c8328d8040b4897bf11f9e592aec",
"placeholder": "",
- "style": "IPY_MODEL_ba113e57ee6b45be85187c3b3c1aa630",
- "value": "label_encoder.txt: 100%"
+ "style": "IPY_MODEL_157048c06e264f86bda3ef419060a06c",
+ "value": "hyperparams.yaml: 100%"
+ }
+ },
+ "fa6b2eb20ebf44718d7f3d8903fc8fc4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "fbf7075cd01c4b6f929393fcfc8d68b8": {
+ "fe2b9a79029841e980ca44eab24ef5f9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
index 4526a8399..ecb2cffcb 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
@@ -80,10 +80,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:15.143831Z",
- "iopub.status.busy": "2023-12-28T10:50:15.143643Z",
- "iopub.status.idle": "2023-12-28T10:50:16.225589Z",
- "shell.execute_reply": "2023-12-28T10:50:16.224921Z"
+ "iopub.execute_input": "2024-01-02T16:43:04.926980Z",
+ "iopub.status.busy": "2024-01-02T16:43:04.926484Z",
+ "iopub.status.idle": "2024-01-02T16:43:06.013759Z",
+ "shell.execute_reply": "2024-01-02T16:43:06.013067Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -118,10 +118,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:16.228524Z",
- "iopub.status.busy": "2023-12-28T10:50:16.228242Z",
- "iopub.status.idle": "2023-12-28T10:50:16.231362Z",
- "shell.execute_reply": "2023-12-28T10:50:16.230794Z"
+ "iopub.execute_input": "2024-01-02T16:43:06.016851Z",
+ "iopub.status.busy": "2024-01-02T16:43:06.016545Z",
+ "iopub.status.idle": "2024-01-02T16:43:06.019887Z",
+ "shell.execute_reply": "2024-01-02T16:43:06.019295Z"
}
},
"outputs": [],
@@ -252,10 +252,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:16.233889Z",
- "iopub.status.busy": "2023-12-28T10:50:16.233478Z",
- "iopub.status.idle": "2023-12-28T10:50:16.242734Z",
- "shell.execute_reply": "2023-12-28T10:50:16.242149Z"
+ "iopub.execute_input": "2024-01-02T16:43:06.022336Z",
+ "iopub.status.busy": "2024-01-02T16:43:06.021997Z",
+ "iopub.status.idle": "2024-01-02T16:43:06.031289Z",
+ "shell.execute_reply": "2024-01-02T16:43:06.030678Z"
},
"nbsphinx": "hidden"
},
@@ -353,10 +353,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:16.245105Z",
- "iopub.status.busy": "2023-12-28T10:50:16.244739Z",
- "iopub.status.idle": "2023-12-28T10:50:16.249707Z",
- "shell.execute_reply": "2023-12-28T10:50:16.249227Z"
+ "iopub.execute_input": "2024-01-02T16:43:06.033592Z",
+ "iopub.status.busy": "2024-01-02T16:43:06.033248Z",
+ "iopub.status.idle": "2024-01-02T16:43:06.038438Z",
+ "shell.execute_reply": "2024-01-02T16:43:06.037916Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:16.252278Z",
- "iopub.status.busy": "2023-12-28T10:50:16.251909Z",
- "iopub.status.idle": "2023-12-28T10:50:16.525316Z",
- "shell.execute_reply": "2023-12-28T10:50:16.524688Z"
+ "iopub.execute_input": "2024-01-02T16:43:06.040816Z",
+ "iopub.status.busy": "2024-01-02T16:43:06.040615Z",
+ "iopub.status.idle": "2024-01-02T16:43:06.323660Z",
+ "shell.execute_reply": "2024-01-02T16:43:06.323026Z"
},
"nbsphinx": "hidden"
},
@@ -517,10 +517,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:16.528184Z",
- "iopub.status.busy": "2023-12-28T10:50:16.527851Z",
- "iopub.status.idle": "2023-12-28T10:50:16.838734Z",
- "shell.execute_reply": "2023-12-28T10:50:16.838066Z"
+ "iopub.execute_input": "2024-01-02T16:43:06.326553Z",
+ "iopub.status.busy": "2024-01-02T16:43:06.326323Z",
+ "iopub.status.idle": "2024-01-02T16:43:06.698597Z",
+ "shell.execute_reply": "2024-01-02T16:43:06.697906Z"
}
},
"outputs": [
@@ -568,10 +568,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:16.841418Z",
- "iopub.status.busy": "2023-12-28T10:50:16.841034Z",
- "iopub.status.idle": "2023-12-28T10:50:16.865849Z",
- "shell.execute_reply": "2023-12-28T10:50:16.865312Z"
+ "iopub.execute_input": "2024-01-02T16:43:06.701335Z",
+ "iopub.status.busy": "2024-01-02T16:43:06.700921Z",
+ "iopub.status.idle": "2024-01-02T16:43:06.726434Z",
+ "shell.execute_reply": "2024-01-02T16:43:06.725786Z"
}
},
"outputs": [],
@@ -607,10 +607,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:16.868637Z",
- "iopub.status.busy": "2023-12-28T10:50:16.868251Z",
- "iopub.status.idle": "2023-12-28T10:50:16.880006Z",
- "shell.execute_reply": "2023-12-28T10:50:16.879381Z"
+ "iopub.execute_input": "2024-01-02T16:43:06.729295Z",
+ "iopub.status.busy": "2024-01-02T16:43:06.728817Z",
+ "iopub.status.idle": "2024-01-02T16:43:06.740870Z",
+ "shell.execute_reply": "2024-01-02T16:43:06.740224Z"
}
},
"outputs": [],
@@ -641,10 +641,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:16.882551Z",
- "iopub.status.busy": "2023-12-28T10:50:16.882060Z",
- "iopub.status.idle": "2023-12-28T10:50:18.165561Z",
- "shell.execute_reply": "2023-12-28T10:50:18.164811Z"
+ "iopub.execute_input": "2024-01-02T16:43:06.743725Z",
+ "iopub.status.busy": "2024-01-02T16:43:06.743356Z",
+ "iopub.status.idle": "2024-01-02T16:43:08.041298Z",
+ "shell.execute_reply": "2024-01-02T16:43:08.040623Z"
}
},
"outputs": [
@@ -708,10 +708,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:18.168547Z",
- "iopub.status.busy": "2023-12-28T10:50:18.167995Z",
- "iopub.status.idle": "2023-12-28T10:50:18.190487Z",
- "shell.execute_reply": "2023-12-28T10:50:18.189870Z"
+ "iopub.execute_input": "2024-01-02T16:43:08.044353Z",
+ "iopub.status.busy": "2024-01-02T16:43:08.043895Z",
+ "iopub.status.idle": "2024-01-02T16:43:08.068172Z",
+ "shell.execute_reply": "2024-01-02T16:43:08.067547Z"
}
},
"outputs": [
@@ -820,10 +820,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:18.193008Z",
- "iopub.status.busy": "2023-12-28T10:50:18.192629Z",
- "iopub.status.idle": "2023-12-28T10:50:18.213206Z",
- "shell.execute_reply": "2023-12-28T10:50:18.212525Z"
+ "iopub.execute_input": "2024-01-02T16:43:08.070855Z",
+ "iopub.status.busy": "2024-01-02T16:43:08.070461Z",
+ "iopub.status.idle": "2024-01-02T16:43:08.091981Z",
+ "shell.execute_reply": "2024-01-02T16:43:08.091312Z"
}
},
"outputs": [
@@ -909,7 +909,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:297: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n",
+ "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:297: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n",
" warnings.warn(\n",
"/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:327: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n",
" warnings.warn(\n",
@@ -935,10 +935,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:18.215885Z",
- "iopub.status.busy": "2023-12-28T10:50:18.215443Z",
- "iopub.status.idle": "2023-12-28T10:50:18.230713Z",
- "shell.execute_reply": "2023-12-28T10:50:18.230077Z"
+ "iopub.execute_input": "2024-01-02T16:43:08.094876Z",
+ "iopub.status.busy": "2024-01-02T16:43:08.094479Z",
+ "iopub.status.idle": "2024-01-02T16:43:08.109093Z",
+ "shell.execute_reply": "2024-01-02T16:43:08.108576Z"
}
},
"outputs": [
@@ -1068,17 +1068,17 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:18.233476Z",
- "iopub.status.busy": "2023-12-28T10:50:18.233097Z",
- "iopub.status.idle": "2023-12-28T10:50:18.256097Z",
- "shell.execute_reply": "2023-12-28T10:50:18.255392Z"
+ "iopub.execute_input": "2024-01-02T16:43:08.111744Z",
+ "iopub.status.busy": "2024-01-02T16:43:08.111369Z",
+ "iopub.status.idle": "2024-01-02T16:43:08.133931Z",
+ "shell.execute_reply": "2024-01-02T16:43:08.133269Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "90124a1816fc4b2398ba329fa7593bf7",
+ "model_id": "0bf73f39809642ee8f09fa8160e6e0bf",
"version_major": 2,
"version_minor": 0
},
@@ -1114,10 +1114,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:18.259768Z",
- "iopub.status.busy": "2023-12-28T10:50:18.259350Z",
- "iopub.status.idle": "2023-12-28T10:50:18.274323Z",
- "shell.execute_reply": "2023-12-28T10:50:18.273773Z"
+ "iopub.execute_input": "2024-01-02T16:43:08.137034Z",
+ "iopub.status.busy": "2024-01-02T16:43:08.136658Z",
+ "iopub.status.idle": "2024-01-02T16:43:08.151983Z",
+ "shell.execute_reply": "2024-01-02T16:43:08.151457Z"
}
},
"outputs": [
@@ -1235,10 +1235,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:18.276936Z",
- "iopub.status.busy": "2023-12-28T10:50:18.276560Z",
- "iopub.status.idle": "2023-12-28T10:50:18.282972Z",
- "shell.execute_reply": "2023-12-28T10:50:18.282455Z"
+ "iopub.execute_input": "2024-01-02T16:43:08.154411Z",
+ "iopub.status.busy": "2024-01-02T16:43:08.154107Z",
+ "iopub.status.idle": "2024-01-02T16:43:08.160430Z",
+ "shell.execute_reply": "2024-01-02T16:43:08.159900Z"
}
},
"outputs": [],
@@ -1295,10 +1295,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:18.285438Z",
- "iopub.status.busy": "2023-12-28T10:50:18.285073Z",
- "iopub.status.idle": "2023-12-28T10:50:18.303533Z",
- "shell.execute_reply": "2023-12-28T10:50:18.302873Z"
+ "iopub.execute_input": "2024-01-02T16:43:08.162892Z",
+ "iopub.status.busy": "2024-01-02T16:43:08.162546Z",
+ "iopub.status.idle": "2024-01-02T16:43:08.182474Z",
+ "shell.execute_reply": "2024-01-02T16:43:08.181772Z"
}
},
"outputs": [
@@ -1430,7 +1430,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "06525292aee94ad1afbcfb7c80b2ebbd": {
+ "0237fcfb7df84d0a961faa9a854f084f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1482,61 +1482,7 @@
"width": null
}
},
- "280f82f911c94cafadfe5bf5271dccba": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "4f90956440a74660be102e72c0aa965a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_cb29499f69f646f8bc306688277aeef3",
- "max": 132.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_bcc5a228aa7f4c13b9c3eb05ee9c8253",
- "value": 132.0
- }
- },
- "4fee7a574ae348a69a21b2fc3f9464dd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "8ca67813159948e49694d112e74187ea": {
+ "0578f53af7da451f8c89f12173cafe24": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1588,7 +1534,7 @@
"width": null
}
},
- "90124a1816fc4b2398ba329fa7593bf7": {
+ "0bf73f39809642ee8f09fa8160e6e0bf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -1603,35 +1549,54 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_946dd7c3ac5649fab11b9e9dc559d2bc",
- "IPY_MODEL_4f90956440a74660be102e72c0aa965a",
- "IPY_MODEL_c232c102c5c9462980c0a1422e8a29e9"
+ "IPY_MODEL_c9aaa30b92dc44babad0d9b527b76f8a",
+ "IPY_MODEL_407f8338b2f645aa8b506f4d61a1f029",
+ "IPY_MODEL_b96082c6094c46369d251561152ad7df"
],
- "layout": "IPY_MODEL_06525292aee94ad1afbcfb7c80b2ebbd"
+ "layout": "IPY_MODEL_0237fcfb7df84d0a961faa9a854f084f"
}
},
- "946dd7c3ac5649fab11b9e9dc559d2bc": {
+ "405c56b73c8c46a4adf63a66299367b4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "407f8338b2f645aa8b506f4d61a1f029": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_8ca67813159948e49694d112e74187ea",
- "placeholder": "",
- "style": "IPY_MODEL_4fee7a574ae348a69a21b2fc3f9464dd",
- "value": "Saving the dataset (1/1 shards): 100%"
+ "layout": "IPY_MODEL_b581c1a21f8b40e8aaaca850551394c9",
+ "max": 132.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_405c56b73c8c46a4adf63a66299367b4",
+ "value": 132.0
}
},
- "9da51a1f1257499e856f6e00deced49e": {
+ "91ba1022deff4d149a7fe3f7ebd1640f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1683,44 +1648,7 @@
"width": null
}
},
- "bcc5a228aa7f4c13b9c3eb05ee9c8253": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c232c102c5c9462980c0a1422e8a29e9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9da51a1f1257499e856f6e00deced49e",
- "placeholder": "",
- "style": "IPY_MODEL_280f82f911c94cafadfe5bf5271dccba",
- "value": " 132/132 [00:00<00:00, 11010.86 examples/s]"
- }
- },
- "cb29499f69f646f8bc306688277aeef3": {
+ "b581c1a21f8b40e8aaaca850551394c9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1771,6 +1699,78 @@
"visibility": null,
"width": null
}
+ },
+ "b96082c6094c46369d251561152ad7df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_91ba1022deff4d149a7fe3f7ebd1640f",
+ "placeholder": "",
+ "style": "IPY_MODEL_b9645894b0b74beaa339a6bbe4ac7b36",
+ "value": " 132/132 [00:00<00:00, 10363.48 examples/s]"
+ }
+ },
+ "b9645894b0b74beaa339a6bbe4ac7b36": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c53585d57b384f76b68b110915b25a5c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c9aaa30b92dc44babad0d9b527b76f8a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0578f53af7da451f8c89f12173cafe24",
+ "placeholder": "",
+ "style": "IPY_MODEL_c53585d57b384f76b68b110915b25a5c",
+ "value": "Saving the dataset (1/1 shards): 100%"
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
index 556eafb73..646c2392e 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:23.127399Z",
- "iopub.status.busy": "2023-12-28T10:50:23.127207Z",
- "iopub.status.idle": "2023-12-28T10:50:24.210804Z",
- "shell.execute_reply": "2023-12-28T10:50:24.210190Z"
+ "iopub.execute_input": "2024-01-02T16:43:12.910070Z",
+ "iopub.status.busy": "2024-01-02T16:43:12.909888Z",
+ "iopub.status.idle": "2024-01-02T16:43:14.014787Z",
+ "shell.execute_reply": "2024-01-02T16:43:14.014141Z"
},
"nbsphinx": "hidden"
},
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -116,10 +116,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:24.213824Z",
- "iopub.status.busy": "2023-12-28T10:50:24.213271Z",
- "iopub.status.idle": "2023-12-28T10:50:24.216530Z",
- "shell.execute_reply": "2023-12-28T10:50:24.216010Z"
+ "iopub.execute_input": "2024-01-02T16:43:14.017798Z",
+ "iopub.status.busy": "2024-01-02T16:43:14.017277Z",
+ "iopub.status.idle": "2024-01-02T16:43:14.020596Z",
+ "shell.execute_reply": "2024-01-02T16:43:14.020083Z"
}
},
"outputs": [],
@@ -250,10 +250,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:24.219198Z",
- "iopub.status.busy": "2023-12-28T10:50:24.218823Z",
- "iopub.status.idle": "2023-12-28T10:50:24.228723Z",
- "shell.execute_reply": "2023-12-28T10:50:24.228181Z"
+ "iopub.execute_input": "2024-01-02T16:43:14.023239Z",
+ "iopub.status.busy": "2024-01-02T16:43:14.022887Z",
+ "iopub.status.idle": "2024-01-02T16:43:14.033253Z",
+ "shell.execute_reply": "2024-01-02T16:43:14.032704Z"
},
"nbsphinx": "hidden"
},
@@ -356,10 +356,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:24.231046Z",
- "iopub.status.busy": "2023-12-28T10:50:24.230672Z",
- "iopub.status.idle": "2023-12-28T10:50:24.235453Z",
- "shell.execute_reply": "2023-12-28T10:50:24.234975Z"
+ "iopub.execute_input": "2024-01-02T16:43:14.036036Z",
+ "iopub.status.busy": "2024-01-02T16:43:14.035558Z",
+ "iopub.status.idle": "2024-01-02T16:43:14.040586Z",
+ "shell.execute_reply": "2024-01-02T16:43:14.039956Z"
}
},
"outputs": [],
@@ -448,10 +448,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:24.237950Z",
- "iopub.status.busy": "2023-12-28T10:50:24.237536Z",
- "iopub.status.idle": "2023-12-28T10:50:24.512859Z",
- "shell.execute_reply": "2023-12-28T10:50:24.512246Z"
+ "iopub.execute_input": "2024-01-02T16:43:14.043211Z",
+ "iopub.status.busy": "2024-01-02T16:43:14.043005Z",
+ "iopub.status.idle": "2024-01-02T16:43:14.323675Z",
+ "shell.execute_reply": "2024-01-02T16:43:14.323039Z"
},
"nbsphinx": "hidden"
},
@@ -520,10 +520,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:24.515846Z",
- "iopub.status.busy": "2023-12-28T10:50:24.515415Z",
- "iopub.status.idle": "2023-12-28T10:50:24.888437Z",
- "shell.execute_reply": "2023-12-28T10:50:24.887708Z"
+ "iopub.execute_input": "2024-01-02T16:43:14.326611Z",
+ "iopub.status.busy": "2024-01-02T16:43:14.326227Z",
+ "iopub.status.idle": "2024-01-02T16:43:14.698981Z",
+ "shell.execute_reply": "2024-01-02T16:43:14.698288Z"
}
},
"outputs": [
@@ -559,10 +559,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:24.891202Z",
- "iopub.status.busy": "2023-12-28T10:50:24.890750Z",
- "iopub.status.idle": "2023-12-28T10:50:24.893821Z",
- "shell.execute_reply": "2023-12-28T10:50:24.893238Z"
+ "iopub.execute_input": "2024-01-02T16:43:14.701623Z",
+ "iopub.status.busy": "2024-01-02T16:43:14.701415Z",
+ "iopub.status.idle": "2024-01-02T16:43:14.704308Z",
+ "shell.execute_reply": "2024-01-02T16:43:14.703756Z"
}
},
"outputs": [],
@@ -601,10 +601,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:24.896308Z",
- "iopub.status.busy": "2023-12-28T10:50:24.895918Z",
- "iopub.status.idle": "2023-12-28T10:50:24.934585Z",
- "shell.execute_reply": "2023-12-28T10:50:24.933888Z"
+ "iopub.execute_input": "2024-01-02T16:43:14.706734Z",
+ "iopub.status.busy": "2024-01-02T16:43:14.706532Z",
+ "iopub.status.idle": "2024-01-02T16:43:14.745069Z",
+ "shell.execute_reply": "2024-01-02T16:43:14.744459Z"
}
},
"outputs": [
@@ -646,10 +646,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:24.937574Z",
- "iopub.status.busy": "2023-12-28T10:50:24.936861Z",
- "iopub.status.idle": "2023-12-28T10:50:26.251582Z",
- "shell.execute_reply": "2023-12-28T10:50:26.250822Z"
+ "iopub.execute_input": "2024-01-02T16:43:14.747628Z",
+ "iopub.status.busy": "2024-01-02T16:43:14.747226Z",
+ "iopub.status.idle": "2024-01-02T16:43:16.079434Z",
+ "shell.execute_reply": "2024-01-02T16:43:16.078668Z"
}
},
"outputs": [
@@ -700,10 +700,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:26.254711Z",
- "iopub.status.busy": "2023-12-28T10:50:26.254201Z",
- "iopub.status.idle": "2023-12-28T10:50:26.275060Z",
- "shell.execute_reply": "2023-12-28T10:50:26.274446Z"
+ "iopub.execute_input": "2024-01-02T16:43:16.082391Z",
+ "iopub.status.busy": "2024-01-02T16:43:16.081860Z",
+ "iopub.status.idle": "2024-01-02T16:43:16.101229Z",
+ "shell.execute_reply": "2024-01-02T16:43:16.100650Z"
}
},
"outputs": [
@@ -855,10 +855,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:26.277595Z",
- "iopub.status.busy": "2023-12-28T10:50:26.277217Z",
- "iopub.status.idle": "2023-12-28T10:50:26.284148Z",
- "shell.execute_reply": "2023-12-28T10:50:26.283553Z"
+ "iopub.execute_input": "2024-01-02T16:43:16.103832Z",
+ "iopub.status.busy": "2024-01-02T16:43:16.103518Z",
+ "iopub.status.idle": "2024-01-02T16:43:16.111043Z",
+ "shell.execute_reply": "2024-01-02T16:43:16.110390Z"
}
},
"outputs": [
@@ -955,10 +955,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:26.286524Z",
- "iopub.status.busy": "2023-12-28T10:50:26.286144Z",
- "iopub.status.idle": "2023-12-28T10:50:26.293526Z",
- "shell.execute_reply": "2023-12-28T10:50:26.292892Z"
+ "iopub.execute_input": "2024-01-02T16:43:16.113360Z",
+ "iopub.status.busy": "2024-01-02T16:43:16.113149Z",
+ "iopub.status.idle": "2024-01-02T16:43:16.120923Z",
+ "shell.execute_reply": "2024-01-02T16:43:16.120283Z"
}
},
"outputs": [
@@ -1025,10 +1025,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:26.296120Z",
- "iopub.status.busy": "2023-12-28T10:50:26.295707Z",
- "iopub.status.idle": "2023-12-28T10:50:26.305261Z",
- "shell.execute_reply": "2023-12-28T10:50:26.304626Z"
+ "iopub.execute_input": "2024-01-02T16:43:16.123402Z",
+ "iopub.status.busy": "2024-01-02T16:43:16.123195Z",
+ "iopub.status.idle": "2024-01-02T16:43:16.133393Z",
+ "shell.execute_reply": "2024-01-02T16:43:16.132855Z"
}
},
"outputs": [
@@ -1182,10 +1182,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:26.307771Z",
- "iopub.status.busy": "2023-12-28T10:50:26.307345Z",
- "iopub.status.idle": "2023-12-28T10:50:26.317022Z",
- "shell.execute_reply": "2023-12-28T10:50:26.316381Z"
+ "iopub.execute_input": "2024-01-02T16:43:16.135617Z",
+ "iopub.status.busy": "2024-01-02T16:43:16.135416Z",
+ "iopub.status.idle": "2024-01-02T16:43:16.145516Z",
+ "shell.execute_reply": "2024-01-02T16:43:16.144985Z"
}
},
"outputs": [
@@ -1301,10 +1301,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:26.319568Z",
- "iopub.status.busy": "2023-12-28T10:50:26.319187Z",
- "iopub.status.idle": "2023-12-28T10:50:26.326878Z",
- "shell.execute_reply": "2023-12-28T10:50:26.326246Z"
+ "iopub.execute_input": "2024-01-02T16:43:16.147717Z",
+ "iopub.status.busy": "2024-01-02T16:43:16.147522Z",
+ "iopub.status.idle": "2024-01-02T16:43:16.155043Z",
+ "shell.execute_reply": "2024-01-02T16:43:16.154462Z"
},
"scrolled": true
},
@@ -1429,10 +1429,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:26.329366Z",
- "iopub.status.busy": "2023-12-28T10:50:26.328932Z",
- "iopub.status.idle": "2023-12-28T10:50:26.339254Z",
- "shell.execute_reply": "2023-12-28T10:50:26.338626Z"
+ "iopub.execute_input": "2024-01-02T16:43:16.157338Z",
+ "iopub.status.busy": "2024-01-02T16:43:16.157139Z",
+ "iopub.status.idle": "2024-01-02T16:43:16.167394Z",
+ "shell.execute_reply": "2024-01-02T16:43:16.166761Z"
}
},
"outputs": [
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
index 2b26df229..bc4240224 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
@@ -74,10 +74,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:31.441284Z",
- "iopub.status.busy": "2023-12-28T10:50:31.441088Z",
- "iopub.status.idle": "2023-12-28T10:50:32.477040Z",
- "shell.execute_reply": "2023-12-28T10:50:32.476406Z"
+ "iopub.execute_input": "2024-01-02T16:43:20.948874Z",
+ "iopub.status.busy": "2024-01-02T16:43:20.948322Z",
+ "iopub.status.idle": "2024-01-02T16:43:21.979951Z",
+ "shell.execute_reply": "2024-01-02T16:43:21.979340Z"
},
"nbsphinx": "hidden"
},
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:32.480062Z",
- "iopub.status.busy": "2023-12-28T10:50:32.479560Z",
- "iopub.status.idle": "2023-12-28T10:50:32.496295Z",
- "shell.execute_reply": "2023-12-28T10:50:32.495689Z"
+ "iopub.execute_input": "2024-01-02T16:43:21.982910Z",
+ "iopub.status.busy": "2024-01-02T16:43:21.982428Z",
+ "iopub.status.idle": "2024-01-02T16:43:21.999057Z",
+ "shell.execute_reply": "2024-01-02T16:43:21.998569Z"
}
},
"outputs": [],
@@ -155,10 +155,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:32.499063Z",
- "iopub.status.busy": "2023-12-28T10:50:32.498709Z",
- "iopub.status.idle": "2023-12-28T10:50:32.616178Z",
- "shell.execute_reply": "2023-12-28T10:50:32.615497Z"
+ "iopub.execute_input": "2024-01-02T16:43:22.001488Z",
+ "iopub.status.busy": "2024-01-02T16:43:22.001280Z",
+ "iopub.status.idle": "2024-01-02T16:43:22.209088Z",
+ "shell.execute_reply": "2024-01-02T16:43:22.208493Z"
}
},
"outputs": [
@@ -265,10 +265,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:32.618746Z",
- "iopub.status.busy": "2023-12-28T10:50:32.618413Z",
- "iopub.status.idle": "2023-12-28T10:50:32.622202Z",
- "shell.execute_reply": "2023-12-28T10:50:32.621676Z"
+ "iopub.execute_input": "2024-01-02T16:43:22.211461Z",
+ "iopub.status.busy": "2024-01-02T16:43:22.211256Z",
+ "iopub.status.idle": "2024-01-02T16:43:22.215053Z",
+ "shell.execute_reply": "2024-01-02T16:43:22.214550Z"
}
},
"outputs": [],
@@ -289,10 +289,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:32.624399Z",
- "iopub.status.busy": "2023-12-28T10:50:32.624200Z",
- "iopub.status.idle": "2023-12-28T10:50:32.632440Z",
- "shell.execute_reply": "2023-12-28T10:50:32.631798Z"
+ "iopub.execute_input": "2024-01-02T16:43:22.217526Z",
+ "iopub.status.busy": "2024-01-02T16:43:22.217167Z",
+ "iopub.status.idle": "2024-01-02T16:43:22.224971Z",
+ "shell.execute_reply": "2024-01-02T16:43:22.224471Z"
}
},
"outputs": [],
@@ -337,10 +337,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:32.635046Z",
- "iopub.status.busy": "2023-12-28T10:50:32.634851Z",
- "iopub.status.idle": "2023-12-28T10:50:32.637733Z",
- "shell.execute_reply": "2023-12-28T10:50:32.637210Z"
+ "iopub.execute_input": "2024-01-02T16:43:22.227490Z",
+ "iopub.status.busy": "2024-01-02T16:43:22.227117Z",
+ "iopub.status.idle": "2024-01-02T16:43:22.229922Z",
+ "shell.execute_reply": "2024-01-02T16:43:22.229380Z"
}
},
"outputs": [],
@@ -362,10 +362,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:32.639906Z",
- "iopub.status.busy": "2023-12-28T10:50:32.639711Z",
- "iopub.status.idle": "2023-12-28T10:50:36.211594Z",
- "shell.execute_reply": "2023-12-28T10:50:36.210955Z"
+ "iopub.execute_input": "2024-01-02T16:43:22.232312Z",
+ "iopub.status.busy": "2024-01-02T16:43:22.231945Z",
+ "iopub.status.idle": "2024-01-02T16:43:25.922257Z",
+ "shell.execute_reply": "2024-01-02T16:43:25.921533Z"
}
},
"outputs": [],
@@ -401,10 +401,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:36.215028Z",
- "iopub.status.busy": "2023-12-28T10:50:36.214564Z",
- "iopub.status.idle": "2023-12-28T10:50:36.224889Z",
- "shell.execute_reply": "2023-12-28T10:50:36.224389Z"
+ "iopub.execute_input": "2024-01-02T16:43:25.925625Z",
+ "iopub.status.busy": "2024-01-02T16:43:25.925143Z",
+ "iopub.status.idle": "2024-01-02T16:43:25.934900Z",
+ "shell.execute_reply": "2024-01-02T16:43:25.934264Z"
}
},
"outputs": [],
@@ -436,10 +436,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:36.227489Z",
- "iopub.status.busy": "2023-12-28T10:50:36.227110Z",
- "iopub.status.idle": "2023-12-28T10:50:37.592670Z",
- "shell.execute_reply": "2023-12-28T10:50:37.591938Z"
+ "iopub.execute_input": "2024-01-02T16:43:25.937602Z",
+ "iopub.status.busy": "2024-01-02T16:43:25.937082Z",
+ "iopub.status.idle": "2024-01-02T16:43:27.292747Z",
+ "shell.execute_reply": "2024-01-02T16:43:27.291971Z"
}
},
"outputs": [
@@ -475,10 +475,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:37.596195Z",
- "iopub.status.busy": "2023-12-28T10:50:37.595493Z",
- "iopub.status.idle": "2023-12-28T10:50:37.620177Z",
- "shell.execute_reply": "2023-12-28T10:50:37.619548Z"
+ "iopub.execute_input": "2024-01-02T16:43:27.297304Z",
+ "iopub.status.busy": "2024-01-02T16:43:27.295918Z",
+ "iopub.status.idle": "2024-01-02T16:43:27.322952Z",
+ "shell.execute_reply": "2024-01-02T16:43:27.322336Z"
},
"scrolled": true
},
@@ -595,11 +595,11 @@
"\n",
"Examples representing most severe instances of this issue:\n",
" is_class_imbalance_issue class_imbalance_score\n",
- "0 False 1.0\n",
- "619 False 1.0\n",
- "620 False 1.0\n",
- "621 False 1.0\n",
- "622 False 1.0\n"
+ "393 False 0.156217\n",
+ "391 False 0.156217\n",
+ "806 False 0.156217\n",
+ "805 False 0.156217\n",
+ "156 False 0.156217\n"
]
}
],
@@ -621,10 +621,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:37.623337Z",
- "iopub.status.busy": "2023-12-28T10:50:37.622874Z",
- "iopub.status.idle": "2023-12-28T10:50:37.633631Z",
- "shell.execute_reply": "2023-12-28T10:50:37.633012Z"
+ "iopub.execute_input": "2024-01-02T16:43:27.327379Z",
+ "iopub.status.busy": "2024-01-02T16:43:27.326244Z",
+ "iopub.status.idle": "2024-01-02T16:43:27.338918Z",
+ "shell.execute_reply": "2024-01-02T16:43:27.338323Z"
}
},
"outputs": [
@@ -728,10 +728,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:37.636687Z",
- "iopub.status.busy": "2023-12-28T10:50:37.636248Z",
- "iopub.status.idle": "2023-12-28T10:50:37.649137Z",
- "shell.execute_reply": "2023-12-28T10:50:37.648498Z"
+ "iopub.execute_input": "2024-01-02T16:43:27.343212Z",
+ "iopub.status.busy": "2024-01-02T16:43:27.342071Z",
+ "iopub.status.idle": "2024-01-02T16:43:27.356605Z",
+ "shell.execute_reply": "2024-01-02T16:43:27.356004Z"
}
},
"outputs": [
@@ -860,10 +860,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:37.652394Z",
- "iopub.status.busy": "2023-12-28T10:50:37.651968Z",
- "iopub.status.idle": "2023-12-28T10:50:37.663000Z",
- "shell.execute_reply": "2023-12-28T10:50:37.662379Z"
+ "iopub.execute_input": "2024-01-02T16:43:27.360952Z",
+ "iopub.status.busy": "2024-01-02T16:43:27.359817Z",
+ "iopub.status.idle": "2024-01-02T16:43:27.372494Z",
+ "shell.execute_reply": "2024-01-02T16:43:27.371883Z"
}
},
"outputs": [
@@ -977,10 +977,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:37.667123Z",
- "iopub.status.busy": "2023-12-28T10:50:37.665984Z",
- "iopub.status.idle": "2023-12-28T10:50:37.681083Z",
- "shell.execute_reply": "2023-12-28T10:50:37.680350Z"
+ "iopub.execute_input": "2024-01-02T16:43:27.376830Z",
+ "iopub.status.busy": "2024-01-02T16:43:27.375700Z",
+ "iopub.status.idle": "2024-01-02T16:43:27.387239Z",
+ "shell.execute_reply": "2024-01-02T16:43:27.386752Z"
}
},
"outputs": [
@@ -1091,10 +1091,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:37.683973Z",
- "iopub.status.busy": "2023-12-28T10:50:37.683587Z",
- "iopub.status.idle": "2023-12-28T10:50:37.692321Z",
- "shell.execute_reply": "2023-12-28T10:50:37.691583Z"
+ "iopub.execute_input": "2024-01-02T16:43:27.390068Z",
+ "iopub.status.busy": "2024-01-02T16:43:27.389674Z",
+ "iopub.status.idle": "2024-01-02T16:43:27.397684Z",
+ "shell.execute_reply": "2024-01-02T16:43:27.397154Z"
}
},
"outputs": [
@@ -1178,10 +1178,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:37.694815Z",
- "iopub.status.busy": "2023-12-28T10:50:37.694435Z",
- "iopub.status.idle": "2023-12-28T10:50:37.701429Z",
- "shell.execute_reply": "2023-12-28T10:50:37.700802Z"
+ "iopub.execute_input": "2024-01-02T16:43:27.400276Z",
+ "iopub.status.busy": "2024-01-02T16:43:27.399787Z",
+ "iopub.status.idle": "2024-01-02T16:43:27.406739Z",
+ "shell.execute_reply": "2024-01-02T16:43:27.406110Z"
}
},
"outputs": [
@@ -1265,10 +1265,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:37.704030Z",
- "iopub.status.busy": "2023-12-28T10:50:37.703659Z",
- "iopub.status.idle": "2023-12-28T10:50:37.710668Z",
- "shell.execute_reply": "2023-12-28T10:50:37.710146Z"
+ "iopub.execute_input": "2024-01-02T16:43:27.409417Z",
+ "iopub.status.busy": "2024-01-02T16:43:27.409027Z",
+ "iopub.status.idle": "2024-01-02T16:43:27.415905Z",
+ "shell.execute_reply": "2024-01-02T16:43:27.415281Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
index 71524e6c1..df25d3811 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
@@ -75,10 +75,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:42.296308Z",
- "iopub.status.busy": "2023-12-28T10:50:42.295684Z",
- "iopub.status.idle": "2023-12-28T10:50:44.808313Z",
- "shell.execute_reply": "2023-12-28T10:50:44.807639Z"
+ "iopub.execute_input": "2024-01-02T16:43:32.130627Z",
+ "iopub.status.busy": "2024-01-02T16:43:32.130344Z",
+ "iopub.status.idle": "2024-01-02T16:43:34.442750Z",
+ "shell.execute_reply": "2024-01-02T16:43:34.442185Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "6026f80c546045ba90baf2862e01385f",
+ "model_id": "032575598b4e473292addfff7238dfa1",
"version_major": 2,
"version_minor": 0
},
@@ -118,7 +118,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -143,10 +143,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:44.811256Z",
- "iopub.status.busy": "2023-12-28T10:50:44.810826Z",
- "iopub.status.idle": "2023-12-28T10:50:44.814274Z",
- "shell.execute_reply": "2023-12-28T10:50:44.813736Z"
+ "iopub.execute_input": "2024-01-02T16:43:34.445733Z",
+ "iopub.status.busy": "2024-01-02T16:43:34.445233Z",
+ "iopub.status.idle": "2024-01-02T16:43:34.448635Z",
+ "shell.execute_reply": "2024-01-02T16:43:34.448077Z"
}
},
"outputs": [],
@@ -167,10 +167,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:44.816672Z",
- "iopub.status.busy": "2023-12-28T10:50:44.816355Z",
- "iopub.status.idle": "2023-12-28T10:50:44.819588Z",
- "shell.execute_reply": "2023-12-28T10:50:44.819072Z"
+ "iopub.execute_input": "2024-01-02T16:43:34.451209Z",
+ "iopub.status.busy": "2024-01-02T16:43:34.450761Z",
+ "iopub.status.idle": "2024-01-02T16:43:34.454043Z",
+ "shell.execute_reply": "2024-01-02T16:43:34.453455Z"
},
"nbsphinx": "hidden"
},
@@ -200,10 +200,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:44.821895Z",
- "iopub.status.busy": "2023-12-28T10:50:44.821594Z",
- "iopub.status.idle": "2023-12-28T10:50:44.855877Z",
- "shell.execute_reply": "2023-12-28T10:50:44.855303Z"
+ "iopub.execute_input": "2024-01-02T16:43:34.456329Z",
+ "iopub.status.busy": "2024-01-02T16:43:34.456027Z",
+ "iopub.status.idle": "2024-01-02T16:43:34.540440Z",
+ "shell.execute_reply": "2024-01-02T16:43:34.539823Z"
}
},
"outputs": [
@@ -293,10 +293,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:44.858326Z",
- "iopub.status.busy": "2023-12-28T10:50:44.858017Z",
- "iopub.status.idle": "2023-12-28T10:50:44.862431Z",
- "shell.execute_reply": "2023-12-28T10:50:44.861892Z"
+ "iopub.execute_input": "2024-01-02T16:43:34.543030Z",
+ "iopub.status.busy": "2024-01-02T16:43:34.542554Z",
+ "iopub.status.idle": "2024-01-02T16:43:34.547162Z",
+ "shell.execute_reply": "2024-01-02T16:43:34.546619Z"
}
},
"outputs": [
@@ -305,7 +305,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'change_pin', 'lost_or_stolen_phone'}\n"
+ "Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card'}\n"
]
}
],
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:44.865000Z",
- "iopub.status.busy": "2023-12-28T10:50:44.864591Z",
- "iopub.status.idle": "2023-12-28T10:50:44.868468Z",
- "shell.execute_reply": "2023-12-28T10:50:44.867926Z"
+ "iopub.execute_input": "2024-01-02T16:43:34.549361Z",
+ "iopub.status.busy": "2024-01-02T16:43:34.549169Z",
+ "iopub.status.idle": "2024-01-02T16:43:34.553002Z",
+ "shell.execute_reply": "2024-01-02T16:43:34.552474Z"
}
},
"outputs": [
@@ -387,17 +387,17 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:44.871001Z",
- "iopub.status.busy": "2023-12-28T10:50:44.870636Z",
- "iopub.status.idle": "2023-12-28T10:50:53.857935Z",
- "shell.execute_reply": "2023-12-28T10:50:53.857284Z"
+ "iopub.execute_input": "2024-01-02T16:43:34.555619Z",
+ "iopub.status.busy": "2024-01-02T16:43:34.555119Z",
+ "iopub.status.idle": "2024-01-02T16:43:44.089984Z",
+ "shell.execute_reply": "2024-01-02T16:43:44.089314Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "29bd27e9df334714828cb191caed3549",
+ "model_id": "cfa8e33b9ba34f9b84f7b2894dcb1cdd",
"version_major": 2,
"version_minor": 0
},
@@ -411,7 +411,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "188c19db59ae461cb5ab90cc79c1374a",
+ "model_id": "9be87e374eee4c2cadd9184c312be454",
"version_major": 2,
"version_minor": 0
},
@@ -425,7 +425,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7bb1e7e05e60454ab46487e0b06e8015",
+ "model_id": "8bae24cade9a4f9fb9606ed955bcc7d8",
"version_major": 2,
"version_minor": 0
},
@@ -439,7 +439,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e30203085c184383b15297aff47b5870",
+ "model_id": "cefe0741da744da1b2967a16480c3466",
"version_major": 2,
"version_minor": 0
},
@@ -453,7 +453,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "8ee68691137f4c98896da1fef213310d",
+ "model_id": "134a1cda4acb4edab174eb997e37d992",
"version_major": 2,
"version_minor": 0
},
@@ -467,7 +467,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "886021f191904b33a4371d295ac03dc0",
+ "model_id": "5a21341e48eb48a5a8cb46237cc6040e",
"version_major": 2,
"version_minor": 0
},
@@ -481,7 +481,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a308d4d8368044c0b8902a8d75fe15c9",
+ "model_id": "efbcffcfef5b4247bac1c857e7f07a58",
"version_major": 2,
"version_minor": 0
},
@@ -535,10 +535,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:53.861261Z",
- "iopub.status.busy": "2023-12-28T10:50:53.861000Z",
- "iopub.status.idle": "2023-12-28T10:50:55.033789Z",
- "shell.execute_reply": "2023-12-28T10:50:55.033107Z"
+ "iopub.execute_input": "2024-01-02T16:43:44.093238Z",
+ "iopub.status.busy": "2024-01-02T16:43:44.093010Z",
+ "iopub.status.idle": "2024-01-02T16:43:45.277162Z",
+ "shell.execute_reply": "2024-01-02T16:43:45.276455Z"
},
"scrolled": true
},
@@ -570,10 +570,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:55.037446Z",
- "iopub.status.busy": "2023-12-28T10:50:55.037085Z",
- "iopub.status.idle": "2023-12-28T10:50:55.040116Z",
- "shell.execute_reply": "2023-12-28T10:50:55.039449Z"
+ "iopub.execute_input": "2024-01-02T16:43:45.280984Z",
+ "iopub.status.busy": "2024-01-02T16:43:45.280513Z",
+ "iopub.status.idle": "2024-01-02T16:43:45.285245Z",
+ "shell.execute_reply": "2024-01-02T16:43:45.284646Z"
}
},
"outputs": [],
@@ -593,10 +593,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:55.042832Z",
- "iopub.status.busy": "2023-12-28T10:50:55.042554Z",
- "iopub.status.idle": "2023-12-28T10:50:56.393143Z",
- "shell.execute_reply": "2023-12-28T10:50:56.392396Z"
+ "iopub.execute_input": "2024-01-02T16:43:45.289761Z",
+ "iopub.status.busy": "2024-01-02T16:43:45.288461Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.640141Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.639366Z"
},
"scrolled": true
},
@@ -639,10 +639,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.398315Z",
- "iopub.status.busy": "2023-12-28T10:50:56.396728Z",
- "iopub.status.idle": "2023-12-28T10:50:56.425015Z",
- "shell.execute_reply": "2023-12-28T10:50:56.424374Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.643964Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.643338Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.668494Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.667901Z"
},
"scrolled": true
},
@@ -759,11 +759,11 @@
"\n",
"Examples representing most severe instances of this issue:\n",
" is_class_imbalance_issue class_imbalance_score\n",
- "0 False 1.0\n",
- "658 False 1.0\n",
- "659 False 1.0\n",
- "660 False 1.0\n",
- "661 False 1.0\n"
+ "454 False 0.08\n",
+ "452 False 0.08\n",
+ "453 False 0.08\n",
+ "455 False 0.08\n",
+ "456 False 0.08\n"
]
}
],
@@ -785,10 +785,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.429700Z",
- "iopub.status.busy": "2023-12-28T10:50:56.428366Z",
- "iopub.status.idle": "2023-12-28T10:50:56.442084Z",
- "shell.execute_reply": "2023-12-28T10:50:56.441475Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.671770Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.671376Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.681971Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.681353Z"
},
"scrolled": true
},
@@ -898,10 +898,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.446739Z",
- "iopub.status.busy": "2023-12-28T10:50:56.445420Z",
- "iopub.status.idle": "2023-12-28T10:50:56.452586Z",
- "shell.execute_reply": "2023-12-28T10:50:56.452098Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.685258Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.684870Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.690275Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.689673Z"
}
},
"outputs": [
@@ -939,10 +939,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.455481Z",
- "iopub.status.busy": "2023-12-28T10:50:56.455067Z",
- "iopub.status.idle": "2023-12-28T10:50:56.462931Z",
- "shell.execute_reply": "2023-12-28T10:50:56.462282Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.693177Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.692741Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.700334Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.699860Z"
}
},
"outputs": [
@@ -1059,10 +1059,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.465736Z",
- "iopub.status.busy": "2023-12-28T10:50:56.465287Z",
- "iopub.status.idle": "2023-12-28T10:50:56.472693Z",
- "shell.execute_reply": "2023-12-28T10:50:56.472086Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.702614Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.702272Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.708457Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.707998Z"
}
},
"outputs": [
@@ -1145,10 +1145,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.475278Z",
- "iopub.status.busy": "2023-12-28T10:50:56.474893Z",
- "iopub.status.idle": "2023-12-28T10:50:56.482054Z",
- "shell.execute_reply": "2023-12-28T10:50:56.481519Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.710612Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.710275Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.715977Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.715510Z"
}
},
"outputs": [
@@ -1256,10 +1256,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.484554Z",
- "iopub.status.busy": "2023-12-28T10:50:56.484170Z",
- "iopub.status.idle": "2023-12-28T10:50:56.493457Z",
- "shell.execute_reply": "2023-12-28T10:50:56.492928Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.718214Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.717868Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.726346Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.725880Z"
}
},
"outputs": [
@@ -1370,10 +1370,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.495852Z",
- "iopub.status.busy": "2023-12-28T10:50:56.495479Z",
- "iopub.status.idle": "2023-12-28T10:50:56.501321Z",
- "shell.execute_reply": "2023-12-28T10:50:56.500758Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.728556Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.728219Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.733467Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.733009Z"
}
},
"outputs": [
@@ -1441,10 +1441,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.503767Z",
- "iopub.status.busy": "2023-12-28T10:50:56.503361Z",
- "iopub.status.idle": "2023-12-28T10:50:56.509401Z",
- "shell.execute_reply": "2023-12-28T10:50:56.508757Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.735774Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.735223Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.741279Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.740745Z"
}
},
"outputs": [
@@ -1522,10 +1522,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.511997Z",
- "iopub.status.busy": "2023-12-28T10:50:56.511614Z",
- "iopub.status.idle": "2023-12-28T10:50:56.517085Z",
- "shell.execute_reply": "2023-12-28T10:50:56.516521Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.743620Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.743420Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.749243Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.748588Z"
},
"nbsphinx": "hidden"
},
@@ -1561,10 +1561,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:50:56.519544Z",
- "iopub.status.busy": "2023-12-28T10:50:56.519175Z",
- "iopub.status.idle": "2023-12-28T10:50:56.523174Z",
- "shell.execute_reply": "2023-12-28T10:50:56.522550Z"
+ "iopub.execute_input": "2024-01-02T16:43:46.751745Z",
+ "iopub.status.busy": "2024-01-02T16:43:46.751498Z",
+ "iopub.status.idle": "2024-01-02T16:43:46.755904Z",
+ "shell.execute_reply": "2024-01-02T16:43:46.755367Z"
}
},
"outputs": [
@@ -1618,7 +1618,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "002a3ba42c6f4d21b674649860b6bb8f": {
+ "00872c50338a4b1eb76079883d76d52a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1670,7 +1670,7 @@
"width": null
}
},
- "01e2a9e1904e4fd3b8ab0e029fb19423": {
+ "020920f595fa4115a5c7409d5b8c51e4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1722,43 +1722,102 @@
"width": null
}
},
- "07c2bfa4e96b4691b9a3f82df6fdd6ca": {
+ "032575598b4e473292addfff7238dfa1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_59f4c423e0754af7b1e3cc1a4fa53016",
- "placeholder": "",
- "style": "IPY_MODEL_c423f0c304cc4921b77c3d1ab1914fdb",
- "value": "README.md: 100%"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_8a3114c4394e46e1b7ce1495220913db",
+ "IPY_MODEL_352078d368bd40fba10fbe2f07365998",
+ "IPY_MODEL_23d4c289cba944d19d2219709e2ec6fa"
+ ],
+ "layout": "IPY_MODEL_eaaadabf61ef4df1a6b16c5b9bd3316b"
+ }
+ },
+ "03edcac73dcc40b8a17fae8bd6b93aec": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "082542db1bb140bd99c7ca0e790e7939": {
+ "06c3e93466e841cdb8f0766e760cb4b9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c316145836374f27876f8194d241b65c",
+ "placeholder": "",
+ "style": "IPY_MODEL_c9f956cf1eb7400180959cb85e53b150",
+ "value": " 29.0/29.0 [00:00<00:00, 3.80kB/s]"
}
},
- "0966d9b7d5e24713916cc115e44fb7fb": {
+ "08f47e5fa8db41d58b7ff6bfe3370d47": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1807,25 +1866,31 @@
"right": null,
"top": null,
"visibility": null,
- "width": null
+ "width": "20px"
}
},
- "0cb0e29166d84be6bb583a9004da5c42": {
+ "09194539b33f415eb6243079a5493c34": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_979bd28b34ed41f8aba44e5222499d15",
+ "placeholder": "",
+ "style": "IPY_MODEL_a5640826dd44475e821fa74b810eb1a4",
+ "value": " 232k/232k [00:00<00:00, 5.41MB/s]"
}
},
- "0ce7d40556744bd4b07afbe2f362a2e3": {
+ "09839e5f04d7436787998fc1f0c11891": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1877,7 +1942,7 @@
"width": null
}
},
- "1455c763b56e4f39b88a6414c2355423": {
+ "0a26c2fdb81e4727987b87ecb38bc533": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1929,150 +1994,7 @@
"width": null
}
},
- "1612a462a5f347c290efc6b184fad81d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b3ea83bfea984719aad6881d02d15726",
- "max": 231508.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_9860b38f8fa640b0b794c7b461f40b8e",
- "value": 231508.0
- }
- },
- "188c19db59ae461cb5ab90cc79c1374a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_07c2bfa4e96b4691b9a3f82df6fdd6ca",
- "IPY_MODEL_36cd132150f441d0b9ef3414e99ef5fd",
- "IPY_MODEL_abf85ff646214c7b853811d149c094a2"
- ],
- "layout": "IPY_MODEL_3965c43b7d344e2485e977fb58bffb4f"
- }
- },
- "258793d030024251a3078230b6b4de71": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "2906da4b1e354c26940b3597884f7b68": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_01e2a9e1904e4fd3b8ab0e029fb19423",
- "max": 466062.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c45d8f06bd66462c823a39d4d862fe48",
- "value": 466062.0
- }
- },
- "29bd27e9df334714828cb191caed3549": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7dd4da3c549c45ed9fce6579b27530f4",
- "IPY_MODEL_f52aa0c0ae654587b9ac91bfbff3f902",
- "IPY_MODEL_f15c8b7603b84636b18b6dc61c822809"
- ],
- "layout": "IPY_MODEL_a76a4b5363954ec8af096601ae1bf519"
- }
- },
- "2bfe3078b0cc4f1db9e03a00f19b073b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "2cc49402c85e4e48ad59581e7ebc948d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_653a5a02c18746348f55fedb9cb64441",
- "placeholder": "",
- "style": "IPY_MODEL_decbf2ca27454671bc94d3a3b272b819",
- "value": " 466k/466k [00:00<00:00, 6.11MB/s]"
- }
- },
- "2cfad4c3de7f4876b8e7277537e1bb9d": {
+ "0a38aad82ac14989a4a9217f3a811d6f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2124,22 +2046,7 @@
"width": null
}
},
- "342e7e5e018c4763889b5e40e408b40b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "361b24cc1b2344759145f8b024b40930": {
+ "0fa2df8226524d9d8d5b78234f773e8d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2154,37 +2061,34 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_3e289c46d5bb48a48c228c595cb9ed06",
+ "layout": "IPY_MODEL_03edcac73dcc40b8a17fae8bd6b93aec",
"placeholder": "",
- "style": "IPY_MODEL_63cfe310a8af436b9beb983d7268434d",
- "value": " 232k/232k [00:00<00:00, 11.8MB/s]"
+ "style": "IPY_MODEL_df34e95d26004ef994b0fce1364a7a43",
+ "value": " 665/665 [00:00<00:00, 81.8kB/s]"
}
},
- "36cd132150f441d0b9ef3414e99ef5fd": {
+ "0fcefde9154b4c99bd494cf6f4543d4a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f13687759a0f458ba3800556c1d4502d",
- "max": 2211.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_e23c71c5924644438757e783faf26508",
- "value": 2211.0
+ "layout": "IPY_MODEL_e64e46031cfc4c28af96f771e862a54f",
+ "placeholder": "",
+ "style": "IPY_MODEL_ff41dec3e8d544528ed4122b89c1cc1a",
+ "value": " 466k/466k [00:00<00:00, 25.4MB/s]"
}
},
- "3965c43b7d344e2485e977fb58bffb4f": {
+ "1031454917d647a0b4cfe90beb0830cc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2236,74 +2140,29 @@
"width": null
}
},
- "3d1b163668ee4b41b7ad74d75d2dc71e": {
+ "134a1cda4acb4edab174eb997e37d992": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "3e289c46d5bb48a48c228c595cb9ed06": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4904c252f6964710a37546566c62f010",
+ "IPY_MODEL_e7b9f584e7734ecc96eef9c869aa866f",
+ "IPY_MODEL_0fcefde9154b4c99bd494cf6f4543d4a"
+ ],
+ "layout": "IPY_MODEL_46d3aa33fc824244b3b76d5eb4d0641e"
}
},
- "414097937b4f44d298d7822517bbcd23": {
+ "17a12fa38de743528ce11c50b737ce2c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -2319,242 +2178,95 @@
"description_width": ""
}
},
- "46288b5e4f834b86b2da02b8787d3a18": {
+ "1d95bc1485a14e32b156a7680ac3765b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_95e07a64f5904b45843138bd367778a5",
- "placeholder": "",
- "style": "IPY_MODEL_342e7e5e018c4763889b5e40e408b40b",
- "value": "vocab.txt: 100%"
- }
- },
- "4f91f5d0bd1848c480a38f4dbf27c703": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "layout": "IPY_MODEL_3161d3546d3e4867a4f90d42697c4d3e",
+ "max": 54245363.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_381df575cc04443f8850f5a376171268",
+ "value": 54245363.0
}
},
- "50fa280cff9a4d5882a5db045cf40ff8": {
+ "1f6cdba4653642b2b283ba5bf58317e2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "51edb07e48b3499db5b8bd03abef074a": {
+ "2100b7eda7a9467e987e6e29f35ab150": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e60717a72163424bb32e1816cff3c885",
- "placeholder": "",
- "style": "IPY_MODEL_0cb0e29166d84be6bb583a9004da5c42",
- "value": " 0/0 [00:00<?, ?it/s]"
- }
- },
- "58a51e9e6f934e80ba32e2d119e41f51": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "59f4c423e0754af7b1e3cc1a4fa53016": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "layout": "IPY_MODEL_290788bc416e4895aad25c5a54722fd8",
+ "max": 29.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_25faffe7c8f345b1b119c8293d76de1a",
+ "value": 29.0
}
},
- "6026f80c546045ba90baf2862e01385f": {
+ "22b09695a81248ef84a9befb859f13b9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_65533490e4f24682811aa80ac70ccf1f",
- "IPY_MODEL_fa3ab0136e38413986721ab71d6c782c",
- "IPY_MODEL_51edb07e48b3499db5b8bd03abef074a"
- ],
- "layout": "IPY_MODEL_da85687dd9944e3195c03ba5ad6634c2"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a9b344d87e044d63b1aeb911dccf6c52",
+ "max": 665.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d6ddcf0e3d9c4420940e7dff92d49558",
+ "value": 665.0
}
},
- "616b1baa8a814f71aaa6754339d8c41b": {
+ "23d4c289cba944d19d2219709e2ec6fa": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2569,13 +2281,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_002a3ba42c6f4d21b674649860b6bb8f",
+ "layout": "IPY_MODEL_00872c50338a4b1eb76079883d76d52a",
"placeholder": "",
- "style": "IPY_MODEL_2bfe3078b0cc4f1db9e03a00f19b073b",
- "value": "config.json: 100%"
+ "style": "IPY_MODEL_3859f207e8504fe884329e18f61b651a",
+ "value": " 0/0 [00:00<?, ?it/s]"
}
},
- "63cfe310a8af436b9beb983d7268434d": {
+ "2570298ac39547cabb1eacf559587a8c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2590,22 +2302,23 @@
"description_width": ""
}
},
- "650efd38f38e4610bbf408e72bb11dca": {
+ "25faffe7c8f345b1b119c8293d76de1a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "653a5a02c18746348f55fedb9cb64441": {
+ "290788bc416e4895aad25c5a54722fd8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2657,7 +2370,7 @@
"width": null
}
},
- "65533490e4f24682811aa80ac70ccf1f": {
+ "2ce939ae604d4ff49b74657b5177c48e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2672,28 +2385,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_1455c763b56e4f39b88a6414c2355423",
+ "layout": "IPY_MODEL_419c312bbb7b42cca785da2b636fd355",
"placeholder": "",
- "style": "IPY_MODEL_3d1b163668ee4b41b7ad74d75d2dc71e",
- "value": ""
- }
- },
- "675b1d5061ee4cab9e4ddcef179c7b28": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_9ff2eb9a434c453b9583447e1a2dbeca",
+ "value": "tokenizer_config.json: 100%"
}
},
- "6e380842062a4f86a1da5c3620386874": {
+ "3161d3546d3e4867a4f90d42697c4d3e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2742,99 +2440,65 @@
"right": null,
"top": null,
"visibility": null,
- "width": "20px"
+ "width": null
}
},
- "76d6c78025ed4fb4accf51226797c8bd": {
+ "352078d368bd40fba10fbe2f07365998": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_08f47e5fa8db41d58b7ff6bfe3370d47",
+ "max": 1.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_58875ab8a5c3488aacfdc39e4b5676c8",
+ "value": 0.0
}
},
- "79d3bd9b1d24452387ab0be1f5a6101e": {
+ "381df575cc04443f8850f5a376171268": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "7bb1e7e05e60454ab46487e0b06e8015": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_616b1baa8a814f71aaa6754339d8c41b",
- "IPY_MODEL_ad2c279439164c91870ca5c5222da96b",
- "IPY_MODEL_dcf37c90171448c782e2f524d7912a43"
- ],
- "layout": "IPY_MODEL_861043b327284c33a90a7914f68a6868"
- }
- },
- "7dd4da3c549c45ed9fce6579b27530f4": {
+ "3859f207e8504fe884329e18f61b651a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0966d9b7d5e24713916cc115e44fb7fb",
- "placeholder": "",
- "style": "IPY_MODEL_da97121956124c4ab00f9b4f6dd5cd2f",
- "value": ".gitattributes: 100%"
- }
- },
- "806e57cfdd8d43908533f6c8749dfc5e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "861043b327284c33a90a7914f68a6868": {
+ "3bad9e6168634b67ad7431240182d0d8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2886,51 +2550,7 @@
"width": null
}
},
- "886021f191904b33a4371d295ac03dc0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_b984b1bf0c194d66bb4b4d902bc1e0fe",
- "IPY_MODEL_f773b402043d426caffb41dc672d966e",
- "IPY_MODEL_e7ed4e54956842e1abcf7d52c4b7cb65"
- ],
- "layout": "IPY_MODEL_8f180b0650b64cb48614e0e1135798d5"
- }
- },
- "8ee68691137f4c98896da1fef213310d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_eab8ebc83ced49e79d9e70411bc7a4fc",
- "IPY_MODEL_2906da4b1e354c26940b3597884f7b68",
- "IPY_MODEL_2cc49402c85e4e48ad59581e7ebc948d"
- ],
- "layout": "IPY_MODEL_bd85665d8c5143279c00bb60adea2639"
- }
- },
- "8f180b0650b64cb48614e0e1135798d5": {
+ "419c312bbb7b42cca785da2b636fd355": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2982,7 +2602,22 @@
"width": null
}
},
- "95e07a64f5904b45843138bd367778a5": {
+ "45fccd0e53e94a58a9f202b1ef377e8f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "46d3aa33fc824244b3b76d5eb4d0641e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3034,39 +2669,52 @@
"width": null
}
},
- "9860b38f8fa640b0b794c7b461f40b8e": {
+ "4904c252f6964710a37546566c62f010": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9b786c2a321444849e65be50966b1717",
+ "placeholder": "",
+ "style": "IPY_MODEL_edda32825d264c45a43c0cddd935f4fb",
+ "value": "tokenizer.json: 100%"
}
},
- "9b97b5f9f21443998985d0d4ff2719b9": {
+ "4e4725582b7d4c51a27837f8e60e4795": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0a26c2fdb81e4727987b87ecb38bc533",
+ "max": 391.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_17a12fa38de743528ce11c50b737ce2c",
+ "value": 391.0
}
},
- "9f699baa71f64faf92d047221b5d2709": {
+ "56da5629abdf42609544500e398f5aaa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3118,22 +2766,44 @@
"width": null
}
},
- "a08ef0e6f74f47d8ab2c891a22141fad": {
+ "577727eb0f1b47c48279709c3b9a9608": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1031454917d647a0b4cfe90beb0830cc",
+ "placeholder": "",
+ "style": "IPY_MODEL_e88cd21cb2c243bebb5a5a8e1ecb095c",
+ "value": ".gitattributes: 100%"
+ }
+ },
+ "58875ab8a5c3488aacfdc39e4b5676c8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "a308d4d8368044c0b8902a8d75fe15c9": {
+ "5a21341e48eb48a5a8cb46237cc6040e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -3148,14 +2818,35 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_46288b5e4f834b86b2da02b8787d3a18",
- "IPY_MODEL_1612a462a5f347c290efc6b184fad81d",
- "IPY_MODEL_361b24cc1b2344759145f8b024b40930"
+ "IPY_MODEL_2ce939ae604d4ff49b74657b5177c48e",
+ "IPY_MODEL_2100b7eda7a9467e987e6e29f35ab150",
+ "IPY_MODEL_06c3e93466e841cdb8f0766e760cb4b9"
],
- "layout": "IPY_MODEL_e4b66cd9e5c84cc68b42a33d8d69248d"
+ "layout": "IPY_MODEL_82aa04caa9f44924bec5d3db501834d6"
+ }
+ },
+ "611caa81a658462c931147c01308d1e1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0a38aad82ac14989a4a9217f3a811d6f",
+ "placeholder": "",
+ "style": "IPY_MODEL_f4d9a96d2b3a4ffda14f1ca5b6753fac",
+ "value": "pytorch_model.bin: 100%"
}
},
- "a76a4b5363954ec8af096601ae1bf519": {
+ "66ef85debde64162ae6c512de7c515ee": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3207,23 +2898,59 @@
"width": null
}
},
- "a77c831d71a14e4194159194b8de5cec": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "6942705f444b47bcb26fa2b03e75680f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "a966318b56e54dbe98185eefc1bec3c1": {
+ "6aab1e9b8d704c299dc28baabf1b6b35": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3275,7 +3002,7 @@
"width": null
}
},
- "abf85ff646214c7b853811d149c094a2": {
+ "6b2c89ca673045e6910f473ffcd2a155": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3290,58 +3017,125 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_9f699baa71f64faf92d047221b5d2709",
+ "layout": "IPY_MODEL_7e2ebbcb0d404d869282cebad95ee30d",
"placeholder": "",
- "style": "IPY_MODEL_675b1d5061ee4cab9e4ddcef179c7b28",
- "value": " 2.21k/2.21k [00:00<00:00, 276kB/s]"
+ "style": "IPY_MODEL_2570298ac39547cabb1eacf559587a8c",
+ "value": "vocab.txt: 100%"
}
},
- "ace80592947c4c4b8577f2b04a6f648f": {
+ "6c56c66205764ccf916a1e50a15b64b6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "727d364de29748c89b359fc9269e8c21": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_b1c9216294b0463882e8dd83016634ae",
- "placeholder": "",
- "style": "IPY_MODEL_082542db1bb140bd99c7ca0e790e7939",
- "value": " 54.2M/54.2M [00:00<00:00, 304MB/s]"
+ "layout": "IPY_MODEL_8e7bf439a8924e5c9e36eac02d23bdb1",
+ "max": 231508.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d6cb80492555460883d684e9c4ca11bc",
+ "value": 231508.0
+ }
+ },
+ "72d78ee7c8994847928a783170a0882f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "ad2c279439164c91870ca5c5222da96b": {
+ "7727a3aa392d4e308626c24f2cb24804": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e9f13c6ee67b4bc7a11fa4f92b4e9ef9",
- "max": 665.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_a77c831d71a14e4194159194b8de5cec",
- "value": 665.0
+ "layout": "IPY_MODEL_9b79eef51bb748e895abcbf600656188",
+ "placeholder": "",
+ "style": "IPY_MODEL_96054d864a4149bfa010505bb1cb6ac7",
+ "value": " 2.21k/2.21k [00:00<00:00, 271kB/s]"
}
},
- "b1c9216294b0463882e8dd83016634ae": {
+ "7ccd9dae7d0e4db5b0e3661287ab260f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3393,7 +3187,7 @@
"width": null
}
},
- "b3ea83bfea984719aad6881d02d15726": {
+ "7e2ebbcb0d404d869282cebad95ee30d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3445,28 +3239,7 @@
"width": null
}
},
- "b984b1bf0c194d66bb4b4d902bc1e0fe": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c11231a052ff493985580acd5a0529ab",
- "placeholder": "",
- "style": "IPY_MODEL_50fa280cff9a4d5882a5db045cf40ff8",
- "value": "tokenizer_config.json: 100%"
- }
- },
- "bd85665d8c5143279c00bb60adea2639": {
+ "82aa04caa9f44924bec5d3db501834d6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3518,7 +3291,50 @@
"width": null
}
},
- "becb4412c5454df4a0869e76eb093406": {
+ "8a3114c4394e46e1b7ce1495220913db": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a7b5f8ee14044146b36ab94719f42e69",
+ "placeholder": "",
+ "style": "IPY_MODEL_c719c33aeb394c7b882ea7afce9a1f79",
+ "value": ""
+ }
+ },
+ "8bae24cade9a4f9fb9606ed955bcc7d8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_be2f22e6b3854b0c9a41624a878904e2",
+ "IPY_MODEL_22b09695a81248ef84a9befb859f13b9",
+ "IPY_MODEL_0fa2df8226524d9d8d5b78234f773e8d"
+ ],
+ "layout": "IPY_MODEL_56da5629abdf42609544500e398f5aaa"
+ }
+ },
+ "8e7bf439a8924e5c9e36eac02d23bdb1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3570,7 +3386,22 @@
"width": null
}
},
- "c11231a052ff493985580acd5a0529ab": {
+ "96054d864a4149bfa010505bb1cb6ac7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "979bd28b34ed41f8aba44e5222499d15": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3622,62 +3453,7 @@
"width": null
}
},
- "c423f0c304cc4921b77c3d1ab1914fdb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "c45d8f06bd66462c823a39d4d862fe48": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c83e58a81a144c7a925fa5df4992a126": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f9e8808c383a4da9846012ddf7516297",
- "max": 54245363.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_414097937b4f44d298d7822517bbcd23",
- "value": 54245363.0
- }
- },
- "ce3a324339fe44c4bee2a4a1b278d1bb": {
+ "9b786c2a321444849e65be50966b1717": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3729,7 +3505,7 @@
"width": null
}
},
- "da85687dd9944e3195c03ba5ad6634c2": {
+ "9b79eef51bb748e895abcbf600656188": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3781,43 +3557,44 @@
"width": null
}
},
- "da97121956124c4ab00f9b4f6dd5cd2f": {
+ "9be87e374eee4c2cadd9184c312be454": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c03dd46fef444ca39b07539e939e4f9b",
+ "IPY_MODEL_ec93e5ab280d446aa1a9adf1d266a1fa",
+ "IPY_MODEL_7727a3aa392d4e308626c24f2cb24804"
+ ],
+ "layout": "IPY_MODEL_020920f595fa4115a5c7409d5b8c51e4"
}
},
- "dcf37c90171448c782e2f524d7912a43": {
+ "9c134709d5b1445db6c4dd35221b352a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2cfad4c3de7f4876b8e7277537e1bb9d",
- "placeholder": "",
- "style": "IPY_MODEL_650efd38f38e4610bbf408e72bb11dca",
- "value": " 665/665 [00:00<00:00, 81.6kB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "decbf2ca27454671bc94d3a3b272b819": {
+ "9ff2eb9a434c453b9583447e1a2dbeca": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -3832,7 +3609,7 @@
"description_width": ""
}
},
- "df45180808974725a66cfb7c70093730": {
+ "a178e4969c0648598019d2eed591912c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3884,7 +3661,7 @@
"width": null
}
},
- "e23c71c5924644438757e783faf26508": {
+ "a32f8f2df62f460d8ff9351020ba1726": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -3900,29 +3677,95 @@
"description_width": ""
}
},
- "e30203085c184383b15297aff47b5870": {
+ "a5640826dd44475e821fa74b810eb1a4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a62a499ccde44fd49197c357e5bf6794": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_fdc27e75dbc04752b2cc294edefd6439",
- "IPY_MODEL_c83e58a81a144c7a925fa5df4992a126",
- "IPY_MODEL_ace80592947c4c4b8577f2b04a6f648f"
- ],
- "layout": "IPY_MODEL_df45180808974725a66cfb7c70093730"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7ccd9dae7d0e4db5b0e3661287ab260f",
+ "placeholder": "",
+ "style": "IPY_MODEL_45fccd0e53e94a58a9f202b1ef377e8f",
+ "value": " 54.2M/54.2M [00:00<00:00, 294MB/s]"
+ }
+ },
+ "a7b5f8ee14044146b36ab94719f42e69": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "e4b66cd9e5c84cc68b42a33d8d69248d": {
+ "a9b344d87e044d63b1aeb911dccf6c52": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3974,7 +3817,49 @@
"width": null
}
},
- "e60717a72163424bb32e1816cff3c885": {
+ "be2f22e6b3854b0c9a41624a878904e2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3bad9e6168634b67ad7431240182d0d8",
+ "placeholder": "",
+ "style": "IPY_MODEL_9c134709d5b1445db6c4dd35221b352a",
+ "value": "config.json: 100%"
+ }
+ },
+ "c03dd46fef444ca39b07539e939e4f9b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_66ef85debde64162ae6c512de7c515ee",
+ "placeholder": "",
+ "style": "IPY_MODEL_6c56c66205764ccf916a1e50a15b64b6",
+ "value": "README.md: 100%"
+ }
+ },
+ "c316145836374f27876f8194d241b65c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4026,28 +3911,37 @@
"width": null
}
},
- "e7ed4e54956842e1abcf7d52c4b7cb65": {
+ "c719c33aeb394c7b882ea7afce9a1f79": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0ce7d40556744bd4b07afbe2f362a2e3",
- "placeholder": "",
- "style": "IPY_MODEL_76d6c78025ed4fb4accf51226797c8bd",
- "value": " 29.0/29.0 [00:00<00:00, 3.66kB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c9f956cf1eb7400180959cb85e53b150": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "e9f13c6ee67b4bc7a11fa4f92b4e9ef9": {
+ "cb66f921283e4958a739e49462cc4a04": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4099,7 +3993,113 @@
"width": null
}
},
- "eab8ebc83ced49e79d9e70411bc7a4fc": {
+ "cefe0741da744da1b2967a16480c3466": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_611caa81a658462c931147c01308d1e1",
+ "IPY_MODEL_1d95bc1485a14e32b156a7680ac3765b",
+ "IPY_MODEL_a62a499ccde44fd49197c357e5bf6794"
+ ],
+ "layout": "IPY_MODEL_a178e4969c0648598019d2eed591912c"
+ }
+ },
+ "cfa8e33b9ba34f9b84f7b2894dcb1cdd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_577727eb0f1b47c48279709c3b9a9608",
+ "IPY_MODEL_4e4725582b7d4c51a27837f8e60e4795",
+ "IPY_MODEL_e2eefec0360443059b5fb7468a9344b5"
+ ],
+ "layout": "IPY_MODEL_09839e5f04d7436787998fc1f0c11891"
+ }
+ },
+ "d067bae22a7149b0b925bcff92c6c521": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d6cb80492555460883d684e9c4ca11bc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "d6ddcf0e3d9c4420940e7dff92d49558": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "df34e95d26004ef994b0fce1364a7a43": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e2eefec0360443059b5fb7468a9344b5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -4114,13 +4114,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_becb4412c5454df4a0869e76eb093406",
+ "layout": "IPY_MODEL_cb66f921283e4958a739e49462cc4a04",
"placeholder": "",
- "style": "IPY_MODEL_79d3bd9b1d24452387ab0be1f5a6101e",
- "value": "tokenizer.json: 100%"
+ "style": "IPY_MODEL_d067bae22a7149b0b925bcff92c6c521",
+ "value": " 391/391 [00:00<00:00, 47.5kB/s]"
}
},
- "f13687759a0f458ba3800556c1d4502d": {
+ "e64e46031cfc4c28af96f771e862a54f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4172,44 +4172,7 @@
"width": null
}
},
- "f15c8b7603b84636b18b6dc61c822809": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_58a51e9e6f934e80ba32e2d119e41f51",
- "placeholder": "",
- "style": "IPY_MODEL_258793d030024251a3078230b6b4de71",
- "value": " 391/391 [00:00<00:00, 47.6kB/s]"
- }
- },
- "f2fe20bd6cf34cdf9f60ff919c96b412": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "f52aa0c0ae654587b9ac91bfbff3f902": {
+ "e7b9f584e7734ecc96eef9c869aa866f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -4225,39 +4188,30 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a966318b56e54dbe98185eefc1bec3c1",
- "max": 391.0,
+ "layout": "IPY_MODEL_6aab1e9b8d704c299dc28baabf1b6b35",
+ "max": 466062.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_f2fe20bd6cf34cdf9f60ff919c96b412",
- "value": 391.0
+ "style": "IPY_MODEL_a32f8f2df62f460d8ff9351020ba1726",
+ "value": 466062.0
}
},
- "f773b402043d426caffb41dc672d966e": {
+ "e88cd21cb2c243bebb5a5a8e1ecb095c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ce3a324339fe44c4bee2a4a1b278d1bb",
- "max": 29.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_9b97b5f9f21443998985d0d4ff2719b9",
- "value": 29.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "f9e8808c383a4da9846012ddf7516297": {
+ "eaaadabf61ef4df1a6b16c5b9bd3316b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4309,7 +4263,7 @@
"width": null
}
},
- "fa3ab0136e38413986721ab71d6c782c": {
+ "ec93e5ab280d446aa1a9adf1d266a1fa": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -4325,33 +4279,79 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6e380842062a4f86a1da5c3620386874",
- "max": 1.0,
+ "layout": "IPY_MODEL_6942705f444b47bcb26fa2b03e75680f",
+ "max": 2211.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_806e57cfdd8d43908533f6c8749dfc5e",
- "value": 0.0
+ "style": "IPY_MODEL_1f6cdba4653642b2b283ba5bf58317e2",
+ "value": 2211.0
}
},
- "fdc27e75dbc04752b2cc294edefd6439": {
+ "edda32825d264c45a43c0cddd935f4fb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "efbcffcfef5b4247bac1c857e7f07a58": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4f91f5d0bd1848c480a38f4dbf27c703",
- "placeholder": "",
- "style": "IPY_MODEL_a08ef0e6f74f47d8ab2c891a22141fad",
- "value": "pytorch_model.bin: 100%"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6b2c89ca673045e6910f473ffcd2a155",
+ "IPY_MODEL_727d364de29748c89b359fc9269e8c21",
+ "IPY_MODEL_09194539b33f415eb6243079a5493c34"
+ ],
+ "layout": "IPY_MODEL_72d78ee7c8994847928a783170a0882f"
+ }
+ },
+ "f4d9a96d2b3a4ffda14f1ca5b6753fac": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ff41dec3e8d544528ed4122b89c1cc1a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
index e10955479..485b45c09 100644
--- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
@@ -68,10 +68,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:01.530821Z",
- "iopub.status.busy": "2023-12-28T10:51:01.530627Z",
- "iopub.status.idle": "2023-12-28T10:51:02.560475Z",
- "shell.execute_reply": "2023-12-28T10:51:02.559799Z"
+ "iopub.execute_input": "2024-01-02T16:43:52.409557Z",
+ "iopub.status.busy": "2024-01-02T16:43:52.409344Z",
+ "iopub.status.idle": "2024-01-02T16:43:53.435241Z",
+ "shell.execute_reply": "2024-01-02T16:43:53.434634Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -108,10 +108,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:02.563458Z",
- "iopub.status.busy": "2023-12-28T10:51:02.563072Z",
- "iopub.status.idle": "2023-12-28T10:51:02.566230Z",
- "shell.execute_reply": "2023-12-28T10:51:02.565716Z"
+ "iopub.execute_input": "2024-01-02T16:43:53.438069Z",
+ "iopub.status.busy": "2024-01-02T16:43:53.437682Z",
+ "iopub.status.idle": "2024-01-02T16:43:53.440831Z",
+ "shell.execute_reply": "2024-01-02T16:43:53.440210Z"
},
"id": "_UvI80l42iyi"
},
@@ -201,10 +201,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:02.568610Z",
- "iopub.status.busy": "2023-12-28T10:51:02.568409Z",
- "iopub.status.idle": "2023-12-28T10:51:02.581349Z",
- "shell.execute_reply": "2023-12-28T10:51:02.580808Z"
+ "iopub.execute_input": "2024-01-02T16:43:53.443461Z",
+ "iopub.status.busy": "2024-01-02T16:43:53.443001Z",
+ "iopub.status.idle": "2024-01-02T16:43:53.455868Z",
+ "shell.execute_reply": "2024-01-02T16:43:53.455358Z"
},
"nbsphinx": "hidden"
},
@@ -283,10 +283,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:02.584023Z",
- "iopub.status.busy": "2023-12-28T10:51:02.583564Z",
- "iopub.status.idle": "2023-12-28T10:51:05.294388Z",
- "shell.execute_reply": "2023-12-28T10:51:05.293763Z"
+ "iopub.execute_input": "2024-01-02T16:43:53.458165Z",
+ "iopub.status.busy": "2024-01-02T16:43:53.457913Z",
+ "iopub.status.idle": "2024-01-02T16:43:57.414922Z",
+ "shell.execute_reply": "2024-01-02T16:43:57.414258Z"
},
"id": "dhTHOg8Pyv5G"
},
@@ -297,7 +297,13 @@
"text": [
"\n",
"🎯 Caltech256 🎯\n",
- "\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
"\n",
"Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)\n",
"\n",
@@ -306,13 +312,7 @@
"| for your dataset with 29,780 examples and 256 classes. |\n",
"| Note, Cleanlab is not a medical doctor... yet. |\n",
"-------------------------------------------------------------\n",
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "\n",
"Overall Class Quality and Noise across your dataset (below)\n",
"------------------------------------------------------------ \n",
"\n"
@@ -692,7 +692,13 @@
"\n",
"\n",
"🎯 Mnist_test_set 🎯\n",
- "\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
"\n",
"Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n",
"\n",
@@ -2176,7 +2182,13 @@
"\n",
"\n",
"🎯 Cifar100_test_set 🎯\n",
- "\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
"\n",
"Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n",
"\n",
diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
index 7e5c7c7e5..e9bbb8603 100644
--- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
@@ -18,10 +18,10 @@
"id": "2a4efdde",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:10.056653Z",
- "iopub.status.busy": "2023-12-28T10:51:10.056431Z",
- "iopub.status.idle": "2023-12-28T10:51:11.099227Z",
- "shell.execute_reply": "2023-12-28T10:51:11.098513Z"
+ "iopub.execute_input": "2024-01-02T16:44:01.836132Z",
+ "iopub.status.busy": "2024-01-02T16:44:01.835524Z",
+ "iopub.status.idle": "2024-01-02T16:44:02.871925Z",
+ "shell.execute_reply": "2024-01-02T16:44:02.871308Z"
},
"nbsphinx": "hidden"
},
@@ -97,10 +97,10 @@
"id": "239d5ee7",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:11.102542Z",
- "iopub.status.busy": "2023-12-28T10:51:11.102158Z",
- "iopub.status.idle": "2023-12-28T10:51:11.105825Z",
- "shell.execute_reply": "2023-12-28T10:51:11.105329Z"
+ "iopub.execute_input": "2024-01-02T16:44:02.875269Z",
+ "iopub.status.busy": "2024-01-02T16:44:02.874921Z",
+ "iopub.status.idle": "2024-01-02T16:44:02.878630Z",
+ "shell.execute_reply": "2024-01-02T16:44:02.878073Z"
}
},
"outputs": [],
@@ -136,10 +136,10 @@
"id": "28b324aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:11.108217Z",
- "iopub.status.busy": "2023-12-28T10:51:11.107825Z",
- "iopub.status.idle": "2023-12-28T10:51:13.163439Z",
- "shell.execute_reply": "2023-12-28T10:51:13.162751Z"
+ "iopub.execute_input": "2024-01-02T16:44:02.881147Z",
+ "iopub.status.busy": "2024-01-02T16:44:02.880697Z",
+ "iopub.status.idle": "2024-01-02T16:44:04.932805Z",
+ "shell.execute_reply": "2024-01-02T16:44:04.932101Z"
}
},
"outputs": [],
@@ -162,10 +162,10 @@
"id": "28b324ab",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.167063Z",
- "iopub.status.busy": "2023-12-28T10:51:13.166223Z",
- "iopub.status.idle": "2023-12-28T10:51:13.206496Z",
- "shell.execute_reply": "2023-12-28T10:51:13.205720Z"
+ "iopub.execute_input": "2024-01-02T16:44:04.936242Z",
+ "iopub.status.busy": "2024-01-02T16:44:04.935568Z",
+ "iopub.status.idle": "2024-01-02T16:44:04.977309Z",
+ "shell.execute_reply": "2024-01-02T16:44:04.976623Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "90c10e18",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.210014Z",
- "iopub.status.busy": "2023-12-28T10:51:13.209470Z",
- "iopub.status.idle": "2023-12-28T10:51:13.247629Z",
- "shell.execute_reply": "2023-12-28T10:51:13.246963Z"
+ "iopub.execute_input": "2024-01-02T16:44:04.980707Z",
+ "iopub.status.busy": "2024-01-02T16:44:04.980148Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.021253Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.020568Z"
}
},
"outputs": [],
@@ -213,10 +213,10 @@
"id": "88839519",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.250842Z",
- "iopub.status.busy": "2023-12-28T10:51:13.250341Z",
- "iopub.status.idle": "2023-12-28T10:51:13.253713Z",
- "shell.execute_reply": "2023-12-28T10:51:13.253190Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.024395Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.024036Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.027237Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.026726Z"
}
},
"outputs": [],
@@ -238,10 +238,10 @@
"id": "558490c2",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.256163Z",
- "iopub.status.busy": "2023-12-28T10:51:13.255701Z",
- "iopub.status.idle": "2023-12-28T10:51:13.258528Z",
- "shell.execute_reply": "2023-12-28T10:51:13.258027Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.029619Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.029251Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.032031Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.031494Z"
}
},
"outputs": [],
@@ -298,10 +298,10 @@
"id": "41714b51",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.261300Z",
- "iopub.status.busy": "2023-12-28T10:51:13.260854Z",
- "iopub.status.idle": "2023-12-28T10:51:13.289328Z",
- "shell.execute_reply": "2023-12-28T10:51:13.288681Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.034600Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.034101Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.063683Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.062966Z"
}
},
"outputs": [
@@ -315,7 +315,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "0dc7733f6fac484ba4dd969b147cd88c",
+ "model_id": "d488a45de9614f829dd754c7c7931f9d",
"version_major": 2,
"version_minor": 0
},
@@ -329,7 +329,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "aa5ce7bdd5184371a27768440d1591bb",
+ "model_id": "f8012a98f78442b2a1e0ec66d6d50513",
"version_major": 2,
"version_minor": 0
},
@@ -387,10 +387,10 @@
"id": "20476c70",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.297891Z",
- "iopub.status.busy": "2023-12-28T10:51:13.297369Z",
- "iopub.status.idle": "2023-12-28T10:51:13.304455Z",
- "shell.execute_reply": "2023-12-28T10:51:13.303805Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.071334Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.071060Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.078931Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.078300Z"
},
"nbsphinx": "hidden"
},
@@ -421,10 +421,10 @@
"id": "6983cdad",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.306816Z",
- "iopub.status.busy": "2023-12-28T10:51:13.306473Z",
- "iopub.status.idle": "2023-12-28T10:51:13.310237Z",
- "shell.execute_reply": "2023-12-28T10:51:13.309611Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.081522Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.081066Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.084947Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.084327Z"
},
"nbsphinx": "hidden"
},
@@ -447,10 +447,10 @@
"id": "9092b8a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.312719Z",
- "iopub.status.busy": "2023-12-28T10:51:13.312198Z",
- "iopub.status.idle": "2023-12-28T10:51:13.319058Z",
- "shell.execute_reply": "2023-12-28T10:51:13.318509Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.087377Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.086987Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.094059Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.093400Z"
}
},
"outputs": [],
@@ -500,10 +500,10 @@
"id": "b0a01109",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.321507Z",
- "iopub.status.busy": "2023-12-28T10:51:13.321101Z",
- "iopub.status.idle": "2023-12-28T10:51:13.362551Z",
- "shell.execute_reply": "2023-12-28T10:51:13.361876Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.096313Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.096003Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.144182Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.143488Z"
}
},
"outputs": [],
@@ -520,10 +520,10 @@
"id": "8b1da032",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.365681Z",
- "iopub.status.busy": "2023-12-28T10:51:13.365269Z",
- "iopub.status.idle": "2023-12-28T10:51:13.410609Z",
- "shell.execute_reply": "2023-12-28T10:51:13.409837Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.147224Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.146876Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.188244Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.187562Z"
},
"nbsphinx": "hidden"
},
@@ -602,10 +602,10 @@
"id": "4c9e9030",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.413896Z",
- "iopub.status.busy": "2023-12-28T10:51:13.413407Z",
- "iopub.status.idle": "2023-12-28T10:51:13.533617Z",
- "shell.execute_reply": "2023-12-28T10:51:13.532912Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.191549Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.191212Z",
+ "iopub.status.idle": "2024-01-02T16:44:05.315836Z",
+ "shell.execute_reply": "2024-01-02T16:44:05.315150Z"
}
},
"outputs": [
@@ -672,10 +672,10 @@
"id": "8751619e",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:13.536558Z",
- "iopub.status.busy": "2023-12-28T10:51:13.536157Z",
- "iopub.status.idle": "2023-12-28T10:51:16.057955Z",
- "shell.execute_reply": "2023-12-28T10:51:16.057207Z"
+ "iopub.execute_input": "2024-01-02T16:44:05.318672Z",
+ "iopub.status.busy": "2024-01-02T16:44:05.318394Z",
+ "iopub.status.idle": "2024-01-02T16:44:07.862364Z",
+ "shell.execute_reply": "2024-01-02T16:44:07.861593Z"
}
},
"outputs": [
@@ -761,10 +761,10 @@
"id": "623df36d",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:16.061086Z",
- "iopub.status.busy": "2023-12-28T10:51:16.060657Z",
- "iopub.status.idle": "2023-12-28T10:51:16.121695Z",
- "shell.execute_reply": "2023-12-28T10:51:16.121025Z"
+ "iopub.execute_input": "2024-01-02T16:44:07.864976Z",
+ "iopub.status.busy": "2024-01-02T16:44:07.864750Z",
+ "iopub.status.idle": "2024-01-02T16:44:07.929221Z",
+ "shell.execute_reply": "2024-01-02T16:44:07.928549Z"
}
},
"outputs": [
@@ -802,7 +802,7 @@
},
{
"cell_type": "markdown",
- "id": "4cd2fecd",
+ "id": "11e1fe1a",
"metadata": {},
"source": [
"### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?"
@@ -810,7 +810,7 @@
},
{
"cell_type": "markdown",
- "id": "81842555",
+ "id": "45754f3c",
"metadata": {},
"source": [
"When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n",
@@ -823,13 +823,13 @@
{
"cell_type": "code",
"execution_count": 17,
- "id": "a8bd4f39",
+ "id": "69ad04b9",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:16.124470Z",
- "iopub.status.busy": "2023-12-28T10:51:16.124045Z",
- "iopub.status.idle": "2023-12-28T10:51:16.236633Z",
- "shell.execute_reply": "2023-12-28T10:51:16.235924Z"
+ "iopub.execute_input": "2024-01-02T16:44:07.931855Z",
+ "iopub.status.busy": "2024-01-02T16:44:07.931498Z",
+ "iopub.status.idle": "2024-01-02T16:44:08.044089Z",
+ "shell.execute_reply": "2024-01-02T16:44:08.043350Z"
}
},
"outputs": [
@@ -870,7 +870,7 @@
},
{
"cell_type": "markdown",
- "id": "806f20e9",
+ "id": "b80e307b",
"metadata": {},
"source": [
"For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:"
@@ -879,13 +879,13 @@
{
"cell_type": "code",
"execution_count": 18,
- "id": "0f606bf4",
+ "id": "a07778a1",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:16.240458Z",
- "iopub.status.busy": "2023-12-28T10:51:16.239465Z",
- "iopub.status.idle": "2023-12-28T10:51:16.309914Z",
- "shell.execute_reply": "2023-12-28T10:51:16.309279Z"
+ "iopub.execute_input": "2024-01-02T16:44:08.048178Z",
+ "iopub.status.busy": "2024-01-02T16:44:08.046973Z",
+ "iopub.status.idle": "2024-01-02T16:44:08.127066Z",
+ "shell.execute_reply": "2024-01-02T16:44:08.126241Z"
}
},
"outputs": [
@@ -921,7 +921,7 @@
},
{
"cell_type": "markdown",
- "id": "b46572c4",
+ "id": "4d632f0a",
"metadata": {},
"source": [
"### How to handle near-duplicate data identified by cleanlab?\n",
@@ -932,13 +932,13 @@
{
"cell_type": "code",
"execution_count": 19,
- "id": "e42cb388",
+ "id": "bb89e3e8",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:16.312656Z",
- "iopub.status.busy": "2023-12-28T10:51:16.312445Z",
- "iopub.status.idle": "2023-12-28T10:51:16.320866Z",
- "shell.execute_reply": "2023-12-28T10:51:16.320186Z"
+ "iopub.execute_input": "2024-01-02T16:44:08.129987Z",
+ "iopub.status.busy": "2024-01-02T16:44:08.129751Z",
+ "iopub.status.idle": "2024-01-02T16:44:08.138421Z",
+ "shell.execute_reply": "2024-01-02T16:44:08.137863Z"
}
},
"outputs": [],
@@ -1040,7 +1040,7 @@
},
{
"cell_type": "markdown",
- "id": "ffb7cad6",
+ "id": "789c4c8c",
"metadata": {},
"source": [
"The functions above collect sets of near-duplicate examples. Within each\n",
@@ -1055,13 +1055,13 @@
{
"cell_type": "code",
"execution_count": 20,
- "id": "0313e8ec",
+ "id": "23b042cf",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:16.323709Z",
- "iopub.status.busy": "2023-12-28T10:51:16.323107Z",
- "iopub.status.idle": "2023-12-28T10:51:16.342675Z",
- "shell.execute_reply": "2023-12-28T10:51:16.342005Z"
+ "iopub.execute_input": "2024-01-02T16:44:08.140990Z",
+ "iopub.status.busy": "2024-01-02T16:44:08.140665Z",
+ "iopub.status.idle": "2024-01-02T16:44:08.162010Z",
+ "shell.execute_reply": "2024-01-02T16:44:08.161231Z"
}
},
"outputs": [
@@ -1104,13 +1104,13 @@
{
"cell_type": "code",
"execution_count": 21,
- "id": "25d9f5e6",
+ "id": "a4d04f62",
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:16.345358Z",
- "iopub.status.busy": "2023-12-28T10:51:16.344975Z",
- "iopub.status.idle": "2023-12-28T10:51:16.349022Z",
- "shell.execute_reply": "2023-12-28T10:51:16.348429Z"
+ "iopub.execute_input": "2024-01-02T16:44:08.164720Z",
+ "iopub.status.busy": "2024-01-02T16:44:08.164389Z",
+ "iopub.status.idle": "2024-01-02T16:44:08.168517Z",
+ "shell.execute_reply": "2024-01-02T16:44:08.167980Z"
}
},
"outputs": [
@@ -1203,59 +1203,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "07dfe5af91a84c728a8a628c11190002": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0dc7733f6fac484ba4dd969b147cd88c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e38334c5ecaa41cb800313b30c6ad845",
- "IPY_MODEL_ec931f109a5e4830be6e15b23a2caa8a",
- "IPY_MODEL_30316cf420824a829eda8ee3f3f36991"
- ],
- "layout": "IPY_MODEL_baea8f8c366a4ca6a34381a5e6fb99eb"
- }
- },
- "2a3410c8e76e4da1a2c1201acdafe8e0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "2f6d326f28604310a38367ee98fd7fb9": {
+ "02a9cda90bd24fca8175d8c43eef4909": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1307,28 +1255,7 @@
"width": null
}
},
- "30316cf420824a829eda8ee3f3f36991": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d9ebc6f9f30b4734a554a85db6ae8861",
- "placeholder": "",
- "style": "IPY_MODEL_c45bbedb6a7949b882e184b9bc4d46b9",
- "value": " 10000/? [00:00<00:00, 1034379.15it/s]"
- }
- },
- "3ddcd594710745acaad1e1cc6f149d8a": {
+ "0b26a491d8c34a0d931670d5928603e9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1380,7 +1307,58 @@
"width": null
}
},
- "55b58ad72a8d46099d3702084a1b182a": {
+ "2eeea2f7645b4188aedc5f31e15144f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_47e4de9f7c634aab83b30f36f22afe5a",
+ "placeholder": "",
+ "style": "IPY_MODEL_d9920febf823481abf81cd51efec171f",
+ "value": " 10000/? [00:00<00:00, 913751.91it/s]"
+ }
+ },
+ "3148dccaefa7441cbc8361a12a0fd8cb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "37a9e3c1702f4fb5a5c74358cfc1971f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "45d26c1bc9814e0c951e6344c92aee31": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1432,81 +1410,7 @@
"width": null
}
},
- "62df1f18b44e4d90a0824dbdcec6edf0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "63d2a866773744b9aff15c1767a550dc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9556274857844616b2c2abdcb7b93e59",
- "placeholder": "",
- "style": "IPY_MODEL_2a3410c8e76e4da1a2c1201acdafe8e0",
- "value": " 10000/? [00:00<00:00, 980504.48it/s]"
- }
- },
- "85188d9282f24a42addc1338023f31f1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "8dd5a6da291645aeaa639467f94d1774": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3ddcd594710745acaad1e1cc6f149d8a",
- "placeholder": "",
- "style": "IPY_MODEL_07dfe5af91a84c728a8a628c11190002",
- "value": "number of examples processed for checking labels: "
- }
- },
- "9556274857844616b2c2abdcb7b93e59": {
+ "47e4de9f7c634aab83b30f36f22afe5a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1558,7 +1462,7 @@
"width": null
}
},
- "a3a2eaf1b069458cb5afc716f77e9a4d": {
+ "5eef3d260b1c48f0a9af95ac534c9261": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1610,29 +1514,7 @@
"width": null
}
},
- "aa5ce7bdd5184371a27768440d1591bb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_8dd5a6da291645aeaa639467f94d1774",
- "IPY_MODEL_d1cd15e8c98749cc8d09445334cef423",
- "IPY_MODEL_63d2a866773744b9aff15c1767a550dc"
- ],
- "layout": "IPY_MODEL_c0e70cfa3e214daf8c1b1ca5e050ae40"
- }
- },
- "baea8f8c366a4ca6a34381a5e6fb99eb": {
+ "6320bb24a64d490c85aa206924dd41ac": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1684,7 +1566,39 @@
"width": null
}
},
- "c0e70cfa3e214daf8c1b1ca5e050ae40": {
+ "67a78d71b09c418bacaa113820259639": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "6a3ad8390a4a48c2a689f4a1aec792a4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "8e3eb4631d924de79ed076260db759f0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1736,7 +1650,7 @@
"width": null
}
},
- "c45bbedb6a7949b882e184b9bc4d46b9": {
+ "969994746ec14cfabd3d67d9b854d535": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1751,31 +1665,7 @@
"description_width": ""
}
},
- "d1cd15e8c98749cc8d09445334cef423": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a3a2eaf1b069458cb5afc716f77e9a4d",
- "max": 50.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_85188d9282f24a42addc1338023f31f1",
- "value": 50.0
- }
- },
- "d9ebc6f9f30b4734a554a85db6ae8861": {
+ "a2ca91a8edc646b881d822eb3c890f36": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1827,7 +1717,7 @@
"width": null
}
},
- "e38334c5ecaa41cb800313b30c6ad845": {
+ "af8f0cbc84314c2dbaf42c0c0e559eb9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1842,13 +1732,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_2f6d326f28604310a38367ee98fd7fb9",
+ "layout": "IPY_MODEL_5eef3d260b1c48f0a9af95ac534c9261",
"placeholder": "",
- "style": "IPY_MODEL_f6176f13b6394a6da6ffd7d60a6be946",
- "value": "number of examples processed for estimating thresholds: "
+ "style": "IPY_MODEL_969994746ec14cfabd3d67d9b854d535",
+ "value": "number of examples processed for checking labels: "
}
},
- "ec931f109a5e4830be6e15b23a2caa8a": {
+ "bc697095a3a249d5a1c4a81792b4ee30": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -1864,15 +1754,58 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_55b58ad72a8d46099d3702084a1b182a",
+ "layout": "IPY_MODEL_a2ca91a8edc646b881d822eb3c890f36",
"max": 50.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_62df1f18b44e4d90a0824dbdcec6edf0",
+ "style": "IPY_MODEL_67a78d71b09c418bacaa113820259639",
"value": 50.0
}
},
- "f6176f13b6394a6da6ffd7d60a6be946": {
+ "cf809e3cf7844d18930646c1e4f3784e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0b26a491d8c34a0d931670d5928603e9",
+ "placeholder": "",
+ "style": "IPY_MODEL_3148dccaefa7441cbc8361a12a0fd8cb",
+ "value": "number of examples processed for estimating thresholds: "
+ }
+ },
+ "d488a45de9614f829dd754c7c7931f9d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_cf809e3cf7844d18930646c1e4f3784e",
+ "IPY_MODEL_bc697095a3a249d5a1c4a81792b4ee30",
+ "IPY_MODEL_2eeea2f7645b4188aedc5f31e15144f3"
+ ],
+ "layout": "IPY_MODEL_45d26c1bc9814e0c951e6344c92aee31"
+ }
+ },
+ "d9920febf823481abf81cd51efec171f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1886,6 +1819,73 @@
"_view_name": "StyleView",
"description_width": ""
}
+ },
+ "f8012a98f78442b2a1e0ec66d6d50513": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_af8f0cbc84314c2dbaf42c0c0e559eb9",
+ "IPY_MODEL_ff9ffed88a004b62bfb3bd67c09719f6",
+ "IPY_MODEL_ff51c94d645845d7803e7f0b10c60e8d"
+ ],
+ "layout": "IPY_MODEL_8e3eb4631d924de79ed076260db759f0"
+ }
+ },
+ "ff51c94d645845d7803e7f0b10c60e8d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6320bb24a64d490c85aa206924dd41ac",
+ "placeholder": "",
+ "style": "IPY_MODEL_37a9e3c1702f4fb5a5c74358cfc1971f",
+ "value": " 10000/? [00:00<00:00, 1135191.08it/s]"
+ }
+ },
+ "ff9ffed88a004b62bfb3bd67c09719f6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_02a9cda90bd24fca8175d8c43eef4909",
+ "max": 50.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6a3ad8390a4a48c2a689f4a1aec792a4",
+ "value": 50.0
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb
index 2fa48f624..2fa4aaff8 100644
--- a/master/.doctrees/nbsphinx/tutorials/image.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb
@@ -71,10 +71,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:21.699842Z",
- "iopub.status.busy": "2023-12-28T10:51:21.699465Z",
- "iopub.status.idle": "2023-12-28T10:51:23.862154Z",
- "shell.execute_reply": "2023-12-28T10:51:23.861540Z"
+ "iopub.execute_input": "2024-01-02T16:44:13.318315Z",
+ "iopub.status.busy": "2024-01-02T16:44:13.317856Z",
+ "iopub.status.idle": "2024-01-02T16:44:15.517012Z",
+ "shell.execute_reply": "2024-01-02T16:44:15.516379Z"
},
"nbsphinx": "hidden"
},
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:23.865216Z",
- "iopub.status.busy": "2023-12-28T10:51:23.864655Z",
- "iopub.status.idle": "2023-12-28T10:51:23.868563Z",
- "shell.execute_reply": "2023-12-28T10:51:23.867912Z"
+ "iopub.execute_input": "2024-01-02T16:44:15.520115Z",
+ "iopub.status.busy": "2024-01-02T16:44:15.519591Z",
+ "iopub.status.idle": "2024-01-02T16:44:15.523342Z",
+ "shell.execute_reply": "2024-01-02T16:44:15.522787Z"
}
},
"outputs": [],
@@ -152,17 +152,17 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:23.870991Z",
- "iopub.status.busy": "2023-12-28T10:51:23.870562Z",
- "iopub.status.idle": "2023-12-28T10:51:25.218141Z",
- "shell.execute_reply": "2023-12-28T10:51:25.217535Z"
+ "iopub.execute_input": "2024-01-02T16:44:15.525726Z",
+ "iopub.status.busy": "2024-01-02T16:44:15.525367Z",
+ "iopub.status.idle": "2024-01-02T16:44:18.452974Z",
+ "shell.execute_reply": "2024-01-02T16:44:18.452328Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ef00bbe1818846999730dee959633c30",
+ "model_id": "bdd8d83d16ce4e48ba972c56b576b84d",
"version_major": 2,
"version_minor": 0
},
@@ -176,7 +176,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "4d6a08f2339f4c438e1d42bf2ca12173",
+ "model_id": "3aef40a726a7487a997682ee3a6e5826",
"version_major": 2,
"version_minor": 0
},
@@ -190,7 +190,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a6b14d27bd3d45a2bcf6d7b5f8764c86",
+ "model_id": "e292d7c9b544457998217dfe333664e2",
"version_major": 2,
"version_minor": 0
},
@@ -204,7 +204,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7c47746dcb1140dbb4cf79d8a6a53b0a",
+ "model_id": "d26337e7713242faa01dda838af51958",
"version_major": 2,
"version_minor": 0
},
@@ -246,10 +246,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:25.220827Z",
- "iopub.status.busy": "2023-12-28T10:51:25.220363Z",
- "iopub.status.idle": "2023-12-28T10:51:25.224557Z",
- "shell.execute_reply": "2023-12-28T10:51:25.223934Z"
+ "iopub.execute_input": "2024-01-02T16:44:18.455560Z",
+ "iopub.status.busy": "2024-01-02T16:44:18.455197Z",
+ "iopub.status.idle": "2024-01-02T16:44:18.459152Z",
+ "shell.execute_reply": "2024-01-02T16:44:18.458645Z"
}
},
"outputs": [
@@ -274,17 +274,17 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:25.227017Z",
- "iopub.status.busy": "2023-12-28T10:51:25.226639Z",
- "iopub.status.idle": "2023-12-28T10:51:37.539939Z",
- "shell.execute_reply": "2023-12-28T10:51:37.539211Z"
+ "iopub.execute_input": "2024-01-02T16:44:18.461476Z",
+ "iopub.status.busy": "2024-01-02T16:44:18.461130Z",
+ "iopub.status.idle": "2024-01-02T16:44:30.629126Z",
+ "shell.execute_reply": "2024-01-02T16:44:30.628505Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "66b99572a6894b269c707cacbf13b4c1",
+ "model_id": "ab8ea257c1544162ac74cedcd94836b8",
"version_major": 2,
"version_minor": 0
},
@@ -322,10 +322,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:37.543074Z",
- "iopub.status.busy": "2023-12-28T10:51:37.542680Z",
- "iopub.status.idle": "2023-12-28T10:51:58.820961Z",
- "shell.execute_reply": "2023-12-28T10:51:58.820325Z"
+ "iopub.execute_input": "2024-01-02T16:44:30.632109Z",
+ "iopub.status.busy": "2024-01-02T16:44:30.631717Z",
+ "iopub.status.idle": "2024-01-02T16:44:52.190264Z",
+ "shell.execute_reply": "2024-01-02T16:44:52.189462Z"
}
},
"outputs": [],
@@ -358,10 +358,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:58.824174Z",
- "iopub.status.busy": "2023-12-28T10:51:58.823728Z",
- "iopub.status.idle": "2023-12-28T10:51:58.829801Z",
- "shell.execute_reply": "2023-12-28T10:51:58.829275Z"
+ "iopub.execute_input": "2024-01-02T16:44:52.193635Z",
+ "iopub.status.busy": "2024-01-02T16:44:52.193228Z",
+ "iopub.status.idle": "2024-01-02T16:44:52.199290Z",
+ "shell.execute_reply": "2024-01-02T16:44:52.198591Z"
}
},
"outputs": [],
@@ -399,10 +399,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:58.832003Z",
- "iopub.status.busy": "2023-12-28T10:51:58.831791Z",
- "iopub.status.idle": "2023-12-28T10:51:58.836036Z",
- "shell.execute_reply": "2023-12-28T10:51:58.835417Z"
+ "iopub.execute_input": "2024-01-02T16:44:52.201991Z",
+ "iopub.status.busy": "2024-01-02T16:44:52.201536Z",
+ "iopub.status.idle": "2024-01-02T16:44:52.206383Z",
+ "shell.execute_reply": "2024-01-02T16:44:52.205819Z"
},
"nbsphinx": "hidden"
},
@@ -539,10 +539,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:58.838335Z",
- "iopub.status.busy": "2023-12-28T10:51:58.838137Z",
- "iopub.status.idle": "2023-12-28T10:51:58.847977Z",
- "shell.execute_reply": "2023-12-28T10:51:58.847325Z"
+ "iopub.execute_input": "2024-01-02T16:44:52.208914Z",
+ "iopub.status.busy": "2024-01-02T16:44:52.208542Z",
+ "iopub.status.idle": "2024-01-02T16:44:52.218376Z",
+ "shell.execute_reply": "2024-01-02T16:44:52.217711Z"
},
"nbsphinx": "hidden"
},
@@ -667,10 +667,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:58.850216Z",
- "iopub.status.busy": "2023-12-28T10:51:58.850015Z",
- "iopub.status.idle": "2023-12-28T10:51:58.877757Z",
- "shell.execute_reply": "2023-12-28T10:51:58.877222Z"
+ "iopub.execute_input": "2024-01-02T16:44:52.220804Z",
+ "iopub.status.busy": "2024-01-02T16:44:52.220352Z",
+ "iopub.status.idle": "2024-01-02T16:44:52.250373Z",
+ "shell.execute_reply": "2024-01-02T16:44:52.249854Z"
}
},
"outputs": [],
@@ -707,10 +707,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:51:58.880248Z",
- "iopub.status.busy": "2023-12-28T10:51:58.880005Z",
- "iopub.status.idle": "2023-12-28T10:52:31.033894Z",
- "shell.execute_reply": "2023-12-28T10:52:31.033222Z"
+ "iopub.execute_input": "2024-01-02T16:44:52.252797Z",
+ "iopub.status.busy": "2024-01-02T16:44:52.252420Z",
+ "iopub.status.idle": "2024-01-02T16:45:23.624499Z",
+ "shell.execute_reply": "2024-01-02T16:45:23.623642Z"
}
},
"outputs": [
@@ -726,14 +726,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.666\n"
+ "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.665\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.712\n",
+ "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.432\n",
"Computing feature embeddings ...\n"
]
},
@@ -750,7 +750,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 8.80it/s]"
+ " 8%|▊ | 3/40 [00:00<00:01, 26.04it/s]"
]
},
{
@@ -758,7 +758,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 8/40 [00:00<00:00, 41.85it/s]"
+ " 28%|██▊ | 11/40 [00:00<00:00, 52.13it/s]"
]
},
{
@@ -766,7 +766,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 56.83it/s]"
+ " 48%|████▊ | 19/40 [00:00<00:00, 61.52it/s]"
]
},
{
@@ -774,7 +774,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|██████ | 24/40 [00:00<00:00, 64.05it/s]"
+ " 65%|██████▌ | 26/40 [00:00<00:00, 64.38it/s]"
]
},
{
@@ -782,7 +782,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 32/40 [00:00<00:00, 68.13it/s]"
+ " 85%|████████▌ | 34/40 [00:00<00:00, 69.16it/s]"
]
},
{
@@ -790,7 +790,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 62.34it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 64.31it/s]"
]
},
{
@@ -820,7 +820,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.36it/s]"
+ " 5%|▌ | 2/40 [00:00<00:02, 17.54it/s]"
]
},
{
@@ -828,7 +828,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 47.96it/s]"
+ " 25%|██▌ | 10/40 [00:00<00:00, 49.77it/s]"
]
},
{
@@ -836,7 +836,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 60.56it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 61.03it/s]"
]
},
{
@@ -844,7 +844,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▎ | 25/40 [00:00<00:00, 66.53it/s]"
+ " 65%|██████▌ | 26/40 [00:00<00:00, 66.62it/s]"
]
},
{
@@ -852,7 +852,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 32/40 [00:00<00:00, 66.40it/s]"
+ " 85%|████████▌ | 34/40 [00:00<00:00, 69.31it/s]"
]
},
{
@@ -860,7 +860,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 63.29it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 64.12it/s]"
]
},
{
@@ -882,14 +882,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.883\n"
+ "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.727\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.678\n",
+ "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.561\n",
"Computing feature embeddings ...\n"
]
},
@@ -906,7 +906,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 8.85it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.31it/s]"
]
},
{
@@ -914,7 +914,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]"
+ " 20%|██ | 8/40 [00:00<00:00, 41.54it/s]"
]
},
{
@@ -922,7 +922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 58.38it/s]"
+ " 40%|████ | 16/40 [00:00<00:00, 55.60it/s]"
]
},
{
@@ -930,7 +930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▎ | 25/40 [00:00<00:00, 64.68it/s]"
+ " 60%|██████ | 24/40 [00:00<00:00, 62.81it/s]"
]
},
{
@@ -938,7 +938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▎ | 33/40 [00:00<00:00, 69.37it/s]"
+ " 80%|████████ | 32/40 [00:00<00:00, 67.55it/s]"
]
},
{
@@ -946,7 +946,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 61.87it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 62.09it/s]"
]
},
{
@@ -976,7 +976,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 18.90it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.26it/s]"
]
},
{
@@ -984,7 +984,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 44.75it/s]"
+ " 20%|██ | 8/40 [00:00<00:00, 41.31it/s]"
]
},
{
@@ -992,7 +992,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 57.19it/s]"
+ " 38%|███▊ | 15/40 [00:00<00:00, 52.02it/s]"
]
},
{
@@ -1000,7 +1000,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▎ | 25/40 [00:00<00:00, 63.70it/s]"
+ " 55%|█████▌ | 22/40 [00:00<00:00, 56.71it/s]"
]
},
{
@@ -1008,7 +1008,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▎ | 33/40 [00:00<00:00, 68.12it/s]"
+ " 75%|███████▌ | 30/40 [00:00<00:00, 62.29it/s]"
]
},
{
@@ -1016,14 +1016,15 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 62.82it/s]"
+ " 98%|█████████▊| 39/40 [00:00<00:00, 69.03it/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "\n"
+ "\r",
+ "100%|██████████| 40/40 [00:00<00:00, 58.55it/s]"
]
},
{
@@ -1035,26 +1036,25 @@
]
},
{
- "name": "stdout",
+ "name": "stderr",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.860\n"
+ "\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.447\n",
- "Computing feature embeddings ...\n"
+ "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.669\n"
]
},
{
- "name": "stderr",
+ "name": "stdout",
"output_type": "stream",
"text": [
- "\r",
- " 0%| | 0/40 [00:00, ?it/s]"
+ "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.420\n",
+ "Computing feature embeddings ...\n"
]
},
{
@@ -1062,7 +1062,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 3/40 [00:00<00:01, 27.08it/s]"
+ " 0%| | 0/40 [00:00, ?it/s]"
]
},
{
@@ -1070,7 +1070,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 50.48it/s]"
+ " 5%|▌ | 2/40 [00:00<00:02, 18.31it/s]"
]
},
{
@@ -1078,7 +1078,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 57.62it/s]"
+ " 25%|██▌ | 10/40 [00:00<00:00, 50.91it/s]"
]
},
{
@@ -1086,7 +1086,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|██████ | 24/40 [00:00<00:00, 59.69it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 61.54it/s]"
]
},
{
@@ -1094,7 +1094,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 31/40 [00:00<00:00, 60.54it/s]"
+ " 65%|██████▌ | 26/40 [00:00<00:00, 66.77it/s]"
]
},
{
@@ -1102,7 +1102,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▌| 38/40 [00:00<00:00, 61.86it/s]"
+ " 85%|████████▌ | 34/40 [00:00<00:00, 68.76it/s]"
]
},
{
@@ -1110,7 +1110,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 57.76it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 62.86it/s]"
]
},
{
@@ -1140,7 +1140,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:01, 19.83it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.65it/s]"
]
},
{
@@ -1148,7 +1148,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 53.07it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 47.74it/s]"
]
},
{
@@ -1156,7 +1156,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 18/40 [00:00<00:00, 63.66it/s]"
+ " 42%|████▎ | 17/40 [00:00<00:00, 59.93it/s]"
]
},
{
@@ -1164,7 +1164,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 68.62it/s]"
+ " 60%|██████ | 24/40 [00:00<00:00, 61.97it/s]"
]
},
{
@@ -1172,7 +1172,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 34/40 [00:00<00:00, 71.92it/s]"
+ " 80%|████████ | 32/40 [00:00<00:00, 66.57it/s]"
]
},
{
@@ -1180,21 +1180,21 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 65.04it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 62.05it/s]"
]
},
{
- "name": "stderr",
+ "name": "stdout",
"output_type": "stream",
"text": [
- "\n"
+ "Finished Training\n"
]
},
{
- "name": "stdout",
+ "name": "stderr",
"output_type": "stream",
"text": [
- "Finished Training\n"
+ "\n"
]
}
],
@@ -1257,10 +1257,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:52:31.036861Z",
- "iopub.status.busy": "2023-12-28T10:52:31.036592Z",
- "iopub.status.idle": "2023-12-28T10:52:31.052783Z",
- "shell.execute_reply": "2023-12-28T10:52:31.052235Z"
+ "iopub.execute_input": "2024-01-02T16:45:23.627685Z",
+ "iopub.status.busy": "2024-01-02T16:45:23.627233Z",
+ "iopub.status.idle": "2024-01-02T16:45:23.643179Z",
+ "shell.execute_reply": "2024-01-02T16:45:23.642641Z"
}
},
"outputs": [],
@@ -1285,10 +1285,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:52:31.055255Z",
- "iopub.status.busy": "2023-12-28T10:52:31.055017Z",
- "iopub.status.idle": "2023-12-28T10:52:31.512187Z",
- "shell.execute_reply": "2023-12-28T10:52:31.511477Z"
+ "iopub.execute_input": "2024-01-02T16:45:23.645689Z",
+ "iopub.status.busy": "2024-01-02T16:45:23.645379Z",
+ "iopub.status.idle": "2024-01-02T16:45:24.098293Z",
+ "shell.execute_reply": "2024-01-02T16:45:24.097570Z"
}
},
"outputs": [],
@@ -1308,10 +1308,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:52:31.515030Z",
- "iopub.status.busy": "2023-12-28T10:52:31.514812Z",
- "iopub.status.idle": "2023-12-28T10:55:59.552695Z",
- "shell.execute_reply": "2023-12-28T10:55:59.551984Z"
+ "iopub.execute_input": "2024-01-02T16:45:24.101384Z",
+ "iopub.status.busy": "2024-01-02T16:45:24.100998Z",
+ "iopub.status.idle": "2024-01-02T16:48:54.142060Z",
+ "shell.execute_reply": "2024-01-02T16:48:54.141387Z"
}
},
"outputs": [
@@ -1349,7 +1349,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "29644f36ac7643c4b12f830df90a3c65",
+ "model_id": "e8d9991648f741b8b42d0cd2a79dbd20",
"version_major": 2,
"version_minor": 0
},
@@ -1388,10 +1388,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:55:59.555827Z",
- "iopub.status.busy": "2023-12-28T10:55:59.555209Z",
- "iopub.status.idle": "2023-12-28T10:56:00.056477Z",
- "shell.execute_reply": "2023-12-28T10:56:00.055762Z"
+ "iopub.execute_input": "2024-01-02T16:48:54.144755Z",
+ "iopub.status.busy": "2024-01-02T16:48:54.144329Z",
+ "iopub.status.idle": "2024-01-02T16:48:54.648980Z",
+ "shell.execute_reply": "2024-01-02T16:48:54.648289Z"
}
},
"outputs": [
@@ -1513,11 +1513,11 @@
"\n",
"Examples representing most severe instances of this issue:\n",
" is_class_imbalance_issue class_imbalance_score\n",
- "0 False 1.0\n",
- "39992 False 1.0\n",
- "39993 False 1.0\n",
- "39994 False 1.0\n",
- "39995 False 1.0\n",
+ "0 False 0.1\n",
+ "13732 False 0.1\n",
+ "13733 False 0.1\n",
+ "13734 False 0.1\n",
+ "47635 False 0.1\n",
"\n",
"\n",
"\n",
@@ -1581,10 +1581,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:00.059892Z",
- "iopub.status.busy": "2023-12-28T10:56:00.059410Z",
- "iopub.status.idle": "2023-12-28T10:56:00.123189Z",
- "shell.execute_reply": "2023-12-28T10:56:00.122551Z"
+ "iopub.execute_input": "2024-01-02T16:48:54.652533Z",
+ "iopub.status.busy": "2024-01-02T16:48:54.652085Z",
+ "iopub.status.idle": "2024-01-02T16:48:54.715958Z",
+ "shell.execute_reply": "2024-01-02T16:48:54.715318Z"
}
},
"outputs": [
@@ -1688,10 +1688,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:00.125820Z",
- "iopub.status.busy": "2023-12-28T10:56:00.125438Z",
- "iopub.status.idle": "2023-12-28T10:56:00.134722Z",
- "shell.execute_reply": "2023-12-28T10:56:00.134236Z"
+ "iopub.execute_input": "2024-01-02T16:48:54.718669Z",
+ "iopub.status.busy": "2024-01-02T16:48:54.718242Z",
+ "iopub.status.idle": "2024-01-02T16:48:54.728112Z",
+ "shell.execute_reply": "2024-01-02T16:48:54.727431Z"
}
},
"outputs": [
@@ -1821,10 +1821,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:00.137127Z",
- "iopub.status.busy": "2023-12-28T10:56:00.136751Z",
- "iopub.status.idle": "2023-12-28T10:56:00.142677Z",
- "shell.execute_reply": "2023-12-28T10:56:00.142134Z"
+ "iopub.execute_input": "2024-01-02T16:48:54.730923Z",
+ "iopub.status.busy": "2024-01-02T16:48:54.730603Z",
+ "iopub.status.idle": "2024-01-02T16:48:54.735809Z",
+ "shell.execute_reply": "2024-01-02T16:48:54.735261Z"
},
"nbsphinx": "hidden"
},
@@ -1870,10 +1870,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:00.145184Z",
- "iopub.status.busy": "2023-12-28T10:56:00.144803Z",
- "iopub.status.idle": "2023-12-28T10:56:00.642200Z",
- "shell.execute_reply": "2023-12-28T10:56:00.641528Z"
+ "iopub.execute_input": "2024-01-02T16:48:54.738285Z",
+ "iopub.status.busy": "2024-01-02T16:48:54.737816Z",
+ "iopub.status.idle": "2024-01-02T16:48:55.233759Z",
+ "shell.execute_reply": "2024-01-02T16:48:55.233056Z"
}
},
"outputs": [
@@ -1908,10 +1908,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:00.644933Z",
- "iopub.status.busy": "2023-12-28T10:56:00.644533Z",
- "iopub.status.idle": "2023-12-28T10:56:00.653906Z",
- "shell.execute_reply": "2023-12-28T10:56:00.653289Z"
+ "iopub.execute_input": "2024-01-02T16:48:55.236928Z",
+ "iopub.status.busy": "2024-01-02T16:48:55.236347Z",
+ "iopub.status.idle": "2024-01-02T16:48:55.245929Z",
+ "shell.execute_reply": "2024-01-02T16:48:55.245250Z"
}
},
"outputs": [
@@ -2078,10 +2078,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:00.656578Z",
- "iopub.status.busy": "2023-12-28T10:56:00.656095Z",
- "iopub.status.idle": "2023-12-28T10:56:00.664081Z",
- "shell.execute_reply": "2023-12-28T10:56:00.663530Z"
+ "iopub.execute_input": "2024-01-02T16:48:55.248393Z",
+ "iopub.status.busy": "2024-01-02T16:48:55.248083Z",
+ "iopub.status.idle": "2024-01-02T16:48:55.256259Z",
+ "shell.execute_reply": "2024-01-02T16:48:55.255617Z"
},
"nbsphinx": "hidden"
},
@@ -2157,10 +2157,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:00.666560Z",
- "iopub.status.busy": "2023-12-28T10:56:00.666064Z",
- "iopub.status.idle": "2023-12-28T10:56:01.119222Z",
- "shell.execute_reply": "2023-12-28T10:56:01.118563Z"
+ "iopub.execute_input": "2024-01-02T16:48:55.258715Z",
+ "iopub.status.busy": "2024-01-02T16:48:55.258327Z",
+ "iopub.status.idle": "2024-01-02T16:48:55.740255Z",
+ "shell.execute_reply": "2024-01-02T16:48:55.739529Z"
}
},
"outputs": [
@@ -2197,10 +2197,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:01.121912Z",
- "iopub.status.busy": "2023-12-28T10:56:01.121687Z",
- "iopub.status.idle": "2023-12-28T10:56:01.140013Z",
- "shell.execute_reply": "2023-12-28T10:56:01.139450Z"
+ "iopub.execute_input": "2024-01-02T16:48:55.743097Z",
+ "iopub.status.busy": "2024-01-02T16:48:55.742669Z",
+ "iopub.status.idle": "2024-01-02T16:48:55.760282Z",
+ "shell.execute_reply": "2024-01-02T16:48:55.759629Z"
}
},
"outputs": [
@@ -2357,10 +2357,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:01.142837Z",
- "iopub.status.busy": "2023-12-28T10:56:01.142391Z",
- "iopub.status.idle": "2023-12-28T10:56:01.148335Z",
- "shell.execute_reply": "2023-12-28T10:56:01.147809Z"
+ "iopub.execute_input": "2024-01-02T16:48:55.763055Z",
+ "iopub.status.busy": "2024-01-02T16:48:55.762581Z",
+ "iopub.status.idle": "2024-01-02T16:48:55.768602Z",
+ "shell.execute_reply": "2024-01-02T16:48:55.768068Z"
},
"nbsphinx": "hidden"
},
@@ -2405,10 +2405,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:01.150644Z",
- "iopub.status.busy": "2023-12-28T10:56:01.150270Z",
- "iopub.status.idle": "2023-12-28T10:56:01.830637Z",
- "shell.execute_reply": "2023-12-28T10:56:01.829948Z"
+ "iopub.execute_input": "2024-01-02T16:48:55.770922Z",
+ "iopub.status.busy": "2024-01-02T16:48:55.770580Z",
+ "iopub.status.idle": "2024-01-02T16:48:56.462098Z",
+ "shell.execute_reply": "2024-01-02T16:48:56.461361Z"
}
},
"outputs": [
@@ -2483,10 +2483,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2023-12-28T10:56:01.833928Z",
- "iopub.status.busy": "2023-12-28T10:56:01.833462Z",
- "iopub.status.idle": "2023-12-28T10:56:01.844070Z",
- "shell.execute_reply": "2023-12-28T10:56:01.843463Z"
+ "iopub.execute_input": "2024-01-02T16:48:56.465325Z",
+ "iopub.status.busy": "2024-01-02T16:48:56.465057Z",
+ "iopub.status.idle": "2024-01-02T16:48:56.475749Z",
+ "shell.execute_reply": "2024-01-02T16:48:56.475081Z"
}
},
"outputs": [
@@ -2511,47 +2511,47 @@
" \n",
" \n",
" \n",
" \n",
" \n",
- " is_dark_issue \n",
" dark_score \n",
+ " is_dark_issue \n",
"
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/count.html b/master/_modules/cleanlab/count.html
index 2e636a784..d39570c78 100644
--- a/master/_modules/cleanlab/count.html
+++ b/master/_modules/cleanlab/count.html
@@ -2025,7 +2025,7 @@ Source code for cleanlab.count
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/datalab.html b/master/_modules/cleanlab/datalab/datalab.html
index 1982ba2d2..c48935b80 100644
--- a/master/_modules/cleanlab/datalab/datalab.html
+++ b/master/_modules/cleanlab/datalab/datalab.html
@@ -1118,7 +1118,7 @@ Source code for cleanlab.datalab.datalab
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/data.html b/master/_modules/cleanlab/datalab/internal/data.html
index 62b6941ad..e9f50b45c 100644
--- a/master/_modules/cleanlab/datalab/internal/data.html
+++ b/master/_modules/cleanlab/datalab/internal/data.html
@@ -880,7 +880,7 @@ Source code for cleanlab.datalab.internal.data
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/data_issues.html b/master/_modules/cleanlab/datalab/internal/data_issues.html
index 21b078706..0b7ff069a 100644
--- a/master/_modules/cleanlab/datalab/internal/data_issues.html
+++ b/master/_modules/cleanlab/datalab/internal/data_issues.html
@@ -914,7 +914,7 @@ Source code for cleanlab.datalab.internal.data_issues
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_finder.html b/master/_modules/cleanlab/datalab/internal/issue_finder.html
index cd33dfa52..cb0f5eca0 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_finder.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_finder.html
@@ -963,7 +963,7 @@ Source code for cleanlab.datalab.internal.issue_finder
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html b/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html
index c8a88c26e..5f8e759dd 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/duplicate.html
@@ -773,7 +773,7 @@ Source code for cleanlab.datalab.internal.issue_manager.duplicate
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html b/master/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html
index f2b4b960a..7875532e6 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/imbalance.html
@@ -589,10 +589,11 @@ Source code for cleanlab.datalab.internal.issue_manager.imbalance
K = len(self.datalab.class_names)
class_probs = np.bincount(labels) / len(labels)
rarest_class_idx = int(np.argmin(class_probs))
+ # solely one class is identified as rarest, ties go to class w smaller integer index
+ scores = np.where(labels == rarest_class_idx, class_probs[rarest_class_idx], 1)
imbalance_exists = class_probs[rarest_class_idx] < self.threshold * (1 / K)
- rarest_class = rarest_class_idx if imbalance_exists else -1
- is_issue_column = labels == rarest_class
- scores = np.where(is_issue_column, class_probs[rarest_class], 1)
+ rarest_class_issue = rarest_class_idx if imbalance_exists else -1
+ is_issue_column = labels == rarest_class_issue
self.issues = pd.DataFrame(
{
@@ -619,7 +620,7 @@ Source code for cleanlab.datalab.internal.issue_manager.imbalance
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html b/master/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html
index 810747c13..dfb8419fa 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/issue_manager.html
@@ -883,7 +883,7 @@ Source code for cleanlab.datalab.internal.issue_manager.issue_manager
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/label.html b/master/_modules/cleanlab/datalab/internal/issue_manager/label.html
index 5dd12a5e2..e211647c3 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/label.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/label.html
@@ -803,7 +803,7 @@ Source code for cleanlab.datalab.internal.issue_manager.label
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html
index 6dfe1ba5d..62be2815a 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/noniid.html
@@ -1062,7 +1062,7 @@ Source code for cleanlab.datalab.internal.issue_manager.noniid
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/null.html b/master/_modules/cleanlab/datalab/internal/issue_manager/null.html
index f819d43e2..3c24396a4 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/null.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/null.html
@@ -680,7 +680,7 @@ Source code for cleanlab.datalab.internal.issue_manager.null
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html b/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html
index 1a71e3dc8..01ee37524 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/outlier.html
@@ -814,7 +814,7 @@ Source code for cleanlab.datalab.internal.issue_manager.outlier
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html b/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html
index 8de21b7e2..340832b8f 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/regression/label.html
@@ -788,7 +788,7 @@ Source code for cleanlab.datalab.internal.issue_manager.regression.label
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html b/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html
index 064745e31..433ca75b6 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html
@@ -928,7 +928,7 @@ Source code for cleanlab.datalab.internal.issue_manager.underperforming_grou
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html
index 56881bc81..1fe9ee97b 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html
@@ -745,7 +745,7 @@ Source code for cleanlab.datalab.internal.issue_manager_factory
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/datalab/internal/report.html b/master/_modules/cleanlab/datalab/internal/report.html
index 1d3d2c216..f20a32d54 100644
--- a/master/_modules/cleanlab/datalab/internal/report.html
+++ b/master/_modules/cleanlab/datalab/internal/report.html
@@ -698,7 +698,7 @@ Source code for cleanlab.datalab.internal.report
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/dataset.html b/master/_modules/cleanlab/dataset.html
index 9ceef8f65..b92b97aca 100644
--- a/master/_modules/cleanlab/dataset.html
+++ b/master/_modules/cleanlab/dataset.html
@@ -1062,7 +1062,7 @@ Source code for cleanlab.dataset
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/experimental/cifar_cnn.html b/master/_modules/cleanlab/experimental/cifar_cnn.html
index 7d9b19fa5..b9876d15b 100644
--- a/master/_modules/cleanlab/experimental/cifar_cnn.html
+++ b/master/_modules/cleanlab/experimental/cifar_cnn.html
@@ -646,7 +646,7 @@ Source code for cleanlab.experimental.cifar_cnn
<
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/experimental/coteaching.html b/master/_modules/cleanlab/experimental/coteaching.html
index 00f7374e0..27322272f 100644
--- a/master/_modules/cleanlab/experimental/coteaching.html
+++ b/master/_modules/cleanlab/experimental/coteaching.html
@@ -784,7 +784,7 @@ Source code for cleanlab.experimental.coteaching
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/experimental/label_issues_batched.html b/master/_modules/cleanlab/experimental/label_issues_batched.html
index d0d69060d..d4f959f4a 100644
--- a/master/_modules/cleanlab/experimental/label_issues_batched.html
+++ b/master/_modules/cleanlab/experimental/label_issues_batched.html
@@ -1301,7 +1301,7 @@ Source code for cleanlab.experimental.label_issues_batched
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/experimental/mnist_pytorch.html b/master/_modules/cleanlab/experimental/mnist_pytorch.html
index 3ab3ce01d..97bc2e0fc 100644
--- a/master/_modules/cleanlab/experimental/mnist_pytorch.html
+++ b/master/_modules/cleanlab/experimental/mnist_pytorch.html
@@ -923,7 +923,7 @@ Source code for cleanlab.experimental.mnist_pytorch
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/filter.html b/master/_modules/cleanlab/filter.html
index f5f5840f5..aa2924dde 100644
--- a/master/_modules/cleanlab/filter.html
+++ b/master/_modules/cleanlab/filter.html
@@ -1504,7 +1504,7 @@ Source code for cleanlab.filter
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/internal/label_quality_utils.html b/master/_modules/cleanlab/internal/label_quality_utils.html
index 6098bb048..560cb9c65 100644
--- a/master/_modules/cleanlab/internal/label_quality_utils.html
+++ b/master/_modules/cleanlab/internal/label_quality_utils.html
@@ -671,7 +671,7 @@ Source code for cleanlab.internal.label_quality_utils
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/internal/latent_algebra.html b/master/_modules/cleanlab/internal/latent_algebra.html
index fe71e2ccf..edcb12be6 100644
--- a/master/_modules/cleanlab/internal/latent_algebra.html
+++ b/master/_modules/cleanlab/internal/latent_algebra.html
@@ -867,7 +867,7 @@ Source code for cleanlab.internal.latent_algebra
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/internal/multiannotator_utils.html b/master/_modules/cleanlab/internal/multiannotator_utils.html
index 1e429a1e0..73f7d5e55 100644
--- a/master/_modules/cleanlab/internal/multiannotator_utils.html
+++ b/master/_modules/cleanlab/internal/multiannotator_utils.html
@@ -905,7 +905,7 @@ Source code for cleanlab.internal.multiannotator_utils
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/internal/multilabel_scorer.html b/master/_modules/cleanlab/internal/multilabel_scorer.html
index 25df62904..5c6887537 100644
--- a/master/_modules/cleanlab/internal/multilabel_scorer.html
+++ b/master/_modules/cleanlab/internal/multilabel_scorer.html
@@ -1213,7 +1213,7 @@ Source code for cleanlab.internal.multilabel_scorer
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/internal/multilabel_utils.html b/master/_modules/cleanlab/internal/multilabel_utils.html
index 3315d6835..4e0690a78 100644
--- a/master/_modules/cleanlab/internal/multilabel_utils.html
+++ b/master/_modules/cleanlab/internal/multilabel_utils.html
@@ -643,7 +643,7 @@ Source code for cleanlab.internal.multilabel_utils
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/internal/outlier.html b/master/_modules/cleanlab/internal/outlier.html
index 0ad975aed..f666631a1 100644
--- a/master/_modules/cleanlab/internal/outlier.html
+++ b/master/_modules/cleanlab/internal/outlier.html
@@ -606,7 +606,7 @@ Source code for cleanlab.internal.outlier
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/internal/token_classification_utils.html b/master/_modules/cleanlab/internal/token_classification_utils.html
index 28d92aa24..bbb31b5ba 100644
--- a/master/_modules/cleanlab/internal/token_classification_utils.html
+++ b/master/_modules/cleanlab/internal/token_classification_utils.html
@@ -829,7 +829,7 @@ Source code for cleanlab.internal.token_classification_utils
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/internal/util.html b/master/_modules/cleanlab/internal/util.html
index 790fe03cf..87f4373f7 100644
--- a/master/_modules/cleanlab/internal/util.html
+++ b/master/_modules/cleanlab/internal/util.html
@@ -1299,7 +1299,7 @@ Source code for cleanlab.internal.util
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/internal/validation.html b/master/_modules/cleanlab/internal/validation.html
index 19ad14cc3..70b03777a 100644
--- a/master/_modules/cleanlab/internal/validation.html
+++ b/master/_modules/cleanlab/internal/validation.html
@@ -760,7 +760,7 @@ Source code for cleanlab.internal.validation
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/models/keras.html b/master/_modules/cleanlab/models/keras.html
index cf0f9c40c..ae76ef057 100644
--- a/master/_modules/cleanlab/models/keras.html
+++ b/master/_modules/cleanlab/models/keras.html
@@ -809,7 +809,7 @@ Source code for cleanlab.models.keras
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/multiannotator.html b/master/_modules/cleanlab/multiannotator.html
index be0723969..3ac93b1e1 100644
--- a/master/_modules/cleanlab/multiannotator.html
+++ b/master/_modules/cleanlab/multiannotator.html
@@ -2476,7 +2476,7 @@ Source code for cleanlab.multiannotator
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/multilabel_classification/dataset.html b/master/_modules/cleanlab/multilabel_classification/dataset.html
index 8c4d5cf07..4ff7795fe 100644
--- a/master/_modules/cleanlab/multilabel_classification/dataset.html
+++ b/master/_modules/cleanlab/multilabel_classification/dataset.html
@@ -880,7 +880,7 @@ Source code for cleanlab.multilabel_classification.dataset
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/multilabel_classification/filter.html b/master/_modules/cleanlab/multilabel_classification/filter.html
index 0c3bd0a86..00d975dcc 100644
--- a/master/_modules/cleanlab/multilabel_classification/filter.html
+++ b/master/_modules/cleanlab/multilabel_classification/filter.html
@@ -857,7 +857,7 @@ Source code for cleanlab.multilabel_classification.filter
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/multilabel_classification/rank.html b/master/_modules/cleanlab/multilabel_classification/rank.html
index 8c5f022df..6fd0595fd 100644
--- a/master/_modules/cleanlab/multilabel_classification/rank.html
+++ b/master/_modules/cleanlab/multilabel_classification/rank.html
@@ -732,7 +732,7 @@ Source code for cleanlab.multilabel_classification.rank
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/object_detection/filter.html b/master/_modules/cleanlab/object_detection/filter.html
index faf10f493..fe3c2b5c9 100644
--- a/master/_modules/cleanlab/object_detection/filter.html
+++ b/master/_modules/cleanlab/object_detection/filter.html
@@ -958,7 +958,7 @@ Source code for cleanlab.object_detection.filter
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/object_detection/rank.html b/master/_modules/cleanlab/object_detection/rank.html
index 3db09a6ac..dc1869027 100644
--- a/master/_modules/cleanlab/object_detection/rank.html
+++ b/master/_modules/cleanlab/object_detection/rank.html
@@ -1663,7 +1663,7 @@ Source code for cleanlab.object_detection.rank
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/object_detection/summary.html b/master/_modules/cleanlab/object_detection/summary.html
index ac53e1730..5236b050b 100644
--- a/master/_modules/cleanlab/object_detection/summary.html
+++ b/master/_modules/cleanlab/object_detection/summary.html
@@ -1283,7 +1283,7 @@ Source code for cleanlab.object_detection.summary
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/outlier.html b/master/_modules/cleanlab/outlier.html
index b13b39978..cd25d75ab 100644
--- a/master/_modules/cleanlab/outlier.html
+++ b/master/_modules/cleanlab/outlier.html
@@ -1095,7 +1095,7 @@ Source code for cleanlab.outlier
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/rank.html b/master/_modules/cleanlab/rank.html
index 79fb58053..8df082830 100644
--- a/master/_modules/cleanlab/rank.html
+++ b/master/_modules/cleanlab/rank.html
@@ -1137,7 +1137,7 @@ Source code for cleanlab.rank
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/regression/learn.html b/master/_modules/cleanlab/regression/learn.html
index 1d53797ac..4f14b2340 100644
--- a/master/_modules/cleanlab/regression/learn.html
+++ b/master/_modules/cleanlab/regression/learn.html
@@ -1419,7 +1419,7 @@ Source code for cleanlab.regression.learn
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/regression/rank.html b/master/_modules/cleanlab/regression/rank.html
index cf5ce2c58..cbc1abe51 100644
--- a/master/_modules/cleanlab/regression/rank.html
+++ b/master/_modules/cleanlab/regression/rank.html
@@ -724,7 +724,7 @@ Source code for cleanlab.regression.rank
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/segmentation/filter.html b/master/_modules/cleanlab/segmentation/filter.html
index 38b80a8be..eee60b85a 100644
--- a/master/_modules/cleanlab/segmentation/filter.html
+++ b/master/_modules/cleanlab/segmentation/filter.html
@@ -770,7 +770,7 @@ Source code for cleanlab.segmentation.filter
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/segmentation/rank.html b/master/_modules/cleanlab/segmentation/rank.html
index 15606fa77..27feeabdd 100644
--- a/master/_modules/cleanlab/segmentation/rank.html
+++ b/master/_modules/cleanlab/segmentation/rank.html
@@ -782,7 +782,7 @@ Source code for cleanlab.segmentation.rank
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/segmentation/summary.html b/master/_modules/cleanlab/segmentation/summary.html
index d7e0127cd..10440cb1b 100644
--- a/master/_modules/cleanlab/segmentation/summary.html
+++ b/master/_modules/cleanlab/segmentation/summary.html
@@ -901,7 +901,7 @@ Source code for cleanlab.segmentation.summary
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/token_classification/filter.html b/master/_modules/cleanlab/token_classification/filter.html
index f57dc585f..9f318e819 100644
--- a/master/_modules/cleanlab/token_classification/filter.html
+++ b/master/_modules/cleanlab/token_classification/filter.html
@@ -655,7 +655,7 @@ Source code for cleanlab.token_classification.filter
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/token_classification/rank.html b/master/_modules/cleanlab/token_classification/rank.html
index f8d921071..20d9598fc 100644
--- a/master/_modules/cleanlab/token_classification/rank.html
+++ b/master/_modules/cleanlab/token_classification/rank.html
@@ -828,7 +828,7 @@ Source code for cleanlab.token_classification.rank
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/cleanlab/token_classification/summary.html b/master/_modules/cleanlab/token_classification/summary.html
index f00f45f01..2b692bd95 100644
--- a/master/_modules/cleanlab/token_classification/summary.html
+++ b/master/_modules/cleanlab/token_classification/summary.html
@@ -893,7 +893,7 @@ Source code for cleanlab.token_classification.summary
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_modules/index.html b/master/_modules/index.html
index bfe9aa9ea..ef139c7d8 100644
--- a/master/_modules/index.html
+++ b/master/_modules/index.html
@@ -589,7 +589,7 @@ All modules for which code is available
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst
index 7ae8b6b76..2819c4f96 100644
--- a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst
+++ b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst
@@ -113,7 +113,7 @@ The assumption that examples in a dataset are Independent and Identically Distri
For datasets with low non-IID score, you should consider why your data are not IID and act accordingly. For example, if the data distribution is drifting over time, consider employing a time-based train/test split instead of a random partition. Note that shuffling the data ahead of time will ensure a good non-IID score, but this is not always a fix to the underlying problem (e.g. future deployment data may stem from a different distribution, or you may overlook the fact that examples influence each other). We thus recommend **not** shuffling your data to be able to diagnose this issue if it exists.
-Class-Imbalance Issue
+Class Imbalance Issue
---------------------
Class imbalance is diagnosed just using the `labels` provided as part of the dataset. The overall class imbalance quality score of a dataset is the proportion of examples belonging to the rarest class `q`. If this proportion `q` falls below a threshold, then we say this dataset suffers from the class imbalance issue.
diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb
index fba1d430a..e81813d49 100644
--- a/master/_sources/tutorials/audio.ipynb
+++ b/master/_sources/tutorials/audio.ipynb
@@ -91,7 +91,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index dc9d13e29..e9e1483bf 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index 6d8a23010..8cc3cabc9 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index 73aeeaf25..3c7f86ee2 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -81,7 +81,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index 45cb01557..ac497f0f5 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index c922c06e6..94dfc6132 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index 18ee434c3..4b1627de7 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index 4f15fff77..f61387719 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -96,7 +96,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index 46160f82f..daa606466 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -72,7 +72,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index e71f78157..88f1794b2 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index 880e03bbb..15cebd647 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index 2a4276918..c65a134fa 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -103,7 +103,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index 0a3c77f59..3720dff18 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb
index 3fc1f022c..1c50302d7 100644
--- a/master/_sources/tutorials/tabular.ipynb
+++ b/master/_sources/tutorials/tabular.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb
index c35a3c886..11554bccb 100644
--- a/master/_sources/tutorials/text.ipynb
+++ b/master/_sources/tutorials/text.ipynb
@@ -128,7 +128,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index 69bf29c58..ba85c2b44 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@002f898eadeb4043537e000c06d669780166c8fe\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@7eb9967a0b8904183ee871077ecf8e2db99fef3a\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/cleanlab/benchmarking/index.html b/master/cleanlab/benchmarking/index.html
index 7d0adae1d..14360dfb0 100644
--- a/master/cleanlab/benchmarking/index.html
+++ b/master/cleanlab/benchmarking/index.html
@@ -564,7 +564,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/benchmarking/noise_generation.html b/master/cleanlab/benchmarking/noise_generation.html
index fbc333430..b3a9852a3 100644
--- a/master/cleanlab/benchmarking/noise_generation.html
+++ b/master/cleanlab/benchmarking/noise_generation.html
@@ -744,7 +744,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/classification.html b/master/cleanlab/classification.html
index 5738b9746..78f5ba177 100644
--- a/master/cleanlab/classification.html
+++ b/master/cleanlab/classification.html
@@ -1193,7 +1193,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/count.html b/master/cleanlab/count.html
index 7ef4c679d..e56287f89 100644
--- a/master/cleanlab/count.html
+++ b/master/cleanlab/count.html
@@ -1178,7 +1178,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/datalab.html b/master/cleanlab/datalab/datalab.html
index 244ce1fe1..ebc174070 100644
--- a/master/cleanlab/datalab/datalab.html
+++ b/master/cleanlab/datalab/datalab.html
@@ -1120,7 +1120,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/guide/custom_issue_manager.html b/master/cleanlab/datalab/guide/custom_issue_manager.html
index 0dfc1cda7..d300d02aa 100644
--- a/master/cleanlab/datalab/guide/custom_issue_manager.html
+++ b/master/cleanlab/datalab/guide/custom_issue_manager.html
@@ -765,7 +765,7 @@ Use with Datalab
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/guide/generating_cluster_ids.html b/master/cleanlab/datalab/guide/generating_cluster_ids.html
index 17e79d9e4..bbd9de369 100644
--- a/master/cleanlab/datalab/guide/generating_cluster_ids.html
+++ b/master/cleanlab/datalab/guide/generating_cluster_ids.html
@@ -562,7 +562,7 @@ Generating Cluster IDs
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/guide/index.html b/master/cleanlab/datalab/guide/index.html
index f76b2c69c..af9b6019f 100644
--- a/master/cleanlab/datalab/guide/index.html
+++ b/master/cleanlab/datalab/guide/index.html
@@ -552,7 +552,7 @@ Types of issuesOutlier Issue
(Near) Duplicate Issue
Non-IID Issue
-Class-Imbalance Issue
+Class Imbalance Issue
Image-specific Issues
Underperforming Group Issue
@@ -622,7 +622,7 @@ Customizing issue types
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/guide/issue_type_description.html b/master/cleanlab/datalab/guide/issue_type_description.html
index f31497676..d2aa79102 100644
--- a/master/cleanlab/datalab/guide/issue_type_description.html
+++ b/master/cleanlab/datalab/guide/issue_type_description.html
@@ -612,7 +612,7 @@ Non-IID Issue
-Class-Imbalance Issue#
+Class Imbalance Issue#
Class imbalance is diagnosed just using the labels
provided as part of the dataset. The overall class imbalance quality score of a dataset is the proportion of examples belonging to the rarest class q
. If this proportion q
falls below a threshold, then we say this dataset suffers from the class imbalance issue.
In a dataset identified as having class imbalance, the class imbalance quality score for each example is set equal to q
if it is labeled as the rarest class, and is equal to 1 for all other examples.
Class imbalance in a dataset can lead to subpar model performance for the under-represented class. Consider collecting more data from the under-represented class, or at least take special care while modeling via techniques like over/under-sampling, SMOTE, asymmetric class weighting, etc.
@@ -811,7 +811,7 @@ Image Issue Parameters
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
@@ -864,7 +864,7 @@ Image Issue ParametersOutlier Issue
(Near) Duplicate Issue
Non-IID Issue
-Class-Imbalance Issue
+Class Imbalance Issue
Image-specific Issues
Underperforming Group Issue
diff --git a/master/cleanlab/datalab/index.html b/master/cleanlab/datalab/index.html
index 8cb1ef2e3..d24e2c09d 100644
--- a/master/cleanlab/datalab/index.html
+++ b/master/cleanlab/datalab/index.html
@@ -599,7 +599,7 @@ API Reference
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/data.html b/master/cleanlab/datalab/internal/data.html
index 9fd666e4c..ef8529811 100644
--- a/master/cleanlab/datalab/internal/data.html
+++ b/master/cleanlab/datalab/internal/data.html
@@ -822,7 +822,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/data_issues.html b/master/cleanlab/datalab/internal/data_issues.html
index 58706b5c0..febadd117 100644
--- a/master/cleanlab/datalab/internal/data_issues.html
+++ b/master/cleanlab/datalab/internal/data_issues.html
@@ -831,7 +831,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/factory.html b/master/cleanlab/datalab/internal/factory.html
index 66d8a6132..67f74aaae 100644
--- a/master/cleanlab/datalab/internal/factory.html
+++ b/master/cleanlab/datalab/internal/factory.html
@@ -704,7 +704,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/index.html b/master/cleanlab/datalab/internal/index.html
index 9728a5ce0..a4a0bc74a 100644
--- a/master/cleanlab/datalab/internal/index.html
+++ b/master/cleanlab/datalab/internal/index.html
@@ -578,7 +578,7 @@ internal
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_finder.html b/master/cleanlab/datalab/internal/issue_finder.html
index 98fe316e4..ddc06e918 100644
--- a/master/cleanlab/datalab/internal/issue_finder.html
+++ b/master/cleanlab/datalab/internal/issue_finder.html
@@ -692,7 +692,7 @@ issue_finder
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/_notices/not_registered.html b/master/cleanlab/datalab/internal/issue_manager/_notices/not_registered.html
index 4becf33a7..49e7c7a0f 100644
--- a/master/cleanlab/datalab/internal/issue_manager/_notices/not_registered.html
+++ b/master/cleanlab/datalab/internal/issue_manager/_notices/not_registered.html
@@ -543,7 +543,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/duplicate.html b/master/cleanlab/datalab/internal/issue_manager/duplicate.html
index 25e0befb9..82cff3bdd 100644
--- a/master/cleanlab/datalab/internal/issue_manager/duplicate.html
+++ b/master/cleanlab/datalab/internal/issue_manager/duplicate.html
@@ -769,7 +769,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/imbalance.html b/master/cleanlab/datalab/internal/issue_manager/imbalance.html
index 00074dd10..250f1eb52 100644
--- a/master/cleanlab/datalab/internal/issue_manager/imbalance.html
+++ b/master/cleanlab/datalab/internal/issue_manager/imbalance.html
@@ -772,7 +772,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/index.html b/master/cleanlab/datalab/internal/issue_manager/index.html
index a10eb3b5a..a7c4ea778 100644
--- a/master/cleanlab/datalab/internal/issue_manager/index.html
+++ b/master/cleanlab/datalab/internal/issue_manager/index.html
@@ -598,7 +598,7 @@ ML task-specific issue managers
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/issue_manager.html b/master/cleanlab/datalab/internal/issue_manager/issue_manager.html
index 136350875..22f74e726 100644
--- a/master/cleanlab/datalab/internal/issue_manager/issue_manager.html
+++ b/master/cleanlab/datalab/internal/issue_manager/issue_manager.html
@@ -804,7 +804,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/label.html b/master/cleanlab/datalab/internal/issue_manager/label.html
index c82bf022a..dd6970f03 100644
--- a/master/cleanlab/datalab/internal/issue_manager/label.html
+++ b/master/cleanlab/datalab/internal/issue_manager/label.html
@@ -799,7 +799,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/noniid.html b/master/cleanlab/datalab/internal/issue_manager/noniid.html
index 6ac1bc62a..fe1d30be1 100644
--- a/master/cleanlab/datalab/internal/issue_manager/noniid.html
+++ b/master/cleanlab/datalab/internal/issue_manager/noniid.html
@@ -827,7 +827,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/null.html b/master/cleanlab/datalab/internal/issue_manager/null.html
index 70f314c7d..537d46fa3 100644
--- a/master/cleanlab/datalab/internal/issue_manager/null.html
+++ b/master/cleanlab/datalab/internal/issue_manager/null.html
@@ -774,7 +774,7 @@ null#
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/outlier.html b/master/cleanlab/datalab/internal/issue_manager/outlier.html
index 1c114f9c6..5dfbaa8d8 100644
--- a/master/cleanlab/datalab/internal/issue_manager/outlier.html
+++ b/master/cleanlab/datalab/internal/issue_manager/outlier.html
@@ -784,7 +784,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/regression/index.html b/master/cleanlab/datalab/internal/issue_manager/regression/index.html
index 6813fa904..fd0d93e07 100644
--- a/master/cleanlab/datalab/internal/issue_manager/regression/index.html
+++ b/master/cleanlab/datalab/internal/issue_manager/regression/index.html
@@ -568,7 +568,7 @@ regression
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/regression/label.html b/master/cleanlab/datalab/internal/issue_manager/regression/label.html
index cb7d08979..e08ef2a8e 100644
--- a/master/cleanlab/datalab/internal/issue_manager/regression/label.html
+++ b/master/cleanlab/datalab/internal/issue_manager/regression/label.html
@@ -887,7 +887,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html b/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html
index 074ab07ff..9337e2c35 100644
--- a/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html
+++ b/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html
@@ -879,7 +879,7 @@ underperforming_group
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/internal/report.html b/master/cleanlab/datalab/internal/report.html
index f2aaf9838..706824bb9 100644
--- a/master/cleanlab/datalab/internal/report.html
+++ b/master/cleanlab/datalab/internal/report.html
@@ -653,7 +653,7 @@ report
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/datalab/optional_dependencies.html b/master/cleanlab/datalab/optional_dependencies.html
index ac5b1bf14..0db08a0e1 100644
--- a/master/cleanlab/datalab/optional_dependencies.html
+++ b/master/cleanlab/datalab/optional_dependencies.html
@@ -546,7 +546,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/dataset.html b/master/cleanlab/dataset.html
index ce003b641..cf02f882c 100644
--- a/master/cleanlab/dataset.html
+++ b/master/cleanlab/dataset.html
@@ -820,7 +820,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/experimental/cifar_cnn.html b/master/cleanlab/experimental/cifar_cnn.html
index 33684b895..d1ff64b6c 100644
--- a/master/cleanlab/experimental/cifar_cnn.html
+++ b/master/cleanlab/experimental/cifar_cnn.html
@@ -1967,7 +1967,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/experimental/coteaching.html b/master/cleanlab/experimental/coteaching.html
index 891738834..be86addb3 100644
--- a/master/cleanlab/experimental/coteaching.html
+++ b/master/cleanlab/experimental/coteaching.html
@@ -653,7 +653,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/experimental/index.html b/master/cleanlab/experimental/index.html
index 761d217bd..549f04f66 100644
--- a/master/cleanlab/experimental/index.html
+++ b/master/cleanlab/experimental/index.html
@@ -573,7 +573,7 @@ experimental
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/experimental/label_issues_batched.html b/master/cleanlab/experimental/label_issues_batched.html
index b9d13198b..081e07083 100644
--- a/master/cleanlab/experimental/label_issues_batched.html
+++ b/master/cleanlab/experimental/label_issues_batched.html
@@ -913,7 +913,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/experimental/mnist_pytorch.html b/master/cleanlab/experimental/mnist_pytorch.html
index 07eb26abf..6e3194931 100644
--- a/master/cleanlab/experimental/mnist_pytorch.html
+++ b/master/cleanlab/experimental/mnist_pytorch.html
@@ -2381,7 +2381,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/filter.html b/master/cleanlab/filter.html
index cc7c79e45..20486003d 100644
--- a/master/cleanlab/filter.html
+++ b/master/cleanlab/filter.html
@@ -768,7 +768,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/index.html b/master/cleanlab/internal/index.html
index c5e6f705f..b6ed9b690 100644
--- a/master/cleanlab/internal/index.html
+++ b/master/cleanlab/internal/index.html
@@ -575,7 +575,7 @@ internal
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/label_quality_utils.html b/master/cleanlab/internal/label_quality_utils.html
index f6eb06dce..99cc9213e 100644
--- a/master/cleanlab/internal/label_quality_utils.html
+++ b/master/cleanlab/internal/label_quality_utils.html
@@ -605,7 +605,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/latent_algebra.html b/master/cleanlab/internal/latent_algebra.html
index 3e3cc7045..50387e08e 100644
--- a/master/cleanlab/internal/latent_algebra.html
+++ b/master/cleanlab/internal/latent_algebra.html
@@ -795,7 +795,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/multiannotator_utils.html b/master/cleanlab/internal/multiannotator_utils.html
index 7d8e8f378..987e68dea 100644
--- a/master/cleanlab/internal/multiannotator_utils.html
+++ b/master/cleanlab/internal/multiannotator_utils.html
@@ -652,7 +652,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/multilabel_scorer.html b/master/cleanlab/internal/multilabel_scorer.html
index c3117ced8..3d874a174 100644
--- a/master/cleanlab/internal/multilabel_scorer.html
+++ b/master/cleanlab/internal/multilabel_scorer.html
@@ -1134,7 +1134,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/multilabel_utils.html b/master/cleanlab/internal/multilabel_utils.html
index f3d0f01da..638854da0 100644
--- a/master/cleanlab/internal/multilabel_utils.html
+++ b/master/cleanlab/internal/multilabel_utils.html
@@ -653,7 +653,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/outlier.html b/master/cleanlab/internal/outlier.html
index 88620b474..cf11f266c 100644
--- a/master/cleanlab/internal/outlier.html
+++ b/master/cleanlab/internal/outlier.html
@@ -611,7 +611,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/token_classification_utils.html b/master/cleanlab/internal/token_classification_utils.html
index 83cacbf9f..5d8a83d60 100644
--- a/master/cleanlab/internal/token_classification_utils.html
+++ b/master/cleanlab/internal/token_classification_utils.html
@@ -784,7 +784,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/util.html b/master/cleanlab/internal/util.html
index b5ff4ddc7..e1a482481 100644
--- a/master/cleanlab/internal/util.html
+++ b/master/cleanlab/internal/util.html
@@ -1157,7 +1157,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/internal/validation.html b/master/cleanlab/internal/validation.html
index 182e64a85..f95794435 100644
--- a/master/cleanlab/internal/validation.html
+++ b/master/cleanlab/internal/validation.html
@@ -639,7 +639,7 @@
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/models/fasttext.html b/master/cleanlab/models/fasttext.html
index cf3e4b329..02c901a25 100644
--- a/master/cleanlab/models/fasttext.html
+++ b/master/cleanlab/models/fasttext.html
@@ -559,7 +559,7 @@ fasttext
- Copyright © 2023, Cleanlab Inc.
+ Copyright © 2024, Cleanlab Inc.
Made with Sphinx and @pradyunsg's
diff --git a/master/cleanlab/models/index.html b/master/cleanlab/models/index.html
index ed82ce38b..0870b379d 100644
--- a/master/cleanlab/models/index.html
+++ b/master/cleanlab/models/index.html
@@ -571,7 +571,7 @@ models